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Abstract: Subsurface geological storage of CO2 has the potential to significantly offset 

greenhouse gas emissions for safe, economic, and acceptable public use of fossil fuels. 

Due to legal advantages and vast resource capacity, offshore CO2 storage provides an 

attractive alternative to onshore options. Although offshore Lower Cretaceous and Upper 

Jurassic reservoirs have a vast expected storage capacity, quantitative assessment of the 

offshore storage resource in the southeastern United States is limited. This work is a part 

of the Southeast Offshore Storage Resource Assessment (SOSRA) project, which 

presents quantitative evaluation of a high-quality potential geological repository for CO2 

in the Mid- and South Atlantic Planning Areas. This is the first comprehensive 

investigation and quantitative assessment of CO2 storage potential for the outer 

continental shelf within the Lower Cretaceous and Upper Jurassic rocks, including the 

Southeast Georgia Embayment and most of the Blake Plateau. An interpretation of 

200,000 km of legacy industrial 2D seismic reflection profiles and geophysical well logs 

(TRANSCO 1005-1, COST GE-1, and EXXON 564-1) are utilized to create structure and 

thickness maps for the potential reservoirs and seals. Three target reservoirs isolated by 

seals based on their effective porosity values are identified and assessed. A quantitative 

evaluation of CO2 Storage Potential in the Offshore Atlantic Lower Cretaceous and 

Upper Jurassic Strata is calculated using the DOE-NETL equation for saline formations. 

The prospective storage resources evaluation ranges between 450 and 4700 Mt of CO2 

within the Lower Cretaceous and between 500 and 5710 Mt within the Upper Jurassic 

sandstone rocks at P10 to P90. The efficiency factor of the dolomite ranges from 0.64 to 

5.36 percent at P10 to P90 for the formation scale. Facies classification of five offshore 

wells in the Southeast Georgia Embayment was applied to the Machine Learning 

approach using Support Vector Classifier (SVC) and Random Forest Classifier (RFC). As 

a result, the SVC and RFC algorithms were compared to evaluate facies classification 

accuracy; the RFC had the most accurate and effectively used outcomes to classify 

lithofacies. The Machine Learning approach resulted in reliable and accurate values of 

predicted facies classification to improve CO2 storage estimation. 
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CHAPTER I 
 

 

1 INTRODUCTION 

 

 

 

The Southeast Offshore Storage Resource Assessment (SOSRA) provided a high-quality 

prospective storage resource assessment of the eastern Gulf of Mexico and the mid-and south 

Atlantic Ocean. A variety of data analysis approaches are applied to ensure that a high-quality 

assessment can estimate storage capacity to within 30%. The Department of Energy (DOE) has 

announced a Funding Opportunity Announcement (FOA), DE-FOA-0001246, soliciting 

proposals to address this need and establish a plan for forwarding to commercial implementation, 

which involves establishing Best Practices Manuals (BPMs). 

Offshore geologic storage of carbon dioxide (CO2) is an efficient tool to reduce CO2 emissions in 

the atmosphere and of climate change (Metz et al., 2005). Offshore CO2 storage refers to the 

injection of CO2 into the strata beneath the seabed for permanent storage. 

Due to legal advantages and the postulated vast resource capacity, offshore storage offers a
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an attractive alternative to onshore storage (Esposito et al., 2016). The Sleipner project in the North 

Sea was an early opportunity for commercial deployment. Sleipner was the first successful CO2 

storage project that demonstrated the technical feasibility of offshore storage. 

Although offshore reservoirs are projected to have a large storage capacity, there has been no 

complete study of the southeastern United States' offshore storage resource potential. Few studies 

have been conducted in the southeastern United States (Hendriks et al., 2004). According to Esposito 

et al. (2010), approximately 170 Gt of CO2 could be stored in Miocene sandstone, and at least 30 Gt 

could be stored in deeper Cretaceous layers in a 10,000 square mile area offshore Alabama and the 

western Florida Panhandle. According to a task group convened by the Southern States Energy Board 

(SSEB) and the Interstate Oil and Gas Compact Commission, there was no quantitative assessment of 

the offshore storage resource potential along the Atlantic seaboard and the eastern Gulf of Mexico in 

the southeastern United States (IOGCC). According to NETL CO2 Storage Atlases, the U.S. 

Environmental Protection Agency estimates that the southeast produces about 40% of anthropogenic 

CO2 emissions. The lack of an offshore CO2 assessment is a big hole in our knowledge about how 

much CO2 I can store in the region. 

1.1 Objectives of Study 

This study is a part the large SOSRA project, which conducted research to address the DOE project 

objectives. This project includes significant advances in knowledge and technology, which can 

facilitate assessing and quantifying offshore CO2 storage resources in the study region (Figure 1-1). 

The central objective of the SOSRA project is to develop an offshore storage resource assessment of 

saline formations in offshore regions. This research project extends from the Virginia-North Carolina 

border, where it overlaps with Virginia Tech, to the south of Florida (Figure 1-1), linking up with 

Oklahoma State University’s study area. This study will be carried out by answering the following 

questions: 
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- What are the geological and geophysical characteristics of the Mesozoic strata? 

- Do the Mesozoic formations have quantifiable porosity and permeability? 

- Do the Mesozoic formations have significant CO2 storage capacity? 

- What are the quality and spatial extent of prospective reservoirs and seals? 

 

 

Figure 1-1: Regional map showing proposed SOSRA study area (Tew et al., 2013). The figure also showing three areas which 
are bounded by colored triangles: area 1 is was analyzed by The Virginia Polytechnic Institute and State University, both 
areas 2 (i.e. this study), and 3 were analyzed by Oklahoma State University. 
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1.2 Hypothesis 

- The offshore reservoirs could provide vast permanent storage. 

- Various estimates of the global CO2 storage capacity of prospective geological storage have 

been made. These estimates demonstrated a broad range of values. 

- Various porosity and permeability regimes are widely distributed in the Mesozoic strata. 

- The Mesozoic strata consist of categorized stratigraphic systems. 

1.3 Geological perspective 

The evolution of the Atlantic continental margin, including the study area, is broadly characterized by 

continental rifting beginning in Triassic time (Poag, 1978; Dillon et al., 1979; Scholle, 1979; Dalziel 

et al., 1994; Poppe et al., 1995). Mesozoic rifting involved tectonic subsidence in extensional basins, 

following by regional thermal subsidence along the entire eastern North American margin.  (Dillon et 

al., 1983; Pinet and Popenoe, 1985; Badley et al., 1988; Dillon and Popenoe, 1988; Dalziel et al., 

1994). Stratigraphic sequences on this type of passive margin are characterized by extensive lateral 

continuity and offshore dip with relatively minor structural disturbance (Dillon and Popenoe, 1988; 

Dalziel et al., 1994; Poppe et al., 1995). In the mid-Atlantic and South Atlantic planning areas, there 

is a thick succession of post-rift strata ranging in age from Jurassic to Pleistocene. The significant 

depositional centers in these planning areas from north to south include the Baltimore Canyon 

Trough, the Carolina Trough, the Southeast Georgia Embayment, and the Blake Plateau Basin. The 

range of sediment column thicknesses is 3,048-7,620m (Maher and Applin, 1971; Scholle, 1979; 

Lizarralde et al., 1994). The post-rift sediments overlie a regional breakup unconformity that cuts 

across the entire region and marks the rift-drift transition from165-190Ma (Poag, 1978; Poppe et al., 

1995).  The oldest post-rift sediments are of Jurassic age including mid Jurassic (Bathonian-

Callovian) salt and siliciclastic sediment, transgressive Upper Jurassic (Oxfordian) carbonate  
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sediment, and a progradational wedge of Upper Jurassic (Kimmeridgian-Tithonian) siliciclastic and 

carbonate sediment. (Dillon et al., 1982; Dillon and Popenoe, 1988).  The Jurassic section thickens 

seaward, and estimates from geophysical and stratigraphic studies suggest thicknesses of at least 7-

8km in basins depocenters (Dillon et al., 1979; Dillon et al., 1983).  Typically, the Cretaceous section 

is characterized by more clastic sedimentation in the north and more carbonate deposition in the 

south, including a large carbonate platform over the Blake Plateau and offshore Florida. From the 

Late Cretaceous to the Cenozoic strong direction and evidence for paleocurrents controlled deposition 

in the clastic offshore.  In the Late Cretaceous, the Suwannee Strait deposition to the Blake Plateau 

created distinct facies change to the neighboring offshore Florida and Bahamas carbonate deposition 

(Poag, 1978; Pinet and Popenoe, 1985; Poppe et al., 1995). The Suwannee Strait eventually evolved 

into today’s Gulf Stream providing strong erosive power that eroded most of the Paleogene sediments 

on the Blake Plateau and prevented deposition off the Florida-Hatteras slope where it continues to the 

north along the shelf edge (Dillon and Popenoe, 1988; Poppe et al., 1995). 

1.4 Stratigraphic column 

The Continental Offshore Stratigraphic Test (COST) well and Six commercial exploratory wells were 

drilled in the southeast Georgia embayment from 1979 to 1980 (Poppe et al., 1995) (Figure 1-2). 

Offshore, two wells, the TRANSCO 1005-1 and COST GE-1 wells penetrate the pre-rift sediments in 

the Paleozoic, and the EXXON 564-1 penetrate post-rift unconformity (PRU) in the Mesozoic 

sedimentary section (Figure 1-2). The COST GE-1 well penetrated the PRU at ~10,500ft, and 

recorded approximately 2,250ft of Paleozoic sedimentary sequence, and total depth (TD) at 13,254ft 

(Scholle, 19790). The Paleozoic section consists of non-fossiliferous quartzite, shale, and slate, 

underlain by metamorphic and meta-volcanic rocks (Scholle, 1979). The TRANSCO 1005-1 well 

recorded the breakup unconformity at a depth of ~9,000ft, penetrated Paleozoic sedimentary rocks at 

~2,500ft, and bottomed at TD of 11,635ft (Poppe et al., 1995). The Paleozoic section in the  
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TRANSCO well is weakly metamorphosed shale and sandstones with the meta-igneous intrusion. 

Using muds logs, electric logs, drill cuttings, and bio-stratigraphic data, the TRANSCO well has been 

correlated with Devonian rocks encountered in the COST GE-1 well (Poppe et al., 1995). These wells 

have also been seismostratigraphically interpreted and correlated with similar Paleozoic sedimentary 

sequences (Poppe et al., 1995; Lizarralde et al., 1994).    

The COST GE-1 well is the deepest stratigraphic test drilled in the offshore southern Atlantic shelf. 

The total depth of the COST well is over 13,254 ft. (4,040 meters) (Scholle, 1979). This well record a 

thick section spanning the Paleozoic to Cenozoic (Figure 1-2). The thick fossiliferous chalky 

limestone below the drill platform reaches 3,300 ft./depth, corresponding to Tertiary. The units to a 

depth of (3,300 - 5,900) ft are upper cretaceous.  Upper cretaceous is composed of calcareous shale, 

dolomite, and limestone, and the section from 5,900 to 7,200 ft. is Lower Cretaceous which is lying 

on the upper cretaceous units at and below 11,000 ft. depth consists of highly indurated to weakly 

metamorphosed pointed to the Paleozoic (Scholle, 1979).   

The Exxon 564-1 well encountered the pre-rift unconformity at a depth of ~12,260ft, met up with and 

recorded 600ft thickness of unknown sedimentary rocks with Triassic intrusive at ~2,500ft bottomed 

at TD of 12,863ft (Lizarralde et al., 1994). The last 600ft, under the post-rift unconformity in the 

Exxon well is weakly metamorphosed shale and sandstones with meta-igneous intrusion with the 

intrusion of Triassic rocks. The Exxon well has been correlated to be approximately equivalent to 

Devonian rocks encountered in the COST GE-1 well. These wells have also been stratigraphically 

interpreted and correlated with having similar Mesozoic sedimentary sequences (Poppe et al., 1995). 
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Figure 1-2: Three stratigraphic columns for Exxon 564-1, COST GE-1, and TRANSCO 1005-1 offshore wells conducted, 
combining and modified after (Scholle, 1979; Poppe et al., 1995; Boote and Knapp, 2016) . 
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1.5 CO2 geological storage 

The main geological storage options are oil and gas reservoirs, deep saline aquifers, deep-seated coal 

beds (enhanced coal-bed methane recovery), organic-rich shale, basaltic rocks , caverns, and mines 

(Lokhorst and Wildenborg, 2005). Between 2004 and 2005, there were high-level evaluations of 

Carbone Dioxide storage capacity. Due to the lack of geological and geophysical information, the 

estimations of the CO2 storage capacity were globally very broad range values for saline aquifers 

ranging (Table 1-1). 

Table 1-1: Global estimation CO2 storage capacity  (Hendriks et al., 2004; Dooley et al., 2005; Manancourt and Gale, 2005; 
Metz et al., 2005). 

Reservoir 
Metz et al., 

2005  

Manancourt 

and Gale, 2005 

Dooley et 

al., 2005 

Hendrick et al., 2004 

Best estimate Rang 

Coal Beds 3.15-200 150-250 176 267 0-1,480 

Saline 

Aquifers 

1,000-

10,000 
200-200,000 240 240 30-1,081 

O
il

 a
n
d
 G

as
 f

ie
ld

 

D
ep

le
te

d
 

G
as

 

675-900 500-1,000 1,153 

700 
1
,1

5
3
 

232 

239 24-423 

O
il

 

110 93 42-151 

R
em

ai
n
in

g
 

G
as

 

900-1,200 Not reported Not reported 821 

672 388-1,700 

O
il

 

140 12-1,043 

 

Geological key selection criteria respect reservoir depth, thickness, porosity, permeability, seal 

integrity, and salinity. With storage in dipping strata, the lateral sealing features are also important 

(Table 1-2). Lateral sealing in reservoirs (compartmentalization) can help retain CO2 in the desired 

storage location. Defining the extent, the thickness of stratigraphic units, and resources supports the 

evaluation of CO2 storage potential capacity in the study area. 
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The COST GE-1 well data identifies the storage elements, such as reservoir and confining beds. The 

porosity and permeability values are compared to the geological indicators for a suitable storage site 

in table 1-2. 

Table 1-2: Key geological selection criteria includes reservoir depth, thickness, porosity, permeability, seal integrity and 
salinity (Chadwick et al., 2008). 

  Properties Safe Indicator Cautionary Indicator  

R
es

er
v
o
ir

 

Depth (m) 800-2500 Less than 800 

Thickness (m) Larger than 50 Less than 20 

Porosity (%) Larger than 10 Less than 10 

Permeability (md) Larger than 100 Less than 100 

Salinity (ppm) Larger than 30,000 Less than 30,000 

Stratigraphy Uniform Complex lateral variation  

Capacity  
Estimated CO2 storage 

capacity ≥ 3× injected 

Estimated CO2 storage 

capacity = injected 

C
ap

ro
ck

 

Lateral continuity 

Small or No fault, and 

lateral uniform 

stratigraphy 

Medium or large fault, 

Lateral variation stratigraphy 

Thickness (m)  Larger than 20 Less than 20 

 

Based on the reservoir and caprocks properties, the preliminary conclusions are as follows: (1) The 

porosity of Cenozoic units ranged between 25 to 40 percent, whereas the permeability is very low, 

which is less than 3 md. Therefore, Cenozoic strata are candidates to be the upper seal. (2) The 

Mesozoic strata have acceptable porosity and permeability values, good thickness, and depth. 

Therefore, the Mesozoic strata are qualified to be a good reservoir. (3) The lack of porosity and 

permeability in the Paleozoic strata made these strata the lower seal. 
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CHAPTER II 
 

 

2  EVALUATION OF CO2 STORAGE POTENTIAL IN ATLANTIC OFFSHORE 

LOWER CRETACEOUS STRATA, SOUTHEASTERN UNITED STATES  

 

 

 

2.1 Introduction  

Offshore geologic storage of carbon dioxide (CO2) as a part of Carbon Capture and Storage 

(CCS) technology has recently attracted considerable scientific attention. The CCS technology is 

a potentially important tool to reduce the level of CO2 emissions in the atmosphere and to prevent 

the most dangerous consequences of climate change (Metz et al., 2005; Thomas and Benson, 

2005; HART, 2007; Solomon et al., 2008; Hertel et al., 2010; Hortle et al., 2014; Okwen et al., 

2014; Cumming et al., 2017). The term offshore CO2 storage refers to the injection of CO2 in the 

geological strata beneath the seabed for safe and permanent storage (Smyth, 2007; Zhou et al., 

2008; Schrag, 2009). However, due to legal considerations and the vast resource storage capacity, 

offshore storage provides an attractive alternative option to onshore storage. The Sleipner project 

in the North Sea was an early successful opportunity for commercial deployment. Although 

offshore Lower Cretaceous reservoirs have an expected vast storage capacity, there has been no 
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comprehensive assessment of the offshore storage resource capacity in the southeastern United 

States.  

Although the storage capacity of offshore reservoirs is expected to be vast, only limited 

quantitative studies of the offshore CO2 storage resource have been conducted in the southeast 

United States. An analysis of a 25,900Km2 area of offshore Alabama and the western Florida 

Panhandle suggests that about 170 Gt of CO2 could be stored in Miocene sandstone, whereas at 

least 30 Gt could be stored in deeper Cretaceous formations (Esposito et al., 2010). There is 

around 32 Gt of CO2 that could be stored within 190,000 Km2 of the Upper Cretaceous strata in 

the offshore southeastern United States (Almutairi, 2018). A study offshore of northeastern the 

United States has recently concluded that the Cretaceous and the Jurassic sandstone is valid to 

store approximately (37-403) Gt of CO2 with geologic storage efficiency (1-13) percent (Fukai et 

al., 2020). Realizing that the U.S. Environmental Protection Agency estimates that about 40 

percent of anthropogenic CO2 emissions in the U.S. are generated in the southeast, the lack of an 

offshore CO2 assessment constitutes a major gap in understanding of the prospective regional 

storage resource (Goodman et al., 2011; Global, 2012; Warwick et al., 2013; Levine et al., 2016). 

The research area is located offshore of the Southeastern United States, covering the southern part 

of the Mid Atlantic Planning Area (including the Carolina Trough), and the South Atlantic 

Planning Area (including the Southeast Georgia Embayment and Blake Plateau) as defined by the 

Bureau of Ocean Energy Management (BOEM) (Figure 2-1). Within the Mid Atlantic Planning 

Area and South Atlantic Planning Area, there is a thick sequence of post-rift stratigraphy, which 

is considered as a semi-closed saline aquifer, with sediments ranging in age from Jurassic to 

Pleistocene (Dillon et al., 1979; Dillon et al., 1983). In these areas, the significant sedimentary 

deposits from north to south include the Carolina Trough, the Southeast Georgia Embayment, and 

the Blake Plateau Basin, with a range in sediment column thicknesses from 3,048to 7,010m 

(Maher and Applin, 1971; Poag, 1978; Pinet and Popenoe, 1985; Poppe et al., 1995). A regional 
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unconformity under the post-rift sediments known as the Post-Rift Unconformity (PRU) that cuts 

the entire region after rifting between Africa and North America ceased. This mark is the 

transition to widespread sediment depositional zone during the drifting stage. 

This chapter aims to evaluate the CO2 storage potential offshore within the Lower Cretaceous 

strata in the Mid and South Atlantic Planning areas. 

 

 

Figure 2-1: Location map of the study area. Panel A is the location of the study area in the regional map, panel B is the 
study area map, and panel C is the well locations. 
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2.2 Geologic framework 

The Atlantic shelf have a complex tectonic and geologic history, including the study area. The 

evolution of the Atlantic continental margin has been broadly characterized by the initiation of 

continental rifting in the earliest Mesozoic time following the terminal collision of the Laurentian 

and Gondwanan continents in the Late Paleozoic. Early rifting associated tectonic subsidence 

formed restricted extensional basins followed by regional thermal subsidence along the entire 

eastern North American margin throughout the past. Stratigraphic sequences on this passive 

margin are generally characterized by extensive lateral continuity and relatively minor structural 

disturbance. A thick sequence of post-rift stratigraphy ranging from Jurassic to Pleistocene aged 

sediments in the mid-Atlantic and South Atlantic planning areas. The major depocenters in these 

planning areas from North to south include the Baltimore Canyon Trough, the Carolina Trough, 

the Southeast Georgia Embayment, and the Blake Plateau Basin. The sediment column thickness 

range is 10,000-25,000ft (Maher and Applin, 1971). The post-rift sediments overlie a regional 

unconformity known as the “post-rift unconformity” that cuts across the entire region after rifting 

between Africa and North America ceased and marked the transition to wide-spread sediment 

deposition during the “drift” phase around 165-190Ma (Poag, 1991).  

The oldest post-rift sediments are of the Jurassic age and are the product of rapid clastic 

sedimentation from erosion followed by a period of evaporite deposition and then initiation of 

widespread, shallow water, carbonate deposition with some terrigenous input (Dillon et al., 1983; 

Dillon et al., 1982). The Jurassic section thickens seaward, and estimates from geophysical and 

stratigraphic studies suggest thicknesses of at least 7-8km in the basins (Dillon et al., 1979). 

Typically, the Cretaceous section is characterized by more clastic sedimentation in the north and 

more carbonate deposition in the south, forming a large carbonate platform over the Blake 

Plateau and offshore Florida.  



 

14 
 

The Late Cretaceous to the Cenozoic strong paleo-currents controlled deposition in the clastic 

offshore. In the Upper Cretaceous, the Suwanne Strait deposition to the Blake Plateau created 

distinct facies change to the neighboring offshore Florida and Bahamas carbonate deposition 

(Pinet and Popenoe, 1985b). The Suwannee Strait eventually evolved into today’s Gulf Stream, 

providing strong erosive power that eroded most of the Paleogene sediments on the Blake Plateau 

and prevented deposition off the Florida-Hatteras slope, where it continues to the north along the 

shelf edge (Pinet and Popenoe, 1985a).  

2.3 Main Geologic Provinces 

A thick sequence of post-rift stratigraphy was found in the mid-Atlantic and South-Atlantic 

planning areas, with sediments ranging in age from Jurassic to Pleistocene. In these planning 

areas, the major sedimentary deposits from north to south include the Carolina Trough, the 

Southeast Georgia Embayment, and the Blake Plateau Basin (Figure 2-2), with a range in 

sediment column thicknesses from 10,000 to 23,000 ft. (Maher and Applin, 1971). A regional 

unconformity under the post-rift sediments known as the post-rift unconformity cuts the entire 

region after rifting between Africa and North America ceased. The post-rift unconformity marks 

the transition to wide-spread sediment deposition during the drift stage.  

2.3.1 Carolina Trough 

The Carolina Trough has located offshore the North Carolina-South Carolina coast within the 

Atlantic continental margin. The Carolina Trough is considered one of the deepest and largest salt 

basins, whose width is 97 km (Dillon and Popenoe, 1988). The margin consisted of a wedge of 

the Mesozoic and the Cenozoic sediments. Tectonically, the basin formed by thinning composed 

of the continental crust developed during the initiation of continental rifting during the Triassic to 

Early Jurassic. 
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A thick salt section was deposited during the Jurassic, followed by a thick accumulation of 

sediments. The salt deposits are caused to squeeze the salt and then form the Diapiric structures 

deeper than three kilometers from the water surface (Figure 2-3). In this basin, the sediments are 

over 40,000 ft. thick in the deep within the basin and are separated by the breakup unconformity. 

 

Figure 2-2: Main geological features map; Carolina trough, Blake bateau, and Southeast Georgia embayment in mid 
and South Atlantic planning area, south east offshore United State. 
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Figure 2-3: Cross section (A-A”), as showing in figure (2-2), through Carolina trough basin offshore North Carolina 
within study area, modified from (Carpenter and Amato, 1992). 

 

2.3.1 Blake Plateau Basin 

The Blake Plateau Basin is a major sedimentary basin within the South Atlantic area. This area is 

wide and flat and lies at approximately 600 and 1000 m. However, the Blake plateau basin 

formed at a similar time and processes that formed Carolina Trough. However, the basin 

subsidence was much greater. Blake Plateau has a complex geologic and tectonic history as the 

northern portion formed quite differently from the southern part (Poag, 1978). The Blake Spur 

represents the fracture point and the dividing line between the two regions. The southern part was 

controlled by the formation of a new oceanic crust during rifting, resulting in increased 

subsidence of the northern part (Figure 2-4). The seaward edge structure of the southern portion 

was dominated by Cretaceous reef development rather than depositional, erosional balance shown 

north of Blake Spur. The western margin of Blake Plateau is also characterized by deep-water 

coral mounds and elongate depressions that lie along the base of the Florida-Hatteras Slope. 
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Figure 2-4: Cross section (B-B’), as showing in figure (2-2), through Blake bateau, and Southeast Georgia embayment 
basins, offshore North Carolina within study area, (composited from Poag, 1978. and Dillon et al 1978). 

 

2.3.1 Southeast Georgia Embayment 

The continental Shelf's width between Cape Hatteras and Cape Canaveral ranges from 

approximately 33 km to a maximum of 135 km. The shelf surface is not flat but is characterized 

by different topographic features, most remarkably the numerous sand ridges which trend gently 

toward the coast (Figure 2-4). Other topographic features include low algal banks along the 

Carolina Coast, scattered outcrops of hard or live bottoms, and at least seven terraces or 

submerged shores that are roughly subparallel to the present shoreline and are thought to be 

considered be old strandlines. The Southeast Georgia Embayment, an east-plunging depression 

recessed into the Atlantic Coastal Plain, is a major structural feature in the Florida-Hatteras Shelf. 

However, compared to other sedimentary basins in the South Atlantic, the Southeast Georgia 

Embayment is a minor sedimentary geologic formation.  
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2.4 Database and methods 

This chapter involves the integration of geological and geophysical data, combining regional 2-D 

seismic reflection surveys, published sidewall core analyses, and well logs from commercial 

exploration wells. Seismic reflection data provide fundamental structural control over the 

subsurface geology confined by accessible exploration wells. A total of 36 separate 2-D seismic 

surveys were integrated and analyzed (Figure 2-1 B), and a seismic mis-tie analysis was 

conducted to merge the individual surveys for this study. The well logs were then calibrated with 

the seismic reflection profiles. The seismic surveys were interpreted regionally for key 

stratigraphic horizons, and then porosities and permeabilities were derived from the log data and 

core reports. Subsequently, the porosity and permeability estimates were compared between the 

published sidewall core data and the derived values. 

2.4.1 Well sections 

Seven commercial exploratory offshore wells (GETTY 913, TRANSCO 1005-1-1, TENNECO 

208, COST GE-1, TENNECO 427, EXXON 472, and EXXON 564-1), (Figure 2-1 C), were 

drilled in southeast Georgia embayment from 1979 to 1980. These wells were stratigraphically 

correlated by Poppe et al. (1995) and have also been seismic stratigraphically interpreted and 

correlated with having a similar Mesozoic sedimentary sequence (Lizarralde et al., 1994). 

TRANSCO 1005-1, COST GE-1, and EXXON 564-1 are the deepest three wells in the Southeast 

Georgia Embayment that were used in the current study. TRANSCO 1005-1 well and COST GE-

1 well are the only two wells that penetrate the pre-rift sedimentary sequences in the Paleozoic 

era, and the EXXON 564-1 well penetrates only the post-rift sedimentary sequence in the 

Mesozoic era. 

The TRANSCO 1005-1 well encounters the pre-rift unconformity at a depth of ~2,743 m and 

bottomed in Paleozoic sedimentary rocks at a Total Depth (TD) of 3,546 m (Poppe et al., 1995). 
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The Paleozoic section in the TRANSCO 1005-1 well is a weakly metamorphosed shale and 

sandstone with meta-igneous intrusions (Figure 2-5). The log suite for this well included mud 

logs, electric logs, drill cuttings, and biostratigraphic data. The Paleozoic rocks in the TRANSCO 

1005-1 well have been correlated with Devonian strata in the COST GE-1 well (Poppe et al., 

1995). 

The COST GE-1 well penetrated the pre-rift unconformity at 3,200 m which drilled 

approximately 686 m of the Paleozoic sedimentary sequences and TD-ed at a depth of 4,040 m 

(Scholle, 1979). The COST GE-1 well showed a thick sequence from Paleozoic to Cenozoic 

(Figure 2-5). The Paleozoic section generally consists of non-fossiliferous quartzite, shale, and 

salt, underlain by metamorphic and meta-volcanic rocks (Scholle, 1979). 

Scholle (1979) provided an analysis of the COST GE-1 well data and described the stratigraphic 

units, porosity, and permeability measurements by both a conventional core and sidewall core 

with respect to depth. The thickness of fossiliferous chalky limestone below the drill platform 

reaches 1,006 m corresponding to strata of Tertiary age. The Upper Cretaceous section is marked 

at a depth ranging from 1,006 m to 1,798 m. The Upper Cretaceous is composed of calcareous 

shale, dolomite, and limestone. The section from 1,798 to 2,195 m is the Lower Cretaceous. 

Rocks encountered below 3,353 m depth consist of highly indurated to weakly metamorphosed 

Paleozoic strata (Scholle, 1979).  

The EXXON 564-1 well encountered the pre-rift unconformity at a depth of 3,737 m (Lizarralde 

et al., 1994). The last 183 m, under the post-rift unconformity in the EXXON 564-1 well, is a 

weakly metamorphosed shale and sandstone with meta-igneous intrusion of Triassic rocks. The 

EXXON 564-1 well has been correlated to approximately the equivalent to the Devonian rocks 

corresponding to the COST GE-1 well (Figure 2-5).   
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Figure 2-5: TRANSCO 1005-1, COST GE-1, and EXXON 564-1 are three wells that have stratigraphically and 
geophysically correlated by logs and lithology, modified and combined after (Poppe et al., 1995;Boote and Knapp, 
2016). 

2.4.1 Seismic interpretation 

The primary dataset consists of legacy 2D seismic reflection profiles offshore the southeastern 

United States in the Atlantic Ocean. The dataset has been released by the Bureau of Ocean and 

Energy Management (Figure 2-1 B). I interpreted and correlated a continuous surface stratigraphy 

of the storage elements (sinks and reservoir seals) along 200,000 km of the seismic profiles,  
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frequency -. Seismic interpretation started with picking high2Kmcovering approximately 200,000 

stratigraphy sequences targeted at creating three-dimensional maps of the reservoirs and seals. 

The TRANSCO 1005-1 well, COST GE-1 well, and EXXON 564-1 well were tied with the 

seismic profiles (Figure 2-6). The Schlumberger Petrel software can generate advanced velocity 

models using check shot data. The velocity model uses input parameters such as tops and surfaces 

and the time-depth link (Roth, 1993). The velocity model is created based on the time-depth 

relationship from the well data. The time-depth conversion uses linear velocity related to depth 

functions (V=V0+K×Z) and (V=V0+K×(Z-Z0)) for evaluating a velocity model (Schlumberger, 

2016). Both K and the linear velocity slope indicate that the velocity increases with depth and 

reflects layer compaction. The compaction factor K is estimated with the fewest mistakes feasible 

and used to generate a V0 surface, any modifications incorporated into the velocity model are 

reflected on the V0 surface. The check shot data of the three wells (COST GE-1, Exxon 564-1, 

and Transco 1005-1) were used to identify the depth of the upper and bottom surfaces of the 

Lower Cretaceous section. 
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Figure  2-6Figure 2-6: Seismic-well tie analysis for tree wells: Panel A is the location map of the commercial wells in 
Southeast Georgia Embayment. Panel A1 is the seismic profile Number GE-75-112A intersected TRANSCO 1005-1-1 
well. Panel A2 is the seismic profile Number MME-101 intersected COST GE-1 well. Panel A3 is the seismic profile 
Number E8-78-7065 intersected EXXON 564-1 well. 
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2.4.1 Calculation of CO2 Storage Capacity   

I developed an estimate of the regional CO2 storage capacity offshore of the Lower Cretaceous 

section in the mid-south Atlantic Ocean by using the U.S. Department of Energy (DOE) National 

Energy Technology Laboratory (NETL) method (Gorecki et al., 2009; Goodman, 2011).  

The US-DOE approach estimates CO2 storage volume based on geologic parameters such as 

formation area, thickness, and porosity (Brennan et al., 2010; Goodman et al., 2011; Global, 

2012). Goodman et al. (2011) used the static volumetric methodology, and the CO2 storage 

prospective resource estimation excel analysis (CO2-SCREEN) tool developed by the U.S. 

Department of Energy National Energy Technology Laboratory (DOE-NETL) (equation 2.1). The 

equation 2-1 is mathematically expressed:  

 

2-1 

Where, GCO2 is the total mass of CO2 in a giga ton (Gt), A is target area (in square meter), hg is 

gross strata thickness (in meter), φ is the effective porosity, ρ is CO2 density in-unit kilogram per 

cubic meter (kg/m3), ρCO2 is the average CO2 density evaluated at pressure and temperature that 

represents storage conditions anticipated for a specific deep saline aquifer. The CO2 density 

transforms the volume of CO2 in the reservoir into mass. As a result of heat transfer from the 

inside to the exterior of the earth, (Holloway, 2007) found that the average temperature in many 

sedimentary basins rises by 25–308 ºC/km below the ground surface or sea bed. However, 

geothermal gradients vary widely, both within and between basins (Tissot and Welte, 1978). The 

subsurface units suitable for geologic carbon sequestration, however, are 800 meters or deeper 

below ground and seem to have higher pressure and temperature at depths greater than the CO2 

critical point. This indicates that CO2 injected at these temperatures and pressures will be 

supercritical.  
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CO2 and certain other supercritical gases possess gas viscosity, which reduces resistance to flow 

compared to a liquid, and semi-liquid density, which significantly reduces the volume required to 

store a given mass of fluid. Carbon dioxide behaves as a supercritical fluid at temperatures and 

pressures above the critical points of 30.85 °C and 7.38 MPa. The 800m depth condition is a 

reasonable guess that varies based on the geothermal gradient and formation pressure at a given 

location (Bachu, 2003). The pressure in the pore spaces of sedimentary rocks is identical to 

hydrostatic pressure, which is the pressure generated by a column of water at a corresponding 

elevation to the depth of the pore space. This is because the pore space is frequently filled with 

water and, though in a convoluted manner, is connected to the ground surface. When the pore 

space is not connected to equilibrium with the surface, the pressure exceeds hydrostatic, and 

overpressure occurs. CO2 density rises dramatically when it is stored underground, resulting in a 

volume reduction at depths of 600–1000 m, depending on geothermal conditions and pressure 

(Ennis-King and Paterson, 2001). 

Scholle (1979) pointed out that pressure and temperature data for the COST GE-1 were identified 

based on three temperature logs. The temperature of the lower Cretaceous is ranged between 72.3 

°C at the top and 81.4 °C at the bottom, with a geothermal gradient of 16 °C/km. Based on the 

geothermal gradient at the COST GE-1 well, I estimate the temperature at the target depth in the 

study area. The parameters (A, h, and φ) are the yield of the total pore volume of the interesting 

section. The (ρ) parameter is the volume conversion to the mass of CO2 and the efficiency factor 

(E) is reducing the total CO2 mass for storage to an accurate realistic value. Related to the specific 

aquifer (Table 2-1), the efficiency factor has been determined by several factors (Zhou et al., 

2008; Gorecki et al., 2009b; van der Meer and Yavuz, 2009; Goodman et al., 2011). According to 

the USDOE approach, storage efficiency is a function of aquifer characteristics such as area, 

thickness, and porosity, the product of which represents the aquifer pore volume, as well as  
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displacement efficiency components such as areal, vertical, and microscopic, and is expressed as 

the product of these individual efficiencies (Gorecki et al., 2009c; Gray, 2010; Goodman et al., 

2011). 

Table 2-1: Numerical method and Monte Carlo method for saline formation efficiency factor  (percent) at the 
formation scale that has determined by several factors (Preston et al., 2009; Goodman et al., 2011). 

 

 

 

 

 

Goodman et al. (2011) used Monte Carlo sampling to calculate both local and regional-scale 

storage efficiency values based on statistical properties (such as mean values, standard deviation, 

ranges, and distributions) that describe geologic and displacement parameters for the three 

lithologies: clastics, dolomite, and limestone. They obtained slightly lower values for storage 

efficiency (E) than Gorecki et al. (2009). Calculating efficiency in saline formations is stated in 

equation (2-2): 

 

2-2 

Where, EAn/At is the percentage to total area ratio that is ideal for CO2 storage. EHn/Hg is the 

fraction-to-gross-thickness ratio that meets the porosity and permeability standards for CO2 

storage. The ratio of linked porosity to total porosity is represented by EØe/Øt. EA is the effective 

aquifer area. Ev is volumetric displacement. Ed is microscopic displacement. The net to total area 

ratio EAn/At is the proportion of the aquifer area suitable for CO2 storage expressed as a net-to- 

Lithology 
Monte Carlo Method (E%) Numerical Method (E%) 

P10 P50 P90 P10 P50 P90 

Clastic 1.86 2.7 6 1.2 2.4 4.1 

Dolomite 2.58 3.26 5.54 2 2.7 3.6 

Limestone 1.41 2.04 3.27 1.3 2 2.8 
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gross thickness ratio. EHn/Hg is the fraction of the geological formation in the vertical dimension 

that meets the porosity and permeability requirements for CO2 injection and storage, and EØe/Øt is 

the effective (interconnected) porosity to total porosity ratio. These coefficients have a value of 

unity in local-scale assessments or, more broadly, when the effective aquifer area, thickness, and 

porosity are known. In this method, I used the value of the efficiency factor suggested by 

Goodman (2011) (Table 2-1). 

Goodman et al. (2016) demonstrated that geology data uncertainty has a greater impact on storage 

estimation than the approach that has been used. Thus, it is critical to determine the geologic 

qualities and ranges of storage efficiency factors for certain geologic parameters to improve or 

refine storage estimates. 

However, due to the legacy of seismic data and the relatively limited well data available over 

200,000 Km2 study area, uncertainty associated with subsurface data gab is conceded into the 

storage resource assessment. The potential capacity of the several reservoirs of the whole Lower 

Cretaceous section has been calculated using all parameters in equation (2-1).  

2.5 Results and discussions 

2.5.1 Well data analysis 

The well log interpretation is the most fundamental geophysical approach for geological and 

geophysical reservoir characterizations. The density log (RHOB) provides data for lithology 

interpretation, porosity calculation, and petrophysical properties. The Gamma Ray (GR) log is 

used for lithology interpretation, porosity, and permeability calculations. The spontaneous 

potential log (SP) is useful for lithology identification and permeability calculation. Both GR and 

SP have a similar response to porous layers and can be used to determine lithology and correlate 

stratigraphy. Density logs (RHOB) provide a continuous record of the bulk density, which is  
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determined by the porosity of the formation and the fluid content of the pore spaces. GR and 

ROHB logs for TRANSCO 1005-1 well, COST GE-1 well, and EXXON 564-1 well have 

stratigraphically interpreted and correlated in this study to have similar equivalents of the 

sedimentary sequences (Figure 2-5). Related to the sidewall core analysis on the COST GE-1 

well, the porosity has been valued between 0.12 and 0.35 and the permeability has been estimated 

between 9.87×10-18 and 5.4×10-13m    2 within the Lower Cretaceous strata (Scholle, 1979).  

The Lower Cretaceous strata, between depth 1,798m and 2,195m, has fourteen lithological 

intervals which are mainly composed of varying proportions of calcite, clay, shale, sandstone, 

limestone, and dolomite with carbonite materials (Scholle, 1979) (Table 2-2). 

For the COST GE-1 well, the net porosity was geophysically derived by the ratio between the 

density log (RHOB) and the gamma-ray log (GR). The values calculated from the log data were 

then compared to the measured values from the conventional and sidewall cores for Lower 

Cretaceous lithological units to identify potential reservoirs and seals (Figure 2-7). That indicates 

a significant potential for CO2 storage, where high primary and secondary porosity values ranged 

from 0.20 to 0.33. Accounting for most of the greatest permeability range of 1.97×10-13 to 

5.43×10-132 recorded in the Lower Cretaceous section at the well COST GE-1. Porosity versus 

Permeability (Figure 2-8) shows the comparison correlation between porosity and permeability. A 

linear relationship (correlation coefficient) basically exists between the porosity and permeability 

of the Cenozoic (R=0.58, and slope=10.35), Upper Cretaceous (R=0.45, and slope=0.35), Lower 

Cretaceous (R=0.63, and slope=0.87), and Upper Jurassic (R=0.83, and slope=1.96) rocks.  
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Table 2-2: The fourteen lithological intervals of the Lower Cretaceous strata, between depth 1,798 and 2,195 m in 
COST GE-1 well, after (Scholle, 1979). 

Unit 
Depth 

Lithology Porosity 
ft m 

1 5900 1798 
Shale, gray, silty, calcareous, micaceous, and 

sandstone 
low 

2 5990 1826 
Shale, silty, calcareous, micaceous, non-calcareous 

sandstone. 
very low 

3 6080 1853 
More shale, slightly calcareous, carbonaceous, 

fossiliferous, 

low to 

moderate 

4 6320 1926 
Coarse to medium crystals, dense, and fossil 

fragments. 

low to 

high 

5 6500 1981 
Partly sandy, dense silty, hard, calcareous to non-

calcareous 
low 

6 6800 2073 Sandstone, shell, sandstone, anhydrite, and gypsum. 
low to 

high 

7 6890 2100 

Limestone, shale, very fine-grained calcareously 

cemented sandstone, and anhydrite with denes 

dolomite. 

moderate 

8 7020 2140 
Dolomite, finely crystalline to dolomite, limestone 

increasing with depth, shale, and sandstone, 

low to 

high 

9 7070 2155 
Limestone, fossifillerous, dolomite, and non-

calcareous. 

low to 

high 

10 7160 2182 Shale and sandstone, much calcareous cement. 
moderate 

to low 

11 7200 2195 

Shale, sandstone, and silty shale with calcareous 

cement. Limestone, some dolomite, and fossifillerous 

to non-fossifillerous 

high 

12 7400 2256 
Shale, some gravel trace, dolomite, and fossifillerous 

to non-fossifillerous. 
high 

13 7490 2283 
Lithology like unit 12 with decreasing shale, 

increasing dolomite, 
high 

14 7910 2411 

Shale to fine sandstone, gravel, faintly calcareous, and 

shale non-calcareous, dolomite with some clayey 

coatings, non-fossifillerous, much coal, anhydrite, and 

sandy dolomite. 

moderate 
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Figure 2-7: Analysis of density log and gamma-ray log to generate porosity log that is compared with estimated 
porosity from core samples analysis from COST GE-1 well. 
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Figure 2-8: Porosity and permeability measured on conventional and sidewall cores from the COST GE-1 well as a 

function of depth.  For the Cenozoic, Mesozoic, and Paleozoic rocks panel A is the porosity with depth, panel B is the 

permeability with depth, panel C is the porosity and permeability relationship with the correlation coefficient (R), and 

panel D is the porosity and permeability with the depth function. 
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2.5.1 Geological CO2 storage 

In a practical CO2 storage evaluation, Chadwick et al. (2008) identified the ideal geological 

criteria for a reservoir depth of 1,000–2,500 m with a thickness of 21–50 m, where porosity is 

greater than 0.20 and permeability is greater than 1.978×10-132. The ideal seal thickness is 100m 

with lateral continuity and no major faults or capillary entry pressure. (Table 2-3). 

The Lower Cretaceous section from the COST GE-1 well was described in terms of lithology and 

rock properties through fourteen core samples (Scholle, 1979). Dolomite rocks are the most 

dominant rocks in this section. Porosity and permeability of the different stratigraphic intervals 

were the primary basis for the identification of the main storage units. The reservoirs and seals 

are classified and evaluated with the observance of the positive indicators of the CO2 storage 

criteria based on (Chadwick et al., 2008) (Figure 2-9). Three reservoirs are separated by three 

seals have been identified within the Lower Cretaceous section. Figure 2-7 illustrates the fourteen 

intervals that appear to be most prospective for permanent CO2 offshore storage. Figure 2-10 

reveals structure maps for top and bottom topographic surfaces, and thickness of the lower 

cretaceous. The Lower Cretaceous section ranges in depth between 1,798 m and 2,539 m and 

consists of dolomite interbedded with sandstones and calcareous silty shales. Based on the rock 

composition with rock properties, this section, (Table 2-2) records the lithologic description and 

porosity value with depth for the COST GE-1 well based on core analyses and geophysical logs. 

Figure 2-9 provides the potential CO2 storage reservoirs and seals based on the rock properties as 

compared with the favorable conditions for CO2 storage (Chadwick et al., 2008). Scholle (1979) 

pointed out that there is impermeable shale with calcareous shale layers interbedded with the 

highly permeable dolomite in the COST GE-1 well. However, a few samples of sandstone were 

marked between 1,768m and 2,530 m, the high primary and secondary porosity with high 

permeability, which is suitable to be a reservoir rock for CO2 sequestration. This section is  
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dominated by dolomite with porosities that vary widely and unsystematically with depth from 

0.17 to 0.32, and the permeability is between 2096×10-16 and 5.43×10-132. The porosity log was 

derived and calculated from well logs to fill hiatus between the core intervals (Figure 2-7).  

 

Table 2-3: Ideal CO2 geological storage criteria for reservoir properties and Caprocks (Chadwick et al., 2008; Chadwick 
et al., 2017). 

 

 

Media Properties Positive Indicators Cautionary Indicators 

Reserv

oir 

  

Static storage 

capacity 

Evaluated effective CO2 storage 

capacity greater than total injected 

CO2 

Evaluated effective CO2 

storage capacity equal to 

total injected CO2 

Dynamic storage 

capacity 

Predicted injection-induced pressures 

below the rate of inducing 

geomechanical damage to the 

reservoir or caprock. 

Geomechanical instability 

limits reaching the predicted 

injection-induced pressures. 

Depth (m) Greater than 800 Less than 800 

Thickness (m) Greater than 50 Less than 20 

Porosity Greater than 0.20 Less than 0.10 

Permeability (m2) Greater than 4.93 × 10−12 Less than 1.97 × 10−13 

Stratigraphy Capacity much larger than total 

injected CO2 

Capacity ≤ total injected CO2 

Caproc

ks 

 

Lateral stratigraphy Uniform and small or no fault Lateral variations and 

medium-to-large fault 

Thickness (m) Greater than 20 Less than 20 

Capillary entry 

pressure 

Greater than the maximum predicted 

injection-induced pressure increase 

 Equal to the maximum 

predicted injection-induced 

pressure increase 
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Figure 2-9: Characterizations of the storage elements; seals and reservoirs that are identified based on the geological 
and geophysical data at the COST GE-1 well. 
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Figure 2-10: Structure maps of the study area; A is the location map for the top topographic surface of the Lower 
Cretaceous, B is the depth map for the bottom topographic surface of the Lower Cretaceous, and C is the thickness 
map of the Lower Cretaceous section. 
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2.5.1 CO2 storage Capacity Calculations 

The capacity for CO2 storage potential of the Lower Cretaceous section was calculated based on 

the rock compositions and petrophysical properties at the COST GE-1 well. Three potential 

reservoirs are associated with four potential seals that were characterized and assessed in the 

Lower Cretaceous section. The three reservoirs are sealed by thick caprocks that are mainly 

composed of shale, siltstone, anhydrite, and limestone. These reservoirs are signed as (R1), (R2), 

and (R3), and their seals are signed (S1, S2, S3, and S4) (Figure 2-9). According to Scholle 

(1979), the trapping mechanism, characterized as an overlying seal, involves stratigraphic 

trapping through lateral facies variations. Figure 2-9 shows that reservoir R1 is ranged in the 

depth of 1,855-1,989m, reservoir R2 is ranged in the depth of 2,119-2,210m, and reservoir R3 is 

ranged in the depth of 2,349-2,442m. The composition of the three reservoirs; (1) R1 is composed 

of calcareous shale, anhydrite, and gypsum. (2) R2 is composed of limestone and shale. (3) R3 is 

composed of calcareous shale, anhydrite, fossil fragments, and gypsum. The average porosities of 

the reservoirs (R1, R2, and R3) are ranging from 0.23-0.28, 0.28-0.32, and 0.25-0.32, 

respectively. I used equation (1), which is developed earlier by Goodman et al. (2011), for 

applying the dolomite efficiency factors (E) at the formation scale are 2.0%, 2.7%, and 3.6% for 

probability 0.10, 0.50, and 0.90 respectively. The probabilities have been considered in this work 

for the parameter of Area (A) with wide thickness range values over the area to apply equation 1. 

To reduce the uncertainty that is incorporated in the variety of depth and thickness of the Lower 

Cretaceous section (Figure 2-10), CO2 density was calculated based on the depth of each 

reservoir. For accuracy of CO2 density values, the Lower Cretaceous section is divided into three 

depth zones: (1) shallow depth (SLK) is ranged of 300-1000m, (2) Depth at COST GE-1 well 

(GLK) is ranged of 1600-2450m, and (3) deep depth (DLK) is ranged of 3000-3500m.To identify 

the temperature for the reservoirs in the thee depth zones, I assumed that the geothermal gradient 

at COST GE-1 well (16º C) is constant across the study area (Figure 2-11 A) (Table 2-4). Based 
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on the Temperature Pressure Density graph suggested by Bachu (2003) (Figure 2-11 B). The 

density values of supercritical CO2 were estimated based on the depth. (1) Reservoir R1 is 700, 

722, and 760 kg/m3 at depths 1100, 1855, and 2550 m respectively. (2) Reservoir R2 is 708, 732, 

and 768 kg/m3 at depths 1300, 2120, and 2680 m respectively. (3) Reservoir R3 is 712, 740, and 

778 kg/m3 at depths 1550, 2350, and 22860 m (Table 2-4). 

 

 

Figure 2-11: Panel A is the three reservoirs in three depth zones that are plotted in the geothermal gradient at the 
COST GE-1 well. Panel B is Time-Depth- Pressure graph to identify the density of supercritical CO2 for three reservoirs in 
the tree depth zones of the Lower Cretaceous section.   
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Table 2-4:CO2 density values that are estimated based on depth, temperature, and overburden pressure for the 
reservoirs at three depth zones. 

Zone 
Reservo

ir 

Depth 

(m) 

Temp. 

(ºC) 

Pressure Density 

(MPa) (kg/m3) 

SLK 

R1 1100 56.2 

18-22 

700 

R2 1300 58.6 708 

R3 1550 60.2 712 

GLK 

R1 1855 72.8 

25-32 

722 

R2 2120 76.2 732 

R3 2350 75.4 740 

DLK 

R1 2550 81.1 

35-43 

760 

R2 2680 85.4 768 

R3 2860 90.9 778 

 

For the purpose of high accuracy and a comparison, I estimated the potential storage resources of 

the three reservoirs that have been calculated for local and regional areas. The local area has been 

detected where seismic profiles and wells data are densely concentrated in the Southeast Georgia 

Embayment, which covered approximately (10,000 Km2). Region storage resource is 

approximately covered (200,000 Km2) that I detected based on abundance and density of the data. 

I considered three probabilities values (P10, P50, and P90) of the geologic storage efficiency 

factor for each reservoir in both areas. For the integrity and safety of CO2 storage, I interpreted 

and evaluated impermeable rock units that are signed as seals. Although the seismic interpretation 

indicated no significant fault was detected in the Lower Cretaceous section, the uniform lateral 

stratigraphy is a significant concern due to the lack of wells data in the study area.  

Local and regional potential storage resources were calculated for the Lower Cretaceous potential 

reservoirs. The total capacity of three storage resources with a geologic storage efficiency (E) of 

dolomite between 0.65 – 5.40 percentage ranged between 49 and 377 Mt of CO2 for the local 

area, and between 451 and 4705 Mt of CO2 for the regional area (Table 2-5, and 2-6) (Figure 2-

12). 
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At P50, the average storage resource per unit area of the Lower Cretaceous section in the study 

area is approximately 1.15 Mt CO2/Km2. Reservoir R1 has a maximum storage resource value of 

> 0.42 Mt CO2/Km2. In reservoirs, R2 and R3, the middle and lowest values at P50 are equal to or 

less than 0.37 Mt CO2/Km2. 

 

Table 2-5: Probability The physical parameters for the three reservoirs applied in the NETL method (DOE equation) in 
the local and regional zones. 

Zone Reservoir 
Area 

(km²) 

Gross Thickness 

(m) 

Total Porosity 

(%) 

Pressure 

(MPa) 

Temperature 

(°C) 

Mean Std Dev Mean Std Dev Mean Std Dev Mean 
Std 

Dev 

L
o
ca

l 

1 10,000 134 0.0093 0.28 0.0012 26 0.0004 72.8 0.06 

2 10,000 91 0 0.32 3× 10−18 29 0.0193 75.4 0.006 

3 10,000 93 0 0.32 0 32 0.0385 76.2 0.06 

R
eg

io
n
al

 

          

1 200,000 83 0.193 0.245 0.012 26.3 0.1925 70 1.6 

2 200,000 60 0.0001 0.3 3 × 10−17 29.3 0.1925 73.4 1.6 

3 200,000 63 0.0001 0.285 0 32.6 0.3849 75.5 0.06 
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Table 2-6: Volumetric CO2 storage capacity (GCO2) in Mt with the storage efficiency factor (E%) at P10, P50, and P90 
for the three Lower Cretaceous reservoirs within local and regional zones in the Mid–South Atlantic Ocean. 

Zone Reservoir 

Storage Resource (Mt) Storage Efficiency (%) 

P₁₀ P₅₀ P₉₀ P₁₀ P₅₀ P₉₀ 

Local  

1 19.12 60.45 146.57 0.69 2.19 5.31 

2 14.85 47.77 117.57 0.67 2.17 5.34 

3 15.01 51.08 122.56 0.65 2.2 5.28 

Regional 

1 182.63 635.83 1628.72 0.65 2.18 5.25 

2 88.54 414.75 1574.37 0.67 2.22 5.4 

3 179.67 597.97 1502.37 0.67 2.17 5.3 
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Figure 2-12:The total CO2 storage capacity in mega tons (Mt) for the Lower Cretaceous section. A1 is the total capacity 
at P10, A2 is the total capacity at P50, and A3 is the total capacity at P90 in the regional area. Panels B1 is the total 
capacity at P10, B2 is the total capacity at P50, and B3 is the total capacity at P90 in the local. 
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2.6 Summary and Conclusions 

storage  2COhis chapter presented the first comprehensive study to identify, and evaluate the T

potential of mid-south Atlantic offshore in the Lower Cretaceous section, Southeastern United 

 2COgia Embayment, States. Based on the analysis of three wells data in Southeast Geor

geological storage resource has provided a determination of three significant permeable storage 

strata that are isolated by impermeable seal strata in the depth of 1,767.84-2,529.84 m. Based on 

analysis of COST GE-1 well of this section, I identified widely and unsystematically porosity 

 2m 13-and 5.43×10 16-96×10ranged from 0.17 to 0.32, and widely permeability ranged between 20

of layers that are composed of low percent of sandstone and high percent of dolomite. These 

storage.  2COlayers are suitable reservoir rock that is qualified to be permanent  

The US-DOE methodology is used for calculating pore volume spaces to estimate the geologic 

CO2 storage potential capacity in billion tons (Gt). The capacity for CO2 storage potential of the 

Lower Cretaceous section is calculated based on the rock compositions and petrophysical 

properties at the COST GE-1 well. Three potential reservoirs are associated with four potential 

seals that are characterized and assessed. According to Scholle (1979), the trapping mechanism, 

characterized by an overlying seal, involves stratigraphic variations. The prospective storage 

resources of the three reservoirs were calculated locally where seismic profiles and wells data 

were densely concentrated in the Southeast Georgia Embayment (10,000 Km2), and regionally 

where I suggested as a regional storage resource (200,000 Km2). I considered three probabilities 

values (P10, P50, and P90) of the geologic storage efficiency factor for each reservoir in both 

areas. The result of this chapter exhibits that there is approximately from 3.9 to 28.3 Gt locally, 

and from 68.011 to 546.205 Gt regionally of CO2 could be safely stored in three Lower 

Cretaceous reservoirs with geologic storage efficiency from 2% to 3.6%.  
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The average storage resource potential is approximately 1.15 Mt of CO2 that could be safely 

stored per 1 Km2 offshore of the Lower Cretaceous section at a probability of 0.5. The largest 

storage resource value for Reservoir R1 was > 0.42 Mt CO2/Km2. The middle and lowest values 

at P50 in reservoirs R2 and R3 are less than or equal to 0.37 Mt CO2/Km2.  

The uncertainty associated with subsurface data gab is incorporated into the storage resource 

evaluation due to the legacy of seismic data and the relatively limited well data available over the 

study area. 
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CHAPTER III 
 

 

3 ESTIMATES CO2 STORAGE RESOURCE PROSPECTIVE IN ATLANTIC 

OFFSHORE UPPER JURASSIC SEQUENCES, SOUTHEASTERN UNITED STATES 

 

 

 

3.1 Introduction 

Carbon Capture and Storage (CCS) is a timely technology for reducing greenhouse gas emissions 

and limiting the global climate. CCS is an advanced tool for providing a variety of renewable 

energy sources to satisfy future energy demand in the United States and globally. The U.S. 

Department of Energy-National Energy Technology Laboratory (DOE-NETL) initiative provides 

the Mid Atlantic Offshore Carbon Storage Resource Assessment, which focuses on improving the 

efficiency of carbon dioxide (CO2) storage technology. Gross greenhouse gas emissions from 

fossil fuels have increased by 2 percent since 1990 (Usepa, 2022). However, emissions fluctuate 

throughout the year due to economic changes, increased fuel, and other variables. That is, 

compared to 2020, greenhouse gas emissions dropped an around 1.7 and 9.1 percent in 2019 and 

2020 in the United States (Figure 3-1) (Zhongming et al., 2020) 
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Figure 3-1: Annual greenhouse gas emissions percentage (y-axis) fluctuate due to economic changes (Zhongming et 
al., 2020). 

 

Since the Norwegian Sleipner project in the North Sea was an early successful commercial 

deployment possibility, the storage capacity of offshore reservoirs is anticipated to be 

considerable. Relatively few offshore CO2 storage resource studies have been performed in the 

southeast U.S. A variety of academic and government bodies across the world have developed 

several approaches for assessing carbon dioxide storage capacity in various geological media. 

The US Department of Energy created a practical methodology for estimating storage capacity of 

large-scale saline aquifers by assessing the total aquifer storage capacity and utilizing a sequence 

of Efficiency Factors that trying to appropriate for geologic heterogeneity in the form of a 

probabilistic cumulative total value of fractions (Laboratory and Energy 2008). 

Although subsurface deep saline formation is exceptional, most renewable energy sources are 

offered to meet long-term energy demand. Within an extensively studied deep saline aquifer, the 

study site consists of the stratigraphic interval with several penetrated wells. A successful play on 

reservoir horizons and an overlaying seal interval make up this interval. By integrating available 

data and evaluating storage capacity, the targeted site can be characterized in terms of potential  
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CO2 storage. I emphasize uncertainty, incorporating insufficient data and creating the first 

screening method extended to the poorly understood geological strata with immense CO2 storage 

potential. 

The objective of this chapter is to address the analysis of the Upper Jurassic rocks in the offshore 

region southeastern United States (Figure 3-2), approximately covered by 180,000 Km2 of two-

dimensional legacy seismic reflection profiles. Thus, it applies the most suitability of recently 

published techniques regarding storage capacity calculations of the conventional reservoirs. 

3.2 Study area and Geological perspective 

The study area extends between 200 to 500 km offshore, encompassing the inner continental shelf 

to portions of the continental slope. It is covered approximately 175,000 Km2 along southern the 

mid-Atlantic states of North Carolina, South Carolina, Georgia, and Florida. The study area 

comprises three major sedimentary basins: Carolina Trough, Blake Plateau, and Southeast 

Georgia Embayment (Figure 3-2).  
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Figure 3-2: Location map of available geophysical and geological data; legacy Atlantic margin seismic reflection 
surveys and location of the wells in the Southeast Georgia Embayment. 
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The evolution of the Atlantic continental margin, including the study area, is broadly 

characterized by the terminal collision of the Laurentian and Gondwanan continents in the Late 

Paleozoic Era followed by continental rifting beginning in the earliest Triassic time following 

(Poag, 1978; Dillon et al., 1979; Scholle, 1979; Dalziel et al., 1994; Poppe et al., 1995). Mesozoic 

rifting involved local tectonic subsidence in early restricted extensional basins, followed by 

regional thermal subsidence along the eastern North American margin. (Dillon et al., 1983; Pinet 

and Popenoe, 1985; Badley et al., 1988; Dillon and Popenoe, 1988; Dalziel et al., 1994). The 

mid-south Atlantic United States passive continental margin contains thick (7-8 km) post-rift 

Jurassic– Holocene sediments on the Blake Plateau basin (Dillon et al., 1979; Dillon et al., 1983). 

The offshore saline basins contain a thick section of Jurassic–Paleogene sedimentary rocks above 

Post-Rift Unconformity that lies at depths of 3,048–7,620m (Maher and Applin, 1971; Scholle, 

1979; Lizarralde et al., 1994). The post-rift sediments overlie a regional unconformity known as 

the post-rift unconformity that cuts across the entire region after rifting between Africa and North 

America ceased and marked the transition to wide-spread sediment deposition during the drift 

phase around 165-190Ma (Poag, 1978; Poppe et al., 1995). The oldest post-rift sediments are of 

the Jurassic age and are the product of rapid clastic sedimentation from erosion followed by a 

period of evaporating deposition and then initiation of broad, shallow water, carbonate deposition 

with some terrigenous intrusions (Dillon et al., 1982; Dillon and Popenoe, 1988). The Jurassic 

section thickens seaward, and estimates from geophysical and stratigraphic studies suggest 

thicknesses of at least 7-8km in the basins (Dillon et al., 1979; Dillon et al., 1983).  

The sedimentary rocks of interest as cap rocks and storage zones consist of Jurassic -age 

mudstone, shale, and sandstone sequences that generally dip to the east toward the continental 

slope (Maher and Applin, 1971; Poag, 1978; Pinet and Popenoe, 1985; Poppe et al., 1995). 

Previous studies have identified porous and permeable sandstone units within Upper Cretaceous  
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and Lower Cretaceous in mid-south Atlantic planning area (Almutairi, 2018; Almayahi et al., 

2022). The Upper Jurassic sequences at depths between approximately 2,225 and 3,500 m 

(Scholle, 1977; Pinet and Popenoe 1985). Stratigraphic sequences on this passive margin are 

extensive lateral continuity and relatively minor structural disturbance (Dillon and Popenoe, 

1988; Dalziel et al., 1994; Poppe et al., 1995). 

This interval is overlain by Cretaceous mudstone and shale that extends regionally across the 

study area that is considered as a cap rock to ensure CO2 storage confinement. High-level static 

storage resource estimates reported in previous work suggest storage potential exists in 

Cretaceous-age sandstones in the Southeast Georgia Embayment and Blake Plateau saline basins 

(Almutairi, 2018; Almayahi et al., 2022). This involved extensive efforts in data compilation, 

preservation, digitization, and integration into map grids and models.  

The outcomes are used to define offshore-specific site selection criteria and calculate offshore-

specific probability values for storage efficiency parameters that were used, respectively, to help 

identify regional storage resources and inform volumetric estimates of storable quantities for deep 

saline reservoirs of interest. Localized estimates of storable quantities derived from simplified 

dynamic models and site-specific storage efficiencies are reported for a selected area near the 

Great Stone Dome structure. The results of this work provide a foundation for future CCS 

development efforts in the mid-Atlantic offshore region when the market conditions are 

appropriate. As part of this procedure, a systematic work-flow has been employed to quantify and 

categorize CO2 storage resources for the mid-Atlantic United States offshore region extending 

from Maryland to Massachusetts. The workflow includes (1) data integration and physical 

property mapping, (2) regional-scale storage resource calculations, and (3) local-scale storage 

resource calculation refinement. Results from each subregion were used to delineate selected 

areas to refine static prospective resource estimates and conduct dynamic simulations of CO2  
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injection and storage performance for zones of interest. Risk factors identified as an essential part 

of this study, such as basin age and maturity, sediment lithification, and hydrostatic pressures, are 

integrated with recommended best practices for onshore geologic CO2 storage. US Department of 

Energy National Energy Technology Laboratory (U.S., 2015; Levine et al., 2016) to develop the 

following screening criteria for offshore storage resource assessment as following: 

➢ Formation depth must be adequate (~1000 m [~3000 ft]) to ensure the (1) temperature 

and pressure conditions are suitable to store CO2 in a supercritical phase and (2) sediment 

is sufficiently consolidated such that the risk of soft-sediment deformation is minimized 

(Gupta, 2019). 

➢ A suitable seal or cap rock overlies the targeted storage zone to inhibit the vertical 

migration of CO2 to the surface. 

➢ Hydrogeologic conditions such as structural, stratigraphic, and hydrodynamic traps are 

present to retain the injected CO2 within the targeted storage zone. 

 

3.3 CO2 geological storage estimation 

Several institutions and government departments worldwide have developed several approaches 

for assessing carbon dioxide storage capacity in various geological media. The US Department of 

Energy developed a simple methodology for calculating the storage capacity of regional-scale 

saline aquifers, that’s calculating the total aquifer volume and applying a series of efficiency 

factors. However, this attempts to correct for geologic heterogeneity in the form of a probabilistic 

multiplicative sum of fractions (Laboratory and Energy, 2008). Several authors  have worked 

hard to enhance and improve this approach, focusing notably on efficiency factors (Kopp et al., 

2009). Since then, two widely used approaches have been developed, based on the DOE method  
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(Laboratory and Energy, 2008; Goodman et al., 2011) and the Carbon Sequestration Leadership 

Forum method (Bachu, 2008a), as summarized by Kopp et al. (2009). In addition, the 

controversial method stated that the geological formations performed as sealed containers after 

CO2 injection, quickly increasing pressure that occurring with considerable challenges related to 

the CO2 storage (Ehlig-Economides and Economides, 2010). 

3.4 Database 

3.4.1 Seismic data 

For petroleum exploration, 36 offshore seismic surveys (350,000 km) were surveyed in the 

Atlantic planning areas via the Bureau of Ocean Energy Management (BOEM) Resource 

Evaluation Program in geological and geophysical data acquisition between 1968 and 1992 

(Dellagiarino, 2001). Approximately 195,000 km of industrial 2-D legacy seismic reflection 

profiles were analyzed and interpreted to identify prospective storage elements and determine the 

lateral extending and thickness of the significant stratigraphic units. Since the data are zero-phase 

migrated, an increase in acoustic impedance is represented by a red-black-red reflection sequence 

in the seismic data depicted in this study, which indicates an increase in acoustic impedance. I 

identified the significant stratigraphic and lithological units (stratigraphic boundaries, 

unconformities, and reservoir and seal geometries). Seismic profiles are interpreted using horizon 

keys and calibrated against available well control. Due to the considerable horizon being tied to 

the seismic data and available well data, the base location of the reservoir is regarded with high 

uncertainty. 

3.4.2 Well data 

Six commercial exploration offshore wells (TRANSCO 1005-1, TENNECO 208-1, COST GE-1, 

TENNECO 427-1, EXXON 472-1, and EXXON 564-1) (Figure 3-2, Table 3-1) were drilled in  
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the southeast Georgia embayment from 1979 to 1980. Only the deepest three wells (TRANSCO 

1005-1, COST GE-1, and EXXON 564-1) penetrated the Upper Jurassic section in the mid-south 

Atlantic area. The deepest three wells allow seismic data and lithological key horizons, rock 

property, and age calibration. These wells were publicly released in 1990. Stratigraphy is 

obtained using petrological reporting of recoverable borehole core cuttings integrated using 

gamma-ray, sonic, and resistivity petrophysical logs in the well logs. Only COST GE-1 well, 

limited pore pressure measurement is available, including direct pressure measurements and the 

pressure and density of drilling mud in the wellbore. The production testing data is unavailable 

due to the lack of oil and gas wells in the mid-south Atlantic. A core was available from the well 

COST GE-1, but no other cores were accessible or analyzed in the mid-south offshore Atlantic 

area. The porosity, permeability, and other key parameters are only available from the COST GE-

1 well in the study area. The COST GE-1 well penetrated the pre-rift unconformity at 3,200m 

which drilled approximately 686m of the Paleozoic sedimentary sequences, and the total depth 

(TD) at 4,040m(Scholle, 1979; Amato and Bebout, 1980). The COST GE-1 well showed a thick 

sequence from Paleozoic to Cenozoic, where the Paleozoic section generally consists of non-

fossiliferous quartzite, shale, and salt, underlain by metamorphic and meta-volcanic rocks 

(Scholle, 1979). 

The COST GE-1 well data was significantly utilized to provide equivalent stratigraphy for the 

mid-south Atlantic offshore. The fracture pressure was provided from the leak-off test data below 

the deepest casing shoe(Amato and Bebout, 1978; Amato and Bebout, 1980). This greatest 

pressure can determine the maximum pressure used while drilling in that formation. The pressure 

measurements estimate how much CO2 is pumped into the sealing unit without fracturing. 
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Table 3-1: Essential information for the offshore wells located in the Southeast Georgia Embayment. 

No Operator 
Well 

No 

Block 

No 

Water 

Depth 

(m) 

Kelly 

Bushing 

KB (m) 

Total 

Depth 

TD (m) 

Location 

(deg/min/sec) 

Lat. (N) Long. (W) 

1 Transco 1 1005 40.84 30.78 3,546.35 30 59 34 80 14 38 

2 Tenneco 1 208 37.8 31.7 2,363.42 30 46 43 80 28 14 

3 Ocean Prod 
COST 

GE-1 
387 41.45 30.18 4,039.82 30 37 08 80 17 59 

4 Tenneco 1 427 29.87 36.27 2,277.47 30 34 34 80 31 59 

5 Exxon 1 472 38.1 27.74 2,364.64 30 31 36 80 29 54 

6 Exxon 1 564 44.2 24.69 3,920.64 30 26 23 80 15 21 

 

3.5 Geological and storage perspectives  

The Upper Jurassic section is overlain by Cretaceous mudstone and shale that extends regionally 

across the study area, considered a cap rock to ensure CO2 storage confinement. High-level static 

storage resource estimates reported in previous work suggest storage potential exists within the 

Upper and Lower Cretaceous sandstones in the Southeast Georgia Embayment and Blake Plateau 

saline basins (Almutairi, 2018; Almayahi et al., 2022). In this study, the Mid-south Atlantic 

offshore involved extensive efforts in data compilation, preservation, digitization, integration, and 

storage evaluation.  

Several institutions and government departments worldwide have developed approaches for 

assessing carbon dioxide storage capacity in various geological media. The US Department of 

Energy developed a simple methodology for calculating the storage capacity of regional-scale 

saline aquifers by calculating the total aquifer volume and applying a series of efficiency factors 

that attempt to correct for geologic heterogeneity in the form of a probabilistic multiplicative sum 

of fractions (Laboratory and Energy, 2008; Solomon et al., 2008). Several authors have enhanced 

and improved this approach, focusing on efficiency factors. Since then, two widely used 

approaches have been developed, based on the DOE method (Laboratory and Energy, 2008; 
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Goodman et al., 2011)and the Carbon Sequestration Leadership Forum (CSLF) method (Bachu, 

2008a; Kopp et al., 2009), as summarized by Kopp et al. (2009). In addition, the controversial 

method stated that the geological formations performed as sealed containers after CO2 injection, 

quickly increasing pressure occurring with considerable challenges related to the CO2 storage 

(Ehlig-Economides and Economides, 2010). 

The results of processed database is utilized to characterize offshore specific site selection criteria 

and calculate offshore-specific probability values for storage efficiency parameters, which are 

utilized to identify regional storage resources and estimate volumetric of storable quantities for 

the Upper Jurassic deep saline reservoirs. 

3.6 Methods 

This research develops an estimation of the future regarding carbon capture and storage in the 

southern mid-Atlantic offshore region, assuming economic conditions are suitable. A methodical 

workflow was used to assess and characterize CO2 storage resources in the mid-Atlantic US 

offshore region, extending from North Carolina to Florida. This workflow included integrating 

geological and geophysical data and estimating regional-scale storage resources. The results of 

each area pointed to specific parts used to improve static capacity estimations. The stratigraphic 

and rock physical properties analyses characterize resource calculation limitations, estimate 

offshore storage efficiencies, and calculate CO2 storage resources for the target deep saline 

aquifer. Well logs, laboratory core analyses, and seismic data to support the storage resource 

assessment. The geophysical logs of the COST GE-1 well are interpreted to identify sequence 

stratigraphy, lithofacies, and physical rock properties. The seismic data and well data are utilized 

to create a structure map and define the stratigraphic perspective of the caprocks and storage 

sources. The lithology, porosity, and permeability are identified by integrating the well logs and 

laboratory core analyses. Integration of geophysical and geological data developed the storage 
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elements: regional depth, thickness, and porosity. Risk factors such as sediment lithification and 

hydrostatic pressures are integrated based on the US Department of Energy-National Energy 

Technology Laboratory (US DOE-NETL) (Cumming et al., 2017; Rodosta et al., 2017; 

Sanguinito et al., 2018) to develop the following screening criteria for the offshore storage 

resource assessment as following: (A) The storage depth is deeper than 800 m to ensure the 

temperature and pressure conditions are suitable for squeezing CO2 under supercritical 

conditions. (B) A suitable seal or cap rock overlies the potential reservoirs to inhibit the vertical 

migration of CO2 to the surface. (C) The structural and stratigraphical trap conditions control the 

injected CO2 in the reservoirs for integrity and safe storage. Screening grids were performed as 

input for offshore CO2 storage calculations utilizing the static volumetric methodology by the 

CO2 Storage Perspective Resource Estimation Excel Analysis (CO2-SCREEN) tool developed by 

the US DOE-NETL. The screening criteria were complemented with stratigraphic and physical 

characteristics analysis to establish storage resource calculation parameters, evaluate offshore 

storage efficiencies, and calculate CO2 storage resources for the Upper Jurassic deep saline 

aquifer. To support the storage resource assessment, well logs and core and drill cuttings from the 

COST GE-1 well and legacy seismic data were interpreted and integrated. The challenges of the 

storage assessment workflow are related to the uncertainties and gaps associated with the legacy 

seismic data and a lack of well data. 

3.6.1 Data analysis 

The structural and stratigraphic offshore Jurassic sequences are determined using seismic data 

interpretation and correlation. Reservoirs and cap rocks characterize reservoirs and seals in the 

study area. To generate regional structure and thickness maps, interpreted seismic horizons for 

storage and cap rocks identified in this study were depth converted, tied to the COST GW-1 well, 

and integrated into a continuous, interpolated two-dimensional grid surface. The Upper Jurassic 

depth interval is interpolated and interpreted for the study area based on the COST GE-1 well 
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data, structure Upper Jurassic maps for top and bottom surfaces are illustrated in figure 3-3 to 

figure 3-5 and figure 3-6 and figure 3-7 that illustrate thickness maps of the Upper Jurassic 

section and net-to-gross sandstone Upper Jurassic reservoir. A quality validation and quality 

control approach is used to confirm seismic horizons, and well log sequence stratigraphic and 

lithostratigraphic picks were equivalent to within 100 m. The storage and caprock structure and 

depth limitations were analyzed to detect storage calculation boundaries according to screening 

criteria.  

The lithological description used the standard USGS rock-type designations such as shale, 

siltstone, sandstone, limestone, dolomite, and quartzite. The results of the core and sidewall 

analyses are effective tools used in this study to evaluate the lithology and porosity of the Upper 

Jurassic section. The rocks between 1,500 and 2,200 m in depth are potentially related to Lower 

Cretaceous (Scholle, 1979); however, the section below 2,200 m is signed as Upper Jurassic 

(Amato and Bebout, 1980). Rocks from a depth of 3,350 m to the base of the well are composed 

of green and gray-green, very fine-grained, highly indurated to weakly metamorphosed, 

sedimentary rocks, with intrusive and extrusive meta-igneous rocks especially abundant in the 

lower part of this interval. 

 The Upper Jurassic section at 2,200 and 3,350 m is composed of interbedded sandstones, and 

shales predominate, although individual beds of limestone, dolomite, and anhydrite, and, in the 

lower part of the section, coal are common (Table 3-2 and Figure 3-8). This section, deposited in 

inner-shelf terrestrial environments, is largely barren of fossils. The depositional environments of 

the beds across the COST GE-1 well range from the middle shelf to the upper slope (Maher and 

Applin, 1971; Poag, 1978; Amato and Bebout, 1980; Dillon et al., 1982). Regarding the porosity 

and permeability of conventional and sidewall core samples from the GE-1 well, the porosity of 

the Upper Jurassic rocks decreased through compacting, pressure solution, and cementation of 

silica, calcite, and anhydrite. The porosity ranges from 0.15 to 0.31, and corresponding  
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permeabilities are mostly 9.87×10-16 to 9.87×10-14 m2 as shown in figure 3-8. This range is 

common at a depth range of 2,200-3,050 m. However, the average permeability of a few coarser 

sandstones is approximately 4.05×10-12 m2 (Figure 3-8). At a depth of 3,050–3,350 m, porosity 

and permeability are significantly decreased by diagenetic processes (Amato and Bebout, 1978; 

Scholle, 1979). 

Due to the diagenetic alteration obliterating all significant porosity in the slightly 

metamorphosed, no reservoir rocks are expected in the section below 3,350 m. The impermeable 

beds are qualified to seal the prospective reservoirs throughout the Upper Jurassic section. The 

thick shale and calcareous shale, thinner shale, and anhydrite beds in the deeper parts of the 

Upper Jurassic section are the best potential seals. This study examines and evaluates a reservoir 

within a regional stratigraphic trap hosted by the Upper Jurassic sandstone layers. Whereas a 

quantifiable caprock or seal represents the impermeable rocks, I can identify the base seal of a 

potential reservoir. The sandstone layers underlay the target reservoir, and the shale beds are 

regionally extended across the study area. At a depth 2,525 – 3,106 m, the COST GE-1 well 

includes seven Upper Jurassic sandstone potential reservoirs (Figure 3-8). The sandstone layers 

underlay the target reservoir, and the shale beds are regionally extended across the study area. 
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Figure 3-3: Location map for the study area. 
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Figure 3-4: Structural map for the top surface (in meters) of the Upper Jurassic sequences. 
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Figure 3-5: Structural map for the base surface (in meters) of the Upper Jurassic sequences. 
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Figure 3-6: Thickness map (in meters) for the Upper Jurassic section (in meters. 
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Figure 3-7: Thickness map (in meters) for the Upper Jurassic sandstone reservoir. 
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Table 3-2: Lithologic description of the Upper Jurassic sequences using core and cutting samples with the depth 

intervals (in meters) from the COST GE-1 well. 

 

 

 

 

 

 

Depth 

interval (m) 
Porosity Lithology 

2,525-2,825 0.23-0.31 Coarse sand unconsolidated with thick interbedded red-brown-gray 

shale, some coal, and pyrite. 

2,825-2,995 0.21-0.27 Consolidated medium-grain sandstone interbedded red-brown-green 

shale and limestone. 

2,995-3,030 0.12-0.24 Fine-medium crystalline limestone and fossiliferous micrite at the 

base. 

3,030-3,190 0.19-0.25 Thin interbeds shale with abundant carbonaceous limestone, a few 

thin sandstone beds and thin limestone bed in the base. 

3,190-3,395 0.20-0.25 Thinly sandstone interbeds crystalline dolomite, and shale. 

3,395-3,425 0.23-0.25 Molted gray Limestone. 

3,425-3,560 0.12-0.24 Thin fine to medium-grain sandstone interbedded, shale, a few 

limestone beds with seams coal at the base. 

3,560-3,600 0.23-0.24 Dense dolomite and fine limestone trace coal. 

3,600-3,695 0.18-0.23 Shale, dolomitic shale interbedded sandstone with trace coal. 

3,695-3,975 0.22-0.28 Dolomite and sandy silt interbed of anhydrite, gypsum nodules with a 

trace of coal. 
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Figure 3-8: COST GE-1 well data logs correlated with core samples for stratigraphy and rock physical properties. 
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3.6.1 CO2 Screening and calculations 

The comparable volume of CO2 occupying the pore space in a specified storage reservoir is 

calculated using estimations of subsurface pore volumes and site fluid volumes in static CO2 

storage calculations. The Carbon Sequestration Leadership Forum has developed static and 

volumetric-based methodologies to estimate static CO2 storage potential (Bachu, 2007; Bradshaw 

et al., 2007; Bachu, 2008b; Gorecki et al., 2009a; Gorecki et al., 2009b; Goodman et al., 2011; 

Zhou et al., 2011; Blondes et al., 2013; Sanguinito et al., 2017). The potential CO2 storage 

resource of the offshore saline aquifer in this study was quantified and mapped using the US 

DOE-NETL methodology (Laboratory and Energy, 2008; Goodman et al., 2011; Goodman et al., 

2016). Equation 3-1 summarizes this methodology: 

GCO2 = A × h × φ × ρCO2 × Esaline …………….……………. Equation 3-1 

Where, the total area (A), net-to-gross thickness (h), and average effective porosity (φ) of the 

reservoir are utilized to evaluate offshore resources, with gamma-ray 40 gAPI and permeability 

(k) 9.87×10-14 m2 encompassing the total pore volume. 

The storage efficiency factor (Esaline) is used to minimize total pore volume to indicate the 

fraction of the pore space occupied by CO2 (Goodman et al., 2011, 2016). The density of CO2 

(ρCO2) at reservoir conditions is employed (GCO2) to convert the CO2 occupied pore volume to a 

mass of stored CO2. According to DOE-NETL, the Esaline variable combines five principal 

efficiency factors (US DOE-NETL, 2008, 2010, 2012; Goodman et al., 2011). Equation 3-2 

explains the specific efficiency variables: 

Esaline = EAn × Ehn × Eρe × EV × Ed ………………... Equation 3-2 

Geologically, the net effective pore volume is the net-to-total area (EAn), net-to-gross thickness 

(Ehn), and effective-to-total porosity (Eρe). The ratio of the net pore volume with a permeability 
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greater than or equal to 9.87×10-14 m2 to the net reservoir pore volume with a permeability greater 

than or equal to 1.97×10-13 m2 provides the net effective pore volume. The remaining efficiency 

factors are fluid displacement terms, volumetric displacement efficiency (EV) accounts for water 

saturation, and microscopic displacement efficiency (Ed) accounts for the volume of rock 

involving an injection well contacted by CO2 related to fluid conditions and displacement. 

Equations 3-1 and 3-2 are used to estimate the storage capacity of the open system saline aquifer 

probabilistically. The satisfactory convergence for probabilistic resource estimations are used for 

this study corresponding to the DOE method (Goodman et al., 2016; Sanguinito et al., 2017; 

Sanguinito et al., 2018). The storage was supplied with grid data generated from the depth, net 

thickness, and effective porosity. Reservoir pressure and temperature were calculated based on 

the pressure and temperature gradients from the COST GE-1 well. 

The CO2 density is calculated using the CO2 solubility model corresponding to Duan et al. and 

Bahadori et al. (Duan et al., 2006; Bahadori et al., 2009). Statistical distributions from regional 

net-to-total pore volume grid data and direct consequence injection simulations were used to 

assess storage efficiency in terms of geology and displacement efficiency. A cutoff permeability 

of greater than or equal to 1.97×10-13 m2 was applied to the greater than or equal to 9.87×10-14 m2 

reservoir interval to account for uncertainty in the predicted net pore volume available for CO2 

storage. The three geologic efficiency parameters, EAn, Ehn, and Eρe, were combined into one 

parameter to describe the net-to-total reservoir pore volume efficiency and use available data to 

determine storage efficiency as in equations 3-2 and 3-3 were developed as in equation 3-4 

(Goodman et al., 2016; Fukai et al., 2020):  

 EPVn
s = EAn × Ehn × Eρe ……………….…………….... Equation 3-3 

Esaline= EPVn
s × EV

s × Ed
s …………………………....... Equation 3-4 
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The superscript is introduced to the EPVn parameter to indicate a stochastic calculation parameter 

determined by specific data(Goodman et al., 2016). The geologic efficiency factor is provided 

probability (P) values for the 0.10 percentage (P10) and 0.90 percentage (P90) values based on 

statistical distributions of the pore volume fractions obtained from the grid cells in the storage. 

Goodman et al. (2011) utilized Monte Carlo simulations to estimate the estimates (P10, P50, and 

P90) of efficiency factors for different lithologies based on data from the US and Canadian 

carbon sequestration atlases (Gorecki et al., 2009a). The clastics, dolomites, and limestone are 

three lithological media with projected efficiencies ranging from 0.4 to 5.5 percent. The results 

align with previous investigations on how open-system saline formations work in various global 

regions (Bickle, 2009; Gorecki et al., 2009b; Kopp et al., 2009; Szulczewski and Juanes, 2009). 

CO2 storage perspective resource estimation excel analysis (CO2-SCREEN) is an Excel-based 

method and tool developed by the US-DOE-NETL to screen geologic formations using an 

enhanced US-DOE-NETL approach (Gorecki et al., 2009a; Goodman et al., 2011; Bachu, 2015; 

Goodman et al., 2016; Levine et al., 2016; Sanguinito et al., 2018). CO2 Storage prospeCtive 

Resource Estimation Excel aNalysis (CO2-SCREEN) is a tool that estimates potential CO2 

storage resources for geologic formations, ranging from large regional assessments to specific 

sites that could be developed for commercial storage. This tool is an interactive version of the 

US-DOE methodology for improving potential CO2 storage resources in saline aquifers based on 

increased available data and improved geologic interpretation (Goodman et al., 2016).  CO2-

SCREEN is a publicly available tool obtained on the NETL Energy Data eXchange (EDX) 

(Sanguinito et al., 2017; Sanguinito et al., 2018). CO2-SCREEN comprises an Excel spreadsheet 

for inputs and outputs and a GoldSim Player file for Monte Carlo simulations (Goodman et al., 

2016; Sanguinito et al., 2018). The Excel file provides the key values for subsurface geological 

and physical characteristics, specifies storage efficiency factor ranges, and sets other formation-

related parameters matching lithologies and fundamental formation characteristics. The GoldSim 
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Player file analyzes the Excel saved file input data, calculations CO2 storage probability estimates 

using Monte Carlo methods and exports the response directly to the Excel file (Goodman et al., 

2016; Sanguinito et al., 2018). 

3.6.2 CO2-SCREEN applying 

Established on well log data from the Upper Jurassic sandstone layers in the mid-south Atlantic 

Ocean, this study employs CO2-SCREEN. From the COST GE-1 well, depth, thickness, porosity, 

temperature, and pressure data are the first parameters input into the Excel file for the saline 

formation of the CO2-SCREEN (Table 3-3). I applied the value from Sanguinito et al. (2018) for 

the storage efficiency factor ranges, which have already calculated in the application, represented 

by a P10 and P90 range for the dolomite lithology.  

Grid cells for storage efficiency factors are controlled through CO2-SCREEN. The grid cells 

determine the storage efficiency ranges according to the dolomite lithology. The initial geology 

and reservoir data are the second set of input physical variables for CO2-SCREEN. The 

geophysical interpretation included thickness readings from the COST GE-1 well, a porosity log 

(Figure 3-8), bottom-hole temperature, and pressure (Figure 3-9). The gridding approach in CO2-

SCREEN is used to accommodate geographic and geologic heterogeneity. This approach allows 

the simultaneous input of several rows of physical parameter data to obtain CO2 storage resources 

on a grid cell by grid cell scale. The Upper Jurassic sandstone was arranged into 25 grid cells of 

about 83 km × 83 km (7,025 Km2) for each grid. Grid cells with data on at least one physical 

parameter, including thickness or porosity, are identified for use in CO2-SCREEN (Table 3-3). A 

normal distribution with temperature and pressure inputs is used to reflect density, and a log-odds 

distribution is used to define storage efficiency (Sanguinito et al., 2017). The CO2 storage results 

are calculated in million metric tons (Mt) for the saline aquifer. 
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Figure 3-9: Demonstrates temperature (ºC) and Pressure (MPa) plotted against depth (m) for the COST GE-1 well. 
Panel A Temperatures were recorded from three temperature logs. The geothermal gradient of around 16 ºC/km is 
shown as the least-squares fit to the data from the two deepest temperature logs. Panel B Pressure measured from 
conventional drill-stem test data. The hydrostatic pressure gradient of around 11.8 MPa/km. This figure is summarized 
and modified after (Scholle, 1979; Amato and Bebout, 1980). 
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Table 3-3: CO2-SCREEN Saline aquifer (Inputs excel sheet) shows the mean and standard deviation of the physical 
parameters for 25 grid cells of the Upper Jurassic sandstone reservoir. 

Grid Area (km²) 
Gross Thickness (m) Total Porosity (%) Pressure (MPa) Temperature (°C) 

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev 

1 7024.675 40.62927 19.58812 0.33615 0.001063 46.92229 0.11545 89.79167 0.088388 

2 7024.675 67.86936 18.93518 0.331639 0.002127 47.31262 0.16055 90.04167 0.088388 

3 7024.675 94.64774 18.93518 0.327128 0.001063 47.62794 0.062417 89.84167 0.22981 

4 7024.675 121.4261 18.93518 0.319609 0.004253 47.80448 0.062417 89.56667 0.035355 

5 7024.675 148.2045 18.93518 0.309083 0.00319 47.98102 0.062417 89.66667 0.035355 

6 7024.675 175.4446 19.58812 0.306075 0.001063 48.15756 0.062417 89.76667 0.035355 

7 7024.675 202.6847 18.93518 0.295549 0.008507 48.3341 0.062417 89.86667 0.035355 

8 7024.675 229.4631 18.93518 0.268481 0.010633 48.51064 0.062417 89.96667 0.035355 

9 7024.675 256.7031 19.58812 0.248932 0.00319 50.2913 1.196697 90.06667 0.035355 

10 7024.675 283.9432 18.93518 0.228877 0.010991 52.14695 0.11545 90.01667 0.070711 

11 7024.675 310.7216 18.93518 0.218333 0.003536 52.4735 0.11545 89.99167 0.053033 

12 7024.675 337.9617 19.58812 0.220833 0.001768 52.80004 0.11545 90.14167 0.053033 

13 7024.675 364.7401 18.28224 0.213333 0.003536 53.12658 0.11545 90.29167 0.053033 

14 7024.675 391.5185 19.58812 0.233896 0.018076 51.47401 1.283995 90.34167 0.017678 

15 7024.675 418.7585 18.93518 0.269985 0.007443 49.74643 0.062417 90.36667 0.035355 

16 7024.675 445.5369 18.93518 0.260962 0.013823 49.92297 0.062417 90.46667 0.035355 

17 7024.675 472.777 19.58812 0.289534 0.034026 50.09952 0.062417 90.56667 0.035355 

18 7024.675 500.0171 18.93518 0.339158 0.001063 50.27606 0.062417 90.66667 0.035355 

19 7024.675 526.7955 18.93518 0.303068 0.026583 50.4526 0.062417 90.76667 0.035355 

20 7024.675 553.5739 18.93518 0.254947 0.007443 50.62914 0.062417 90.86667 0.035355 

21 7024.675 580.814 19.58812 0.242917 0.001063 50.80568 0.062417 90.86667 0.035355 

22 7024.675 608.054 18.93518 0.23991 0.001063 51.76536 0.616178 89.99167 0.583363 

23 7024.675 634.8324 18.93518 0.236902 0.001063 52.80004 0.11545 89.09167 0.053033 

24 7024.675 661.6108 18.93518 0.233895 0.001063 53.12658 0.11545 89.76667 0.53033 

25 7024.675 677.5 18.93518 0.231302 0.00077 53.13008 0.112975 90.48067 0.025456 
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3.7  Results and discussion 

The capacity for CO2 storage potential of the Upper Jurassic sandstone layers is calculated based 

on the rock compositions and petrophysical properties from correlation of the COST GE-1 well to 

the Transco 1005-1 in the northern region and the Exxon 564-1 wells in the southeastern region. 

The potential reservoirs are associated with potential seals characterized and assessed in the 

Upper Jurassic section. The reservoirs are sealed by thick cap rocks mainly of shale, siltstone, 

anhydrite, and limestone. The Upper Jurassic reservoir consists of seven sandstone layers sealed 

by impermeable caprocks. The trapping mechanism characterized as an overlying seal, involves 

stratigraphic trapping through lateral facies extension. The Upper Jurassic sandstone reservoir 

comprises calcareous shale, anhydrite, limestone, fossil fragments, and gypsum. The average 

porosity of the reservoir ranges from 0.15 to 0.31. I used equation 3-1, which was developed 

earlier by Goodman et al. (2011), to apply the dolomite storage efficiency factors (E) at the 

regional formation scale, which are ranged from 0.64 and 5.36 percent for the probabilities of P10 

and P90 (Table 3-4). 
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Table 3-4: The CO2 storage resource results (CO2-SCREEN output excel-sheet) for the Upper Jurassic sandstone 
reservoir in the study area. This table demonstrates the three probabilities of the dolomite storage resource (Mt) and 
storage efficiency (%) for the 25 grid cells.  

 

 

Grid 
Storage Resource (Mt) 

Lithology 
Storage Efficiency (%) 

P₁₀ P₅₀ P₉₀ P₁₀ P₅₀ P₉₀ 

1 0.08 1.31 20.04 Dolomite 0.64 2.2 5.36 

2 1.44 15.45 155.36 Dolomite 0.65 2.17 5.23 

3 2.59 21.14 143.36 Dolomite 0.67 2.2 5.33 

4 5.52 36.08 207.21 Dolomite 0.66 2.18 5.35 

5 11.33 60.22 280.35 Dolomite 0.65 2.2 5.31 

6 14.17 68.77 283.74 Dolomite 0.67 2.18 5.26 

7 20.35 85.06 314.3 Dolomite 0.68 2.18 5.28 

8 24.94 103.54 356.5 Dolomite 0.66 2.19 5.33 

9 29.77 113.3 351.91 Dolomite 0.67 2.2 5.31 

10 28.46 102.07 307.27 Dolomite 0.67 2.19 5.27 

11 14.07 50.59 144.15 Dolomite 0.68 2.17 5.21 

12 14.2 52.38 146.63 Dolomite 0.66 2.22 5.33 

13 13.67 47.74 131.24 Dolomite 0.65 2.2 5.3 

14 9.52 33.72 88.73 Dolomite 0.66 2.19 5.28 

15 44.38 156.44 407.46 Dolomite 0.65 2.18 5.3 

16 27.16 90.42 229.61 Dolomite 0.67 2.18 5.29 

17 20.44 72.37 180.78 Dolomite 0.66 2.21 5.24 

18 31.13 107.78 268.49 Dolomite 0.65 2.22 5.28 

19 28.96 94.07 233.88 Dolomite 0.68 2.17 5.28 

20 19.83 63.5 155.95 Dolomite 0.68 2.19 5.33 

21 27.86 93.04 228 Dolomite 0.66 2.21 5.33 

22 19.52 65.01 155.03 Dolomite 0.67 2.23 5.27 

23 25 83.84 204.9 Dolomite 0.66 2.21 5.35 

24 37.07 122.34 293.95 Dolomite 0.67 2.21 5.3 

25 54.23 180.33 425.49 Dolomite 0.67 2.23 5.26 

        

Total 525.71 1920.48 5714.31 - - - - 

Average 21.03 76.82 228.57 - 0.66 2.20 5.31 
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The uncertainty of CO2 density incorporated with the variety of depths and thicknesses in the 

Upper Jurassic section can be reduced by CO2-SCREEN application to calculate the CO2 storage 

capacity based on the grid area, depth, and physical rock properties. Temperature and pressure for 

each grid area of the reservoirs are based on the geothermal gradient and hydro-static pressure 

gradient from the COST GE-1 well (Figure 3-9). I assumed that the geothermal gradient at the 

COST GE-1 well (16 o C) and hydro-static pressure gradient (0.011 MPa/m) are constant across 

the study area. The density values of supercritical CO2 are already considered in the CO2-

SCREEN approach based on the depth (Goodman et al., 2016; Sanguinito et al., 2018). 

For high accuracy and comparison, I estimate the potential storage resources of the Upper 

Jurassic reservoir calculated for the regional area. The area is detected where seismic profiles and 

well data are densely concentrated in the mid-south Atlantic planning area, covering 

approximately 176,000 Km2. The storage resource was detected based on the abundance and 

density of the data. I considered three probability values (P10, P50, and P90) for each grid area to 

determine each grid cell's geologic storage efficiency factor. For the integrity and safety of CO2 

storage, I interpreted and evaluated impermeable rock units that are signed as seals. Although the 

seismic interpretation indicated no significant fault has detected in the Upper Jurassic section, the 

uniform lateral stratigraphy is a considerable concern due to the lack of well data in the study 

area. The potential storage resources were calculated for the Upper Jurassic reservoir. The total 

capacity of the Upper Jurassic storage resources with a geologic storage efficiency of dolomite 

(0.64–5.36 percent) ranged between 526 and 5,714 Mt of CO2 at P10 and P90 for the study area 

(Table 3-4). At P50, the average storage resource per unit area of the Upper Jurassic in the study 

area is approximately 0.011 Mt CO2/Km2 with uncertainty incorporated thickness changes is 

approximately ±0.00046 Mt/ Km2.
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CHAPTER IV 
 

 

4 LITHOFACIES CLASSIFICATION OF WELL LOG DATA IN THE 

OFFSHORE ATLANTIC, SOUTHEASTERN UNITED STATES, USING MACHINE 

LEARNING APPROACH 

 

 

 

4.1 Introduction 

The main reservoir characteristics include lithology, clay volume, grain size, water saturation, 

porosity, and permeability are obtained through rock properties evaluation by well log 

interpretation and core sample analysis. The petrophysical analysis is fundamental since that 

supplies a key source of data for reservoir characterization. Well log data is required in 

characterizing subsurface resources and understanding the reservoir. Wire-line logs provide 

continuous records of geological formations and provide geophysicists with important data on the 

properties of the rocks. These characteristics are essential for evaluating individual well 

formations and field-wide subsurface resource estimates. Well logging techniques identify 

hydrocarbon zones, calculate hydrocarbon volumes, and perform multiple other operations (Ellis 

and Singer, 2007; Choubey and Karmakar, 2021). However, in reservoir characterization, some  
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procedures are required to determine shale volume (Vsh), water saturation (Sw), porosity (p), 

permeability (k), elasticity (AI, SI), reflectivity coefficient (R), and others. The physical 

characterization of subsurface samples is the traditional method for detecting lithofacies (Gao, 

2011; Tewari and Dwivedi, 2019). Thus, an analytical procedure is more accurate to determine 

lithology directly from core samples, and it is extremely expensive and time-consuming 

(Payenberg et al., 2000; Zhong et al., 2021). Wire-line logging has increased significantly since 

the first electrical log was recorded in a well in a local oil field in France in the mid-1920s 

(Selley, 1998; Govett, 2007).  

The rock facies is a geologic term that refers to classifying rock layers into assignable units due to 

physical features, composition, formation, or other characteristics (Moore and Liou, 1979; Niu et 

al., 2002). Various facies are referred to as the lithofacies discussed in this chapter. Facies 

identification is a critical feature of geologic exploration, and it comprises identifying a category 

for geological formations based on characteristics. This chapter utilized a classifier to predict 

facies classification of the given five wells datasets (i.e. regardless of which a well has being 

described or not described) in Southeast Georgia Embayment offshore Southeast United States 

(Figure 4-1).   
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Figure 4-1: Well locations in southeast Georgia Embayment, offshore southeastern United States. 

 

4.2 Machine learning approach 

Machine learning has enticed numerous scientific aspects and progressively conquered the oil-gas 

industry. Multivariate statistical techniques have been utilized to reduce the difficulty of facies 

classification from well log measurements (Wolf and Pelissier-Combescure, 1982; Kapur et al., 

1998). Grouping and clustering of similar features were used for rock facies classification (Wolf 

and Pelissier-Combescure, 1982). Multivariate clustering is the first successful attempt applied to 

recognize and correlate the facies between the wells (Gill et al., 1993). The Machine Learning 

(ML) algorithms developed and applied the C parameter in the computer vision industry to  
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determine and identify the facies (Lawrence et al., 1997).  

The algorithms used in this study are: Support Vector Classifier (SVM) and Random Forest 

Classifier (RFC). Where, the Support Vector Machine (SVM) assembles a hyperplane, that is, 

margin/street is the distance between the vectors, and the support vectors are data points near the 

hyperplane on all sides (Joachims, 2002). If the hyperplane has a narrow margin/street, it needs a 

further parameter adjustment, but if the hyperplane has a wide margin/street, it is a reliable 

classification. The C optimizer factor describes the support vector machines (SVM) optimization 

and misclassifying essential to be avoided in each training example (Joachims, 2002; Guo et al., 

2010). 

That is, compared the accuracy of the predicted facies classification values to the actual facies 

classification values per each algorithm. In the machine learning approach, the wells datasets 

must be split into training and testing datasets. However, the five given wells are divided into 

three wells for training set: TRANSCO 1005-1 well, TENNECO 427-1 well, and EXXON 472-1 

well, as well as two wells for testing set: 387 COST GE-1 well, and EXXON 564-1 well. Thus, I 

identified the facies classification features used for the three training and the two testing wells as 

shown in the table 4-1. However, three wells are trained for the well log curves’ which resulted 

the count, mean, standard deviation, minimum, 25%, 50%, 75%, and maximum are shown in the 

table 4-2. 
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Table 4-1: Training data preparing shown a count 45598 rows and 12 columns including facies class number, lithology, well name, depth (ft), and eight features (well logs) of 
dataset. 

 Facies Formation Well DEPT GR CALI DT ILD RHOB SP PHIND DeltaPHI 

0 5 Anh TENNECO 427-1 371.5 0 0 56.3498 15.417 0 2.5 NaN NaN 

1 5 Anh TENNECO 427-2 372 0 0 56.3498 15.417 0 2.5 NaN NaN 

2 5 Anh TENNECO 427-3 372.5 0 0 56.3498 15.417 0 2.5 NaN NaN 

3 5 Anh TENNECO 427-4 373 0 0 56.3498 15.417 0 2.5 NaN NaN 

4 5 Anh TENNECO 427-5 373.5 0 0 56.1597 15.5597 0 2.25 NaN NaN 

... ... ... ... ... ... ... ... ... ... ... ... ... 

45593 6 LS TRANSCO 1005-1 11698 25.7 0 59.8095 1599.5576 0 -59.75 NaN NaN 

45594 6 LS TRANSCO 1005-2 11698.5 25.7 0 59.8095 1599.5576 0 -59.75 NaN NaN 

45595 6 LS TRANSCO 1005-3 11699 25.7 0 59.8095 1599.5576 0 -59.75 NaN NaN 

45596 6 LS TRANSCO 1005-4 11699.5 25.7 0 59.8095 1599.5576 0 -59.75 NaN NaN 

45597 6 LS TRANSCO 1005-5 11700 25.7 0 59.8095 1599.5576 0 -59.75 NaN NaN 
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Table 4-2: Demonstrates the data set and shows that the total count row reached 45,598 vectors and eleven columns of features in the data set. The feature vectors consist of the 
eight variables; Gamma-ray (GR), Calibration (CALI), Sonic (DT), Resistivity (ILD), Density (RHOB), Spontaneous (SP), Neutron-density porosity (PHIND), and absolute Neutron-
density porosity difference (DeltaPHI). 

 

 

 

 

 Facies DEPT GR CALI DT ILD RHOB SP PHIND Delta PHI 

Count 45598 45598 45598 45598 45598 45598 45598 45598 37726 37942 

Mean 3.44 5249.7 39.19 9.027 93.88 257.18 -75.9 -1.84 166.5 0.183 

Std 2.05 2820.1 28.29 6.003 28.31 3525.3 267.9 46.73 155.3 0.195 

Min 1 200.5 -0.1 0 -999 -1 -999 -101.8 0 0 

25% 2 3135.6 20.8 0 78.29 0.920 0 -39.5 49.9 0.03 

50% 3 5150.5 34.05 10.95 92.38 1.368 2.2 0 136.5 0.12 

75% 6 7050.3 58.3 13.25 106.1 36.644 2.4 34.75 249.8 0.24 

Max 6 11700 409.5 21 207.3 162754 3.5 537 966.6 0.74 
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4.3 Methodology 

This study demonstrates a classification algorithm subjected as a support vector machine to 

identify lithofacies based on well logs data. A support vector machine (SVM) is a supervised ML 

algorithm that is required to supply training data to learn the relationships between the features 

and the classes to be assigned. Measuring error, reducing error, and evaluating results are the 

most common components of ML algorithms (Dreiseitl and Ohno-Machado, 2002). The 

measuring error is the equation used to represent the machine learning problems and is called the 

objective function or loss function. Supervised learning is a part of Machine Learning processing 

of training data placed into the algorithm that retains expected solutions as labels. A typical 

supervised learning assignment is classification. In this chapter, the datasets have labeled facies 

classes as a number at a 0.5 ft interval. The workflow of the method in this study was created to 

evaluate the facies classification model (Figure 4-2). I provided eight features into the algorithms 

and output a facies class. Support Vector Machines and Random Forests are the most influential 

and prevalent supervised learning algorithms that were utilized in this study.  
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Figure 4-2: Workflow chart of the method. 

 

 

 

 



 

81 
 

4.3.1 Datasets 

The features of datasets are the geophysical logs data from five offshore exploration wells 

(TRANSCO 1005, COST GE-1, TENNECO 427, EXXON 472, and EXXON 564) (Figure 4-1). 

Only COST GE-1 well has core lithofacies classes that have been identified based on the well 

core description (Poag, 1978; Dillon et al., 1979; Scholle, 1979). Applying cutoff rules to 

inefficient well log curves by facies and cross-plots of log curves can speed up the classification 

process (Figure 4-3). This study modified and combined the SEG approach (Hall, 2016) and the 

approach of (Chen and Zeng, 2018) to classify the rock facies of the dataset.  

4.3.2 Data preprocessing 

Six lithofacies classes labeled from 1 to 6 were labeled to characterize rock facies for the five 

wells (three training sets and two testing sets of wells). I settled on six classes of lithofacies by 

offsetting two factors: 

1. The maximum number of facies distinguishable based on petrophysics properties that are 

subtracted by well log curves. 

2. The minimum number of facies is required for accurate characterization of the physical 

variability of the formation. 

Gamma Ray (GR) logs are usually used for shale content calculations, correlation, and mineral 

analysis. GR estimates γ-ray emissions from radioactive formations. Different formations may 

have different γ-ray signatures. Gamma Ray logs Resistivity (ILD) calculates the subsurface 

materials' ability to either inhibit or resist electrical conditions. By examining neutron energy 

losses in porous formations, a formation’s porosity could be calculated through the average 

neutron-density porosity (PHIND). The highest hydrogen concentration area in the formation is 

where Neutron energy loss may occur. Based on neutron logs, the porosity difference in  
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formation is measured through finding the Neutron-density porosity difference (DeltaPHI). These 

six facies are sandstone (SS), Shaley sandstone (ShSS), Sandy shale (SSSh), Shale (Sh), 

Anhydrite (Anh), and Limestone (LS) (Figure 4-3), which are consistently labeled and 

statistically classified into facies classes from number 1 to number 6. Facieses classes of the 

training data have been classified based on  AAPG (2004) (Asquith et al., 2004; WIKI, 2017). 

However, the accuracy of the classifier is evaluated by comparing the facies labels for the training 

wells set with the predicted wells set, and misclassification of the neighboring facies can occur. 
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Figure 4-3: Cross-plots of eight wireline logs: Gamma ray (GR), calibration (CALI), sonic (DT), lateral (ILD), density 
(RHOB), spontaneous potential (SP), neutron-density porosity (PHI), and neutron-density porosity difference (DeltaPHI) 
of the train wells with six color keys for each specific rock facies category. 
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4.3.1 Dataset-splitting: 

The data of five well logs in the study area have been split into training and testing data. The 

training data included TENNECO427-1, EXXON 472-1, and TRANSCO 1005-1 well log curves. 

The training data have been processed, and facies labels have been marked and plotted. The data 

set is associated with various facies types in machine learning terminology. The “pandas” library 

is used to stack the data into a data frame, which provides a suitable data structure for operating 

with well-log data. The data set includes eight features and a facies label (Figures 4-4, 4-5, and 4-

6). These figures show the curves for the training data plotted for TENNECO 427-1, EXXON 

472-1, and TRANSCO 1005-1 wells along with six signed facies classes. The dataset features 

(eight log curves) are GR, CALI, DT, ILD, RHOB, SP, PHIND, and Delta PHI. The color scale 

in the facies column indicates six classes signed at a depth interval of 0.5 ft. Statistical 

distribution of the six facies classes for the training data were plotted on a bar graph (Figure 4-7), 

which shows that Shaley Sandstone is widely distributed in the dataset, and Shale is the lowest 

distributed. 

4.3.2 ML Outcomes 

Based on the datasets and preprocessed, figures 4-4, 4-5, and 4-6 are constructed to show the 

facies classification of the training wells dataset. Facies are labeled at 0.5 ft depth intervals with 

six log measurements in the eight facies classification features dataset (figure 4-4, 4-5, and 4-6). 

Then the six well log measurements were assembled in a bar graph to represent the facies 

distribution in training wells (Figure 4-7). A cross plot is then constructed to aid with visualizing 

the log measurements and facies classes present in the well log curves (Figure 4-3). The exact 

process occurs for the testing wells facies classification. The testing well log curve data is then 

compared to the training well log curve data, and the information is presented on a heatmap that 

represents the accuracy of the predicted compared to the accurate values of the six log  
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measurements. In the Random Forest Classifier (RFC), a sample of primary datasets has been 

pulled and built for the classification pattern. The output has highlighted and assigned most of the 

forest using the voting techniques. The stacking method was applied to increase the resulted 

accuracy and statistically decrease any statistical modeling error that may arise when a function is 

closely aligned to a small sample size. Because of this, the model is only effective regarding the 

original data set and not in connection to any new datasets. This process obtains the prediction 

average from multiple decision trees (Breiman, 2001). Due to the law of large numbers, random 

forest is an ensemble-based algorithm that does not overfit and is a good tool for making 

predictions (Breiman, 1999; 2001). Therefore, selecting suitable hyperparameters makes all the 

ML models good predictors. Reducing error is the same as optimizing the objective function 

(Müller et al., 1997). There are multiple optimization various techniques, such as gradient descent 

(Wan et al., 2007; Chapelle and Wu, 2010) 
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Figure 4-4: Well log curves plot for TENNECO 427-1 well along with six facies classes signed at 0.5 ft. Eight log curves are GR, CALI, DT, ILD, RHOB, SP, PHIND,  and DeltaPHI. The 
color scale in the facies column indicates six facies classes that are signed at 0.5 ft intervals. 
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Figure 4-5: Well log curves plot for EXXON 472-1 well along with six facies classes signed at 0.5 ft. Eight log curves are GR, CALI, DT, ILD, RHOB, SP, PHIND,  and DeltaPHI. The 
color scale in the facies column indicates six facies classes that are signed at 0.5 ft intervals. 
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Figure 4-6: Well log curves plot for TRANSCO 1005-1 well along with six facies classes signed at 0.5 ft. Eight log curves are GR, CALI, DT, ILD, RHOB, SP, PHIND,  and DeltaPHI. The 
color scale in the facies column indicates six facies classes that are signed at 0.5 ft intervals. 
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Figure 4-7: Represents the distribution of facies in the three training well dataset. 
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The confusion matrix is used to assess the performance of a classifier in the evaluation result. The 

general idea is to count how often instances of class A are classified as instances of class B, and 

the F-1 score is commonly used to assess classification algorithm results (Baluja et al., 2000; 

Baesens et al., 2003). In this chapter, I applied F-1 score of the ML industry standard equations 

(Equation 4.1, 4.2, and 4.3) that provided by Baluja et al. (2000) to measure the results of the 

testing wells. Precision and Recall in equation (4.1) can be calculated from equations (4.2) and 

(4.3), where true positive is the correct number of the predicted facies, false positive is the 

predicted number of facies which is in x-class, and false negative is the predicted number of 

facies which is not in x-class (Table 4-3). In table 4-4, the precision, recall, and F-1 score were 

calculated for all the facies classes and the macro average and weight were collected based on the 

values from table 4-3. The accuracy of the F-1 score was calculated based on the F-1 values for 

the six lithofacies classes (Table 4-4). 
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Table 4-3: Illustrates the negative and positive for the actual and predicted number of facies relationship, used to 
identify precision and recall (in equations 4.2 and 4.3). 

 

 

 

 

 

 

Table 4-4: Demonstrates the precision, recall, and F-1 score calculated using equations (4.1, 4.2, and 4.3). 

 

 

 

 

 

 

            Predict 

  Actual  
Negative Positive 

Positive False negative True positive 

Negative True negative False positive 

Number Facies class Precision  Recall  F1-score Support 

1 SS 0.98 0.96 0.97 1894 

2 ShSS 0.98 0.99 0.99 2197 

3 SSSh 0.94 0.98 0.96 529 

4 Sh 1 0.87 0.93 187 

5 Anh 0.97 0.89 0.93 766 

6 LS 0.94 0.98 0.96 1973  
 

    

Accuracy  
  

0.97 7546 

Macro avg  0.97 0.96 0.96 7546 

Weighted avg  0.97 0.97 0.97 7546 
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4.3.3 Grid Search  

Grid search describes a technique for finding an ideal hyperparameters model. Hyperparameters 

cannot be found in training data, unlike parameters. As a result, I built a model for each set of 

hyperparameters in order to determine the appropriate ones. Since I am essentially brute-forcing 

all potential combinations, grid search is regarded as a pretty conventional hyperparameter 

optimization technique. The models are then tested against one another. Naturally, the model with 

the highest accuracy is considered the greatest. Hyperparameters are established before training a 

machine learning model, unlike parameters. Optimizing these hyperparameters is essential to 

satisfy a model to a dataset. However, it is unusual that hyperparameter values on one dataset are 

superior to another. Therefore, optimizing the hyperparameters evolves more complex. In this 

method, I used two hyperparameters that aid quick learning environment: gamma and C-value. 

Both gamma and C values are set before the training models, however, the C-value is associated 

with controlling the Support Vector Classifier (SVC) training dataset error, and the gamma is 

associated with giving curvature weight to the Random Forest Classifier (RFC) training dataset 

error. Gamma and C-value provide six graphs that represent the accuracy classification of the 

training data with C and gamma vales ranging from 10-4 to 10 (Figure 4-8). The six graphs 

indicate that the accuracy of the training well facies classification. High accuracy value can be 

identified with low C-value, and high curvature is identified with high gamma value. 
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Figure 4-8: Gamma and C-value graph to determine the accuracy classification of the training data. 
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4.4 Results and discussion 

The algorithms are trained on three wells of the dataset to predict lithofacies, including 

Sandstone, Shaley Sandstone, Sandy Shale, Shale, Anhydrite, and Limestone. Then, these 

algorithms are tested on two other wells. In order to measure the model performance for 

both algorithms, the evaluation matrix (confusion matrix) is calculated the precision, recall, and 

F1-score values (Table 4-4). The high performance of precision, recall, and F1-score values 

greater than 95% indicate that the ML techniques successfully categorized the Sandstone, Shaley 

Sandstone, Sandy shale, and Limestone. Shale and Anhydrite lithofacies classes demonstrated 

high precision, acceptable recall, and F1-score values of 93%, indicating acceptable accuracy for 

classification in Machine Learning. From the confusion matrix of the lithofacies classes, the ML 

methods present high accuracy of the predicted facies classification: Sandstone, Shaley 

Sandstone, Sandy shale, and Limestone. However, Shale and Anhydrite obtained the lowest 

accuracy based on the predicted to actual; the ML techniques have reasonably obtained accuracy. 

The RFC and SVC both resulted in very accurate predicted values, SVC has a 98.05% accuracy, 

and RFC has a 100% accuracy. The classification accuracy was chosen based on the C and 

gamma values. Figure 4-8 demonstrates that the lowest error occurrence in the training data is at a 

gamma value of 0.1 and a C value of 10.  

The predicted results are presented as the best solution decision of the model on a heatmap that 

represents the predicted to actual values (Figure 4-9). The predicted to actual comparison 

supports the high confidence of the predictive model that has been completed regarding 

hyperparameter optimization. All the results above have been considered to apply a predictive 

model for facies classification on COST GE-1 and EXXON 564-1 wells (Figures 4-10 and 4-11). 

The supervised Machine Learning (ML) Model has successfully classified the predicted 

lithofacies. Although misclassification can occur due to the challenge of classifying thin rock  
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beds and the similarity of petrophysics rock properties in some rock beds, however, training the 

ML model increases the confidence in the facies classification accuracy succession (Figures 4-9 

and 4-12).   

 

 

 

Figure 4-9: A heatmap representation of the comparison between the predicted to actual values for the training data.   
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Figure 4-10: Well log curves plot for COST GE-1 well along with six facies classes signed at 0.5 ft. Eight log curves are GR, CALI, DT, ILD, RHOB, SP, PHIND,  and DeltaPHI. The color 
scale in the facies column indicates six facies classes that are signed at 0.5 ft intervals.
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Figure 4-11: Well log curves plot for EXXON 564-1 well along with six facies classes signed at 0.5 ft. Eight log curves are GR, CALI, DT, ILD, RHOB, SP, PHIND,  and DeltaPHI. The 
color scale in the facies column indicates six facies classes that are signed at 0.5 ft intervals.
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Figure 4-12: A heatmap representation of the comparison between the predicted to actual values for the testing data.
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CHAPTER V 
 

 

5 SUMMARY AND CONCLUSIONS 

 

 

 

This dissertation presents the first comprehensive study to identify and evaluate the CO2 storage 

potential in the Lower Cretaceous and the Upper Jurassic sections of the mid-south Atlantic 

offshore Southeastern United States.  

Based on the analysis of three wells in the Southeast Georgia Embayment, the CO2 geological 

storage resource estimate has provided evidence of three significant permeable storage strata 

isolated by impermeable seals in the depth interval of 1,767.84 - 2,529.84 m. In addition, the 

analysis of the COST GE-1 well, I identified widely and unsystematically porosity ranges from 

0.17 to 0.32 as well as, the permeabilities are between 2.1×10-13 and 5.43×10-13 m2 (i.e. low 

percent of sandstone and high percent of dolomite). These layers are suitable reservoir rocks 

qualified to be permanent CO2 storage.  

The US DOE methodology is calculated pore volume spaces to estimate the geologic CO2 storage   
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potential capacity in Million tons (Mt). The capacity for CO2 storage potential of the Lower 

Cretaceous section was calculated based on the rock compositions and petrophysical properties at 

the COST GE-1 well. Three potential reservoirs are associated with four potential seals 

characterized and assessed. According to Scholle (1979), the trapping mechanism indicated by an 

overlying seal involves stratigraphic variations. The prospective storage resources of the three 

reservoirs were calculated locally, where seismic profiles and well data were densely 

concentrated in the Southeast Georgia Embayment (10,000 Km2), and regionally, where I 

suggested a regional storage resource of 200,000 Km2. I considered three probability values (P90, 

P50, and P10) of each reservoir for determining the geologic storage efficiency factor in both 

areas. This study suggests that the CO2 storage capacity ranges approximately from 48.98 to 

376.70 Mt locally and from 450.85 to 4705.46 Mt regionally in three Lower Cretaceous 

reservoirs with geologic storage efficiency from 0.65% to 5.4%.  

The average storage resource potential is approximately 82 tons of CO2 that could be safely 

stored per 1 Km2 offshore of the Lower Cretaceous section at a probability of 0.5. The most 

considerable CO2 storage resource value for reservoir R1 was > 3.2 tone/Km2. The intermediate 

and lowest values at P50 in reservoirs R3 and R2 are less than or equal to 2.7 tone/Km2.  

The uncertainty associated with the subsurface data gap is incorporated into the storage resource 

evaluation due to the legacy of seismic data and the relatively limited well data available over the 

study area. 

The Upper Jurassic Offshore CO2 storage resource assessments were calculated to create an 

initial, screening-level limitation on the CO2 storage potential of the deep saline aquifer in the 

mid-south Atlantic region, assisting in delineating and identifying storage resources and their 

respective categories at regional levels scales. Assessments of offshore storage resources were 
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based on efficient information integration approaches that included data availability analysis and 

formation-specific storage efficiency calculations relevant to offshore regions.  

In this study, offshore-specific storage efficiency values were calculated using available data in 

the study area as inputs in probabilistic volumetric calculations for the regional grids. The 

targeted site was selected based on the regional storage potential and well data coverage observed 

within a 176,000 Km2 area. The P10 and P90 probability values ranged from 0.2 to 0.8 for net-to-

gross area, 0.17 to 0.68 for net-to-gross thickness, 0.53 to 0.71 for effective-to-total porosity, 0.26 

to 0.43 for volumetric displacement, and 0.57 to 0.64 for microscopic displacement. The offshore 

storage zone is a combined net-to-total pore volume data set derived from geologic storage 

efficiency terms. With a storage efficiency factor of 3.2 at P10 and 5.36 at P90, the distribution of 

dynamic simulation results produced displacement efficiencies. Regional prospective storage 

resources for CO2 storage have been estimated to range from 0.5 to 5.7 Gt. This study has proven 

that the Upper Jurassic sandstone reservoir can store at least 0.01 Mt of CO2 per square kilometer 

at P50. Due to the legacy of seismic data and the relatively limited well data available across the 

research area, the uncertainty associated with subsurface data gaps is incorporated into the storage 

resource evaluation. 

The detailed characterization of key petrophysical properties such as pore volume and 

permeability for the potential storage zone suggests that targeted net reservoir intervals contain 

average porosities ranging from 0.15 to 0.32 and mean permeabilities ranging from 9.87x10-14 to 

9.97x10-13 m2, according to other key outcomes and findings. These porosities and 

permeabilities are within the range reported for the COST GE-1 well in the Southeast Georgia 

Embayment. These geologic and displacement efficiency probabilities were based on core, log, 

seismic, and biostratigraphic data. The Upper Jurassic interval of interest used to have a total 

storage efficiency of 0.64 to 5.36 percent at P10 to P90. The regional static storage resource 
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calculations show that the storage resources under consideration are suitable for safe and 

permanent storage for industrial emissions and power plants.  

Based on the well core description, only one well has core lithofacies classes that have been 

identified. I have prepared data by labeling six lithofacies classes to characterize rock facies for 

the five wells (three training and two testing wells). Then, I used Gamma Ray logs Resistivity 

(ILD) to calculate the subsurface materials' ability to either inhibit or resist electrical conditions. I 

used the average neutron-density porosity (PHIND) to calculate the formation's porosity by 

examining neutron energy losses in porous formations. The area of the formation with the highest 

hydrogen concentration is where neutron energy loss will happen. The neutron-density porosity 

difference has been used to calculate the porosity difference in the formation based on neutron 

logs (DeltaPHI). 

However, the facies classification is used the Support Vector Classifier (SVC) and Random 

Forest classifier (RFC) machine learning algorithms, where are trained and tested for the five 

given offshore wells in Southeast Georgia Embayment. The SVC and RFC algorithms are applied 

to develop the F-1 score classification. The evaluation matrix calculated the precision, recall, and 

F1-score values to measure the model performance in each algorithm to assess the accuracy of the 

classifiers (SVC and RFC) for the evaluation result. The lowest F-1 score value was 93% which 

is considered an acceptable accuracy for classification in the used machine learning approach. 

The SVC has a 98.05% accuracy, and the RFC has a 100% accuracy. This means that both of 

these algorithms are resulted in reliable and accurately predicted values. Despite the possibility of 

misclassification due to the difficulty of distinguishing thin rock beds and the similarity of some 

rock beds' petrophysical properties, training the ML model increases confidence in the accuracy 

of the facies classification. The selected code lines used in ML approach are shown in appendix.  
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Facies Classification Coding 

 

%matplotlib inline 

import pandas as pd 

import numpy as np 

import matplotlib as mpl 

import matplotlib.pyplot as plt 

import matplotlib.colors as colors 

from mpl_toolkits.axes_grid1 import make_axes_locatable 

from pandas import set_option 

set_option("display.max_rows", 10) 

filename = 'well_logs_inputs_trainset.csv' 

training_data = pd.read_csv(filename) 

training_data 

training_data['Well_Name'] = training_data['Well_Name'].astype('category') 

training_data['Formation'] = training_data['Formation'].astype('category') 

training_data['Well_Name'].unique() 

# 1=SS  2=ShSS   3=SSSh 4=Sh 5=Anh 6=LS 

facies_colors = ['#F4D03F', '#F5B041','#DC7633','#6E2C00','#1B4F72','#2E86C1'] 

facies_labels = ['SS', 'ShSS', 'SSSh', 'Sh', 'Anh','LS'] 

#facies_color_map is a dictionary that maps facies labels to their respective colors 
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for ind, label in enumerate(facies_labels): 

facies_color_map[label] = facies_colors[ind] 

def label_facies(row, labels): 

return labels[ row['Facies'] -1] 

training_data.loc[:,'FaciesLabels'] = training_data.apply(lambda row: label_facies(row, 

facies_labels), axis=1) 

training_data.describe() 

def make_facies_log_plot(logs, facies_colors): 

#make sure logs are sorted by depth 

logs = logs.sort_values(by='DEPT') 

cmap_facies = colors.ListedColormap( 

facies_colors[0:len(facies_colors)], 'indexed') 

ztop=logs.DEPT.min(); zbot=logs.DEPT.max() 

cluster=np.repeat(np.expand_dims(logs['Facies'].values,1), 100, 1) 

f, ax = plt.subplots(nrows=1, ncols=9, figsize=(19, 12)) 

ax[0].plot(logs.GR, logs.DEPT, '-g') 

ax[1].plot(logs.CALI, logs.DEPT, '-') 

ax[2].plot(logs.DT, logs.DEPT, '-', color='0.5') 

ax[3].plot(logs.ILD, logs.DEPT, '-', color='r') 

ax[4].plot(logs.RHOB, logs.DEPT, '-', color='black') 

ax[5].plot(logs.SP, logs.DEPT, '-', color='orange') 

ax[6].plot(logs.PHIND, logs.DEPT, '-', color='blue') 

ax[7].plot(logs.DeltaPHI, logs.DEPT, '-', color='yellow') 

im=ax[8].imshow(cluster, interpolation='none', aspect='auto', cmap= 

cmap_facies,vmin=1,vmax=6) 

divider = make_axes_locatable(ax[8]) 

cax = divider.append_axes("right", size="10%", pad=0.05) 

cbar=plt.colorbar(im, cax=cax) 

cbar.set_label((15*' ').join(['SS', 'ShSS', 'SSSh', 'Sh', 'Anh','LS'])) 
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cbar.set_ticks(range(0,1)); cbar.set_ticklabels('') 

for i in range(len(ax)-1): 

ax[i].set_ylim(ztop,zbot) 

ax[i].invert_yaxis() 

ax[i].grid() 

ax[i].locator_params(axis='x', nbins=3) 

ax[0].set_xlabel("GR") 

ax[0].set_xlim(logs.GR.min(),logs.GR.max()) 

ax[1].set_xlabel("CALI") 

ax[1].set_xlim(logs.CALI.min(),logs.CALI.max()) 

ax[2].set_xlabel("DT") 

ax[2].set_xlim(logs.DT.min(),logs.DT.max()) 

ax[3].set_xlabel("ILD") 

ax[3].set_xlim(logs.ILD.min(),logs.ILD.max()) 

ax[4].set_xlabel("RHOB") 

ax[4].set_xlim(logs.RHOB.min(),logs.RHOB.max()) 

ax[5].set_xlabel("SP") 

ax[5].set_xlim(logs.SP.min(),logs.SP.max()) 

ax[6].set_xlabel("PHIND") 

ax[6].set_xlim(logs.PHIND.min(),logs.PHIND.max()) 

ax[7].set_xlabel("DeltaPHI") 

ax[7].set_xlim(logs.DeltaPHI.min(),logs.DeltaPHI.max()) 

ax[8].set_xlabel('Facies') 

ax[1].set_yticklabels([]); ax[2].set_yticklabels([]); ax[3].set_yticklabels([]) 

ax[4].set_yticklabels([]);  

ax[5].set_yticklabels([]);ax[6].set_yticklabels([]);ax[7].set_yticklabels([]);ax[8].set_yticklabels([) 

ax[8].set_xticklabels([]) 

f.suptitle('Well: %s'%logs.iloc[0]['Well_Name'], fontsize=15,y=0.95) 
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