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CHAPTER I 
 

 

 

Introduction 
 

1.1. Adulteration of Edible Oils 

Adulteration of food is a recurring problem. In recent years, there has been a rise in 

cases of food adulteration with its attendant economic and health consequences. One 

contributing factor is the steady increase in the cost of food products.1-1 To keep the cost 

of food at a manageable level for the consumer, some manufacturers have replaced a 

component or ingredient in food with one that is less expensive   to maintain the same price 

range and profit margin. Another factor that has contributed to food adulteration is 

inadequate legislation to assure fair trade of food and food products. A well-known 

example is the adulteration of plant-based edible oils by mixing a less expensive edible oil 

with a more expensive one.1-2 Clearly, the adulteration of edible oils raises questions about 

food safety and quality. This dissertation describes the development of an analytical 

methodology to detect the presence of adulterants in plant-based edible oils.  

Adulteration of plant-based edible oils can be incidental or deliberate. It is 

incidental when foreign substances are added to food as a result of ignorance, negligence, 

or improper maintenance of facilities. Several manufacturers may use the same production 

facility to manufacture other products. Improper cleaning and inspection of the facility  
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before other products are produced can lead to contamination. On the other hand, deliberate 

adulteration is the intentional addition of foreign substances or the substitution of other 

components for economic gain. In a report commissioned by the National Center for Food 

Fraud and Defense in collaboration with the Department of Homeland Security, so-called 

“food fraud” was defined as “a collective term that encompasses the deliberate substitution, 

addition, tampering or misrepresentation of food, food ingredients or false misleading 

statements made about a product for economic gain.”1-3 Adulteration of edible oils may 

present some public health implications or hazards for the consumer. An example of this 

is ‘toxic oil syndrome’ in Spain where consumers were adversely impacted by adulteration. 

1-4 – 1-6 In this incident, poorly refined rapeseed oil mixed with aniline-based compounds 

marketed as olive oil were consumed by approximately 20,000 people and resulted in 

approximately 300 deaths. Similarly, in India, the mixing of an edible oil with argemone 

or mustard oil led to an epidemic in dropsy and glaucoma.1-7 – 1-9 Adulteration of edible oils 

has become more sophisticated as less expensive edible oils with similar fatty acid and 

sterol profiles are mixed with more expensive edible oils which make it far more difficult 

for them to be detected by unsuspecting consumers. 

 

 

1.2. Components of Edible Oils 

Edible oils are food substances obtained from plants or animal sources.  They are 

usually liquids at room temperature and consist mainly of triglycerides.  Tropical oils such 

as palm oil, palm kernel oil and coconut oil may be solid at room temperature because they 

contain a high amount of short chain triglycerides and saturated fatty acids.1-10, 1-11 
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Triglycerides are compounds formed from the condensation reaction between glycerol and 

three molecules of fatty acids (see Figure 1.1). These fatty acids can be saturated (SFA), 

mono-unsaturated (MUFA), or poly-unsaturated (PUFA) see Figure 1.2. The chemical 

structure of a saturated fatty acid does not contain C=C bonds. MUFA contains only one 

C=C bond while polyunsaturated fatty acid contains more than one C=C bond in its 

structure. The human body can synthesize SFAs and MUFAs, but the simplest PUFA such  

 

Figure 1.1. A triglyceride showing linoleic acid in the SN 1 position (red), palmitic acid (green) 

in the SN 2 position and oleic acid (blue) in the SN 3 position of the glycerol backbone. 

 

as linoleic and α-linolenic acids can only be synthesized in plants.1-12 Fatty acids that 

cannot be synthesized by the body are called ‘essential’ fatty acids because they must be 

provided by foods. Fatty acids are important as they offer both nutritional and health 

benefits. PUFA has been shown to reduce the risk of heart problems 1-13 while cis-MUFA 

may contribute to high density lipoprotein (HDL), which reduce the risk of atherosclerosis 

and cardiovascular diseases.1-14, 1-15 Fatty acids are a source of energy for metabolic 

processes and are important for stabilizing biologic membranes by creating physical 

properties that are optimal for the transport of substances across the membrane.1-16, 1-17  
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Figure 1.2. Structure of (a) stearic acid 18:0, a saturated fatty acid (b) palmitoleic acid 16:1(9), a 

mono-unsaturated fatty acid (c) α-linolenic acid 18:3(9,12,15), a polyunsaturated fatty acid and (d) 

erucic acid 22:1(13), another monounsaturated fatty acid. 

 

 

 

(a) 

(b) 

(c) 

(d) 



5 
 

Unsaturated fatty acids can take the cis- or trans- configuration. Trans fatty acids are 

geometric isomers of cis fatty acids. Trans fatty acids are considered unhealthy as they 

contribute to low density lipoprotein (LDL) and total cholesterol which can raise the risk 

of heart disease and stroke. Apart from classification based on the degree of unsaturation, 

fatty acids can also be classified based on chain length as either short chain, medium chain, 

or long chain fatty acids. A short-chain fatty acid is between 2 and 6 carbon atoms long. 

Medium chain fatty acids are 8 to 12 carbons long while long-chain fatty acids are 14–24 

carbons long. Examples of long chain fatty acids are oleic acid 18:1(9), linoleic acid 

18:2(9,12) and α-linolenic acid 18:3(9,12,15). The number(s) in parenthesis represent the 

position(s) of unsaturation in the chain. 

Although, edible oils are composed primarily of triglycerides (approximately 96%), 

other components are also present in the oil. The composition of a particular edible oil can 

be influenced by several factors such as the botanical origin and species, climatic 

conditions, soil conditions, harvesting conditions, refining and storage conditions.1-10, 1-18 

For example, linoleic acid concentration is significantly reduced in canola cultivars grown 

during drought.1-19 Most crude plant-based edible oils are obtained from the seeds and fruits 

of plants. Oil extraction from seeds is achieved by pressing and/or by solvent extraction. 

Oil seeds include canola, corn, peanut and sunflower. Oils such as olive and palm, are 

pressed out of the soft fruit otherwise known as the endosperm. The mechanical method 

utilized in extraction of the oil can affect certain parameters of the oil. Virgin olive oil 

obtained by centrifugation method has been found to contain a lower polyphenol content 

compared to the one obtained by pressing and percolation methods.1-18, 1-20 This is because 
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the centrifugation method requires lukewarm water in dilution of the paste which partially 

dissolves the polyphenol.  

Most oils are refined, some more than others, before they are sold commercially. 

Typically, commercially sold edible oils go through the refining process to remove 

undesirable components and to ensure suitability for human consumption. Undesirable 

components can affect the taste, aesthetic value or induce oxidation or hydrolysis in oil. 

The refining process of oils is designed to remove undesirable materials such as 

monoacylglycerols, diacylglycerols, phospholipids, trace metals, oxidized materials and 

pigments. Refining is also intended to maximize desirable components like antioxidants 

and vitamins. Hydrogenation of the oil may also take place during refining. Brush 

hydrogenation, a very light form of hydrogenation, is applied to rapeseed oil and soybean 

oil to reduce the linolenic acid content. Although linolenic acid is an essential fatty acid, it 

is a cause of oxidative instability of these oils. Therefore, reducing the linolenic acid 

content through hydrogenation extends the shelf life of an edible oil. 

As mentioned earlier, the major dietary fat from plants and animals takes the form 

of triacylglycerol. Triacylglycerols (TAGs) are commonly called triglycerides and are 

formed when three fatty acids react with 1, 2, 3-propanetriol (glycerol) to form an ester. 

The fatty acids in this reaction are almost invariably long-chain fatty acids (C14 to C22).  

The type and position of the fatty acids attached to the glycerol backbone play an important 

role in determining the physical properties of a triglyceride. The length of the chain as well 

as the conformation and position of the double bond(s) can influence the physical 

properties such as melting point and flash point. Short chain fatty acids will melt at a lower 

temperature than those with a longer chain length. Melting point is also lowered with 
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increasing unsaturation of the oil. The stereochemical position of each fatty acid on the 

triglyceride can be a factor in determining the physical properties of the oil.1-20 For oils that 

are considered edible, the unsaturated fatty acid of the C18 form are predominantly oleic 

and linoleic acids. Typically for these oils, odd numbered or branched-chain fatty acids are 

rarely observed. The chain length is usually between C16 and C24. For instance, safflower 

and olive oil contain a high amount of oleic acid, whereas linseed oil (which is not 

considered edible) contains about 60% α-linolenic acid.  

1.2.1. Minor Components of Edible Oils 

1.2.1.1. Free Fatty Acids (FFAs) 

Edible oils also contain minor components that contribute to their chemical profile 

or fingerprint. These include free fatty acids (FFAs), monoacylglycerols (MAGs) 

diacylglycerols (DAGs), phospholipids, tocopherols, pigments, water, vitamins, and trace 

metals. They comprise about 0.2 to 1.3% of edible oils. When TAGs react with water, 

FFAs and DAGs are formed.  This hydrolysis reaction can be catalyzed by lipases at 

extreme pH and heat during the refining and storage of the oil. This hydrolysis reaction can 

also occur during the refining of the oil or when it is in storage. Short chain FFAs can also 

be formed from the secondary oxidation of unsaturated aldehydes which are produced from 

the cleavage of lipid hydroperoxides. Although FFAs are undesirable and are usually 

removed during refining, they cannot be eliminated because their concentration continues 

to increase as the oil ages.1-21 The presence of FFAs in oil even at very low concentrations 

further catalyze the breakdown of TAGs, thereby causing a continuous increase in the level 

of FFA in the oil in storage and on the shelf. The amount of FFA in an edible oil is an 

indication of the degree of degradation of the oil and can impact flavor and taste and 
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decrease the smoke point of the oil. Such a reduction in temperature limits the degree to 

which the oil can be heated. FFAs also increase the acidity and lower the oxidative stability 

of the oil. Therefore, the amount of FFA is an important parameter of quality. 

1.2.1.2. Mono- and Di-acylglycerols 

MAGs and DAGs are formed from the hydrolysis of triglycerides during refining 

and storage. They may also be found naturally in some seed oils as they are precursors to 

the formation of TAGs. Therefore, they can be formed due to incomplete biosynthesis of 

TAGs.1-22, 1-23 MAGs are monoesters of glycerol in which only one of the hydroxyl groups 

is esterified with a long-chain fatty acid. MAG has a glycerol backbone with two free 

hydroxyl groups while DAG has only one free hydroxyl group. For DAG, two of the 

hydroxyl groups have been esterified with fatty acids. MAG can exist as 1-MAG or 2-

MAG based on the position of the ester bond on the glycerol. In 2014, Chen et al., 

determined that MAG at levels of 0.5 wt.% suppresses the effectiveness of α-tocopherol in 

soybean oil.1-24 Alpha-tocopherol is considered an antioxidant and is a desirable constituent 

of edible oil. DAG has been found to increase the oxidation in edible oils leading to 

rancidity.1-25 When compounds like FFAs, MAGs and DAGs are formed in edible oils, the 

surface tension of edible oils decreases with a corresponding increase in the diffusion rate 

of oxygen from the headspace of the container to the oil. This increase in oxygen diffusion 

leads to faster oxidation of the oil and a reduced shelf life.1-26 

1.2.1.3. Phospholipids  

 Phospholipid typically refers to lipids that contain phosphoric acid and/or other 

phosphorus containing acids in ester form. They are made up of a diacylglycerol, a 

phosphate group, and a simple organic molecule, such as ethanolamine or choline.1-27 
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Phospholipids contain both hydrophilic and lipophilic groups and can make up 0.1 to 1.8% 

of the total lipids extracted from crude edible oils.  In freshly refined oils, they are usually 

found in small amounts, about 40 to 135 mg/Kg. Phosphatidic choline is the most common 

phospholipid in seed oils. Phospholipids include phosphatidic acid, phosphatidylcholine 

and phosphatidylethanolamine. 

Phospholipids are beneficial to human health as they exhibit antioxidative 

properties and are essential to the efficiency of cell membranes in living organisms. They 

are also easily oxidized by unsaturated fatty acids and have a gummy consistency, which 

gives the oil a cloudy appearance and causes foaming when frying. During storage, they 

can precipitate and form an unsightly residue. Phospholipids are usually removed during 

refining through the process of degumming. 

1.2.1.4. Fat Soluble Vitamins 

Fat soluble vitamins in edible oils are present as carotenes and tocopherols, which 

is also known as vitamin E. The amount of vitamin E present in edible oils varies among 

oils. Tocopherol can be present in two forms: alpha, beta, gamma and delta- tocopherol or 

tocotrienols. They are regarded as a class of phenolic antioxidants. Tocopherol is an 

antioxidant that protects the oil from auto-oxidation. They are considered desirable 

constituents because they are natural antioxidants. The concentration of tocopherols in 

edible oils can range from 200 to 1000 ppm. The antioxidant activity of tocopherols 

increases from the α- through the δ-isomer, while the reverse is observed for the vitamin 

activity which decreases from the α through the δ-isomer.1-28 Tocopherols scavenge 

radicals and react with singlet oxygen. Therefore, they inhibit the rate of photooxidation 

and autooxidation in edible oils. 
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1.2.1.5. Beta-carotene, Sterols and Metals 

Beta-carotene is another antioxidant that is present in edible oils. It is a lipid soluble 

natural pigment that can prevent Vitamin A deficiency. However, deodorizing edible oils 

will result in complete removal of the beta-carotene content.  For this reason, beta-carotene 

is usually added to edible oils after deodorization. Sterols obtained from plants are usually 

referred to as phytosterols. Phytosterols are naturally occurring steroid alcohols and make 

up about 0.1 to 1% of seed oils. Phytosterols may compete with cholesterol at absorption 

sites in fat tissues. Therefore, consumption of phytosterols may effectively lower blood 

cholesterol levels. Metals such as iron and copper may also be present in edible oils. The 

presence of these transition metals can facilitate the decomposition of lipid hydroperoxides 

and increase local radical concentration leading to faster oil degradation. These metals also 

contribute to the decomposition of antioxidants such as tocopherols and phenolic 

compounds during frying.1-29 

1.2.1.6. Other Minor Constituents 

Other minor constituents of edible oil include oxygen, water, and hydrocarbons. 

Hydrocarbons include compounds such as alkanes, alkenes and squalene. The 

hydrocarbons present in olive oil consist mainly of squalene, which makes up about 90% 

of the total hydrocarbon. Squalene (C30H50) is an open chain triterpene which is highly 

unsaturated and an intermediate compound in the biosynthesis of sterols. Under extreme 

heat and light conditions, oxidative degradation of squalene can occur, leading to the 

formation of aldehydes and ketones which may lead to an off-flavor in the oil.1-30, 1-31 
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1.3. Differences between Plant-based and Animal-based Oils. 

The edible oils investigated in the research described in this dissertation are plant-

based edible oils. Plant-based edible oils differ from oils obtained from animal sources in 

a variety of ways. Cholesterol, the most abundant sterol in animal fats and oils is only 

present in plant-based edible oils in negligible amounts.1-32 In plant-based edible oils, β-

Sitosterol is found to be predominant in the sterol fractions except in pumpkin seed oil.1-33 

Animal oils contain a large amount of SFAs compared to vegetable oils.1-34 Oils from 

animal sources tend to have more free fatty acids and are composed mainly of MUFAs 

while oils obtained from plant sources are composed mainly of PUFA.1-35 

1.4. Detecting Adulteration in Edible Oils 

1.4.1. Gas Chromatography and Liquid Chromatography 

Techniques such as capillary column gas chromatography (CGC), gas 

chromatography/mass spectrometry (GC/MS), gas chromatography-mass 

spectrometry/mass spectrometry (GC-MS/MS), gas chromatography equipped with flame 

ionization detection (GC-FID) and high-performance liquid chromatography (HPLC) have 

been used to successfully authenticate edible oils. These techniques are used for both 

qualitative and quantitative analyses of compounds. Many established international 

regulations have defined the quality of edible oils based on these techniques. It is also not 

uncommon for researchers to combine these methods with chemometric techniques in 

authentication studies. Chromatographic techniques often require isolation and/or 

derivatization of compounds using procedures that require an appreciable amount of 

manual work and time. The instrumentation for these methods is expensive compared to 
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spectroscopic procedures.  Moreover, gas chromatography and liquid chromatography are 

difficult to use for field work and on-line monitoring.  

An American Oil Chemist’s Society (AOCS) method has been developed using GC 

employs standards containing different alkyl chain lengths which must be injected under 

the selected conditions of the experiment in order to establish the retention indices of the 

metabolite. In analyzing a sample, the triglycerides are broken down into fatty acids using 

organic solvent(s). The lipids are then methyl esterified to form fatty acid methyl esters 

(FAMEs). In this method, the edible oil is first heated with methanol and sodium methylate 

under reflux. Extraction is then carried out using diethyl ether and the ester is analyzed 

using GC-FID.1-36 This method, though sensitive, is laborious and time consuming.  

Al-Ismail et al., 2010 investigated adulteration in olive oil by corn, soybean, 

sunflower and cotton seed oils.1-37 CGC with a polar column was used to monitor the four 

different types of sterols in olive oil and in prepared adulterated samples. This method took 

advantage of the difference in the campesterol and stigmasterol content of olive oil 

compared to other plant-based oils as the campesterol content in olive oil must be less than 

or equal to 4% according to EC regulation 2568, (enacted in 1991). The workers found that 

the amount of sterols in olive oils increased as the amount of adulteration increased. 

However, this method cannot be used to identify the type of oil used as the adulterant. Also, 

it is problematic to use this method for the detection of olive oil adulteration by hazelnut 

oil because of the low campesterol and stigmasterol content of hazelnut oil. 

 In another study carried out by Mariani et al. in 2006, the free (polar fraction) and 

esterified (nonpolar fraction) of sterols from refined olive oils and their adulterated 

mixtures were separated using silica gel chromatography.1-38 This method involved the 
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preparation of a silica gel column which was laborious. The workers were able to achieve 

limits of detection ranging from 5% to 10% for the presence of refined hazelnut oils in 

olive oils depending upon the variety of olive oil.  Li et al., 2016, used GC-MS for the 

classification of six different types of vegetables. 1-39. The mass selective detector allowed 

for the identification of the compounds comprising the oils.  The vegetable oils investigated 

were soybean, camellia, peanut, corn germ, sesame and rapeseed oils. In their study, the 

Kennard-Stone algorithm was used to select the samples that comprised the training set.  A 

genetic algorithm optimized support vector machine was used to classify the samples with 

misclassification rates of 8.48% and 3.03% for the training and test sets respectively.   

Methyl trans-esterified fractions of pure olive oil (e.g., extra virgin and virgin olive 

oils) and adulterated olive oils were assessed using HPLC.1-40 The oils used for the 

preparation of the adulterated blends included soya, sunflower, canola, corn, peanut, 

sesame and grapeseed oils.  The trans-esterified fraction was prepared using a mixture of 

sodium methoxide in methanol in methyl tert-butyl ether along with centrifuging with 

water and n-hexane. The data obtained was taken through several preprocessing steps 

including filtering to eliminate noise, baseline correction, peak alignment and mean 

centering. Partial least squares regression (PLS-R) and support vector-regression (SV-R) 

were performed on the preprocessed data obtained from the chromatograms. Two forms of 

SV-R were tested without X-block compression, followed by testing with X-block 

compression using principal component analysis (PCA) and PLS. In comparing the results 

obtained from PLS-R with SV-R, certain quality metrics were used. These included R2, 

root mean square error of validation (RMSEV), mean absolute error of validation (MAEV) 

and median absolute error of validation (MdAEV). PLS-R was found to produce 
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comparable R2 values with SV-R while the errors (RMSEV, MAEV and MdAEV), were 

generally lower for PLS-R than for SV-R. 

Characterization and classification of several edible oils were performed through 

polyphenolic fingerprints acquired at three wavelengths (257 nm, 280 nm and 316 nm) 

using HPLC.1-41 The edible oils employed in this study included olive, sunflower, corn and 

soy oils. Extraction was achieved using ethanol and water along with 24 hours freezing at 

-18 oC. The extract was defatted using hexane and the aqueous ethanolic extract was 

analyzed by HPLC. Principal component analysis was performed on data obtained from 

the raw chromatograms. While there was a high degree of discrimination between olive 

oils and the other edible oils, discrimination among the other edible oils was not achieved. 

Separation was better with the data acquired at 257 nm compared to the other two 

wavelengths. There was no clear separation between olive oils and the other oils with the 

other two wavelengths. Mixtures were prepared consisting of Arbequina extra virgin olive 

oil (EVOO) adulterated with Picual EVOO, refined olive oil, or sunflower oil. PLS-R was 

applied to the data obtained from these mixtures with the overall errors in the quantitation 

of adulteration in the Arbequina EVOO (minimum of 2.5% adulteration) below 2.9%. 

 Data from different analytical sources have been combined using a technique 

known as data fusion. It is expected that fusion of analytical data should provide broader 

and more accurate information about the sample. In a method proposed by Vera et al., data 

from reverse and normal phase HPLC using a charged aerosol detector (HPLC-CAD) was 

combined with data obtained from a high temperature GC-FID using low- and high-level 

fusion.1-42 Denoising and smoothing was applied to the data followed by baseline 

correction, chromatogram profile alignment and mean centering. SIMCA, along with low- 
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and high-level fusion techniques, were applied to authenticate olive oil samples from a 

particular cultivar based on its geographical region. The results from SIMCA were 

compared to those obtained with partial least squares-discriminant analysis (PLS-DA). The 

best classification result obtained from this study was from PLS-DA high-level fusion. This 

result was superior in terms of sensitivity, specificity and inconclusive classifications than 

SIMCA and superior to the individual fingerprint of each technique. Approaches using data 

fusion are often expensive and time consuming because data from multiple techniques are 

combined leading to increased cost. 

1.4.2. Spectroscopy 

Matrix-assisted laser desorption/ionization-imaging mass spectroscopy (MALDI-

MSI) has been used to investigate the adulteration of edible oils that often occur in used 

cooking oils.1-43 Principal component analysis (PCA) score plots showed that fresh edible 

oils could be readily differentiated from deep-fried and gutter oils (reprocessed cooking 

oils). Discrimination of deep-fried cooking oils from recycled cooling oils was more 

challenging. The workers postulated that molecular ions with m/z of 1752.5 and 795.6 are 

crucial for achieving this discrimination. The second part of this study entailed the 

discrimination of nine varieties of edible oils including canola, corn, grapeseed, olive, 

palm, peanut sesame, soybean and sunflower oils. Each edible oil variety could be 

differentiated from the others using PCA.  

A methodology using direct electron impact ionization -mass spectrometry (EI-

MS) was employed to assess the authenticity of edible oils.1-44 This technique authenticates 

edible oils based on their m/z fragmentation pattern. No chromatographic separation is 

performed with this technique. The oils used in this study were virgin olive, hazelnut, 
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sunflower, soybean, cotton seed and black cumin oils. Esterification of the triglycerides to 

fatty acid methyl ester was performed and the product was stored at -30 oC. The fatty acid 

profiles of the edible oils were determined by GC-FID. Several preprocessing methods 

were applied to the data obtained from EI-MS, and it was determined that standard normal 

variate coupled to Savitzky-Golay smoothing gave the best results. After preprocessing, 

different regions of the recorded m/z values between 90 and 400 were examined. The 

spectrogram was divided into two regions and divided again in increments of ten before 

PCA was performed. With PCA, some of the plots showed hazelnut and virgin olive oil 

clustering together while the other oils remained in a different cluster, whereas other plots 

showed hazelnut oil well discriminated from virgin olive oil. It was difficult to obtain good 

separation within the cluster of the other oils using PCA score plots. Linear discriminant 

analysis applied to the same data showed good discrimination among the oils except for 

soybean oil, which was projected in the sunflower oil cluster and the black cumin seed oil 

cluster. 

1.4.3. Nuclear Magnetic Resonance Spectroscopy  

1H, 13C and 31P NMR have also been used to study the authenticity of edible oils. 

Although the NMR technique is easy to use and may not require derivatization or elaborate 

extraction procedure as in chromatography or mass spectrometry, NMR instruments as 

with MALDI are large and very costly compared to optical methods and cannot be 

employed for infield operation.  The fatty acid that are esterified to a glycerol backbone 

give specific NMR signals, which on visual inspection can allow direct identification and 

quantification. High resolution 1H NMR spectroscopy has been applied to the 

determination of the fatty acid composition of edible oils. The use of an ultrafast low field 
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2D benchtop NMR was reported by Gouilleux and co-workers in the discrimination of six 

varieties of edible oils.1-45 Although, the use of 2D high field NMR requires more time, the 

data obtained minimizes ambiguity in peak assignments and generally yields a more 

comprehensive profile of the sample compared to 1D 1H NMR. The NMR used in the 

report by Gouilleux is a low field instrument with 2D capabilities.  It acquires the 2D 

spectra in the same time frame as 1D NMR. This low field 2D NMR was used for 

authentication studies of edible oils because edible oils are considered concentrated (96% 

triglyceride). PCA was able to classify the 23 edible oil samples into 6 groups.  Apart from 

this classification study, the adulteration of olive oil by hazelnut oil was also investigated. 

The workers modelled the percent adulteration of hazelnut oil in each sample of olive oil 

using a two-component PLS regression model, where R2 = 0.9801 and RMSEP = 6.27% 

w/w.   

In another study, 13C NMR was used to characterize olive oils from different 

cultivars and geographical regions.1-46 The application of stepwise discriminant analysis 

allowed the classification of virgin olive oil and oils with a higher amount of oleic acid 

from those with a lower amount of linoleic acid. Although discrimination between oils 

based on high oleic acid and high linoleic acid content is straight-forward, it is problematic 

to discriminate virgin olive oil from oils with high oleic acid content.  It was also found 

that virgin olive oil could be discriminated from virgin olive oil adulterated by hazelnut oil 

(5% to 20%). 

The total amount of sterols in edible oils was also determined using 31P.1-47 In this 

study, the olive oils were phosphitylated by the derivatization of the labile hydrogens of 

the hydroxyl groups of the diglycerides (1,2- and 1,3-) with 2-chloro-4,4,5,5-
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tetramethyldioxaphospholanels. This method involved an elaborate preparation of the 

stock solution which comprised pyridine, CDCl3, chromium acetylacetonate and 

cyclohexanol (internal standard). The stock solution was mixed with the edible oil sample 

before phosphitylation was performed. The duration of the measurements was reduced by 

the presence of the paramagnetic metal center of Cr(acac)3 which helped to lower the 

relaxation times of the phosphorus nuclei. The diglyceride content was used to differentiate 

the olive oils from the other vegetable oils. 

1.4.4. UV/Visible Spectroscopy 

Characterization and authentication of edible oils have also been performed using 

UV absorbance spectroscopy. In one report, cold pressed oils were mixed in their refined 

version and UV spectroscopy was used to discriminate the pure cold pressed oil from the 

adulterated oils.1-48 Four types of oils were studied: canola, coconut, sunflower and 

grapeseed oils. Visual inspection, after the use of illuminant D65, showed that refined oils 

were lighter in color compared with the corresponding cold pressed samples. This trend 

was observed for all the oils except for coconut oil.  The absorbance spectra of the pure 

and adulterated mixtures showed a triplet between 400 and 500 nm and a small peak at 650 

nm. These peaks were monitored to establish the percent of adulteration present in the cold 

pressed oils. The refined oils were found to be missing these two peaks.  However, the 

triplet peak was not observed for cold pressed coconut oil. This peak diminished as the 

percent of refined oils increased. According to this report, this triplet peak may be 

associated with concentrations of oleic acid, linoleic acid and linolenic acid that were found 

to be significantly lower in the refined oils employed in this study compared to cold pressed 

oils. 
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Another study used UV-Visible absorbance spectroscopy to quantify the degree of 

adulteration of EVOO with refined olive oil and with refined olive-pomace oil.1-49 Some 

parameters were calculated using data obtained from the UV-Vis absorbance spectra of the 

mixtures of EVOO and refined olive oil, and EVOO and refined olive-pomace oils. These 

parameters showed a linear correlation with the amount of EVOO adulteration. Upon 

validation of the model, a mean square error of 1% and a mean correlation coefficient of 

0.97 were obtained. 

In one of the studies performed by Didham et al., the UV-Vis absorbance spectra 

of pure and adulterated olive oils were obtained.1-50 These spectra showed absorption at 

specific wavelengths associated with polyphenols, carotenoids and chlorophyll.  The data 

obtained from these spectra were subjected to PCA and a high degree of discrimination 

was obtained between pure EVOO, canola and sunflower oils. Analysis of the loadings 

showed that the largest eigenvectors obtained for the first three principal components 

correspond to the wavelengths (400, 500, and 650 nm) mentioned earlier in this section. 

However, this analysis appears to be limited to only one sample of sunflower oil and one 

sample of canola oil.  

 

1.4.5. Vibrational Spectroscopy 

Vibrational spectroscopy has proved to be a very useful technique in the 

authentication of edible oils because of the detailed information on chemical composition 

and existing functional groups provided by this technique. In contrast to chromatography 

and mass spectrometry-based techniques and others mentioned previously discussed in this 

chapter, vibrational spectroscopic based methods are rapid, non-destructive and produce 



20 
 

less chemical waste. Vibrational spectroscopy, therefore, provides a fast, simple and 

reproducible means for evaluating edible oils. Vibrational spectroscopy can also be used 

for in-line and in-field measurements and can be easily automated. Vibrational 

spectroscopy in combination with chemometrics is an even more powerful tool in the 

authentication of edible oils where both quantitative and qualitative information about the 

composition of edible oils can be obtained from the spectroscopic fingerprint of each edible 

oil. Analysis of these fingerprints by pattern recognition methods is crucial to ensure the 

effective extraction of qualitative and quantitative information necessary to verify the 

authenticity of an edible oil and to detect adulteration. 

Multivariate classification and calibration methods have been applied to spectra 

obtained from infrared and Raman spectroscopy of edible oils to improve classification 

success rates and to obtain lower detection limits for adulterants.1-51 – 1-58 Generally, 

classification success rates of around 90% for edible oils have been reported in the literature 

with detection limits of adulterants at 10% using IR spectroscopy. However, these studies 

were generally limited to approximately ten samples spanning five or six edible oils using 

either PLS or linear discriminant analysis to perform a horizontal (i.e., flat) classification 

of the data. Furthermore, the edible oils investigated in almost all of these studies were 

represented by a single source (often a single bottle of an edible oil from a single brand) or 

a few brands. Thus, edible oils from a particular batch are “nicely” clustered and 

differentiated from other varieties of edible oils that are also obtained from a single source 

(specific brand and batch). For the studies carried out in this dissertation, a variety of 

samples were systematically collected over three years to account for seasonal variation in 
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the composition of the edible oils as well as manufacturer to manufacturer variation. This 

dissertation addresses the issue of sample variability in the authentication of edible oils. 

1.4.5.1. Near infrared spectroscopy (NIR) 

In NIR absorbance spectroscopy, the absorption of electronic radiation by a sample 

is measured in the range of 750 to 2500 nm. NIR bands are typically broad as they are 

combinations and overtones of vibrational modes of the C-H, O-H and N-H bonds. NIR 

spectroscopy in combination with pattern recognition techniques has been applied to the 

discrimination of edible oils such as coconut oil, olive oil, rice bran oil, sesame oil, soybean 

oil and sunflower oil.1-59 Coconut oil was well separated from the other oils in the PCA 

score plot. The other edible oil varieties could not be discriminated from each other in the 

score plot. Pattern recognition techniques including SIMCA, PLS-DA, k-nearest neighbor 

(k-NN), support vector machines (SVM), and neural networks were then applied to this 

data set to identify the different varieties of edible oils. The results from these five pattern 

recognition techniques were compared. PLS-DA and SVM performed best in terms of the 

precision and accuracy of the classification models developed. 

The application of 2D NIR spectroscopy for discrimination of edible oils has also 

been investigated using four different varieties of edible oils (sesame, peanut, palm and 

soybean oils).1-60 The NIR spectra for each variety of the edible oils were similar with only 

slight differences due to significant peak overlap which is typical of NIR spectra. Clearer 

peak information was obtained in the range of 8750 cm-1 to 4500 cm-1 when ‘auto-power 

spectra’ were used as dynamic NIR spectra and were collected at temperatures between 50 

to 160 °C at intervals of 10 °C. This allowed for the discrimination of the oils by variety 

and by manufacturer. The contour level was set at 16, and it was observed that all the four 
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edible oils exhibited an obvious auto-peak at 4663 cm−1. Many differences were observed 

in other areas of the dynamic spectra. Therefore, these four varieties of edible oils could be 

discriminated from each other. The study also assessed the discriminating power of 2D 

NIR spectroscopy using peanut oils from different manufacturers. Peanut oils from two 

holding companies were used in this study. Differences in these peanut oils were 

attributable to the effects of process technology on the quality of the oils. This study would 

be more impactful if edible oils from a larger number of manufacturers were used. 

Unfortunately, this technique destroys the sample due to heating. 

1.4.5.2. Mid Infrared (MIR) Spectroscopy 

Mid IR spectroscopy has been widely used as a technique for authentication of 

edible oils.1-61 - 164 Qualitative and quantitative investigations can be performed using this 

method. It requires very little sample preparation and no hazardous chemical reagents or 

solvents are needed. MIR spectroscopy performed using a Fourier transform infrared 

(FTIR) spectrometer uses an interferogram to adaptively recalculate the spectrum. The 

application of FTIR spectroscopy can help with improved accuracy of detection for 

adulterants. In recent years, there has been an increase in the use of FTIR spectroscopy 

because of the ease of combining it with chemometrics. FTIR gives the chemical 

fingerprint of a sample which can be exploited using multivariate techniques to obtain 

valuable information about the composition and structure present in a sample. The 

challenge with visual assessment of edible oil spectra for the purpose of discrimination and 

detection of adulterants is the similarity of the spectra of the oils. Individual inspections of 

spectra can be tedious and time consuming especially when comparing many spectra.  



23 
 

A study discussed earlier in this chapter that employed UV absorbance 

spectroscopy also utilized MIR spectroscopy as part of the study design.1-50 This study 

utilized an FTIR spectrometer equipped with a ZnSe window upon which samples were 

dropped. Savitzky-Golay filtering was performed using the second derivative with a 20-

point window for smoothing and a second order polynomial. The data set was divided into 

a high range from 10% to 50% adulteration, in increments of 10% w/w and a low range 

from 0.2% to 10% in increments of 0.2% w/w.  Principal component analysis (PCA) and 

partial least squares discriminant analysis (PLSDA) were used to identify trends present in 

the spectra and to classify samples according to whether they were pure or adulterated. The 

PLS-DA model for MIR data gave an R2 and SECV of 0.98 and 3.05 for the entire range 

(0.2% to 50%) and 0.91 and 1.01 for the low range. The authors concluded that this 

technique can reliably detect adulteration above 10% because of the low error in prediction. 

They also concluded that adulteration levels below 10% may be problematic to detect. The 

authors used one or two samples each of olive, sunflower and canola in their study. 

MIR has also been used to study the adulteration of olive oil with refined and 

lampante virgin olive oils.1-65 This study also investigated the adulteration of olive oil by 

hazelnut oil with percent adulteration ranging from 2% to 20%.  An FTIR spectrometer 

fitted with a horizontal ATR ZnSe crystal with six internal reflections was employed for 

the absorption measurements. Multivariate analyses using stepwise linear discriminant 

analysis (SLDA), was performed on the edible oils using the full spectral range and on the 

unsaponifiable matter extracted from the oils. The SLDA models selected ten wavelengths 

for the oils and eight wavelengths for the unsaponifiable matter. The percentage of correct 

classification for olive oil adulterated by hazelnut oil were higher when the models were 
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constructed using the extracted unsaponifiable matter than the original edible oils. This 

same trend was also observed for refined and lampante virgin olive oils. For the test set, 

the unsaponifiable matter samples also gave the best results.  However, two false positives 

were reported. Furthermore, the SLDA plot only showed clusters representative of olive 

oil, hazelnut oil, or adulterated olive oil. It is difficult to discern whether the spectra of the 

mixtures (olive oil adulterated with hazelnut oil or refined and lampante virgin olive oil) 

were linearly additive. 

1.4.5.3. Raman Spectroscopy 

Raman spectroscopy has been applied to classification and authentication of edible 

oils.1-66 – 1-69 A previous study carried out in our research group entailed the use of Raman 

spectroscopy for the classification of edible oils.1-70 This study incorporated brand 

variability through a systematic collection of samples from several manufacturers over a 

three-year period. This study used 15 varieties of edible oils/blends spanning 53 samples 

from which 215 Raman spectra were collected. Prior to pattern recognition analysis, the 

spectra were filtered, smoothed and normalized. The spectra were then truncated to five 

bands ranging from 1750 cm-1 to 1270 cm-1. These bands were found to be informative in 

accounting for the differences between the classes in the training set.  The 15 varieties of 

edible oils were partitioned into five distinct groups based on their degree of saturation and 

the ratio of polyunsaturated fatty acids to monounsaturated fatty acids.   Edible oils 

assigned to one group could be readily differentiated from those assigned to other groups, 

whereas Raman spectra within the same group more closely resembled each other and were 

more difficult to classify by variety.  
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Raman spectroscopy has also been used to distinguish pure edible oils from used 

cooking oils.1-71 In order to discriminate used cooking oils from pure edible oils such as 

olive, rapeseed, soybean, corn or peanut oils, spectral bands at 869, 969, 1302 and 1080 

cm−1 were found to be crucial.  Heated oil in this study is defined as edible oil heated at 

200 oC for one hour, whereas waste cooking oil is the oil obtained from a designated 

company for the disposal of kitchen waste. The authors prepared adulterated mixtures by 

mixing waste cooking oils with soybean, peanut and olive oils in different proportions. 

PCA score plots of the adulterated mixtures indicated a linear additive model for the 

components comprising the adulterated mixtures.    However, the original waste and pure 

oils were not included in these score plots.  The authors also noted two characteristic peaks, 

one at 1183 and the other at 1554 cm-1, for the waste cooking oils. These same peaks were 

also observed for heated oils. The authors opined that the vibrational modes corresponding 

to these two peaks have not been reported in the literature and attributed them to repeated 

heating.  Furthermore, the peak at 1441 cm-1 was unaffected by the proportions of waste 

cooking oils added to the pure oils. The authors were able to identify five peaks related to 

the degree of adulteration and plotted the ratio of each of these peaks and the peak at 1441 

cm-1 against percent adulteration of the mixtures to obtain R2 values in the range of 0.97.  

As in the case of other studies reported in the published literature, only one sample was 

used for each of the five pure oils, the waste cooking oil and the heated oil. 

 

1.5. Organization of this Dissertation 

The focus of the research described in this dissertation is the application of FTIR 

spectroscopy and pattern recognition methods to the problem of authenticating plant-based 
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edible oils.   FTIR spectra of ninety-seven edible oil samples from twenty plant-based 

varieties collected over a three-year period were analyzed using the four major types of 

pattern recognition methods: mapping and display, cluster analysis, variable selection, and 

classification. The ninety-seven edible oil samples selected for this study encompass 

multiple brands representing both supplier to supplier variation and seasonal and batch 

variation within a supplier. Using a hierarchical classification scheme, the twenty plant-

based varieties of edible oils can be divided into four distinct edible oil groups. Edible oils 

from different oil groups can be reliably discriminated, whereas the discrimination of 

edible oils within the same group is problematic.  Adulteration of plant based edible oils 

by other edible oils in the same group (e.g., extra virgin olive oil by almond oil) cannot be 

reliably detected using FTIR spectroscopy, whereas adulteration of edible oils by other oils 

not in the same group (e.g., EVOO adulterated by corn or canola oil) can be detected at 

concentration levels as low as 10% (v/v) which is consistent with the results reported in 

previously published studies using partial least squares regression. A unique aspect of 

this work is the incorporation of edible oils collected systematically over three years, which 

introduces a heretofore unseen variability in the chemical composition of the edible oils.  

This work also demonstrates that previously published studies (which have relied on a 

single source to represent each type of edible oil) provide an overly optimistic estimate of 

the capability of FTIR spectroscopy to discriminate plant based edible oils by type and to 

detect the presence of adulterants in edible oils. 

This dissertation is divided into five chapters.  The first chapter is entitled, 

“Introduction,” and provides a brief survey of the literature on edible oils and analytical 

methods used to discriminate the different varieties of plant-based edible oils and detect 
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the presence of adulterants in these edible oils.  The second chapter focuses on the 

methodology used in the dissertation research, whereas the third and fourth chapters 

highlight the challenges encountered when using FTIR spectroscopy and chemometrics to 

authenticate edible oils.  The fifth and final chapter summarizes the research reported in 

this dissertation with suggestions about potential future directions.      
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CHAPTER II 

 

 

Materials and Methods 

 

2.1. Collection of Samples 

 

Ninety-seven edible oil samples (see Table 2.1) from multiple brands spanning 

twenty distinct varieties of plant based edible oils were purchased over a three-year period 

from supermarkets in the Newark, DE metropolitan area to account for seasonal and batch 

variations within each supplier as well as the variation between suppliers.  All edible oil 

samples used in this study were stored in glass containers with plastic caps at room 

temperature prior to infrared analysis.  Binary mixtures of the edible oils were prepared to 

simulate adulterated edible oils by mixing a more expensive edible oil (e.g., Extra Virgin 

olive oil) with a less expensive oil (e.g., corn oil) by mixing the appropriate volumes using 

a digital pipette (Eppendorf).  For example, an eighty-five percent/fifteen percent mixture 

of extra virgin olive oil and corn oil was prepared by mixing 850 L of extra virgin olive 

oil and 150 L of corn oil in a 1.5 mL sterile falcon tube using a MaxiMixPlus vortex mixer 

(Thermolyne, East Lyme, CT).   
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The peroxide value of each edible oil sample was measured using a Milwaukee Lab 

Mi490 Photometer (Milwaukee Instruments, Rocky Mount, NC).  Prior to photometric 

analysis, each sample was diluted with acetic acid and n-hexane (3:2).  For this 

measurement, 0.2 mL of the edible oil sample was mixed with 0.8 mL of acetic acid/n-

hexane mixture and then added to a vial containing the Mi490A-0 reagent. The photometer 

was standardized (zeroed) using this mixture. A packet of reagent Mi490B-0 (white 

powder) was then added to this vial followed by vigorous shaking for one minute. The vial 

after shaking was inserted into the instrument. After five minutes, the peroxide value of the 

sample was obtained in milli-equivalents of O2/Kg. 

Table 2.1.  Edible Oil Samples 

Edible Oil Type p Number of Samples 

EVOO A 26 

ELOO A 7 

Olive A 8 

Avocado A 2 

Peanut A 4 

Sweet Almond A 2 

Almond A 4 

Safflower A 2 

Hazelnut A 2 

Avocado-Olive-Flaxseed A 1 

Sunflower A 1 

Canola B 9 

Canola-Vegetable B 1 

Extra Virgin Sesame B 3 

Toasted Sesame B 1 

Canola-Sunflower-Soybean B 1 

Corn C 9 

Grapeseed C 8 

Vegetable C 4 

Walnut D 2 

Total  97 
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2.2. Fourier Transform Infrared Spectroscopy 

FTIR absorbance spectra (4000 cm-1 to 400 cm-1) of the commercial edible oils (see 

Table 2.1) and their binary mixtures were measured in triplicate or quadruplicate (64 scans 

each) using an iS50 FTIR spectrometer (Thermo-Nicolet, Madison, WI) equipped with a 

deuterated triglyceride sulfate (DTGS) detector.  Although most IR spectral libraries utilize 

transmission spectra, attenuated total reflection (ATR) 2-1 was the technique used to collect 

IR spectra of the edible oils for the two studies that are highlighted in this dissertation.  

ATR requires little or no sample preparation and consistent results (as in the case of 

transmission) are usually obtained.  For liquid samples, the technique requires minimal 

training.  Furthermore, samples can be measured in their neat state and dilution is not 

required in order to obtain a spectrum. As some samples may change their spectral 

characteristics after grinding, melting or pressing, ATR is an excellent alternative to the 

use of KBr disks or mineral oil mulls.  For these reasons ATR has become the most widely 

used sampling method in IR spectroscopy. 

In ATR, the IR beam traverses the internal reflecting element (IRE) (which is a 

diamond crystal in the case of the iS50 FTIR spectrometer) at an incident angle greater 

than the critical angle. This causes internal reflection to occur, with an evanescent wave 

generated that penetrates into the sample (see Figure 2.1).  In the mid-IR region where the 

edible oil absorbs IR radiation, the evanescent wave from the IRE is attenuated, and the 

reflected beam is the basis of the IR spectrum of the sample.  The depth of penetration (𝑑𝑝) 

of the evanescent wave2-2 is given by Equation 2.1 where λ is the wavelength of light, θ is 

the angle of incidence of the light, n1 is the refractive index of the IRE and n2 is the 

refractive index of the sample.  For internal reflection to occur, the refractive index of the 
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IRE must be greater than the refractive index of the sample.  (Materials used as internal 

reflection elements in ATR accessories such as diamond (n = 2.41) or germanium (n = 

4.00) have a higher refractive index that an edible oil whose refractive index can vary from 

1.4 to 1.5.) 

 

 

Figure 2.1. Internal reflection at a diamond crystal in an ATR accessory. The evanescent wave 

penetrates into a drop of edible oil placed on the crystal. 

 

 

𝑑𝑝  =  
𝜆

2𝜋(𝑛1
2 𝑠𝑖𝑛2𝜃 − 𝑛2

2)0.5
                                     2.1 

 

The penetration depth of the evanescent wave is directly proportional to the 

wavelength of the IR radiation and is independent of sample thickness. Good and uniform 

contact between the sample and crystal is crucial as the value of the absorbance is affected 

by non-homogenized contact. For edible oils, good contact typically occurred with the 

crystal except in only a few cases where bubbles were observed after dropping a sample of 

the edible oil onto the ATR crystal.  It was a simple matter to eliminate the bubbles, thereby 

ensuring good contact between the sample and the crystal. 
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To collect an IR spectrum, the crystal was first cleaned with a cotton swab doused 

in isopropanol. The spectral background was obtained after the isopropanol on the crystal 

evaporated to dryness. A drop of the oil was then placed on the ATR crystal and 64 scans 

were collected for each sample at 4 cm-1 resolution.  The crystal was always cleaned with 

a cotton swab and isopropanol after each sample measurement to avoid cross 

contamination by the previous sample during collection of the spectra. The spectral region 

corresponding to the absorption of the diamond crystal (~2300 cm-1- 1900 cm-1) was zeroed 

out for all IR spectra collected for this project. 

 

2.3. Pattern Recognition Analysis of IR Spectra 

FTIR and Raman spectroscopy differ from chromatographic techniques in their 

approach for authenticating edible oils.  In contrast to chromatography which tends to 

isolate the components of an edible oil prior to analysis, vibrational spectroscopic 

techniques treat the IR or Raman spectrum as a chemical “fingerprint” of the sample.  

Objective analysis of these spectral profiles depends upon the use of multivariate statistical 

methods.  Pattern recognition methods 2-3 - 2-5 were selected for analyzing the IR spectra of 

the edible oils because of the attributes of the procedures.  First, there are methods available 

that assume no mathematical model but rather seek relationships that provide definitions 

of similarity between groups of data.  Second, pattern recognition methods are able to deal 

with high dimensional data where more than three measurements are used to describe each 

sample.  Finally, techniques are available for selecting important features from a large set 

of measurements.  Thus, studies can be performed on data sets where the exact 

relationships are not fully understood.  
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For pattern recognition analysis, each IR spectrum is represented by a data vector 

x = (x1, x2, x3, ….. xj, …….xp) where component xj is the value of the jth descriptor.  Such 

a vector can be considered as a point in a high dimensional measurement space.  The 

Euclidean distance between a pair of points in the measurement space is inversely related 

to the degree of similarity between samples (as represented by their spectra).  Points 

representing samples from one class (e.g., a specific variety of an edible oil) will cluster in 

a limited region of the measurement space.  Pattern recognition is a set of numerical 

methods for assessing the structure of the data, which is defined as the overall relation of 

each sample to every other sample in the data set.   

What are the operations that must be performed in order to apply pattern recognition 

techniques to the authentication of edible oils?  A summary of the techniques used in the 

studies presented in this dissertation will be discussed in the following sections.  Emphasis 

is placed on how the data is configured for pattern recognition. 

 

2.3.1. Data Representation 

 The first step in a pattern recognition study is to convert the original spectral data 

into computer compatible form, which is a string of scalar measurements comprising an n-

tuple called a pattern vector.  Each component of the pattern vector is the absorbance value 

at a specific wavelength (cm-1).  The pattern vectors, in turn, are arranged in the form of a 

data matrix (see Equation 2.2); the rows of the matrix represent the spectra and the columns 

of the matrix represent the absorbance value at a specific wavelength for the spectra.  It is 

essential that each column encodes the same information for all samples in the data set.  If 
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the second column is the absorbance value at 3950 cm-1 for sample one, it must also be the 

absorbance value at 3950 cm-1 for sample two, three ….. N. 

 

[
 
 
 
 
𝑋11 𝑋12  𝑋13 … 𝑋1𝑃 

𝑋21 𝑋22  𝑋23 … 𝑋2𝑃 
 ∶     ∶      ∶      ∶     ∶
 ∶     ∶      ∶      ∶     ∶

𝑋𝑁1 𝑋𝑁2  𝑋𝑁3 … 𝑋𝑁𝑃 ]
 
 
 
 

                  (2.2) 

 

2.3.2.  Data Preprocessing 

The next step involves scaling of the data.  The scaling procedures used for a given 

data set depend upon the attributes of the data, the pattern recognition method used and the 

nature of the problem investigated.  This aspect of pattern recognition has not been 

thoroughly investigated for IR spectral data.  In the studies discussed herein, two 

techniques were used: normalization and autoscaling.    

Normalization involves setting the sum of the squares of the components of each 

pattern vector equal to unity.  Normalization is performed on each row of the data matrix 

to compensate for variations in the optical path length of the spectra.  Autoscaling involves 

adjusting the measurements such that each has a mean of zero and a standard deviation of 

one (see Equation 2.3) where origix ,  is the mean and si,orig is the standard deviation of the 

original measurement variable.  Autoscaling is performed on each column in the data 

matrix and removes any inadvertent weighing of the variables that otherwise would occur 

due to differences in the magnitude among the measurements.  After autoscaling, all 

measurements have equal weight and therefore an equal effect on the analysis. 
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2.3.3. Looking at Multidimensional Measurement Space 

Graphical methods are often used by physical scientists to study data. If there are 

only two or three measurements per sample, the data can be displayed as points in a two- 

or three-dimensional measurement space. The coordinate axes of this space are defined by 

the measurement variables.  By examining the plot, a scientist can search for similarities 

and dissimilarities among samples, find natural clusters and even gain information about 

the overall structure of the data.  If there are p measurements per sample (p > 3), a two or 

three-dimensional representation of the measurement space is needed that faithfully 

reflects the relative position of the points in the high dimensional measurement space.  The 

approach that is taken to solve this problem in the studies discussed herein involves using 

a technique called principal component analysis2-6-2-8(PCA).  This technique can be 

summarized as a method for transforming the original measurement variables into new 

uncorrelated variables called principal components.  Each principal component is a linear 

combination of the original measurement variables.  Using this procedure is analogous to 

finding a set of orthogonal axes that represent the directions of greatest variance in the data.   

A measure of the amount of information conveyed by each principal component is 

its variance.  (The variance is defined as the degree to which the data points are spread 

apart in the p-dimensional measurement space.)  For this reason, the principal components 

are usually arranged in order of decreasing variance.  Thus, the most informative principal 

component is the first and the least informative is the last.  Often, only the first two or three 
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principal components are used to generate a plot representing the p-dimensional pattern 

space.  For data sets with a large number of interrelated measurement variables, PCA is a 

powerful method for analyzing the structure of the data and reducing the dimensionality of 

the data. 

PCA is performed via a decomposition of the data matrix X (n x p) into a score 

matrix T (n x F), a loading matrix P (F x p), and a residual matrix E (n x p), where n is the 

number of spectra (i.e., samples) in the data set, p is the number of measurement variables, 

and F is the number of principal components necessary to represent a specified fraction of 

the total cumulative variance in the data.  Usually, F is smaller than p due to correlations 

among the measurement variables.  The matrix equation to decompose X is 

 

 X = (1 x m) + TP +E                (2.4) 

 

where 1 is a column vector (n x 1) of ones and m is a (1 x p) row vector representing the 

mean of the samples.  The coordinates of the samples (spectra) in the principal component 

space are provided by the score matrix, whereas the loading matrix contains the necessary 

information for transforming the original measurement variables into principal 

components.  By plotting the columns of T against each other, a plot representing the 

distribution of the data points in the p dimensional space is obtained.  The number of 

principal components needed to describe the signal in the data is equal to F or the number 

of columns in T, which in many studies is only two or three.  The score and loading matrices 

describe the signal in the data, whereas the residual matrix describes the noise.  Hence, 
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dimensionality reduction and separation of signal from noise in the data matrix is possible 

using PCA.  

 

2.3.4. Cluster Analysis 

Exploratory data analysis techniques are often quite helpful in understanding the 

complex nature of multivariate relationships. The importance of mapping and display 

techniques such as PCA to understand the structure of a complex multivariate data set was 

discussed in the preceding section.  Cluster analysis, which attempts to determine the 

structural characteristics of a data set by organizing the data into subgroups or clusters, is 

discussed in this section.  These methods are based on the principle that distances between 

pairs of points in the measurement space are inversely related to their degree of similarity.   

Although several different types of clustering algorithms exist, hierarchical 

clustering2-9 -2-11 is by far the most popular.  The starting point for hierarchical clustering is 

the similarity matrix, which is formed from the data matrix by computing the distances 

between all pairs of points in the data set.  Each distance is then converted into a similarity 

value (see Equation 2.5) where sik is the measure of similarity between samples i and k, dik 

is the Euclidean distance between samples i and k, and dmax is the distance between the two 

most dissimilar samples which is also the largest distance between points in the data set.  

The similarity values, which vary between 0 and 1, are organized in the form of a square 

matrix called a similarity matrix. 

 

𝑠𝐴,𝐵 = 1 − 
𝑑𝐴,𝐵

𝑑𝑚𝑎𝑥
                                                              (2.5) 
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The similarity matrix is scanned for the largest value, which corresponds to the two 

samples that are most similar, and the two samples comprising these points are combined 

to form a new point located midway between the two original points.  After the rows and 

columns corresponding to the original two data points are removed, the similarity matrix 

is updated to include information about the similarity between the new point and the other 

remaining points in the data set.  The similarity matrix is again scanned, the new nearest 

point is again identified and combined to form a single point, the rows and columns of the 

two data points that were combined are removed, the matrix is again recomputed to include 

information about the similarity between the new point and every other data point 

remaining.  The reduction of the similarity matrix by the aggregation of the samples is 

repeated until all points have been linked.   The results of this procedure are summarized 

in a diagram called a dendrogram, which is a visual representation of the relationships 

between samples in the data set.  Interpretation of the results is intuitive (see Chapter 3), 

which is the major reason for the popularity of these methods.   

All clustering procedures yield the same results with well separated clusters.  

However, the results differ when the clusters overlap because of space distorting effects.  

Single linkage hierarchical clustering favors the formation of large linear clusters instead 

of the usual elliptical or spherical clusters.  As a result, poorly separated clusters are often 

chained together.  Complete linkage hierarchical clustering or Wards method favors the 

formation of small spherical clusters.  For this reason, it is a good idea to use at least two 

different clustering methods when studying a data set.  If the results agree, a strong case 

can be made for partitioning the data into distinct sample groups.  If the clustering 

memberships differ, the data should be investigated further using PCA.  As a general rule, 
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it is recommended that hierarchical methods be used in tandem with PCA to detect clusters 

in multivariate data.  Hierarchical methods of clustering are exploratory tools.  The absolute 

validity of a dendrogram is less important than the insights and suggestions gained by the 

use about the structure of the data.  

 

2.3.5. Classification 

The overall goal of a pattern recognition study is to solve the class membership 

problem.  In most pattern recognition studies, samples are classified according to a specific 

property using measurements that are indirectly related to that property. An empirical 

relationship or classification rule is developed from a set of samples for which the property 

of interest and the measurements are known.  The classification rule is then used to predict 

this property in samples that are not part of the original training set.  The property in 

question (for example) is the specific variety of an edible oil and the measurements are the 

mid-infrared absorbance values of the edible oil sample at specific wavelengths.    

Although PCA and hierarchical clustering are powerful methods for analyzing the 

structure of a data set, they are not sufficient for developing a classification rule. In the 

final section of this chapter, a genetic algorithm (GA) for pattern recognition2-12-2-15 which 

combines variable selection and classification in a single step is discussed.  The pattern 

recognition GA identifies features that optimize the separation of the classes in a plot of 

the two largest principal components of the data. Because the largest principal components 

capture the bulk of the variance in the data, the wavelengths selected by the GA convey 

information primarily about differences between the classes in the data set. Hence, the 

principal component analysis routine embedded in the fitness function of the pattern 
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recognition GA acts as an information filter, significantly reducing the size of the search 

space as it restricts the search to wavelengths whose principal component score plots show 

clustering on the basis of class. In addition, the algorithm is able to focus on those classes 

and or samples that are difficult to classify as it trains by boosting the class and sample 

weights. Samples that consistently classify correctly are not as heavily weighted as samples 

that are difficult to classify. Over time, the algorithm learns its optimal parameters in a 

manner similar to a neural network. The pattern recognition GA integrates aspects of 

artificial intelligence and evolutionary computations to yield a "smart" one -pass procedure 

for variable selection and classification. 

A block diagram of the pattern recognition GA is shown in Figure 2.2.   The GA 

builds a population of chromosomes, each of which represents a potential solution, i.e., a 

set of wavelengths.  During each generation, the chromosomes are assigned a value by the 

fitness function, which is a measure of the quality of the proposed solution for the 

classification problem.  Solutions with a high fitness value have a higher probability of 

being selected for cross over than chromosomes with a low fitness value.  The power of 

the GA arises from crossover, which causes a structured yet randomized exchange of 

information between potential solutions (chromosomes) with the prospect that good 

solutions can generate even better ones.  The new population of chromosomes, which often 

yields better solutions to the problem, is again evaluated using the fitness function.  This 

entire process (evaluation, selection, crossover, mutation, and adjustment of internal 

parameters) is repeated until convergence is achieved or a specified number of generations 

has been found. 
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Figure 2.2.  Block diagram of the pattern recognition GA. 

 

The fitness function of the pattern recognition GA scores the principal component 

plots associated with each wavelength subset (chromosome) to identify a set of 

wavelengths that optimize the separation of the sample classes in a plot of the two largest 

principal components of the data.  To facilitate the tracking and scoring of the principal 

component plots, class and sample weights, which are part of the fitness function, are 

computed, see Equations 2.6 and 2.7 where CW(c) is the weight of class c and SWc(s) is 

the weight of sample s in class c.   The class weights sum to 100, and the sample weights 

in a class sum to a value equal to the corresponding class weight.  
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Each principal component plot generated for each feature subset (chromosome) is 

scored using the K-nearest neighbor (K-NN) classification algorithm.2-16  For a given data 

point, the Euclidean distance is computed between it and every other point in the principal 

component plot.  These distances are arranged from the smallest to the largest.  A poll is 

then taken of the point’s k-nearest neighbors.  For the most rigorous classification of the 

data, k equals the number of samples in the class to which the point belongs.  (k, which is 

assigned by the user, varies with the class.)   The number of k-nearest neighbors with the 

same class label as the sample point in question, the so-called sample hit count (SHC) is 

computed (0 < SHC(s) < Kc) where Kc is the number of nearest neighbors calculated for 

each sample in class c.)  It is a simple matter to score a principal component plot, see 

Equation 2.8 where F(d) is the fitness function of the feature set scored, SHC(s) is the 

number of nearest points (samples) with the same class label as sample s and SW (s) is the 

weight of the sample s.                                                      

  

  

To understand the scoring of each principal component plot by the fitness function, 

consider a hypothetical data set consisting of thirty samples distributed between two classes 

that have been initially assigned equal weights.  Since class 1 has 10 samples and class 2 

has 20 samples, K1 is 10 and K2 is 20.  At generation 0 (reproduction has not yet occurred), 

the samples in a given class will have the same weights.  Therefore, each sample in class 1 

has a sample weight of 5, whereas each sample in class 2 has a weight of 2.5.  If sample 3, 

which is in class 1, has as its nearest neighbors 7 class one samples, then SHC/K1 = 0.7 and 





c cs c

                                               SW(s)SHC(s)
K

1
(2.8) 
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(SHC/K1)*SW(3) = 0.7*5 or 3.5.  By summing up (SHC/Kc)*SW(s) for each sample point 

in the plot, the principal component plot of the feature subset (wavelengths) is scored. 

The fitness function of the pattern recognition GA is able to focus on those classes 

and samples that are difficult to classify by boosting the values of their weights over 

successive generations.  In order to boost, it is necessary to first compute the sample hit 

rate (SHR), which is the mean value of SHC/Kc over all wavelength subsets () produced 

in a generation (see Equation 2.9).  SHR is calculated over the entire population of solutions 

in a particular generation and provides information about the difficulty in classifying a 

particular sample.   

  

 

Boosting is a two-step process.  First, the class hit, which is the average sample hit 

rate for all samples in a class, is computed, see Equation 2.10 where CHRg (c) is the class 

hit rate for class c during generation g, AVG is the average and SHRg (s) is the sample hit 

rate for sample s in class c during generation g.   

 

 

Second, the class and sample weights are then adjusted during each generation 

using a perceptron, see Equations 2.11 and 2.12 where CWg+1(c) is the class weight for 

class c during the current generation g+1, CWg(c) is the class weight for class c during the 

previous generation g, P is the momentum, CHRg(c) is the class hit rate for class c during 

generation g, SW(s)g+1 is the sample weight for sample s during generation g+1, SW(s)g is 


=

=


 1i

i                                                    
K

)(SHC1
 SHR(s)

s
(2.9) 

                                     ): (s)(SHR(c)CHR csgg = AVG (2.10) 
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the sample weight for sample s during the previous generation g, and SHRg(s) is the sample 

hit rate for sample s during the previous generation.  

 

 

  

During each generation, the class and sample weights are updated using the class 

and sample hit-rates from the previous generation.  After a certain number of generations, 

the class weights become fixed.  Equation 2.11 is disabled, P is halved and the sample 

weights are renormalized using Equation 2.7. The pattern recognition GA then focuses on 

the troublesome samples (see Equation 2.12). 

Boosting is crucial to the successful operation of the pattern recognition GA as it 

allows the values of both the class and sample weights to change as the GA is training, 

thereby modifying the criteria used by the fitness function for a good score.  This helps to 

minimize the problem of convergence to a local optimum.  Hence, the fitness function of 

the pattern recognition GA changes as the population evolves towards a solution. 

During each generation, the selection, crossover, and mutation operators are 

applied to the chromosomes to develop new and potentially better solutions (more 

informative wavelengths) to the class membership problem.  The selection operator used 

by the pattern recognition GA is implemented by ordering the chromosomes, i.e., 

wavelength subsets, from best to worse fitness while simultaneously generating a copy of 

the same population and randomizing the order with respect to fitness.  A fraction of the 

population is then selected as per the selection pressure, which is usually set at 0.5.  The 

                                  (s))SHR-P(1)s(SW)s(SW gg1g +=+

                                     (c))CHR-P(1(c)CW)(CW gg1g +=+ c (2.11)

) 

(2.12) 
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top half of the ordered population is mated with the top half of the random population, 

guaranteeing that the best 50% are selected for reproduction, while ensuring that every 

chromosome in the randomized copy has an equal chance of being selected due to the 

randomization criteria imposed on the chromosomes in this population.   

The resulting population of chromosomes, both parents and children, are sorted by 

their fitness (see Equation 2.8) and the top  chromosomes are retained for the next 

generation. The new population can be expected to perform on average better than its 

predecessor because of the selection criteria used for the higher-ranking strings.  However, 

the reproduction operator also assures a significant degree of diversity in the population 

ensuring that convergence to a local optimum does not occur.  
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CHAPTER III 
 

 

Classification and Adulteration of Edible Oils 
 
 

3.1. Introduction   

Edible oils are food substances other than dairy products that are manufactured 

from fats and oils.3-1 Edible oils are composed of triglycerides, which are esters formed 

between glycerol and saturated, mono-unsaturated or poly-unsaturated fatty acids.  Edible 

oils play an important role in the human diet as they add flavor and color to foods and 

provide health benefits due to the presence of antioxidants such as tocopherol, phenolic 

compounds and phytosterol that assists in the metabolism of fat-soluble vitamins.3-2 In 

addition, edible oils also supply omega-3 and omega- 6 fatty acids, which are not 

synthesized by the human body, but are essential to brain function.3-3  

Adulteration, the addition of inferior or foreign substances into food, is of great 

concern to the food industry as these substances may pose a serious health risk to 

consumers and adversely impact product quality.  Extra virgin olive oil (EVOO), in 

particular, has been subject to adulteration using less expensive edible oils such as rapeseed 

oil, soy oil, and canola oil.3-4 – 3-5 In the southern region of the European Union (EU), the 

European commission has reported that the economic cost of EVOO adulteration by 

hazelnut oil is estimated to be 4 million euros per year.3-6 Authentication of expensive
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edible oils, such as EVOO, is crucial for maintaining both the quality and safety of food, 

and protecting consumers from the sale of fraudulent products. 

Separation techniques such as capillary column gas chromatography/mass 

spectrometry and liquid chromatography/mass spectrometry have been used successfully 

to authenticate edible oils.3-7 – 3-8 However, these methods are time consuming, labor 

intensive, expensive and are restricted to large laboratories. In contrast, Fourier transform 

infrared (FTIR) spectroscopy is fast, does not require sample preparation, and can be 

applied (on-line) to monitor the quality of edible oils such as EVOO during its production.  

Although infrared (IR) spectra of edible oils contain hundreds of compounds with 

overlapping bands that contribute to the complexity of the spectra, an IR spectrum can 

serve as a chemical fingerprint of an edible oil.3-9 Analysis of these fingerprints by pattern 

recognition methods is crucial to ensure the effective extraction of qualitative and 

quantitative information necessary to verify the authenticity of an edible oil and to detect 

adulteration. The combination of FTIR spectroscopy and multivariate analysis can 

discriminate chemically similar edible oils and to model mixtures of edible oils.3-10 – 3-13 In 

these studies, principal component analysis3-14 has been demonstrated to be an effective 

tool to analyze FTIR spectra of edible oils for the presence of adulterants.  Specifically, 

principal component analysis (PCA) and related methods have been used to cluster known 

edible oil samples and to classify unknown oil samples with similar properties.3-15 – 3-17 

The application of FTIR spectroscopy and pattern recognition methods to the 

problem of discriminating edible oils by type (e.g., canola oil versus corn oil) is the focus 

of this study.  Previously published studies on discrimination of edible oils by FTIR 

spectroscopy have been limited to approximately thirty samples spanning five or six 



57 
 

distinct varieties of edible oils obtained from a single manufacturer over a production year 

range of less than one year.3-18 – 3-26 In this study, FTIR spectra obtained from ninety-seven 

samples spanning twenty distinct varieties (types) of edible oils (collected over a three-

year period encompassing multiple brands representing supplier to supplier variation as 

well as seasonal and batch variation within a supplier) were analyzed using the four main 

types of pattern recognition methodology: mapping and display, cluster analysis, variable 

selection, and classification. A genetic algorithm (GA) for variable selection3-27 – 3-30 was 

applied to the FTIR spectra of the edible oils to discriminate these oils by type. Using a 

hierarchical classification scheme, the twenty commercial varieties of edible oils can be 

divided into four distinct groups. The nature of the clustering and the edible oils comprising 

each group are similar to the results obtained in two previous studies on the characterization 

of edible oils using Raman spectroscopy.3-31, 3-32 Edible oils from different groups can be 

reliably discriminated from each other, whereas discrimination of the edible oils within the 

same group can be problematic. Adulteration of plant based edible oils by other edible oils 

from the same group (e.g., EVOO by almond oil) cannot be reliably detected by FTIR 

spectroscopy, whereas adulteration of the edible oils by other oils from different groups 

(e.g., EVOO adulterated by corn or canola oil) can be detected at concentration levels as 

low as 10% (v/v) which is consistent with the results obtained in previously published 

studies using PLS regression.3-33, 3-34  

A unique aspect of this work is the incorporation of edible oils collected 

systematically over several years into the data cohort, which introduces a heretofore unseen 

variability in the chemical compositions of these oils. This work also demonstrates that 

previously published studies (which rely on a single source to represent each type of edible 
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oil – a single brand, often a single bottle from that brand, to represent each variety of the 

edible oils in the study) provide an overly optimistic estimate of the capability of FTIR 

spectroscopy to classify plant based edible oils by variety and to detect the presence of 

adulterants in these edible oils. 

 

3.2. Materials and Methods 

Ninety-seven edible oil samples (see Table 3.1) from multiple brands spanning 

twenty distinct varieties of plant based edible oils were purchased over three years from 

supermarkets in Newark, DE to account for seasonal and batch variations within each 

supplier as well as variations between suppliers.  Binary mixtures of edible oils to simulate 

adulteration were prepared by mixing a more expensive edible oil (e.g., extra virgin olive 

oil) with a less expensive one (e.g., corn oil) in varying amounts using a digital pipette 

(Eppendorf).  FTIR absorbance spectra (4000 cm-1 to 400 cm-1) of the commercial edible 

oils (see Tables 3.1 and 3.2) and their binary mixtures (see Table 3.3) were measured in 

triplicate or quadruplicate (64 scans each) using an iS50 FTIR spectrometer (Thermo-

Nicolet, Madison, WI) equipped with a deuterated triglyceride sulfate (DTGS) detector.  

The FTIR spectrometer was operated in ATR mode using a diamond crystal. 

The ATR spectrum of a corn oil sample is shown in Figure 3.1.  This sample has 

intense absorption bands at 2922 cm-1 which is attributed to asymmetric −C−H stretching 

of −CH2−. Other intense absorption bands for this sample include symmetric −C−H 

stretching of −CH2− at 2853 cm-1, −C=O stretching of ester at 1743 cm-1 and −C−O 

stretching and −CH2− bending at 1160 cm-1.  The spectral region between 2200 and 2000 

cm-1 which corresponds to the absorbance by the diamond crystal was excluded from the 
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analysis as no meaningful information about edible oils is contained in this region. Other 

bands observed in the spectrum include a shoulder at 2956 cm-1 (-CH2 stretching of alkane), 

a peak at 3009 cm-1 (-CH stretching of cis alkene) and another at 1657 cm-1 (alkene double 

bond of cis olefins). The peaks for -CH2 bending appear at 1378 cm-1, 1241 cm-1 and 1160 

cm-1. The peaks at 1122 cm-1 and 1102 cm-1 are attributed to C-O stretching of an ester.  

 

Table 3.1.  Composition of the training set of the pure edible oils 

Edible Oil Type 
Number of 

Samples 
Number of Spectra 

EVOO 26 68 

ELOO 7 19 

Olive 8 21 

Avocado 2 5 

Peanut 4 10 

Sweet Almond 2 5 

Almond 4 11 

Safflower 2 6 

 Hazelnut 2 6 

Avocado-Olive-Flaxseed 1 3 

 Sunflower 1 3 

Canola 9 27 

Canola-Vegetable 1 3 

Extra Virgin Sesame 3 8 

Toasted Sesame 1 3 

Canola-Sunflower-Soybean 1 8 

Corn 9 29 

Grapeseed 8 22 

Vegetable 4 10 

Walnut 2 6 

    Total 97 273 

 

 

 

 



60 
 

Table 3.2. Composition of the prediction set of the pure edible oils 

Edible Oil Type 

Number of 

Samples Number of Spectra 

EVOO 7 11 

ELOO 1 1 

Olive 3 5 

Avocado 2 4 

Peanut 3 5 

Sweet Almond 1 1 

Almond 2 4 

Safflower 1 3 

Hazelnut 1 3 

Avocado-Olive-Flaxseed 0 0 

Sunflower 1 0 

Canola 3 9 

Canola-Vegetable 0 0 

Extra Virgin Sesame 2 7 

Toasted Sesame 0 0 

Canola-Sunflower-Soybean 1 1 

Corn 3 10 

Grapeseed 5 11 

Vegetable 1 4 

Walnut 2 4 

    Total 39 83 

 

 

 

Table 3.3.  Binary mixtures of edible oils 

Oil Type Adulterant Number of Spectra 

EVOO Corn 36 

EVOO Canola 51 

EVOO Almond 30 
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Figure 3.1. A representative FTIR spectrum of an edible oil sample (corn oil). Fundamental 

vibration frequencies are indicated. 

 

3.2.1. Pattern Recognition Analysis 

Each FTIR spectrum was baseline corrected using OMNIC (Thermo Nicolet, 

Madison, WI) and normalized to unit length with MATLAB (Math Works, Natick, MA).  

For pattern recognition analysis, each baseline corrected and normalized FTIR spectrum, 

which consisted of 6921 points, was represented as a data vector, x = (x
1
, x

2
, x

3
 … x

6921
) 

where x
1
 is the absorbance at 4000 cm-1 and x

6921
 is the absorbance at 400 cm-1.  Therefore, 

each IR spectrum can be considered as a point in a high dimensional measurement space.  

A basic assumption inherent in this study is that the distance between pairs of points in the 

measurement (pattern) space is inversely related to their degree of similarity.  The points 
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representing FTIR spectra from one class (e.g., corn oil) will cluster in a limited region of 

this space distant from the points corresponding to the other class (e.g., extra virgin olive 

oil).  Pattern recognition is a set of methods for investigating data represented in this 

manner to assess its general structure, which is the overall relation of each sample to every 

other sample in the data. 

The IR spectra of the pure edible oils were divided into a training set of 273 spectra 

(see Table 3.1) and a prediction set of 83 spectra (see Table 3.2).  Spectra comprising the 

prediction set were chosen by random lot.  In this study, principal component analysis 

(PCA) was used to analyze the IR spectra comprising the training set.  PCA is a method for 

transforming the original measurement variables into new, uncorrelated variables called 

principal components. Each principal component is a linear combination of the original 

measurement variables. Using this procedure is analogous to finding a set of orthogonal 

axes that represent the directions of greatest variance in the data.  (The variance is defined 

as the degree to which the data points are scattered in the high dimensional measurement 

space.)  Often, only two or three principal components are necessary to explain the 

information content of a data set when there are a large number of correlated measurement 

variables.  By analyzing the spectra in the training set using principal component (PC) score 

plots, it is possible to identify classes (i.e., distinct sample groups) in the data and to detect 

the presence of outliers (i.e., discordant observations).  

As outliers have the potential to adversely affect the performance of pattern 

recognition methods, outlier analysis was performed on each class (i.e., variety of edible 

oil) in the training set prior to the application of pattern recognition methods. Using PC 

score plots to identify discordant observations in the data, two samples (one corn oil and 
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the other grapeseed oil) were identified as outliers and excluded from the analysis. These 

two samples were found to have peroxide values (as determined using a Milwaukee Lab 

Mi490 Photometer) that far exceeded those of the other edible oil samples in the training 

set.   

To identify wavelengths characteristic of each class (i.e., variety of edible oil), a 

genetic algorithm (GA) for pattern recognition analysis.3-35, 3-36 was applied to the training 

set data. The pattern recognition GA identifies the smallest set of variables (i.e., 

absorbances at specific wavelengths) that optimize the separation of the classes in a plot of 

the two or three largest principal components of the data. Because principal components 

maximize variance, the bulk of the information encoded by these variables is about 

differences between the classes in the training set. With this approach to variable selection, 

an eigenvector projection of the data is formulated that discriminates between the classes 

in the data set by maximizing the ratio of between to within group variance through 

selection of the appropriate variables. Although a principal component score plot is not a 

sharp knife for discrimination, if a score plot shows clustering on the basis of the class 

membership of the samples, then our experience is that we will be able to predict robustly 

using this set of wavelengths.   

For many types of chemical measurements, noise reduction and better class 

separation can be achieved when principal component analysis is used to characterize the 

information content of each variable subset selected by the pattern recognition GA.  

Furthermore, the problem of chance or spurious classification, which is always of concern 

when using a variable selection technique, is mitigated by the pattern recognition because 

of the more stringent criterion used for variable selection. Variables that contain 
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discriminatory information about a specific classification problem are often correlated 

which is why variable selection methods that utilize principal component analysis often 

work best.   

To evaluate and compare each chromosome (i.e., variable subset), an object 

function must be applied to the data that quantifies the fitness of each chromosome 

comprising the population of potential solutions generated by the pattern recognition GA 

in each generation.  The fitness (i.e., object) function used in this study is called PCKaNN 

3-37 which incorporates PCA and the K-nearest neighbor (K-NN) classification algorithm 

3-38 to score each variable (i.e., wavelength) subset in the population.  A unique attribute of 

the PCKaNN fitness function is the incorporation of boosting using class and sample 

weights to modify the fitness function as the population is evolving towards a solution. 

Thus, the problem of convergence to a local optimum will be minimized. Evaluation and 

boosting as well as reproduction are repeated by the genetic algorithm for the population 

of chromosomes until a specified number of generations have been executed or a feasible 

solution has been found (i.e., a specific variable subset in the population that achieves a 

score of 100%). Further details about the pattern recognition GA and the PCKaNN fitness 

function can be found in Chapter 2.   

3.3. Results and Discussion. 

A hierarchical classification scheme was developed to discriminate the twenty 

varieties of edible oils investigated in this study.  The twenty varieties were first divided 

into distinct groups, with the edible oils in each group then differentiated by type (i.e., 

variety).  To implement this scheme, the average IR spectrum of each variety of edible oil 

was computed.  The twenty average IR spectra were then analyzed using PCA and cluster 
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analysis. Both hierarchical clustering 3-39 (see Figure 3.2a) and PCA (see Figure 3.2b) 

yielded the same results - four distinct groups of edible oils depicted as Groups A, B, C 

and D in Figures 3.1a and 3.1b.   

A visual comparison of the average IR spectra revealed that spectra from the same 

edible oil group were more similar to each other than spectra from different edible oil 

groups.  Therefore, the 97 edible oil samples were divided into four distinct groups (see 

Table 3.1).  Group A contains eleven varieties of edible oils: extra virgin olive oil (EVOO), 

extra light olive oil (ELOO), pure olive oil, avocado, peanut, safflower, hazelnut, 

sunflower, sweet almond, almond and avocado-olive-flaxseed. Group B contains five 

varieties of edible oils: canola, extra virgin sesame, toasted sesame, canola-sunflower-

soybean and canola-vegetable.  Group C contains three varieties: corn, grapeseed and 

vegetable, whereas Group D is represented by only walnut oil.  

 

 
Figure 3.2. (a) Hierarchical clustering (farthest linkage) of the 20 averaged FTIR spectra; (b) Principal 

component analysis of spectra obtained from the 20 averaged IR spectra. Group A = 1 (EVOO), 2 (ELOO), 

3 (olive oil), 5 (avocado oil), 6 (peanut oil), 9 (safflower oil), 10 (hazelnut oil), 19 (sunflower oil), 23 (sweet 

almond oil), 27 (almond oil) and 34 (avocado-olive-flaxseed oil). Group B = 13 (canola oil), 16 (canola 

vegetable oil), 18 (canola-sun-soybean oil), 28 (extra virgin sesame oil) and 32 (toasted sesame oil). Group 

C = 7 (corn oil), 8 (grapeseed oil) and 17 (vegetable oil). Group D = 33 (walnut oil). 
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Figure 3.3 displays a PC plot of the 273 FTIR spectra and the 6921 features 

comprising the training set.  Each IR spectrum is represented as a point in the plot.  The 

four oil groups are not well separated in the PC plot.  Therefore, variable selection was the 

next step.  Deletion of uninformative spectral features can ensure that discriminatory 

information about the class (edible oil group) is the major source of variation in the data.  

For this reason, the pattern recognition GA was applied to the 273 IR spectra of the training 

set to uncover wavelengths characteristic of the spectral profile of each edible oil group. 

Kc in the fitness function of the pattern recognition GA (see Chapter 2, Equation 2.8) was 

assigned a value equal to the number of IR spectra in each class.  The number of 

chromosomes comprising the population was 10,000, and the mutation operator was set at 

0.4.  

 
Figure 3.3. PC plot of the 273 IR spectra and 6921 features comprising the training set.  Each IR 

spectrum is represented as a point in the plot.  A = Group A, B = Group B, C = Group C, and D = 

Group D. The total cumulative variance explained by the two largest principal components for this 

training set data is 86.17%.  
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Figure 3.4. PC plot of the 273 IR spectra comprising the training set and the three spectral features 

identified by the pattern recognition GA.  A = Group A.  B = Group B. C = Group C. D = Group 

D. 

 

The pattern recognition GA identified specific wavelengths correlated to oil group 

by sampling key feature subsets, scoring the corresponding PC plots, and tracking those 

samples and/or classes that were difficult to classify.  The boosting routine used this 

information to steer the population to an optimal solution.  After 200 generations, the 

pattern recognition GA identified 3 wavelengths whose PC plot showed clustering of the 

IR spectra by edible oil group (see Figure 3.4).  Each oil group is well separated from the 

others in the PC plot.  The three spectral features identified by the pattern recognition GA 

correspond to fundamental vibrational modes (see Table 3.4).  The first principal 

component appears to be correlated to the amount of monounsaturated fatty acid content 

in each edible oil sample as the amount of monounsaturated fatty acids in these edible oils 

decreases from Group A to Group D 3-40 – 3-42.  Linolenic acid, which is low for Group A 
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edible oils, increases across the oil groups.3-43, 3-44  As for Group D (walnut oil), it differs 

from the other nineteen edible oils due to its high omega 3 content.3-45  In addition, walnut 

oil has the lowest monounsaturated fatty acid content and the highest linoleic acid content. 

 

Table 3.4.  Spectral features identified by the genetic algorithm. 

Feature Wavenumber 

(cm-1) 

Assignment 

609 695.20 Overlap of CH2 rocking and out-of-plane 

vibrations of cis-disubstituted olefins 

1457 1104.00 C-O stretching vibration 

5415 3012.30 C-H stretching vibration of cis-double bond 

(=CH) 

 

 

A prediction set of 83 IR spectra (see Table 3.2) was used to assess the predictive 

ability of the three spectral features identified by the pattern recognition GA.  The 83 IR 

spectra were directly mapped onto the PC plot defined by the 273 FTIR spectra and the 

three spectral features identified by the pattern recognition GA.  Figure 3.5 shows the IR 

spectra from the prediction set projected onto the PC plot developed using the training set 

data.  All IR spectra from the prediction set were correctly classified as each spectrum is 

located in a region of the PC plot containing spectra that are tagged with the same class 

label.   
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Figure 3.5. Projection of the 83 prediction set spectra onto the PC plot developed from the 273 

spectra and the 3 features identified by the pattern recognition GA. 

 

The next step was differentiating the edible oils in each group by type.  For this 

reason, the pattern recognition GA was applied directly to the spectra in each edible oil 

group to identify wavelengths that discriminate the edible oils by variety within each group.  

The edible oils comprising Group A overlap in the PC plot of the data (see Figure 3.6 and 

Table 3.5), whereas the edible oils comprising Group B (see Figure 3.7 and Table 3.6) or 

Group C (see Figure 3.8 and Table 3.7) appear separated in the PC plot.  From the results 

of the pattern recognition analysis and the differences in the chemical composition of each 

edible oil (e.g., monounsaturated fatty acids and linolenic acid content), it is evident that 

IR spectra of edible oils from different oil groups can be reliably differentiated (e.g., EVOO 

from Group 1 versus corn oil from Group 3), whereas IR spectra of the edible oils from the 
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same group (e.g., canola oil versus canola vegetable oil) would be more difficult to 

discriminate by type due to the similarity in their chemical composition.   

 

 
Figure 3.6. PC plot of the 157 IR spectra and the nine spectral features identified by the pattern 

recognition GA for Group A. The total cumulative variance explained by the two largest principal 

components for this training set data is 71.53 %.   
 

 

 

Table 3.5. Spectral features identified for Group A oils by the genetic algorithm 

Feature Wavenumber (cm-1) Assignment 

596 688.95 C-C bending out of plane 

1117 940.13 -HC=CH- (trans) bending out of plane 

1333 1044.27 -C-O stretching 

1402 1077.53 -C-O stretching 

1467 1108.87 -C-O stretching 

1800 1269.41 -C-O stretching, -CH2- bending 

2194 1459.37 -C-H bending (asymmetric) of CH3 

2804 1753.46 -C=O stretching of ester group 

5408 3008.89 =C-H (cis-) stretching 
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Figure 3.7. PC plot of the 49 IR spectra and the nine spectral features identified by the pattern 

recognition GA for Group B. The total cumulative variance explained by the two largest principal 

components for this training set data is 88.22%.   

 

 

 

Table 3.6.  Spectral features identified for Group B oils by the genetic algorithm 

Feature 

Wavenumber 

(cm-1) Assignment 

687 732.82 Overlap of CH2 rocking and out of plane vibration 

of cis-disubstituted olefins 

1052 908.79 -HC=CH- (cis) bending out of plane 

1165 963.27 -HC=CH- (trans) bending out of plane 

1167 964.23 -HC=CH- (cis) bending out of plane 

1404 1078.50 -C-O stretching 

1452 1101.64 -C-O stretching 

1454 1102.60 -C-O stretching 

2066 1397.66 =C-H bending 

2190 1457.44 -C-H (CH2) bending (scissoring) 
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Figure 3.8. PC plot of the 61 IR spectra and the ten spectral features identified by the pattern 

recognition GA for Group C. The total cumulative variance explained by the two largest principal 

components for this training set data is 62.54%.  

 

 

 

Table 3.7. Spectral features identified by the genetic algorithm for Group C 

Feature Wavenumber (cm-1) Assignment 

673 726.07 -(CH2)n - rocking and -HC=CH- (cis-)    

bending out of plane 

811 792.60 -C-H bending out of plane 

1175 968.09 -HC=CH- (trans-) bending out of plane 

1380 1066.92 -C-O stretching 

1472 1111.28 -C-O stretching 

1501 1125.26 -C-O stretching 

 2170 1447.80 -C-H bending (asymmetric) of CH3 

2207 1465.64 -C-H bending (scissoring) of CH2  

2843 1772.26 -C=O stretching of ester 

  5434 3021.43 =C-H (trans-) stretching 
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To determine whether two edible oils can be differentiated by FTIR spectroscopy, 

we compared the IR spectra of the pure edible oils to IR spectra of their mixtures (which 

simulate adulterated edible oils) using pattern recognition techniques. The edible oils 

compared are from the same oil group or from different oil groups.  Specifically, IR spectra 

of EVOO were compared to IR spectra of EVOO (Group A) mixed with either corn oil 

(Group C), canola oil (Group B) or almond oil (Group A) in known amounts.  Corn oil and 

canola oil were selected because these two edible oils have been previously reported as 

adulterants in EVOO 3-46, whereas almond oil, which is a member of the same edible oil 

group as EVOO, was selected because it appears to be the only edible oil separated from 

EVOO in a PC plot of the Group A edible oils (see Figure 3.6). Each comparison was 

formulated as a three-way classification problem: EVOO, adulterated EVOO, and 

adulterant. The goal was to obtain an overview of the dominant patterns present in the data. 

The EVOO-adulterant mixtures used for each training set and prediction set span a large 

concentration range.   

For these studies, it is assumed that IR spectra of the mixtures of EVOO and corn 

oil, canola oil, or almond oil adhere to a linear mixture model.  Consider, for example, the 

IR spectrum of an EVOO-corn oil mixture which is expected to be a combination of the IR 

spectrum of EVOO and the IR spectrum of corn oil with the weights of the constituents 

defining the mixing proportion of each pure edible oil that comprises the mixture. If the IR 

spectrum of EVOO can be differentiated from the IR spectrum of the EVOO-adulterant 

mixture, then differences between the IR spectra of the two pure edible oils (e.g., EVOO 

versus corn oil) are of sufficient magnitude to ensure that discrimination of these two edible 

oils by FTIR is viable.  
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To identify the wavelengths (in each three-way classification problem) that convey 

information about the degree of adulteration, Kc in the fitness function of the pattern 

recognition GA (see Chapter 2, Equation 2.8) is assigned a value equal to five for the 

adulterated EVOO mixtures, whereas Kc for EVOO or for corn oil, canola oil, or almond 

oil is assigned a value equal to the number of IR spectra comprising the class.  Kc is an 

important parameter influencing the performance of the pattern recognition GA.  By way 

of default, Kc is usually set equal to the number of samples in each class.  This represents 

the most stringent criterion for developing a variable subset to classify the data as a variable 

subset can only receive a score of 100% from the fitness function when all the samples 

from the same class are closer to each other than to the samples from other classes.  

However, a value of Kc that is too large can introduce an “activation energy” thereby 

making the goal of identifying the optimal variable subset problematic.  Decreasing the 

value of Kc can improve the classification of the samples comprising the training set.  

Smaller values of Kc are usually assigned to classes that are neither compact nor well 

separated in the pattern space to ensure the identification of the most efficacious variable 

subsets.  

Each data set (EVOO/Corn, EVOO/Canola, and EVOO/Almond) was analyzed by 

the pattern recognition GA using the same set of parameters (number of chromosomes, 

selection pressure, configuration of initial population and Kc). The pattern recognition GA 

was developed to solve classification problems that are linearly separable. Since the 

concentration of the constituents comprising the adulterated edible oils is related to infrared 

absorbance through Beer’s law, the application of the pattern recognition GA for variable 

selection in this phase of the classification study is both appropriate and logical. As in all 
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pattern recognition studies, each class must be well represented in the training set.  The 

study design used ensured that there were enough samples to obtain meaningful results.  

Figure 3.9 shows a plot of the two largest principal components of the 120 IR 

spectra (see Table 3.8) and the nine spectral features identified by the pattern recognition 

GA for the three-way classification problem: EVOO, corn oil and binary mixtures of 

EVOO and corn oil.  EVOO, corn oil and the EVOO-corn oil mixtures cluster in separate 

regions of the PC plot.  Furthermore, the first principal component appears to be correlated 

to the amount of corn oil in each edible oil sample.   

The predictive ability of the nine spectral features identified by the pattern 

recognition GA was assessed using an external prediction set of eighteen IR spectra of 

EVOO and corn oil mixtures whose composition varied from 0% to 60% corn oil.  The 

plant based edible oil samples used to prepare the EVOO-corn oil mixtures comprising the 

prediction set had been excluded from the training set for this classification problem. 

Figure 3.9 also shows the 24 prediction set spectra projected onto the PC plot of the 120 

IR spectra comprising the training set and the nine spectral features identified by the pattern 

recognition GA.  All FTIR spectra in the prediction set are correctly classified.  Clearly, 

EVOO can be differentiated from corn oil using FTIR spectroscopy. The detection limit 

for corn oil in EVOO from the PC plot of the training set data is approximately 10% and 

is in agreement with the detection limit previously reported for corn oil in EVOO using 

PLS.3-24   

Figure 3.10 shows a PC plot of the 119 IR spectra comprising the training set (see 

Table 3.9) and the thirteen spectral features identified by the pattern recognition GA for 

the three-way classification problem: EVOO, EVOO-canola oil, and canola oil.  The IR 
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spectra of EVOO, canola oil, and mixtures of EVOO and canola oil can be differentiated 

using the discriminating relationship in the PC plot developed from the thirteen spectral 

features identified by the pattern recognition GA.  Again, the first principal component 

appears to be correlated to the amount of adulterant (i.e., canola oil) in each sample.  The 

discriminating relationship developed from these thirteen spectral features was 

successfully validated using the 22 IR spectra that comprised the prediction set (see Figure 

3.10 and Table 3.9).  The edible oil samples used to prepare the EVOO-canola oil mixtures 

that constitute the predictions set are (again) not the same samples used to prepare the 

edible oil mixtures used for the training set.  This suggests that the IR spectral profiles of 

these edible oil mixtures possess features that are common to each constituent (EVOO and 

canola oil). The detection limit for canola oil in EVOO using FTIR spectroscopy is again 

10%3-47 (see Figure 3.10). 

Figure 3.11 shows a PC plot of the 106 IR spectra comprising the training set (see 

Table 3.10) and the eleven spectral features identified by the pattern recognition GA for 

the three-way classification problem: EVOO, almond oil, and EVOO-almond oil mixtures.  

Although the samples comprising EVOO, almond oil, and the EVOO-almond oil mixtures 

cluster in different regions of the PC plot, the first principal component cannot be correlated 

to the amount of almond oil in the mixtures. Furthermore, only six of fifteen prediction set 

samples are correctly classified.  Although the PC plot of the training set data for Group A 

(see Figure 3.6) suggests that EVOO and almond oil can be discriminated, the absence of 

spectral features in the data that can differentiate EVOO from EVOO adulterated with 

almond oil would indicate that almond oil and EVOO have similar IR spectra.   This would 
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also be consistent with the first principal component not being correlated to the amount of 

almond oil in the samples.  

 

Table 3.8. Composition of training and prediction sets for detection of corn oil in EVOO 

   

  
Number of spectra for 

training 

Number of spectra for 

prediction 

EVOO 67 5 

Corn 35 1 

EVOO-corn 18 18 

Total 120 24 

   
 

 

 
Figure 3.9. Plot of the two largest principal components of the 120 IR training set spectra (grey) 

and the nine spectral features identified by the pattern recognition GA for the three-way 

classification problem: EVOO, corn oil and EVOO-corn oil mixtures (10% corn oil to 60% corn 

oil).  The prediction set spectra are represented in black color. The total cumulative variance 

explained by the two largest principal components for this training set data is 98.57%.   
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Table 3.9.  Composition of training and prediction sets for detection of canola oil in   

EVOO 

  

Number of spectra 

for training 

Number of spectra for 

prediction 

EVOO 50 7 

Canola 33 0 

EVOO-canola 36 15 

  119 22 

 

 

 

 

 
Figure 3.10.  Plot of the two largest principal components of the 119 IR training set spectra (grey) 

and the thirteen spectral features identified by the pattern recognition GA for the three-way 

classification problem: EVOO, canola oil and EVOO-canola oil mixtures (10% canola oil to 90% 

canola oil).  The prediction set spectra are represented in black color. The total cumulative variance 

explained by the two largest principal components for this training set data is 94.06%.   
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Table 3.10. Composition of training and prediction sets for detection of almond oil in 

EVOO 

  

Number of spectra 

for training 

Number of spectra for 

prediction 

EVOO 76 0 

Almond 15 0 

EVOO-almond 15 15 

  106 15 

 

 

 

 

 

 
 

Figure 3.11. Plot of the two largest principal components of the 106 IR training set spectra (grey) 

and the eleven spectral features identified by the pattern recognition GA for the three-way 

classification problem: EVOO, almond oil and EVOO-almond oil mixtures (10% almond oil to 

40% almond oil).  The prediction set spectra are represented in black color. The total cumulative 

variance explained by the two largest principal components for this training set data is 85.29%.   
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3.4. Conclusions 

This study was not designed to be a quantitative determination of the sources of 

variability spanning edible oils.  Rather, it highlighted the challenges encountered when 

taking into account the different sources of variability that can impact the IR spectra of 

each of the twenty varieties of the edible oils surveyed in this study.  

To differentiate the twenty-plant based edible oils investigated as part of this study, 

it was necessary to develop a hierarchical classification scheme.  Each edible oil was first 

assigned to an oil group with the oils in each group then differentiated by type.  From the 

adulteration studies that were undertaken, the composition of the edible oils that are in the 

same group as reflected by their IR spectra are similar to each other and therefore would 

be difficult to discriminate by type as opposed to differentiating edible oils that are from 

different groups. For example, an edible oil sample assigned to Group A can be readily 

differentiated from an edible oil sample from Groups B, C and D, whereas the IR spectra 

of edible oils within the same group more closely resemble each other when sample 

variability has been incorporated into the experimental design.  Furthermore, detecting the 

adulteration of an edible oil by a less expensive edible oil from the same group would 

appear to be problematic.  Thus, FTIR spectroscopy can differentiate edible oils provided 

that the oils are from different groups.  
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CHAPTER IV 
 

 

 

Authentication of Edible Oils Using an Infrared Spectral Library and Digital 

Sample Sets 
 

4.1.  Introduction 

Edible oils are an important component of the human diet due to their high 

nutritional value serving as a major source of fatty acids and fat-soluble vitamins in many 

diets.4-1, 4-2 These oils are primarily composed of triglycerides which contain saturated, 

monounsaturated and polyunsaturated fatty acids.4-3 The relative quantity of each fatty acid 

is related to the specific variety of the edible oil.4-4  For example, safflower oil has more 

polyunsaturated fatty acids than extra virgin olive oil.  Edible oils are typically used in 

cooking and are also ingredients in many preprocessed foods because of their sensory 

characteristics.  

Adulteration of edible oils is an important chemical analysis problem as the most 

frequently adulterated food is extra virgin olive oil (EVOO).4-5 Adulteration of a more 

expensive edible oil by either substitution or blending with less expensive cooking oils is 

of concern to government and regulatory officials.  Adulterated EVOO cannot meet the 

International Olive Council’s standards for the composition of monounsaturated fatty 

acids, free fatty acids, trans fatty acids, peroxides, and esterified fatty acids4-6 and cannot 

be detected by either the consumer or retailer as the adulterated cooking oil is often 

comparable in appearance and flavor to EVOO. In addition, adulteration of EVOO by
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less expensive edible oils such as peanut oil (which contains allergens) poses a serious 

health risk. The successful classification of edible oils by variety (e.g., discrimination of 

EVOO from peanut oil) is a crucial first step in solving this problem. In the preceding 

chapter, a pattern recognition study was reported describing the FTIR analysis of ninety-

seven edible oil samples from twenty plant-based varieties collected over a three-year 

period. The ninety-seven edible oil samples that were selected encompassed multiple 

brands and manufacturers representing supplier to supplier variation as well as seasonal 

and batch variation within a supplier.  Using a hierarchical classification scheme, the 

twenty plant-based varieties of edible oils could be divided into four distinct groups. Edible 

oils from different oil groups were reliably discriminated, whereas the discrimination of 

edible oils within the same group was problematic.  Adulteration of the plant-based edible 

oils by other oils in the same group (e.g., EVOO by almond oil) could not be reliably 

detected using FTIR spectroscopy, whereas adulteration of edible oils by other edible oils 

that were not part of the same oil group (e.g., EVOO adulterated by corn or canola oil) 

could be detected at concentration levels as low as 10% (v/v) which was consistent with 

the results reported in previously published studies using partial least squares regression. 

A unique aspect of this study was the incorporation of edible oils collected systematically 

over three years, which introduced a heretofore unseen variability in the chemical 

composition of the edible oils.  This work also demonstrated that previously published 

studies (which relied on a single sample or brand to represent each variety of edible oil) 

provide an overly optimistic estimate of the capability of FTIR spectroscopy to 

discriminate plant based edible oils by variety as well as detect the presence of adulterants 

in edible oils. 
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In this chapter, a potential method to determine whether two varieties of edible oils 

can be differentiated is proposed using digitally generated data of adulterated edible oils 

from an IR spectral library.  The first step is the evaluation of the digitally blended data 

sets which is the focus of this chapter. Specifically, IR spectra of adulterated edible oils are 

computed from digitally blended experimental data of the IR spectra of an edible oil and 

the corresponding adulterant using the appropriate mixing coefficients for the spectra to 

achieve the desired level of adulteration.  To determine whether two edible oils can be 

differentiated by FTIR spectroscopy, pure IR spectra of the two edible oils were compared 

to IR spectra of the two edible oils that were digitally mixed using pattern recognition 

techniques to solve a ternary classification problem.  If the IR spectra of the two edible oils 

and their binary mixtures are differentiable, then differences between the IR spectra of 

these two edible oils are of sufficient magnitude to ensure that a reliable classification of 

these two edible oils by FTIR spectroscopy can be obtained. Using this approach, the 

feasibility of authenticating edible oils such as EVOO directly from library spectra has 

been demonstrated.  For this study, both digital and experimental data were combined to 

generate training and validation data sets to assess detection limits for adulterants. 

 

4.2.  Edible Oil Spectral Library 

An IR spectral database of 3720 IR spectra of both pure and adulterated edible oils 

have been collected using an iS50 Thermo-Nicolet IR spectrometer equipped with a 

diamond ATR accessor and a DTGS detector.  The pure edible oil samples (99 in total) 

comprising the library spanned 20 distinct plant-based edible oil varieties (see Table 4.1).  

The sample cohort was obtained from supermarkets in the greater metropolitan Newark, 
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DE area over three years to account for brand, lot, year, storage and seasonal variability for 

a particular manufacturer. To further characterize these edible oils, their peroxide value 

was measured using a spectrophotometric method (see Chapter 3).  Table 4.1 lists the 

twenty oil types that comprise the 99 samples collected, the number of samples collected 

for each edible oil and the number of spectra per sample. For each resolution, a total of 377 

IR spectra were collected with 1508 IR spectra collected in total for the pure edible oils. 

Each pure and adulterated edible oil sample was analyzed at 4 cm-1, 6 cm-1, 8 cm-1, 

and 16 cm-1 resolution. All adulterated samples were prepared by mixing EVOO, extra 

light olive oil (ELOO) or sesame oil with less expensive edible oils (corn, canola, almond, 

peanut, sunflower, hazelnut, grapeseed, safflower, and vegetable) using a digital pipette to 

prepare adulterated mixtures by v/v in known amounts from 5% to 90%. For example, a 

10% adulterated mixture of EVOO with corn oil as the adulterant was prepared by mixing 

900 L of extra virgin olive oil and 100 L of corn oil in a 15 mL sterile falcon tube using 

a Thermolyne MaxiMixPlus vortex mixer.  416 IR spectra of EVOO, ELOO, or sesame oil 

adulterated by corn oil, canola oil, almond, peanut, sunflower, hazelnut, grapeseed, 

safflower, and vegetable oils were also collected at 4 cm1, 6 cm-1, 8 cm-1, and 16 cm-1 

resolution for a total of 1664 IR spectra (see Table 4.2). Ternary mixtures (which consist 

of two adulterants added to EVOO, ELOO, or sesame oil) were also prepared. The 

adulterants used in the ternary mixtures included corn, canola, almond, hazelnut, vegetable, 

grapeseed and safflower oils. 128 FTIR spectra of the ternary mixtures were also collected 

at 4 cm-1, 6 cm-1, 8 cm-1, and 16 cm-1 resolution for a total of 512 spectra (see Table 4.3).  

The FTIR IR spectra (4000 cm-1 to 400 cm-1) of each pure and adulterated edible oil sample 

were collected in triplicate, quadruplicate, or quintuplicate, each at 64 scans.  All FTIR 
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spectra in the database were baseline corrected using OMNIC and normalized to unit length 

with MATLAB.  Apodization of the spectra was performed using OMNIC and the Happ-

Genzel function. 

The FTIR spectral database is a flexible platform as it allows analytical chemists to 

test new data analysis methodologies. Experimental designs can be constructed with very 

similar edible oils (e.g., EVOO and sunflower oil) or oils with relatively distinct spectra 

(e.g., EVOO and corn oil).  One can progress from simple classifications of mixtures (e.g., 

extra virgin olive oil that contains peanut oil), quantitative mixture analysis (relative 

concentrations of adulterants in edible oils) to quantitative determinations of intrinsic 

properties of edible oils (e.g., peroxide number to assess rancidity).  The effect of spectral 

resolution on the outcome of the classification or calibration for constructing models to 

determine rancidity can also be assessed using this database.  
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Table 4.1. Composition of the pure edible oils in the IR library 

Pure edible oil 

Oil 

Type ID 

Number of 

samples 

Number of 

spectra 

Extra virgin olive oil 1 26 83 

Extra light olive oil 2 8 27 

Olive oil 3 8 26 

Avocado oil 5 2 9 

Peanut oil 6 4 19 

Corn oil 7 9 42 

Grapeseed oil 8 9 36 

Safflower oil 9 2 9 

Hazelnut oil 10 2 9 

Canola oil 13 9 36 

Canola-vegetable blend 16 1 3 

Vegetable oil 17 4 14 

Canola-sunflower-soybean blend 18 1 9 

Sunflower oil 19 1 3 

Sweet almond oil 23 2 6 

Almond oil 27 4 15 

Extra virgin sesame oil 28 3 15 

Toasted sesame oil 32 1 3 

Walnut oil 33 2 10 

Avocado-olive-flaxseed blend 34 1 3 

  
 

99 377 
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Table 4.2. Composition of the binary edible oil mixtures in the IR library 

Binary mixtures Oil Type ID Number of spectra 

ELOO-corn mixture 40 45 

EVOO-corn mixture 44 60 

EVOO-peanut mixture 45 24 

Sesame-sunflower mixture 47 24 

Sesame-canola mixture 48 21 

Sesame-corn mixture 49 26 

EVOO-almond mixture 51 36 

Sesame-grapeseed mixture 55 18 

ELOO-hazelnut mixture 54 18 

Sesame-vegetable mixture 58 18 

EVOO-canola mixture 60 78 

ELOO-canola mixture 61 24 

ELOO-safflower mixture 62 24 

  
 

416 

 

 

  Table 4.3. Composition of the ternary mixtures in the IR library 

Ternary mixtures Oil Type ID Number of spectra 

ELOO-corn-canola mixture 43 32 

EVOO-corn-canola mixture 46 24 

Sesame-corn-canola mixture 50 12 

EVOO-almond-hazelnut mixture 52 12 

Sesame-grapeseed-corn mixture 56 12 

ELOO-almond-hazelnut mixture 53 12 

Sesame-corn-safflower mixture 57 12 

Sesame-vegetable-safflower 59 12 

  
 

128 
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4.3. Preparation of digitally blended data from IR spectra of edible oils 

Digital blending refers to the mixing proportion of each edible oil that comprises 

the oil mixture.  Digital blending was performed on the unprocessed IR spectra. To obtain 

a digital blend representing an 80% EVOO and 20% corn oil mixture, the IR spectrum of 

an EVOO sample is multiplied by 0.8 and added to an IR spectrum of a corn oil sample 

that is multiplied by 0.2.  Gaussian distributed noise was added to the IR spectrum of each 

digital blend to homogenize the spectral data.  For each spectrum, noise was added to the 

regions which contained IR bands (402 cm-1 to 1525 cm-1, 1600 cm-1 to 1850 cm-1 and 2750 

cm-1 to 3150 cm-1).  For a training set of digitally blended IR spectra, the largest absorbance 

value at each wavelength was identified, and one thousandth of this value was multiplied 

by Gaussian distributed random noise which had a mean of zero and standard deviation of 

one.  If the largest absorbance value was less than or equal to zero, noise was not added to 

the blended spectrum at that particular wavelength. For the pattern recognition studies that 

were undertaken to demonstrate equivalency between real data and digitally blended data, 

the full spectral range (4000 cm-1 to 400 cm-1) was used. 

 

4.4.   Validation of Digitally Blended Data 

To determine whether two edible oils can be differentiated by FTIR spectroscopy, 

the IR spectra of the pure edible oils was compared to the IR spectra of their mixtures 

(which simulate an adulterated edible oil). The focus of these studies was EVOO (which is 

frequently a target of adulteration), and each comparison was formulated as a three-way 

classification problem: EVOO, adulterated EVOO and adulterant (corn oil, canola oil or 

almond oil).  The EVOO-adulterant mixtures used for the training and validation set for 
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both the experimental and digitally blended data span a large concentration range.  For 

each comparison, it is assumed that the IR spectra of the adulterated mixture can be 

represented by the IR spectra of EVOO and the other edible oil, with the weights of the 

constituents defining the mixing proportion of each edible oil that comprises the mixture.  

If the IR spectra of EVOO and the adulterant adhere to a linear mixture model then the 

results of the three-way classification study for the experimental and blended data would 

be similar. 

To identify the wavelengths in each three-way classification problem that convey 

information about the degree of adulteration for both the experimental and digitally 

blended data, the pattern recognition GA was applied to each of these data sets.  

Modifications to the PCKaNN fitness function was undertaken to allow incorporation of 

model inference into the variable selection process.  The goal is to identify variables that 

minimize the error across the entire model.  This was accomplished by assessing the 

uncertainty of the sample scores in the principal component plot using the jackknife4-7 to 

generate estimates of dispersion.  During each generation, the fitness function of the pattern 

recognition GA evaluates thousands of principal component plots, one for each feature 

subset (i.e., chromosome) in the population of solutions.  For each principal component 

score plot, the corresponding training set samples are removed one at a time, and the score 

matrix and loading matrix for the resampled (i.e., jackknifed) training set is recomputed.  

(Due to the rotational ambiguities of PCA, the loading matrix for each resampled training 

set must be rotated using a Procrustean rotation4-8 to match the loading matrix associated 

with the score plot containing all the samples.)  For each training set sample, scores across 

all leave-one-out score plots will be projected onto the original principal component plot 
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of the feature subset which will then be scored using PCKaNN.  Thus, information about 

the level of confidence in the classification of each training set sample is directly 

incorporated into the variable selection process with the jackknifed scores for each sample 

effectively comprising an error cloud to depict the uncertainty associated with each training 

set sample. 

Each data set (EVOO/Corn, EVOO/Canola, and EVOO/Almond) was analyzed by 

the pattern recognition GA using the same set of parameters (number of chromosomes, 

selection pressure, configuration of initial population, and Kc).  Figures 4.1 and 4.2 show 

the plots of the two largest principal components of the 118 FTIR spectra (see Table 4.4) 

and the 8 and 17 spectral features identified by the pattern recognition GA for the three-

way classification problem: EVOO, EVOO-corn oil mixtures, and corn oil.  EVOO, corn 

oil, and the binary mixtures of EVOO-corn oil cluster in separate regions of the PC plot for 

both the experimental and digitally blended data. The first principal component appears to 

be correlated to the amount of adulterant (i.e., corn oil) in each sample.   

The predictive ability of the 8 and 17 spectral features identified by the pattern 

recognition GA was assessed using an external prediction set of 12 spectra of the EVOO-

corn oil mixtures whose composition varied from 0% to 40% corn oil.  The plant-based 

edible oil samples used to prepare the EVOO-corn oil mixtures comprising the prediction 

set were excluded from the training set.  Figures 4.3 and 4.4 show the plots of the 12 

prediction set spectra projected onto the principal component score plot of the 118 IR 

spectra comprising the training set and the 8 and 17 spectral features identified by the 

pattern recognition GA.  All 12 FTIR spectra in the prediction set for both the experimental 

and digitally blended data were correctly classified as each spectrum is located in a region 
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of the principal component score plot that contain samples tagged with the same class label.  

Clearly, EVOO can be differentiated from corn oil.  The detection limit for corn oil in 

EVOO from the principal component score plot is approximately 10% for both the 

experimental and digitally blended data which is in agreement with the detection limits 

previously reported for corn oil using PLS.4-9  Furthermore, the agreement between the 

results obtained for the experimental and digitally blended data suggests that digitally 

blended data can be used to assess whether two different varieties of edible oils (e.g., 

EVOO versus corn oil) can be differentiated by FTIR spectroscopy using a ternary 

classification study. 

          

 

Table 4.4. Training and prediction set for experimental and blended 

data 

  
Number of spectra in training 

set/prediction set 

EVOO 73/0 

Corn 33/0 

EVOO-corn 12/12 

Total 118/12 
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Figure 4.1. Plot of the two largest principal components of the 118 IR training set spectra (black) and the 8 

spectral features identified by the pattern recognition GA for the three-way classification problem: EVOO, 

corn oil and EVOO-corn oil mixtures (10% corn oil to 40% oil). The total cumulative variance explained by 

the two largest principal components for the experimental data is 98.57%. P = EVOO, C = corn oil, 10 = 10% 

corn oil, 15 = 15% corn oil, 20 = 20% corn oil, and 40 = 40% corn oil. 

 

 
Figure 4.2. Plot of the two largest principal components of the 118 IR training set spectra (black) and the 17 

spectral features identified by the pattern recognition GA for the three-way classification problem: EVOO, 

corn oil and EVOO-corn oil mixtures. The total cumulative variance explained by the two largest principal 

components for the digitally blended data is 97.18%.  P = EVOO, C = corn oil, 10 = 10% corn oil, 15 = 15% 

corn oil, 20 = 20% corn oil, and 40 = 40% corn oil. 
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Figure 4.3. Projection of the 12 prediction set spectra (red) onto the PC-plot developed from the 118 training 

set spectra and 8 features identified by the pattern recognition GA for the experimental data.  P = EVOO, C 

= corn oil, 10 = 10% corn oil, 15 = 15% corn oil, 20 = 20% corn oil, and 40 = 40% corn oil. 

 

 
Figure 4.4. Projection of the 12 prediction set spectra (blue) onto the PC-plot developed from the 118 training 

set spectra and 17 features identified by the pattern recognition GA for the digitally blended data.  P = EVOO, 

C = corn oil, 10 = 10% corn oil, 15 = 15% corn oil, 20 = 20% corn oil, and 40 = 40% corn oil. 
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Figures 4.5 and 4.6 show the plots of the two largest principal components of the 

115 IR spectra comprising the training set (see Table 4.5) and the 9 and 11 spectral features 

identified by the pattern recognition GA for the three-way classification problem: EVOO, 

EVOO-canola oil mixtures, and canola oil.  EVOO, canola oil, and the binary mixtures of 

EVOO-canola oil cluster in separate regions of the PC plot for both the experimental and 

digitally blended data.  Again, the first principal component appears to be correlated to the 

amount of adulterant (i.e., canola oil) in each sample.  The discriminating relationship 

developed from the 9 and 11 spectral features was successfully validated using the 15 FTIR 

spectra comprising the prediction set for both the experimental and digitally blended data 

(see Figures 4.5 and 4.6).  The plant-based edible oil samples used to prepare the 

adulterated EVOO mixtures comprising the prediction set were again excluded from the 

training set. The detection limit for canola oil in EVOO from the principal component score 

plot of the FTIR spectra is again 10%4-10. 

 

 

 

Table 4.5. Training and prediction set for experimental and blended 

data 

  
Number of spectra in training 

set/prediction set 

EVOO 73/0 

Canola 27/0 

EVOO-canola 15/15 

Total 115/15 
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Figure 4.5. Plot of the two largest principal components of the 115 IR training set spectra (black) and the 9 

spectral features identified by the pattern recognition GA for the three-way classification problem: EVOO, 

canola oil and EVOO-canola oil mixtures (10% canola oil to 40% oil). The total cumulative variance 

explained by the two largest principal components for the experimental data is 96.82%. The prediction set 

spectra are represented in red. P = EVOO, R = canola oil, 10 = 10% canola oil, 15 = 15% canola oil, 20 = 

20% canola oil, 30 = 30% canola oil and 40 = 40% canola. 

 

 
Figure 4.6. Plot of the two largest principal components of the 115 IR training set spectra (black) and the 11 

spectral features identified by the pattern recognition GA for the three-way classification problem: EVOO, 

canola oil and EVOO-canola oil mixtures (10% canola oil to 40% oil). The total cumulative variance 

explained by the two largest principal components for the blended data is 95.62%. The prediction set spectra 

are represented in red. P = EVOO, R = canola oil, 10 = 10% canola oil, 15 = 15% canola oil, 20 = 20% canola 

oil, 30 = 30% canola oil and 40 = 40% canola. 
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Figures 4.7 and 4.8 show the principal component score plots of the 100 IR spectra 

comprising the training set (see Table 4.6) and the 5 and 25 spectral features identified by 

the pattern recognition GA for the three-way classification problem: EVOO, EVOO-

almond oil, and almond oil.  The first principal component does not appear to be well 

correlated to the amount of almond oil in the mixtures.  Furthermore, several EVOO-

almond oil samples in the training and prediction set for both the experimental and digitally 

blended data are not correctly classified.  The absence of spectral features in the 

experimental and digitally blended data that can differentiate EVOO from EVOO 

adulterated with almond oil and the first principal component being weakly correlated to 

the amount of almond oil in the samples would indicate that EVOO and almond oil have 

similar IR spectra and would be difficult to discriminate by FTIR.  Detecting adulteration 

of EVOO by almond oil would also be problematic. The concordance of the results for the 

experimental and digitally blended data for EVOO-corn, EVOO-canola, and EVOO-

almond oil would suggest that we can discriminate two edible oils by variety using FTIR 

spectroscopy if the pure IR spectra of the two edible oils and their digitally mixed spectra 

can be discriminated in a ternary classification problem.  For this comparison, the samples 

representing each edible oil must account for seasonal and batch variations within each 

supplier as well as variations between suppliers.    

 

Table 4.6. Training and prediction set for experimental and blended 

data 

  
Number of spectra in training 

set/prediction set 

EVOO 73/0 

Almond 12/0 

EVOO-almond 15/15 

Total 100/15 
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Figure 4.7. Plot of the two largest principal components of the 100 IR training set spectra (black) and the 5 

spectral features identified by the pattern recognition GA for the three-way classification problem: EVOO, 

almond oil and EVOO-almond oil mixtures (10% almond oil to 40% oil). The total cumulative variance 

explained by the two largest principal components for the experimental data is 85.29%. The prediction set 

spectra are represented in red. P = EVOO, A = almond oil, 10 = 10% almond oil, 15 = 15% almond oil, 20 = 

20% almond oil, 30 = 30% almond oil and 40 = 40% almond. 

 

 

 
Figure 4.8. Plot of the two largest principal components of the 100 IR training set spectra (black) and the 25 

spectral features identified by the pattern recognition GA for the three-way classification problem: EVOO, 

almond oil and EVOO-almond oil mixtures (10% almond oil to 40% oil). The total cumulative variance 

explained by the two largest principal components for the experimental data is 78.7%. The prediction set 

spectra are represented in blue. P = EVOO, A = almond oil, 10 = 10% almond oil, 15 = 15% almond oil, 20 

= 20% almond oil, 30 = 30% almond oil and 40 = 40% almond. 
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4.5.   Uncalibrated Adulterants   

Variable selection is both critical to predictive modeling and general for edible oil 

identification.  Selection of informative variables can impact most of the modeling done 

for the classification of edible oils by FTIR spectroscopy.  However, a challenging aspect 

to this problem which has been largely ignored is encountering new contributions to the 

signal that we seek to model. The focus in the present study has been the selection of 

variables from a set of multivariate responses with the goal of making rapid estimates of 

class membership for a specific type of edible oil (e.g., EVOO).  In the final phase of this 

study, our goal is to reduce the effects of uncalibrated contributors that will then help us to 

identify wavelengths that are useful for recognizing adulterants in edible oils. The pattern 

recognition GA using the PCKaNN fitness function generalized to allow for incorporation 

of model inference into the variable selection process has been evaluated in this context.  

To investigate the problem of uncalibrated interferents, two different classification models 

were developed and are described in detail below.  The methodology used to detect 

uncalibrated interferents is similar to the methodology previously developed to assess the 

suitability of discriminating two edible oils using FTIR spectroscopy. 

In the first problem to be discussed (see Table 4.7), the training set consisted of 144 

IR spectra of EVOO, canola oil and digitally blended mixtures of EVOO and canola oil.  

The prediction set was comprised of digitally blended mixtures of EVOO and corn oil.  

Figure 4.9 shows a plot of the two largest principal components of the 144 training set 

spectra and the 14 spectral features identified by the pattern recognition GA.  The 

discriminating relationship developed from the 14 spectral features was successfully 

validated using the 24 digitally blended FTIR spectra comprising the prediction set.  Thus, 
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EVOO adulterated by corn oil could be recognized using a classifier developed for canola 

oil.  Furthermore, the digitally blended data yielded similar results to experimentally 

generated data for the same training and prediction set (see Figure 4.10). 

 

 

 

Table 4.7. EVOO-Canola Data Set 

  Number of spectra in training set/prediction set 

EVOO 73/0 

Canola 27/0 

EVOO-canola 44/0 

EVOO-corn 0/24 

Total 144/24 

  

 

 

Figure 4.9. Plot of the two largest principal components of the 144 IR training set spectra (black) and the 14 

spectral features identified by the pattern recognition GA for the three-way classification problem: EVOO, 

canola oil and the digital blends of EVOO and canola. The prediction set samples (blue) are digital blends of 

EVOO and corn oil spectra. The total cumulative variance explained by the two largest principal components 

is 98.2%.   
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Figure 4.10. Plot of the two largest principal components of the 144 IR training set spectra (black) and the 

five spectral features identified by the pattern recognition GA for the three-way classification problem: 

EVOO, canola oil and EVOO-canola oil. The prediction set samples (red) are EVOO-corn mixtures prepared 

using a digital pipette. The total cumulative variance explained by the two largest principal components is 

96.9%.   

 

In the second problem (see Table 4.8), the training set consisted of 124 IR spectra 

of EVOO, corn oil and digitally blended mixtures of EVOO and corn oil.  The prediction 

set was comprised of digitally blended mixtures of EVOO and canola oil.  Figure 4.11 

shows a plot of the two largest principal components of the 112 training set spectra and the 

18 spectral features identified by the pattern recognition GA.  The discriminating 

relationship developed from the 18 spectral features was successfully validated using the 

15 digitally blended FTIR spectra of the EVOO-canola oil mixtures comprising the 

prediction set.  EVOO adulterated by canola oil could be recognized using a classifier 

developed for corn oil.  Furthermore, the digitally blended data yielded similar results to 

experimentally generated data for the same training and prediction set (see Figure 4.12). 
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Table 4.8. EVOO-corn data set 

  Number of spectra in training set/prediction set 

EVOO 73/0 

Corn 27/0 

EVOO-corn 12/0 

EVOO-canola 0/15 

Total 112/15 

  
 

 

 
Figure 4.11. Plot of the two largest principal components of the 112 IR training set spectra (black) and the 

18 spectral features identified by the pattern recognition GA for the three-way classification problem: EVOO, 

corn oil and digital mixtures of EVOO-corn oil spectra. The prediction set (blue) are digital blends of EVOO 

and corn oil spectra. The total cumulative variance explained by the two largest principal components is 

96.44%.  
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Figure 4.12. Plot of the two largest principal components of the 118 IR training set spectra (black) and the 

11 spectral features identified by the pattern recognition GA for the three-way classification problem: EVOO, 

corn oil and EVOO-corn oil mixtures. The prediction set samples (red) are EVOO-canola oil mixtures 

prepared using a digital pipette.  The total cumulative variance explained by the two largest principal 

components is 97.43%. 

 

 

4.6. Conclusions 

In this chapter, a basic methodology for assessing the suitability of discriminating 

two edible oils from their FTIR spectra was described.  The FTIR spectra of the pure edible 

oils were compared to the FTIR spectra of their mixtures using library spectra and digitally 

blended data.  For this comparison, the samples representing each edible oil must account 

for seasonal and batch variations within each supplier as well as variations between 

suppliers.  Each comparison was formulated as a three-way classification problem.  The 

edible oil mixtures used for the training and validation sets for both the experimental and 

digitally blended data should span a large concentration range.  For each comparison, it is 
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assumed that the IR spectra of the mixture can be represented by the IR spectra of the two 

oils, with the weights of the constituents defining the mixing proportion of each edible oil 

that comprises the mixture.   If the IR spectra of the two edible oils and their digitally 

blended mixtures are differentiable, then differences between the IR spectra of these two 

edible oils will be of sufficient magnitude to ensure that a reliable classification of these 

two edible oils by FTIR spectroscopy can be obtained. Using this approach, the feasibility 

of authenticating edible oils such as EVOO directly from library spectra has been 

demonstrated.  Furthermore, the suitability of authenticating edible oils containing 

uncalibrated interferents (i.e., adulterants) was also demonstrated using the edible oil 

spectral library. 
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CHAPTER V 
 

 

Summary 

 

 In the preceding chapters, the use of IR spectroscopic data to classify a diverse 

set of edible oils via principal component analysis and the use of genetic algorithms to 

perform wavelength selection was described. The study was undertaken to show that for 

practical applications, when one is attempting to differentiate edible oils by type (e.g., extra 

virgin olive oil versus canola oil), it is necessary to account for all variations within a source 

including seasonal variations by purchasing edible oils under different brand names and 

over several years. This was recognized at the start of the investigation as this was the 

working hypothesis.  The goal was to capture as much variation as possible to simulate real 

world conditions. The novelty of the study arises from the incorporation of supplier-to-

supplier variation as well as seasonal variation within a supplier in the research design.  

Supplier to supplier variation and possibly seasonal variation within a supplier can be 

greater than the within supplier variation. varieties of the edible oils surveyed.  This is the 

first time that so many different edible oils and commercially available brands have been 

classified simultaneously.  By comparison, previous studies, which were restricted to five 

or six varieties of edible oils and relied on only one brand and often a single bottle from  
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that brand. for each type of edible oil, provided an overly optimistic estimate of the ability to 

classify edible oils as to variety or to detect low levels of adulterants in edible oils using 

FTIR spectroscopy. 

 As it is not possible to simultaneously classify 20 varieties of edible oil by a single 

classifier, a hierarchical classification of the FTIR spectra of the edible oils was undertaken.  

The twenty edible oil varieties were divided into four groups as determined by hierarchical 

clustering and principal component analysis of the average IR spectrum of each of the 

twenty edible oil varieties. The successful classification of the twenty oil varieties into four 

groups was demonstrated using a pattern recognition GA, thereby supporting the 

conclusions about the data from the cluster analysis.  Differentiation of edible oils within 

each group based on the classification results obtained by the pattern recognition GA as 

well as the differences in the chemical composition of each edible oil within a group (e.g., 

monounsaturated fatty acids and linolenic acid content) suggest that edible oils in the same 

group are more difficult to discriminate than edible oils in different groups. The three 

adulteration studies described in Chapter 3 are consistent with this premise.  More 

importantly, the findings that some large subsets of edible oils can be parsed using the 

variable selection methodology and that validation sample subsets can be correctly 

classified support model validity, and that it is not possible to develop a single classifier 

that can separate all possible edible oil types from each other are also supported by the 

evidence presented.  Finally, the hierarchical classification scheme proposed in this 

dissertation enables an analyst to determine whether a specific problem in the detection of 

adulterants (e.g., adulteration of a more expensive edible oil by blending with a less 

expensive oil) can be solved using FTIR spectroscopy.    
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 The IR spectra of the different varieties of edible oils surveyed in this study are 

very similar. For example, the most dissimilar IR spectral pair in this data set has a  hit 

quality index (HQI) value of 92%. For this reason, variable selection is important.  To 

identify wavelengths characteristic of each edible oil variety, a pattern recognition GA was 

applied to the IR spectral data. The approach underlying variable selection by the pattern 

recognition GA is based on a simple idea - identify the smallest set of variables (i.e., 

absorbances at specific wavelengths) that optimize the separation of the edible oils in a plot 

of the two or three largest principal components of the data. Because principal components 

maximize variance, the bulk of the information encoded by these variables is about 

differences between the edible oils in the training set. Using this approach for variable 

selection, an eigenvector projection of the data is formulated that discriminates between 

the edible oils in the data set by maximizing the ratio of between to within group variance 

through selection of the appropriate variables. Although a principal component score plot 

is not a sharp knife for discrimination, if a score plot shows clustering on the basis of class 

membership of the samples, then our experience (as well as the experience of other 

workers) is that one will be able to predict robustly using this set of wavelengths.  

 The authenticity of edible oils has a very direct impact on human health.  In this 

dissertation, FTIR spectroscopy has been combined with pattern recognition to establish a 

rapid method for the discrimination of edible oils.  From the experimental results presented 

in the studies described in Chapters 3 and 4, the proposed methodology has been proven to 

be successful. 
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