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research were to: (1) evaluate the performance of a multi-sensor capacitance probe in 

determining soil water content and field capacity, (2) study the effects of soil data 

accuracy on irrigation scheduling using a soil water balance model for different crops and 
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CHAPTER I 
 

 

INTRODUCTION 

 

1.1. Background 

The world population is growing rapidly and is expected to reach over 9.7 billion by 2050 (United 

Nations, 2019). This will increase the food and water demand dramatically, making it critical to 

improve crop production using limited water resources. Keeping up with the growing demands and 

maintaining the economic and environmental sustainability of crop production requires advancements 

in irrigation management technologies. Development and application of better irrigation management 

technologies in agriculture can play a vital role in conserving water, securing crop production, and 

reducing the adverse impact on groundwater quality (Chen et al., 2020; Jabro et al., 2018). Thus, 

finding tools and methods to manage water more efficiently is critical to the future success of 

irrigated agriculture in the U.S. and globally (Howell, 2001; Pereira, 2017; Taghvaeian et al., 2020). 

Several scientific methods have been developed to improve irrigation management decisions (i.e., 

irrigation scheduling) based on soil water status (SWS), plant characteristics, and/or crop modeling 

(Andales et al., 2014; Taghvaeian, 2020). Irrigation scheduling based on SWS is a widely accepted 

approach, which can be divided into two categories: SWS monitoring and soil water balance 

modeling (Taghvaeian et al., 2020). Monitoring SWS using accurate, reliable, and properly installed 

and maintained soil water sensors can help with developing effective irrigation scheduling, reducing 

over- and under-irrigations, decreasing energy requirements, and improving crop yield (Belayneh et
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al., 2013; Lichtenberg et al., 2013; McCann and Starr, 2007). Despite these potential advantages, the 

adoption of soil water sensors is still limited in irrigation management (Campbell et al., 2009; 

Lichtenberg et al., 2013). About 12% of farms across the U.S. are currently using soil water sensors 

for irrigation scheduling (USDA-NASS, 2019), showing a small increase compared to the 10% in 

2013 (USDA-NASS, 2014).  

Several factors could be responsible for the limited adoption of these sensors. One factor is the 

complexity of selecting sensors that could perform reliably under variable field conditions. This is 

because sensors with different technologies perform differently under variable soil and water 

conditions. For instance, many studies have shown that the errors in sensor readings are impacted by 

clay content (e.g., Haberland et al., 2014; Parvin and Degré 2016; RoTimi Ojo et al., 2015; Tedeschi 

et al., 2014) and salinity (e.g., Baumhardt et al., 2000; Thompson et al., 2007). Most of these studies 

have calibrated sensors and suggested site or soil-specific calibrations for more accurate estimation of 

SWS. This could be a challenge for growers because of time commitment, labor requirements, and 

lack of financial and technical resources. In this case, a practical solution is to conduct sensor 

performance studies under variable field conditions and using factory calibration to recommend the 

most suitable sensor for a range of field conditions. However, there has been a lack of studies that test 

soil water sensors under variable irrigated fields. 

Although soil water sensors can provide accurate estimation of SWS, they may not be the desired 

choice of some growers due to the complexity of choosing appropriate sensor (discussed above), cost 

of sensors, and time commitment involved in installing, maintaining, and removing them. In these 

cases, the other SWS-based approach to irrigation scheduling, namely soil water balance modeling, 

can be used to simulate SWS (Simunek et al., 2005). Soil water balance models can be as simple as a 

bucket-type water balance model or as advanced as models like HYDRUS that estimate SWS at 

various soil depths. A challenge in using these models is that they require several input data for 

reliable estimation of SWS and other water fluxes. A key group of input data is related to soil 
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conditions (texture, bulk density, hydraulic properties). Advanced models, which are more powerful 

tools (Negm et al., 2017) and can describe most of the physical processes in the soil-plant-atmosphere 

system (Panigrahi and Panda, 2003), require more input data, such as root water uptake distribution 

(RWUD).  

Improper representation of model inputs could largely impact the outputs of the model. The 

importance of input data accuracy has been recognized for a long time. Miyamoto (1984), for 

example, developed a computer model for scheduling pecan irrigation and argued that reliability of 

model outputs depends on the quality of model inputs and assumptions. In the case of soil 

characteristics, input data for applications in the U.S. are typically obtained by one of two methods: 

in-situ soil sampling (ISS) and USDA's Web Soil Survey (WSS) online database. The soil data from 

WSS are free-of-charge and easy to access manually by the user or automatically by the model but are 

less accurate than ISS. Krounbi et al. (2011) mentioned that SWS at different layers is highly 

dependent on soil properties including soil texture. According to Zylman et al. (2005), soil texture 

showed weak relationships between WSS and ISS. Thus, less accurate soil data could produce larger 

errors in estimating SWS and that could eventually impact irrigation scheduling decisions. 

Previously, many studies have simulated SWS and irrigation decisions using soil data from WSS 

(e.g., Awal and Fares, 2019; Liang et al., 2016; Resop et al., 2011) or ISS (e.g., Chen et al., 2014; 

Datta et al., 2021; Wang et al., 2016). However, there has been a lack of studies that compared the 

two sources of data and investigated their effects on model outputs. 

In the case of RWUD, Ojha et al. (2009) highlighted that improper representation of this parameter 

could be one of the challenges for accurate simulation of SWS. RWUD can be assumed constant or 

linearly distributed in the crop root zone or can be obtained from field measurements that require 

equipment, labor, and time. Most previous studies have used constant or linear RWUD (e.g., Iqbal et 

al., 2020; Jiang et al., 2010; Li et al., 2017; Tafteh and Sepaskhah, 2012). Li et al. (1999) compared 

constant and linear RWUDs with the RWUD based on field measurements and found that the field-
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based approach provided better estimates of SWS. Besides this study, there have been only a few 

other studies that compared different RWUDs and their impacts on simulating SWS (e.g., Li et al., 

2001a; Li et al., 2001b; Prasad, 1988). To the best of our knowledge, none of them investigated the 

eventual effects on SWS-based irrigation parameters.  

Due to ease of applicability at the field scale level, soil water balance models have been used for 

irrigation recommendations by web-based tools (Andales et al., 2014; Chauhan et al., 2013; 

Sassenrath et al., 2013) and mobile applications (e.g., Bartlett et al. 2015; Migliaccio et al., 2016; 

Peters et al., 2013; Vellidis et al., 2016). Use of inaccurate input data in these models could produce 

errors in recommended irrigation amounts and frequencies. There is a critical need to investigate the 

possible impacts on SWS simulations and irrigation recommendations due to variability in major data 

sources under variable field and climatic conditions.  

1.2. Objectives 

The main goal of this research was to evaluate the performance of irrigation scheduling approaches 

based on monitoring and modeling SWS to improve irrigation management decisions. The specific 

objectives of this research were: 

1. To evaluate the performance of a multi-sensor capacitance probe in determining soil water content 

and field capacity, 

2. To study the effects of soil data accuracy on irrigation scheduling using a soil water balance model 

for different crops and climatic conditions across western Oklahoma, and 

3. To investigate the impact of variable soil data and RWUDs on multi-layer SWS and irrigation 

parameters simulated by a vadose-zone water transport model. 
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CHAPTER II 
 

 

PERFORMANCE OF A MULTI-SENSOR CAPACITANCE PROBE IN ESTIMATING SOIL 

WATER CONTENT AND FIELD CAPACITY 

 

2.1. Introduction  

Accurate measurement of soil water content is important for efficient irrigation scheduling (Irmak 

and Irmak, 2005). Different approaches are available for irrigation scheduling based on soil water 

content. Among them, monitoring by soil water sensors is a widely known approach that can be 

used effectively in irrigation scheduling (Chappell et al., 2013; Kukal et al., 2020; Yadav et al., 

2020). However, only 12% of farms in the U.S. are currently irrigated based on soil water sensor 

readings and this number is even smaller in Oklahoma (5%) (USDA-NASS, 2019). The low 

adoption rate of sensors raises concerns about technology transfer between research and 

applications (Kukal et al., 2020). Factors such as difficulty in selecting sensors, errors in soil 

water content estimates, spatial heterogeneity in the fields, and the knowledge required to 

properly translate sensor readings to irrigation decisions have been mentioned as potential reasons 

behind the limited adoptions of sensors (Campbell et al., 2009; Dietrich and Steidl, 2021; Kukal 

et al., 2020; Sharma et al., 2021; Taghvaeian et al., 2020).  

Multi-sensor capacitance probes have been among the most popular types of soil water sensors 

because of their lower cost, relatively easier installation and removal, and ability to represent 

several points across the soil profile. However, volumetric soil water content (θv) from  
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capacitance sensors is sensitive to clay content and salinity (Baumhardt et al., 2000; Thompson et 

al., 2007; Haberland et al., 2014; Tedeschi et al., 2014; RoTimi Ojo et al., 2015; Parvin and 

Degré 2016). Several previous studies have suggested the development and use of soil-specific 

calibrations to improve sensor accuracy. This, however, could be challenging from the growers’ 

perspective due to their lack of financial and technical resources and time to conduct such 

calibration projects. Accuracy assessment and calibration studies conducted by universities and 

research institutions are not always helpful either, especially if conducted under laboratory 

conditions or a few field locations with limited variability in clay content and salinity levels (e.g., 

Caldwell et al., 2018; Chow et al., 2009; Datta et al., 2018; Ganjegunte et al., 2012; Leib et al., 

2003; Singh et al., 2018). Furthermore, new or upgraded sensors are introduced to the market 

every season, requiring continuous evaluation of sensor performance. 

Knowledge of soil water content alone is not sufficient for scheduling irrigation events. Water 

content readings of sensors and probes must be compared against soil moisture thresholds to 

determine the need for irrigation and the amount to apply. The most critical threshold used in 

irrigation scheduling is field capacity (FC), which indicates the upper limit of plant available 

water retained by the soil (Cassel and Nielsen, 1986). FC is either measured in lab or (more 

commonly for irrigation scheduling) obtained from tables based on soil texture. Estimating FC 

based on soil water sensors would be beneficial to end-users as it allows them to use the 

information collected by the same device to decide about both the timing and the amount of water 

to apply. Several previous studies have looked at FC estimation based on soil water sensor data. 

For example, Hunt et al. (2009) ranked the collected data during a few growing seasons and 

considered the 95th percentile as the FC. Datta et al. (2018) implemented the same approach and 

found that it significantly overestimated FC when compared to laboratory measurements. They 

mentioned the limited range of soil water content data and errors in sensor readings as potential 

reasons for poor performance of this approach. Sui and Vories (2020) and Vories and Sudduth 
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(2021) assumed soil water content data 1-2 days after major watering events is a good estimate of 

FC for different soil types. However, 1-2 days may not be sufficient to reach FC depending on 

soil type and layer depth.  

Jabro et al. (2009) estimated FC based on soil water retention curve developed from soil water 

content and soil matric potential data and found that soil water content reached FC about 2 days 

for sandy loam and 19 days for clay loam soils. A study by de Jong van Lier and Wendroth 

(2016) assessed FC based on reaching a fixed bottom flux (1 mm d-1) using numerical simulations 

of internal drainage experiments at 46 locations and found that FC condition occurred 4 days after 

watering events when considering only the top 15 cm and 2 weeks for a 75-cm profile depth. 

Other studies have used automated computer algorithms for determining FC. In the study by 

Fazackerley and Lawrence (2011), a nonlinear curve fitting model was used, and Bean et al. 

(2018) evaluated machine learning approaches, obtaining promising results for coarse textured 

and well drained soils. Evett et al. (2019) highlighted that field-observed FC values differ from 

laboratory-determined values and mentioned that as accurate sensors become more available, 

these differences will become more evident. It is necessary to further investigate field estimates 

of FC based on sensor data in variable climatic conditions, crop types, and soil conditions and 

explore the effectiveness of these approaches. 

The overall goal of this study was to assess the performance of a commercial multi-sensor 

capacitance probe for irrigation scheduling under a wide range of field and climatic conditions. 

The specific objectives were to 1) evaluate the accuracy of the probe for different calibrations 

provided by the manufacturer in irrigated crop fields with variable clay content and salinity 

levels, 2) investigate the effects of clay content and salinity on sensor performance, and 3) 

estimate sensor-based field capacity used in irrigation scheduling. 

2.2. Materials and Methods 



8 
 

2.2.1. Study Sites 

The study was conducted during the 2020 and 2021 crop growing seasons at thirty-six sites across 

western Oklahoma (Figure 2.1). The sites varied in climatic condition, irrigation system, crop, 

clay content, and salinity. The climate conditions varied from semi-arid (BSk) in Oklahoma 

panhandle to humid subtropical (Cfa) in west central according to the Koppen-Geiger climate 

classification. The irrigation systems included furrow, center pivot, and subsurface drip. Cotton 

(Gossypium hirsutum L.) and maize (Zea mays L.) were the dominant crops. Clay content varied 

from 8 to 45% and electrical conductivity of the soil solution (1:1 soil-water ratio; EC1:1) ranged 

from 0.5 to 28.5 dS m-1. 

 

Figure 2.1. Study locations and the number of testing sites at each location. The background map 

displays long-term average annual precipitation. 

2.2.2. Accuracy Assessment 

Volumetric water content (θv; cm3 cm-3) was estimated at each site by Sentek Drill & Drop probes 

(Sentek Sensor Technologies, Stepney, South Australia). The probe had 12 capacitance sensors 
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located at 10-cm intervals along its length of 1.2 m. A representative spot was selected at each 

location and a hole was drilled between two healthy plants in the crop row. The probe was wetted 

with water and inserted carefully into the hole, pushing it all the way down until the top of the 

probe was flush with the soil surface. The probes recorded θv at 60-min intervals and 

automatically uploaded the data to cloud servers. The recorded data were downloaded separately 

for six calibrations provided by the manufacturer: Default, Combined, Heavy clay, Sand, Silt 

loam, and Silty clay loam calibrations. 

Undisturbed soil samples (3 replications) were collected at about 5 cm distance from the probe 

center and 10-cm depth intervals from the surface to 60 cm below the soil surface, matching the 

top six sensor depths on the probe. A Giddings soil sampling tool (3-cm diameter, Giddings 

Machine Company, Windsor, CO, USA) was used for sample collection. Soil samples were 

placed in sealed plastic bags immediately after collection and stored in a box to reduce 

evaporation. After transfer to the Soil Physics Laboratory at Oklahoma State University (OSU), 

samples were oven-dried at 105 ºC for 24 h to determine their bulk density and soil water content, 

which is regarded as observed θv. Soil samples were then sent to the Soil, Water, and Forage 

Analysis Laboratory at OSU for soil textural analysis based on the protocol set by Ashworth et al. 

(2001) and electrical conductivity measurements using the 1:1 soil to water extract (EC1:1) 

method explained in Zhang et al. (2002). 

To identify the accuracy of sensor-based θv, the readings based on each of the six manufacturer 

calibrations were compared with their corresponding observed θv. Two commonly used statistical 

indicators of mean bias error (MBE) and root mean square error (RMSE) were calculated: 

MBE= 
1

n
∑ (θvs(i) - θvo(i))

n
i=1                                                     (1) 

 RMSE= √
1

n
∑ (θvs(i)

n
i=1 - θvo(i))

2
                                                     (2) 
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where n is the number of observations, θvs(i) is the sensor-based θv, and θvo(i) is the observed θv. 

These error indicators were further analyzed for three ranges of clay (≤15%, 15-30%, and >30%) 

and three ranges of EC1:1 (≤2, 2-9, and >9 dS m-1) to better understand the effects of clay and 

salinity on sensor accuracy. 

2.2.3. Field Capacity Estimation 

Observed field capacity estimates were obtained by taking three replications of undisturbed soil 

cores (diameter = 2.5 cm, length = 5.1 cm) using the Sample Ring Kit (Model C, Eijkelkamp Soil 

&Water, Inc., Giesbeek, The Netherlands) near 13 Sentek probes and centered on two soil depths 

of 5 and 15 cm. The samples were placed in a sand-kaolin box to determine field capacity at two 

matric potential levels of -10 and -33 kPa, following the method described by Romano et al. 

(2002). 

The laboratory FC estimates were then used to evaluate and modify two sensor-based approaches: 

days to reach laboratory FC after major watering events and the percentile of collected sensor 

readings that represent laboratory FC. In the first approach, major watering events were 

considered those that had at least 15 mm d-1 of rain or irrigation, similar to Hunt et al. (2009). The 

time series of sensor-based θv after these events were analyzed during the crop growing season 

and the number of days it took sensor θv to reach laboratory FC was identified for each event at 

each of the 13 sites and the two soil depths of 5 and 15 cm. In the second approach (percentile), 

sensor-based θv data collected during 60 days in the middle of the growing season were ranked 

and the percentile that matched laboratory FC was determined, resulting in one estimate per each 

soil depth and site. The sites and depths that had a sensor θv error larger than 0.08 cm3 cm-3 when 

compared to gravimetric sampling were excluded from the analysis. The decision about which 

laboratory FC (the one measured at matric potential of -10 kPa or the one at -33 kPa) to use in 

evaluating sensor-based approaches was based on soil texture of each site and depth and 
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following the recommendations of previous studies. The laboratory FC at -10 kPa was used for 

soils/depths that had sand percentage greater than 70% and laboratory FC at -33 kPa was used for 

all others (Rivers and Shipp, 1972; Lena et al., 2022).  

2.3. Results and Discussion 

2.3.1. Accuracy Assessment 

Sensor accuracy was influenced by the manufacturer calibration used in estimating θv. When all 

sites and soil depths were combined, the smallest RMSE belonged to the Silty clay loam 

calibration (0.05 cm3 cm-3), followed by the Combined and Silt loam calibrations (Table 2.1). 

Interestingly, the Default calibration resulted in the largest RMSE (0.19 cm3 cm-3), suggesting 

that careful selection of the appropriate calibration and not simply relying on the default setting 

could have a major impact on sensor performance. Based on the sensor accuracy classification of 

Fares et al. (2011), the RMSE of Silty clay loam and Combined calibrations would fall under the 

poor category and the other calibrations under very poor. 

Table 2.1. Root mean square error (RMSE) and mean bias error (MBE) of six manufacturer 

provided calibrations when considering all samples. 

Statistical 

indicators 

Manufacturer's calibrations 

Default Combined 
Heavy 

clay 
Sand Silt loam 

Silty clay 

loam 

RMSE (cm3 cm-3) 0.19 0.08 0.14 0.18 0.11 0.05 

MBE (cm3 cm-3) 0.16 0.05 0.13 0.15 0.07 0.00 

 

The errors found in this study were comparable to or larger than previous studies. For example, 

Campora et al. (2020) tested the same capacitance probe (Sentek Drill & Drop) in two types of 

sand and reported RMSE range of 0.02-0.04 cm3 cm-3 for three manufacturer calibrations, 

including the Default one. The smaller errors of their study could be attributed to the fact that 
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only sands were tested (low clay content) and that the study was conducted under laboratory 

conditions. Gabriel et al. (2010) tested another model of Sentek probes (EnviroSCAN) that uses 

the same technology as Drill & Drop and found RMSE range of 0.04-0.09 cm3 cm-3 for 

manufacturer’s Default calibration during calibration and validation under lab and field 

conditions. A more recent study of Sentek EnviroSCAN reported larger RMSE of 0.06, 0.14, and 

0.18 cm3 cm-3 based on Default calibration in sand, clay, and loam soils, respectively (Kibirige 

and Dobos, 2021). However, texture-specific calibrations from the manufacturer’s libraries 

improved sensor performance and reduced RMSE to 0.02-0.04 cm3 cm-3. Other sensors that use 

similar capacitance technology (e.g., Sentek Diviner 2000, AquaCheck, Decagon Devices ECH2O 

EC-5, WaterScout SM100) have shown to have RMSE estimates ranging from 0.04 to 0.23 cm3 

cm-3 when used with their manufacturer calibrations (Al‐Ain et al., 2009; Francesca et al., 2010; 

Tedeschi et al., 2014; Sing et al., 2018; Hajdu et al., 2019), with the larger RMSE estimates 

obtained under higher clay content and salinity (RoTimi Ojo et al., 2015; Provenzano et al., 2016; 

Datta et al., 2018). 

The other statistical indicator, MBE, resulted in a ranking of calibrations that was similar to the 

ranking based on RMSE. The Silty clay loam calibration had the smallest MBE, followed by 

Combined and Silt loam calibrations (Table 2.1). The Default calibration had the largest MBE, 

indicating the importance of changing the calibration by users according to the conditions of their 

intended application site. The MBE estimates showed general overestimation of θv for all 

calibrations except Silty clay loam (Figure 2.2). Many previous studies have found 

overestimation of θv when manufacturer calibrations were used with capacitance probes and 

sensors (Leib et al., 2003; Gabriel et al., 2010; Ganjegunte et al., 2012; Al-Ghobari and El 

Marazky, 2013). Other studies have observed underestimation errors for lower water contents and 

overestimation errors for higher water contents when capacitance sensors were used with factory 
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calibration (Geesing et al., 2004; Polyakov et al., 2005; Kibirige and Dobos, 2021). Hajdu et al. 

(2019) showed underestimation of θv by AquaCheck probe for various calibrations. 

 

Figure 2.2. Comparison between volumetric soil water content (θv) obtained based on the Default 

(largest RMSE) and Silty clay loam (smallest RMSE) calibrations and observed θv. 

Sensor accuracy is an important factor in sensor-based irrigation scheduling. In addition to 

accuracy, however, probes and sensors must be able to capture the full range of soil water content 

fluctuations. Investigating different calibrations revealed that besides their different accuracies, 

they result in different ranges of soil water content, a factor that should be considered in choosing 

the most appropriate calibration. Figure 2.3 shows the frequency distribution of the ratio of 

sensor-based θv to saturation θv for the three most accurate calibrations at five sites with the 

highest clay and five sites with the highest sand and three soil depths of 5, 15, and 25 cm at each 

site. The three shallowest soil depths were selected because they are subject to more fluctuations 

in water inputs and outputs compared to deeper layers. The Silty clay loam calibration that had 
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RMSE of 0.05 cm3 cm-3 had smaller range of ratios (0.26-0.71 for high clay sites and 0.16-0.56 

for high sand) compared to the other two calibrations and never approached saturation, even after 

major watering events at the 5 cm depth. The ranges of these ratios for the Combined calibration 

with RMSE of 0.08 cm3 cm-3 was 0.21-0.91 for high clay and 0.11-0.66 for high sand. 

Considering the larger and more realistic ratios of the Combined calibration, it would be 

recommended over the Silty clay loam calibration for practical irrigation scheduling, despite its 

slightly larger RMSE. 

     

Figure 2.3. The ratio of sensor-based θv to saturation θv for (a) high clay content sites and (b) 

high sand content sites for 5, 15, and 25 cm soil depths. 

Two key factors that affect sensor accuracy are soil texture and soil salinity. The wide range of 

soil textures and salinities in this study allowed us to further investigate the effects of these 

factors on sensor performance. As expected, higher clay and salinity negatively impacted 

accuracies. Figure 2.4 shows bubble graphs of RMSE for various ranges of clay and electrical 

conductivity of the 1:1 soil to water extract (EC1:1) for each of the six manufacturer calibrations. 

Larger bubbles indicate larger RMSE and vice-versa. Default (Figure 2.4a) and sand (Figure 

2.4d) calibrations were more sensitive to increases in clay and salinity compared to other 

calibrations. For example, RMSE of Default calibration was 0.11 cm3 cm-3 at the smallest clay 

and salinity range and increased to 0.26 cm3 cm-3 at the largest clay and salinity range. This was 
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the largest increase in RMSE. The other error indicator, MBE, had similar trends, revealing larger 

overestimation of θv at higher clay and salinity. Heavy clay was the only calibration that had an 

opposite trend and showed smaller errors at larger clay ranges regardless of salinity. 

 

Figure 2.4. Bubble graphs of RMSE for variable ranges of clay content and soil electrical 

conductivity of 1:1 soil to water extract for a) Default, b) Combined, c) Heavy clay, d) Sand, e) 

Silt loam, and f) Silty clay loam calibrations. 

Previous studies have reported comparable results on the effects of clay and salinity on sensor 

accuracy. For example, Thompson et al. (2007) showed that overestimation error of a capacitance 

sensor increased with EC of applied water to a level and then remained stable. Al‐Ain et al. 

(2009) found that Sentek Diviner 2000 capacitance probe was sensitive to soil EC and estimated 

RMSE as high as 0.07 cm3 cm-3. Using the same type of probe and Default calibration, 

Provenzano et al. (2016) estimated larger errors at sites with higher clay content (RMSE 
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increased from 0.05-0.08 to 0.10-0.17 cm3 cm-3). In a greenhouse experiment in Texas, 

Baumhardt et al. (2000) found that θv readings of Sentek EnviroSCAN probe under saline water 

application were 0.25 cm3 cm-3 larger than soil porosity. In Oklahoma and using five soil water 

sensors, Datta et al. (2018) found considerably larger errors at a site with high salinity and clay 

compared to a site with low salinity and clay, with RMSE reaching 0.23 cm3 cm-3.  

2.3.2. Field Capacity Estimation 

The laboratory FC varied considerably among the two sampling depths (5 and 15 cm) and 13 

sites. The FC at -10 kPa had a range of 0.18-0.33 cm3 cm-3 and an average of 0.27 cm3 cm-3, 

whereas FC at -33 kPa had a range of 0.12-0.31 cm3 cm-3 and an average of 0.23 cm3 cm-3. The 

difference between FC at -10 and -33 kPa was larger (44% on average) at sites with clay<15% 

(coarser soils) compared to the difference (16%) at sites with clay=15-30% (finer soils). Romano 

and Santini (2002) highlighted that in general, a matric potential value of about -10 kPa correlates 

well with the field-measured FC of sandy soils and values of about -35 kPa and -50 kPa with 

medium-textured and clayey soils, respectively. 

In the first sensor-based approach, 1 to 9 days were required to reach laboratory FC. Figure 2.5 

shows days to reach laboratory FC for each soil depth (5 and 15 cm) and two clay ranges (<=15% 

and 15-30%). For the coarser soil (clay<=15%), average days to reach FC were 1 and 3 days at 5 

and 15 cm depths, respectively. For the finer soils (clay=15-30%), average days were 2 and 3 

days at the same depths, respectively. These estimates were comparable to those suggested or 

used by many previous studies with a range of 1-3 days (Veihmeyer and Hendrickson, 1931; 

Obreza, 1997; Evett et al., 2019; Sui and Vories, 2020; Vories and Sudduth, 2021). However, 

Zettl et al. (2011) reported 18 hours to reach FC after watering events for very coarse (88-99% 

sand), which was smaller than the time for sandy sites of the current study. Ratliff et al. (1983) 

mentioned that in general 2-12 days is required for soils to reach FC and it may take longer (up to 
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20 days) for some fine-textured soils and soils with restrictive layers. The largest number of days 

to reach FC in this study was 9 at the 15 cm depth of a loam soil. 

 

Figure 2.5. Days to reach laboratory field capacity after major water events at two soil depths (5 

and 15 cm) and two clay ranges. 

In the second sensor-based approach, the percentiles representing laboratory FC were inconsistent 

and highly variable, ranging from 3 to 97% with an average of 56% (Figure 2.6). Theoretically, 

larger percentiles are expected since the soil water content would not be at and above FC for long 

periods of times. Under an efficient irrigation management, soil water content would be mostly 

below FC and would increase to the level of this threshold in each irrigation event. Most of the 

larger percentiles (77-97%) in this study were observed at the 5 cm depth for both clay ranges. A 

potential reason could be that the 5 cm depth is more prone to direct evaporation and thus a 

higher percentile is estimated compared to the 15 cm depth. 
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Figure 2.6. Percentile values to reach FC for combinations of two soil depths (5 and 15 cm) and 

two clay ranges (<=15% and 15-30%). 

The smallest percentile at 5 cm depth and clay<=15% was 19%, indicating that sensor-based θv 

was larger than laboratory FC 81% of the time. This site received very frequent irrigations (2-day 

interval), which helped keep soil water content high. The smallest values at 15 cm for both clay 

ranges may be due to larger overestimation error in sensor-based θv, which results in sensor 

readings being larger than laboratory FC most of the time. In other cases of obtaining smaller 

percentiles, the clay content of layers below 15 cm was considerably larger (finer layers impeding 

downward water movement). 

Some previous studies have discussed the challenges of the percentile approach. For example, 

Hunt et al. (2009) used the 95th percentile approach to estimate FC and concluded that it would be 

difficult to estimate FC if a very short period of data is available. They also mentioned that in 

semi-arid regions it could take a few years to reach FC at deeper soil depths. Datta et al. (2018) 

highlighted that the poor performance of the 95th percentile approach could be due to lack of full 

range of soil water conditions in the irrigated areas and overestimation of sensor-based θv. 
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Further, the author added that it is difficult to have the full range of soil water conditions in many 

irrigated areas because producers attempt to refill soil water well before reaching wilting point to 

avoid water stress and yield loss. Overall, the current study showed the inconsistency of the 

sensor-based approaches in determining FC. 

2.4. Conclusions 

The accuracy of a multi-sensor capacitance probe (Sentek Drill & Drop) was determined by 

comparing the readings based on each of six manufacturer calibrations with observed soil water 

content from gravimetric sampling. Among the calibrations, Default and Silty clay loam produced 

the largest and smallest errors with RMSE of 0.19 and 0.05 cm3 cm-3, respectively. The errors of 

all calibrations except the Heavy clay had a direct relationship with clay and salinity. Besides the 

accuracy of sensor readings, the relative values and the range of soil water content captured is 

important for practical irrigation scheduling. Hence, the ranges of sensor readings based on each 

calibration were also investigated. The Combined calibration, which had the second smallest 

RMSE, produced larger and more realistic ranges compared to the Silty clay loam calibration and 

would be recommended for irrigation management. 

Two sensor-based approaches to determine FC were assessed to identify the appropriateness and 

feasibility of relying on sensor readings for FC estimation and thus reduce the need of soil water 

sensor users to additional measurements. The number of days to reach laboratory FC after major 

watering events varied from 1 to 9 days with average values of 1-3 days. The percentile of sensor 

readings that corresponded to laboratory FC had a range of 3-97% with an average of 56%. Both 

approaches were found to result in spatio-temporally variable and inconsistent FC estimates and 

thus are not recommended for irrigation scheduling. Future studies could  investigate sensitivity 

of temperature on the  performance of the probe with different calibrations provided by the 

manufacturer.
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CHAPTER III 
 

 

EFFECTS OF SOIL DATA ACCURACY ON OUTPUTS OF IRRIGATION SCHEDULING 

TOOLS 

 

3.1. Introduction 

Scientific irrigation scheduling methods are important for deciding appropriate timing and 

amount of irrigation in agriculture, the largest consumer of freshwater in the world (Wallace, 

2000; Ward and Pulido-Velazquez, 2008). As water scarcity increases in many regions along with 

population growth and economic development, implementing scientific irrigation scheduling is 

considered a solution to conserving limited and declining freshwater resources (Liu et al., 2007; 

Taghvaeian et al., 2020). In addition, robust scientific scheduling can save energy, minimize 

possible negative effects on the environment (e.g., nutrient leaching below the root zone), 

increase crop yield, and improve the financial viability of agricultural production (Kukal et al., 

2020; Taghvaeian et al., 2020). Further, efficient use of freshwater resources is essential for 

balancing food production and long-term sustainability of irrigated agricultural systems (Gibson 

et al., 2019), which can be achieved by implementing and advancing science-based irrigation 

scheduling. 

Out of all scientific irrigation scheduling methods, those based on soil water status in the crop 

root zone are among the most widely researched and applied (Taghvaeian et al., 2020). Soil water 

status can be monitored using soil water sensors or it can be estimated using soil water balance 
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models. Models require several inputs but offer many advantages over sensors including reduced 

cost, convenience, and the ability to analyze a range of scenarios and forecast short-term 

irrigation demand. A critical input to soil water balance models is soil data such as texture and 

water thresholds. Soil data can be obtained in two main ways: (1) in-situ soil sampling (ISS), 

which is the most accurate but tedious, laborious, and expensive, and (2) online databases where 

users can retrieve data at minimal cost (or no cost) with the ability to embed automatic data 

collection within irrigation scheduling tools and applications. Compared to ISS, a potential caveat 

of publicly available soil data is lower accuracy, necessitating onsite investigations for 

conservation planning and engineering applications. The most used soil database in the United 

States is the Soil Survey Geographic Database (SSURGO), which allows access to data through 

the Web Soil Survey (WSS) online user interface (Soil Science Division Staff, 2017).  

Several previous studies have discussed the accuracy of WSS when compared to ISS. Brevik et 

al., (2003), for instance, explored WSS accuracy in a uniform field in central Iowa and argued 

that survey estimates were adequate for highly uniform fields, but not appropriate for precision 

agriculture applications in nonuniform fields. Later, Zylman et al. (2005) investigated the 

accuracy of WSS-based texture data for 22 different mapping units in north-central Texas and 

found weak relationships with ISS-based texture. They also warned about misuse of WSS data 

beyond the intended use and capacity of the database. Whisler et al. (2016) reported errors in 

WSS textural data in two counties in Indiana and Illinois. In a field experiment in New York, 

Mikhailova et al. (2019) observed that texture classes based on ISS and WSS were different for 

many soil map units and argued that this would have profound impact on assessing ecosystem 

services. Other studies have suggested that WSS does not have enough precision for many site-

specific applications including irrigation recommendations (Sui and Vories, 2020; Vories and 

Sudduth, 2021).  
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Although the studies mentioned above have shown that WSS data are less accurate compared to 

ISS and their precision is not enough for site-specific irrigation recommendations, many soil 

water balance models in irrigation scheduling tools rely on WSS due to its easy, free, and fast 

access. One example is the web based NDAWN Irrigation Scheduler (Scherer and Morlock, 

2008), where soil data are automatically collected from SSURGO after the field of interest is 

delineated by user. Other examples include the Irris Scheduler computer program (Joern and 

Hess, 2017), Irrigation Scheduler mobile application (Peters et al., 2019), and the cloud-based 

Water Irrigation Scheduler for Efficient (WISE) application (Andales et al., 2020). WSS data 

have also been used for making irrigation decisions at sub-field scales. For instance, the 

University of Georgia’s web-based model (Smart Sensor Array) generates irrigation scheduling 

recommendations at sub-field scales based on soil textural information obtained from WSS 

(Liang et al., 2016). ARSPivot, a computer program, also uses WSS for delineating management 

zones across the field and generating site-specific irrigation prescription maps for variable rate 

irrigation systems in Texas (Andrade et al., 2020).  

As SSURGO/WSS data are gaining more popularity in irrigation management tools at variable 

scales, there is a gap in knowledge on how the textural inaccuracies in WSS data may affect the 

output of irrigation decision making tools that are based on soil water balance modeling. The 

main goal of this study was to investigate the effects of soil data accuracy on irrigation scheduling 

using the Soil water balance model, a commonly used water balance model. Specific objectives 

were to 1) examine the differences in soil textural data and soil water thresholds obtained from 

ISS and WSS and 2) investigate the effects of soil data sources (ISS and WSS) on estimated 

irrigation demands, evaporation, transpiration, runoff, and deep percolation under variable soil, 

crop, and climatic conditions. The study contributes to science-based irrigation scheduling by 

illuminating the implications of the localized inaccuracies in WSS for quantifying irrigation 

demand. 
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3.2. Materials and Methods 

3.2.1. Study Area  

The study included six sampling sites at each of three regions (18 sites total) across western 

Oklahoma: Panhandle, southwest, and westcentral. These three regions are notably different in 

climate, crops, soils, and irrigation water resources and encompass the range of conditions 

experienced in Oklahoma irrigated lands. According to the Koppen-Geiger climate classification, 

Panhandle is classified as semi-arid (BSk), whereas southwest and westcentral exhibit a humid 

subtropical climate (Cfa) characterized by hot and humid summers. Soil types vary from loamy 

sand to clay loam. The two most dominant crops in each region based on Oklahoma Agricultural 

Statistics are grain corn and grain sorghum in Panhandle, cotton and grain sorghum in southwest, 

and cotton and soybean in westcentral. The same crops were selected for each region in this 

study. Figure 3.1 shows the location of the study sites in each region along with a map of normal 

precipitation. 

 

Figure 3.1. The location of the study sites in western Oklahoma. 
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3.2.2. Soil Water Balance Model 

A simple and widely used soil water balance model was implemented to estimate irrigation and 

other water fluxes based on two different sources of soil data (discussed in section 3.2.2.4) 

according to the method described in Allen et al. (1998, 2020). The model was run for each site 

of each region and the two common crops of that region over a 15-year (2006-2020) period. This 

resulted in 36 combinations per study year (6 sites × 3 regions × 2 crops). The model accounts for 

incoming and outgoing water fluxes of the crop root zone based on the following equation:  

Pi + Ii + CRi = Ei + Ti + DPi + ROi + Di-1 - Di                             (1) 

where Pi is precipitation on day i; Ii is irrigation; CRi is capillary rise from shallow groundwater; 

Ei is evaporation; Ti is transpiration; DPi is deep percolation; ROi is surface runoff; Di-1 is soil 

water depletion in the root zone at the end of the previous day; and Di is soil water depletion at 

the end of day i. In this study, CRi was assumed zero since groundwater levels were considerably 

lower than the root zone at all sites. ROi was estimated based on the curve number method 

(USDA-NRCS, 2004) and antecedent water conditions were computed from the daily surface soil 

water balance for adjusting the curve number, following the procedures explained by Jensen and 

Allen (2016). DPi was estimated as the amount of water passing below the root zone when soil 

water content in the root zone was at or above field capacity. Di was assumed zero on the first day 

of the growing season and was estimated on subsequent days by subtracting the amount of water 

applied from the sum of previous day depletion and ETi. The remaining components of equation 

1 and any supporting data were obtained based on methods explained below. 

3.2.2.1. Weather Data 

Daily precipitation, short-crop reference evapotranspiration (ETo), air temperature, dew point 

temperature, and wind speed data were obtained from the Oklahoma Mesonet weather stations in 

each region: Goodwill station in Panhandle, Altus station in southwest, and Fort Cobb station in 
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westcentral (McPherson et al. 2007). Data quality assurance and quality control procedures were 

employed before using the data (Shafer et al., 2000). Less than 3% of air temperature, dew point 

temperature, and wind speed data and less than 1% of precipitation data were missing during 

April to November, which encompasses the growing season of all crops considered in the present 

study. Gap filling of missing values was accomplished using data from nearby weather stations 

and according to procedures described in Allen et al. (1998) for air temperature, dew point 

temperature, and wind speed. In case of missing precipitation, Parameter-elevation Relationships 

on Independent Slopes Model (PRISM; Daly et al., 2008) data were used to fill the gaps. 

3.2.2.2. Evaporation and Transpiration 

These components were estimated using the dual crop coefficient method following Allen et al. 

(1998, 2020) and Jensen and Allen (2016):  

E = Ke × ETo                                                            (2) 

 T = Ks× Kcb× ETo                                                 (3) 

where Ke is the soil evaporation coefficient; Ks is the water-stress coefficient; and Kcb is the basal 

crop coefficient (details in a sub-section below). In this study, irrigation demand was estimated 

for well-watered conditions, meaning that an irrigation event was triggered whenever Ks fell 

below unity to avoid water stress. The irrigation depth was the amount of water needed to bring 

soil water depletion to zero. A maximum limit of 51 mm (2 inches) was applied to irrigation 

depths based on the actual capacity limit of sprinkler irrigation systems, which are the most 

common methods in Oklahoma. 

3.2.2.2.1. Basal Crop Coefficient 

Kcb curves for different crops were developed following the approach described in Huntington et 

al. (2015) and Allen et al. (2020) and fine-tuned to represent local conditions in Oklahoma. This 
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approach is based on normalized cumulative growing degree days (NCGDD), calculated by 

dividing the cumulative growing degree days (CGDD) since planting by the total CGDD from 

planting to effective full cover:  

NCGDD = 
CGDDi

CGDDplant-to-EFC
                                                   (4) 

where CGDDi is the CGDD for day i after planting and CGDDplant-to-EFC is the total CGDD from 

planting to full cover. NCGDD is zero at planting, one at full cover, and larger than one after 

reaching effective full cover until harvest or killing frost. A slightly different approach based on 

percentage time from planting to full cover and then days after full cover to termination was used 

for sorghum as suggested by and explained in Allen et al. (2020). 

3.2.2.2.2. Planting Date 

The planting dates, required in estimating Kcb, were estimated for each region-crop and study year 

based on a 30-day moving average of mean daily air temperature (T30) as described in Allen et al. 

(2020). In this approach, planting day is the day when T30 reaches a predefined threshold for the 

first time in each year. The thresholds for grain corn, grain sorghum, cotton, and soybean were 

taken from Allen et al. (2020) and adjusted, if needed, based on documented actual planting dates 

in the study area (Table 3.1). 

Table 3.1. T30 thresholds for each region and crop. 

Region Crop 
T30 Threshold (°C) 

Allen et al. (2020) This study 

Panhandle Grain corn 10-15 12.5 
 Grain sorghum 20 18 

Southwest Grain sorghum 20 16 
 Cotton 20 19 

Westcentral Cotton 20 19 
 Soybean 21 21 
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3.2.2.3. Root Growth and Crop Height 

The dynamic sigmoidal root growth model described by Borg and Grimes (1986) and Allen and 

Robison (2007) was implemented. This growth model is a function of time between the minimum 

(initial) root depth at planting until the time of maximum rooting depth. The minimum and 

maximum root depths were taken from Allen et al. (2020) except for the maximum root depths 

for cotton and soybean that were based on reported values by Mehata et al. (2022) for the study 

area (Table 3.2). Maximum crop height was determined based on field observations and 

consultation with local extension educators (Table 3.2). 

Table 3.2. Rooting depths and crop height used in this study. 

Crop 

Minimum 

root depth 

(m) 

Maximum root 

depth (m) 

Maximum crop 

height (m) 

Grain corn 0.12 1.5 2.0 

Grain sorghum 0.25 1.2 1.5 

Cotton 0.25 1.0 1.2 

Soybean 0.25 1.0 1.0 

 

3.2.2.4. Soil Data 

Soil data were obtained from two sources: measured from in-situ soil samples (ISS), which was 

considered as the most accurate; and obtained from web soil survey (WSS). In case of ISS, 

undisturbed soil samples (3 replications) were collected at 10-cm intervals at each site using a soil 

coring tool (Giddings Machine Co, Windsor, CO, USA). Collected samples were sent to the Soil, 

Water, and Forage Analysis Laboratory at Oklahoma State University for soil textural analysis 

based on the protocol proposed by Ashworth et al. (2001). For WSS, soil data were retrieved 

from the online interface (ver. 3.4.0, Soil Science Division Staff, 2017) as the weighted average 

for the same 10-cm increments. For both ISS and WSS, soil water thresholds of field capacity and 

wilting point were estimated using the textural information and the Rosetta model (Schaap et al. 
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2001). Total available water was determined as the difference between field capacity and wilting 

point and the maximum allowed deficit for different crops was based on Allen et al. (2020).  

3.3. Results and Discussion 

3.3.1. Soil Data Sources 

The ISS data showed that of the three regions, Panhandle had the finest and westcentral had the 

coarsest soil textures, with average sand percentage of 41% and 60%, respectively. The variations 

in soil texture among the six sampling sites of each region were smallest in Panhandle and largest 

in southwest. Among the three soil particles, the largest variation was observed in sand, with 

ranges of 25-60% in Panhandle, 31-90% in westcentral, and 25-85% in southwest. Variations in 

clay were the smallest, with Panhandle having the smallest range (20-40%) and southwest the 

largest (8-40%). These observations depict the considerable spatial heterogeneity in soil texture 

data even among sites located in close vicinity in the same region, and point to the need for 

accurate representation of soil data in soil water balance models. 

There were major differences in soil textural and total available water data between ISS and WSS 

(Figure 3.2). Overall, WSS textures were finer than ISS across all sampling locations and depths. 

WSS sand estimates were smaller than ISS in 89% of the cases, whereas its clay estimates were 

larger in 78% of the cases. Among the three regions, the differences were smallest in the 

Panhandle and largest in westcentral. Among the soil particles, the differences in sand and clay 

were largest and smallest, respectively, in all three regions. The median differences in sand 

estimates (WSS percentage minus ISS percentage) were -8% in Panhandle, -11% in southwest, 

and -23% westcentral. Previous studies have reported similar results. Drohan et al. (2003) 

evaluated textural classes in forested plots in Pennsylvania and found similarities between ISS 

and WSS in most cases. However, in some cases, WSS underestimated sand and overestimated 

clay. Whisler et al. (2016) reported overestimation of silt and clay based on WSS in grasslands 
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and crop fields in Indiana and Illinois. Cole et al. (2017) also found underestimation of sand and 

overestimation of silt by WSS in an agricultural farm in New York. Finer textural classes by WSS 

have been documented for crop fields in California (Perez–Quezada et al., 2003) and a ranch in 

Texas (Zylman et al., 2005) too.  

 

Figure 3.2. Differences in soil textural data and total available water (TAW) between WSS and 

ISS in each region. The dotted lines indicate the mean. The whiskers represent 10th and 90th 

percentiles. 

Total available water, an important parameter in irrigation scheduling, was affected by 

differences in soil textures. The differences were largest in westcentral and smallest in Panhandle, 

with averages of 54 mm and 8 mm for the top one meter of the soil profile, respectively. WSS-

based estimates were larger (due to finer textures) than those from ISS in over three-quarters 

(77%) of all samples. Fuka et al. (2016) found larger total available water contents based on WSS 

in grasslands and croplands in Texas. However, Datta et al. (2018) had an opposite observation in 

two irrigated fields in Oklahoma. 

3.3.2. Water Fluxes Based on ISS  

Irrigation demand estimated by the soil water balance model based on ISS (IISS) varied widely 

among the six combinations of regions and crops, with average values ranging from 377 mm for 

soybean in westcentral to 545 mm for corn in Panhandle. When comparing the three regions, 
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average IISS was smallest in westcentral (398 mm) and largest in Panhandle (542 mm). The spatial 

variations were partly due to differences in climate (Panhandle being more arid) and partly due to 

differences in soil texture. Table 3.3 summarizes average IISS and other fluxes based on ISS data, 

including transpiration (TISS), evaporation (EISS), deep percolation (DPISS), and runoff (ROISS). 

Table 3.3. The average seasonal water fluxes, precipitation, and reference ET (ETo) for different 

crops and regions. 

 Region Crop 
IISS 

(mm) 

TISS 

(mm) 

EISS 

(mm) 

DPISS 

(mm) 

ROISS 

(mm) 

Precipitation 

(mm) 

ETo 

(mm) 

Panhandle Corn 545 709 286 8 14 273 1010 

 Sorghum 538 613 287 4 15 266 987 

Southwest Sorghum 535 653 289 32 18 356 992 

 Cotton 511 645 244 32 17 353 1035 

Westcentral Cotton 419 667 159 52 39 426 887 

 Soybean 377 583 139 43 29 351 769 

 

Within each region, considerable IISS variability was found among the six sampling sites and 

study years. Figure 3.3 demonstrates the box plots of water fluxes for each region-crop, created 

using the 90 data points, which resulted from the six sites at each region and the 15 years of 

study. The maximum IISS occurred during 2011 for all region-crops, with estimates that were 49-

119% larger than the average IISS of the 15 years of study. This was expected as a historic drought 

event occurred in 2011, when all study sites were under exceptional drought from late July to 

early November. On the other hand, the minimum IISS was obtained in wet years, which were 

different for different region-crops. For example, corn and sorghum in Panhandle had their 

minimum IISS during 2018 and 2015, respectively, whereas 2007 and 2016 were the years with the 

smallest IISS for sorghum and cotton in southwest, respectively. The southwest region had the 

largest range of IISS, most likely due to the fact that this region had the largest range of variability 

in soil texture.  
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Figure 3.3. Water fluxes based on ISS soil data for each region and crop. The dotted lines 

indicate the mean. The whiskers represent 10th and 90th percentiles. 
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The IISS estimates of this study are comparable with estimated or measured IISS in previous 

studies. Tolk and Howell (2001) reported irrigation amounts for grain sorghum in Texas 

Panhandle (similar climate to Oklahoma Panhandle) that varied from 510 to 604 mm during 

1997-1999 and had an average of 543 mm. In this study, sorghum irrigation depths in Panhandle 

were 357-818 mm and had an average of 538 mm. Hao et al. (2015) conducted another study in 

Texas Panhandle and reported seasonal irrigation amounts of 754, 612, and 608 mm for grain 

corn in 2011, 2012, and 2013, respectively. Our irrigation estimates for corn in Oklahoma 

Panhandle for the same years were similar at 810, 748, and 572 mm, respectively. DeLaune et al. 

(2012) estimated and applied 200-380 mm of irrigation during 2008-2010 at their cotton plots 

near Chillicothe, Texas, which is a few miles from southwest sites in the present study. Our IISS 

estimates for southwest cotton during the same years were larger at 408-506 mm, mostly 

influenced by longer growing seasons estimated in our study. In a study in southwest Oklahoma, 

Masasi et al. (2020) mentioned that seasonal irrigation amounts applied to cotton varied from 304 

to 532 mm during 2015-2017, close to our estimated range of 204-567 mm for the same years.  

Like IISS, the average TISS was smallest in westcentral (625 mm) and largest in Panhandle (661 

mm). The maximum TISS for each region-crop was also during 2011 and 12-48% larger than the 

15-year average for the corresponding region-crops. The minimum estimates occurred during 

various years, typically the year with the smallest seasonal ETo. In case of EISS, the smallest 

average seasonal amount was in westcentral (149 mm) and the largest in Panhandle (286 mm). 

Two main reasons for variations in EISS were changes in seasonal ETo and soil texture of the 

topsoil layer, which contribute to temporal and spatial EISS variability, respectively. Recorded 

seasonal ETo had a direct relationship with EISS. Regarding soil texture, fine-textured topsoil 

layers with larger total evaporable water allowed for more EISS compared to soils with coarser 

textures, as expected. 
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The other two fluxes, deep percolation and runoff, were notably smaller in magnitude. This was 

because the soil water balance model was set up in such a way to replenish soil water deficit and 

not more. Hence, return flows were only generated after large precipitation events or if 

precipitation occurred shortly after an irrigation event. The smallest average seasonal DPISS was 

in Panhandle (6 mm), which has the driest climate and the finest soil textures. The largest DPISS 

was in westcentral (48 mm), characterized by the wettest climate and the coarsest soil textures. 

Among the study years, the minimum DPISS (near zero in most cases) was in the drought year of 

2011 for all region-crops. The maximum DPISS occurred in different years, with the largest values 

of about 200 mm in 2007 in westcentral. The smallest average seasonal ROISS was in Panhandle 

(15 mm) and the largest in westcentral (34 mm), mainly because the former received more 

precipitation. Among the years, the minimum ROISS was in 2011 (zero or near zero) and the 

maximum was in different years for different region-crops. 

3.3.3. Effects of Soil Data on Fluxes 

The effects of soil data sources on estimated irrigation demand were variable among regions and 

crops. When WSS data were used in the soil water balance models instead of measured values 

(ISS), the average difference varied from 34 mm less irrigation amount for soybean in westcentral 

to 19 mm more amount for corn in Panhandle. Table 3.4 presents the average differences in 

irrigation and other fluxes for each region-crop. Transpiration differences were always zero and 

thus not included in this table since the implemented water balance model did not allow for any 

water stress. Hence, transpiration fluxes were the same based on both WSS and ISS. When 

considering all sampling sites, crops, and study years, WSS data resulted in irrigation flux 

underestimation in 40% and overestimation in 30% of the cases. For the remaining 30%, WSS 

and ISS estimates were equal. The underestimation error reached and exceeded 100 mm. 

However, 49% of the differences were within ±25 mm (±1.0 inch). 
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Table 3.4. Average differences in irrigation (I), evaporation (E), deep percolation (DP), and 

runoff (RO) fluxes estimated by subtracting ISS fluxes from WSS fluxes and reported in units of 

mm. The numbers in parentheses represent the average differences as percentage of the 

corresponding ISS-based flux. 

Region Crop I  E  DP  RO  

Panhandle Corn 19 (3%) 14 (5%) -3 (-32%) 17 (118%) 

Panhandle Sorghum 18 (3%) 21 (7%) -2 (-58%) 13 (89%) 

Southwest Sorghum -15 (-3%) -3 (-1%) -5 (-14%) 7 (39%) 

Southwest Cotton -18 (-4%) -5 (-2%) -6 (-18%) 7 (39%) 

Westcentral Cotton -31 (-7%) 11 (7%) -12 (-22%) -9 (-22%) 

Westcentral Soybean -34 (-9%) 9 (6%) -12 (-28%) -2 (-8%) 

 

Although the differences in irrigation estimates were relatively small at the region-crop level with 

values ranging from -9% to 3% of the ISS-based estimates (Table 3.4), larger differences were 

observed at the sampling site level. The largest underestimation of irrigation was -20% at a 

southwest-sorghum site and the largest overestimation was 11% at a Panhandle-corn site. As 

expected, these two sites had the largest errors in their WSS soil texture data. It should be noted 

that percent differences reported here are averaged over the 15 years of study and some years 

experienced larger differences. What can be inferred from these findings is that while errors in 

soil data may not have a major impact at regional scales (although it can be argued that even a 

few percent difference is too big in water scarce areas), the effects on individual irrigated farms 

may be much more severe depending on the magnitude of error in soil data. The 11% (55 mm) 

overestimation error at the Panhandle-corn sampling site, for example, will have a notable impact 

on irrigation sustainability and profitability as deep groundwater resources in Oklahoma 

Panhandle are non-renewable and expensive to pump (Handa et al., 2019). 

The change in irrigation estimates when WSS data were used instead of ISS was mostly due to 

soil texture differences across the entire root zone (impacting water holding capacity) and the 
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topsoil (impacting evaporation). As mentioned before, WSS had generally finer soil textures, 

especially in southwest and westcentral regions. This resulted in larger water holding capacity in 

the root zone, consequently more efficient use of precipitation and less frequent irrigation events. 

On the other hand, finer soil textures at the top 10 cm layer resulted in larger E as the smaller 

pores support higher evaporation rates and thus a more rapid depletion of soil moisture, leading to 

more frequent irrigations. The opposite effects of soil texture differences on water holding 

capacity and evaporation resulted in positive and negative differences in irrigation demand 

between the two soil data sources. However, the effect of larger water holding capacity was more 

pronounced and irrigation underestimation by finer-texture WSS data were more common. 

The impact of root zone water holding capacity on irrigation estimates was further investigated 

using linear regression analysis (Figure 3.4), where percent irrigation differences for each of the 

36 combinations of the six sampling sites and six region-crops were averaged over the 15 years of 

study and plotted against their corresponding differences in readily available water based on WSS 

and ISS. The statistically significant (p value <0.01) regression equation had a large coefficient of 

determination (0.70) and demonstrated an inverse relationship, where the difference in irrigation 

estimates decreased by 4% on average for every 10% increase in the difference in readily 

available water.  
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Figure 3.4. Differences in irrigation (I) estimates versus differences in readily available water 

(RAW) based on WSS and ISS soil data. 

Other fluxes (E, DP, and RO) were also impacted by errors in soil data, albeit to a smaller degree 

compared to irrigation. Figure 3.5 demonstrates box plots of differences in all fluxes, except for T 

that had no difference since the water balance model did not allow for any water stress and 

predicted similar transpiration fluxes for both soil data sources. For E fluxes, WSS resulted in 

larger estimates compared to ISS in 70% of the cases (positive values in Figure 3.5) because WSS 

soil textures were generally finer. As explained before, fine-textured soils have larger total 

evaporable water and support more evaporation from the top layer of the soil compared to coarser 

textures. In 72% of the cases, the differences in E estimates based on WSS and ISS were within 

±25 mm (±1.0 inch). At the regional level, the largest average differences were in the Panhandle 

region that had the finest textures of the three regions. All regional differences were within 7% of 

the ISS-based evaporation estimates (Table 3.4).  
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Figure 3.5. Differences in water fluxes based on WSS and ISS soil data. The whiskers represent 

10th and 90th percentiles. 

With respect to DP, the estimates based on WSS were smaller than or equal to those based on ISS 

in 85% of the cases, an expected behavior considering WSS textures were finer. This is 

represented in mostly negative values in Figure 3.5. At the regional level, the average differences 

in DP estimates ranged from -2 and -3 mm for Panhandle with the finest texture to -12 mm in 

westcentral with the coarsest texture (Table 3.4). This spatial pattern can be partially explained by 

the fact that the westcentral region received more precipitation than the other two regions and 

thus was exposed to more frequent rain events that followed an irrigation application. Converting 

units of differences from mm to percentages resulted in large values because ISS-based deep 

percolation estimates (denominator) were small. The finer textures of WSS had an opposite effect 

on RO fluxes, where estimates based on WSS were larger than those based on ISS in 58% of the 

cases. The average difference was largest in Panhandle with the finest texture and smallest in 
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westcentral with the coarsest texture (Table 3.4). Like DP, large percentages were obtained since 

ISS-based fluxes were small and close in magnitude to estimated differences. 

3.4. Conclusions 

The errors in publicly available soil data (WSS) and their effects on water flux predictions of a 

soil water balance model commonly used in irrigation scheduling were investigated at three 

regions in western Oklahoma over a 15-year (2006-2020) period. The free and frequently used 

WSS database underestimated sand particles in 89% of all samples taken at different regions and 

soil layers, resulting in finer textures across the root zone than those based on field measurements 

(ISS). These errors translated into differences in estimated water fluxes, which were variable 

across seasons and regions. In the case of irrigation, WSS resulted in generally smaller demands 

than ISS data in southwest and westcentral regions and larger demands in the Panhandle. While 

large differences were observed at some sites and some years (for example during drought years 

with elevated irrigation demand), most differences in irrigation estimates were within ±25 mm, 

with average differences staying within ±9% of ISS-based fluxes. The response of other fluxes 

was consistent with differences in soil data too. Underestimation of sand by WSS resulted in 

larger evaporation, smaller deep percolation, and larger runoff fluxes compared to estimates 

based on ISS in majority of the cases. Temporal variations in reference evapotranspiration, 

precipitation amount, and precipitation timing influenced inter-seasonal variability in all fluxes. 

The results of this study show that relying on publicly available WSS soil data in soil water 

balance-based irrigation scheduling may have limited impacts on irrigation recommendations at 

regional scale, but more pronounced effects at field scale depending on the magnitude of errors in 

WSS data. In addition, the impacts are variable among seasons depending on atmospheric 

demand and timing and amount of precipitation events. Producers, irrigation planners, and policy 

makers can use these findings in evaluating the tradeoffs of more accurate but more expensive 
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field measurements versus less accurate but readily and freely available soil survey data. As 

application of WSS data in irrigation scheduling gains more popularity for site-specific irrigation 

recommendations, it is important for future studies to expand the present study and consider other 

soils and crops, especially in areas with more arid climates. 
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CHAPTER IV 
 

 

SIMULATING SOIL WATER STATUS OF IRRIGATED FIELDS: THE EFFECTS OF SOIL 

DATA AND ROOT WATER UPTAKE DISTRIBUTION 

 

4.1. Introduction 

Making irrigation decisions based on soil water status in the crop root zone is perhaps the most 

widely researched and commercially available approach to implementing scientific irrigation 

scheduling (Taghvaeian et al., 2020). Accurate and timely data on root zone soil water status can 

help optimize irrigation applications, achieve desired crop yield, improve the financial viability of 

agricultural production, and minimize potential adverse impacts on downstream ecosystems 

(Kukal et al., 2020). Soil water status across the root zone is most commonly reported in form of 

volumetric water content (θv). Estimates of θv can be obtained by one of three main methods: 

taking gravimetric samples, installing soil water sensors, or simulating θv using models (Howell, 

1996; Taghvaeian et al., 2020). The first method can achieve the highest accuracy if conducted 

properly (Broner, 2005), but is rarely used in practical irrigation scheduling because it is 

destructive, labor-intensive, and time-consuming (Cardenas-Lailhacar and Dukes, 2010; Rudnick 

et al., 2015; Walker et al., 2004). 

The second method, monitoring θv using sensors, is less labor-intensive and less time-consuming, 

provides continuous readings (Broner, 2005; Cardenas-Lailhacar and Dukes, 2010), and is 

becoming more widely implemented for irrigation management in the U.S. (Rudnick et al., 2015).  
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However, only 12% of the farms in the U.S. used this approach to schedule irrigation events in 

2018 (USDA-NASS, 2019). The relatively low adoption rate of soil water sensing devices could 

be due to practical difficulties associated with sensor accuracy, reliability, data interpretability, 

required maintenance, time commitment, and cost (Kukal et al., 2020; Pardossi and Incrocci, 

2011; Taghvaeian et al., 2020). 

The third method, simulating θv using computer models, offers several advantages such as 

reduced time and labor requirements, ability to forecast irrigation needs (Broner, 2005), easy 

application, and sufficient robustness under a wide range of conditions (Pardossi and Incrocci, 

2011). In addition, θv can be estimated at variable depths and temporal intervals (Bierkens et al., 

2015). However, models may obtain lower accuracy than other methods because they rely on the 

accuracy of several input data (Miyamoto, 1984). For example, reference evapotranspiration and 

precipitation estimates may not be accurate because of the lack of well-maintained agricultural 

weather stations that would represent the field of interest (Taghvaeian et al., 2020).  

Another major input to models is soil textural data, which may also have errors depending on the 

source of data and the method of collection. The most accurate soil data are obtained through in-

situ soil sampling (ISS). Despite higher accuracy, ISS is tedious, laborious, and expensive. 

Alternatively, online databases can provide easily accessible soil data at a fraction of a cost or no 

cost at all. The most used database in the US is SSURGO, which allows access to soil data 

through its online user interface known as the USDA Web Soil Survey (WSS) (USDA-NRCS, 

2017). Although previous studies have shown that WSS data are not as accurate as ISS (Brevik et 

al., 2003) and not precise enough for site-specific irrigation recommendations (Sui and Vories, 

2020; Vories and Sudduth, 2021), many irrigation scheduling models and tools rely on WSS due 

to its easy, free, and fast access. For example, the Water Irrigation Scheduler for Efficient (WISE) 

Application, a cloud-based model that is used by producers in Montana, Wyoming, Nebraska, and 

Colorado, schedules irrigation based on soil data extracted from SSURGO database (Andales et 
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al., 2020). Other irrigation scheduling tools such as Irrigation Scheduler Mobile app (Peters et al., 

2019) and the web-based NDAWN Irrigation Scheduler (Scherer and Morlock, 2008) also rely on 

SSURGO/WSS for obtaining soil data. WSS data have also been used for irrigation scheduling at 

sub-field scales. For instance, ARSPivot extracts soil maps from WSS to delineate different 

management zones and create site-specific prescription maps for variable rate irrigation in Texas 

(Andrade et al., 2020). The University of Georgia’s web-based model (Smart Sensor Array) also 

uses WSS soil textural information at sub-field scales to generate irrigation scheduling 

recommendations (Liang et al., 2016). As the use of SSURGO/WSS data in irrigation 

management at sub-field and field scales gains more popularity, it is still unclear how the errors 

in WSS soil data might impact the outputs of irrigation scheduling models. 

More advanced models such as vadose zone water transport models may require additional input 

parameters like root water uptake distribution (RWUD). RWUD can be assumed as constant or 

linearly distributed across the crop root zone or it can be estimated based on field measurements. 

Most previous studies have used constant or linear patterns due to the challenges of obtaining 

more accurate RWUDs. Only a limited number of studies have investigated the effects of various 

RWUDs on simulated θv. In one of the earliest studies, Prasad (1988) compared constant and 

linear RWUD and found that constant resulted in larger errors, whereas linear obtained 

satisfactory results when compared to measured data. Further, the author highlighted that 

introduction of a non-linear RWUD would possibly improve model performance. Li et al. (1999) 

compared measured θv with simulated θv from constant, linear, and exponential RWUD and 

showed that the exponential distribution performed better than constant and linear. In a later 

study, Li et al. (2001a) modified this exponential distribution and showed that the modified 

version achieved even better results than the earlier version. Another study by Li et al. (2001b) 

compared linear and different exponential RWUD and found that the model with exponential 

RWUD performed better than the linear approach. These few studies indicate that implementation 
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of non-linear RWUD could improve the model outputs. However, they have not explored how 

possible effects on simulated θv would translate to irrigation decisions.  

The main goal of this study was to assess the performance of a vadose zone water flow and solute 

transport model, for practical irrigation scheduling when different combinations of soil data and 

RWUDs are used as input to the model. The specific objectives were (1) to quantify the effects of 

using two sources of soil data and three RWUDs (from simple to more complex) on simulated θv, 

and 2) to study how the effects on θv would translate to end-user variables for irrigation 

management. Simulated θv were compared against the readings of soil water sensors installed at 

commercial irrigated farms to improve the understanding of the practical implications of errors 

associated with variable soil data and RWUDs for irrigation scheduling. 

4.2. Materials and Methods 

4.2.1. Study Area 

The study was conducted during the 2017 and 2018 crop growing seasons at six commercial 

fields within the Fort Cobb Reservoir Experimental Watershed in west central Oklahoma (Figure 

4.1). The crops planted at these sites included soybean (Glycine max (L.)), cotton (Gossypium 

hirsutum L.), and peanut (Arachis hypogaea L.), which are among the dominant irrigated crops in 

the region. All sites were irrigated with center pivot systems, pumping water from the Rush 

Springs aquifer (Neel et al., 2018). The soils at the study sites are classified as Pond Creek fine 

sandy loam (fine-silty, mixed, superactive, thermic Pachic Argiustolls), except for one site that 

has Grant loam soil (fine-silty, mixed, superactive, thermic Udic Argiustolls). The electrical 

conductivity of the soil solution (1:1 soil-water ratio) ranged from 0.6 to 0.9 dS m-1 with an 

average of 0.8 dS m-1 in the top 70 cm of the soil. Study sites were visited on a weekly basis 

during the growing season to measure crop height using a tape measure and take canopy cover 

readings using the Canopeo mobile application (Patrignani and Ochsner, 2015). The Canopeo app 
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analyzes the images taken directly above the canopy and provides the percentage of the image 

covered by green canopy. Table 4.1 provides additional information on the study sites. 

Table 4.1. Crops, growing seasons (planting to harvest), and the total applied water (irrigation 

and precipitation) during the growing season. 

Crop Year Growing season Applied water (mm) 

Soybean 2017 Jun. 17 – Oct. 07 458  
 2018 Jun. 14 – Oct. 09 714 

Cotton 2017 May 15 – Oct. 27 616  
 2018 May 24 – Oct. 22 692 

Peanut 2017 May 13 – Oct. 19 632  

  2018 May 24 – Oct. 01 566 

 

 

Figure 4.1. Location of the study sites within the Fort Cobb Reservoir Experimental Watershed 

(FCREW) and the closest weather stations. 
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4.2.2. Soil Water Status 

Soil water status in the form of daily volumetric water content (θv) was obtained by implementing 

two approaches at each site: soil water sensors and a vadose zone water transport model. 

Readings from sensors were treated as the observed θv, while model outputs provided the 

simulated θv. 

4.2.2.1. Observed θv 

Observed θv was obtained by installing time domain reflectometry (TDR) sensors (models 315 

and 310S, Acclima Inc., Meridian, ID, USA) at soil depths of 10, 30, 51, and 71 cm. The sensors 

were installed soon after crop emergence in a representative location in the field, following 

installation protocols described in detail in a recent study conducted at the same sites by Datta et 

al. (2021). The accuracy of the installed TDR sensors was found to be reasonable at the same 

study sites, with root mean square error (RMSE) of 0.03 cm3 cm-3 (Datta et al., 2018). Sensor 

readings were recorded on hourly basis and then averaged to estimate daily observed θv. 

4.2.2.2. Simulated θv 

At each site, daily θv was simulated by the mechanistic one-dimensional HYDRUS model (ver. 

4.16, PC-Progress S.R.O., Prague, CR)  at the same four soil depths as the observed θv. This 

model uses the Richard's equation to simulate unsaturated water flow (Simunek et al., 2005):  

∂θv

∂t
=

∂

∂x
[K (

∂h

∂x
  + cos α)]  - S                                               (1) 

where t is time (d); K is the unsaturated hydraulic conductivity function (cm d-1); h is the soil 

matric potential (cm); x is the spatial coordinate (cm); α is the angle between flow direction and 

the vertical axis (°); and S is the sink term (cm3 cm-3 d-1), which represents root water uptake. The 

HYDRUS model was run as is with the provided input data (explained below) without site-
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specific calibration to represent actual use for irrigation management where this and similar 

models would be implemented without fine-tuning the model parameters.  

In the simulation domain, the depth of the soil profile was set at 1.2 m. Atmospheric condition 

with surface runoff was used as the upper boundary condition and free drainage as the lower 

boundary condition. The initial θv for each site and year was separately obtained from TDR 

sensors. The Feddes non-compensated root water uptake reduction model was selected to 

simulate the effects of water stress (Feddes et al., 1978). The Feddes parameters for soybean, 

cotton, and peanut were based on the values reported in studies by Li et al. (1999), Forkusta et al. 

(2009), and Monfort et al. (2017), respectively. The same parameters were implemented in the 

study by Datta et al. (2021). Other inputs required for running the HYDRUS model included the 

amounts of irrigation and precipitation (I/P), evaporation (E), and transpiration (T) during the 

study period, as well as soil data and RWUDs. The methods used to obtain each of these inputs 

are explained in the following sections. 

4.2.2.2.1. Irrigation and Precipitation 

Irrigation and precipitation were measured by tipping bucket rain gauges (model 900RG, 

Irrometer, Inc., Riverside, CA, USA) installed near TDR sensors at each site. Hourly I/P recorded 

by the rain gauges were summed to achieve daily amounts and then used in HYDRUS 

simulations. 

4.2.2.2.2. Evaporation and Transpiration 

Soil evaporation (E) and crop transpiration (T) were estimated using the dual crop coefficient 

approach described in Jensen and Allen (2016): 

 E = Ke × ETo                                                            (2) 

 T = Ks× Kcb× ETo                                                 (3) 
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where Ke is the soil evaporation coefficient; Ks is the stress coefficient; Kcb is the basal crop 

coefficient; and ETo is the short-crop reference evapotranspiration. E, T, and ETo have units of 

length, while Ke, Ks, and Kcb are dimensionless. Daily standardized Penman-Monteith ETo data 

were estimated and reported by two nearby Oklahoma Mesonet weather stations of Hinton and 

Fort Cobb (McPherson et al., 2007; Sutherland et al., 2005). Values of Kcb were obtained from 

Jensen and Allen (2016) and were adjusted for mid- and late-season growth stages based on local 

climatic conditions. The lengths of the four crop growth stages in the piecewise Kcb curve were 

estimated based on observed growth stages and measured canopy cover. Ks was assumed equal to 

unity (no stress) because the HYDRUS model adjusts T for the effects of water stress using the 

Feddes function. 

4.2.2.2.3. Soil Data 

Soil textural data (percentages of sand, silt, and clay) for each study site were obtained from two 

sources to evaluate their effects on model outputs: in-situ soil samples (ISS) and web soil survey 

(WSS). For ISS, undisturbed soil samples were collected at 10-cm intervals for the top 70 cm of 

the soil profile using a Giddings soil sampling probe (Giddings Machine Company, Windsor, CO, 

USA) and analyzed based on the protocol set by Ashworth et al. (2001). In case of WSS, soil 

textural data were retrieved from the online user interface (ver. 3.4.0, USDA-NRCS, 2017) at the 

same location and soil depth increments as ISS. Soil hydraulic parameters (residual water content, 

saturated water content, saturated hydraulic conductivity, inverse of the air-entry value, pore size 

distribution index, and pore connectivity) were calculated using the Rosetta model (Schaap et al., 

2001) based on the textural data from each source and used as input in HYDRUS. 

4.2.2.2.4. Root Water Uptake Distribution 

Two commonly used RWUD approaches are constant and linear. Under the constant approach, 

water uptake is assumed to be uniform across the crop root zone. Under the linear approach, 
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water uptake decreases linearly with soil depth from a maximum value near the soil surface to 

zero at maximum rooting depth (Feddes et al., 1978; Prasad, 1988). However, these widely used 

simplified distributions seldom represent the reality of water extraction by roots. Improper 

representation of root water uptake has been documented as one of the challenges for accurate 

estimation of θv in the studies by Li et al. (1999) and Ojha et al. (2009). On the other hand, the 

collection of in-situ root samples is costly, labor-intensive, and time-consuming. To overcome 

these challenges, the sensor-based approach was proposed and implemented in this study. 

The sensor-based RWUD was estimated based on the readings of a 1.2 m long soil water probe 

(AquaSpy Inc., San Diego, CA, USA) installed at each site. Unlike the TDR sensors that were 

installed at four depths (10, 30, 51, and 71 cm) and provided estimates of θv, the AquaSpy probe 

had 12 sensors at 10-cm intervals along its length and provided estimates of scaled frequency 

(SF). SF is a dimensionless number ranging from zero to 100, with zero representing air dry and 

100 representing saturated conditions. Sensor-based RWUD for each sensor depth (10 cm 

intervals) was estimated based on changes in SF readings during the 4-day periods after reaching 

field capacity (FC) if no I/P was recorded in that period. It was assumed that FC is reached within 

two days after major I/P events given the coarse to medium texture of the soil profiles. Several 4-

day periods during the middle of the growing season were identified for each site. The reason for 

selecting the 4-day periods from the mid-season growth stage is that maximum rooting depth has 

been reached and root system can be assumed static (Bufon et al., 2012). For each identified 

period, daily rate of decline in SF at each sensor depth along the 1.2 m of the AquaSpy probe was 

estimated as: 

  DDSF = 
SFi - SFf

n
                                                   (4)  

where DDSF is the daily decline in SF; SFi is the initial SF (two days after a major I/P event); SFf 

is the final SF (4 days after SFi); and n is the number of days between SFi and SFf. The ratio of 
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DDSF at each depth to the sum of DDSF values for the entire probe length was then estimated for 

each period and assumed to represent the relative root water uptake for that period and depth. 

These relative root water uptakes were averaged for all periods and interpolated between the 

AquaSpy sensor depths to develop the RWUD curve for each site. The three different RWUDs 

were provided separately as inputs in the soil profile summary window of HYDRUS to describe 

the spatial variation of water extraction over the root zone.  

4.2.3. Irrigation End-user Variables 

End-user variables are crucial indicators for developing and implementing scientific irrigation 

scheduling (Sharma et al., 2020). Two key end-user variables are irrigation trigger (IT) and soil 

water depletion (SWD). Together, these variables can determine the timing and the amount of 

irrigation events. The value of SWD when irrigation is triggered determines the amount of 

irrigation to be applied. For each site, IT and SWD were calculated based on simulated θv 

obtained from running the HYDRUS model with each of the six combinations of two sources of 

soil data (ISS and WSS) and three RWUDs (constant, linear, and sensor-based). 

4.2.3.1. Irrigation Trigger 

IT was calculated by estimating total soil water (TSW) and comparing it to readily available 

water (RAW) at each site (Sharma et al., 2020). The TSW on each day of the study period was 

estimated by integrating the simulated θv over the rooting depth and converting the units to depth 

of water. The RAW was estimated for the rooting depth as the level at which half of the available 

water content (AWC), defined as the difference between FC and wilting point (WP), was 

depleted. In other words, the maximum allowable depletion was assumed to be 50%, which is a 

typical estimate for most agricultural crops. Soil water thresholds of FC and WP were computed 

based on the van Genuchten function (van Genuchten, 1980) using the same soil data that were 

used as input in HYDRUS. An IT value of one was considered for any day during the study 
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period when TSW was smaller than or equal to RAW, meaning that irrigation should have been 

triggered. Otherwise, the IT was zero (Equation 5). The sum of IT during the study period was 

compared among the six combinations of soil data and RWUDs at each site: 

  IT = {
0     if TSW > RAW

1     if TSW ≤ RAW
                                              (5) 

4.2.3.2. Soil Water Depletion 

SWD is the amount of water required to bring the TSW to FC level (Equation 6). The average 

SWD during the study period was compared among the six combinations of soil data and 

RWUDs at each site: 

SWD = FC - TSW                                                   (6) 

4.2.3. Statistical Indicators 

Simulated θv obtained from HYDRUS model for each combination of soil data and RWUDs were 

compared with observed θv from TDR sensors to evaluate the effects of input data variability on 

model performance. Two statistical indicators were used: RMSE and mean bias error (MBE). The 

RMSE equals zero when the compared datasets show perfect agreement. The MBE indicates 

under- and/or over-estimation of simulated θv compared to observed θv: 

 RMSE = √
1

n
∑ (θv_s(i)- θv_o(i))

2n
i=1                                              (7) 

 MBE = 
1

n
∑ (θv_s(i)- θv_o(i))

n
i=1                                         (8) 

where n is number of days (sample size), θv_s is simulated θv, θv_o is observed θv, and i is the 

observation index of each time-step. In addition, Pearson’s correlation coefficient (r) was 

calculated to understand how closely the temporal patterns of simulated and observed θv were 
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related to each other. Closely correlated patterns have r values near one, and uncorrelated patterns 

have a value near zero. 

4.3. Results and Discussion 

4.3.1. Soil Data Sources 

The two sources of soil data (ISS and WSS) had major differences in their estimates of soil 

textural data (Figure 4.2). The percentage of sand particles had the largest difference, while the 

percentage of clay had the smallest variation between the two sources. In 95% of the cases, WSS 

underestimated sand percentage, with a difference that ranged from 5 to 47%. The 

underestimation error increased with depth, especially below 30 cm. In other words, WSS 

indicated finer textures at deeper layers. The average percentage of sand among all sites and 

depths was 66% based on ISS, larger than the average value based on WSS (41%). The 

underestimation in sand percentage by WSS was accompanied by overestimation of silt 

percentage. The average silt content was 18% based on ISS, about half of the average silt content 

from WSS (38%). 
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Figure 4.2. Box plots of differences in particle size between WSS and ISS. Whiskers indicate 10th 

and 90th percentiles. 

The differences in soil texture have considerable impact on simulating water movement in the 

root zone. For example, the average saturated hydraulic conductivity was 51.9 cm d-1 for ISS and 

19.6 cm d-1 for WSS. Key soil water thresholds and parameters used in irrigation scheduling, 

namely FC, WP, and AWC, were also impacted by errors in soil textural data (Figure 4.3). The 

average FC estimated based on the ISS and WSS input data were 25% and 33%, respectively. The 

average WP estimates were closer at 8% and 10% based on the ISS and WSS, respectively. The 

average AWC estimates were 17% based on ISS and 23% based on WSS. The difference in 

average AWC estimates is equal to 68 mm of water for 1.0 m of the soil profile. The largest 

difference observed was about 117 mm for 1.0 m of soil profile. 

 

Figure 4.3. Box plots of differences in field capacity (FC), wilting point (WP), and available 

water content (AWC) between ISS and WSS. Whiskers indicate 10th and 90th percentiles. 

4.3.2. Root Water Uptake Distributions 
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In general, the sensor-based RWUD resulted in larger water extractions than constant and linear 

distributions at shallow depths and smaller extractions at deeper layers (Figure 4.4). Based on the 

sensor data, 60% to 81% of the total water extraction occurred within the top 30 cm of the soil 

profile. This is probably due to considerably large concentration of roots at shallower soil layers. 

After measuring and monitoring irrigation applications in the same study area, Datta et al. (2021) 

found that irrigation events were too frequent and small, a situation that would result in shallow 

root systems.  

 

Figure 4.4. Root water uptake distributions at each study site in 2017 and 2018 based on 

constant, linear, and sensor-based approaches. 

Other studies have reported similar results. For example, Payero et al. (2017) estimated root water 

uptake based on readings of a capacitance probe (same technology as the probe used in this study) 

and found that 75% and 95% of the total seasonal water extraction by cotton occurred from the 

top 50 and 110 cm of soil, respectively. In the present study, the portions of the total cotton water 

uptake for the same two depths were 70% and 95%, respectively. Using θv obtained 
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gravimetrically, Patel et al. (2008) found that the portions of total water uptake by peanut roots 

from the top 30 and 60 cm soil layers were 50% and 87%, respectively. In this study, the 

estimated portions for the same two depths and the same crop were 80% and 92%, respectively, 

indicating a larger extraction from shallower layers. For soybean, Curto et al. (2019) estimated 

that 50% to 65% of total root water uptake occurred in the top 27.5 cm layer based on readings 

from a capacitance probe. The values for the two soybean fields of the present study were 56% 

and 72% for the top 30 cm layer. 

At half of the sites (cotton-17, cotton-18, and soybean-17), root water uptake decreased to about 

60-70 cm and then increased. This behavior may be due to two reasons: 1) presence of a 

compacted layer around 60-70 cm, which was anecdotally observed during probe installation at 

these sites, and 2) some level of water stress occurred at the shallower layers during 4-day periods 

against the assumption made. Roots would extract more water from deeper layers if θv at shallow 

layers is decreased (Thangthong et al., 2016). Regardless of the reason behind observed patterns, 

the sensor-based approach represents the actual RWUD for the top 120 cm of the soil, providing a 

useful reference in assessing the effects of variable RWUDs on the output of models such as 

HYDRUS. 

4.3.3. Model Performance 

Simulated θv by HYDRUS for the six combinations of two soil data sources (ISS and WSS) and 

three RWUDs (constant, linear, and sensor-based) had generally similar patterns to observed θv 

recorded by TDR sensors at 4 soil depths during the study period. As expected, simulated and 

observed θv at all sites had more pronounced response to water applications at the shallower 

depths of 10 and 30 cm than deeper layers of 51 and 71 cm. However, model performance varied 

among sites. Figure 4.5 illustrates simulated and observed θv for the two sites that had the best 
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and worst performances. When considering all soil-RWUD combinations, soybean-18 had the 

smallest errors, and peanut-18 had the largest errors.  
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Figure 4.5. Observed and simulated volumetric water content (θv) at four soil depths (10, 30, 51, 

and 71 cm) at the sites with the (a) smallest errors (WSS soybean-18) and (b) largest errors (WSS 

peanut-18). 

Average error indicators for six combinations of soil data and RWUDs are provided in table 4.2, 

and the ranges are shown in figure 4.6. Among the two soil data sources, WSS resulted in larger 

average and maximum RMSEs (0.05 and 0.15 cm3 cm-3, respectively) compared to ISS (0.04 and 

0.12 cm3 cm-3, respectively). Among the RWUDs, constant led to the largest average and 

maximum RMSEs (0.05 and 0.15 cm3 cm-3, respectively) and sensor-based resulted in the 

smallest RMSEs (0.04 and 0.08 cm3 cm-3, respectively). When averaged over all sites and depths, 

the largest RMSE was 0.06 cm3 cm-3 for WSS-constant combination and the smallest RMSE was 

0.04 cm3 cm-3 for ISS-sensor. As mentioned before, the observed θv used in estimating these 
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RMSEs were obtained from the readings of TDR sensors. A previous study in the same area 

found the RMSE of the same TDR sensors to be 0.03 cm3 cm-3 when compared against 

gravimetric measurements (Datta et al., 2018). This indicates that the average accuracy of 

simulated θv based on ISS-sensor was close to the accuracy range of the TDR sensors. Most of 

the differences in RMSEs were from the shallowest depth of 10 cm and the values for the other 

three depths were closer.  

Table 4.2. Average root mean square error (RMSE) and mean bias error (MBE) for each 

combination of soil data and RWUD.[a] 

RWUD 
RMSE (cm3 cm-3)  MBE (cm3 cm-3) 

ISS [b] WSS [c]   ISS WSS 

Constant 0.05 0.06  0.03 0.03 

Linear 0.04 0.05  0.00 0.01 

Sensor 0.04 0.04   0.01 0.01 
[a] RWUD = root water uptake distribution,  ISS = in-situ soil samples data, and WSS = USDA Web Soil Survey data. 

The other error indicator (MBE) provided similar information to RMSE. When comparing soil 

data sources, WSS had larger average and maximum MBEs (0.02 and 0.14 cm3 cm-3, 

respectively) compared to ISS (0.01 and 0.11 cm3 cm-3, respectively). Among the RWUDs (ISS 

and WSS combined), constant resulted in the largest average and maximum MBEs (0.03 and 0.14 

cm3 cm-3, respectively). Average and maximum MBEs were 0.00 and 0.12 cm3 cm-3, respectively, 

for the linear and 0.01 and 0.07 cm3 cm-3, respectively, for sensor-based RWUDs. Similar to 

RMSE, the differences in MBEs based on the six combinations of input data were larger for the 

10 cm depth compared to 30, 51, and 71 cm depths. The correlation coefficients showed that in 

general, simulated and observed θv behaved similarly, with average r estimates that ranged from 

0.68 based on WSS-sensor combination to 0.75 for ISS-sensor. 
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Figure 4.6. Box plots of (a) root mean square error (RMSE) and (b) mean bias error (MBE) (b) of 

simulated θv for the six combinations of soil data and RWUDs. Whiskers indicate 10th and 90th 

percentiles. 

The RMSEs of the present study were comparable to and in some cases larger than those reported 

in previous studies. For example, Er-Raki et al. (2021) compared θv from field-calibrated TDR 

sensors with the HYDRUS model and found that the average RMSE was 0.02 cm3 cm-3. Silva 

Ursulino et al. (2019) reported good agreement between θv from lab-calibrated TDR sensors and 

HYDRUS model, with an RMSE range of 0.01 to 0.02 cm3 cm-3. Gonzalez et al. (2015) compared 

θv from frequency domain reflectometry sensors and HYDRUS and found RMSE varying from 
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0.01 to 0.03 cm3 cm-3. Li et al. (2015) compared neutron probe and HYDRUS-simulated θv and 

reported an RMSE of 0.05 cm3 cm-3. Several factors can contribute to disagreements between 

simulated and observed θv including, but not limited to, preferential flow caused by macropores 

and cracks (Garg et al., 2009; Patil et al., 2011), spatial heterogeneity of soil, sensors’ errors, 

errors in field observations (Deb et al., 2013; Vazifedoust et al., 2008), and errors in RWUDs 

(Simunek et al., 2005). 

4.3.4. Irrigation End-user Variables 

Large variations in IT and SWD were observed for different combinations of soil data and 

RWUDs. Figure 4.7 shows the average IT as percentage of the study period and the average SWD 

for each input data combination. Use of WSS data resulted in an IT being activated during 66% of 

the study period on average, compared to 18% based on ISS data. Similarly, the average SWD 

was 157 mm based on WSS, more than twice the average SWD based on ISS (68 mm). These 

differences were mainly due to large soil textural errors in WSS, which resulted in overestimation 

of soil water thresholds (FC, WP, and RAW). They also indicate that irrigation management 

decisions could be highly affected if the errors in WSS are as large as those obtained in this study. 

The effects could be considerable for web-based irrigation scheduling tools and smart-phone 

applications that rely on WSS to recommend irrigation timing and amount. Some of these tools 

allow users to modify WSS data automatically extracted by the tool if they have more accurate 

information.  
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Figure 4.7. (a) Average irrigation trigger (IT) as a percentage of the study period when IT was 

equal to unity and (b) average soil water depletion (SWD) for each combination of soil data and 

RWUDs. 

The effects of variable RWUDs on IT and SWD were smaller than the effects of soil data 

variability. The average percent of the study period when IT was equal to unity ranged from 36% 

for constant to 48% for linear. The minimum and maximum average SWD were 106 and 118 mm 

for the same two RWUDs, respectively. These small differences suggest that errors in RWUD 

have limited impact on irrigation end-user variables and thus installing a soil water sensor probe 

just for obtaining accurate RWUD may not be justified. This is probably due to the fact that 
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irrigation decisions were based on the total water content of the root zone. As a result, changes in 

relative water extraction across the soil profile, despite having an impact on depth-specific θv, had 

minimal effect on end-user variables. However, this study was conducted during the part of the 

growing season when roots had reached their maximum length. Sensor data can be useful in 

estimating root development during early stages of growth and can play an important role in 

adjusting irrigation management as roots grow.  

4.4. Conclusions 

Simulated θv based on each of the six combinations of soil data and RWUDs were compared 

against observed θv at four soil depths at each of six fields under center pivot irrigation systems. 

In most cases, errors were larger when WSS data were used as input rather than ISS data. The 

best model performance was achieved when the ISS-sensor combination was used as input, 

resulting in an average RMSE of 0.04 cm3 cm-3 among all sites and depths. The largest average 

RMSE (0.06 cm3 cm-3) occurred when the WSS-constant combination was used. Two other 

indicators of MBE and r showed the same pattern, with simulated θv based on ISS-sensor having 

the smallest errors and being more highly correlated with observed θv, especially at shallower 

depths. Finally, simulated θv values were converted to end-user variables (IT and SWD). Based 

on IT estimates, irrigation was needed 66% of the time on average when WSS was used, while 

using ISS as input soil data resulted in an IT during only 18% of the time. The average SWD, 

which represents the amount of irrigation required, was also larger based on WSS at 157 mm 

compared to 68 mm when ISS was used as input data. Differences in RWUD had a smaller 

impact on the end-user variables because these variables are estimated for the entire root zone and 

the distribution of water extraction within the root zone has a smaller impact on them. 

The results of this study demonstrate the importance of using accurate input data, especially soil 

textural data, in irrigation tools and models in order to deliver the desired improvements in 
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irrigation management. As irrigation scheduling tools advance to allow for more capabilities, 

additional types of input data with different levels of complexity may be required. Future studies 

should further examine the effects of errors in input data on irrigation model outputs for a range 

of soil, crop, and climatic conditions. Identifying the magnitude of errors in simulated end-user 

variables caused by errors in input data can help decision makers prioritize different types of 

input data and spend their limited resources to increase the accuracy of those that have the largest 

effects on model outputs. 
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CHAPTER V 
 

 

CONCLUSIONS 

 

Development and implementation of scientific irrigation management technologies in agriculture 

can play a vital role in supplying the growing demands and securing the economic and 

environmental sustainability of crop production. This research project evaluated the performance 

and effectiveness of different scientific irrigation scheduling methods under variable soils, crops, 

and climatic conditions of western Oklahoma. The main goal of each of the three chapters was to: 

(1) evaluate the performance of a multi-sensor capacitance probe in determining soil water 

content and field capacity, (2) study the effects of soil data accuracy on irrigation scheduling 

using a soil water balance model for different crops and climatic conditions across western 

Oklahoma, and (3) investigate the impact of variable soil data and root water uptake distributions 

on multi-layer soil water status and irrigation parameters simulated by a vadose-zone water 

transport model. 

In the first study (Chapter 2) the performance of a commercially available multi-sensor 

capacitance probe with six different calibrations provided by the manufacturer was evaluated at 

36 irrigated sites with variable levels of clay content and salinity. The Default calibration resulted 

in the largest error, indicating the need for changing the factory setting and selecting a more 

appropriate calibration. The smallest errors considering all sites was obtained by the Silty clay 

loam calibration. Higher clay content and salinity had major impacts on sensor performance.
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Default and Sand calibrations were more sensitive to increases in clay and salinity compared to 

other calibrations. Heavy clay was the only calibration that had an opposite trend and showed 

smaller errors at larger clay ranges regardless of salinity. Although silty clay loam obtained the 

smallest errors, the calibration produced a smaller range of soil water contents. The Combined 

calibration that had somewhat similar accuracy produced a larger range of readings, which is 

important for practical irrigation scheduling. Field capacity (FC) for 13 sites and two depths at 

each site was determined in the laboratory and used to evaluate the performance of two sensor-

based approaches in determining FC: days after major watering events to reach laboratory FC and 

the percentile of sensor readings that represents laboratory FC. Laboratory FC was reached from 

1 to 9 days depending on clay and soil depth. The percentile approach had a large range of 

estimates too, from 3 to 97%. Neither of the two approaches were reliable in providing FC 

estimates. The main factors impacting sensor-based FC estimates appeared to be soil texture, soil 

depth, soil layers below the depth of interest, irrigation system, and irrigation management. 

In the second study (Chapter 3), the errors in freely available and commonly used web soil survey 

(WSS) soil textural data were evaluated for three regions of western Oklahoma through 

comparison with in-situ sampling (ISS) data. The effects of errors on estimated water fluxes of a 

soil water balance model were also investigated for dominant crops of each region over a 15-year 

(2006-2020) period. WSS soil textures were finer than ISS at most sites and soil layers, resulting 

in generally larger root zone total available water estimates. Differences in irrigation demand 

estimates when WSS data were used instead of ISS reached 20% at one site but were generally 

within ±9%. Half of the estimated irrigation differences for all sites, years, and crops were within 

±25 mm. Soil evaporation, deep percolation, and runoff fluxes were also impacted by soil data 

accuracy, albeit to a smaller degree than irrigation, at levels and directions (over or 

underestimation) that were dependent on the sign and magnitude of  WSS errors, as well as 

precipitation amounts and timing. 
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In the third study (chapter 4), the combined effects of soil textural data accuracy and root water 

uptake distributions (RWUDs) on simulated soil water content at different layers of six irrigated 

fields were investigated using the HYDRUS model. In addition, the study assessed how the effect 

would translate to end-user variables for irrigation management. The percentage of sand particles 

based on WSS was about half of the measured values on average, resulting in a considerable 

difference in estimated hydraulic properties and soil water thresholds. Sensor data revealed that 

RWUDs were highly nonuniform, with more than 60% of water extraction occurring from the top 

30 cm of the root zone. Among the six combinations of two sources of soil data and three 

RWUDs, ISS-sensor resulted in the smallest errors in simulated soil water content and WSS-

constant yielded the largest errors. Relying on WSS resulted in irrigation trigger being called 

about four times more than when measured soil data were used. The average soil water depletion 

based on WSS was also about two times larger than the average soil water depletion based on 

ISS. 

Overall, this study assisted in knowing how a multi-sensor probe with different calibrations was 

performed in irrigated fields with a wide range of clay and salinity levels and how errors in the 

sensor impacted in estimating field capacity and irrigation management decisions. Further, the 

study provided information that publicly and easily available web soil survey data may have 

relatively small impacts on irrigation recommendations at regional scale, but the impacts could be 

large at field scale. Finally, this study helped in understanding the importance of using accurate 

input data in irrigation scheduling tools and models to improve the estimates of soil water content 

and irrigation management decisions.
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CHAPTER VI 
 

 

RESEARCH CONTRIBUTIONS 

 

CHAPTER II: PERFORMANCE OF A MULTI-SENSOR CAPACITANCE PROBE IN 

ESTIMATING SOIL WATER CONTENT AND FIELD CAPACITY 

Many new and/or upgraded soil water sensors are introduced in the market every season. There is 

a need to continuously evaluate the performance of these sensors, as they become available. In 

addition, several studies have looked at the performance evaluation of various types of 

commercially available soil water sensors. However, there has been lack of field studies that 

capture a wide range of field variability in terms of clay and salinity levels. This study assists in 

understanding how a multi-sensor capacitance probe with different calibrations provided by the 

manufacturer performed under highly variable field conditions. In addition, the study provides 

information on the accuracy and reliability of sensor-based approaches to identify field capacity, 

an area of research that has not received much attention by previous researchers.  

CHAPTER III: EFFECT OF SOIL DATA ACCURACY ON OUTPUTS OF IRRIGATION 

SCHEDULING TOOLS 

In recent years, web-based irrigation scheduling tools and smartphone apps that rely on simple 

soil water balance models have been gaining popularity among growers. Most of these tools 

obtain their required soil data from USDA's Web Soil Survey (WSS) online database, which is
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freely available and required less time than taking in-situ soil (ISS) samples and processing them 

in the laboratory. Several previous studies have reported that WSS data are less accurate, and may 

not be appropriate for precision agriculture applications including irrigation recommendations. 

However, no comprehensive studies have been conducted to look at the effects of soil data 

accuracy on irrigation recommendations. This study provides information on how freely and 

easily obtainable WSS data impact irrigation recommendations using a soil water balance model 

in variable soils, crops, and climatic conditions. Such information is lacking in the literature and 

can be used by producers, irrigation planners, and policy makers to evaluate the tradeoffs between 

accurate and less accurate soil data. 

CHAPTER IV: SIMULATING SOIL WATER CONTENT OF IRRIGATED FIELDS: THE 

EFFECTS OF VARIABLE SOIL DATA AND ROOT WATER UPTAKE DISTRIBUTIONS 

With recent advances in web-based irrigation scheduling tools and mobile applications and the 

possibility of using more complex modeling approaches, it is important to evaluate the effects of 

variable input data on the output of these tools and models. This study simulates soil water 

content at different soil depths using six different combinations of two soil data sources and three 

root water uptake distributions as input to a vadose-zone water transport model and demonstrates 

the importance of using accurate input data for irrigation management. The findings can help 

researchers identify the sensitivity of advanced irrigation tools and models to different input 

parameters and their accuracies and to prioritize investing limited resources to improve model 

performance.
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