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Abstract: There is a consensus among the scientific community regarding the rise in air 

temperatures and changing precipitation patterns across the globe. Many areas around the 

world are expected to see increased aridity levels in the future. The trends will likely 

impact the agricultural water availability, especially in water-scarce regions. As 

freshwater water availability declines in water-scarce agricultural regions, it is important 

for the producers to use it efficiently. Therefore, the objectives of this dissertation are: (1) 

To analyze the historical trends in temperature, rainfall, and reference evapotranspiration 

on a climate divisional scale across Oklahoma using the available datasets to provide 

insights about the implications of these trends on agricultural water management; (2) To 

examine station aridity in the Oklahoma Mesonet stations to investigate its prevalence 

and spatiotemporal patterns; and (3) To demonstrate the implications of station aridity for 

reference evapotranspiration and improve the estimation of the reference 

evapotranspiration in the Oklahoma Mesonet stations to facilitate potential irrigation 

water savings in the State of Oklahoma. The results reveal increasing air temperature and 

precipitation trends on annual and seasonal scales and decreasing reference 

evapotranspiration trends in summer in Oklahoma which are consistent with the findings 

of other researchers in the Great Plains region. Station aridity is prevalent in the dry 

western part of the state which hinders the Mesonet’s ability to provide accurate data on 

reference evapotranspiration. Station aridity effects are more pronounced during 

droughts, limiting the utility of the estimated reference evapotranspiration in areas and at 

times that accurate information is critically needed to support agricultural water 

conservation. It is demonstrated that air temperature and humidity datasets can be 

adjusted to improve the reference evapotranspiration estimates using the available and a 

newly developed methodology using NDVI. 
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CHAPTER I 
 

 

INTRODUCTION 

 

1.1. Background 

There is growing consensus that climate change will affect extreme weather events, shift rainfall 

patterns, and increase temperatures, in turn posing risks to agricultural production worldwide 

(Brown et al., 2015; von Braun, 2020). The impacts of rising temperatures on increased demand 

for water and energy have been documented around the world (Watson et al., 1996). These effects 

have also been observed in the Great Plains region of the United States (U.S.) (Kukal & Irmak, 

2018; Melillo et al., 2014). Increasing temperatures are altering the balance between water and 

energy in our ecosystems (Babst et al., 2019; Piao et al., 2014; Seager et al., 2018). Global 

warming is expected to intensify the global water cycle (Masson-Delmotte et al., 2021). While 

the extent to which a warmer future will change agroecosystems is uncertain (Seager et al., 2018), 

increasing temperatures will ultimately increase the evaporative demand and will substantially 

reduce the water storage in groundwater aquifers (Condon et al., 2020). Increased competition for 

limited water resources exacerbates water stress in the agricultural sector and for natural 

resources (Shafer et al., 2014). On one hand, increasing evaporation can increase in the intensity 

of storms because warmer air can hold more vapor to reach saturation. On the other hand, 

intensification of the hydrologic cycle can lead to increased intensity of droughts far away from 

storm tracks (Trenberth, 2005). Agriculture will be one of the sectors that will be highly affected 
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by climate change as it heavily depends on the optimum amount of precipitation, soil moisture 

availability, and temperature (Walthall et al., 2013). The Northern Great Plains will likely see 

increased precipitation while the Southern Great Plains will see longer dry periods in parts of 

Oklahoma (OK) and Texas (Groffman et al., 2014). As such, robust estimates of water balance 

will be required with the intensification of the effects of climate change (Bates et al., 2008) for 

efficient management of water resources. Agriculture utilizes 76% of land and contributes more 

than $18.2 billion to OK’s economy (Shideler, 2015). Irrigation plays an important role in 

agricultural production, accounting for 41% of the total water use (~ 242 billion gallons), 

especially in the arid and semi-arid areas in western OK (Taghvaeian, 2014), which receives 

much less precipitation (e.g., 396 mm in the OK Panhandle) than southeastern OK with an 

average annual rainfall of 1286 mm.  

In addition to the steep precipitation gradient, OK has a recorded history of droughts which can 

last from a few weeks to several years. Such droughts lead to increased water demand from 

surface water and groundwater resources affecting agricultural water availability. In addition to 

irrigated agriculture, the droughts increase competition for water among various other sectors. 

Therefore, it is necessary to optimize the utilization of water resources in OK and hydro-

climatically similar agricultural areas where growing climate variability and change impose 

significant economic burden. 

Evapotranspiration (ET) is the second largest component of the hydrological cycle (Gleick, 

1993), which plays an important role in agricultural practices. ET represents combined loss of 

water through evaporation form soil surface and transpiration from plant stomata, thus, providing 

a basis for estimating irrigation water requirement (IWR) during their different growth stages. 

Numerous studies highlight the importance of changing ET patterns in different regions in the 

past and the future (Calanca et al., 2006; Cong et al., 2008; Gaertner et al., 2019; Rungee et al., 

2019; Vadeboncoeur et al., 2018; Zhang et al., 1996). Decreasing rainfall and increasing 
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temperatures will increase ET (Abtew & Melesse, 2013). As such it is important for us to 

understand the variability in these hydro-climatological parameters because these are the key 

elements for effective agricultural operations. For example, accurate ET data helps improve 

irrigation scheduling which is the decision of when and how much of the water is to be applied to 

the field. Overirrigation and underirrigation both have disadvantages. Overirrigation because of 

overestimation of ET results in inefficient use of water, leaching of nutrients below root zone, 

decreased aeration, and reduced crop yields. Underirrigation as a result of underestimation of ET 

stresses plants and hence reduces yields (Broner, 1989).  

The American Society of Civil Engineers’ Standardized Penman Monteith equation (ASCE, 

2005) is widely used throughout the world to estimate reference evapotranspiration (ETref). ETref 

is the evapotranspiration from reference surface defined as a well-watered grass surface having 

fixed height of 0.12 m, albedo of 0.23, and a fixed surface resistance surface resistance of 70 sm-

1. Various researchers have reported overestimation in ETref estimates by over 20% in the arid 

stations by using the Penman Monteith method depending on the location of weather stations and 

the surrounding environment due to deviation of actual surface conditions from reference surface 

condition. Such deviations can cause inaccuracies in ETref values reported by mesoscale 

monitoring networks such as the OK Mesonet, which are intended to improve agricultural water 

management, among other things. Accurate estimation of ETref requires actively transpiring 

vegetation which increases the relative humidity (R.H.) of ambient air as more incoming radiation 

energy is consumed in the evapotranspiration process instead of heating air and soil. This results 

in a reduction of air temperature. Thus, monitoring stations typically record higher temperatures 

than what would have been observed if an actively transpiring vegetation were present leading to 

ETref overestimation. Many OK Mesonet stations do not meet the criteria of reference surface, a 

necessary condition for estimating ETref. 
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1.2. Objectives 

This research will contribute to improved estimation of ETref in the Oklahoma Mesonet using the 

American Society of Civil Engineers’ Standardized Penman Monteith equation (ASCE, 2005). 

Hence, it has the potential to facilitate water savings in the agricultural sector in OK and other 

regions where monitoring programs are used to inform irrigation decisions. The specific 

objectives of this research are: 

1. To analyze the trends in temperature, rainfall, and ETref on a climate divisional scale using the 

available datasets from the United States Divisional Climate Dataset (USDCD) (Vose, 2014) and 

providing insights about the implications of these trends on agricultural water management. 

2. To examine station aridity in the OK Mesonet stations to investigate its prevalence and 

spatiotemporal patterns. Station aridity is characterized based on deviation of actual surface 

conditions from reference surface condition. It is hypothesized that overestimation of ETref is 

more pronounced in arid regions where rainfall is not enough to meet the evapotranspiration 

demand of the atmosphere. 

3. To demonstrate the implications of station aridity for reference evapotranspiration and improve 

the estimation of the reference evapotranspiration in the Oklahoma Mesonet stations to facilitate 

potential irrigation water savings in the State of Oklahoma. 

1.3. Organization 

This dissertation includes five chapters. Chapter I provides a general introduction of the 

dissertation and explains, in brief, the objectives of this research. Chapter II looks at the historical 

trends in hydroclimatic variables including air temperature, precipitation, and ETref by utilizing 

historical datasets for the 70-year period from 1951 to 2021. Chapter III characterizes station 

aridity in the Oklahoma Mesonet stations which causes the overestimation of ETref. 
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Spatiotemporal characteristics of the station aridity are discussed which provides a better 

understanding of the limitations of weather monitoring networks in estimating ETref.  Chapter IV 

investigates and improves the overestimation of ETref in the Oklahoma Mesonet stations. Chapter 

V summarizes the conclusions and suggests future work.
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CHAPTER II 
 

 

ANALYSIS OF CLIMATIC TRENDS IN CLIMATE DIVISIONS OF OKLAHOMA, U.S. 

2.1. Introduction  

Rising greenhouse gas emissions continue to worsen the impacts of climate change on humans 

and ecosystems (Kumar et al. 2012; Masson-Delmotte et al. 2021; Mastrandrea et al. 2011; 

Solomon et al. 2007). As a result, increasing global temperatures and precipitation changes have 

become a focal point of climate change research (Jain and Kumar 2012; Martínez et al. 2010; 

Myhre et al. 2019; Papalexiou and Montanari 2019). Increased number of dry periods and 

increasing intensity of precipitation (extreme rainfalls occurring over shorter spans) can affect 

surface water availability and evapotranspiration, which have important implications for 

agricultural water management. Analysis of long-term climate records facilitates identifying 

priority areas for agricultural water resources planning and adaptive management (Anwar et al. 

2013; Chauhan et al. 2014; Piao et al. 2010). 

In the past few decades, researchers have analyzed temperature, precipitation, and reference 

evapotranspiration (ETo) trends worldwide at national, regional, and local scales (Benestad 2013; 

Gobiet et al. 2014; Huntington 2006; Jain and Kumar 2012; Twardosz et al. 2021). Easterling et 

al. (1997) showed that increasing temperatures in most parts of the globe are partly due to 

narrower mean diurnal temperature ranges. Capparelli et al. (2013) reported statistically 

significant cooling trends in the southeastern and warming trends in the rest of the contiguous 

U.S. Pathak et al. (2017) observed increasing spring temperature trends, increasing minimum 
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temperature and precipitation trends, and decreasing ETo trends in the mid-western U.S.  

Predominantly increasing minimum temperature, precipitation, and decreasing ETo trends have 

been reported in majority of the counties in the U.S. Great Plains (Kukal and Irmak 2016 a,b). 

These findings are consistent with observed increased mean maximum and minimum 

temperatures in Nebraska, U.S. (Dos Santos et al. 2022)    

Oklahoma is a part of the Southern Great Plains region of the U.S. where temperature has been 

projected to increase by 2.0-2.8°C by the mid-21st century and by 2.4-4.7°C by the late 21st 

century. Projections have also indicated increase in the frequency and intensity of severe storms 

in the region (Bartush et al. 2018). The presence of a marked shift between the humid eastern 

U.S. and the arid western regions between the 97th and 99th meridians (Seager et al. 2018; Webb 

1931) has created diverse climate divisions in Oklahoma. Over the past century, the state has 

been impacted by severe droughts with substantial variability and at decadal time scales (Tian and 

Quiring 2019). There have also been record-breaking precipitation events that led to severe floods 

across the state (Jennrich et al. 2020). A continued decrease in open surface water body area was 

reported in Oklahoma from 1984 to 2015, likely in direct response to precipitation patterns and an 

inverse relationship with temperature (Zou et al. 2017).  

This objective of this paper is to document the historical climatic trends (from 1951 to 2021) in 

Oklahoma, U.S. in terms of changes in precipitation, air temperature, and ETo in the state’s nine 

climate divisions. We used a suite of tests to provide a robust characterization of the annual and 

seasonal trends in climatological time series for Oklahoma from the National Oceanic and 

Atmospheric Administration (NOAA) Monthly U.S. Climate Divisional Database. We applied 

widely used non-parametric tests, including the Modified Mann-Kendall (MMK) (Hamed and 

Rao 1998; Kendall 1975; Mann 1945) and the Sen’s slope (SNS) estimator (Gilbert 1987; Sen 

1968) to identify significant (p < 0.05) positive and negative trends. Further, we applied a new 

approach known as the Innovative Trend Analysis (Şen 2012; Şen 2017), and least square 
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regression tests (Haan 1977) to confirm and support the results of the non-parametric tests. The 

research informs agricultural production and natural resource management based on an improved 

understanding of the gradual climatic changes across the state through time using a statistical 

lens. 

2.2. Materials and Methods 

2.2.1. Study Area 

The state of Oklahoma is situated roughly from 33°37’ N to 37° N latitudes and 94°26’ W to 103° 

W longitudes in south central U.S. It has an area of 181,048 km2, sloping from the high plains in 

the western Panhandle, with the highest elevation being 1,516 m above mean sea level (amsl), to 

the wetlands in the southeastern part of the state with 88 m amsl at its lowest elevation. The 

terrain is nearly flat in the western Panhandle to rolling mountains in central Oklahoma. 

Mountains include the Ouachita Mountains in the southeast and Ozark plateau with forests in its 

northeastern part (Arndt 2003). Its climate ranges from semi-arid in the west to humid subtropical 

in the east based on Köppen climate classification ( Oklahoma Climatological Survey 2020). The 

state is divided into nine climate divisions (Fig. 1) that are climatologically uniform (Guttman 

and Quayle 1996; Karl and Riebsame 1984). 
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Fig. 1 Map of Oklahoma and its nine climate divisions. 

2.2.2 Data 

Seventy years of data (from 1951 to 2021) were obtained from the NOAA Monthly U.S. Climate 

Divisional Database (hereafter, climate divisional data), including mean monthly maximum, 

average, and minimum air temperature (Tmax, Tavg and, Tmin, respectively), and precipitation (P). 

The climate divisional data are provided by the Global Historical Climatology Network – daily 

(GHCN –Daily) (Menne et al. 2012) dataset, which contains stations from various major climate 

networks including Cooperative Observer program (COOP), Automated Surface Observing 

System (ASOS), National Interagency Fire Center (NIFC), Remote Automatic Weather Station 

(RAWS), USDA Snow Telemetry (SNOTEL), Environment Canada (EC) network, and Servicio 

Meteorologico Nacional (SMN) from Mexico. The data are constructed using climatologically 

aided interpolation (CAI), which addresses network and topographic variability (Vose et al. 2014; 

Willmott and Robeson 1995). The data were grouped into averages representing winter 

(December, January, and February), spring (March, April, and May), summer (June, July and, 

August), and fall (September, October, and November). Further, the 12-month SPI were also used 

to characterize historical droughts in the climate divisions based on drought categories of the U.S. 

drought monitor. The meteorological drought categories include abnormally dry (D0; SPI: -0.5 to 
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-0.7), moderate (D1; SPI: -0.8 to -1.2), severe (D2; SPI: -0.8 to -1.2), extreme (D3; SPI: -1.6 to -

1.9), and exceptional (D4; SPI: -2.0 or less). 

2.2.3 Data analysis 

1. The Modified Mann-Kendall and Sen’s slope tests 

The MMK (Hamed and Rao 1998; Kendall 1975; Mann 1945) and the SNS estimator, also known 

as the Theil-Sen test (Gilbert 1987; Sen 1968), have been extensively used in trend analysis 

studies for various climatological variables. The MMK is a test used to determine whether there is 

a monotonic upward or downward trend in a time series. The test does not require the data to be 

normally distributed. The null hypothesis (Ho) is that there is no trend in the data and the 

alternative hypothesis (Ha) is that a trend exists. The MMK test accounts for lag-1 autocorrelation 

in the time series and it is independent of the distribution of the dataset (Hurrell 2017).  The 𝑆 

statistic for this test is calculated by Eq.1. 

𝑆 =∑ ∑ 𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖) 
𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1
 

Eq. 1 

where 𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖) is equal to +1, 0, or -1. The variance associated with S is calculated as 

shown in Eq. 2. 

𝑣𝑎𝑟(𝑆) =
𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑘(𝑡𝑘 − 1)(2𝑡𝑘 + 5)

𝑚
𝑘=1

18
                               

Eq.2 

where 𝑚 is the number of tied zero difference groups and 𝑡𝑘is the number of tied data points in 

the 𝑘𝑡ℎgroup. The standardized test statistic 𝑍 is calculated as shown in Eq. 3. 
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𝑍 =

{
 
 

 
 

𝑆 − 1

√𝑣𝑎𝑟(𝑆)
, 𝑖𝑓 𝑆 > 0

0, 𝑖𝑓 𝑆 = 0
𝑆 + 1

√𝑣𝑎𝑟(𝑆)
, 𝑖𝑓 𝑆 < 0

 

 

Eq.3 

 

Positive values of 𝑍 indicate increasing trend while negative values indicate decreasing trend. 

Trends are significant if |𝑍| >  𝑍1−𝛼/2 for the desired value of significance, i.e., p < 0.05) 

denoting 95% confidence level for testing the null hypothesis. The test was performed using 

“mmkh” function from the “modifiedmk” (version 1.6) package (Patakamuri and O'Brien 2021) 

in R-Studio. 

The Sen’s slope test is used to quantify significant linear trends in a time series. It provides 

additional information about a statistically significant trend (as detected by the MMK) by 

estimating the quantity per time by which the trend occurs. The SNS is insensitive to extreme 

values in the dataset and hence is considered more robust than a linear regression method. The 

slope 𝑇𝑖  is given by Eq. 4. 

𝑇𝑖 =
𝑥𝑗 − 𝑥𝑘

𝑗 − 𝑘
, 𝑗 > 𝑘 

Eq.4 

where 𝑥𝑗 and 𝑥𝑘are the parameter values at time 𝑗 and 𝑘, respectively. The median of these values 

is calculated as follows: 

𝛽 = {

𝑇𝑛+1
2
,                          𝑛 𝑖𝑠 𝑜𝑑𝑑

1

2
(𝑇𝑛

2
+ 𝑇𝑛+2

2
) , 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

 

 

Eq.1 

 

where positive value of 𝛽 indicates an increasing trend while negative value indicates decreasing 

trend. 
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2. The Innovative trend analysis (ITA) 

The ITA is a new approach that has recently been introduced to indicate the possibilities of floods 

and droughts (Dabanlı et al. 2016). It helps to determine if a phenomenon is changing or remains 

stable with time. The ITA is free from the assumptions of normality and serial autocorrelation. 

The time series data was divided into two equal halves one of which was placed on the X-axis 

and the other, the Y-axis. Increasing and decreasing trends were determined based on the position 

of the paired data relative to a 1:1 reference line. When the data was in the upper half of the 1:1 

line, it indicated an increasing trend, and the lower half of the 1:1 line indicated a decreasing 

trend. The slope of the ITA test may also be used to indicate an increasing or decreasing trend. 

The “innovtrend” function from the “trendchange” (version 1.1) R package was used (Patakamuri 

and Das 2019) to carry out the ITA test. 

3. Least Squares Regression (LSR) 

The simple Least Square Regression (LSR) method is used to plot a line of best fit across the least 

square of residuals in the time series of a parameter of concern, assuming the data have normally 

distributed residuals (Kleinbaum et al. 2013). The line of best fit is drawn such that the sum of 

square of the data points (i.e., X: independent variable (year) and Y: dependent variable (climate 

variable)) from the line is minimum. A positive slope indicates an increasing trend and vice versa. 

The slope (m) and intercept (b) of the line of best fit are given by Equations 6 and 7.  

𝑚 =
𝑛(∑𝑥𝑦)−(∑𝑥 ∑𝑦)

𝑛(∑𝑥2)−(∑𝑥)2
                                      Eq. 1 

𝑏 =
(∑𝑥

2
)(∑𝑦)−(∑𝑥)(∑𝑥𝑦)

𝑛(∑𝑥2)−(∑𝑥)2
                             Eq. 2 
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4. Hargreaves-Samani method to calculate ETo 

The Hargreaves-Samani equation (Hargreaves and Samani 1985) is widely applied to estimate 

ETo. We used input data from the mean values of Tmax, Tmin, and extraterrestrial solar radiation, 

which can be estimated from the latitude and day of the year. The calibrated equation is given by 

Equation 8. 

𝐸𝑇𝑜 = 0.0023 × 𝑅𝐴 × (𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)
0.5 × (𝑇𝑎𝑣𝑔 + 17.8) Eq. 8 

where, 𝐸𝑇𝑜= Short grass reference evapotranspiration and 𝑅𝐴 = extraterrestrial solar radiation. 

2.3. RESULTS AND DISCUSSION 

2.3.1 Overview of the climate variables 

The mean annual Tmax, Tavg, Tmin, P, and ETo are summarized in Table 1 to provide an overview of 

the climatic variables in the nine climate divisions of Oklahoma. The southern climate divisions 

had the highest Tmax and Tavg followed by the central, and then the north, indicating a northward 

decreasing temperature gradient across the state (Fig 2). Minimum temperature gradients 

followed a diagonal trend from the northwest (the coldest) to the southeast (the warmest) (Fig 2). 

Overall, annual mean temperatures do not vary greatly across the climate divisions; mean Tmax 

ranged from 21.29 °C to 23.28 °C, mean Tavg ranged from 13.66 °C to 16.80 °C, and mean Tmin 

ranged from 7.75 °C to 10.32 °C (Table 1). 

The precipitation gradient trended from west (the minimum) to east (the most) (Fig 2). The 

highest precipitation was recorded in the southeast with a mean annual value of 1,258 mm, and 

the lowest was recorded in the Panhandle with a mean annual precipitation of 499 mm. The 

eastern climate divisions receive southerly winds which bring in moisture from the Gulf of 

Mexico while the western part is dry receiving significantly less precipitation (Illston et al. 2004; 

Liyan Tian et al. 2019). The ETo ranged from 1,261 mm in the Northeast to 1,390 mm in the 
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Panhandle and did not show a clearly defined spatial trend across the nine climate divisions (Fig 

2).  

The relatively small coefficients of variation (CV) and corresponding small ranges of CV for 

temperature (CV: 5.7-9.3%) and ETo (CV: 3.2-3.8%) reflect minimal variation of these variables 

(Table 1). By contrast, variation in precipitation is comparatively larger than in temperature in all 

climate divisions with CVs ranging between 19.1% and 22.5%. Such variability in P makes 

Oklahoma’s agricultural sector vulnerable to water scarcity, especially in the western half of the 

state where the majority of the irrigated areas are located (Taghvaeian et al. 2015).  
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Table 2.1. Annual mean and coefficient of variation (CV) of temperature (°C), precipitation 

(mm), and reference evapotranspiration (mm) for the nine climate divisions of Oklahoma 

Climate 

Division 

Tmax Tavg  Tmin P ETo 

Mean CV Mean CV Mean CV Mean CV Mean CV 

Panhandle 21.4 0.040 13.7 0.048 5.9 0.093 499 0.191 1347 0.032 

North Central 21.6 0.044 14.7 0.052 7.8 0.089 752 0.219 1322 0.037 

Northeast 21.3 0.041 15.0 0.047 8.7 0.073 1025 0.207 1261 0.038 

West Central 22.1 0.042 15.1 0.048 8.2 0.075 678 0.222 1349 0.038 

Central 22.2 0.040 15.7 0.045 9.2 0.070 898 0.203 1319 0.037 

East Central 22.2 0.038 15.9 0.042 9.6 0.063 1124 0.208 1300 0.037 

Southwest 23.2 0.039 16.3 0.043 9.5 0.067 718 0.219 1390 0.037 

South Central 23.3 0.035 16.8 0.038 10.3 0.057 983 0.225 1363 0.038 

Southeast 22.6 0.036 16.1 0.042 9.7 0.069 1258 0.203 1331 0.038 
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Fig. 2.2. Spatial gradients of climate variables across the climate divisions. ETo denotes potential 

evapotranspiration of reference crop (i.e., dense, well-watered, stress-free grass or alfalfa having 

a specified height, surface resistance, and albedo). 

2.3.2 Spatiotemporal trends in climatic variables 

1. Temperature trends 

Temperature showed a generally increasing annual trend across the state (Fig. 3). However, 

annual increase in Tmax from 1951 to 2021 was not statistically significant based on the MMK test 

at the 95% confidence level (p < 0.05). The annual increase in Tmin, on the other hand, was 

significant in all the climate divisions. Annual increase in Tavg was significant in the 

predominantly agricultural western climate divisions. Seasonally, most statistically significant 

increasing trends were observed in Tavg and Tmin while the increases in Tmax were not statistically 

significant. Increasing trends in Tmax, Tavg, and Tmin were observed in spring, fall, and winter 

across the state. The increase in spring Tmin was statistically significant in all the climate divisions 

except the Panhandle and South Central. Likewise, Tmin showed a statistically significant 

increasing trend in some climate divisions in summer (North Central and Southeast), fall 
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(Northeast, Southeast, and Southwest), and winter (North Central and Southwest). The summer 

season had decreasing Tmax and Tavg trends in Northeast, East Central, Central, and South-Central 

climate divisions. Only the West Central and Panhandle divisions showed increasing summer 

Tmax trends, albeit statistically insignificant. 

 

Fig. 2.3. Annual and seasonal trends in Tmax, Tavg, and Tmin based on the MMK test. The shaded 

divisions represent statistical significance at the 95% confidence level (p < 0.05). 

Statistical significance of annual and seasonal temperature trends and their magnitudes are 

presented in Table 2. The magnitude of increase in Tmax on annual time scale ranges from a 

minimum of 0.005 °C/yr (p = 0.10) in the Southeast to a maximum of 0.012 °C/yr (p = 0.06) in 

the Panhandle and West Central climate divisions. Although these increases are statistically 

insignificant at 95% confidence level, it is notable that the western parts of the state (Panhandle, 

West Central, and Southwest) have greater magnitudes of Tmax slope compared to the eastern 

parts (Northeast, East Central, and Southeast) with slopes <0.006 °C/yr. In the spring and fall 

seasons, respectively, western parts of the state had the greatest magnitude of slope (0.013 °C/yr 

and 0.012 °C/yr), followed by the central (0.007 °C/yr and 0.008 °C/yr) and eastern parts (0.006 
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°C/yr and 0.007 °C/yr). A similar west-to-east decreasing gradient in the magnitude of slopes was 

not found for the summer and winter seasons. 

The Panhandle and West Central climate divisions showed statistically significant increasing Tavg 

trends with slopes, respectively, equaling 0.010 °C/yr (p = 0.03) and 0.012 °C/yr (p = 0.02) 

annually, and reaching as high as 0.015 °C/yr (p = 0.04) and 0.020 °C/yr (p = 0.05) for the spring 

season. North Central and Southwest divisions, too, had significant Tavg increases of 0.010oC/yr 

(p < 0.02) or more. Like Tmax, the magnitude of slopes for Tavg follows a west-to-east pattern in 

the spring and fall seasons; the western parts of the state showed the greatest average slope 

followed by the central and eastern parts. In summer, the magnitude of slopes for Tavg were 

generally small (-0.001-0.006°C/yr). Larger Tavg slopes were observed in central and eastern parts 

(0.013°C/yr) compared to the western part (0.010°C/yr) for winter. 

Increasing Tmin trends were observed throughout the state in both annual and seasonal timescales. 

Statistically significant positive trends were found for annual Tmin in the Southeast (0.016oC/yr, p 

= 0.00) followed by North Central (0.014oC/yr, p = 0.00), Southwest (0.013oC/yr, p = 0.00), and 

the rest of the climate divisions (0.009-0.011 oC/yr, 0.00 ≤ p ≤ 0.01). Most of the climate 

divisions show statistically significant increasing Tmin trends in the spring season when greater 

slopes were observed in the agriculturally productive West Central and Southwest (0.014°C/yr) 

compared to the eastern climate divisions (0.008-0.012 °C/yr). In the summer season, a south-

north pattern was observed in the magnitude of average slopes of Tmin; Southwest, South Central, 

and Southeast had an average slope of 0.015 °C/yr followed by West Central, Central, and East 

Central (0.007 °C/yr) and Panhandle, North Central, and Northeast (0.005 °C/yr). This pattern 

largely holds in the fall season. The increase in winter Tmin was statistically significant in the 

North Central (0.015oC/yr) and the Southwest (0.012oC/yr) divisions. 
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Table 2.2. Annual and seasonal Modified Mann-Kendall and Sen's slope tests for temperatures 

Climate 

Division 
Time Scale 

Tmax Tavg Tmin 

MMK 

(Z) 

SNS 

(°C/yr) 

MMK 

(Z) 

SNS 

(°C/yr) 

MMK 

(Z) 

SNS 

(°C/yr) 

Panhandle 

Annual 1.629 0.012 2.058* 0.010 2.393 0.009 

Spring 1.687 0.016 2.015 0.015 1.886 0.009 

Summer 0.129 0.001 0.228 0.001 0.113 0.000 

Fall 1.032 0.011 1.320 0.009 1.380 0.008 

Winter 0.366 0.002 0.883 0.006 1.494 0.010 

North Central 

Annual 1.526 0.009 2.260 0.012 3.019 0.014 

Spring 0.997 0.011 1.851 0.014 2.556 0.016 

Summer -0.774 -0.006 0.181 0.001 2.168 0.008 

Fall 1.042 0.011 1.725 0.011 1.976 0.013 

Winter 1.052 0.012 1.943 0.014 2.099 0.015 

Northeast 

Annual 0.732 0.005 1.660 0.008 4.754 0.011 

Spring 1.191 0.009 1.742 0.011 2.148 0.011 

Summer -1.439 -0.010 -0.238 -0.001 1.725 0.006 

Fall 0.132 0.001 1.210 0.005 1.603 0.010 

Winter 1.022 0.009 1.484 0.011 1.514 0.013 

West Central 

Annual 1.876 0.012 2.289 0.012 2.489 0.011 

Spring 1.538 0.014 1.926 0.020 2.194 0.014 

Summer 0.044 0.000 0.327 0.002 1.117 0.005 

Fall 1.389 0.014 1.757 0.011 1.551 0.010 

Winter 0.908 0.010 1.360 0.011 1.608 0.013 

Central 

Annual 1.583 0.008 1.954 0.010 2.497 0.011 

Spring 1.429 0.014 1.846 0.020 2.541 0.011 

Summer -1.076 -0.006 -0.165 0.000 1.701 0.006 

Fall 1.298 0.009 1.769 0.010 1.601 0.010 

Winter 1.399 0.013 1.880 0.015 1.821 0.015 

East Central 

Annual 1.026 0.006 1.651 0.008 2.425 0.010 

Spring 1.539 0.009 2.204 0.010 3.358 0.008 

Summer -3.241 -0.006 -0.173 -0.001 0.720 0.004 

Fall 0.630 0.005 1.834 0.008 1.802 0.010 

Winter 1.196 0.011 1.523 0.012 1.385 0.012 

Southwest 

Annual 1.702 0.010 3.227 0.012 3.301 0.013 

Spring 10.97 0.010 1.677 0.012 3.105 0.014 

Summer -0.099 -0.000 0.680 0.004 1.831 0.009 

Fall 1.345 0.011 1.823 0.013 2.117 0.013 

Winter 0.799 0.008 1.786 0.014 1.424 0.012 

South Central 

Annual 0.039 0.000 1.009 0.005 2.488 0.010 

Spring 0.114 0.000 1.067 0.006 1.856 0.018 

Summer -1.859 -0.011 -0.208 -0.001 1.490 0.008 

Fall 0.258 0.003 0.931 0.004 1.194 0.008 

Winter 0.048 0.004 1.141 0.009 1.424 0.012 

 

 

Southeast 

Annual 0.904 0.005 1.836 0.010 3.677 0.016 

Spring 1.027 0.005 1.941 0.010 2.144 0.012 

Summer -0.59 -0.004 1.121 0.006 2.581 0.017 

Fall 0.898 0.007 2.142 0.012 2.884 0.019 

Winter 0.913 0.007 1.692 0.014 1.945 0.014 

* Bold values indicate statistical significance at 95% confidence level for the Mann-Kendall test. 

The results of the ITA and simple LSR for Tmax, Tavg, and Tmin show significant warming trends, 

supporting the results of the MMK and SNS tests. For example, summers in North Central and 
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Southeast, which had a statistically significant decline in Tmax based on the MMK and SNS, show 

decreasing trends with majority of points lying below the no trend (1:1) line in the ITA test (Fig 

4). For increasing trends, most of the points lie above (1:1) line as shown for spring Tmin for West 

Central and Southwest, and Tavg for Panhandle and West Central divisions (Fig 4). Similarly, the 

statistically significant increasing trends of annual Tavg and Tmin are confirmed by the positive 

slopes from LSR for the Panhandle and Southwest climate divisions (Fig 5). 

 

Fig. 2.4. Example ITA tests for temperature trends significant at 95% confidence level. 
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Fig. 2.5. Example significant temporal trends in temperature time series. 

2. Precipitation and reference evapotranspiration trends 

As shown in Figure 6, P had generally increasing trends annually and seasonally in all the climate 

divisions, except the Southwest in the fall season, which showed a decreasing trend. The increase 

in annual P was statistically significant in the North Central, Central, Northeast, and East Central 

climate divisions. The spring P trend was significant in the Northeast while the winter increasing 

trends were significant in all the nine climate divisions. Trends in ETo showed mixed results in 

both annual and seasonal time scales (Fig 6). Annual ETo increased non-significantly in the 

Panhandle, West Central, and Southwest climate divisions (0.12 ≤ p ≤ 0.83), while the rest of the 

climate divisions experienced a non-significant decline in ETo (0.11 ≤ p ≤ 0.85) except for South 

Central climate division where the decline was statistically significant (p = 0.01). Most of the 

climate divisions showed increasing ETo in spring, fall, and winter, although the increase was 

statistically non-significant. Statistically significant decreasing summer trends in ETo were 

observed in the central and eastern parts of the state. 
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Fig. 2.6. Annual and seasonal trends in P and ETo based on the MMK test. The shaded divisions 

represent statistical significance at the 95% confidence level (p < 0.05). 

An east-to-west pattern was observed in the magnitude of increasing average slopes of P both 

annually and seasonally (Table 3), consistent with the general precipitation gradient (Fig 2). 

Average Sen’s slope of precipitation time series in all time scales increased for eastern, central, 

and western parts of the state. Annually, eastern Oklahoma had the largest average slopes (2.78 

mm/yr), followed by central (2.34 mm/yr) and western (1.06 mm/yr) parts of the state (Table 3). 

Eastern Oklahoma had the largest average slope for spring (10.73 mm/yr). The average Sen’s 

slopes for precipitation are generally smaller for summer and fall than winter and spring. The 

average slope for winter season, which had statistically significant increasing precipitation in all 

the climate divisions, declined from eastern climate divisions (1.01 mm/yr) to central (0.84 

mm/yr) and western (0.581 mm/yr) climate divisions, reflecting the westward precipitation 

gradient. 

On average, ETo increased in the western three climate divisions annually (0.23 mm/yr) and 

during spring (0.12 mm/yr), fall (0.09 mm/yr), and winter seasons (0.03 mm/yr) (Table 3). 

Decreasing average ETo trends were observed in the central and eastern parts of the state for 

annual and summer season timescales. Panhandle is the only climate division that did not show 

decreasing ETo trends. The highest increasing annual ETo trend was observed in Panhandle (0.42 
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mm/yr) followed by West Central (0.22 mm/yr), and Southwest (0.05 mm/yr) climate divisions. 

A similar pattern was observed during the spring season when Panhandle had a positive Sen’s 

slope of 0.19 mm/yr for ETo followed by West Central (0.14 mm/yr) and Southwest (0.04 mm/yr) 

climate divisions. Other climate divisions did not show a consistent pattern in either increasing or 

decreasing trends (Table 3). 

The ITA and LSR support the trend results of the MMK and Sen’s tests for P and ETo as well. 

Most of the points lie above the no trend (1:1) line for statistically significant increasing trends or 

below the 1:1 line for decreasing trends in seasonal P and ETo (Fig 7). LSR shows positive slope 

of annual P in North Central (1.93 mm/yr) and Central (2.76 mm/yr) climate divisions. Likewise, 

winter P had a positive slope in the Panhandle (0.29 mm/yr) and Southwest (0.43 mm/yr) climate 

divisions (Fig 8). Similar results were reported by Irmak et al. (2012) in Nebraska, U.S. where 

they observed statistically significant increasing precipitation and decreasing ETo trends for a 

116-year record on annual scale. Kukal and Irmak (2016) also observed increasing precipitation 

in counties located in western Oklahoma, which agrees with reports of increasing decadal scale 

precipitation in the Great Plains region of the U.S. (Garbrecht and Rossel 2002).  
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Table 2.3. Annual and seasonal Modified Mann-Kendall and Sen's slope tests for precipitation 

and reference evapotranspiration. 

Climate 

Division 
Time Scale 

P ETo 

MMK 

(Z) 

SNS 

(mm/yr) 

MMK 

(Z) 

SNS 

(mm/yr) 

Panhandle 

Annual 0.558 0.30 1.543 0.42 

Spring 0.019 0.00 1.583 0.17 

Summer 0.744 0.28 0.153 0.02 

Fall 0.645 0.17 0.854 0.08 

Winter 2.614* 0.62 0.000 0.00 

North Central 

Annual 2.000 2.12 -0.449 -0.14 

Spring 1.330 0.75 0.511 0.06 

Summer 0.781 0.53 -2.347 -0.29 

Fall 0.264 0.1 0.561 0.06 

Winter 3.069 0.62 0.636 0.04 

Northeast 

Annual 2.751 3.07 -0.959 -0.29 

Spring 3.127 1.53 0.129 0.00 

Summer 1.240 0.62 -2.631 -0.42 

Fall 0.524 0.35 -0.362 -0.04 

Winter 2.427 0.77 0.715 0.05 

West Central 

Annual 1.404 1.25 0.783 0.22 

Spring 0.357 0.17 0.993 0.14 

Summer 1.898 0.78 -0.640 -0.08 

Fall 0.114 0.05 0.731 0.11 

Winter 3.137 0.63 0.596 0.05 

Central 

Annual 2.151 2.79 -0.395 -0.08 

Spring 1.363 0.74 0.878 0.11 

Summer 1.697 1.05 -2.070 -0.25 

Fall 0.421 0.27 0.030 0.04 

Winter 2.679 0.81 0.650 0.05 

East Central 

Annual 2.660 3.16 -0.178 -0.04 

Spring 1.297 0.80 0.859 0.07 

Summer 1.156 0.64 -2.032 -0.22 

Fall 0.957 0.74 0.347 0.03 

Winter 2.462 1.04 0.511 0.03 

Southwest 

Annual 1.529 1.64 0.203 0.05 

Spring 0.989 0.36 0.278 0.04 

Summer 1.778 0.62 -1.030 -0.16 

Fall -0.226 -0.16 0.430 0.08 

Winter 2.518 0.49 0.417 0.04 

South Central 

Annual 1.811 2.26 -2.417 -0.61 

Spring 1.314 0.69 -1.047 -0.11 

Summer 1.131 0.68 -4.110 -0.44 

Fall 0.163 0.09 -0.160 -0.01 

Winter 3.412 1.08 -0.283 -0.02 

 

 

Southeast 

Annual 1.647 2.1 -1.573 -0.44 

Spring 1.280 0.88 -0.471 -0.04 

Summer 0.223 0.17 -17.061 -0.43 

Fall 0.273 0.22 0.198 0.02 

Winter 2.852 1.21 -0.079 0.00 

* Bold values indicate statistical significance at 95% confidence level for the Mann-Kendall test. 
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Fig. 2.7. ITA for significant trends in precipitation and reference evapotranspiration at 95% 

confidence level. 

 

Fig. 2.8. Significant temporal trends in precipitation time series. 
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2.3.3 Implications of climatic trends 

Increasing or decreasing trends in T, P and ETo have important implications for agricultural 

production, agricultural water and energy demand, design and operation of water resource 

systems, and preparedness to manage pests and diseases, among others (Kukal and Irmak 2016 

a,b). On one hand, increasing annual and seasonal Tmin can lengthen the growing season, or they 

may contribute to favorable conditions for winter crops, especially in the western three climate 

divisions (the Panhandle, West Central and Southwest). On the other hand, warmer winters may 

result in survival of pests and growth of invasive and migratory species (Laštuvka 2009; Poland 

et al. 2021; Skendžić et al. 2021). Increasing trends in Tmax may lead to excessive heat and deplete 

soil moisture, which is critical for growing healthy crops (Feng and Liu 2015). Excessive heat can 

also limit a plant’s water uptake by affecting its root development and reducing its ability to 

transpire (Lipiec et al. 2013). This can impact crop yields, for example in corn and soybeans (Dos 

Santos et al. 2022), which have been observed in other parts of the world (Lobell et al. 2011; 

Nicholls 1997; Peng et al. 2004; Tao et al. 2006). Global wheat production is set to decline by 6% 

per C of increase in mean temperatures (Asseng et al. 2015; Zhao et al. 2017). For example, at 

this rate in wheat yields western three climate divisions in Oklahoma can decline by more than 

3% (Tavg increase of 0.011 C/yr x 50 yrs = 0.55 C) in fifty years (i.e., by 2072). Similarly, 

soybean yield, another major crop in OK, can decline by 1.5% in western OK in the next five 

decades as it is projected to decline by 3.1% per C of increase in T (Zhao et al. 2017). 

Consequently, high temperatures may affect agricultural productivity, farm income, and food 

security (Battisti and Naylor 2009). According to Zou et al. (2017), surface water areas in 

Oklahoma are declining at a rate of 0.08 km2 per year. This has a negative implication for 

sustainability of practices that depend on surface water, including water supply, hydroelectricity, 

irrigation, and ranching. 
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While a generally increasing trend in precipitation may appear to increase renewable water, the 

ability to store and manage the water for beneficial uses is governed by the intra-annual and intra-

seasonal variability of precipitation on short time scales (e.g., daily). Some major issues with 

increasing precipitation trends across all seasons are the potential disruption in the growing 

cycles. Extreme precipitation events interspersed with long dry periods in the Southern Great 

Plains (Kunkel et al. 1999; Mallakpour and Villarini 2017), including western Oklahoma, reduce 

the ability to capture large runoffs occurring over short time spans (Dawadi and Ahmad 2013; 

Nepal and Shrestha 2015). Such events can cause flash flooding, which may cause erosion and 

may result in nutrient and crop loss and damage to property, or even loss of life (Dahl and Xue 

2016; Higgins et al. 2011; Teegavarapu 2012). 

In Oklahoma, the western climate divisions constitute most of the irrigated agriculture, which 

depends on limited surface water and groundwater resources. The state’s largest share of total 

irrigated area (42%) is in the Panhandle climate division. The Southwest climate division ranks 

second with 26% of the state’s irrigated area followed by North Central (8%), and the West 

Central (6%). As illustrated in Fig 8, different climate divisions have witnessed varying severities 

and durations of drought over the last seven decades. Notably, in the 1950’s, extreme to 

exceptional meteorological droughts frequently occurred in the Panhandle (24% of the time), 

West Central (27%), and Southwest (18%) climate divisions (Fig 9).  

In the last decade, western Oklahoma witnessed droughts that were comparable in severity to the 

droughts of the 1950’s (Fig 9). Record setting temperatures and exceptional drought occurred in 

the 2011-2012 period (Shafer et al. 2014), causing over $2 billion in agricultural economic losses 

in Oklahoma (Khand et al. 2017). The drought persisted in the western climate divisions, 

including the Southwest, halting water delivery to irrigated farms for several years. The drought 

ended with above-normal precipitation in spring 2015 (Khand et al. 2017). This situation is 

projected to be exacerbated in western Oklahoma with the reduction of stream flows (OWRB 
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2012) and increased pressure on fresh groundwater resources in southwestern Oklahoma 

(Balcombe, 2014). In the Panhandle, where groundwater is the major source of irrigation, the 

Ogallala aquifer is being depleted to continue supporting irrigated agriculture (Almas et al. 2008). 

The overdraft during the prolonged drought from 2011 to 2015 resulted in 9 ft of groundwater 

level decline (Khand et al. 2017). Warmer temperatures and erratic rainfalls compound the 

challenge of agricultural water availability. 

 

Fig. 2.9. Decadal distribution of droughts in Oklahoma climate divisions 
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2.4. CONCLUSIONS 

This study investigated the annual and seasonal trends of air temperature, precipitation, and 

reference evapotranspiration in Oklahoma, USA, using 70 years of data and a suite of widely 

applied tests, including the MMK, SNS, ITA and LSR. The results show increasing temperature 

gradients from south to north and increasing precipitation gradients from west to east of the state. 

The spatial gradients for ETo were not well defined. Temporally, all the climate divisions showed 

increasing Tmin trends in both annual and seasonal scales. The largest slopes of these increases 

were in the spring, fall, and summer seasons. All the climate divisions showed increasing Tmax 

and Tavg trends except for summer seasons. Statistically significant trends were observed mainly 

in Tmin, and Tavg, on annual and seasonal basis. Predominantly western climate divisions had the 

most increasing temperatures both annually and seasonally. Precipitation showed increasing 

trends in all climate divisions for most of the timescales. Statistically significant trends were 

observed in P in all the climate divisions during winter season. ETo showed mixed trends spatially 

and temporally while statistically significant decreasing ETo trends were observed in the central 

and eastern parts of the state during the summer season. It is important to observe the magnitudes 

of trends and incorporate these into planning and management of water resources and agricultural 

infrastructure in the face of recurring severe to exceptional droughts.  
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CHAPTER III 
 

 

STATION ARIDITY IN THE WEATHER MONITORING NETWORKS: EVIDENCE FROM 

THE OKLAHOMA MESONET 

 

3.1. INTRODUCTION 

Accurate estimation of water required for irrigation is critical for efficient agricultural water 

resources planning, management, and decision-making. A common approach to quantify crop 

water requirement is to estimate crop evapotranspiration (ET) using the reference 

evapotranspiration (ETref) concept. ETref is calculated by estimating the ET of a reference surface 

defined as “a uniform surface of dense, actively growing vegetation having specified height and 

surface resistance, not short of soil water, and representing an expanse of at least 100 m of the 

same or similar vegetation” (ASCE, 2005). For accurate estimation of ETref at a given location, it 

is recommended that the site be surrounded by well-watered vegetation, preferably clipped grass, 

or alfalfa or grass-legume maintained at less than 0.5 m height to represent reference surface 

condition (ASCE, 2005).  

The standardized Penman-Monteith (PM) method (Allen et al., 1998; ASCE, 2005, 2016) is 

widely applied by weather monitoring networks to estimate ETref, using a number of weather 

parameters including T, wind speed (W), Rn, and vapor pressure (e). To estimate ETref a fetch 

ratio of 100 times the height of T, W, and RH sensor is recommended (Allen, 1996; ASAE, 2004) 

so that the incoming flux represents irrigated setting. For agricultural purposes T and RH sensors 
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are usually mounted at 1.5 m and W sensors at 2 m height above the ground surface. Therefore, a 

well-watered fetch of 150-200 m is needed for ETref estimation. However, such an expanse of 

vegetation is oftentimes not available at mesoscale weather monitoring stations, which are sited 

according to different requirements depending on the primary functions of the monitoring 

network. For example, a station with the intended use of integrated pest management should be 

located between crops which may not necessarily be of specified height or irrigated, e.g., orchards 

and groves (ASAE, 2004). Another example is an aviation meteorological station, which should 

record observations at individual local aerodrome site (WMO, 2018). 

Oklahoma Mesonet (hereafter Mesonet) stations are sited on a variety of lands in terms of 

ownership and maintenance, including academic institutions, agricultural research stations, 

private land, federal/city/state land, and airports. An “ideal” site is not always available because 

many stations are sited after making arrangements with cooperative private landowners or 

because of different uses of data, which may need variable and sometimes contrasting siting 

requirements. Shafer et al. (1993) presented guidelines to select sites for Mesonet stations, 

including accessibility by vehicle and representativeness of as large an area as possible. 

Therefore, stations are generally sited away from water bodies, dams, irrigated areas, and forests 

so that their influence on the observations is minimized (Fiebrich et al., 2010; McPherson et al., 

2007). Most Mesonet stations are installed on native vegetation where rainfall is the only water 

source for ET. Therefore, rainfall amount, frequency, and distribution are key in determining if 

the surface condition is approaching reference or not (Itenfisu et al., 2002). Previous research has 

documented the impact of surface conditions on observed T, RH, and W. De Vries et al. (1961) 

compared meteorological measurements including T and RH using three stations in an irrigated 

area (6 to 7 km2) and one station in an adjacent dryland area in Australia. The reported average 

differences were 1-2 °C for T and 5-10 % for RH during the summer for a period of four weeks. 

Davenport et al. (1967) conducted experiments in Sudan to observe T, W, and vapor pressure 
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deficits (VPD) on a 17 km transect of a 300 m wide cotton field and found lower T, W, and VPD 

on the leeward edge than windward edges. At a desert site in Idaho, USA, Tavg was 3 °C greater 

and ET was 20% larger than at the center of an irrigated field within a 50 km transect (Burman et 

al., 1975). Likewise, Allen et al. (1983) reported greater T and lower RH at two arid sites 

compared to three irrigated stations in Idaho. The ETref at the arid sites was 17% greater for the 

season and 21% for the month of July. Using data from eight weather stations, Ley et al. (1994) 

reported that, on average, maximum and minimum air temperatures (Tmax and Tmax) were 1.8 °C 

and 1.1 °C greater in arid sites during July and 0.9 °C and 0.7 °C greater during the growing 

season. Vapor pressures were 6% smaller in July and 7% smaller in the growing season. ET was 

20% and 19% greater in July and over the growing season, respectively. W was also found to be 

greater in the dry locations than over irrigated surface.  

Station aridity effects caused by non-reference surface conditions have important implications for 

weather-based agricultural water management. Herein, we characterize station aridity across the 

Oklahoma Mesonet, which provides estimates of ETref, among other weather parameters, to 

facilitate weather-informed irrigation decisions in the state of Oklahoma, USA. Using a 20-year 

record of daily weather data, we calculate mean dew point deviation (MDD = Tmin – Tdew), 

maximum relative humidity (RHmax), and NDVI to characterize station aridity. The paper 

contributes to a better understanding of the prevalence and spatiotemporal characteristics of 

weather station aridity across the Mesonet with implications for similar multi-purpose weather 

monitoring networks in the USA and around the world.  

3.2. MATERIALS AND METHODS 

3.2.1. THE OKLAHOMA MESONET 

The Oklahoma Mesonet (hereafter Mesonet) is a network of 120 active environmental monitoring 

stations spread across the state of Oklahoma. These automated stations are designed to report 
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various weather parameter data in near real time, providing an invaluable infrastructure to capture 

mesoscale climate features. The Mesonet serves multiple purposes, including weather forecasting, 

emergency management, wildfire management, environmental research, transportation, and 

agriculture, among others (McPherson et al., 2007). Since starting operation in 1994, the network 

has recorded most weather parameters such as T, precipitation (P), RH, W, and air pressure, 

among others, at 5-minute intervals while also providing average soil temperature and soil 

moisture data at 15-minute and 30-minute intervals, respectively (Brock et al., 1995; McPherson 

et al., 2007). The Mesonet estimates ETref based on the ASCE standardized reference 

evapotranspiration approach (ASCE, 2005), which requires the weather parameters to be 

measured over reference surfaces.  

3.2.2. DATA AND QUALITY ASSURANCE 

We used archived daily data from a select number of Mesonet stations (Fig. 3.1) for the period of 

1 January 2000 to 31 December 2019 (20 years). The number (initially 142) and location of some 

Mesonet stations have changed over time since 1994 because of retiring stations and/or moving 

them to a new location for various reasons. For stations that were moved to a new location, 

Mesonet merges the data obtained from the old site with data from the new location. We excluded 

these stations because the microclimate of an area impacts the ET process and therefore data 

collected from such shifted stations would not be reflective of a single station ET. Moreover, 28 

stations launched after 2000 were not included in our analysis due to their relatively short length 

of data. Baddour et al. (2007) recommended a 10% threshold to fill the gaps of missing values in 

weather datasets. Thus, stations with more than 10% missing data were also removed, except for 

two stations of Tipton and Altus in southwestern OK, which had 10.4% and 10.2% missing data, 

respectively. This process resulted in selection of 83 Mesonet stations for further analysis.  
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Fig.  3.1. Location of the 83 selected Mesonet stations in Oklahoma, US.  

Mesonet employs both automated and manual quality assurance (QA) checks to ensure collection 

of research quality data. An automated QA software performs a variety of tests on the observed 

weather parameters to identify erroneous data. These tests include range tests, temporal checks, 

spatial checks, like instrument checks, and adjustment tests. If the QA software identifies a 

problem, it flags the observation(s) in a daily QA report which lists the output from the automated 

QA tests (McPherson et al., 2007). The manual QA process includes inspection of the auto-

generated report by a meteorologist who determines whether or not the recorded data represent a 

real meteorological phenomenon (Fiebrich et al., 2001). Although the combination of automated 

and manual checks results in high data quality, we performed a number of additional checks to 

ensure that there is no error in the reported daily values of Tmin, Tmin, P, and RHmax. We searched 

for days with Tmin > Tmax, P < 0, and where RHmax < 0 or >100. Mesonet calculates dew point 

temperature (Tdew) from T and RH. Therefore, resolving errors in T and RH data eliminates false 

Tdew values. Allen et al. (2011) recommended a careful examination of the data collected from 

non-reference weather stations before estimating ETref. Therefore, we also applied QA procedures 

recommended by the ASCE (2005) and Allen et al. (1998). We followed their guidelines to 
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calculate the extreme ranges of daily solar radiation (RS), RHmax and average W and to assess the 

integrity of the data falling between the extremes. For each Mesonet station, we plotted measured 

RS against the theoretical clear sky solar radiation (RSO) calculated using the equations that 

account for the influence of sun angle, turbidity, atmospheric thickness, and precipitable water 

(see an example in Figure S1 in Supplementary Material (SM)). We checked if the measured RS 

was consistently above or below the RSO curve by more than 3 to 5%. Such an observation could 

indicate a problem with the sensor calibration. This approach was also used by Itenfisu and Elliott 

(2002) in a study in which they adjusted the Mesonet’s measured RS values using the procedures 

mentioned in (Allen, 1996). We adjusted the daily RS values of all stations (i.e., RS(adj)) using the 

University of Idaho’s REF-ET software version 4.1 which adjusts RS values by using unique 

multipliers determined for each 60-day period (Richard G. Allen, 2016). 

We examined wind and humidity data by first checking for consistently low W values (< 0.5 

m/s), which indicates failed bearings of anemometers. There were some days in all the stations 

when W at 2 m recordings were less than 0.5 m/s but they were not consistent and therefore, W 

dataset was not altered in any way. We also plotted daily RHmax values from all stations to detect 

potential sensor calibration errors (an example is shown in Fig. S2 in SM). These checks did not 

result in exclusion of any data. Fig. S3 in SM illustrates the QA steps implemented in addition to 

the QA conducted by the Mesonet. Upon completion of the QA procedure, we selected 83 

Mesonet stations for this study as shown in Figure 1.  

3.2.3. STATION ARIDITY 

We used mean dew point deviation (MDD), maximum relative humidity (RHmax), and NDVI 

across the state over the 20-year period to distinguish between reference and non-reference 

conditions. MDD refers to the difference between Tmin and Tdew. We used MDD as an indicator of 

station aridity following (Temesgen et al., 1999). In arid regions and under non-reference 
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conditions where sufficient water is not available to meet the evaporative demand of the 

atmosphere, Tmin does not approach Tdew even in the early morning hours, resulting in a positive 

MDD value. It has been observed that there is a difference of 2 to 5°C between Tmin and Tdew even 

if reference conditions are present (ASCE, 2016). This is attributed to continuous mixing of warm 

and dry air from the surrounding (Temesgen et al., 1999). Therefore, we used the percent days in 

which MDD > 2°C (IMDD) as an indicator of station aridity.  

RHmax will often approach 100% in humid regions or at sites where reference conditions prevail. 

In the absence of problems like sensor malfunction or calibration issues, site aridity can result in 

RHmax consistently falling below 100%. In this study, we adopted 80% as the threshold to 

designate arid condition at Mesonet stations. Since the QA of the data did not indicate sensor 

problems, percent days with RHmax < 80% (i.e., IRH) was used as our second indicator to 

characterize station aridity. 

Reference conditions can also be assessed by calculating NDVI values around a station. Various 

factors including the plant growth stage and availability of water can affect reflectance 

characteristics of surfaces. A low NDVI indicates lack of actively transpiring vegetation i.e., non-

reference conditions. For example, barren lands and sparsely vegetated surfaces typically have 

NDVI values less than 0.4. An actively growing plant with sufficient water supply from the soil 

has a high NDVI. In sub-humid and humid regions natural vegetation is greener because the 

water requirement is usually met, resulting in NDVI values approaching 1.0.  

In this study, percent days with NDVI < 0.4 (INDVI) is used as our third indicator of station 

aridity. Such an approach was used by Blankenau et al. (2020) to filter stations that were not in 

reference condition during the growing season. We used MODIS (Moderate Resolution Imaging 

Spectroradiometer) 500 m resolution 16-day imagery from 2000 to 2019 to calculate NDVI 

around each station. Following Blankenau et al. (2020), average NDVI for a station was 
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computed as the average NDVI over areas within 500 m and 2 km radii of each station to account 

for the influence of local and regional scale aridity on the fluxes received by the sensor. Thus, 

NDVI denotes average NDVI throughout this paper. 

3.2.4. SPATIAL AND TEMPORAL ANALYSIS 

We analyzed the spatiotemporal variation of Mesonet station aridity based on MDD, RHmax, and 

NDVI to characterize the pattern, extent, and timing of station aridity. For the spatial analysis, we 

divided the state into western and eastern zones. The western zone consists of the 30 western 

counties and accounts for 88% of the state’s irrigated area. The temporal analysis was conducted 

on annual and seasonal scales. We chose winter (WI), spring (SP), summer (SU), and fall (FA) as 

the four meteorological seasons in a year based on the annual temperature cycle. Spearman’s 

correlation coefficient was used to measure the strength of association between the indicators and 

precipitation. The strength of correlation is given as: very weak (0.00 - 0.19), weak (0.20 - 0.39), 

moderate (0.40 - 0.59), strong (0.60 - 0.79), and very strong (0.80 - 1.00) (Myers et al., 2010; 

Spearman, 1961). The station aridity indicators were also evaluated with respect to different 

drought categories (D0: abnormally dry, D1: moderate drought, D2: severe drought, D3: extreme 

drought and, D4: exceptional drought) of the US Drought Monitor (Svoboda et al., 2002).  

3.3 RESULTS AND DISCUSSION 

The spatial variation of the average (2000-2019) magnitude of MDD, RHmax, and NDVI from 

southeast to the OK Panhandle generally follows the precipitation gradient (Fig. 3.2). Larger 

magnitudes of MDD are observed for Mesonet stations in western Oklahoma, which is drier 

(annual average rainfall: 675 mm), as compared to the corresponding values in the wetter eastern 

part of the state. The maximum and minimum values of average MDD across all stations are 3.3 

°C for Kenton station located in the OK Panhandle and -1.6 °C for Wister station in the southeast. 

In total, 17 stations had average MDD < 0 all of which are in eastern OK. As expected, larger 
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values of RHmax and NDVI are observed in eastern OK. Southeastern OK receives up to 1815 mm 

of rainfall annually and therefore the stations are expected to have larger magnitudes of average 

RHmax and NDVI as sufficient water is available for transpiring green vegetation. The maximum 

20-year average RHmax of 96% was found at Wister station in the southeast and the minimum of 

83% in Medicine Park and Cheyenne stations in western OK. Similarly, the maximum average 

NDVI of 0.64 was found at Cookson station in eastern OK and the minimum of 0.25 at Kenton 

station in the Panhandle. Overall, the three variables show strong (RHmax ~ NDVI: 0.76 and MDD 

~ NDVI: -0.76) to very strong correlation (RHmax ~ MDD: -0.98) with each other across all the 

stations.  

It is worth noting that some Mesonet stations behave anomalously in terms of the magnitudes of 

MDD and RHmax compared with neighboring stations. For example, Chickasha station located in 

western OK had a smaller average MDD (0.1 °C) and a larger RHmax (91%) compared with the 

neighboring Washington station’s average MDD (0.8 °C) and RHmax (90%) despite receiving 

lesser rainfall (827 mm vs 910 mm). Similarly, moving further southeast from Washington 

station, average MDD and average RHmax for Byars station increased to 1.6 °C and decreased to 

87%, respectively, contrary to the general pattern of declining average MDD and increasing 

average RHmax in eastern Oklahoma. Such anomalous behaviors are mostly observed at stations 

located between the 97th and 99th meridians, which is a transition zone between the humid 

eastern US and the arid western regions (Seager et al., 2018; Webb, 1931). Further, land 

management around a station can play an important part in a station’s aridity as compared with its 

surroundings because of the influences of the fluxes received by the sensor.  
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Fig. 3.2. Spatial variability of average MDD, RHmax , and NDVI across OK. Base maps represent 

normal (1990-2020) Temperature and Precipitation and elevation from PRISM (Daly et al., 

1994). 

Spatiotemporal characteristics of station aridity in the 34 Mesonet stations located in western OK 

underscore the prevalence of this phenomenon in this region, where accurate ETref data are 
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critically needed to guide water conservation through weather-informed irrigation decisions. 

MDD, RHmax, and NDVI vary considerably from season to season across the western stations 

(Fig. 3.3). Seasonal averages of MDD for the 34 western stations illustrate that summer seasons 

usually have the highest average MDD (2.97 °C) followed by fall (1.37 °C), spring (1.35 °C), and 

winter (0.57 °C). Also, summer seasons have the least average RHmax (85.74%) followed by 

winter (86.57%), fall (87.18%), and spring (87.49%). It is during spring and summer that the 

natural vegetation becomes greener with average NDVI being 0.52 and 0.56, respectively. As 

leaves begin to senesce in fall, we observe a decline in average NDVI to 0.48. A consistently low 

average NDVI of 0.34 is observed during winter seasons because natural vegetation becomes 

dormant.  

Droughts compound the station aridity effect by increasing MDD and reducing RHmax with 

visible impacts on the vegetation as indicated by low NDVI values for areas surrounding the 

stations. The maximum seasonal MDD of 11.92 °C (i.e., 8.95 °C greater than the summer 

average) occurred in summer 2011, which was the driest season in the 20-year study period with 

only 85 mm of rainfall. In this year, the majority of western OK experienced extreme (D3) to 

exceptional (D4) drought. The minimum MDD for summer 2011 was 5.82 °C, which is 2.85 °C 

greater than the 20-year summer average MDD for western OK. In the same season, maximum 

RHmax was 77% and minimum was 57%, both of which are far less than the 20-year average 

RHmax for the summer season. These values indicate elevated levels of station aridity, which is 

also reflected in low NDVI values with maximum NDVI being 0.46 and a minimum of 0.22 in 

summer of 2011. A gradual decline of MDD in summer seasons is observed after 2011 as the 

prolonged drought weakened. Expectedly, an opposite pattern is seen for RHmax and NDVI both 

of which increased after summer 2011.  Conversely, summer 2017 was a relatively wet season for 

western OK with 272 mm of rainfall. We observe maximum MDD of 2.31 °C and a minimum of 

-0.58 °C. Most of the stations (29 out of 34) had MDD < 2 °C. In the same season, we observe 
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maximum RHmax of 96% and a minimum of 82%. Similarly, the maximum NDVI was 0.63 and 

minimum was 0.30. It is noteworthy that relatively large rainfall (276 mm) in spring 2017 helped 

increase soil moisture for later use in the summer season, contributing to lower MDD and larger 

RHmax and NDVI.  



42 
 

 

Fig. 3.3. Seasonal variation of MDD, RHmax, and NDVI in 34 stations located in western OK. 

Visual representation of MDD from 2000 to 2019 across the Mesonet at the spatial scale of 

individual stations (Fig. 3.4) illustrates a relatively darker shade for the western stations, 
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indicating a larger MDD, and generally lighter shade for the eastern stations. The gradient of 

darker and lighter shades is consistent with the variation of the amount of rainfall recorded at the 

stations. The effect of droughts on MDD is clearly visible in darker vertical shades in the summer 

of 2006, 2011, and 2012. Therefore, arid sites such as in western OK require correction of station 

aridity before estimating ETref because Tmin cannot be assumed to reach Tdew (Cai et al., 2007). 

Combined effects of rainfall, occurrence of droughts, land surface conditions, and wind 

characteristics contribute to the emergence of horizontal patterns of dark or light shade based on 

the differences of MDD between stations that receive similar amounts of rainfall. The differences 

between MDD for the western and eastern regions increase during summer and fall seasons. 

Comparable patterns of spatiotemporal variability are observed for RHmax and NDVI (Fig. S4 and 

S5 in SM).   
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Fig. 3.4. Spatiotemporal variation of seasonal MDD in western (W) and eastern (E) stations sorted ascendingly based on rainfall. 
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We evaluated relative dryness of Mesonet stations in western OK based on the relationship 

between mean monthly MDD and P/ETref (Fig. 3.5). P/ETref values closer to and greater than 

unity indicate that the rainfall is equal to the ET demand of the atmosphere and a reference 

condition can be assumed to exist. By contrast, values closer to zero indicate that the rainfall is 

much less than the ET demand, meaning reference does not exist. Negative MDD values were 

excluded because either they represent reference surface condition or cold air temperatures. In 

western OK, P/ETref exceeded 1 in 13% of the months during the 2000-2019 period, of which 

96% had MDD < 2 °C. Thus, the threshold of MDD = 2 °C for the occurrence of reference 

condition is justified. Monthly MDD can reach 13 °C when P/ETref = 0. It decreases as P/ETref 

approaches 1 and for values of P/ETref > 1. Fig. 5 displays a large scatter of points for P/ETref 

close to 0, indicating greater variability in monthly MDD at stations that receive a small amount 

of rainfall in western OK. This relationship is similar to observations from 26 stations across the 

US (Allen, 1996) and from the CLIMWAT dataset from eight different countries whose climate 

conditions ranged from arid to humid (Temesgen et al., 1999). The results indicate that MDD 

decreases with increasing relative wetness (P/ETref) and this phenomenon can be observed in 

different climates globally (Allen, 1996; Temesgen et al., 1999).   
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Fig. 3.5. The variation of mean monthly MDD with P/ETref plot for Mesonet stations located in 

western OK.  

3.3.1. SPATIAL VARIABILITY OF ARIDITY INDICATORS  

The average IMDD (i.e., percent days with MDD > 2°C), IRH (i.e., RHmax < 80%), and INDVI (i.e., 

% time NDVI < 0.4) for all 83 Mesonet stations during the 20-year study period are 30%, 17%, 

and 35%, respectively. This corroborates the general prevalence of station aridity across the 

Mesonet. However, the spatial distribution of aridity indicators is uneven between eastern and 

western zones. Most stations (31 out of 36) that had above average station aridity based on the IRH 

were in the western zone (Fig. 3.6). Similarly, 32 out of 37 stations that had above average aridity 

based on the IMDD were in western OK. The minimum and maximum percentages of the study 

period under aridity effect, respectively, were 8% and 54% for IMDD, 3% and 36% for IRH, and 0% 

and 92% for INDVI. The minimum IRH value (3%) was found at Idabel and Wister stations (3%) in 

far southeastern OK. The maximum values are for Medicine Park (36%), Cheyenne (36%), and 

Kenton (35%) in the southwest and the OK Panhandle. Medicine Park did not have a single day 

in summer 2011 when MDD was below 2 °C. These results are similar to the observations in 



47 
 

Central Arizona where MDD was reported to exceed a threshold of 3 °C more than half (54%) of 

the time during the 1999-2001 period (Jia et al., 2004).  

INDVI shows a similar pattern as the other two indicators. The maximum INDVI is 92% and 90% for 

Kenton and Boise City stations, respectively, both of which are located in the far west OK 

panhandle. The minimum INDVI was 0.22% at Broken Bow and the second smallest INDVI value 

was 0.68% at Cloudy station, both of which are in southeastern OK. The wide ranges of percent 

days with aridity effect (46%, 33% and, 90% for IMDD, IRH and INDVI, respectively) imply that 

large spatial variations exist among Mesonet stations and that the effects of aridity are highly 

dynamic across the state. 

All three indicators show a strong to very strong monotonic correlation with average annual P 

represented by the Spearman correlation coefficients of -0.80, -0.79, and -0.76 for IMDD, IRH, and 

INDVI, respectively. Very strong correlations of 0.83, 0.85, and 0.82 were also observed with 

station elevation. IMDD had a very weak correlation (-0.11) with Tavg. IRH and INDVI had weak 

correlations of -0.21 and -0.20, respectively, with Tavg. Weaker correlations imply that variation 

in average temperature has little effect on station aridity in Oklahoma compared with P and 

elevation. This is most likely due to the small range of 20-year Tavg (12.78 °C – 17.22 °C) in the 

state. Strong correlations with P were expected as it provides water to the natural vegetation to 

actively transpire and has a steep gradient from southeast OK to Panhandle, thereby increasing 

the RHmax and NDVI and decreasing MDD.  
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Fig.  3.6. Spatial variation of IMDD, IRH, and INDVI at Oklahoma Mesonet stations. 

The thresholds of < 80% for the RHmax indicator, > 2 °C for the MDD, and < 0.4 for the NDVI 

were adopted from previous studies (Allen, 1996; Blankenau et al., 2020), which ascertain that 
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these thresholds will generally be exceeded on dry days but not always. For example, Jia et al. 

(2004) frequently observed MDD > 3 °C in summers in a well-irrigated Alfalfa field in reference 

condition. Also, it is possible that one indicator exceeds the threshold while the others do not. 

There are several instances in our dataset where RHmax > 80% and MDD > 2 °C. Therefore, these 

indicators should be used to gather a general sense of station aridity and not as the absolute 

thresholds. Despite these caveats, the results bear important implications for agricultural water 

management by illustrating the conditions that lead to overestimation of ETref in arid/semi-arid 

agricultural areas which can also affect the reliability of ETref forecasts (Vanella et al., 2020).  

The economic benefit of the information provided by the Oklahoma Mesonet from 2006 – 2014 

was estimated to be $183.4 million (Ziolkowska 2018). In addition to real time weather 

information, Mesonet provides essential information through its suite of weather tools such as 

farm monitor, degree-day heat units, first hollow stem advisor, and, irrigation planner, among 

others, which have been developed with the ultimate goal of supporting agricultural management 

decisions. Overestimation of ETref will limit the ability to leverage the investments in weather 

monitoring infrastructure to improve agricultural water conservation in critical times in water-

scarce irrigated areas. Accounting for station aridity effects creates an opportunity to improve the 

accuracy of the Mesonet ETref estimates and the effectiveness of its irrigation planner. This, in 

turn, can contribute to increasing the economic benefit of the weather-monitoring infrastructure in 

Oklahoma in terms of savings in pumping costs, while supporting water conservation to mitigate 

the overdraft of water in areas where irrigation decisions are made based on over-estimated ETref.  

3.4. CONCLUSIONS 

The Oklahoma Mesonet provides useful tools and information such as the daily ETref estimates to 

assist producers in irrigation decision making. However, station aridity effects associated with 

deviation of the surface conditions from reference surface induces a positive bias in the estimates 
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of ETref. Using MDD, RHmax and NDVI as indicators of station aridity, this study shows that the 

phenomenon is prevalent across the 83 Mesonet stations included in this analysis. The Mesonet 

stations located in western 30 counties of Oklahoma, where the majority of the state’s irrigated 

areas are located, had a larger MDD, and a smaller RHmax and NDVI, indicating that they are 

more prone to station aridity effects compared with the rest of OK, especially in drier regions 

during droughts. The resulting overestimation of ETref can limit the ability of the Mesonet to 

provide accurate water requirement information to support irrigation decisions. The stations with 

the highest station aridity are located in Texas, Cimarron, and Caddo counties, which have the 

largest irrigated areas among all Oklahoma counties. A better understanding of the effects of 

station aridity and applying necessary adjustments to correct the positive bias in the ETref 

estimates can help improve the use of weather monitoring infrastructure for better agricultural 

water management. 
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CHAPTER IV 
 

 

IMPROVING THE ESTIMATES OF REFERENCE EVAPOTRANSPIRATION IN THE 

OKLAHOMA MESONET 

 

4.1. INTRODUCTION 

The need for accurate reference evapotranspiration (ETref) estimates has been recognized by 

various stakeholders as it helps in quantifying amounts of water that enters groundwater aquifers 

(Huntington et al., 2016), managing the effects of climate change (Wilhite, 2000), basin water 

balance, irrigation systems design, improvements in crop yields and water use efficiency. With 

the expected impacts of station aridity on the quality of ETref estimates from OK Mesonet stations 

(see Chapter III), it is imperative to quantify potential inaccuracies and explore different methods 

to improve the accuracy of ETref estimates. 

Penman Monteith (PM) method requires an ensemble of weather variables including solar 

radiation (Rs), wind speed at 2m height (W), relative humidity (RH) (or actual vapor pressure ea), 

and air temperature (T). The main challenge in estimating ETref using the PM method is that all 

these required weather variables are not available at many weather stations (Trajkovic & 

Kolakovic, 2009). Also, the quality of such weather variables may be questionable. For example 

– reliability of solar radiation (Llasat & Snyder, 1998), wind speed at 2m height (Jensen et al., 

1997), and relative humidity (Allen, 1996) data is questioned in the past. The Oklahoma Mesonet, 

a world class network of weather stations, provides measurement of the required variables for the 
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PM method because of its high standards of Quality Assessment and Quality control (QAQC) 

process (Fiebrich et al., 2010; Shafer et al., 2000). It uses the standardized reference 

evapotranspiration (ETref) (ASCE, 2005) concept to estimate ET. Despite its quality assured data 

– Mesonet also suffers from station aridity because most of the stations do not have reference 

conditions inside the station boundary and in the surroundings. Station aridity occurs due to the 

lack of available water for the vegetation to be able to transpire. It directly affects T, RH, and W 

measurements. ASCE standardized PM method stresses on the importance of collecting weather 

data in well-watered agricultural settings so that the T and RH measurements are reflective of 

reference conditions. 

In weather monitoring networks, T and RH sensors are installed at 1.5 to 3 m height above the 

ground for agricultural weather stations (Yoder et al., 2000) which sample the airstream from 

upwind of the stations. T and RH are most impacted by the ground surface conditions upwind of 

the stations. Ground surface conditions effect the energy partitioning and upwind airstream 

carries partitioned energy, either as latent heat flux (λ or ET) or sensible heat (H) towards the 

sensor. Allen (2006) called these upwind airstreams as the “artifacts” of surface energy 

exchanges. Studies have been carried out which make use of flux footprint models to assess the 

conditioning of T and RH measurements (Allen, 2006), impact of weather station siting (Kljun et 

al., 2004; Leclerc et al., 1997; Schuepp et al., 1990), and gauge the accuracy of upwind fetch 

(Gash, 1986; Schmid, 2002).  

This chapter advances understanding of station aridity effects on ETref estimates at weather 

monitoring stations, offering insights to improve the ETref estimates. Our objectives are two-fold: 

(1) assess the implications of station aridity due to non-reference surface conditions for 

overestimation of ETref in agricultural areas, and (2) evaluate the performance of available 

correction methods to improve the ETref estimates. We present an in-depth analysis of station 

aridity at selected weather stations in the Oklahoma Mesonet based on the presence of reference 
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surface conditions or lack thereof during the period of peak crop growth. We examine the 

performance of four widely applied ETref correction methods by quantifying the difference in 

ETref estimates, accounting for surface conditions, irrigation applications in the surrounding 

environment, and wet and dry cycles. The paper contributes to weather-informed irrigation 

management by providing evidence about the need for and suitability of the available correction 

methods to improve ETref data from the Oklahoma Mesonet and other meso-scale weather 

monitoring networks that support irrigation decisions. 

4.2. MATERIALS AND METHODS 

4.2.1 DATASET 

We use daily Mesonet dataset from 2000 – 2021. Hourly wind speed and direction (2 m) datasets 

were used to identify the primary wind directions for summer and fall seasons at the Mesonet 

stations. The variables include Tmax, Tmin, Tdew, and Wavg, and Wdir. Mesonet stations have a wide 

heterogeneity in the vegetative conditions in their surroundings which influence T and RH 

measurements (Fig 4.1). These stations are sited adhering to physical representativeness 

guidelines which states that a station should be representative of as large of area as possible. 

Therefore, the stations are located away from forests, lakes, and irrigated areas. Exception to this 

is the OSU/OU agricultural research stations such as Fort Cobb (FTCB) and Altus (ALTU) in 

southwestern OK. These stations too do not have standardized reference surface and are not 

irrigated but are located in the vicinity of agricultural areas. A station can be located over a 

surface with low vegetation but downwind of a vegetated field so that the sampled airstream from 

upwind direction is conditioned to reflect a reference environment (Jensen & Allen, 2016). 

Therefore, T and RH measurements and hence the estimated ETref at these stations should be 

closer to reference conditions when the upwind direction is from the vegetated fields. Example of 

Mesonet station siting is shown in Fig 1. Research stations such as Fort Cobb have agricultural 
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areas nearby. Hobart is located on an airstrip to provide information of the ambient weather at the 

airport. Cherokee is located in the outskirts of a town to provide ambient weather and forecast 

information relevant to the town. 

 

Figure 4.1. Aerial imagery with wind rose for summer and fall seasons for 6 Mesonet stations. 

Images are 500 m on each side with concentric circles of radius 100m, 200 m, and 500m (inside 

out) respectively. Imagery created from Google Earth Pro. 

Selection criteria to compare and adjust ETref – 

We select the stations which resemble reference conditions and compare their estimated ETref 

with nearby stations with similar climatic conditions. The two sets of stations to compare are – 

Set 1 (Altus, Tipton, Mangum) and Set 2 (Fort Cobb, Apache, Hinton) (Fig 4.2). To demonstrate 

and quantify the effects of station aridity estimated ETref from the Mesonet – it must be 

established that the stations are similar except for the land surface conditions around them. The 

factors used to ascertain the similarity were location, elevation, and the aridity indicators i.e., 

MDD and RHmax. We investigated two sets of stations which are in the same southwest climate 
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division of Oklahoma (Fig 4.2). The stations in each of these sets have similar elevation – Altus 

(416 m), Tipton (387 m), Mangum (460 m) and Fort Cobb (422 m), Hinton (493 m), Apache (440 

m). The stations will resemble reference conditions during the periods when the crops are at 

effective full cover and the sensors at these stations receive ET fluxes when the upwind direction 

is from these nearby agricultural fields.  

 

Figure 4.2. Location of Oklahoma Mesonet stations used in this study. 

Normalized difference vegetation index (NDVI) was used to examine the vegetation in and 

around the Mesonet station because it has a strong correlation with green biomass and serves as 

an indicator of crop growth and monitoring (Esquerdo et al., 2011; Ji-Hua & Bing-Fang, 2008; 

Rangoonwala et al., 1993; Yang et al., 2011; Zhang et al., 2014). Reference condition periods 

were selected based on the NDVI of the surrounding fields taking into consideration the primary 

wind direction. NDVI is a necessary but not sufficient condition for reference conditions to exist 

(Blankenau et al., 2020). But still it was used a criterion to identify reference conditions around 

the stations. It can be calculated as – 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

Eq 1 
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where, NIR = reflectance in the near-infrared band and RED = reflectance in the visible red band. 

We used Landsat and Sentinal imagery and derive the NDVI images using EOS Landviewer to 

identify those periods in which crops in the nearby agricultural fields are in the effective full 

cover growth stage. It is assumed that when NDVI ≥ 0.7 – the crops are at effective full cover. 

Using the daily dataset from the pair of reference and non-reference Mesonet stations we compare 

the ETref for the selected periods to assess the effects of station aridity on the estimates of ETref. In 

this study we used ETref and ETo interchangeably as both represent the same thing. Because of the 

availability of high-resolution images – the imagery in and after 2015 was selected to compare 

the periods. It is important to highlight the fact that even the irrigated stations do not have 

agriculture surrounding them in the years when there is a shortage of water. These stations are 

actively managed because they are used for agricultural research. 

Altus station in Set 1 is reference during the selected periods, Tipton is non reference as it has 

bare soil in the prominent wind direction (south), and Mangum is located on natural vegetation in 

rangeland. In Set 2 Fort Cobb has irrigated agricultural strip in the prominent wind direction i.e., 

south while Apache and Hinton are located on natural vegetation in rangeland whose 

surroundings are not managed. The periods chosen for the comparison using NDVI ≥ 0.7 are in 

Table 1. Fig 4.3 provides an example of the NDVI in the station surroundings in the selected 

periods. 

Table 4.1. Start and End dates for effective full cover of crops in the station surroundings 

Year Start Altus End Altus Start Fort Cobb End Fort Cobb 

2015 ☓ ☓ ☓ ☓ 

2016 06/08 08/10 ☓ ☓ 

2017 16/08 11/10 ☓ ☓ 

2018 27/08 20/09 04/08 23/08 

2019 16/08 25/09 28/08 08/09 

2020 31/07 25/08 ☓ ☓ 

2021 28/07 06/09 28/07 06/09 
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Figure 4.3. NDVI of the two sets of Mesonet stations in the selected periods. Stations are located 

at the center of circles which are 500 m in radius. Imagery obtained from EOS Landviewer. 

To demonstrate that the selected stations are similar except for the land surface conditions around 

them we selected the periods during which the land surface conditions are functionally similar so 

that the estimated ETref from the three stations in a set is close to one another. Rainy days are the 

periods during which crops, natural vegetation, and bare soil receive enough water so that both 

vegetation and top layer of bare soil can transpire and evaporate water respectively from the 

surface. During such periods the stations will resemble reference conditions. We selected days 

with > 2.5 mm rainfall during the selected periods and compared their MDD and RHmax. MDD 

values < 2 C and RHmax values > 80% during growing season period when it is warmer are good 

indicators that reference conditions existed. 

4.2.2. METHODS TO IMPROVE THE ESTIMATES OF ETref 

The various methods to improve the estimates of ETref in weather stations which do not have 

reference conditions around them mainly based on adjusting temperature and humidity data. The 
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adjustments are done so that the data obtained from non-reference sites resemble reference 

conditions. FAO 56 and ASCE proposed methods to adjust daily or monthly data are – 

1. Estimation of Tdew using Tmin (FAO-56, Method 1) - It is done by – 

𝑇𝑑𝑒𝑤 = 𝑇𝑚𝑖𝑛 − 𝐾0 Eq 2 

where, 𝐾0 = 0 C is recommended for humid to sub humid environments. 

2. Estimation of Tdew using Tmin (FAO-56 Method 2) - It is done by – 

𝑇𝑑𝑒𝑤 = 𝑇𝑚𝑖𝑛 − 𝐾0 Eq 3 

where, 𝐾0 = 2 C is recommended for arid to semi-arid environments. 

3. Adjusting Tmax, Tmin, and Tdew to reflect reference environments (FAO-56, Method 3) – 

When 𝐾0 is based on constant, according to FAO-56 (Allen et al., 1998) temperatures can be 

corrected for each month or day as 

(𝑇𝑚𝑎𝑥)𝑐𝑜𝑟 = (𝑇𝑚𝑎𝑥)𝑜𝑏𝑠 − (
∆𝑇 − 𝐾0

2
) 

(𝑇𝑚𝑖𝑛)𝑐𝑜𝑟 = (𝑇𝑚𝑖𝑛)𝑜𝑏𝑠 − (
∆𝑇 − 𝐾0

2
) 

(𝑇𝑑𝑒𝑤)𝑐𝑜𝑟 = (𝑇𝑑𝑒𝑤)𝑜𝑏𝑠 − (
∆𝑇 − 𝐾0

2
) 

Eq 4 

Eq 5 

Eq 6 

for ∆𝑇 > 𝐾0, where cor refers to corrected and obs to observed values. 𝐾0 is a constant equal to 2° 

C when non reference station is not compared to a reference station. It must be ensured that 

(𝑇𝑚𝑖𝑛)𝑐𝑜𝑟  > (𝑇𝑑𝑒𝑤)𝑐𝑜𝑟. Estimate the ETref using the corrected values of temperatures. 

4. NDVI based method to adjust Tmax and Tmin (Method 4) – We used Sentinel and Landsat 

imagery from 2016 to 2021 to calculate NDVI around each selected station. Following Blankenau 

et al. (2020), average NDVI for a station was computed as the average NDVI over areas within 500 

m and 2 km radii of each station to account for the influence of local and regional scale aridity on 

the fluxes received by the sensor. 
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Aridity rating was computed for each selected period using the following equations – 

a. If NDVI < 0.15: Aridity Rating (AR) = 1 

b. If 0.15 < NDVI < 0.70: 

𝐴𝑅 =  
0.70 − 𝑁𝐷𝑉𝐼

0.70 − 0.15
 

Eq 7 

c.  If NDVI ≥ 0.70: AR = 0 

Values of Tmax and Tmin were reduced by the amount = Aridity Rating × Values of temperature in 

table below. 

Table 4.2. Mean monthly departure of air temperatures between irrigated and non-irrigated site 

(Allen 1982) 

Month Mar Apr May Jun Jul Aug Sep Oct 

Aridity 

Adjustment (°C) 

0 1 1.5 2 3.5 4.5 3 0 

 

ETo was computed using the adjusted values of Tmax and Tmin using the PM equation. This method 

of adjusting ETo had originated from Allen (1982) in which they used average monthly departures 

of T between arid and irrigated sites in southern Idaho. Information regarding sites was obtained 

through questionnaire and telephonic conversations. An aridity rating was then given to each 

station based on the information received about site conditions. In this study we instead used 

NDVI to calculate the aridity rating. We apply the corrections in non reference stations on the 

days when MDD > 2 C. 

4.3. RESULTS AND DISCUSSION 

4.3.1. Similarity between stations 

We found 22 days in set 1 and 5 days in set 2 when all the three stations received rainfall > 2.5 mm. 

We observed an average MDD and RHmax of -1.04 C and 99 %, -0.71 C and 98%, and -1.28 C 

and 99%, in Altus, Tipton, and Mangum stations, respectively. The average values of MDD and 
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RHmax for set 2 stations were -0.60 C and 96%, -0.61 C and 97%, and -0.53 C and 97%, 

respectively for Fort Cobb, Hinton, and Apache. During these rainy days the average ETo difference 

between Tipton and Altus was 0.41 mm and between Apache and Altus was 0.09 mm. Similarly, 

the average differences in ETo between Apache and Fort Cobb was -0.07 mm, and between Hinton 

and Fort Cobb was 0.39 mm. The observed smaller values of MDD, greater RHmax, and smaller 

ETo differences between the stations during rainy days suggest that the three stations in each of the 

sets were similar to each other. The similarity can be attributed to the similar behavior of the land 

surface conditions for the purpose of estimation of ETo during rain events when station aridity 

effects are negligible. By contrast, the different land surface conditions in and around the stations 

cause varying levels of station aridity during dry days, resulting in differences in the ETo (see 

section 4.3.2).  

4.3.2. Comparison of Mesonet estimated ETo 

On comparing the ETo estimates (Fig 3) we found that Altus ETo was smaller than ETo at Tipton 

station 69.68%  of the time during the analysis period. Altus ETo was also smaller than Mangum 

station 23.23% of the time. Fort Cobb had a smaller ETo than Apache station 50.68% of time, and 

Hinton station 78.20 % of the time. The mean difference was 0.59 mm, -0.25 mm, 0.16 mm, and 

0.50 mm between Tipton-Altus, Mangum-Altus, Apache-Fort Cobb, and Hinton-Fort Cobb, 

respectively. The smaller ETo of Altus than Tipton is expected. Unlike Tipton the land south of 

Altus has agricultural crops during the selected periods. Therefore, the sensors mounted at Altus 

station should receive latent heat fluxes from transpiring crops while sensors at Tipton station 

receive sensible heat from the bare patch of land. Mangum had a smaller ETo most of the time 

than Altus which is likely due to the presence of natural vegetation in the surroundings which 

means that there would be enough moisture present in the air to bring observations of T and RH 

at Mangum closer to reference conditions. Therefore, although irrigated areas do not exist around 
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Mangum station, the location of this station over natural vegetation that are not actively altered by 

human activity allows its use as a benchmark for ETo estimation.  

Greater differences between the ETo of Altus and Tipton were observed on dry days when there 

was no rainfall. For example, on 27/08/2018 and 28/08/2018 (Fig. 4.4.) the differences in the 

estimated ETo were 3.04 mm between Altus and Tipton. Similarly, the difference between Fort 

Cobb and Apache on 4/08/2018 was 2.24 mm. The sharp drops in the ETo were due to the rain 

clouds which reduced the incoming solar radiation and possibly because of the drops in 

temperature. ETo of all the three stations during the rainfall days in both sets was almost equal 

because of equilibrium conditions. After a rainfall event the bare patch of soil becomes wet and 

can provide water for evaporation. During these periods the lower layer of air becomes saturated 

with water. Therefore, during these periods the ETo estimated at a station located on patch of bare 

soil will almost be equal to that obtained from reference station given all other variables are 

equal. As the cloud cover decreases and the sky starts to clear up the ETo also increases. During 

these periods bare soil starts to dry up and we see increasing difference in the ETo of reference 

and non-reference stations. An example of such behavior is the period after 15/09/2018 upto 

19/09/2018 where we see gradually increasing differences in the estimated ETo of Altus and 

Tipton. Similarly, in the period between 30/08/2019 and 8/09/2019 we can observe increasing 

differences between Fort Cobb, Apache, and Hinton.
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Fig. 4.4. Comparison of estimated ETo of nearby Mesonet stations for selected periods
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4.3.3. COMPARING MDD AMONG STATIONS 

MDD serves as an indicator of the magnitude of station aridity (Table 4.3). Daily average MDD 

for the seasons (summer, fall and growing) is greater than annual (2000-2021) averages for all the 

six stations. This is because annual average includes winter seasons during which the 

temperatures are very low, which brings the overall average lower than seasonal averages. During 

summer & fall and growing season we observe MDD > 2 C in Altus and Ford Cobb stations 

which have been selected as reference stations. The reason behind this is that these two stations 

are agricultural research stations, and the managers grow crops in their vicinity only when there is 

sufficient water available to support the growth of crops. Therefore, during drought years when 

water is limited, they do not grow crops and the land in their south remains bare which leads to 

greater values of MDD. It is to be noted that Altus always had average MDD greater than 

Mangum. A possible reason for such behavior could be that the mangers at Altus consistently 

trim the grass (natural vegetation) inside the station boundary therefore during low and calm wind 

conditions the sensors receive the sensible heat flux originating just below the tower impacting 

the daily MDD values. 

Table 4.3. Average MDD of the paired stations for different time periods 

Period/Station Altus Tipton Mangum Fort Cobb Apache Hinton 

2000 - 2021 1.92 1.53 0.51 2.63 1.10 1.16 

Summer & Fall 2.43 2.56 1.03 4.41 1.56 1.64 

Growing Season 2.39 2.44 1.07 3.95 1.41 1.50 

2016 SP -0.47 1.19 -0.87 X X X 

2017 SP 0.24 0.66 -0.88 X X X 

2018 SP 0.72 1.74 -0.15 0.08 0.80 0.62 

2019 SP 1.42 2.43 0.39 -0.41 0.51 0.82 

2020 SP 0.90 3.65 0.70 X X X 

2021 SP 1.92 1.95 -0.09 0.12 0.01 1.37 
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4.3.4. ADJUSTING THE ETo 

Adjustments were applied on the temperatures of Tipton, Mangum, Apache and Hinton, using the 

four methods only during the days in which MDD > 2 C in the selected periods (Table 4.4). The 

largest reduction in the ETo between Tipton and Altus was observed after the application of 

Method 4 which resulted in average ETo difference in the whole selected period between the 

stations to be below zero. After Method 4 (M4), Method 1 (M1) had the best performance in 

terms of the average ETo and maximum ETo difference followed by Method 2 (M2) and Method 

3 (M3). Between Mangum and Altus stations there were negative average ETo difference because 

during most of the selected period Mangum had equal or smaller ETo than Altus. This 

corroborates that stations located over natural vegetation can also resemble reference condition 

and can be used to estimate ETo with good accuracy. Since the average ETo difference of 

Mangum is less than that of Altus and also the MDD of Mangum is less than that of Altus, the 

ETo does not require to be corrected for station aridity. However, further studies should be carried 

out during drought years to observe and analyze the effects of station aridity on estimated ETo 

and MDD of Mangum since it is located on natural vegetation which depends on water supplied 

by rainfall.   

The performance of M4 was best in terms of reducing the average ETo difference between 

Apache and Fort Cobb followed by M1, M2, and M3 respectively. Similarly for Hinton and Fort 

Cobb M4 performed the best followed by M2, M1, and M3. M3 was the most conservative in 

adjusting the temperatures while the NDVI based on M4 reduced Tmax and Tmax more than any 

other method resulting in the largest decrease in the ETo values. Negative minimum ETo 

difference between the stations indicate that there were periods when ETo of non-reference station 

were less than that of reference station. These were the periods of rainfall when the stations did 

not experience the aridity effects. This phenomenon can be observed in both sets of stations. 
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Table 4.4. Differences in adjusted ETo between non reference and reference stations 

Adjustment 
Descriptive 

Statistics 

Set 1 ETo (mm) Set 2 ETo (mm) 

Tipton – 

Altus 

Mangum – 

Altus 

Apache - Fort 

Cobb 

Hinton - Fort 

Cobb 

Before 

adjustment 

Maximum 3.05 0.76 2.24 1.64 

Minimum -0.76 -1.52 -0.98 -0.61 

Average 0.59 -0.24 0.16 0.50 

Method 1 (M1) 

Maximum 2.54 0.76 1.06 1.27 

Minimum -1.47 -1.83 -1.10 -1.32 

Average 0.10 -0.28 -0.01 0.28 

Method 2 (M2) 

Maximum 2.54 0.76 1.34 1.27 

Minimum -1.01 -1.52 -1.10 -0.76 

Average 0.40 -0.26 0.04 0.36 

Method 3 (M3) 

Maximum 2.54 0.76 1.36 1.36 

Minimum -0.82 -1.52 -0.93 -0.76 

Average 0.49 -0.25 0.15 0.39 

Method 4 (M4) 

Maximum 2.54 0.76 1.38 1.37 

Minimum -1.25 -4.31 -1.10 -0.76 

Average -0.32 -0.59 0.02 0.36 

 

In general, all of these methods work on adjusting the air and dew point temperatures in 

proportion to the station aridity. In M1, M2, and M3 the station aridity is based on the MDD at 

the stations. In M1, Tdew is replaced by Tmin without using any K0 while in M2 Tdew is replaced by 

Tmin – Ko (= 2 C) and hence the estimated Tdew in M1 is greater than Tdew estimated in M2. 

Therefore, the ETo estimated using M1 is lesser than that in M2. In M3, we reduce Tmax, Tmin, and 

Tdew only by a small amount as we subtract K0 (= 2 C) from the MDD and reduce it by half. So 

essentially, we reduced both Tmax and Tmin by equal amounts which reduces the estimated ETo 

while we also reduced Tdew which increases the estimated ETo. Therefore, the overall reduction in 

the ETo is less than the reduction in the estimated ETo after the application of M1 and M2. This is 

why we observe least average differences in ETo of reference and on reference stations after the 

application of M1 followed by M2 and M3. Since the adjusted Tdew using Tmin of a non-reference 

station became closest to the Tdew of reference station using M1 but never went below it – using 

the results of this study it is recommended to use method M1 for stations in southwestern OK. 
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Using the first three methods, in no case we observed the ETo of the non-reference stations to be 

reduced below the ETo of reference stations. In M4 the air temperature adjustments are based on 

the station aridity rating developed by using NDVI of the station surroundings. M4 reduced both 

Tmax and Tmin such that in one case the average ETo of non-reference station (in the case of 

Tipton) became less than the average ETo of reference stations (Altus). This is because the AR 

obtained by NDVI is multiplied the monthly air temperature departure values observed in 

southern Idaho (Allen 1982) which may be more than those observed between a reference station 

and a non-reference station in southwest OK leading to greater reductions in air temperatures than 

required. It is advised to develop regional mean monthly air temperature departure values before 

applying the NDVI based M4 method. 

4.4. CONCLUSIONS 

This study compared the PM estimated ETo for two sets of stations which are – Set 1: Altus, 

Tipton, and Hinton and Set 2: Fort Cobb, Apache, and Hinton. Both of these sets of stations are 

located in the southwest climate division of Oklahoma. It was observed that Tipton had a greater 

ETo than Altus which was greater than 2 mm/day on some days. The possible reason is because 

the land south of Tipton had no vegetation at all during the selected period. ETo of Mangum 

generally was below than that of Altus because of the presence of natural vegetation inside the 

station boundary and in the surroundings. Apache and Fort Cobb had little differences in the 

estimated ETo which averaged at 0.16 mm during the selected period. In both sets of stations, 

estimated ETo between reference and non-reference stations become closer during the rainy 

periods and start to increase as the water becomes limited for the natural vegetation. In this 

research we observed that the station which had undisturbed natural vegetation surrounding it has 

a similar response as the station which had agricultural area in the vicinity in its primary wind 

direction. A comparison of weather datasets and ETo of the selected pair of stations should be 
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made with actual reference stations in the area to fully understand the differences in the climatic 

observations made by the sensors as it pertains to land surface conditions. 

This study also analyzed the performance of different methods to adjust air temperatures to reflect 

reference environments in stations which are subjected to station aridity. NDVI based method 

reduced the greatest amount from air temperatures and hence the ETo. Method 1 performed better 

than others in reducing the ETo because 𝐾0is kept at 0 C, which should be the case for semi 

humid climates which exist in southwest climate division of Oklahoma. The methods can increase 

the ETo on wet days because on such days Tmin is likely to be less than Tdew and if we replace Tdew 

by Tmin it will bring Tdew down and will increase the ETo. This why we applied the corrections on 

the days in which MDD > 2 C. Therefore, caution should be exercised while using the 

adjustment procedures on days when MDD thresholds are not crossed in the Oklahoma Mesonet.
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CHAPTER V 
 

 

SUMMARY AND CONCLUSION 

 

5.1. SUMMARY 

Agriculture in Oklahoma is heavily dependent on natural surface and groundwater resources 

especially in the western climate divisions. Historical trends in air temperature and precipitation 

show increasing trends consistent with the existing literature in the Great Plains region of the US. 

ETo show decreasing trends in summer season which could possibly be because of the 

evaporative cooling due to increased agriculture in the region. We observed drought patterns 

similar to the 1950’s in the past decade (2010’s).  

These trends are likely to increase the station aridity in the Oklahoma Mesonet stations which are 

not surrounded by irrigated agriculture. Droughts will limit the water supply to natural vegetation 

which will cause overestimation of ETo. We observed greater values of station aridity during such 

drought periods with the help of RHmax, MDD, and NDVI indicators. For example, RHmax 

frequently dropped below 80%, MDD went as much as 12 C, and NDVI dropped below 0.4 in 

most of the western Mesonet stations during the summer of 2011.  

During the dry periods we observed ETo differences of more than 2 mm/day between the Mesonet 

stations which had irrigated agriculture surrounding them and which had bare soil nearby in the 

upwind direction. The stations which had natural vegetation inside and, in the surroundings, can 
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be used to estimate ETo using the PM method. However, the performance of such stations 

remains to be seen during the droughts. The ETo of such non reference stations was adjusted 

using the recommended and new NDVI based methods. All the methods reduced the estimated 

ETo by reducing the observed air temperatures at the stations. However, it is important to exercise 

caution while applying these adjustment methods on the days in which it rains or MDD does not 

exceed the thresholds. 

5.2. CONCLUSIONS AND FUTURE WORK 

The observed trends in chapter 2 indicate that increasing temperature trends are likely going to 

increase evaporation losses from surface water resources and with declining groundwater levels 

such as in Ogalalla aquifer in panhandle – water will be the limiting factor in crop productivity 

across the state. Agriculture will be vulnerable to droughts with recurring drought patterns in the 

state. Examples include drying of lake Altus and Fort Cobb reservoir during the summer of 2011. 

Increases in temperatures and rainfall may also affect water supply, hydroelectricity, irrigation, 

and ranching. Increasing precipitation trends may cause flash flooding, which may cause erosion 

and may result in nutrient and crop loss and damage to property, or even loss of life. The research 

will help guide water managers in adapting to sustain agricultural water availability and 

production. 

In the Oklahoma Mesonet station aridity affects the estimation of ETref and hence the various 

tools it provides to help farmers plan irrigation scheduling. The indicators (IRH, IMDD, and INDVI) 

used in this study demonstrate that western Oklahoma which has most of the irrigated agriculture 

in the state is more susceptible to station aridity. The stations in the western climate divisions do 

not have the required surface conditions to accurately estimate ETref. The indicators were highly 

correlated with precipitation and elevation. The stations with largest station aridity such as 

Kenton, Boise city, Cheyenne, and Medicine Park which are located in counties where agriculture 
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highly depends on natural water resources as it is limited by water supplied through rainfall. The 

research helps us to analyze surface aridity using the indicators which can be used to develop the 

Ko values for individual stations to access its magnitude and amount of correction required in air 

and dew point temperatures so that the dataset from these stations can resemble reference 

conditions. This provides us with an opportunity to improve the estimation of ETo in western OK.  

In southwestern OK we compared Mesonet estimated ETo at stations located over reference, non-

reference, and natural vegetation to observe over 2mm/day overestimation. We adjusted these 

overestimations with the help of four methods to improve the estimations. Replacing Tdew with 

Tmin seemed to work better than the other methods. NDVI based method can be improved by 

developing Ko values for the individual stations. The results of this study can help improve the 

use of weather monitoring infrastructure for better agricultural water management. 

Future research can address the question of historical climatic trends on smaller spatial scales 

such as daily or hourly to provide insights into the trends in extreme temperature, rainfall, and 

ETref. Understanding of the effects of station aridity on estimated ETref and MDD at stations 

located in areas surrounded by natural vegetation can be advanced by further studies carried out 

during drought years to determine the effects of reduced rainfall. The NDVI-based method for 

correcting ETref requires more scrutiny and development of regional mean monthly air 

temperature departure values to quantify the required adjustments.  
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APPENDICES 
 

 

This Supplementary Material file includes 5 figures.  

 

 

Fig. S1- Measured (Rs) and adjusted (Rs,adj) solar radiation against the theoretical clear sky solar 

radiation (Rso) for Stillwater (STIL) station.
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Fig. S2. Daily values of RHmax at Stillwater Mesonet station (2015 -2019) showing proper 

sensor calibration and measurements 
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Fig.  S3. Flowchart of the quality assurance and quality control (QAQC) steps implemented in the 

study in addition to the Mesonet’s standard QAQC procedure. 
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Fig. S4. Spatiotemporal variation of seasonal RHmax in western (W) and eastern (E) stations 

sorted ascendingly based on rainfall.  
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Fig S5. Spatiotemporal variation of seasonal NDVI in western (W) and eastern (E) stations sorted 

ascendingly based on rainfall.
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