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Title of Study: WEYL’S LAW FOR CUSP FORMS OF ARBITRARY ARCHIMEDEAN

TYPE
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Abstract: We generalize the work of E. Lindenstrauss and A. Venkatesh establishing Weyl’s
Law for cusp forms from the spherical spectrum to arbitrary Archimedean type. Weyl’s law
for the spherical spectrum gives an asymptotic formula for the number of cusp forms that are
bi-K∞ invariant in terms of eigenvalue of the Laplacian. We prove an analogous asymptotic
holds for cusp forms with Archimedean type τ , where the main term is multiplied by dim τ .
While in the spherical case the surjectivity of the Satake Map was used, in the more general
case that is not available and we use Arthur’s Paley-Wiener theorem and multipliers.
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CHAPTER I

INTRODUCTION

In the introduction we explain the Weyl’s Law in the Eucildean case. Then we provide a

brief history concerning other generalized domains. For more details on the history and the

statements of the conjectures refer to [LV], [Mü2] and [Mü1].

1.1 A brief history

LetM be a compact Riemannian manifold. Let ωM be the unit ball inM . Weyl proved that

the number of eigenfunctions of the Laplacian with eigenvalues less than T , is asymptotic to

C(M)T dim(M)/2, where

C(M) =
Vol(ωM)

(2π)dim(M)
Vol(M),

[LV]. Let Γ be an arithmetic subgroup of SL2(Z) and H be the upper-half plane. Selberg

[Se] using his celebrated trace formula proved Weyl’s asymptotic for the discrete spectrum

of Laplacian when the space is M = Γ\H.

Let G be a semisimple linear algebraic group of adjoint and split type over Q. Let G(R) be

the set of R-points of G. For simplicity of this exposition let us assume Γ ⊂ G(R) to be a

torsion free arithmetic subgroup. Let K∞ be a maximal compact subgroup. We denote by

L2(Γ\G(R)) the space of Γ invariant, square integrable functions on G(R). We will denote

the cuspidal subspace of the above space by L2
cusp(Γ\G(R)). Let M = Γ\G(R)/K∞ be a

locally symmetric space. Suppose d = dim(Γ\G/K∞). Then it was proved by Lindenstrauss

and Venkatesh [LV], that number of spherical, i.e. bi-K∞ invariant cuspidal Laplacian eigen-

functions, whose eigenvalues are less than T is asymptotic to C(M)T dim(M)/2, where C(M)
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is the same constant as above.

In my thesis I prove an asymptotic estimate, in terms of the Laplacian eigenvalue, for the

number of cusp forms of arbitrary K∞-type on a semisimple, split, adjoint linear algebraic

group over Q, generalizing the work of E. Lindenstrauss and A. Venkatesh in [LV] for the

trivial K∞-type (i.e. spherical cusp forms). Asymptotic formulas with remainder term (i.e.

Weyl’s law with a remainder term) for arbitrary K∞-type will be proved by J. Matz and W.

Müller [Mü3] in their upcoming work.

Now we describe the Weyl’s law using the notation introduced by [Mü2]. Let H be the

upper-half plane as above and let Γ be a congruence subgroup of SL(2,Z). Let ∆ be the

hyperbolic Laplacian on H. Let NΓ
cusp(T ) be the number of cuspidal ∆-eigenfunctions [Bmp],

whose eigenvalue is less than T . Selberg, using his celebrated trace formula [Se] for the group

SL(2,R), proved the following analogue of the classical Weyl’s law:

NΓ
cusp(T ) ∼

Vol(Γ\H)

4π
T, as T →∞.

Let G be a semi-simple linear algebraic group over Q. Let K∞ be a maximal compact

subgroup of G(R). Let Γ be an arithmetic subgroup of G(Q). Let Z(gC) be the center of

universal enveloping algebra of gC, the complexified Lie algebra of G(R). A cusp form for

Γ [La] is defined via following properties: 1. It is a smooth and K∞-finite complex-valued

function, 2. It is a simultaneous eigenfunction of Z(gC) and 3. it satisfies∫
Γ
⋂

Np(R)\NP (R)
f(nx)dn = 0,

for all unipotent radicals NP of proper rational parabolic subgroups P of G. It can be

shown that cusp forms are square-integrable. Let L2
cusp(Γ\G(R)) be the closure of the linear

span of all cusp forms. If r = rank(G(R)/K∞) and d = dim(G(R)/K∞), then it has been

conjectured by Sarnak [Sa] that for r > 1 and for an irreducible lattice Γ

NΓ
cusp(T )

T d/2
∼ vol(Γ\G)

(4π)d/2Γ(d/2 + 1)
, as T →∞,

where Γ(·) denotes the Gamma function. Let R be the right regular representation of G(R)

on the space of square integrable automorphic forms denoted by L2(Γ\G(R)). Suppose
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(τ, Vτ ) denotes an irreducible finite-dimensional representation of K∞. Let dτ = dim(Vτ ).

Let

(L2(Γ\G(R))⊗ Vτ )K∞

be the space of the homogeneous vector bundle on the Riemannian symmetric spaceG(R)/K∞.

Functions in this space satisfy the following condition:

f(gk) = τ(k−1)f(g).

Let ΩG(R) be the Casimir operator in Z(gC), the center of the universal enveloping algebra.

Then −ΩG(R) ⊗ Id induces a self adjoint operator ∆τ whose restriction to the cuspidal

subspace

L2
cusp(Γ\G(R), τ) := (L2

cusp(Γ\G(R))⊗ Vτ )K∞

has pure point spectrum

0 ≤ λ1(τ) < λ2(τ) < · · · → ∞

with finite multiplicities. Suppose E(λi(τ)) denotes the respective eigenspace corresponding

to the eigenvalue λi(τ). We define the counting function for the cuspidal spectrum of ∆τ as

NΓ
cusp(T, τ) =

∑
λi(τ)≤T

dim(E(λi(τ))).

Let NΓ
disc(T, τ) be the counting function of the discrete spectrum of ∆τ . Müller [Mü1] made

the following generalization of Sarnak’s conjecture. For any arithmetic subgroup Γ and any

irreducible K∞-type τ , we have:

NΓ
disc(T, τ)

T d/2
∼ vol(Γ\G)dim(τ)

(4π)d/2Γ(d/2 + 1)
, as T →∞.

Donnelly [Do] proved the upper bound of NΓ
cusp(T, τ) with the same constant terms in more

general settings. Therefore, to establish the above formula for the cuspidal spectrum, one

has to prove the lower bound with the same constant and the correct asymptotic terms. The

conjectures of Sarnak and Müller have been proved for the following cases: for congruence

subgroups of SO(n, 1) by Reznikov [Rez]; for congruence subgroups of ResF/QSL2, where
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F is a totally real field by Efrat [Ef]; for Γ = SL3(Z) by Steve Miller [Mi]; for torsion

free arithmetic subgroups of SLn(R) by Müller [Mü2]; and for the torsion free arithmetic

subgroups of semisimple linear algebraic groups of split and adjoint type in the case of

spherical cusp form by Lindenstrauss and Venkatesh [LV].

Our theorem, which is a generalization of the result of Lindenstrauss and Venkatesh in the

case of cusp forms of arbitrary K∞-type is the following:

Theorem 1.1.1 Let G be a semisimple, split, adjoint type linear algebraic group over Q.

Let G∞ = G(R) be the real points of G, and let Γ be a torsion free arithmetic subgroup of G.

Suppose d = dim(G∞/K∞). Let (τ, Vτ ) be an irreducible finite-dimensional representation

of K∞. Let NΓ
cusp(T, τ) be the number of cuspidal eigenfunctions of ∆τ with eigenvalue ≤ T ,

counted with multiplicities. Then we have the following asymptotic formula:

NΓ
cusp(T, τ)

T d/2
∼ dim(τ)vol(Γ\G∞)

(4π)d/2Γ(d/2 + 1)
, as T →∞. (1.1.1)

The usual methodology is to apply Arthur’s trace formula (or some variant thereof) to

a suitable family of test functions. However, there are several new features in the non-

trivial K∞-type case that I address in my thesis work, as I explain below. Although all the

conjectures are made with the assumption that Γ is an arithmetic subgroup, for simplicity

we will work with Γ being a congruence subgroup in this thesis.
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CHAPTER II

NOTATIONS AND PRELIMINARIES

In this section we recall some basic facts of Harmonic Analysis on real and p-adic groups

(see [LV]). We also define the notations and review the background necessary for this thesis.

2.1 Parabolic subgroups

For more details on parabolic subgroups refer to [Kn]. Let G be a semisimple linear algebraic

group of split and adjoint type over Q. Let S be a finite set of places of Q containing ∞.

We fix a minimal parabolic subgroup, i.e. a Borel subgroup, P0 ⊃ A0, where A0 is a

maximal Q-split torus. Suppose N0 = Ru(P0) is the unipotent radical of P0. We have a

Levi decomposition P0 = M0N0 with M0 ⊃ A0. Let P be a parabolic subgroup containing

P0 with a Levi decomposition P = MPNP . Such a parabolic subgroup is called a standard

parabolic with respect to P0. Moreover we let AMP
= Split part of Z(MP ), where Z denotes

the center.

Let F = Qp or R. For simplicity we will use the above notation for the choices of subgroups

defined over F . Let us denote the Weyl group of G(F ) with respect to A0 byW = W (G,A0).

Let Φ = Φ(G,A0) be the set of roots. The set of simple roots Π ⊂ Φ and the set of positive

roots Φ+ ⊂ Φ can be determined by the fixed choice of P0. If α ∈ Φ+, without loss of

generality we write α > 0.

Let P =MN ⊂ G(F ) be a standard parabolic subgroup of G(F ). Such a parabolic has one

to one correspondence with subsets of set of simple roots [Kn]. The corresponding set of
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simple roots is denoted by ΠM ⊂ Φ . We denote by AM the split component of the center of

M and let X(M)F be the group of F -rational characters of M . From the discussion above

if ΠM = Θ, we can use AΘ to denote AM . In particular we have, A∅ = A and AΠ = AG.

Due to the injectivity of the restriction homomorphism X(M)F 7→ X(AM)F and existence

of a finite cokernel (as the above homomorphism has finite index), we have a canonical linear

isomorphism

a∗M = X(M)F ⊗Z R ∼= X(AM)F ⊗Z R.

If L is the Levi component of a standard parabolic subgroup such that L ⊂M , then

AM ⊂ AL ⊂ L ⊂M.

The restriction X(M)F 7→ X(L)F induces an injective map and its restriction induces a

linear injection iLM : a∗M 7→ a∗L. We have a linear surjection rLM : a∗L 7→ a∗M induced by the

restriction map X(AL)F 7→ X(AM)F . Let (a
L
M)∗ be the kernel of the restriction rLM . Then

a∗L = iLM(a∗M)⊕ (aLM)∗.

There is a homomorphism HM :M 7→ aM = Hom(X(M),R) such that:

|ν(m)|F =


q⟨ν,HM (m)⟩, if F = Qp

e⟨ν,HM (m)⟩, if F = R,

for all m ∈M and ν ∈ X(M)F .

We set GS = G(QS), A0,S = A0(QS), M0,S = M0(QS) and N0,S = N0(QS). We denote a

parabolic subgroup over QS as PS = M(QS)N(QS) with its corresponding Levi decomposi-

tion. We can think of this parabolic as a direct product of parabolic subgroups of a product

of groups. Let G∞ = G(R). We have an Iwasawa decomposition G∞ = N∞A
o
∞K∞, where

K∞ is a maximal compact subgroup of G(R).

Let KS = K∞
∏

p∈S\∞
G(Zp), where G(Zp) is a maximal compact subgroup of G(Qp) for all

prime p. We will choose S such that it has following the property: for each finite p ∈ S and
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for each parabolic P (Qp) ⊃ A0(Qp), Kp

⋂
MP (Qp) is the stabilizer in MP (Qp) of a special

vertex in the building of MP (Qp) and this vertex belongs to the apartment associated to the

maximal torus A0(Qp) [LV]. For almost all finite p, This condition is automatically satisfied.

Moreover, K∞
⋂
MP (R) is a maximal compact subgroup of MP (R), and KS

⋂
M(QS) is a

maximal compact subgroup of M(QS).

From the Iwasawa decomposition we have the map N(QS)×M(QS)×KS 7→ GS is surjective.

We equip each G(Qp), for p finite, with the Haar measure such that the volume of G(Zp) is

1. We equip K∞ with the Haar measure of volume 1, and then choose the Haar measure on

G∞ which is compatible with the Riemannian metric defined on the Riemannian symmetric

space G∞/K∞. Let Φ+ be the system of positive roots of A0,S with respect to N0,S and let

∆ ⊂ Φ+ be the set of simple roots. Let δS be the square root of the modulus character of

A0,S.

The following lemma which is due to Harish-Chandra [HC3] going to describe the correspon-

dence between parabolic subgroups of G(Qp) contained in some parabolic subgroup Q(Qp)

and the parabolic subgroups of MQ(Qp) for all p ∈ S.

Lemma 2.1.1 There is a one to one correspondence between parabolic subgroups P (Qp)

of G(Qp) which are contained in Q(Qp), and parabolic subgroups ∗P (Qp) of MQ(Qp). The

correspondence is as follows. If Q(Qp) = MQ(Qp)NQ(Qp) and P (Qp) = MP (Qp)NP (Qp) is

the corresponding Levi decomposition, then the Levi decomposition of ∗PQ = P (Qp)∩MQ(Qp)

is ∗PQ =MP (Qp)N
P
Q (Qp), where AP (Qp) = AP

Q(Qp)AQ(Qp) and NP (Qp) = NP
Q (Qp)NQ(Qp).

2.2 Congruence subgroup

We choose a congruence subgroup Γ ⊂ G(Z[S−1]), which is torsion free. The number

of Γ- orbits of proper Q-parabolic subgroups is finite. Let us denote their representa-

tives as {P1, P2, ..., Pr}. We conjugate them by appropriate elements of G(Q) so that

the Pi(QS) contain the minimal parabolic subgroup M0,SA0,SN0,S. We denote them as

Qi,S = Mi,SAi,SNi,S, and their corresponding conjugating elements as δi ∈ G(Q) (i.e.
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δiPiδ
−1
i = Qi). Let Mi,S = MQi,S, Ni,S = NQi,S and Ai,S = AQi,S. Moreover, we put

Γi = δiΓδ
−1
i , ΓNi,S

= Γi ∩Ni,S and ΓAi,S
= Γi ∩ Ai,S.

Let X∗(M(QS))QS
be the set of QS characters of M(QS), the Levi subgroup of PS. The

dual of this space, which can be identified with the Lie algebra of the maximal split part of

the center of M(QS) is

aM(QS) = Hom(X∗(M(QS))QS
,R)

For νS ∈ X∗(M(QS))QS
, we have the Harish-Chandra homomorphism

HM(QS) :M(QS) 7−→ aM(QS)

given by [PR]

e⟨HM(QS)(m),νS⟩ =
∏
p∈S

|νp(mp)|p.

Let ωS be an irreducible unitary square-integrable admissible representation ofM(QS) which

is trivial on A(QS). We define the set of equivalence classes of ωS as E2(M(QS)). For

νS ∈ X∗(M(QS))QS
⊗ C = a∗M(QS),C, we can define the following induced representation on

GS with parameters (ωS, νS):

Ind(ωS, νS) =
∏
p∈S

Ind(ωp, νp).

2.3 Test functions

Let (τ, Vτ ) be an irreducible K∞-type, i.e. an irreducible finite dimensional representation of

K∞. Suppose dτ and χτ denote the dimension and the character of the above representation,

respectively. Let C∞
c (G(R), τ, τ) be the following space of functions [Cmp2]{
ϕ∞ : G(R)→ End(Vτ ), ϕ∞(k1gk2) = τ(k−1

2 )ϕ∞(g)τ(k−1
1 )

}
.

A function Φ∞ ∈ C∞
c (G(R)) is called bi-K∞-finite if the following condition is satisfied:

Φ∞(x) =

∫
K∞

∫
K∞

dτχτ (k)Φ∞(k−1xk′)dτχτ (k
′−1

)dk′dk.
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A function Φ∞ is called K∞-central if Φ∞(kxk−1) = Φ∞(x) for all k ∈ K∞ and for all

x ∈ G(R). We denote the convolution algebra of bi-K∞-finite and K∞-central functions as

C∞
c (G(R))K∞

K∞
. This convolution algebra is isomorphic to the End(Vτ )-valued algebra defined

above via the following isomorphism [Cmp1] :

C∞
c (G(R), τ, τ) ∼= C∞

c (G(R))K∞
K∞

ϕ∞ 7→ Φ∞ = dτTrϕ∞∫
K∞

Φ∞(gk)τ(k)dk = ϕ∞(g)←[ Φ∞(g)

At the non-Archimedean places of S ′ = S\∞ we define the Hecke algebra as the space of

compactly supported, locally constant functions. We denote this space as C∞
c (G(QS′)). We

define the co-center of this Hecke algebra as the following quotient:

H̄(G(QS′)) :=
C∞

c (G(QS′))

[C∞
c (G(QS′)), C∞

c (G(QS′))]
.

Moreover we choose the functions from this space which are bi-K ′
S′ invariant, where K ′

S′

is an arbitrary compact subgroup of the maximal compact subgroup KS′ . We denote this

subspace as H̄(K ′
S′\GS′/K ′

S′). Let ΦS′ ∈ H̄(K ′
S′\GS′/K ′

S′). Hence we can combine the

End(Vτ )-valued function ϕ∞ at the Archimedean place with ΦS′ to obtain an endomorphism

valued test function on GS and denote the set containing these functions as:

C∞
c (G(R), τ, τ)⊗ H̄(K ′

S′\GS′/K ′
S′).

We denote the scalar valued counterpart of the above space as

C∞
c (G(R))K∞

K∞
⊗ H̄(K ′

S′\GS′/K ′
S′).

Let L2(Γ\GS, Vτ ) be the following set:{
f : Γ\GS 7→ Vτ : f(gk∞) = τ(k∞)−1f(g), (f1, f2) =

∫
Γ\GS

⟨f1(x), f2(x)⟩Vτdx

}
.

Here the inner product makes sense as Vol(Γ\GS) < ∞. Also as Γ is chosen to be a

torsion free congruence subgroup, Γ\G(R) is a manifold. Elements of C∞
c (G(R), τ, τ) ⊗

C(K ′
S′\GS′/K ′

S′) act on this space via convolution.
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Let R be the right regular representation of G(R) on L2(Γ\G(R)). Let ΩG(R) be the

Casimir operator in Z(gC), the center of the universal enveloping algebra. Then −ΩG(R)⊗Id

induces a self adjoint operator ∆τ whose restriction to

L2
cusp(Γ\G(R), τ) := (L2

cusp(Γ\G(R))⊗ Vτ )K∞

has pure point spectrum with finite multiplicities. Let us denote them as

0 ≤ λ1(τ) < λ2(τ) < · · · → ∞

with finite multiplicities. Suppose E(λi(τ)) denotes the eigenspace corresponding to the

eigenvalue λi(τ). For T ≥ 0, we have the counting function as

NΓ
cusp(T, τ) =

∑
λi(τ)≤

√
T

dim(E(λi(τ))).

We can redefine the above counting function by representation theoretic means in the follow-

ing way. Let Πcusp(G(QS)) be the set of unitary irreducible cuspidal subrepresentations of the

regular representation of G(QS) on L
2
cusp(Γ\G(QS)/K

′

S′). Let Πcusp(G(R)) be the set of sub-

representations of the regular representations of G(R) acting on L2
cusp(Γ\G(QS)/K

′

S′). Any

element π ∈ Πcusp(G(QS)) can be written as π = π∞ ⊗ πS\∞, where π∞ ∈ Πcusp(G(R)).

Let Hπ∞(τ) be the τ -isotypical subspace of (π∞, Hπ∞). Let HK′
πS\∞

be the subspace of

K
′

S′-fixed vectors in (πS\∞, HπS\∞). Let m(π∞), resp m(π), be the multiplicity with which

π∞, resp π, occurs as a subrepresentation of G(R), resp G(QS), in the cuspidal subspace

L2
cusp(Γ\G(QS)/K

′

S′). Then we have

m(π∞) =
∑

π′∈Πcusp(G(QS))

m(π
′
)dimHK′

πS\∞

for all π
′
such that π

′
∞ = π∞. Suppose νπ denotes the Casimir eigenvalue of π∞. Then we

take the subcollection Πcusp(G(QS))T whose elements satisfies |νπ|2 ≤ T . Similarly, we define

Πcusp(G(R))T . Then we have∑
π∞∈Πcusp(G(R))T

m(π∞)dimHomK∞(Hπ∞(τ), Vτ ) = NΓ
cusp(T, τ).

10



2.4 Fourier transform

We now define the scalar-valued Fourier transform of functions on C∞
c (G(R))K∞

K∞
. Let

P∞ = M1
∞A∞N∞ be the Langlands decomposition of a standard cuspidal parabolic sub-

group of G(R). Choose ω∞ ∈ E2(M1
∞). Suppose θω∞ denotes its character. Let dω∞ be the

formal degree of ω∞. Let τ be the double representation of K∞ on L2(K∞ ×K∞) obtained

from (τ, Vτ ). Let τM∞ be the restriction of τ to K∞
⋂
M∞. We let L2

ω(M∞, τM∞) be the set

of τM∞-spherical functions on L2(M∞)⊗L2(K∞×K∞). The norm in this space is defined as:

∥ψ∥2 =
∫
M∞

∫
K∞×K∞

∥ψ(k1 : m : k2)∥2dk1dk2dm.

It can be made into a Hilbert algebra with the multiplication via

(ψ1ψ2)(k1 : m : k2) =

∫
M∞

∫
K∞

ψ1(k1 : m̃ : k−1)ψ2(k : m̃−1m : k2)dkdm̃.

The Fourier transform of a function Φ∞ ∈ C∞
c (G(R)) is defined as in [Ar4]:

Φ∞ 7→ Φ̂∞(ω∞, ν∞) ∈ L2
ω(M∞, τM∞),

where Φ̂∞(ω∞, ν∞) is given by

Φ̂∞(ω∞, ν∞)(k1 : m : k2) = dω∞

∫
M∞

∫
A∞

∫
N∞

Φ∞(k1namm̃k2)θω∞(m̃−1)e(−ν∞+ρ∞) ln(a)dndadm̃.

Next we define the operator valued Fourier transform of Φ∞ ∈ C∞
c (G(R))K∞

K∞
. Let π∞ ∈

Ĝ(R)(τ), the unitary irreducible representation of G(R) that contains τ upon restriction to

K∞. Then Φ∞ 7→ π∞(Φ∞) defines the operator valued Fourier transform on the space of en-

domorphisms of finite dimensional vector space. From Harish-Chandra’s sub-representation

theorem we know that π∞ is isomorphic to an irreducible subrepresentation of an induced
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representation from a cuspidal parabolic P∞ with parameters (ω∞, ν∞). Let us denote the

induced representation as Ind(ω∞, ν∞). Then we have the following relation [Ar4]:

dω∞Tr(Ind(ω∞, ν∞)Φ∞) =

∫
K∞

Φ̂∞(ω∞, ν∞)(k−1 : 1 : k)dk.

Let mπ∞(τ) be the multiplicity with which τ appears in the decomposition of π∞ restricted

to K∞. Suppose π∞,τ (Φ∞) is the restriction of π∞ to Hπ∞(τ). Then we can define the

spherical Fourier transform F(Φ∞)(π∞) ∈ End(Cmπ∞ (τ)) as follows [Cmp1]:

π∞,τ (Φ∞) = 1τ ⊗F(Φ∞)(π∞).

Let Φ̃∞(x) = Φ∞(x−1). Then π∞(Φ̃∞) = π∞(Φ∞)∗, the conjugate transpose of π∞(Φ∞).

Moreover, Trπ∞(Φ∞ ⋆ Φ̃∞) = ||π∞(Φ∞)||2HS. Let µ∞(ω∞, ν∞) be the Harish-Chandra µ

function [HC3] corresponding to the induced parameters (ω∞, ν∞). Let P be the set of

associated classes of parabolic subgroups. The Plancherel inversion of Φ∞ has the following

formula:

Φ∞ ⋆ Φ̃∞(e) =
∑
P

n(P)−1
∑
P∈P

∑
E2(M∞)

dω(
1

2πi
)q
∫

ia∗∞

||Ind(ω∞, ν)(Φ∞)||2HS µ∞(ω∞, ν)dν.

Similarly, at a non-Archimedean place p if we assume the induced parameters are (ωp ⊗

νp), then the the Plancherel measure µp(ωp) is defined over a connected compact manifold

O2(M(Qp)) for each ωp ∈ E2(M(Qp)). We denote by dωp the Euclidean measure of the

connected compact manifold. Then we have the following Plancherel inversion formula for

Φp ∈ C(K ′
p\G(Qp)/K

′
p):

Φp ⋆ Φ̃p(e) =
∑
P

n(P)−1
∑
P∈P

∑
E2(Mp)

dωp

∫
O2(M(Qp))

||Ind(ωp)(Φp)||2HS µp(ωp)dωp.
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CHAPTER III

EXAMPLES AND METHODOLOGY OF VARIOUS CASES

3.1 Euclidean case

Suppose D ⊂ Rn is a bounded domain. Then the Laplacian has discrete eigenvalues accu-

mulating at +∞, the only accumulating point. If we denote N(λ) = card{λi ≤ λ} to be the

eigenvalue counting function of the Laplacian, then Weyl’s Law states that

N(λ) ∼ ωn

(2π)n
vol(D)λ

n
2 ,

where ωn is the volume of the unit ball in Rn. Here are some examples:

• When D = [0,m], m ∈ R and m > 0 then sin iπx
m
, i ∈ N gives us the family of the

solution to the Dirichlet eigenvalue problem, where the euclidean Laplacian is d2

dx2 with

the eigenvalues i2π2

m2 . Then N(λ) = card{i|i ≤ m
√
λ

π
} ∼ m

√
λ

π

• When D = [0,m] × [0, n], m,n ∈ R, m,n > 0 then similarly as above we have

sin iπx
m

sin jπy
n

as the solution to the Dirichlet eigenvalue problem with the Laplacian

d2

dx2 +
d2

dy2
. Then, N(λ) = card{(i, j) : i, j ≥ 0,

(
iπ

m
√
λ

)2
+
(

jπ

n
√
λ

)2
≤ 1}. Hence,

N(λ) ∼ π

4

m
√
λ

π

n
√
λ

π
=

area(D)

4π
λ,

where the right hand side is the area of the ellipse.
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3.2 When G = SL(2)

Let H be the upper half plane. It can be realized as the quotient space SL(2,R)/SO(2,R).

Let Γ be a congruence subgroup of SL(2,Z). In this section we discuss the methodology to

prove the Weyl’s law for the special case of Γ\H. For more details we refer to [LM1].

Let ∆ be the hyperbolic Laplacian corresponding to the surface Γ\H. It acts on L2(Γ\H).

Let λ0 = 0 < λ1 ≤ λ2 ≤ λ3 · · · be the eigenvalues of ∆. We put λj = 1/4 + r2j for

rj ∈ R≥0 ∪ [0, 1/2]i. When λ > 0, we put

NΓ(λ) = card{j : λj ≤ λ},

as the eigenvalue counting function. Our job is to find an asymptotic formula for this function

as λ→∞. Here, each eigenvalue is counted with their respective multiplicity. The constant

function is the only noncuspidal eigenfunction as Γ is a congruence subgroup.

Now we recall Selberg’s trace fomrula [Se]. Let Ek(z, s) be the Eisenstein series attached

to the k-th cusp (suppose ak). It is defined by:

Ek(z, s) =
∑

γ∈Γak
\Γ

Im(σkγz)
s.

Here, σk ∈ SL(2,R) is such that σk(ak) = ∞. The Eisenstein series is an eigenfunction of

the hyperbolic Laplacian with s(1− s) as eigenvalue. The series converges locally uniformly

for all z, s ∈ H and for Re(s) ≥ 1. The zeroth coefficient of Ek(z, s) in the cusp al is:∫ 1

0

Ek(σl(x+ iy), s)dx = δk,ly
s + ϕk,l(s)y

1−s.

here, ϕk,l(s) is a meromorphic function of s. The matrix Φ(s) = (ϕk,l)k,l is called the

scattering matrix. Let ϕ(s) = det(Φ(s)). Let h ∈ C∞
c (R). The Fourier transform of h is

defined as

ĥ(z) =

∫
R

h(t)eitzdt.
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From the Paley-Wiener theorem in the Euclidean case we know that ĥ is entire and rapidly

decreasing on horizontal strips. For t ∈ R we put

ĥt(z) = ĥ(t+ z) + ĥ(t− z).

Let us also assume for simplicity that Γ is torsion free. Now we apply the trace formula to

the family of function ĥt. It gives the following identity:

∞∑
j=−∞

ĥ(t− rj) =
Vol(Γ\H)

2π

∫
R

ĥ(t− r)r tanhπrdr +
∑
{γ}Γ

2l(γ0)

sinh l(γ)/2
h(l(γ)) cos tl(γ)

+
1

2π

∫
R

ĥ(t− r)ϕ
′

ϕ
(1/2 + ir)dr +

1

2
ĥ(t)Tr(I − Φ(1/2))− 2mh(0) ln 2

−m
π

∫
R

ĥ(t− r)Γ
′

Γ
(1 + ir)dr

(3.2.1)

Here, m denotes the number of cusps. {γ}Γ denotes the hyperbolic conjugacy classes. l(γ)

is the length of closed geodesic η(γ) on Γ\H, determined by each of these conjugacy classes.

Let γ0 denote the primitive geodesic element. Then it can be shown that each γ is some

power of γ0. As h is compactly supported and smooth function on R, each of the series and

the integrals are absolutely and uniformly convergent.

We now let t → ∞ and investigate the asymptotic behaviours of the both sides of this

above formula. As |tanhx| ≤ 1, for x ∈ R, we have that∫
R

ĥ(t− r)r tanhπrdr = O(|t|), as |t| → ∞.

The second sum is bounded by a finite number as cosine function is bounded and the sum

is over finitely many conjugacy classes as h is compactly supported.

Next for the term corresponding to the scattering matrix we use Huxley’s computation

[Hux] to determine the formula for ϕ. It is a finite product of quotients of Dirichlet L-

functions and Γ-functions. To estimate the logarithmic derivative of the gamma function,

we use Stirling’s approximation formula. Then we estimate the logarithmic derivative of
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Dirichlet L-functions on the line Re(s) = 1 using standard estimation. Therefore we get∫
R

ĥ(t− r)ϕ
′

ϕ
(1/2 + r)dr = O(ln |t|), as |t| → ∞.

Similarly, we get ∫
R

ĥ(t− r)Γ
′

Γ
(1 + ir)dr = O(ln |t|), as |t| → ∞.

The remaining terms are bounded as |t| → ∞. Therefore we obtain

∞∑
j=−∞

ĥ(t− rj) = O(|t|), as |t| → ∞.

Now we choose h such that ĥ ≥ 0 on R and strictly positive on [−1, 1]. It will be enough

for us to consider rj ∈ R, as there are finitely many of imaginary set of eigenvalues of ∆ on

L2(Γ\H). For a given λ ∈ R we estimate the number of eigenvalues in the neighbourhood of

λ as follows:

card{j : |λ− rj| ≤ 1} ·min{ĥ(z) : z ∈ [−1, 1]} ≤
∑
rj∈R

ĥ(t− rj).

Therefore, we obtain the following:

card{j : |λ− rj| ≤ 1} = O(1 + |λ|), ∀λ ∈ R.

Using this result we obtain the following auxiliary result:

∑
rj≤λ

∣∣∣∣∣∣∣
∫

R−[−λ,λ]

ĥ(t− rj)dt

∣∣∣∣∣∣∣+
∑
rj≥λ

∣∣∣∣∣∣
λ∫

−λ

ĥ(t− rj)dt

∣∣∣∣∣∣ = O(1 + |λ|), ∀λ > 1.

Let p(r) be an even continuous function on R such that p(r) = O(1 + |r|). We integrate

both sides of (3.2.1) on the interval [−λ, λ] and then let λ → ∞ to study the asymptotic

behaviour of both sides. Assume that h is chosen such that h(0) = 1. Then we obtain∫
[−λ,λ]

∫
R

ĥ(t− r)p(r)drdt =
∫

[−λ,λ]

p(r)dr +O(λ), as λ→∞
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Now we can apply the above equation by replacing p(r) with either of r tanhπr, ϕ
′

ϕ
(1/2+ ir)

or Γ
′

Γ
(1 + ir). Therefore we arrive at the following equations respectively∫

[−λ,λ]

∫
R

ĥ(t− r)r tanhπrdrdt = λ2 +O(λ), as λ→∞,

∫
[−λ,λ]

∫
R

ĥ(t− r)ϕ
′

ϕ
(1/2 + ir)drdt = O(λ lnλ), as λ→∞,

∫
[−λ,λ]

∫
R

ĥ(t− r)Γ
′

Γ
(1 + ir)drdt = O(λ lnλ), as λ→∞.

As the other terms are finite, the integral over the interval [−λ, λ] is of order O(λ). Therefore

the left hand side of (3.2.1) becomes∫
[−λ,λ]

∞∑
j=−∞

ĥ(t− rj) =
Vol(Γ\H)

2π
λ2 +O(λ lnλ).

By rearranging the sum and using the auxiliary result above we arrive at the final formula:

NΓ(λ) =
Vol(Γ\H)

4π
λ2 +O(λ lnλ).

3.3 When G = SL(n)

We rephrase the Weyl’s law in this case in adelic language. For more details see [Mü2]. Let

G = GL(n), as an algebraic group defined over Q. Suppose A is the ring of adeles of Q. Let

AG be the split part of the center of G and AG(R)0 be its identity component of its real points.

Let Π(G(A)) be the set of equivalence classes of irreducible unitary representations of G(A)

whose central character is trivial on the identity component defined above. We denote the

subspace of cusp forms in L2(G(Q)AG(R)0\G(A)) by L2
cusp(G(Q)AG(R)0\G(A)). we define

the set of subrepresentations of the regular representation in L2
cusp(G(Q)AG(R)0\G(A)) by

Πcusp(G(A)) which is subset of Π(G(A)). Let Af be the finite adele ring. Any unitary

irreducible π ∈ Π(G(A)) can be written as a product π = π∞ ⊗ πf , where π∞ and πf are

the unitary irreducible representation of G(R) and G(Af ), respectively. Let Hπ∞ and Hπf
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be the Hilbert space representations corresponding to π∞ and πf , respectively. Let Kf be

an arbitrary open compact subgroup of G(Af ). Let the subspace of Kf -fixed elements in

Hπf
be denoted by HKf

πf . Let G(R)1 be the group of elements in G(R) whose determinant is

1. Let λπ∞ be the Casimir eigenvalue of π∞ restricted to G(R)1 for a fix π ∈ Π(G(A)). Let

Πcusp(G(A))T be the set of π such that |λπ∞ | ≤ T , for T > 0. Let ϵKf
be a constant such

that ϵKf
= 1 if −1 ∈ Kf and 0 otherwise. Then adelic Weyl’s law states that [Mü1]:

Theorem 3.3.1 Let G = GL(n), and dn = dim(SL(n)/SO(n)). Let Kf be an arbitrary

open compact subgroup of G(Af ). Let (τ, Vτ ) be an irreducible SO(n,R)-type. Then∑
π∈Πcusp(G(A))T

dim(HKf
πf )dim(Hπ∞ ⊗ Vτ )SO(n)

∼ dim(τ)
Vol(G(Q)AG(R)0\G(A)/Kf )

(4π)dn/2Γ(1 + dn/2)
(1 + ϵKf

)T dn/2.

The heat equation method is based on the study of the asymptotic behaviour of the trace

of the heat operator. This method combined with Arthur’s trace formula proves the above

theorem. Here we provide some basic ideas of this method. For more details we refer to

[Mü1].

Let G(A)1 be the group of elements x ∈ G(A) such that |det(x)|A = 1. The non-invariant

trace formula provides an identity between distribution on G(A)1. The identity is of the form

[Ar1] ∑
χ∈X

Jχ(f) =
∑
o∈O

Jo(f), f ∈ C∞
c (G(A)1).

The left and the right hand sides are called the spectral side (Jspec(f)) and the geometric

side (Jgeom(f)), respectively. The left hand side is parameterized by the cuspidal data X and

the right hand hand side is parameterized by the semisimple conjugacy classes in G(Q).

Here we only consider the case when τ is trivial. For t > 0, We choose a family of test

functions ϕ̃1
t ∈ C∞

c (G(A)1) to apply on the above trace formula. At the infinite place we

choose this family to be the product of heat kernel ht ∈ C∞(G(R)1) of the Laplacian and a

smooth, compactly supported family of functions ϕt, and at the finite places it is given by 1Kf
,
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where Kf is an open compact subgroup of G(Af ). We apply the trace formula to ϕ̃1
t . Then

the idea is to study the asymptotic behaviour of the both sides when t→ 0. We denote the

set of irreducible unitary representations which occur discretely in the regular representation

of G(A) on L2(G(Q)AG(R)0\G(A)) by Πdisc(G(A)). Let m(π) be the multiplicity of π. Let

HK∞
π∞ be the space of K∞-invariant vectors in Hπ∞ .

To study the asymptotic behaviour of the geometric side we appeal to the fine o-expansion:

Jgeom(ϕ̃
1
t ) =

∑
M∈L

∑
γ∈(M(QS))M,S

aM(S, γ)JM(ϕ̃1
t , γ).

Here JM(ϕ̃1
t , γ) denotes the weighted orbital integrals, M runs over the set of Levi subgroups

L containing the Levi component M0 of the standard minimal parabolic subgroup P0, S is

a finite set of places of Q, and (M(QS))M,S is a certain set of equivalence classes in M(QS).

Müller [Mü2] proves the following limit: for M ̸= G and γ ̸= 1

lim
t→0

tdn/2JM(ϕ̃1
t , γ) = 0.

Therefore it is enough to study the orbital integral when M = G and γ = 1. Using the

behaviour of the heat kernel ht evaluated at 1 and letting t→ 0, we arrive at the following

asymptotic formula:

Jgeom(ϕ̃
1
t ) ∼

Vol(G(Q)AG(R)0\G(A)/Kf )

(4π)dn/2
(1 + ϵKf

)T dn/2.

Now one moves to estimate the spectral side. The spectral side can be written as a finite

linear combination of distributions JL
M,P (ϕ̃

1
t , s):

Jspec(ϕ̃
1
t ) =

∑
M∈L

∑
L∈L(M)

∑
P∈P(M)

∑
s∈WL(aM )reg

aM,sJ
L
M,P (ϕ̃

1
t , s).

Here L(M) denotes the set of Levi subgroups which contains M , P(M) denotes the set of

parabolic subgroups whose Levi subgroup coincides with M and WL(aM)reg is a subgroup of

the full Weyl group. For each M ∈ L, the important terms associated with JL
M,P (ϕ̃

1
t , s) are

the logarithmic derivatives of the intertwining operators

MQ|P (λ) : A2(P ) 7−→ A2(Q), P,Q,∈ P(M), λ ∈ aM,C,
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where A2(P ) and A2(Q) are the square-integrable automorphic forms attached to parabolic

subgroups P,Q. When M = L = G and s = 1 we have

JG
G,G(ϕ̃

1
t , 1) =

∑
π∈Πdisc(G(A))

m(π)etλπ∞dim(HK∞
π∞ )dim(HKf

πf ).

For a fixed π ∈ Πdisc(M(A)), letMQ|P (π, λ) be the restriction of theMQ|P (λ) to the subspace

of automorphic forms A2
π(P ) of π−type. Let rQ|P (π, λ) be meromorphic functions satisfying

MQ|P (π, λ) = rQ|P (π, λ)
−1NQ|P (π, λ),

where NQ|P (π, λ) are the normalized intertwining operators. Now to estimate the logarith-

mic derivatives of these intertwining operators on iaM , one uses the available knowledge of

Rankin-Selberg L- functions and corresponding ϵ-factors on GL(n). Using these estimates

one gets the following limit:

lim
t→0

JL
M,P (ϕ̃

1
t , s) = O(t−

dn−1
2 ),

for all proper Levi subgroups M , all L ∈ L(M), P ∈ P(M) and s ∈ WL(aM)reg. Therefore

equating estimates on the both the geometric and the spectral sides we get:∑
π∈Πdisc(G(A))

m(π)etλπ∞dim(HK∞
π∞ )dim(HKf

πf )

∼ Vol(G(Q)AG(R)0\G(A)/Kf )

(4π)dn/2
(1 + ϵKf

)t−dn/2.

Now to prove Weyl’s law for the discrete spectrum with trivial K∞− type we use Karamata’s

theorem on the left hand side.

3.4 The method of Lindenstrauss and Venkatesh

In this section, we summarize the method and the proof of Lindenstrauss and Venkatesh [LV].

Let S be a finite set of places including the Archimedean places. Let GS = G(QS) be the

QS-points of G. Let Γ ⊂ G(Z[S]−1) be a torsion free congruence subgroup. Let Q0 =M0N0

be the Levi decomposition of a minimal parabolic subgroup of G defined over Q, where
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M0 ⊃ A0. Let KS be a maximal compact subgroup of G(QS). Let {Q1, Q2, · · ·Qi} be the

set of inequivalent representatives of Γ-orbits on the set of Q-parabolic subgroups of G. We

consider QS-points of these representatives and conjugate them by suitable elements from Γ

to make them standard parabolics. We rename these representatives as Pi(QS) = Pi,S. We

have the following Iwasawa and Langlands decomposition of G(QS) and Pi(QS) respectively

:

G(QS) = Pi(QS)KS, Pi(QS) =M1
i (QS)Ai(QS)Ni(QS).

Let ΓAi,S
= Γ

⋂
Ai(QS). Let C∞

c (KS\G(QS)/KS) be a convolution ring of bi-KS invari-

ant test functions acting on the space L2(Γ\G(QS)), via convolution. Let ν ∈ a∗S, where

aS = Lie(A0(QS)). Suppose a∗S,temp is the subset where the Plancherel measure for spherical

functions is supported. Let dim(A0) = r. Let Eν be the corresponding spherical eigen-

function of the Laplacian. For Φ ∈ C∞
c (KS\GS/KS), it can be shown that Eν is also

an eigenfunction of the corresponding convolution operator ”⋆Φ”. We denote by Φ̂(ν) the

spherical transform of Φ, defined as the eigenvalue of the convolution operator:

Eν ⋆ Φ = Φ̂(ν)Eν .

We recall the following properties of the Plancherel measure and Plancherel inversions for

spherical functions Φ [LV]. Let µ(ν)dν be the Plancherel measure.

a. We have the inversion formula:

Φ(e) =

∫
a∗S,temp

Φ̂(ν)µ(ν)dν. (3.4.1)

b. There is a constant C1 > 0 such that for any positive function ψ(ν) on a∗S,temp,∫
a∗S,temp

ψ(ν)µ(ν)dν ≤ C1

∫
a∗S,temp

ψ(ν)(1 + ∥ν∞∥)d−rdν. (3.4.2)

c. There exists a constant α(G) such that,∫
ν∈a∗S,temp,∥ν∥2≤T

µ(ν) ∼ α(G)T
d
2 , as T →∞. (3.4.3)
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For Φ ∈ C∞
c (KS\GS/KS) we define the Abel-Satake transformation

S(Φ)(a) = δ(a)−1

∫
n∈NS

Φ(na)dn,

for all a ∈ AS. We can prove that S(Φ) is a AS ∩KS invariant function. Therefore, we can

regard this as a function on AS/AS ∩KS, which are WS- invariant. Consequently we have

the following commutative diagram:

C∞
c (KS\GS/KS) H(a∗S)

C∞
c (aS)

WS H(a∗S)

Φ̂

S Id

FT

Here, H(a∗S) denotes the space of holomorphic functions on a∗S and FT denotes the Euclidean

Fourier transform on aS.

3.4.1 Cuspidality condition

Lindenstrauss and Venkatesh [LV, (3.3)−(3.4)] prove a necessary condition on a test function

so that the convolution operator generated by it will have a purely cuspidal image on the

space of the spherical automorphic forms. One of the key differences between their method

and the method of using test functions to apply simple trace formula [FK] is that these con-

volution operators do not factor into the composition of independent convolution operators

at each place. Hence the possibility of having everywhere unramified cusp forms in their

kernel is avoided. The condition is described as follows:

Lemma 3.4.1 (Lindenstrauss - Venkatesh) [LV]: Suppose Φ ∈ C∞
c (KS\GS/KS) satisfies

the following condition

Φ̂(ν) = 0,∀ν|ΓAi,S
= 1,∀i, (3.4.4)

or equivalently ∑
γ∈ΓAi,S

SΦ(γa) = 0,
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then Φ maps L1
loc(Γ\GS) to L

2
cusp(Γ\GS/KS).

Here L1
loc(Γ\GS) and L2

cusp(Γ\GS/KS) denote the space of locally integrable and square-

integrable cuspidal functions respectively.

The existence of such non-zero Φ can be proved using the surjectivity of the Abel-Satake

transform for bi-KS invariant functions. It turns out that Φ is a linear combination of WS

invariant point masses.

3.4.2 The pre-trace formula

Following [Mi] Lindenstrauss and Venkatesh used the pre-trace formula instead of using

the full Arthur’s trace formula as only the lower bound of the counting function to be

achieved. Suppose H ∈ C∞
c (KS\GS/KS) satisfies the condition of Lemma 3.4.1 and acts as

a convolution operator on L1
loc(Γ\GS). Let Ω be a compact set whose measure is arbitrarily

close to Vol(Γ\GS). Then we have the following inequality:

H(1)Vol(Ω) +
∑
γ∈Z

∫
Ω

H(x−1γx)dx ≤
∑
ν

Ĥ(ν). (3.4.5)

Here, Z =
(
Γ\{e}

)⋃(
xgx−1 : x ∈ Ω̃, x ∈ suppH

)
.

3.4.3 Test functions

Let us fix ϵ > 0 and 0 < t ≤ 1. Using Arthur’s [Ar5] Paley-Wiener theorem at the

Archimedean place, we can choose an entire Schwarz function hϵ(tν) on a∗S such that its

Plancherel inversion Ht will have the following estimate for sufficiently small t, and a con-

stant C1 > 0:

∣∣tdHt(e)− α(G)
∣∣ ≤ C1ϵ. (3.4.6)

We multiply Ht with 1KS\∞ to make it a function on G(QS). Moreover, we can choose a

sequence Φn, such that Φn satisfies the condition of Lemma 3.4.1 for each n. We now form

a family of test functions Φn ⋆Ht and then plug them in (3.4.5). Letting n→∞ and t→ 0,
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using (3.4.6) on the geometric side, and using the bounds of spherical functions [DKV1] we

have the correct lower bound of NΓ
cusp(T, τ) as T →∞. Notice that in the case of spherical

cusp forms we have dτ = 1.

3.5 Method for arbitrary K∞-type

To extend the above method of Lindenstrauss and Venkatesh for cusp forms of arbitrary

K∞-type, we choose our test functions from the convolution ring of End(Vτ )-valued, com-

pactly supported, smooth functions on G(R). Such a function h satisfies the following radial

condition:

h(k1gk2) = τ(k−1
2 )h(g)τ(k−1

1 ).

We denote this ring as C∞
c (G(R), τ, τ). Let C∞

c (G(R))K∞
K∞

denote the scalar-valued convolu-

tion ring of bi-K∞-finite, K∞-central functions. Let L2
cusp(Γ\GS)K∞ be the space of scalar

valued cusp forms of K∞-type τ . We recall the following properties from R. Camporesi’s

work [Cmp2]:

1. h 7→ H♯ := dτTr(h) is a ring bijection from C∞
c (G(R), τ, τ) to C∞

c (G(R))K∞
K∞

. 2. We have

the following convolution identity:

dτTr(h1 ⋆ h2) = dτTr(h1) ⋆ dτTr(h2). (3.5.1)

Let K ′ be an arbitrary open compact subgroup of G(QS\∞). We multiply h and H♯ by a

function from the ring C∞
c (K ′\G(QS\∞)/K ′) to define them as functions on G(QS). We

have the following analogue of Plancherel inversion [Ar3] for arbitrary compactly supported

smooth functions on G(R):

H♯
∞ ⋆ H̃♯

∞(1) =
∑
P

n(P)−1
∑
P∈P

∑
ω∞∈E2(M1

∞)

(
1

2πi
)q
∫

ia∗∞

dω∞

∣∣∣∣π∞(ω∞, ν∞)(H♯
∞)
∣∣∣∣2
HS

µ(ω∞, ν∞)dν∞.
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Here, P denotes the associated classes of parabolic subgroups, E2(M1
P,∞) denotes the equiv-

alence classes of square integrable representations of M1
P,∞, µ(ω∞, ν∞)dν is the Plancherel

measure, and π∞(ω∞, ν∞) is the induced representation with parameters ω∞, ν∞.

The operator-valued spherical Fourier transform F could be defined for any H♯
∞ in the fol-

lowing way. For any π∞ ∈ Ĝ(R)(τ), the set of unitary irreducible representations containing

τ , let Hπ∞(τ) be its τ -isotypic subspace. Then

π∞(H♯
∞)|Hπ∞ (τ) = 1τ ⊗F(H♯

∞)(π∞).

At a non-Archimedean place p, we have a similar Plancherel inversion formula [HC3] for

compactly supported smooth function on G(Qp), which is bi-K
′
p invariant:

Hp⋆H̃p(1) =
∑
Ap∈C

c(G(Qp)/Ap)
−2γ(G(Qp)/Ap)

−1[M(G(Qp)/Ap)]
−1

∫
ωp∈E2(Mp)

K′
p

||πp(ωp)(Hp)||2HS µ(ωp)dωp.

Here, C is a complete set of standard tori in G(Qp) such that no two of which are con-

jugate in G(Qp). Mp ⊃ Ap E2(Mp)
K′

p denotes the set of unitary, irreducible, admissible,

square-integrable representations ωp which contain the trivial representation of K ′
p

⋂
Mp.

The measure n this space is defined in [HC3]. This set is a union of finitely many compact

manifolds [BDK, Section 2.3]. Therefore the Plancherel measure µ(ωp)dωp is defined over a

compact manifold. Also πp(ωp) denotes the induced representation with the parameter ωp.

We have the following estimates of the Plancherel measure defined on the parameters

corresponding to the minimal parabolic at the Archimedean place and arbitrary standard

parabolics at a non-Archimedean place p:

a. There exists a positive constant C ′ such that:

µ(ω∞, ν∞)µp(ωp) ≤ C ′(1 + |ν∞∥)d−r. (3.5.2)

b. There exists a positive constant α(G) such that:∫
ν∞∈ia∗0,∞,∥ν∞∥2≤T

∫
ωp∈E2(M0,p)

K′
p

µ(ω∞, ν∞)µp(ωp) ∼ α(G)T d/2, (3.5.3)

as T →∞.
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3.5.1 Cuspidality condition

We have a generalization of Lemma 1 for bi-K∞-finite test functions. Assume that Φ ∈

C∞
c (GS)

K∞
K∞

is such that

Ind(ωS, ν)(Φ) = 0 whenever ν|ΓAi,S
= 1 ∀i, (3.5.4)

for all parabolics PS ⊂ Pi,S, for all ωS, equivalence classes of unitary irreducible representa-

tion of M1
P,S for ν ∈ a∗P0,S ,C in an appropriate countable set of elements in a∗P0,S ,C. ωS is such

that it is discrete series at the Archimedean place and supercuspidal at the non-Archimedean

places with τ |K∞∩M1
P,∞
⊂ ω∞. Then Φ maps elements in L1

loc(Γ\GS) to L2
cusp(Γ\GS)K∞ as

convolution operator.

3.5.2 The pre-trace formula

Suppose ϕ ∈ C∞
c (G(QS), τ, τ) satisfies the conditions of Section 2.2.1. Let Ω be a compact

set whose measure is arbitrarily close to Vol(Γ\GS). Let eλ be the eigenfunction of ∆τ with

eigenvalue λ in L1
loc(Γ\G(QS), τ). Then we have the inequality

Trϕ(1)Vol(Ω) +
∑
Z

∫
Ω

Trϕ(x−1γx)dx ≤
∑
λ

(eλ ⋆ ϕ, eλ). (3.5.5)

Here Z =
(
Γ\{e}

)⋃{
xgx−1 : x ∈ Ω, x lies in support of Tr(ϕ)

}
. We can rewrite the right

hand side of (3.5.5) as [BM, Cor. 2.2]:

∑
λ

(eλ ⋆ ϕ, eλ) =
∑
λ

∑
−νπ=λ

m(πS)Tr(πS(Tr(ϕ))).

3.5.3 Test functions

Let us fix ϵ > 0 and 0 < t ≤ 1. Using Arthur’s Paley-Wiener theorem [Ar5] at the

Archimedean place for bi-K∞-finite functions, we can choose an entire Schwarz function
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π∞(ω∞, ν∞)(H♯
∞) on E2(M1

0,∞)× a∗0,C such that following inequality holds:∣∣∣∣∣∣td
∑

P∈Cl(G∞)

n(P)−1
∑
P∈P

∑
ω∞∈E2(M1

∞)

(
1

2πi

)q ∫
ia∗∞

dω∞

∣∣∣∣π∞(ω∞, tν∞)(H♯
∞)
∣∣∣∣2
HS

µ(ω∞, ν∞)dν∞ − α(G)

∣∣∣∣∣∣ ≤ C1ϵ.

(3.5.6)

We denote by H♯
∞,t, the family of K∞-central test functions whose Fourier transform is

π∞(ω∞, tν∞)(H♯
∞), defined on E2(M0,∞) × a∗0,C. We multiply H♯

∞,t by 1K′ to get a function

H♯
t defined on G(QS). We choose a sequence of functions Φ♯

n,S satisfying (3.5.4), such that

πS(Φn,S) converges to 1HπS
(τ). Let ϕ̃ = ϕ(x−1)T . We now plug (ϕn ⋆ht ⋆ h̃t) in (3.5.4). Using

(3.5.3), (3.5.6) and taking T = 1/t the term corresponding to trivial conjugacy class on the

geometric side will be asymptotic to

dτα(G)T
d, (3.5.7)

as T →∞. This is the lower bound of NΓ
cusp(T, τ) as T →∞. Also the terms corresponding

to the non-trivial conjugacy classes will tend to 0 as T → ∞, using the same bounds on

spherical functions [DKV1]. I use the same proof provided by Lindenstrauss and Venkatesh

[LV, Section 6.3] to obtain the correct constant term α(G).

3.6 The method of Labesse and Müller

Labesse and Müller [LM] proved a weak version of Weyl’s law for semisimple algebraic groups

which are almost simple and simply connected. Their idea of proving the asymptotic formula

for the counting functions is to apply the Arthur-Selberg trace formula for a family of test

functions, whose Archimedean part arise from the integral kernel function of the integral

operator e−t∆τ for 0 < t ≤ 1 and the non-Archimedean parts are idempotents 1Kf
, where

Kf is an arbitrary compact subgroup at the non-Archimedean place. In the spectral side

the terms contributing to the inner-product of Eisenstein series will contribute trivially when

t→ 0 as shown by W. Müller [Mü2] in the case of SLn(R). But the calculation is delicate for
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arbitrary groups. In this regard it will be useful to find test functions such that convolution

operators with respect to them have purely cuspidal image. Let S be the finite set of

non-Archimedean places. Then following the simple trace formula introduced by Flicker

and Kazhdan [FK], Labesse and Müller [LM] considered the test functions decomposed as

f = f∞⊗fS⊗1KS
f
, where fS are the pseudo-coefficients of Steinberg representation of G(QS)

acting on L2
cusp(G(Q)\G(A)/Kf ). Hence the image of the right regular representation with

respect to the above test function projects into subspace L2
cusp(G(Q)\G(A)/Kf , S), generated

by the vectors of automorphic representations which are Steinberg at places in S. Define the

eigenvalue counting function NΓ
cusp(T, τ, S) with respect to S in L2

cusp(G(Q)\G(A)/Kf , S).

Using this idea they were able to show that:

lim sup
T→∞

NΓ
cusp(T, τ, S)

T d/2
=
CS(Γ)vol(Γ\G)dim(τ)

(4π)d/2Γ(d/2 + 1)
.

But the non-triviality of the constant CS(Γ) would depend on the choice of the compact

set Kf , as Γ = G(Q) ∩Kf , where Kp for p ∈ S lies inside the minimal parahoric compact

subgroup. To achieve the Weyl’s law one would need to know that the constant above is

the one provided by Donnelly, which unfortunately is not always possible because of the

appearance of CS(Γ).

3.7 Isolation of cuspidal spectrum

Recently Beuzart-Plessis, Liu, Zhang, and Zhu in their paper [BLZZ] proved the existence

of integral operators with a purely cuspidal image. Their choice of test functions are from

a Schwartz space of functions whose partial derivatives are bounded, but not compactly

supported. Therefore, it is a subspace of Harish-Chandra Schwartz space [HC1]. It would

be interesting to apply Arthur’s trace formula to the composition of this test function and

the kernel of the heat operator e−t∆τ [LM], to count the number of cusp forms.
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3.8 Future work

There are several directions in which this work could be extended and strengthened as

possible future projects.

The first direction involves attempting to extend my work to non-linear cover groups of

algebraic groups. It would be interesting to see whether the method described in section 3.5

could be generalized for arithmetic quotients of cover groups e.g. double cover of SL(2,Q)

and more generally for any arithmetic subgroups of more general cover groups of a semi-

simple algebraic groups over any number fields.

Lapid and Müller [LM1] proved Weyl’s law for spherical cusp forms with a remainder

term in the case of arithmetic quotient of SL(n,R), generalizing the result of [DKV2] for the

compact arithmetic quotients. They considered the distribution of eigenvalues of the center

of the universal enveloping algebra. Later Finis and Lapid [FL] improved the remainder term

in Weyl’s law for the congruence subgroups of any Chevalley group. It will be interesting

to see whether those same error terms could be achieved for the cusp forms of arbitrary

K∞-type for more general groups.

On the other hand, J. Matz [Ma] and later J. Matz and N. Templier [MT] proved the

asymptotic bounds of distribution of Hecke eigenvalues in the case of arithmetic subgroups

of GL(n,F) for various cases of F (i.e. for when F is an imaginary quadratic field extension

of Q or when F = Q). They used a more generalized bound for spherical functions than

that provided by [DKV1]. Also they worked with test functions which are non-compactly

supported. It would also be interesting to extend their result for general groups and arbitrary

K∞-types.
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CHAPTER IV

PROOF OF THE MAIN THEOREM

In this chapter we prove our main theorem 1.2.1.

4.1 Plancherel measure and estimates

In this section we review the explicit formula of Plancherel measure in the case of reductive

Lie groups (both Real and p−adic) and their various estimates which provide an essential

part of the proof of the main term of the Weyl’s law. The references for this section are

[HC1] and [HC2].

4.1.1 The real case

Product formula

For this section let us fix a parabolic subgroup (P,A) of G(R), with the corresponding

Langlands decomposition P = M1AN . Let ω∞ ∈ E2(M1) be a square integrable unitary

irreducible class of representation of M1. Let µ(ω∞, ν∞) for ω∞ ∈ E2(M1) and ν∞ ∈ a∗C be

the Harish-Chandra µ function of the pair (G(R), P ). Denote by Σ the set of all roots of

(P,A). A root α ∈ Σ is called reduced if kα /∈ Σ for 0 < k ≤ 1/2. Let Φ be the set of all

reduced roots. For any α ∈ Φ put

nα =
⊕

kα:k≥1

n(α), (4.1.1)

where n(α) = {x ∈ g : [H,X] = α(H)X, ∀H ∈ a}. Let Nα be the analytic subgroup

corresponding to nα. Let σα be the hyper-plane given by α = 0 in a. Let Zα be the
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centralizer of σα. We put Mα = 0Zα, Aα = Mα ∩ A and θ(Nα) = N̄α. Then we can define

the following parabolic subgroups with their corresponding Langlands decompositions

∗Pα =M1AαNα, ¯∗Pα =M1AαN̄α, P =M1AN.

We can now define the product formula for the Harish-Chandra µ function.

Suppose µ(ω∞, ν
α
∞) denotes the corresponding µ(ω∞, ν∞) for the group (Mα,

∗Pα). Here

ν∞ ∈ a∗C and να∞ denotes the restriction of ν∞ to Aα, and ω ∈ E2(M1). Then for a suitable

constant CG, depending on G, we have the following product formula [HC2, Theorem 12, p.

145]

µ(ω∞, ν∞) = CG

∏
α∈Φ

µ(ω∞, ν
α
∞). (4.1.2)

Here we have that prk Mα = 0, prk∗Pα = 1.

Explicit formula

When prk G = 0, and prk P = 1 we have the following two possibilities

• E2(G) ̸= ∅

• E2(G) = ∅

Here the first condition is equivalent to Rank G =Rank K. We write down the formula for

the µ function in each case.

• [HC1, Theorem 1, Sec. 24] We consider the second possibility first. Let us introduce

some notation. Let Q be the set of positive roots of (g, h), where h is a θ-stable

Cartan subalgebra of g. Now Q is the union of three disjoint parts QI , QR, QC , set

of imaginary, real and complex roots respectively. Let Hα be the unique element in h

such that (Hα, H) = α(H), for all H ∈ h, where (, ) denotes the Killing form. With

respect to the Cartan involution we have the decomposition g = k
⊕

p. Moreover
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we have h = hI ⊕ hR, and a fixed parabolic subgroup with Langlands decomposition

P =M1ehRN. We put

w̃I =
∏
α∈QI

Hα, w̃R =
∏

α∈QR

Hα, w̃+ =
∏

α∈QC

Hα.

Suppose hI is a cartan subalgebra of k. Then the second condition is satisfied. From

the theorem of Harish-Chandra [HC1, Sec. 23,Theorem 1] we know that ω∞ ∈ E2(M1)

corresponds to an element in orbit of H∗′
I under the action ofW (M1/HI), where H

∗′
I is

a subspace of H∗
I , which is the Cartan subgroup of M1 in K ∩M1(we call this element

λ which lies in the lie algebra of H∗′
I ). Let a

∗ be the element in H∗′
I that corresponds

to ω∞. Put λ = λ(a∗) ∈ ih∗′I . Then we have the following formula of the µ function:

µ(ω∞, ν∞) = Cw̃+(λ+ ν∞) = C
∏

α∈QC

|(λ+ ν∞, α)| . (4.1.3)

Here the constant C depends on G(R) and M1. In this case one can see that if QR is

empty [Wal, p. 58, (2.3.5)], then dim N = |QC |. So µ is a polynomial in ν∞ of degree

dim N . Hence as t→∞ we have

µ(ω∞, tν∞) ∼ Cν∞t
dim(N),

for a non-zero positive constant Cν∞ .

Therefore when G =Mα, N = Nα, e
hR = Aα we have,

µ(ω∞, tν
α
∞) ∼ Cνα∞t

dim(Nα) as t→∞.

• [HC1, Sec. 36, p. 190] Next, we consider the case of rank G= rank K. Let h be a

θ-stable Cartan subalgebra of g with h = hI ⊕hR, dim (ehR) = 1, and a fixed parabolic

subgroup with Langlands decomposition P =M1ehRN . So dim N = 1 + |QC |.

Let HI be the analytic subgroup corresponding to hI . Let Q be the set of positive

roots of (g, h) which is the disjoint union of imaginary (QI), real (QR) and complex

roots (QC). Let us denote by α the unique root in QR. For a
∗ ∈ H∗

I , let us define

µ0(a
∗, ν∞) := d(a∗)−1Tr

(
πiνα∞ sinhπiνα∞

cosh πiνα∞ −
(−1)ρα

2
(σa∗(γ) + σa∗(γ−1))

)
.
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Here d(a∗) is the degree, να∞ = 2 (ν∞,α)
(α,α)

, ρα = 2 (ρ,α)
(α,α)

∈ Z, where ρ is the half of the

sum of the positive roots of (g, h)), σα is the irreducible representation of HI whose

character is a∗ and γ is a fixed element in HI . So the above expression has the form

u(z) =
z sinhπz

coshπz + k
,

for a fixed real number k ≥ −1.

We know by Harish-Chandra [HC3] ω∞ ∈ E2(M1) corresponds to an element a∗ ∈ H∗′
I ,

which we denote by λ = λ(a∗) ∈ h∗
′

I as the corresponding element in the Lie algebra

of HI . As before we define:

w̃+(ω∞ : ν∞) =
∏

α∈QC

|(λ+ ν∞, α)| .

Moreover, we define

µ0(ω∞, ν∞) =
1

|W (M1/HI)|
∑

W (M1/HI)

µ0(sa
∗, ν∞).

With these notations we can write the Harish-Chandra µ-function as follows

µ(ω∞, ν∞) = C|α|µ0(ω∞, ν∞)w̃+(ω∞ : ν∞). (4.1.4)

We can show that u(tz) ∼ Czt, as t→∞, when z ∈ R and Cz > 0. On the other hand

w̃+(ω∞ : ν∞) is a polynomial in ν∞ with degree dim(N)− 1. Therefore we obtain the

same asymptotic expression

µ(ω∞, tν∞) ∼ Cνt
dimN as t→∞.

With the previous notation (i.e. when G = Mα, N = Nα, e
hR = Aα) we have,

µ(ω∞, tν
α
∞) ∼ Cναt

dim(Nα) as t→∞.
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Asymptotic estimate

Because we have the polar decomposition G = KP , where P = MAN is the Langlands

decomposition, we have

dim(G/K) = dim(
M1

K ∩M1
) + dim(A) + dim(N).

Therefore in the case where P = P0 is the minimal parabolic we have

dim(G/K) = dim(A0) + dim(N0) = dim(A0) +
∑
α∈Φ

dim(N0,α),

and we have the following estimate of the density of the Plancherel measure:∫
ν∞∈ia∗0,R:(ν∞,ν∞)≤t2

µ(ω∞, ν∞)dν ∼ CGCν∞t
dim(G/K), as t→∞. (4.1.5)

Now for the pair (Mα, Aα) we have a polynomial bound. Here we invoke ([HC1, theorem

1, Sec. 25]). The theorem states that µ can be extended to the whole complex plane

meromorphically. Moreover there exists C, r ≥ 0 such that:

|µ(ω∞, ν∞)| ≤ C(1 + ∥Im(ν∞)∥)r.

Our job is to find an explicit value of r in the inequality mentioned in Harish-Chandra’s

paper.

In the case where E2(Mα) = ∅, we have that µ(ω∞, ν
α
∞) is a polynomial in ν∞ of degree

dim(Nα). So in this scenario we can take r = dim(Nα). And similarly for the other case we

can arrive at the same estimate, as supz∈C|u(z)| ≤ (1+ |z|), whenever z is real and the other

part, namely w̃+(ω∞ : ν∞), is a polynomial in ν∞ of degree dim(Nα)− 1.

Hence combining with the product formula mentioned above we conclude that for some

C ′ > 0 we have

µ(ω∞, ν∞) ≤ C ′(1 + ||ν∞||)dim(N). (4.1.6)

Remark: An important point to note here is that the constant C ′ does not really matter

in terms of finding the main term of Weyl’s law. The only constant that could matter is CG

[LV, Sec. 6.3]).
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4.1.2 The p−adic case

The following observation is due to [HC3, p. 355]. The Plancherel measure in this case is

defined on E2(Mp), as is evident from the formulas above. For this case E2(Mp) is compact,

(and it can be written as ⊔ωp∈E2(Mp)Oωp) hence the asymptotic estimate will not change if

we are to consider the plancherel inversion formula for the group GS.

Hence combining the above two subsections we arrive at the estimate that∫
ν∈ia∗0,∞×E2(Mp):(ν∞,ν∞)≤t2

µ(ω, ν)dνdωp ∼ α(G)tdim(G∞/K∞), as t→∞. (4.1.7)

4.2 Condition for purely cuspidal image

In this section we provide sufficient condition on the space of scalar-valued test functions so

that the image of convolution operator on scalar-valued K∞-finite automorphic forms only

consists of cuspidal K∞-finite automorphic forms . We closely follow [LV, prop. 3, second

proof].

We need some preparation. We recall a couple of lemmas due to Harish-Chandra regard-

ing vanishing conditions of Schwartz functions.

Let us recall some of the notations mentioned already in the preliminaries. Let Q =

MQNQ be a standard parabolic subgroup of G(R) and G(Qp). Let C(G(R), τ) be the Harish-

Chandra Schwartz space of vector-valued function which are τ -spherical. These are functions

from G(R) to Vτ ⊂ L2(K∞ ×K∞), where Vτ is viewed as a double representation of τ . The

action of τ is given by

τ(k)ϕ(k1 : g : k2)τ(k
′) = ϕ(k1k : g : k′k2).

Let Ccusp(MQ, τMQ
) be the space of functions which are cuspidal, τMQ∩K∞-spherical, Z(MQ)-

finite and AQ-invariant. The L
2-completion of this space is generated by the square integrable

matrix coefficients of finitely many classes of isomorphic unitary irreducible discrete series

representations of MQ which are AQ-invariant. For more information about this space see
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[Ar5, Chap. I, Sec. 2]. Define

ϕQ
∞(la) =

∫
NQ

ϕ∞(nla)dn, ϕ∞ ∈ C(G(R), τ),

for all la ∈M1
QAQ. Moreover, we write ϕQ

∞ ∼ 0 if the following holds:∫
MQ/AQ

(
f(l), ϕQ

∞(la)
)
dl = 0, ∀f ∈ Ccusp(MQ, τM1

Q
)

for all a ∈ AQ, where (, ) denotes the inner product in the vector space Vτ (which is viewed

as a double representation space of the action of τ on L2(K∞ ×K∞)). Then by [HC3, Vol

IV, p. 149] we have the following.

Lemma 4.2.1 (Archimedean case) Let ϕ∞ be an element in C(G(R), τ) such that ϕQ
∞ ∼ 0

for all parabolic subgroups Q(R) ⊂ G(R). Then ϕ∞ = 0.

We now modify the above conditions for scalar valued bi-K∞-finite functions, by using the

ideas mentioned in [HC3, Vol IV, p. 175]. We denote the corresponding scalar valued

function as Φ∞. Again we write ΦQ
∞ ∼ 0 if∫

M1
Q

f(l)ΦQ
∞(la)dl = 0, ∀a ∈ AQ.

The above integral is a function defined on AQ, the split part of the center of MQ. Hence

if Φ∞ is a compactly supported smooth function on G(R), then the integral above is also a

compactly supported function defined on AQ. We recall some characterization of parabolic

subgroups of standard Levi subgroups due to Harish-Chandra

Lemma 4.2.2 Let p ∈ S. There is an one to one correspondence between parabolic sub-

group P (Qp) of G(Qp) which are contained in Q(Qp), and parabolic subgroups ∗P (Qp) of

MQ(Qp). The correspondence are as follows: If Q(Qp) = MQ(Qp)NQ(Qp) and P (Qp) =

MP (Qp)NP (Qp) are the corresponding Levi decompositions, then ∗PQ = P (Qp) ∩MQ(Qp) =

MP (Qp)N
P
Q (Qp) is the corresponding Levi decomposition, where AP (Qp) = AP

Q(Qp)AQ(Qp),

NP (Qp) = NP
Q (Qp)NQ(Qp).
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Lemma 4.2.3 Let Φ ∈ C∞
c (G(R))K∞

K∞
⊗ H̄(G(K ′

S′\QS′/K
′

S′ )). Assume that:

Ind(ωS, νS)(Φ) = 0,whenever ν|ΓAi,S
= 1 ∀i (4.2.1)

for all parabolic PS ⊂ Qi,S whose Archimedean part is the chosen minimal parabolic sub-

group, for all ωS, equivalence classes of unitary irreducible representation of M(QS) whose

Archimedean component is a discrete series and the non-Archimedean components are su-

percuspidal, such that ω∞ ⊂ τ |K∞∩M∞. Then Φ satisfies the following equation for all i, for

all k1, k2 ∈ KS and for all m ∈Mi,S:∑
ΓAi,S

∫
Ni,S

Φ(k1nγmk2)dn = 0. (4.2.2)

Proof. Equation (4.2.1) implies that∫
M(QS)

∫
N(QS)

∫
KS

Φ(k1mnk2)ωS(m
−1)e(−νS+ρS)HPS

(m−1)dk2dndm = 0,

for all k1 ∈ KS, for all P (QS) = PS ⊂ Qi,S = Qi(QS), and for all νS ∈ a∗P0,S ,C such that

νS|ΓAi,S
= 1. (we will suppress the iteration i in our discussion that follows) Hence we can

drop the integration on KS to get:∫
M(QS)

∫
N(QS)

Φ(k1mnk2)ωS(m
−1)e(−νS+ρS)HPS

(m−1)dndm = 0.

Breaking the group N(QS) as product of N
P
Q (QS) and NQ(QS) we have the following:∫

M(QS)

∫
NP

Q (QS)

∫
NQ(QS)

Φ(k1mn
′n′′k2)ωS(m

−1)e(−νS+ρS)HPS
(m)dn′′dn′dm = 0. (4.2.3)

As ∗PQ(QS) =M(QS)N
P
Q (QS) ⊂MQ,S, is a parabolic subgroup of MQ,S, we have ΓA,S ⊂

M(QS) and ΓA,S centralizes M(QS). Hence (4.2.3) implies that∫
M(QS)

ΓA,S

∫
NP

Q (QS)

∫
NQ(QS)

∑
ΓA,S

Φ(k1m1γn
′n′′k2)ωS(m

−1
1 )

e(−νS+ρS)HPS
(m1)dn′′dn′dm1 = 0.

(4.2.4)
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We will apply Fubini’s theorem to change the order of the integral on NQ(QS) and sum

on ΓA,S (as Φ is compactly supported the integral above is convergent). Moreover we can

break down the set M(QS)
ΓA,S

into product of M(QS)
A(QS)

and A(QS)
ΓA,S

. Hence we can think of the above

integral as the Fourier transform of the integral∫
M(QS)

A(QS)

∫
NP

Q (QS)

∫
NQ(QS)

∑
ΓA,S

Φ(k1m1γn
′n′′k2)fs(m1)dn

′′dn′dm1,

where fs is the product of the coefficient of discrete series (at the Archimedean place) and

cuspidal representations (at the non-Archimedean places) of M(QS). Therefore, using the

injectivity of Fourier transform on functions defined onMQ,S which are compactly supported

modulo the central direction of MQ,S (which holds for non-Archimedean case by combining

[B, Th. 25], [BDK] and [CH, Section 5.7]), (4.2.4) implies that∑
ΓAi,S

∫
Ni,S

Φ(k1nγmk2)dn = 0. (4.2.5)

Lemma 4.2.4 If Φ ∈ C∞
c (G(R))K∞

K∞
⊗ H̄(G(K ′

S′\QS′/K
′

S′ )) satisfies the eq. (4.2.2) then Φ

maps the elements in L1
loc(Γ\GS) to L

2
cusp(Γ\GS) as a convolution operator.

Proof. We fix 1 ≤ i ≤ r and let Ψ ∈ L2(Γ\GS)K∞ and Ψi(g) = Ψ(δig). Then it is easy to

see that Ψi ∈ L2(Γi\GS)K∞ . To get the purely cuspidal image we need the following:

For Φ = Φ∞ΦS\∞, where Φ∞ ∈ C∞
c (G(R))K∞

K∞
, ΦS\∞ ∈ H̄(G(K

′

S′\QS′/K
′

S′ )) and Ψi ∈

L2(Γi\GS)K∞ , ∫
ΓNi,S

\Ni,S

Ψi ⋆ Φ(nx)dn = 0.

This is equivalent to: ∫
ΓNi,S

\Ni,S

∫
GS

Φ(y−1nx)Ψi(y)dydn = 0.

Now we break down the integral on GS as an integral on Γi\GS and a discrete sum on Γi to

get the equivalent relation:∫
ΓNi,S

\Ni,S

∑
Γi

∫
Γi\GS

Φ(y−1γ−1nx)Ψ(y)dydn = 0,
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for all x, y. This is equivalent to:∫
ΓNi,S

\Ni,S

∑
Γi

Φ(y−1γ−1nx)dn = 0.

After swapping the integral and the sum (as the sum over Γi is locally finite, and Φ is

compactly supported, we can use the Monotone Convergence Theorem or Dominated Con-

vergence Theorem) and rearranging the domains, we get a sum over (Γi

⋂
Ni,S)\Γi and an

integral on Ni,S Therefore, we arrive at the equivalent condition:

∑
ΓNi,S

\Γi

∫
Ni,S

Φ(y−1γnx)dn = 0. (4.2.6)

We replace x and y with their respective Iwasawa decompositions, i.e. x = m1n1k1 and

y = m2n2k2. Moreover, we can write the sum over Γ
Γ
⋂

Ni,S
as sum over Γ

⋂
Ai,S = ΓAi,S

cosets.

Therefore asMi,S centralizesAi,S, we can write k−1
2 n−1

2 m−1
2 γnm1n1k1 = k−1

2 n−1
2 γm−1

2 nm1n1k1.

As Mi,S normalizes Ni,S, with a modular factor we have:

k−1
2 n−1

2 γm−1
2 nm1n1k1 = k−1

2 n−1
2 n′γm−1

2 m1n1k1.

But as the modular factor, a scalar, only depends on m2, and γ belongs to a discrete sub-

group, we can ignore that above. Therefore we can finally write the argument of Φ as

k−1
2 n−1

2 n′n′′γm−1
2 m1k1 = k2nγmk2. Hence, we can rewrite the condition in (4.2.6) as follows:

For all k1, k2 ∈ KS and for all m ∈Mi,S [LV, eq. 4.6]

∑
ΓAi,S

∫
Ni,S

Φ(k1nγmk2)dn = 0. (4.2.7)

Consequently (4.2.2) is the sufficient condition.

In the next step we need to find a non-zero combined test functions on GS, which is bi-

K∞-finite,K∞-central and compactly supported at the Archimedean place and a function

from the Hecke algebra at the non-Archimedean places that satisfies the above conditions.

For parabolic subgroups PS, whose Archimedean component is the chosen standard minimal
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parabolic subgroup, (4.2.1) would become as follows: For all νS ∈ a∗PS
⊃ a∗Qi,S

such that

whenever for all i, νS|ΓAi,S
= 1, we have

IndGS
PS

(ωS, νS)(Φ) = 0, (4.2.8)

for all ωS discrete series representation at the Archimedean place and supercuspidal at the

non-Archimedean places ofMP,S such that τ |M0,∞ ⊃ ω∞. By the description of arithmetic tori

[PR, Theorem 5.12], νS should have the property that νp = νq, for all p, q ∈ S. Let Z(G(Qp))

be the ring of regular functions defined on union of Benrstein components Ω(G(Qp)) ([MT,

2.3.1]). Combining for all p ∈ S\∞ we define Z(QS\∞) to be the set of Fourier transform

of Bernstein center for G(QS\∞). Let zi be the elements in the Bernstein center for each

Qi(QS\∞) [MT, 2.2.1]. Let ẑi ∈ Z(G(Qp)). We can form the test function

Φ = Φ∞
∏
i

(zi ⋆ 1K′).

We have to find a regular function R defined on Ω(G(QS\∞)) such that R(νS\∞) = 0,

whenever νp = νq, for all p, q ∈ S and νp ∈ a∗PS
. We can find a polynomial that satisfies this

property for every PS ⊂ Qi,S. Hence, we could apply the Arthur’s Paley-Wiener Theorem at

the Archimedean place and matrix Paley-Wiener Theorem for Hecke alegebra by Bernstein

[B, Theorem 25] at the non-archimedean place to construct a non-zero test function Φ.

4.3 The pre-trace formula

In this section we write the pre-trace formula. We choose a test function whose Archimedean

component is a τ−spherical function belonging to the convolution algebra C∞
c (G(R), τ, τ),

satisfying the identity

ϕ(k1gk2) = τ(k2)
−1ϕ(g)τ(k1)

−1

and a scalar valued function at the non-Archimedean places from the Hecke algebra H̄(G(K ′

S′\QS′/K
′

S′ )).

Suppose it also satisfies the condition of cuspidality described in the previous section. It acts

on Γ−invariant L2 eigensection (K∞-finite,K
′

S′-fixed) eλ(x) (orthonormal with respect to the
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inner product mentioned in the introduction) of the Casimir operator(defined for sections

of vector bundles), with the eigenvalue parameter defined as λ. We define the convolution

action as follows:

eλ ⋆ ϕ(x) =

∫
GS

ϕ(y−1x)eλ(y)dy

=

∫
Γ\GS

∑
γ−1∈Γ

ϕ(y−1γ−1x)eλ(y)dy

=

∫
Γ\GS

K(x, y)eλ(y)dy

=

∫
Γ\GS/K∞

K(x, y)eλ(y)dy

In the last equation we have used the fact that K(x, y)eλ(y) is K∞−invariant on y. Then

the spectral expansion of K(x, y) can be written as follows:

K(x, y) =
∑
λ,µ

(eλ ⋆ ϕ, eµ)eµ(x)⊗ eλ(y)∗,

where eµ(y)
∗ denotes the dual vector which acts on f(y) through the pairing ⟨f(y), eµ(y)⟩Vτ

on the fiber (Eτ )y [Dui, eq. 7.3]. If we let x = y, then the spectral side will have the following

form:

K(x, x) =
∑
λ,µ

(eλ ⋆ ϕ, eµ)eµ(x)⊗ eλ(x)∗.

Therefore, taking the trace on both sides we get

TrK(x, x) =
∑
λ

(eλ ⋆ ϕ, eλ)eλ(x)⊗ eλ(x)∗.

Consider a compact subset Ω ⊂ Γ\GS, whose measure is arbitrarily close to Vol(Γ\GS). We

take the pre-image of Ω in GS and call it Ω̃. Unwinding the sum on the left hand side we

get

TrK(x, x) = Trϕ(e) +
∑
γ∈Z

Trϕ(x−1γx),

The set Z will have the following form :

Z =
(
Γ\{e}

)⋃(
xgx−1 : x ∈ Ω̃, x lies in support of Tr(ϕ)

)
.
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The cardinality of Z would be finite, and would depend only on Ω̃ and the support of Tr(ϕ).

Integrating both sides over Ω̃, we obtain the following:∫
Ω̃

TrK(x, x)dx ≤
∫
Γ\GS/K∞

TrK(x, x)dx =
∑
λ

(eλ ⋆ ϕ, eλ)

To make sure we have a self adjoint convolution operator we need ϕ(x) = ϕ(x−1)T . To

achieve the self-adjointness we replace ϕ with ϕ ⋆ ϕ̃, where ϕ̃(x) = ϕ(x−1)T . Hence, the right

hand side of the above inequality becomes
∑

λ(eλ ⋆ ϕ, eλ ⋆ ϕ).

Now by a theorem of Gelfand, Graev and Piatetski-Shapiro [Bmp, prop. 3.2.3] which states

that the convolution operator on the scalar-valued automorphic forms is a compact operator.

Therefore we obtain:
∑

λ(eλ ⋆ ϕ, eλ ⋆ ϕ) <∞. Hence, we have

Tr(ϕ ⋆ ϕ̃(e))Vol(Ω) +
∑
γ∈Z

∫
Ω

Tr(ϕ ⋆ ϕ̃)(x−1γx) ≤
∑
λ

(eλ ⋆ ϕ, eλ ⋆ ϕ). (4.3.1)

We now give a representation theoretic interpretation of
∑

λ(eλ ⋆ ϕ, eλ ⋆ ϕ). Let π∞ ∈

Πcusp(G(R), τ) be the Archimedean part of irreducible unitary representation πS which ap-

pears as a subrepresentation of right regular representation of G(QS) on L
2
cusp(Γ\G(QS), τ)

with multiplicities m(π∞), and let Hπ∞ be the corresponding Hilbert space. Let Hπ∞(τ) be

the τ−isotypic subspace. Then using [BM, Thm. 3.3] we have:

∑
λ

(eλ ⋆ ϕ, eλ ⋆ ϕ) =
∑

Πcusp(G(R),τ)

m(π∞)

( m∑
i=1

(ei ⋆ ϕ, ei ⋆ ϕ)

)
, (4.3.2)

where m = dim(HomK∞(Hπ∞(τ), Vτ )).

4.4 An approximation lemma

In this section we find a family of test functions

HS,t = H∞,t · 1K′ ,

for 0 ≤ t < 1 that satisfy certain approximations. For the rest of the section and beyond we

will write S\∞ = S ′ and K ′ = K
′

S\∞. We prove a slight generalization of [LV, Lemma 2]
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below.

Let h = ihK∞ + a0,∞ be the Cartan subalgebra of U(g∞). Let hC = h ⊗ C be the complex-

ification of the Cartan subalgebra. Let h∗C be the dual of hC. We fix 0 < ϵ < 1. By [LV,

(5.12)-(5.15)] we know there exist a nonempty open set of Schwarz functions ψ defined on

cylinders

{λ∞ ∈ h∗C : |Re(λ∞)| ≤ a}

that satisfy the following conditions:

• 0 ≤ ψ(λ∞) < 1, when ∥λ∞∥ ≤ 1, λ∞ ∈ h∗K∞ + ia∗0,∞.

•
∫

ia∗0,∞

|ψ(νK∞ + ν∞)− χ(νK∞ + ν∞)| (1 + ∥ν∞∥)dim(N0)dν∞ ≤ ϵ, for fixed νK∞ ∈ h∗K∞,C

such that Re(νK∞) is bounded.

• sup
∥λ∞∥>1

(1 + ∥λ∞∥)d+1 |ψ(λ∞)| ≤ ϵ.

Here χ(νK∞+ν∞) denotes the characteristic function of the sphere ∥νK∞+ν∞∥ ≤ 1. Without

loss of generality we may assume that ψ can be extended to a holomorphic function on h∗C, as

the Fourier transform of ψ has compact support. Let OC be the orthogonal group of h∗C with

respect to the inner product ⟨, ⟩. This inner product is induced from the Killing form on hC.

By averaging we can make ψ as OC-invariant function. Therefore ψ(λ∞) depends only on

⟨λ∞, λ∞⟩. Let dω∞ denote the degree of equivalent classes of square integrable irreducible

representations ω∞ ofM1
0,∞. Using Frobenius Reciprocity we see that for the case of minimal

parabolic P0,∞, we have

[Ind(ω∞, ν∞)|K∞ : τ ] = [τ |M1
0,∞

: ω∞].

Therefore, ∑
ω∞∈E2(M1

0,∞)

dω∞ [Ind(ω∞, ν∞)|K∞ : τ ] =
∑

ω∞∈E2(M1
0,∞)

dω∞ [τ |M1
0,∞

: ω∞] = dτ .

Put mω∞ = [τ |M1
0,∞

: ω∞]. Let C∞
c (h) be the set of compactly supported smooth functions

(i.e. set of multipliers for the convolution algebra C∞
c (G(R))K∞

K∞
). Then by the Euclidean
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Paley-Wiener theorem there exists ζ ∈ C∞
c (h) such that its Laplace-Fourier transform ζ̂(λ∞)

satisfies:

ζ̂(λ∞) = ψ(λ∞), ∀λ∞ ∈ h∗C.

There exists a functionH♯
∞ ∈ C∞

c (G(R))K∞
K∞

such that Ind(ω∞, ν∞)(H♯
∞) = Ind(ω∞, ν∞)(dτχτ )

[GV, Lemma 1.3.2]. Now using the Arthur’s theorem on multipliers [Ar5] we can choose a

family of functions H♯
∞,t,ζ ∈ C∞

c (G(R))K∞
K∞

, such that their operator valued Fourier trans-

forms are

Ind(ω∞, ν∞)(H∞,t,ζ) = ζ̂(νω∞ + tν∞)Ind(ω∞, ν∞)(dτχτ ),

for 0 < t ≤ 1. Let H♯
S,t,ζ = H♯

∞,t,ζ · 1K′ , for K ′ an arbitrarily chosen open compact subgroup

of GS′ . Then∣∣∣∣∣∣∣∣Ĥ♯
∞,t,ζ(ω∞, ν∞)

∣∣∣∣∣∣∣∣2 = ∫
K∞

∣∣∣∣Ĥ♯
∞,t,ζ(ω, ν)(1 : 1 : k)

∣∣∣∣2 dk = dω

∣∣∣∣∣∣Ind(ω∞, ν∞)(H♯
∞,t,ζ)

∣∣∣∣∣∣2
HS
.

Therefore, from the above choice of Schwartz function we have∣∣∣∣∣∣∣∣Ĥ♯
∞,t,ζ(ω∞, ν∞)

∣∣∣∣∣∣∣∣2 = dτdωmω∞∥ψ(νω∞ + tν∞)∥2.

The following estimate will be instrumental in proving the main estimate in Weyl’s law. Let

0 < ϵ < 1 and choose H♯
∞,t,ζ depending on ϵ.

Lemma 4.4.1 There exists C1 > 0 such that for sufficiently small 0 < t ≤ 1 and for the

minimal Parabolic P0,∞ =M1
0,∞A0,∞N0,∞ we have∣∣∣∣∣∣td

∑
ω∈E2(M1

0,∞)

∫
ia∗0,∞

∣∣∣∣∣∣∣∣Ĥ♯
∞,t,ζ(ω∞, ν∞)

∣∣∣∣∣∣∣∣2 µ(ω∞, ν∞)dν − d2τα(G∞)

∣∣∣∣∣∣ ≤ C1ϵ.

Proof. Recall the Plancherel inversion formula at the real place

f ⋆ f̃(1) =
∑
P

n(P)−1
∑
P∈P

∑
ω∈E2(M1

∞)

(
1

2πi
)q
∫
ia∗M∞

∣∣∣∣∣∣f̂(ω, ν)∣∣∣∣∣∣2 µ(ω, ν)dν. (4.4.1)

Here, P denotes the associated classes pf parabolic subgroups. The integer q denotes the

dimension of respective ia∗M∞ . We are interested on the summand that corresponds to the
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minimal parabolic. For the sum and integral involving the minimal parabolic subgroup

P0,∞ =M0,∞A0,∞N0,∞, and dim(ia∗0,∞) = r we have

lim sup
t→0

∣∣∣∣∣∣td
∑

ω∞∈E2(M1
0,∞)

(
1

2πi
)r
∫
ia∗0,∞

∥Ĥ♯
∞,t,ζ(ω∞, ν∞)∥2µ(ω∞, ν∞)dν∞ − d2τα(G∞)

∣∣∣∣∣∣
= lim sup

t→0

∣∣∣∣∣∣td
∑

ω∞∈E2(M1
0,∞)

(
1

2πi
)r
∫
ia∗0,∞

∥Ĥ♯
∞,t,ζ(ω∞, ν∞)∥2µ(ω∞, ν∞)dν∞ − d2τα(G∞)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣lim sup
t→0

td
∑

ω∞∈E2(M1
0,∞)

(
1

2πi
)r
∫
ia∗0,∞

dτdωmω∞

∣∣∥ψ(νω∞ + tν∞)∥2 − χ(νω∞ + tν∞)
∣∣µ(ω∞, ν∞)dν∞

∣∣∣∣∣∣
≤

∣∣∣∣∣∣lim sup
t→0

td
∑

ω∞∈E2(M1
0,∞)

(
1

2πi
)r
∫
ia∗0,∞

dτdωmω∞

∣∣∥ψ(νω∞ + ν∞)∥2 − χ(νω∞ + ν∞)
∣∣µ(ω∞, t

−1ν∞)d(t−1ν∞)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

ω∞∈E2(M1
0,∞)

(
1

2πi
)r
∫
ia∗0,∞

dτdωmω∞

∣∣∥ψ(νω∞ + ν∞)∥2 − χ(νω∞ + ν∞)
∣∣ (1 + ∥ν∞∥)dim(N0)

d(ν∞)

∣∣∣∣∣∣
≤ C1ϵ

In the last step we use the second condition of ψ given at the beginning of this section.

4.5 Plancherel inversion and test functions

In this section we describe the choice of test functions. We start by recalling a result of

Camporesi, which identifies the endomorphism valued convolution algebra with scaler valued

functions.

Proposition 4.5.1 [Cmp1, Prop 2.1] Let τ be the irreducible K∞-type as before of dimen-

sion dτ . then the endomorphism valued convolution algebra isomorphic to scalar valued

bi-K∞-finite, K∞-central function space. The anti-isomorphism is given by the following

map

f 7→ F = dτTr(f). (4.5.1)
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Moreover it satisfies the following relations:

dτTr(f1 ⋆ f2) = dτTr(f2) ⋆ dτTr(f1),

dτχτ ⋆ F = F = F ⋆ dτχτ .

4.5.1 Test functions

The following steps will describe our test functions. We closely follow [LV, Lemma 2,3].

● We choose a function Φ♯
S = Φ♯

∞ΦS′ , where Φ♯
∞ ∈ C∞

c (G(R))K∞
K∞

and ΦS′ ∈ H̄(K ′

S′\G(QS′)/K
′

S′ ),

so that the cuspidality condition holds true, i.e. Φ♯
S satisfies (4.2.1). By the isomorphism

in (4.5.1) we have a function ϕ∞ ∈ C∞
c (G(R), τ, τ) so that dτTrϕ∞ = Φ♯

∞. Let ϕS be the

product of ϕ∞ and ΦS′ ∈ H̄(K ′

S′\G(QS′)/K
′

S′ ).

● Next we choose a family of functions

h∞,t,ζ ∈ C∞
c (G(R), τ, τ) for 0 < t ≤ 1.

From the properties mentioned in the previous section, we can choose an entire Schwartz

function Ĥ∞,ζ(ω, ν) that satisfies Lemma 4.4.1. We form a family h∞,t,ζ for 0 < t ≤ 1, so

that dτTrh∞,t,ζ = H♯
∞,t,ζ . We multiply h∞,t,ζ with 1K′ , and call this function hS,t,ζ .

● Finally, choose a sequence Φ♯
n,S that satisfies the condition of cuspidality. Let Z∞ ∈ C∞

c (h)

be an element in the set of Archimedean multipliers. Then by the Euclidean Paley-Wiener

theorem, Ẑ∞ is bounded on the set {λ∞ ∈ h∗C : Im(λ∞) = 0}. If we choose ΦS so that it

satisfies the condition of cuspidality, then the fourier transform of elements of the Bernstein

center at the non-Archimedean places is bounded on the set of unitary unramified characters.

Suppose the bound is B > 0. Following [LV, pp. 245-246] we construct such a sequence. Let

Pn(ZS) = 1−
(
1− (ZS)

2

B2

)n
.

Let Φ♯
S = ZS ⋆ fS, where ∥π∞(f∞)∥2HS = 1 and fS\∞ = 1K′ . As the multipliers on the

space of bi-K∞−finite compactly supported smooth functions on G(R) and multipliers on

space of locally constant functions on G(QS′) are equipped with convolution, (thought of
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as a multiplication) we can define a sequence Φ♯
n,S = Pn(ZS) ⋆ fS ⋆ f̃S. Pn will satisfy the

following properties

• Pn(0) = 0

• Ind(ωS, νS)(Φ
♯
n,S) = Pn(ẐS)(Ind(ωS, νS)(fS)Ind(ωS, νS)(fS)

∗).

Notice that here multiplication of Fourier transforms are defined as [Ar3, part II,pp.

1.1 ]. Therefore Φ♯
n,S will satisfy (4.2.1).

Let ϕn,S be the endomorphism valued test functions corresponding to Φ♯
n,S as ϕn,S. We apply

the partial trace formula on the family of test functions ϕn,S⋆hS,t,ζ . Write ϕn,S,t,ζ = ϕn,S⋆hS,t,ζ .

We obtain

dτTr((ϕn,S,t,ζ ⋆ ϕ̃n,S,t,ζ)(e))Vol(Ω) + dτ
∑

γ∈Z
∫
Ω
Tr(ϕn,S,t,ζ ⋆ ϕ̃n,t,S)(x

−1γx)

≤ dτ
∑
λ

(eλ ⋆ ϕn,S,t,ζ ⋆ ϕ̃n,S,t,ζ , eν)

= dτ
∑
λ

∑
−νπ∞=λ

m(π)Tr(π(Tr(ϕn,,S,t,ζ ⋆ ϕ̃n,S,t,ζ))). (4.5.2)

4.5.2 Plancherel inversion

We now recall the Plancherel theorem at Archimedean place as in [Ar3, part II, (2.1)]

Φ̃♯
n,∞,t,ζ ⋆ Φ

♯
n,∞,t,ζ(e)Φ̃n,S′ ⋆ Φn,S′(e) =

∑
P∈Cl(G∞) n(P)−1

∑
P∈P

∑
ω∞∈E2(M∞)(

1
2πi

)q∫
ia∗∞

∣∣∣∣∣∣Ind(ω∞, ν∞)(Φ♯
n,∞,t,ζ)

∣∣∣∣∣∣2
HS
µ(ω∞, ν∞)dν∞Φ̃n,S′ ⋆ Φn,S′(e).

We have the following convergences as n→∞

Ind(ωS′)(Φn,S′)→ Ind(ωS′)(1K′), and ∥Ind(ω∞, ν∞)(Φ♯
n,∞)∥ → 1.

Now if we take the limit inside the norm (due to continuity) and inside the Fourier transfor-

mation (due to isometry)[Ar4, p. 4719] the above integrand converges to∣∣∣∣∣∣∣∣Ĥ♯
∞,t,ζ(ω∞, ν∞)

∣∣∣∣∣∣∣∣2 µ(ω∞, ν∞).
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Therefore, we see that integrand corresponding to the minimal parabolic summand in the

Plancherel Formula can be divided into two sets X = {ν ∈ ia∗0,∞ : Pn(ẐS) ≤ ϵ} and its

complement Xc. As we take lim ϵ→ 0, the set X will have measure 0, and on Xc the

integrand will become ∥Ĥ♯
∞,t,ζ(ω∞, ν∞)∥2µ(ω∞, ν∞). From the discussion above, it is clear

that the following estimate will be enough for us to arrive at the main term as lim sup t→ 0.

Lemma 4.5.1 For all n, there exists C1 > 0 such that∣∣∣∣∣∣td
∑

P∈Cl(G∞)

n(P)−1
∑
P∈P

∑
ω∞∈E2(M∞)

(
1

2πi
)q
∫

ia∗∞

∣∣∣∣∣∣∣∣Ĥ♯
∞,t,ζ(ω∞, ν∞)

∣∣∣∣∣∣∣∣2 µ(ω∞, ν∞)dν∞

Φ̃n,S′ ⋆ Φn,S′(e)− d2τα(G∞)

∣∣∣∣∣∣ ≤ C1ϵ.

Proof. We can ignore the terms related to the p−adic Plancherel formula as the tempered

parameters in this case are finite disjoint unions of compact orbifolds, hence those terms will

be automatically bounded. Therefore, we only concentrate on the Archimedean part. We

have∣∣∣∣∣∣td
∑

P∈Cl(G∞)

n(P)−1
∑
P∈P

∑
ω∞∈E2(M∞)

(
1

2πi
)q
∫
ia∗∞

∣∣∣∣∣∣∣∣Ĥ♯
∞,t,ζ(ω∞, ν∞)

∣∣∣∣∣∣∣∣2 µ(ω∞, ν∞)dν∞ − d2τα(G∞)

∣∣∣∣∣∣
=

∣∣∣∣∣∣td × (non-minimal terms) + td
∑

ω∞∈E2(M0,∞)

(
1

2πi
)r
∫
ia∗0,∞

∣∣∣∣∣∣∣∣Ĥ♯
∞,t,ζ(ω∞, ν∞)

∣∣∣∣∣∣∣∣2 µ(ω∞, ν∞)dν∞ − d2τα(G∞)

∣∣∣∣∣∣
The Plancherel density corresponding to the non-minimal parabolic subgroups will have the

following asymptotic estimate. For some integer l < d, we have∫
ia∗P,∞

µ(ω∞, t
−1ν∞)d(t−1ν∞) ∼ t−l as t→ 0.

Therefore, the non-minimal terms will tend to 0 as t → 0. And the approximation for the

other term was dealt with in Lemma 4.4.1.

Therefore, We see from (4.5.2) the main term corresponding to the trivial conjugacy class is

asymptotic to

d2τα(G)Vol(Ω)t
−d as t→ 0.
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4.6 Bounds for the non-trivial classes

To get the estimates for non-trivial conjugacy classes on the geometric side we write the

Fourier inversion formula of Harish-Chandra with respect to Eisenstein integrals. To this

end we use the formula (1.1) in [Ar5, Chap. III Sec. 1]. It gives

H∞,t(x)|(1,1)

=
∑
P
|P|−1∑

P∈P |W (aP )|−1 ∫
ia∗∞

EP (x∞, µP (ν∞)Ĥ∞,P (tν∞), ν∞)(1:1)dν∞,

where P denotes an associated class of parabolic subgroups and the function H∞,t lies in

C∞
c (G(R), τ). Note that C∞

c (G(R), τ) is isomorphic to C∞
c (G(R))K∞ via the relation:

H∞,t(x)|k1,k2 = H∞,t(k1xk2).

We concentrate on the part of the above series and integral corresponding to the minimal

parabolic. We obtain the following inequality for the summand corresponding to minimal

parabolic P0,∞:

∫
ia∗0,∞

|EP0(x∞, µP0(ν∞)Ĥ∞,P0(tν∞), ν∞)|(1:1)|dν∞ (4.6.1)

≤
∫

ia∗0,∞

∫
K∞

|Ĥ∞,P0(tν)(1 : m(kx) : 1)|µP0(ν)|e(ν+ρ)H(kx∞)|dkdν

The right hand side of the above inequality is bounded by∫
ia∗0,∞

(
∥Ĥ∞,P0(tν)∥µP0(ν)

∫
K∞

|e(ν+ρ)H(kx)|dk

)
dν.

Moreover, we have
∫
K∞
|e(ν+ρ)H(kx)|dkdν ≤ C1(1 + ∥ν∥)−1/2 when x /∈ K∞ and lies in a fixed

compact set [LV, Lemma 3]. Now making a change of variable ν∞ → ν∞
t
, using the Paley-

Wiener bound of ∥Ĥ∞,P (ν∞)∥, and using the bound of the Plancherel Measure from (4.1.6),

we obtain the following inequality:∫
ia∗0,∞

|EP (x∞, µP (ν)Ĥ∞,P (tν)(1 : 1), ν)|dν ≤ C2t
−d+1/2. (4.6.2)
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Hence, we have the bound

∣∣H∞,t(x)|(1,1)
∣∣ ≤ C2t

−d+1/2. (4.6.3)

Now we apply (4.6.3) for the Archimedean part of the integrand corresponding to the non-

trivial conjugacy class of γ ∈ Γ in (4.5.2) on the geometric side. Notice that similar to [LV,

(6.3)] we can assume that the support of dτTr(ϕn,S,t,ζ ⋆ ϕ̃n,S,t,ζ) that lies inside K∞ will have

measure zero when projected onto G(R). Moreover,

dτTr(ϕn,∞,t,ζ ⋆ ϕ̃n,∞,t,ζ) = Φ♯
n,∞,t,ζ ⋆ Φ̃

♯
n,∞,t,ζ .

This is a bi-K∞-finite function. Hence we can apply the above discussion. Arguing as in [LV,

pg. 243] for the lower bound of Weyl’s law, we can see that the terms corresponding to a

non-trivial conjugacy class in (4.5.2) is bounded by c|Z|t−d+1/2. Notice that as Γ injects into

GS diagonally, the cardinality of Z is finite. Moreover the L1 norm of Φn,S′1K′ are bounded

by a constant for all n. Therefore it follows from (4.5.2) that∣∣∣∣∣dτTr((ϕ̃n,S,t,ζ ⋆ ϕn,S,t,ζ)(e))Vol(Ω) + dτ
∑
γ∈Z

∫
Ω

Tr(ϕ̃n,S,t,ζ ⋆ ϕn,S,t,ζ)(x
−1γx)

∣∣∣∣∣ <∑
λ

Cϕn,S,t,ζ

or, ∣∣∣dτTr((ϕ̃n,S,t,ζ ⋆ ϕn,S,t,ζ)(e))Vol(Ω)
∣∣∣− c|Z|t−d+1/2 <

∑
λ

Cϕn,S,t,ζ

or, ∣∣∣∣tdΦ̃♯
n,S,t,ζ ⋆ Φ

♯
n,S,t,ζ(e)Vol(Ω)

∣∣∣∣− c|Z|t1/2 < td
∑
λ

Cϕn,S,t,ζ
.

Here, Cϕn,S,t,ζ
= (eλ ⋆ ϕn,S,t,ζ , eλ ⋆ ϕn,S,t,ζ). From (21) and [BM, Lemma 3.3] we have that

∑
λ

(eλ ⋆ ϕn,S,t,ζ , eλ ⋆ ϕn,S,t,ζ) =
∑

Πcusp(G(QS),τ)

m(π)
∣∣∣∣∣∣π(Φ♯

n,S,t,ζ)
∣∣∣∣∣∣2

HS
. (4.6.4)

The multiplicities of π∞ can be written as:

m(π∞) =

′∑
Πcusp(G(QS),τ)

m(π
′
)dimHK

′
S′

π′ , (4.6.5)
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where the sum is over π
′
whose Archimedean component is π∞. If we let n → ∞, we have

that π(Φ♯
n,t,S,ζ)→ dimHK

′
S′

π′ π∞(H♯
∞,t,ζ). Hence rewriting the (25) we get

∑
λ

(eλ ⋆ ϕn,S,t,ζ , eλ ⋆ ϕn,S,t,ζ) =
∑

Πcusp(G(R),τ)

m(π∞)

∣∣∣∣∣
∣∣∣∣∣π∞

(
H♯

∞,t,ζ

)∣∣∣∣∣
∣∣∣∣∣
2

HS

. (4.6.6)

The sum on the right hand side of (4.6.6), could be divided into two parts, ∥λπ∞∥2 ≤ t−2

and ∥λπ∞∥2 ≥ t−2. Here λπ∞ denotes the infinitesimal character of π∞. The representations

π∞ is a subrepresentations of a non-unitary principle series representation with parameters

ω∞ ⊗ ν∞ ⊗ 1. The infinitesimal character of λπ∞ can be written as νω∞ + ν∞, where νω∞

is the infinitesimal character of ω∞ [Kn, Prop. 8.22]. Let dω∞ be the formal degree of ω∞.

We have the following inequality of Hilbert-Schmidt norm in terms of Fourier transform

Ĥ♯
∞,t,ζ(ω∞, ν∞):

∣∣∣∣∣∣∣∣Ĥ♯
∞,t,ζ(ω∞, ν∞)

∣∣∣∣∣∣∣∣2 ≥ dω∞

∣∣∣∣∣
∣∣∣∣∣π∞

(
H♯

∞,t,ζ

)∣∣∣∣∣
∣∣∣∣∣
2

HS

.

Using the choice of the Schwartz function the right hand side of (4.6.6) is bounded by

∑
∥νω∞+ν∞∥≤t−2

dτm(π∞) dim(Hom(Hπ∞(τ), Vτ )) |ψ(tν∞)|2 (4.6.7)

Hence, using our earlier notations, we have

∑
∥νω∞+ν∞∥≤t−2

dτm(π∞) dim(HomK∞(Hπ∞(τ), Vτ )) |ψ(tν∞)|2 ≤ dτN
Γ
cusp(t

−2, τ)

4.7 Main theorem

In this last section we put all our earlier results together to prove our main asymptotic

formula. Suppose ∆τ is the self-adjoint Casimir operator acting on L2
cusp(Γ\GS, τ) with pure

point spectrum 0 < ν0(τ) ≤ ν1(τ) ≤ ν2(τ) ≤ ... → ∞. Let E(νi(τ)) denote the space of

eigenvectors with eigenvalue νi(τ). Define

NΓ
cusp(T

2, τ) =
∑

νi(τ)≤T 2

dimE(νi(τ)).
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Let M be a Riemannian manifold. Suppose C(M) denotes the product of volume of M , the

volume of the Euclidean unit ball in Rdim(M) and (2π)−dim(M). Collecting all the results in

the previous section, we prove the following:

Theorem 4.7.1 Let G be a semisimple, connected, algebraic group over QS. Assume that

G is also split over Q and of adjoint type. Let Γ ⊂ G(Z[S−1]) be a congruence subgroup

with no torsion element. Let X∞ = G∞/K∞ and d = dimRX∞. Let τ be an irreducible

representation of K∞ of dimension dτ . Then there exists a constant C(Γ\X∞) > 0, such

that

NΓ
cusp(T

2, τ) ∼ dτC(Γ\X∞)T d as T →∞.

Proof. We make a change of variable t = 1
T
, and prove the asymptotic as lim supt→0. Let us

apply the partial trace formula in (4.3.1) with ϕ being the test function ϕn,S,t,ζ ⋆ ϕ̃n,S,t,ζ in

Section 4.5. Taking the limit as n→∞ and using (4.5.2) the inequality becomes

Tr((hS,t,ζ ⋆ h̃S,t,ζ)(e))Vol(Ω) +
∑
γ∈Z

∫
Ω

Tr(hS,t,ζ ⋆ h̃S,t,ζ)(x
−1γx) ≤ NΓ

cusp(t
−2, τ). (4.7.1)

Now from Section 4.4 and Lemma 4.4.1 we can conclude that the term corresponding to the

identity class will be asymptotic to dτα(G)t
−dVol(Γ\GS) as lim supt→0 and as limn→∞. And

from (4.6.3) we can show that as we take lim supt→0 the terms corresponding to non-identity

classes will converge to 0. This is done exactly as in the proof of the lower bound in Weyl’s

law [LV, page 243].

There exist Γ∞,i, for finitely many i, such that

Γ\GS/KS =
⋃
i

Γ∞,i\G(R)/K∞.

For each i, let NΓ
i (T, τ) be the eigenvalue counting function for the space Γ∞,i\G(R)/K∞.

That this same asymptotic term along with the constant C(Γ∞,i\X∞) is an upper bound for

the right hand side has been proved in greater generality by Donnelly [Do]. To prove

α(G)Vol(Γ\GS) =
∑
i

C(Γ∞,i\X∞),
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we argue as in [LV, Sec. 6.3]. Therefore it establishes the asymptotic formula in the statement

of the theorem.
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