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Abstract: The first paper discusses developing a predictive model of SCA intrusion 

trajectories for Oklahoma sorghum producers. The SCA survival rates and 

migration distribution are generated using the temperature, precipitation, wind 

direction, and wind speed. A clustering algorithm was used to generate groups of 

low and high infestation probabilities, and the fields that could be infected. Each 

day's initial and movement probability depends entirely on the wind direction 

recorded on that day. However, as time passes, the importance of wind direction 

diminishes. The probability distributions have advantages in terms of data 

availability and cost, unlike multispectral and visual reporting. The SCA survival 

rates and migration distribution could provide a framework for future research 

regarding SCA survivability and migration modeling. 

 

The second paper measures the effects of weather, geographic, and biological 

characteristics of SCA on the infestation of sorghum fields in Oklahoma. 

Infestation likelihood curves were used to measure the single effect of each 

covariate. Infestation likelihood curves suggest there is a difference in the 

infestation probability between the high- and low-density wing/un-winged SCA 

groups. The larger the ratio of winged to un-winged SCA, the more likely their 

movement to other sorghum fields. The PHM results reaffirmed that weather is an 

important factor in determining infestation hazard. Field location and the distance 

between sampled fields was not a significant factor. The total population of SCA 

per plant in the most recently infested field was negatively correlated with 

infestation hazard. The infestation curve and PHM results provide field-level 

information about more detailed infestation hazard. These aids may improve 

field-level decision-making for pest control planning, such as coordination of 

pesticide use and harvest timing. 
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CHAPTER I  
 

SUGARCANE APHID MOVEMENT MODEL FOR OKLAHOMA  

Introduction 

Sugarcane aphid (SCA), Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae), is an 

economic pest found throughout Asia, Africa, Australia and South America with 

sorghum, sweet sorghum, some millet varieties, and Johnsongrass as its main hosts 

(Singh et al., 2004). SCA was introduced in the 1970s into the United States (US), but at 

the time it was considered only a pest of sugar cane. However, SCA infestations continue 

to this day, as evidenced by the economic damage to sorghum by SCA in 2013 (Nibouche 

et al., 2018). 

The largest producers of sorghum in the US are Kansas (5,923,280 metric tons) 

and Texas (1,577,340 metric tons) (Oklahoma is 304,800 metric tons) (USDA NASS, 

2020). SCA was first observed in the Texas Gulf Coast and Louisiana in 2013 (Knutson 

et al., 2016a). SCA was found in Louisiana, Oklahoma, and Mississippi in late 2013, and 

in more than 400 counties in 17 states in 2015, accounting for 97% of U.S. sorghum 

cropland (7,405,000 acres) and affecting 98% of production (14,230,426 metric tons) 

(Bowling et al., 2015).  

A recent SCA study focused on the economic damage of SCA in Kansas and 

Texas. Zapata et al. (2018) measured the change in profit due to increased pest 
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monitoring and control costs caused by SCA infestation of sorghum in the Rio Grande 

Valley (RGV), Texas, 2014 and 2015. Between 2014 and 2015, average losses due to 

SCA infestation was $64.54 per acre, and losses in revenue were $49.56 per acre. 

Specifically, in the RGV region in 2014, there were losses of labor income ($27.08 

million), losses in value added to the economy ($31.7 million), losses of production 

($38.78 million), and a loss of 103 jobs. 

Information on the location and range of SCA migration pathways is crucial for 

sorghum producers in their effort to manage SCA. Multispectral imagery (MI) and 

infestation maps over time provide information on pest infestation severity and the route 

of sugarcane aphid reported ‘on-the-ground’ by producers (Texas A&M AgriLife 

Extension, 2020). However, with MI it is difficult to detect the hourly or even daily 

movement of SCA. On-the-ground tracking by producers facilitates confirmation of SCA 

infestation through visual inspection. Integrating MI with ground reconnaissance is 

effective for documenting the location and intensity of SCA infestation, but forecasting 

where SCA move next remains a difficult task. Spatial gaps in SCA infestation also 

contribute to the challenge of predicting where SCA infestation will go and whether 

producers are able to document visually infestation events. 

Predicted SCA migration paths may provide an early warning system for sorghum 

producers. Information from accurate forecasts could help minimize the economic loss 

incurred due to subsequent SCA infestations. Related detection systems focus on the 

mountain pine beetle (Dendroctonus ponderosae). Wulder et al. (2006) estimated the 

attack probability of the mountain pine beetle in Western Montana. Their study found 

that infestation was dependent on terrain and weather data, but the model did not consider 
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the pests’ travel routes or other pertinent information. Periodic information, such as SCA 

infestation status and weather forecasts, would enhance SCA infestation models because 

these variables are important for predicting field infestation status and trajectory. 

The purpose of this study is to develop a SCA movement model for Oklahoma 

sorghum producers using the State’s Mesonet weather information system (Mesonet, 

2020). Previous studies tracking the movement of pests using weather data and 

organismic traits are numerous (Acreman & Dixon, 1989; Angilletta, Jr., & Dunham, 

2003; Angilletta, 2004; Asin & Pons, 2001; Auad et al., 2009; Bale et al., 2002; Boate & 

Otayor, 2020; Chen et al., 2019; Huberty & Denno, 2004; Kobori & Amano, 2003; 

Michael, 2019; Souza & Davis, 2020). Other studies tracked insect movement and 

distance as a function of wind speed and direction (Mann et al., 1995; Rodríguez-del-

Bosque et al., 2020; Shao et al., 2020). It is reasonable to assume that the spread of SCA, 

like the other small insects analyzed in these previous studies, is strongly dependent on 

weather. 

In 2018, there were 17 reports of SCA over 71 days in Oklahoma, suggesting that 

SCA populations are likely to remain in infested fields after migration from other fields 

(June 15 through August 25, 14 counties). Prediction of SCA movement using only 

weather data is possible, but the accuracy of predicted paths diminishes as time after 

sighting passes because previous periods cannot be used. Estimating the predicted paths 

of SCA could help producers develop management plans, but a more important issue for 

producers is determining if, or when, a field will be infested. SCA do not recognize 

county borders. The closer fields are to each other, the greater the influence of the 

weather on aphid movement between locations. This means that the field level, rather 
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than the county level, is the most desirable observational unit if that data is available. In 

addition, long-term patterns of temperature and precipitation, which are major 

components of weather, determine the weather of a region (Kukal & Irmak, 2016). That 

is, in neighboring regions, weather variables have similar values and exhibit similar 

temporal patterns. In addition, because SCA is an organism, the survival and migration of 

populations are affected by real-time and historical weather variables. This means that 1) 

the temporal patterns of weather variables should be considered in an analysis of SCA 

transmission, and 2) time-accumulated paths of migration routes are required for accurate 

forecasting. 

This chapter formulates a probability distribution model for weather variables that 

affect SCA survival and migration direction. No previous literature links weather 

variables, including precipitation, wind direction, and temperature, to SCA migration. 

Thus, while the migration probabilities generated with this model are theoretical and 

based on relationships reported in current literature, the assumption that any migration of 

SCA is solely driven by these variables is reasonable. Migration probability distributions 

are used to forecast the movement of SCA from one to many fields on a daily time step. 

The types of migration probability distributions available to conduct this analysis are 

limited by the lack of previous research pertaining to SCA survivability and movement as 

a function of weather variables. Yet, the distributions formulated here retain the usual 

properties of probabilities. The probabilities are positive, sum to one, and are bound 

between zero and one. The migration probabilities generated by linking the biological 

properties of SCA to weather variables can assist sorghum producers in the formulation 

or modification of production and pest management plans. In addition, easier access to 
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weather information from public resources such as Oklahoma’s MESONET is a cost-

effective alternative to multispectral imaging.  

Data 

The data are daily Mesonet observations of the average air temperature (TAVG), rainfall 

(RAIN), average wind speed (WSPD), and primary wind direction (PDIR) observed in 

Oklahoma from 15 to 25 June 2013 to 2020. Weather variables after June 15 in 2018, 

when SCA was first reported in Oklahoma, showed similar trends for nearby counties 

(Figures 19-21 in Appendix for the distribution of each weather variable by date). 

TAVG is the average of all 5-minute-averaged temperature observations each day 

(degrees Fahrenheit). RAIN is liquid precipitation measured each day (inches). WSPD is 

the average of all 5-minute wind speed observations each day (miles per hour), PDIR is 

most common wind direction for a day and it is based on 16-point compass heading with 

a 16-point cardinal direction (Mesonet, 2020). These variables were obtained from 

Mesonet (2020)’s daily records and USDA NASS (2020). Data was collected from 

weather stations located in each of Oklahoma’s 77 counties. Some counties have more 

than one weather station. In total, there are 119 active weather stations across Oklahoma 

(Table 1).  

<< Table 1>> 

Oklahoma’s sorghum production is concentrated in the northwest region of the 

state (Figure 1, see Figure 17 in the Appendix for location and size of each field). 

Observational data for SCA is available for Kansas, Oklahoma, and Texas (EDDMapS, 

2020). Collection of these data began in 2013. The data include the date and county 

where SCA infestations were documented on fields by observers (EDDMapS, 2020).  
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<<Figure 1>> 

SCA can live for up to one month, but typically have a 10-day lifespan (Knutson 

et al., 2016b). Therefore, the weather for 10 days after SCA were observed on a field 

most likely influences their survival and movement. Table 2 summarizes the statistics of 

the counties where sugarcane aphid were reported in 2018, along with average of weather 

variables for 10 days from the reporting date. In Grady, Washita, and Noble County, 

there are multiple weather stations, and so observations on the weather variables were 

averaged over their respective number of weather stations. Weather stations without 

observations are excluded.  

<< Table 2>> 

Methods and Procedures 

Daily observations of weather variables are used to generate SCA movement probability 

distributions for each field included in the sample. Figure 2 summarizes the steps used to 

derive the probabilities. First, each probability distribution is created using the weather 

variables. At this time, the parameters for each probability distribution are determined 

using information obtained from studies on the ecological characteristics of SCA 

(reduction of the SCA population according to temperature and precipitation (Bale et al., 

2002; Chen et al., 2019; Huberty & Denno, 2004; Souza & Davis, 2020), mobility 

according to wind direction, and movement distance due to wind speed (Mann et al., 

1995; Rodríguez-del-Bosque et al., 2020; Shao et al., 2020)). Daily movement 

probabilities of SCA are calculated by combining the probability distributions associated 

with each weather variable. After that, a cumulative probability of daily movement over 

time is calculated. Spatial clustering procedures are used to group probabilities most 
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similar to each other across fields. Lastly, the field group to which the SCA will most 

likely move to is classified using the migration probabilities (Figure 2).  

<< Figure 2>> 

Parametric Probability Distributions for Weather Variables 

A parametric probability distribution for each weather variable is developed to 

predict the SCA movement as a function of weather variables. Rainfall and temperature 

variables are related to the survival rate of SCA. Wind direction and wind speed are 

related to the probability of SCA movement. That is, rainfall and temperature affect SCA 

populations in a given field, which in turn affects the probability that the SCA will move 

to another sorghum field. On the other hand, wind direction and speed determine the 

movement direction and distance of the SCA. 

Probability Distribution for SCA Survival Based on Precipitation 

Precipitation affects the survival rate of SCA (RAIN, measured each day in 

inches). There are several studies on precipitation and its relationship with the survival 

and behavior of animals (Chen et al., 2019; Huberty & Denno, 2004; Kobori & Amano, 

2003; Ukoroije & Abalis, 2020). SCA is a small insect, and precipitation greatly 

influences SCA survival rates and movement. As the precipitation increases, the number 

of SCA will decrease. Using this information, the distribution of precipitation to proxy 

SCA survivability is 

(1)  𝑃𝑟𝑎𝑖𝑛 = exp(−𝛽 ∙ 𝑅𝐴𝐼𝑁) 

where 𝑃𝑟𝑎𝑖𝑛 is the probability of survival as a function of rainfall and 𝛽 is positive 

parameter. When rainfall is zero, the SCA survival rate is 100 percent. As rainfall 

increases, the survival rate decreases exponentially. As the size of the parameter 𝛽 
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increases, the survival rate of SCA increases (left, Figure 3). There is no experimental 

data on a reasonable value for 𝛽, which ostensibly links SCA survival to rainfall. Future 

research would need to relate Eq. 1 to empirical data on SCA survival and precipitation. 

As applied here, 𝛽 was chosen such that the resulting distribution corresponded with the 

observed average rainfall for sorghum producing areas. Increasing 𝛽 reflects drier 

conditions, while decreasing it corresponds with wetter growing conditions.  

<< Figure 3>> 

SCA Survival Probabilities and Temperature 

The distribution of SCA survival rates as a function of temperature is generated 

using TAVG (average of all 5-minute averaged temperature each day, degrees 

Fahrenheit). There are several studies on the reproduction, survival, and behavior of 

organisms related to temperature, with each organism exhibiting unique responses to 

temperature and depending on the its biological characteristics and habits (Acreman & 

Dixon, 1989; Angilletta & Dunham, 2003; Angilletta, 2004; Asin & Pons, 2001; Auad et 

al., 2009; Bale et al., 2002; Boate & Otayor, 2020; Michael, 2019; Souza & Davis, 2020). 

A common finding of these studies is that temperature directly affects the organism’s life. 

However, there are no immediate studies on the correlation between temperature and the 

probability of SCA survival, although studies on the effects of low temperatures on SCA 

mortality exist.  

Souza et el. (2019) derived the longevity and fecundity of SCA over the 5 to 35°C 

temperature range. Longevity was highest at 15°C, and fecundity was highest at 25°C. In 

other words, in the range of 15 to 25°C, SCA exhibit the highest survival rate and 

fertility. On the other hand, outside of the range of 15 to 25°C, longevity and fecundity 
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decrease. Based on this information, the survival probability distribution has the form of 

a quadratic function with respect to temperature. For this analysis, the distribution with 

the greatest survival rate in the range of 15 to 25°C is: 

(2)  𝑃𝑇𝐴𝑉𝐺 = 𝜅 ∙ 𝑇𝐴𝑉𝐺 + 𝜆 ∙ 𝑇𝐴𝑉𝐺2 

where 𝑃𝑡𝑒𝑚𝑝 is probability of survival as a function of temperature, 𝑇𝐴𝑉𝐺 is the average 

of all daily temperature observations recorded at 5-minute intervals, and 𝜅, 𝜆 are 

parameters (𝜅 > 0, 𝜆 < 0). The parameter value with the largest survival rate in the range 

of 15 to 25°C was set to 𝜅 = 0.1, 𝜆 = -0.0026 (right, Figure 3). The values for these 

parameters were selected based on findings from Souza & Davis (2020) and Ukoroije & 

Abalis (2020). The parameters were also chosen such that the median value of the 15 to 

25°C range corresponded with the highest probability mass, which is 1 at 20°C.  

SCA Movement Probabilities and Wind Speed 

Several studies analyzed the effects of wind speed on insect movement (Mann et 

al., 1995; Rodríguez-del-Bosque et al., 2020; Shao et al., 2020). These studies find that 

wind speed directly affects smaller organisms such as SCA and distance traveled. The 

greater the wind speed, the higher the probability that SCA migrate over longer distances. 

However, considering that SCA travel 5 hours per day on average the moving distance 

probability is maximum at time of five hours. A probability distribution reflecting this 

relationship is:  

(3)  𝑃𝑊𝑆𝑃𝐷 = 1 −
|𝑤∙(𝑡−5)|

5𝑤
 

where 𝑃𝑊𝑆𝑃𝐷 is probability of movement according to 𝑊𝑆𝑃𝐷, 𝑊𝑆𝑃𝐷 is average of all 5-

minute wind speed observations each day (miles per hours), 𝑤 is wind speed (miles per 

hours), and 𝑡 is the time SCA travel per day. The movement probabilities as a function of 
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WSPD appear in Figure 3 (center panel). Equation (3) predicts that SCA most likely 

travel 5 hours per day according to the wind speed, and the probability decreases as flight 

deviates from the expected 5 hours flights. The distance between the initial field infected 

and other inter-field distances were calculated using the Haversine formula1. 

SCA Movement Probabilities and Wind Direction 

There are no previous studies documenting the correlation between wind direction 

and SCA movement, but studies conclude that wind affects SCA travel distance (Mann et 

al., 1995; Rodríguez-del-Bosque et al., 2020; Shao et al., 2020). The assumption that 

wind direction is an important factor in determining the direction of SCA movement can 

be justified. When the wind direction and a certain field at an initial location are situated 

at the same angle, the migration probability approaches 1. The triangular distribution 

depicts this relationship. In this study, the angular range of ±11.25 of the corresponding 

primary wind direction was used. That is, the range of ±11.25 left and right is set as the 

angle corresponding to the direction of a 16-point cardinal direction. For example, in the 

16-point cardinal direction, a value of ‘8’ means that the wind direction is north and the 

corresponding angle is 90 degrees with respect to the west direction (0 degrees). In the 

16-point cardinal direction, the angle between one value and its neighbor is 22.5 degrees 

(for example, the angle difference between values 8 and 7 is 22.5). If the value of the 16-

 
1 For distance calculations consisting of latitude and longitude, Euclidean distance calculations are not 

suitable for calculating the distance of a globe with a spherical shape, so a great-circle distance should be 

used for the distance between two points on the earth’s plane. The Haversine formula is better controlled 

numerically for small distances. Using the latitude and longitude in the two coordinates, the equation is 

shown below. 𝑑ℎ = 2𝑟 arcsin (√sin2 (
𝜃2−𝜃1

2
) + cos(𝜃1) cos(𝜃2) sin2 (

𝛿2−𝛿1

2
)), where 𝑟 is the radius of 

the sphere, 𝜃2, 𝜃1 are latitude points in radians, 𝛿2, 𝛿1 are longitude points in radians. 
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point cardinal direction is ‘8’, then the range used for the probability distribution is 90 ± 

11.25 (78.75-101.25 degrees). The probability distribution depicting this relationship is: 

(4)  𝑃𝑃𝐷𝐼𝑅 = 1 −  ((|𝑑𝑖| ∗ 𝜎 )/11.25)  

where 𝑃𝑃𝐷𝐼𝑅 is the probability of SCA movement according to the primary wind 

direction, 𝑃𝐷𝐼𝑅 is most common wind direction recorded for a day, σ is a parameter (σ > 

0), and d is the difference between the PDIR angle and the angle between the initial 

location and the sorghum field. As σ increases (perhaps due to higher winds speeds), so 

too does potential travel distance. For example, if the PDIR value is ‘8’, the angle is 90 

degrees. As another example, if the angle between the centroid of Kiowa County and one 

sorghum field is 45 degrees (northeast), 𝑑 = 45.  

Cumulative Probability Function for Predicting Movement of SCA 

A probability function for predicting the path of SCA as a function of the weather 

variables is constructed by combining the weather variable probabilities assuming 

independent probabilities. Under the assumption of independence, the product of the 

probabilities is the joint probability for predicting SCA movement and survivorship. In 

this case, the survival rate, movement direction are all-important factors for the 

movement of the SCA. The probability function of each field is: 

(5)  𝑃𝑡
𝑖𝑗

(x; θ) = 𝑃𝑡,𝑟𝑎𝑖𝑛
𝑖𝑗

∙ 𝑃𝑡,𝑡𝑒𝑚𝑝
𝑖𝑗

∙ 𝑃𝑡,𝑃𝐷𝐼𝑅
𝑖𝑗

∙ 𝑃𝑡,𝑊𝑆𝑃𝐷
𝑖𝑗

 

where 𝑃𝑡
𝑖𝑗

 is the probability of moving from initial location 𝑖 to 𝑗 sorghum field in 

Oklahoma at date 𝑡; 𝐱 is a vector of rainfall, average air temperature for each county, 

primary wind direction observations, wind speed; 𝛉 is a parameter vector; 𝑃𝑡,𝑟𝑎𝑖𝑛
𝑖𝑗

is the 

probability of SCA survival based on rainfall data distribution in initial location to 𝑗 field 
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at date 𝑡; 𝑃𝑡,𝑡𝑒𝑚𝑝
𝑖𝑗

 is the probability of SCA movement based on air temperature from an 

initial location to 𝑗 field at date 𝑡; 𝑃𝑡,𝑃𝐷𝐼𝑅
𝑖𝑗

 is the probability of SCA movement based on 

the primary wind direction from an initial location to 𝑗 field at date 𝑡; and 𝑃𝑡,𝑊𝑆𝑃𝐷
𝑖𝑗

 is the 

SCA movement probability using the wind speed at an initial location to 𝑗 field at date 𝑡.  

The above function determines the probability of SCA moving from an initial 

location to another field, given prevailing weather data. The cumulative probabilities for 

any date are found by calculating the probability distributions of Equation (5) as the 

average over the 𝑛 days of recorded observations:  

(6)   𝑃𝑡,𝑛
𝑖𝑗

(x; θ) =
1

𝑛𝑡
∑ (𝑃𝑡,𝑟𝑎𝑖𝑛

𝑖𝑗
∙ 𝑃𝑡,𝑡𝑒𝑚𝑝

𝑖𝑗
∙ 𝑃𝑡,𝑃𝐷𝐼𝑅

𝑖𝑗
∙ 𝑃𝑡,𝑊𝑆𝑃𝐷

𝑖𝑗
)𝑡+𝑛

𝑡  

where 𝑃𝑡,𝑛
𝑖𝑗

 is the cumulative probability of moving from initial location 𝑖 to 𝑗 sorghum 

field in Oklahoma at date 𝑡, 𝑛𝑡 is the number of days for record period 𝑡. The information 

on the field where SCA was reported is unknown, but the predicted movement 

probability was estimated by setting the centroid of Kiowa County, Oklahoma as the 

initial location. The reason is that in 2018, the first county reporting SCA was Kiowa 

County on June 15. The exact location was not given so the center of Kiowa County is set 

as the initial location. The centroid of Kiowa County and the angle and distance between 

each field were used to estimate the movement probability of the wind direction (PDIR) 

and wind speed (WSPD). For temperature (TAVG) and precipitation (RAIN), weather 

information enumerated by date for the county to which each field belongs was used.  

Movement Probability Clusters 

The probabilities derived in Equation (6) are the likelihood of SCA moving from 

an initial location (e.g., the center of Kiowa County) to each field. Although the field-unit 
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movement probability provides producers with likelihoods that SCA will migrate to their 

field, it is difficult to ascertain movement to an area or group of sorghum fields 

throughout Oklahoma. On the other hand, the EDDMapS (2020) infection map only 

indicates if there was an infection at the county level. The EDDMapS information 

facilitates understanding of SCA movement trends at the county level, but it does not 

provide field-level information on infection or probabilities. 

Clusters based on field-level movement probabilities provide a more detailed, 

most-likely infection route by generating movement probabilities for every field. Spatial 

clusters for SCA infestation – i.e., clusters with a relatively high probability of migrating 

sugarcane aphid – are generated for fields using the SCA migration probabilities. 

One method widely used to analyze spatial clusters is K-means clustering. This 

procedure classifies clusters according to the average value of the center of the cluster 

with the closest movement probability value of each field  (Zhang et al., 2008). This 

property applies more to clusters where the radii and density of observations are 

relatively equal. This makes it difficult to apply the K-means clustering because 

Oklahoma’s sorghum producing area is concentrated in the west and the predicted 

probabilities of SCA movement depend mainly on wind direction, which is a random 

variable. The classification of clusters can also be skewed by outliers and an 

unnecessarily large number of clusters. Unlike the K-means cluster procedure, density-

based clustering procedures construct a relatively non-restrictive cluster by relaxing the 

assumption of the number of predetermined clusters (Campello et al., 2013). This study 

constructs clusters for movement probabilities to sorghum fields using density-based 

clustering methods. 
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Results 

Probability Function Predicting SCA Movement  

In 2018, the first SCA reported county in Oklahoma was Kiowa County on June 15. 

Predicted probabilities of sugarcane aphid migration from Kiowa County to other 

sorghum fields are calculated for the period between June 15 to 25, 2013 to 2020. The 

probability of SCA movement, and the location of the field where SCA were observed on 

June 15 in 2018, is shown in Figure 4. The green dot in the figure is the center of Kiowa 

County, and the field with the highest probability of SCA movement is 0.367 (red point 

in Figure 4). Predicted SCA movement is toward Woodward County on June 15. This 

means that, in Kiowa County on June 15, the field with the highest probability of SCA 

moving to it is located in Woodward County. 

<< Figure 4>> 

Equation (6) was used to determine probability distribution of SCA movement 

starting from Kiowa County’s centroid. The probability, on June 15, is the same as that 

reported in Figure 4. In the case of June 16, there was some likelihood that SCA would 

move in a different direction after June 15 (PDIR 7; 11.5 degrees; north-northwest) 

according to Kiowa County’s PDIR. On June 16, fields in Ellis County had the highest 

probability associated with SCA infestation from Kiowa County (0.493 and 0.246, 

respectively). For the information using only the 25-day weather variables, fields located 

in Grady County had the highest probability of SCA infestation, with a probability of 

0.05. On the other hand, the field with the highest probability of SCA moving elsewhere 

using the weather variable of 15 to 25 days (11days) is 0.254, which is located in Ellis 

County (red point in Figure 5). 
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<< Figure 5>> 

From 15 to 25 June 2018, Kiowa County’s PDIR value of 5 out of 11 days was 7 

(11.5 degrees; north-northwest), meaning that the probability increased for the 

corresponding wind direction. This result suggests that the movement probability using a 

single date provides a short-term prediction for SCA movement. Since this probability 

includes the movement probabilities from previous periods, it also provides producers 

with an expected movement direction for SCA.  

Equation 6 applies the same process from 2013 to 2020 to derive the movement 

probability by year. This field is used to construct the SCA movement probability cluster 

by year. Statistics of weather variables used by year are in the appendix (Table 4 in 

appendix). Counties with fields most likely to have SCA move from them on June 25, 

2010 to 2020 were Woodward, Woodward, Custer, Beckham, Woodward, Blaine, Custer, 

Woodward, Ellis, Custer, and Ellis counties. These counties are located in the northern 

part of Kiowa County. This finding is consistent with the observed record of SCA 

movement to the north.  

SCA Movement Probability Clusters 

The density-based clustering analysis generated 12 probability clusters. The 

number of fields belonging to a cluster for each year is as follows. The closer the color is 

to red, the higher the cumulative probability of predicted movement to that location 

(Figure 6-13). The number in the figure is the average predicted cumulative probability of 

movement for each cluster, and the number in parentheses is the cluster number. Except 

for 2018, the number of clusters is 2 to 5, and the number of counties to which fields 

belong to cluster is 5 to 23. In most years, clusters located near Kiowa County had the 
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highest SCA migration probability. This suggests that SCA movement is limited over 

some distance, even though wind speed affects movement. On the other hand, the 

frequency of the wind direction during the period used to calculate the movement 

probability influences the movement direction of SCA.  

<< Figures 6-13>> 

Counties where actual SCA infestations were reported are compared with fields in 

counties with relatively high forecast probabilities (95th percentiles of the probability 

distributions). This comparison is one way to gauge the accuracy of the movement 

probabilities because the level of analysis is different and the historical SCA reporting 

field cannot be accurately identified. 

SCA reports obtained from EDDMapS (https://www.eddmaps.org/) were used for 

the comparison (Table 3). Since 2014 was the first year SCA was reported to counties, 

county-level SCA reporting was used for 2014-2019. The SCA reporting counties were 

compared to the counties in which the clustered fields belonged. For each year, SCA 

infestation activity was reported in four out of 10 counties (17 actual reporting counties) 

in 2014. In 2015, there were reports in nine out of 22 counties (19 actual reporting 

counties). In 2016, SCA was reported in three of the 12 counties (17 actual reporting 

counties). In 2017, five out of 12 predicted counties (16 actual reporting counties), one 

out of 3 predicted counties (32 actual reporting counties) in 2018, and 21 predicted 

counties (actual reporting counties) in 2019 SCA was reported in 8 out of 10 counties. 

These results have limited usefulness for evaluating the accuracy of the SCA 

movement probability model. First, the unit of analysis used to calculate the probability is 

a sorghum field, not the county. On the other hand, the regional unit for which SCA is 



 

17 

reported is the county. Also, as the value of the percentile (K) used for clustering 

decreases, accuracy increases, but this increase is an artifact due to the simple increase in 

the number of prediction counties. Second, since SCA reports for a sorghum field are 

made with the naked eye, some reports may never be entered even if there was an SCA 

infestation. In addition, in most cases, SCA-reporting counties are not adjacent, so it is 

difficult to identify clearly the route of SCA movement. There is also the possibility of 

SCA inflows from Texas and Kansas to Oklahoma. This, along with the relatively limited 

distance SCA can travel, makes it difficult to determine clearly the accuracy of the 

procedure. 

Empirical SCA Movement Probabilities Clusters 

For the practical application of the moving probability model, data selected from 

sampled sorghum fields in Oklahoma, 2017 to 2019, is used. These data include the field 

location, the date of investigation, and the SCA population per plant. If the population of 

SCA per plant per day is positive, the sorghum field is considered infected. In a 

probability model using weather variables, the cumulative probability of other fields is 

derived for the field where the first infection was reported for each year. 

In 2017, there were 28 fields in which sugarcane aphid infection was investigated 

(out of 276 fields). The date when sugarcane aphid was first reported in Oklahoma in 

2017 was May 31, and an infection report occurred in a sorghum field in Caddo County. 

The last reported infection in Oklahoma in 2017 was October 16, in fields in Beaver, 

Texas, and Cimarron counties (Appendix Figure 22). Counties with reported SCA 

infections in 2017 were Beaver, Caddo, Canadian, Cimarron, Garfield, Grant, Harper, 

Jackson, Kay, Kiowa, Noble, Payne, Texas, Tillman, and Woodward counties. During the 
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11 days from May 31 to June 10, the counties where infections were reported were 

sorghum fields in Kiowa and Caddo counties (the yellow area in Figure 14). The 

cumulative probability for the sorghum field sampled from the field belonging to Kiowa 

County where the infection occurred on May 31 was calculated. Figures 14-16 show the 

infestation probabilities for each field using the cumulative probability model, covering 

May 31 to June 10. The cumulative probability is for June 5, and the probability of 

moving to the field belonging to Jackson County by June 11 is the highest (red square in 

Figure 14). On June 9th and 10th, fields in Beaver County also registered movement 

probabilities (blue dots). In 2018, 25 fields were investigated for infection, and there were 

151 investigations. The first date of investigation was May 30, and the date and location 

of the first reported infection was a field belonging to Kiowa County on June 13. 

Counties with reported infections in 2018 were Caddo, Cimarron, Garfield, Grant, 

Jackson, Kay, Kiowa, Noble, Texas, and Tillman counties. Kiowa County is the only 

county in which field reported infections from June 13 to 23. Figure 15 shows the 

cumulative movement probability over 11 days. Fields belonging to Caddo County have 

the migration highest probability (red square) for all days in the analysis period. It also 

appears that other sorghum fields belonging to Kiowa County also have a movement 

probability. In 2019, there were 29 fields where infection was investigated, and a total of 

170 infections were investigated. The date of the first investigation is June 24 and the 

date of the first report of infection is July 3, a field that will belong to the county of 

Jackson, Greer.  

For fields sampled in 2019, counties with reported infections were Beaver, Caddo, 

Cimarron, Garfield, Grady, Grant, Jackson, Kay, Major, Noble, Texas, and Tillman 
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counties. During the July 3 to 13 period, the counties in the field where infections were 

reported were Jackson, Greer, and Caddo counties. Figure 16 shows the cumulative 

movement probabilities for 11 days after July 3rd. From July 3 to 7, the field belonging to 

Jackson County had the highest movement probability, but from July 8 to 13, the field 

belonging to Greer County had the highest probability (red square).  

Conclusions 

The purpose of this study was to develop a predictive model of SCA infestation 

trajectories for Oklahoma sorghum producers. In view of this, it may be possible to 

develop an early warning information system of SCA movement for sorghum producers. 

Most studies on SCA focus on economic damages, which are measured with 

multispectral imagery. The movement and location of SCA affects the production and 

harvesting of sorghum. This is because multispectral images provided by various 

institutions can identify large areas, but there remains the problem of whether there is an 

infestation occurring at a specific point in time and the accuracy (both spatially and 

temporally) of reports. Infestation maps can confirm the presence of SCA based on visual 

reporting, but a disadvantage of this method is that the primary unit is a county and 

detailed movement routes between fields is largely unknown. In addition, it is not 

possible to predict the location of potential damage because time sensitive information is 

generally unavailable, which complicates forecasting where SCA may relocate. 

Sugarcane aphids are small organisms whose survival and migration are largely 

determined by weather. Although there are no studies directly analyzing the relationship 

between sugarcane aphid and the weather, studies that the survival rate and migration of 

insects are determined by precipitation, temperature, and wind assume that sugarcane 
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aphid migration and survival are also determined by the weather. In addition, using 

weather information in predicting the migration path of sugarcane aphid has advantages 

in terms of data availability and cost, unlike multispectral and visual reporting. Under this 

assumption, a distribution of SCA survival rates and migration was generated using the 

temperature, precipitation, wind direction, and wind speed. Movement probabilities were 

generated for June 15 to June 25, for 2013 to 2020. The starting dates correspond with the 

first sightings of SCA in Oklahoma. The initial and movement probability of each day 

depends entirely on the wind direction recorded on that day. However, as time passes, the 

importance of wind direction diminishes.  

The calculated movement probabilities were used to forecast SCA movement 

from an initial sorghum field to others between June 15 to June 25 for each year 

analyzed. A clustering algorithm was used to generate groups of low and high infestation 

probabilities, and the fields that could be infected. Based on actual sugarcane aphid 

infection counties, since 2016, the accuracy is 0.18 (3 out of 17), 0.31 (5 out of 16), 0.08 

(1 out of 12), and 0.89 (8 out of 9).  

The intention of the exercise was to develop a method whereby an early system 

predicting SCA infestation could be developed for sorghum producers. An ideal system 

would inform the development of preventative measures to mitigate the effects of SCA 

damage on crops. In addition, prediction of movement routes using weather variables 

may be an alternative to the high cost of using existing multispectral images. The present 

analysis could provide a framework for future research regarding SCA survivability and 

migration modeling. The probability distributions used here were ad hoc in that they were 

an inelegant solution to address a difficult problem of data unavailability. More 
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structured experiments on the effects of the variables considered here and their 

relationship to SCA infestation on sorghum fields would provide better information on 

the types of distributions suitable for reflecting these relationships, in addition to the 

parameters governing the shape and scale of the distributions capturing the biological 

response of SCA to weather.  
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Table 1-1. Summary Statistics for Weather in Oklahoma, 2018 

Variable 

TAVG 

(°F) 

PDIR 

(16-point) 

WSPD 

(miles/hours) 

RAIN 

(inches) 

Mean 78.75 7.41 9.34 0.26 

Standard Deviation 4.45 2.72 3.8 0.55 

Min 66.25 1 2.47 0 

Max 89.38 15 21.72 4.74 

Note: TAVG is average of all 5-minute averaged temperature observations, PDIR is most 

common wind direction for the day, WSPD is average of all 5-minute wind speed, RAIN 

is liquid precipitation measured each day, sorghum area is sorghum area (acre) by county 

in Oklahoma 

Source: Mesonet (https://www.mesonet.org), USDA NASS (https://www.nass.usda.gov/) 
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Table 1-2. Counties Observed in Oklahoma SCA in 2018 and Average Weather for 

10 Days after Observation 

Report Date Station 

ID 
County 

TAVG 

(°F) 

RAIN 

(inches) 

WSPD  

(miles/hours) 

PDIR 

(16-point) (M/D/Y) 

6/15/2018 HOBA Kiowa 81.1 0.5 14.9 7.7 

6/20/2018 APAC Caddo 80.5 0.7 12 7.8 

6/21/2018 ACME Grady 81 0.6 11.7 7.7 

6/21/2018 HOBA Kiowa 82.1 0.9 14.2 7.7 

6/27/2018 CARL Payne 81.7 0.9 6 6.5 

7/3/2018 BESS Washita 81.6 0.4 7.9 6.1 

7/3/2018 LANE Atoka 80.5 0.3 4.5 5 

7/3/2018 REDR Noble 82.2 0 6.3 5.2 

7/10/2018 BREC Garfield 84.8 0.1 7.8 5.6 

7/10/2018 MEDF Grant 83.5 0.9 6.9 5.1 

7/25/2018 BEAV Beaver 75.2 0.5 9.2 5.8 

8/1/2018 EVAX Texas 75.3 0.2 9.2 7.3 

8/1/2018 FAIR Major 81.9 0.7 8 7.9 

8/1/2018 LAHO Major 80.8 0.5 8.7 8.3 

8/1/2018 SLAP Beaver 78.6 0.2 9.7 9.8 

8/22/2018 BOIS Cimarron 75.4 0.1 12.6 8.1 

8/25/2018 ARNE Ellis 79.5 0.5 9.6 6.8 

Note: TAVG is average of all 5-minute averaged temperature observations, PDIR is most 

common wind direction for the day, WSPD is average of all 5-minute wind speed, and 

RAIN is liquid precipitation measured each day. 

Source: Mesonet (https://www.mesonet.org/) 

  

https://www.mesonet.org/
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Table 1-3. SCA Migration Forecast Counties for 2013-2020 

2013 2014 2015 2016 2017 2018 2019 2020 
Beaver Alfalfa Alfalfa Beckham Beckham Beaver* Alfalfa Beaver 

Beckham Custer* Beckham Caddo* Caddo* Ellis Beckham Custer 

Caddo Garfield* Blaine Comanche Comanche Harper Caddo* Ellis 

Comanche Grant Caddo* Cotton Cotton  Comanche* Harper 

Cotton Kay* Comanche Custer Custer  Cotton Washita 

Custer Kingfisher Cotton Grady* Grady*  Custer  

Ellis Major Custer Greer Greer  Garfield*  

Grady Noble* Garfield* Jackson Jackson*  Grady*  

Greer Osage Grady* Kiowa Kiowa*  Grant*  

Harper Woods Grant* Stephens Stephens  Greer  

Jackson  Greer Tillman* Tillman*  Jackson*  

Kiowa  Harmon Washita Washita  Kay  

Stephens  Jackson*    Kingfisher  

Tillman  Kay*    Kiowa*  

Washita  Kingfisher    Major  

  Kiowa    Noble*  

  Major    Osage  

  Noble*    Stephens  

  Osage*    Tillman  

  Stephens    Washita  

  Tillman*    Woods  

  Washita      

  Woods      

Note: * means that the SCA migration forecast counties belong to each year's SCA actual 

reporting counties. 

Source: EDDMapS (https://www.eddmaps.org/), Texas A&M AgriLife Extension (2020) 

(https://agrilifeextension.tamu.edu/) 

https://www.eddmaps.org/
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Figure 1-1. Distribution of the Sorghum Area of Oklahoma in 2018 (Acres) 
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Figure 1-2. Methodology Flow Chart 
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Figure 1-3. Relationship between Weather Variables and Movement Probability (𝜷=3, 𝒘=10, κ=0.1, λ =-0.0026) 
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Figure 1-4. SCA Predicted Movement Probabilities and Location based on Weather Variables, June 15 2018 

Note: The green dot indicates the centroid of Kiowa County, and the red square indicates the field with the highest 

movement probability.  
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Figure 1-5. SCA Predicted Movement Probabilities and Location using Weather Variables from 15 to 25 June 2018 

Note: The green dot indicates the centroid of Kiowa County, and the red square indicates the field with the highest 

movement probability. 
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Figure 1-6. A Cluster of SCA Movement Probability for Fields, 2013 

Note: The shape of the fields means they belong to different clusters. The closer to red, the higher the probability. The 

number means the average cumulative movement probability for each cluster. 
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Figure 1-7. A Cluster of SCA Movement Probability for Fields, 2014 

Note: The shape of the fields means they belong to different clusters. The closer to red, the higher the probability. The 

number means the average cumulative movement probability for each cluster. 
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Figure 1-8. A Cluster of SCA Movement Probability for Fields, 2015 

Note: The shape of the fields means they belong to different clusters. The closer to red, the higher the probability. The 

number means the average cumulative movement probability for each cluster. 
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Figure 1-9. A Cluster of SCA Movement Probability for Fields, 2016 

Note: The shape of the fields means they belong to different clusters. The closer to red, the higher the probability. The 

number means the average cumulative movement probability for each cluster. 
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Figure 1-10. A Cluster of SCA Movement Probability for Fields, 2017 

Note: The shape of the fields means they belong to different clusters. The closer to red, the higher the probability. The 

number means the average cumulative movement probability for each cluster. 
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Figure 1-11. A Cluster of SCA Movement Probability for Fields, 2018 

Note: The shape of the fields means they belong to different clusters. The closer to red, the higher the probability. The 

number means the average cumulative movement probability for each cluster. 
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Figure 1-12. A Cluster of SCA Movement Probability for Fields, 2019 

Note: The shape of the fields means they belong to different clusters. The closer to red, the higher the probability. The 

number means the average cumulative movement probability for each cluster. 
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Figure 1-13. A Cluster of SCA Movement Probability for Fields, 2020 

Note: The shape of the fields means they belong to different clusters. The closer to red, the higher the probability. The 

number means the average cumulative movement probability for each cluster. 
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Figure 1-14. Predicted Movement Probability and Location using Weather Variables on May 31-June 10 2017 
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Figure 1-15. Predicted Movement Probability and Location using Weather Variables on June 13- June 23 2018 
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Figure 1-16. Predicted Movement Probability and Location using Weather Variables on July 3- July 13 2019 
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CHAPTER II  

 

WEATHER AND GEOGRAPHIC EFFECTS ON SUGARCANE APHID MIGRATION 

IN OKLAHOMA 

 

Introduction 

This study measures the effect of weather variables and geographic features on the 

infestation of Oklahoma sorghum production by Sugarcane aphid (SCA). Sugarcane 

aphid (Melanaphis sacchari (Zehntner), Hemiptera: Aphididae) is a pest found in more 

than 30 countries that feeds on 20 species of rice and other commodity crops (Singh et 

al., 2004). In the United States, sorghum, sweet sorghum, and some millet varieties are 

SCA’s main hosts since its introduction in the 1970s (Singh et al., 2004). SCA transmits 

sugarcane yellow leaf virus, causing yield loss in sorghum (Gonçalves, 2005; Lopes et 

al., 1997; Paray et al., 2011).  

Damage to sorghum caused by SCA depends on factors such as aphid/plant 

density and the duration of infestation (Singh et al., 2004). Weather variables also affect 

SCA population density, their migration, and survival. Studies measuring the relationship 

between temperature and SCA population density find that dispersal of aphids occurs 

within 6 to 10 days at temperatures between 18 and 30°C, with populations destroyed at 

35°C and higher (Behura & Bohidar, 1983). SCA thrive and proliferate on sorghum as 

humidity increases (Mote, 1983). Warm temperatures have a positive effect on aphid 

populations until a critical temperature of 35°C is reached, while rainfall has a negative 
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effect on survival (Mann et al., 1995). Rainfall also removes aphids from host plants and 

makes them more vulnerable to predators (Cocu et al., 2005; Klueken et al., 2009). SCA 

infestation of sorghum may be most severe during the late sorghum growth phase due to 

plant stress caused by drought. SCA colonies increase rapidly after the piping stage (the 

extrusion of tailpipe-like appendages) (Van Rensburg, 1973). SCA populations on a 

single plant may reach as much as 30,000 individuals (Setokuchi, 1977).  

Weather variables including temperature, humidity, and precipitation, as well as 

the growth stage of sorghum, affect the susceptibility of sorghum plants to SCA and their 

proliferation. Documentation of the effects of environmental variables on insect life 

cycles is often performed in laboratories. This study is the first to examine the effect of 

geographic and weather variables on the migration of SCA at the sorghum-field level 

using a survival model, which is also called a proportional hazard model (PHM). PHM is 

a flexible, regression-based modeling approach capable of incorporating the effects of 

weather, location, and temporal covariates for determining the likelihood of field-to-field 

SCA migration.  

The study uses field-level observations of SCA infestations on Oklahoma 

sorghum fields to determine how weather variables and field proximity influence the time 

until a given field is infested. Infestation dynamics and population colonization vary, 

depending on factors such as native vegetation, food density, host plant species 

abundance, timing and rate of migration and dispersal, and geographic location (Singh et 

al., 2004). The covariates used in the SCA migration model include distance between 

sorghum fields, temperature, precipitation, wind direction, and the date when SCA were 
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observed on a given field. Findings may be useful for developing predictive models for 

SCA migration and time until infestation.  

Data 

Data were obtained from the United States Department of Agricultural Research Station 

in Stillwater, Oklahoma2. Data were collected in 2017 from 47 Oklahoma sorghum fields. 

Observations were made on multiple days at an irregular frequency, ranging from one to 

14 day intervals. Data collection resulted in 433 observations for the 47 sorghum fields 

surveyed. The number of observation days is 139, spanning from May 31 to October 16, 

2017.  

A field was considered infested if winged or wingless SCA were identified on 

sorghum plants. The period from May 31 to the observed infestation date marks the time 

(𝑡, days) until a field was infested. If the field was never infested from May 31 to October 

16, then it received a ‘0’. The ‘0’ indicator censors un-infested fields. In this study, the 

date until the first infestation of the field is used, not the date when the field is infested. 

The use of the date the field was infested can lead to systematic bias in estimating the 

effect of multiple covariates. Also, the date until the first infestation occurs is used in the 

data structure for the survival model (Allison, 2010). For example, an infestation reported 

on August 16 corresponds with a period of 77 un-infested days. Thirty-four of 

Oklahoma’s 47 sorghum fields were infested during the data collection period, with the 

remaining 12 fields classified as un-infested on October 16 (Table 2).  

 
2 Dr. Norman Elliott, United States Department of Agriculture-Agricultural Research Service 

(USDA-ARS) SDA-ARS Plant Science Research Laboratory, 1301 N. Western Rd., Stillwater, 

OK 74075. 
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The covariates included in the SCA migration model fall into three categories: 

geographic relationships between sampled sorghum fields, weather variables, and SCA 

population characteristics (Table 1). A description of the covariates belonging to each 

category follows. 

<< Table 1 >> 

Geographic Relationships between Sorghum Fields 

Geographic proximity between sorghum fields are modeled using regional 

dummy variables and distances between sorghum fields. SCA infestations typically begin 

in the southern region of Oklahoma. SCA then migrate northward. Infestation occurred 

first in the southwest region (first sighting, May 31), followed by the north-central region, 

and finally the northwest region. Reporting dates for the north-central region occurred 

between June 1 to October 3. Reporting dates for the northwest region were from July 7 

to October 16 (Figure 1). 

The division of Oklahoma’s sorghum-producing areas into three regions controls 

for regional differences in landscape, soil quality, and other agroecological features. The 

47 sorghum fields were situated in three distinct growing regions of Oklahoma: 11 

sorghum fields were in the southwest region, 18 sorghum fields were in the north-central 

region, and 18 sorghum fields were in the northwest region of Oklahoma (Figure 1). 

Field-to-field distances were calculated using the Haversine formula3. Distance variables 

are in miles.  

 

3 The Haversine formula is 𝑑ℎ = 2𝑟 arcsin (√sin2 (
𝜃2−𝜃1

2
) + cos(𝜃1) cos(𝜃2) sin2 (

𝛿2−𝛿1

2
)), 

where 𝑟 is the radius of the sphere, 𝜃2, 𝜃1 are latitude points in radians, 𝛿2, 𝛿1 are longitude 

points in radians. 
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Four distances were constructed. The first distance variable is the distance 

between the first field infested in a region to other fields in the same region.  

<< Figure 1 >> 

The second distance variable is the distance between the last infested sorghum 

field in Texas to all study fields in Oklahoma. This variable controls for the northward 

movement of SCA from Texas to Oklahoma sorghum fields as a function of geographic 

distance.  

The third distance variable is the distance between the first sorghum field infested 

by SCA in Oklahoma to all other Oklahoma sorghum fields. This variable also controls 

for the northward movement of SCA as a function of geographic distance. 

The fourth distance variable is the distance between infested fields in terms of 

temporal priority. For example, the distance between the field where the first infestation 

occurred (Field ID = 24, date: May 31, southwestern Oklahoma, Figure 1) to the field 

where the second infestation occurred (Field ID = 21, data: June 14, southwestern 

Oklahoma) was 167.1 miles. Sequential field-to-field infestations distances were 

calculated for each surveyed field.  

Weather Variables 

Weather variables include temperature, precipitation, and wind direction. Studies 

on the biological effects of temperature and precipitation on SCA conclude that these two 

factors directly affect aphid mobility, reproduction, and survival (Souza & Davis, 2020; 

Ukoroije & Abalis, 2020). Aphid movement is driven largely by atmospheric conditions 

(Irwin et al., 2007). Winged SCA alatae are more likely to travel longer distances when 

atmospheric conditions are stable. Aphids cannot migrate over long distances during 
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adverse, or unstable, weather conditions when temperature and precipitation are in flux 

(Isard et al., 1994; Isard & Gage, 2001).  

Weather variables include average air temperature (TAVG), precipitation (RAIN), 

and the dominant wind direction (PDIR). TAVG is the average of all temperature 

observations at 5-minute interval each day (degrees Celsius). RAIN is precipitation 

measured each day (mm). PDIR is the most common wind direction recorded for a day, 

and is based on 16-point compass heading with a 16-point cardinal direction (Mesonet, 

2020) All weather variables were obtained from Oklahoma’s Mesonet system (Mesonet, 

2020).  

Weather variables were imputed for each sorghum field by generating kriged 

surfaces from data collected at each of Oklahoma’s 119 Mesonet stations. Kriging is a 

geostatistical interpolation technique that generates predictions for unobserved locations 

using distance and information between known data locations (Cressie, 1993; 

Paramasivam & Venkatramanan, 2019). Kriging was necessary because the weather 

variables were not measured at the study fields. Weather data were kriged for each of 139 

days using a spherical semivariogram function, 𝛾(ℎ) = 𝐶0 + 𝐶 ∙ (1.5
ℎ

𝑎
− 0.5(

ℎ

𝑎
)3) 𝑖𝑓 ℎ <

𝑎, otherwise 𝛾 = 𝐶0 + 𝐶, where 𝛾 is the semivariogram value, 𝑎 is the effective range 

(distance), the distance at which the function reaches its maximum value, 𝐶 is the 

variogram sill, 𝐶0 is the variogram nugget (variance remaining after accounting for 

space), ℎ is the lag of separating distances between fields (Brooker, 1986; Burgess & 

Webster, 1980).4 For each weather covariate, parameters were derived and used for each 

139 days. For temperature, the mean of the range, sill, and nugget for 139 days was 

 
4 Anisotropy was not detected for any weather variables. 
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2676.71, 9.09, and 0.1. The mean of the range, sill, and nugget for precipitation was 

510.76, 0.19, and 0.04. The averages for the range, sill, and nugget over 139 days for 

wind direction are 1011.10, 4.67, and 2.32, respectively. 

The (x,y)-coordinates of the kriged surfaces were matched with the (x,y)-

coordinates of each of the 47 study fields for the period of 31 May to 16 October. The 

median values of a field’s kriged weather variables over 139 days were used as field-level 

observations to minimize the effect of outliers and to arrive at a single, representative 

record for a field as required by the PHM data structure. For example, 210 of the 556 

kriged precipitation values (139 days) were 0 for field ID 23, resulting in a highly skewed 

distribution (Skewness: 2.97) 5. If there was an infestation reported on a study field, then 

the median of the field’s weather variables for the period from the first day of 

observations (31 May) to the infestation date was used as data. If the field was not 

infested between 31 May to 16 October, the then median of the weather variable of the 

field from the first observation date to the last observation date of the field was used. The 

resulting procedure generated a single vector of median kriged values for each weather 

variable and each of the 47 fields. 

Wind direction is a qualitative variable that ranges from 1 to 16. The 16-point 

directions were converted to an angle, with east set to 0 degrees. For example, for the 

southernmost sorghum field in Oklahoma (field ID 23), the median of the kriged wind 

direction is 6.44 and the angle is 124.99 degrees (a prevailing southwest to northwest 

direction) (Appendix Figure 4). 

 
5 There are 556 (139 days × 4 kriging values) of kriging results for 139 days in the ID 23 field. 
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Figure 2 shows the kriged medians for each weather variable. The average of the 

kriged median value for temperature is 24.96°C, with minimum and maximum values of 

22.9 and 27°C, respectively. The average precipitation of Oklahoma for the kriged 

median value is 0.02 mm. The average of the kriged wind direction medians is 120.47 

degrees, which correspond with a 16-point cardinal direction of 6.65 that orients toward 

the northwest (minimum (maximum) value, 7.13 (6.16) in the 16-point cardinal 

direction). A change from yellow to red in Figure 2 indicates an increase in a variable’s 

value. In terms of temperature, the southern part of Oklahoma is relatively warm 

compared to other regions. For precipitation, eastern Oklahoma is comparatively wetter.  

For the 16-point cardinal heading system of wind direction, ‘0’ is north ( = 90 

degrees), ‘4’ is east ( = 0 degrees), ‘8’ is south ( = 270 degrees), and ‘12’ is west ( = 180 

degrees) (appendix Figure 4). As the angle increases, the wind direction orients towards 

the west. The minimum and maximum wind direction values of 109.5 and 131.4 degrees 

indicate that the wind direction tended to orient toward the northwest during the study. 

<< Figure 2 >> 

Sugarcane Aphid Characteristics 

Characteristics of SCA populations include the number of individuals per plant 

and the ratio of the number of winged SCA (alatae) to un-winged SCA (apterae) observed 

on a plant. The number of SCA individuals and the winged/un-winged ratio were 

matched to the next-infested field. That is, the winged/un-winged ratio is a temporally 

and spatially lagged variable.  

For example, the proportion of winged to un-winged individuals in field 21 

(infestation date, 14 June) was 0.33. The next infestation was observed at field 35 on June 

15. Thus, the winged/un-winged ratio of 0.33 (from field 21) is assigned to field 35. This 
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is an important variable since winged individuals can use thermal updrafts to travel to 

distant fields.  

<< Table 2 >> 

Methods and Procedures 

Infestation Likelihood Curves 

Time-to-infestation curves depict the probability of a sorghum field becoming infested 

over some period. There are no previous studies analyzing the relationship between 

winged and unwinged SCA populations and the likelihood of a field becoming infested. 

Winged individuals are relatively more resistant to starvation (Noda, 1960), have a longer 

reproductive period, and live longer (Tsuji & Kawada, 1987; Tsumuki et al., 1990). 

These factors positively affect the likelihood of migration and field infestation. The 

expected result is that there will be a difference in the infestation curve according to the 

winged/un-winged ratios. The type of infestation (or ‘hazard’) curves used here require 

assigning outcomes to discrete groups (Allison, 2010). The winged/un-winged ratio is 

categorized into a high “High” and “Low” categories based on the median value of 1.4%. 

For reference, the number of fields with the number of winged alatae less than 1 was 34 

(97.1%), and the number of fields with the number of wingless alatae was 28 (80%). The 

number of fields with a ratio of 0 was 14 (40%), and the number of fields with a ratio of 

0.1 or less was 24 (68.6%).  

Regional differences in growing conditions may also accelerate or deter SCA 

infestation. The southwestern region is a direct route for SCA migration from Texas 

northward. The likelihood a field becomes infested more quickly is expected to be 

relatively higher in the southwestern region compared to the north-central and 



 

50 

northwestern regions of Oklahoma. Thus, time-to-infestation curves are estimated for 

each region. 

Finally, inter-field distance is also expected to influence the likelihood a field is 

infested by SCA. A time-to-infestation curve is also generated for each of the four 

distance variables. Inter-field distance was classified into ‘closer’ and ‘more distant’ 

fields using the mean values of the distances as an arbitrary cut-off. The fact that SCA 

(especially winged SCA) migrate over long distances and can cause rapid diffusion 

(Suarez et al., 2001) supports the assumption that there is a difference in the hazard of 

infestation according to field proximity. 

The mean values of each distance covariate are 207.6 miles (distance between the 

last infested sorghum field in Texas and all Oklahoma sorghum fields), 116.86 miles 

(distance between the first sorghum field in Oklahoma and to all other fields in 

Oklahoma), 39.67 miles (distance between the first infested field in a region to other 

fields in the same region), and 43.76 miles (distance between temporally consecutive 

infested fields) are used to group observations into ‘Low’ and ‘High’ classes. The null 

hypothesis is that the distributions of the infestation curves for each group (‘Low’ and 

‘High’) are not different. The null hypotheses are evaluated using the log-rank (Mantel, 

1966) and Wilcoxon statistic (Wilcoxon, 1992). In this study, the PROC LIFETEST 

syntax of sas software is used for the infestation likelihood curve. 

Proportional Hazard Model 

In addition to the univariate comparisons with time-to-infestation curves, a 

proportional hazard model (PHM, Cox, 1972) is used to determine the ceteris paribus 

effects of covariates on the likelihood of a field being infested by SCA (Allison, 2010). 
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PHM model the likelihood of a hazardous event occurring as a censored outcome 

(George et al., 2014). Censoring occurs when an event is unobserved before the study 

terminates. For the data collection period of this research, the first observation date (May 

31) is the left censoring date, and October 16 the right censoring date. There were 12 

right-censored (un-infested) fields observed over the 139 days of data collection. In 

Oklahoma, sorghum planting occurs between April to July with harvest following in 

September to November (Hawkins et al., n.d.). Infestation can occur on multiple sorghum 

fields during this period. This means that uninfected fields in the north-central and 

northwestern regions may be left- or right-censored because SCA migrate south to north. 

Infestation is also less likely to occur earlier than the left-censoring date of May 31. 

Therefore, fields where infestation did not occur during the data collection period are 

right-censored. Thirty-four fields were infested between 31 May and 16 October, and are 

recorded as interval-censored observations.  

The PHM measures the hazard of a field becoming infested by SCA on day 𝑡: 

(1)  ℎ(𝑡) = lim
Δ𝑡→0

Pr (𝑡 ≤𝑇<𝑡+Δ𝑡|𝑇≥𝑡)

Δ𝑡
 

where ℎ(𝑡) is the infestation hazard and is a function of time. The PHM assumes the 

effect of a covariate is multiplicative with respect to the hazard rate. The PHM, including 

the weather and geographic instruments, is: 

(2)  ℎ𝑖(𝑡) = ℎ0(𝑡) ∙ exp(𝛽1 ∙ 𝑙𝑖
𝑝 + 𝛽2 ∙ 𝑙𝑖

𝑛 + 𝛽3 ∙ (
𝑑𝑖

1

100
) + 𝛽4 ∙ (

𝑑𝑖
2

100
) + 𝛽5 ∙ (

𝑑𝑖
3

100
) + 𝛽6 ∙

(
𝑑𝑖

4

100
) + 𝛽7 ∙ 𝑡𝑎𝑖 + 𝛽8 ∙ 𝑟𝑎𝑖 + 𝛽9 ∙ 𝑎𝑛𝑖 + 𝛽10 ∙ 𝑡𝑝𝑖 + 𝛽11 ∙ 𝑤𝑖) 



 

52 

where ℎ0(𝑡) is a baseline hazard function; 𝛃 are parameters to be estimated; and 𝑙𝑖
𝑝
 and 

𝑙𝑖
𝑛 are regional dummy variables. The southwestern region is the reference group. The 

expected sign of the coefficient on the northern and western region dummy variables is 

negative because SCA typically move from south to north.  

The variable 𝑑𝑖
1 is the distance between sorghum fields in Oklahoma and the last 

observed field in Texas infested by SCA. This covariate controls for northward 

movement of SCA from its origin as a function of distance. The variable 𝑑𝑖
2 is the 

distance between the first infested field in the southwest region of Oklahoma and all other 

Oklahoma sorghum fields. The variable 𝑑𝑖
3 is the distance between the sorghum field 

where SCA infestation was first reported in a region (as indicated by the dummy 

variables; southwest, north-central, north-east), and all other sorghum fields in the region. 

The variable 𝑑𝑖
4 is the distance between an infested field in period 𝑡 and the most recently 

infested field in 𝑡 − 1. The distance variables were scaled by 100 for interpretability. The 

expected signs of the coefficients for all distance covariates are negative, meaning that 

the hazard of infestation is expected to decrease as the distance between fields increases.  

The variables 𝑡𝑎𝑖, 𝑟𝑎𝑖, and 𝑎𝑛𝑖 are temperature, precipitation, and the wind 

direction angle, respectively, for field 𝑖. These are the median values of the kriged 

surfaces for each field, with the median value taken over 𝑡 = 0 up to the infestation date. 

For uninfected fields, the median values are over the 139-day period.  

The expected sign of temperature (𝑡𝑎) on the time until a field was infested is 

negative. Research finds that SCA only reproduce in the temperature range of 10 to 30°C, 

and that fertility and longevity decrease outside this temperature range (De Souza et al., 

2019). The median field temperature over the study period was 24°C (minimum 
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(maximum) of 19 (27) °C). This range is ideal for SCA reproduction. It is hypothesized 

that temperatures outside this range will negatively affect SCA survival (De Souza et al., 

2019). Precipitation (𝑟𝑎) negatively affects the survivability of SCA. The expected sign 

of precipitation on field infestation is negative.  

The expected sign of the wind direction angle (𝑎𝑛) on SCA infestation is positive. 

An increase in the wind direction angle indicates a shift in wind direction from the 

northeast to northwest. This shift is expected to positively correlate with SCA migration 

northward.  

SCA population characteristics include the temporally lagged population per 

sorghum plant and the temporally lagged ratio winged-total individuals per sorghum 

plant. The expected sign for the temporally lagged total population (𝑡𝑝) per plant is 

positive. Fields with a larger number of sugarcane aphid populations at 𝑡 – 1 are 

hypothesized to increase the likelihood of proximate fields becoming infested. The 

expected sign of the variable for the winged/un-winged ratio variable (𝑤) is also positive, 

suggesting that proximity to a field that is infested with relatively more winged SCA in 𝑡 

– 1 will increase the likelihood of a field becoming infested. Winged SCA are mobile 

over longer, field-to-field distances compared to un-winged individuals.  

The hazard associated with a covariate is a log odds ratio. The ratio is calculated 

as the exponential of the estimated coefficient. For dummy variables, the log odds is 

interpreted as the ratio of the hazard for a variable with a value of ‘1’ to the hazard for a 

variable with a value of ‘0’. That is, the hazard ratio is the difference in the likelihood of 

becoming infested (Motulsky, 2014). For continuous covariates, the hazard ratio is the 

change in infestation hazard for an increase of 1-unit in a covariate (Zwiener et al., 2011). 
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The percentage change in infestation for every 1-unit increase in a covariate is the 

exponentiated coefficient less ‘1’, times 100 (Allison, 2010). 

Proportional Hazard Assumption 

The underlying assumption of the PHM is that the relative hazard of becoming 

infested is constant over time. This assumption is not always justifiable, given the 

biological properties of SCA and geographic variability in weather (Kuitunen et al., 

2021). If the effect of a covariate on a hazard varies over time, then the proportional 

hazard assumption is violated and statistical inference may be compromised (Nakamura, 

1992).  

The regional dummy variables and distance covariates are invariant with respect 

to time. However, weather covariates can change quickly day to day. There is also likely 

temporal correlation between weather today and tomorrow’s weather. In addition, 

growing conditions change from early summer to autumn (late May to mid-October). The 

day-to-day correlation of weather may be associated with changes in the infestation 

hazard.  

The non-proportional hazard assumption is tested to determine if the time-

dependent covariates of weather and population characteristics should be included in the 

PHM. The null hypothesis is that the effect of weather variables and SCA population 

characteristics on the infestation hazard is invariant over time. The alternative hypothesis 

is that the effects of weather and SCA population characteristics covariates on the 

likelihood of infestation vary over time. Time-dependent covariates are added to the 

regression model to test this assumption using Lin et al. (1993)’s Monte Carlo procedure. 

The p-value for this test was simulated using 1,000 replications.  
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Ties and Exact Proportional Hazards Models 

Tied events mean that multiple fields were reported to be infected at, or around, 

the same time (Xin, 2011). The likelihood a coefficient estimate is biased downward 

increases as ties become more frequent (Allison, 2010). Of the 35 infested fields, the 

number of tied fields with reports of infestation occurring on the same day was 31 

(88.6%). Specifically, the infestation date, the number of infested fields observed on that 

date, and the field ID are May 31 (number of infested fields: 2; ID: 24,27), June 16 (3; 

40,44,45), June 19 (2; 25). ,26), July 10 (2; 29,39), 13 July (2; 19,22), 25 July (2; 42,47), 

3 August (3; 36,37,41), 16 August (10 2,3,4,6,7,9,12,14,16,18), 29 August (2; 8,10), 30 

August (3; 23,28,34) (Appendix Table 6 reports the dates, field ID, and the total SCA 

population per plant). 

Two partial likelihood methods proposed by Efron (1977), exact and discrete, 

provide a better approximation of the hazard function when data are tied. The exact 

partial likelihood method assumes there is an unknown ordering with respect to 

infestation events, whereas the discrete method assumes that events occurred at exactly 

the same time (Allison, 2010). During the study period (May 31 to October 16; 139 

days), 47 sorghum fields were surveyed at an irregular frequency for each field. For 

infested fields, SCA could have migrated there before the date fields were surveyed. For 

example, an infestation report was made on August 30 for field 23. The fields on which 

infestation was reported for August 30 are 19, 23, 24, 27, 28, and 34. It assumed there is 

an unknown ordering in these infestation events since SCA infestation may have occurred 

on the same date, or at an earlier date, for these six fields. The exact partial likelihood 



 

56 

method attends to this issue and it is used here. In this study, the PROC PHREG syntax 

of sas software is used for the proportional hazard model. 

Results 

Infestation Likelihood Curves 

Infestation likelihood curves demonstrate the univariate relationship between a covariate 

and the likelihood SCA infest a field (Figure 3). There is no statistical difference in the 

hazard of infestation between the “High” and “Low” variable groupings, except for the 

lagged ratio of the winged/un-winged ratio. 

Fields in southwestern of Oklahoma region appears to have a greater chance of 

infestation after eight days compared to the other regions (Figure 3-A). However, the log-

rank and Wilcoxon statistics are 1.58 and 1.33, respectively, which means that the null 

hypothesis that the infestation probability between the three regions is the same cannot be 

rejected. In addition, there was no statistical difference in infestation curves between the 

southwestern and northwestern regions (log-rank statistic: 0.05, Wilcoxon statistic: 1.32), 

and the southwestern and north-central regions (log-rank statistic: 1.36, Wilcoxon 

statistic: 0.63). These results differ from the expectation that fields in the southwestern 

region of Oklahoma are relatively more susceptible to infestation. This finding is 

consistent with previous research that finds SCA can migrate over great distances during 

variable weather conditions (Suarez et al., 2001). 

For the lagged winged/un-winged ratio covariate, the log-rank and Wilcoxon 

statistics are 4.3 and 3.96, respectively. The null hypothesis that there is no difference in 

the infestation probability for the “High” and “Low” groups is rejected (P < 0.05). As 

shown in Figure 3-B, the infestation probability of the “High” group is higher than that of 
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the “Low” group. Populations with lower wing/un-winged ratios have lower mobility. 

This result is consistent with the expectation that the higher the proportion of winged to 

un-winged individuals on a field, the higher the probability the next field is infested.  

For the distance between the last infested sorghum field in Texas and the sorghum 

field in Oklahoma covariate (𝑑1), there is no difference in the probability of infestation 

between the “High” and “Low” groups (log-rank statistic: 0.12, Wilcoxon statistic: 0.43, 

P > 0.05) (Figure 3-C). There is no difference in the infestation probability between the 

“High” and “Low” groups for the distance between the first sorghum field infested in 

Oklahoma to other sorghum fields in Oklahoma (𝑑2) (log-rank and Wilcoxon statistic, 

0.289 and 0.16, P > 0.05), the distance between the first infested field and other fields in 

the region (𝑑3) (log-rank and Wilcoxon statistics are 0.03 and 0.17, P > 0.05), and the 

distance between temporally consecutive infested fields covariate (𝑑4) (log-rank and 

Wilcoxon statistics are 1.58 and 0.16, P > 0.05) (Figure 3-D, 3-E, 3-F). The infestation 

probability curves calculated with each of the four distance covariates suggest that the 

difference in distance between fields in Oklahoma does not influence the time until a 

field is infested. This finding suggests that it may be difficult for sorghum producers to 

establish insect control plans based on field proximity. Knowing when SCA appeared in 

north Texas may be the most important source of information since SCA generally 

migrate northward. However, information on the wing/un-winged populations in the 

previously infested field may be useful information for establishing insect control plans 

and predicting where SCA will migrate. 

Proportional Hazard Regression 
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Results of the proportional hazard assumption test indicate that time-dependent 

covariates are unnecessary (Table 3). Since the region wherein a field is located and the 

distance between the fields is time-invariant, violation of the proportional hazard 

assumption for the northwest dummy covariate is unlikely. 

<< Table 3 >> 

The likelihood ratio value and the Wald chi-square statistic are large enough to 

reject the null hypothesis that the variables included in the regression have a joint zero 

effect on the infestation hazard at the 1% significance level (Table 4). All covariates in 

the geographic relationship category were uncorrelated with the infestation hazard. The 

regional dummy covariates and the distance between the sorghum fields were 

unassociated with the infestation hazard. Studies on the long-distance migration and 

dispersion activity of America aphid may be one explanation that may support the results 

of the location and distance of the field were uncorrelated with infestation. 

<< Table 4>> 

Temperature, precipitation and wind direction affect the hazard of infestation at 

the 10%, 5% and 10% levels of significance, respectively (weather category in table 4). 

An increase in temperature decreases the likelihood of infestation by SCA. For a 1°C 

increase in temperature, the infestation hazard decreases by 50.1% ( = 100 × [exp(-0.696) 

– 1]). This result is consistent with the expected sign of this variable. The temperature 

range over the study period was 18 to 27 °C, and the median temperature was 24 °C, all 

of which are favorable temperatures for SCA reproduction. Studies on SCA fertility and 

longevity show a decrease in population outside the temperature range of 10 to 30 °C (De 

Souza et al., 2019). The probability of infestation for the temperature covariate was 0.33 

(= odds ratio of 𝑡𝑎/(1 + odds ratio of 𝑡𝑎); 0.499 /(1 + 0.499)). An increase in precipitation 
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reduces the probability of SCA infestation. A 1-mm increase in precipitation reduces the 

hazard of infestation by 99.99%. This suggests that precipitation reduces the hazard of 

infestation due to a decrease in SCA numbers caused by rain.  

The more frequently wind direction changed from northeast to northwest (0 

degrees, then to the east at 90 degrees), the lower was the infestation hazard. A 1-degree 

change in wind direction decreased the infestation hazard by 12.1% ( = 100 × [exp(-

0.129) – 1]). The infestation probability for the wind direction covariate was 0.468 ( = 

odds ratio of 𝑎𝑛/(1 + odds ratio 𝑎𝑛); 0.868/(1 + 0.868)). 

Total SCA populations were uncorrelated, ceteris paribus, with the hazard of 

infestation (P > 0.05), but the proportion of winged SCA in the most recent field was 

negatively associated with the likelihood of infestation (P < 0.05). These findings differ 

from the a priori expectations, but are consistent with the notion that SCA transmission 

can occur over longer distances, given favorable weather conditions. 

Studies on pests and disease management strategies suggest the need for 

prediction models based on weather and climate (Bhagwan et al., 2022; Marini et al., 

2022). The results of this study reaffirm the value of including weather data on 

temperature, precipitation, and wind direction to predict the movement of SCA. Brown et 

al. (2022) notes that the use of geospatial data in early warning systems for pest and 

disease risk can be used to estimate potential risks. Findings from this study suggest that 

geospatial data (field regions and distances between fields) may not be as important as 

previously suspected for the infestation of sorghum fields.  
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Conclusions 

This study is the first to evaluate the effects of field proximity, weather, and SCA biology 

on infestation at the field level for Southern Great Plains sorghum producers. The 

purpose of this study was to measure the effects of weather, geographic, and biological 

characteristics of SCA on the infestation of sorghum fields in Oklahoma. Temperature, 

precipitation, and wind direction were hypothesized to be closely related to the survival 

and migration of SCA. Geographical characteristics used in this study include between-

field distance and locational information. Geographical characteristics were uncorrelated 

with SCA survival and migration. Total SCA population per plant was correlated with the 

migration of SCA and field infestation.  

Infestation likelihood curves suggest there is a difference in the infestation 

probability between the high- and low-density wing/un-winged SCA groups. The larger 

the ratio of winged to un-winged SCA, the more likely their movement to other sorghum 

fields.  

Temperature, precipitation and wind direction were negatively correlated with 

SCA infestation hazards. A decrease in the likelihood of infestation due to an increase in 

precipitation was associated with a decrease in the likelihood of a field becoming 

infested. Infestation hazards are lower when prevailing winds change from northeast to 

northwest. As mentioned in previous studies on pest infestation prediction modeling, 

weather is an important determinant of infestation hazard. However, field location and 

the distance between fields was not a significant factor in the present study.  

Despite the limited number of field observations available for the analysis, a 

contribution of this study is the field-level analysis of SCA infestation of sorghum fields. 
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As mentioned by previous studies, depending on data availability, it may be possible to 

measure the influence of other factors that affect SCA infestation, such as infestation 

dynamics and food density. In addition, the infestation curve and PHM results provide 

field-level information about more detailed infestation hazard. These aids may improve 

field-level decision making for pest control planning, such as coordination of pesticide 

use and harvest timing. 
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Table 2-1. Covariate Categories and Descriptions  

Category Covariate Description Acronym 

Geographic 

relationship 

Field location 
North-central (ncok), North-west 

(phok), South-west (swok) 
𝑙𝑝, 𝑙𝑛 

Distance 

Distance (miles) between the first 

infested field and other fields in 

the region by region 

𝑑1 

Distance (miles) between the last 

infested sorghum field in Texas 

and the sorghum field in 

Oklahoma 

𝑑2 

Distance (miles) between the first 

sorghum field in Oklahoma and 

other fields in Oklahoma 

𝑑3 

  

Distance (miles) between sorghum 

fields infested in sequential time 

order 

𝑑4 

Weather 

Temperature 

Temperature (°C) in Sorghum 

Field (average of all 5-minute 

averaged temperature observations 

each day) 

𝑡𝑎 

Precipitation 

Precipitation (mm) in Sorghum 

Field (liquid precipitation 

measured each day) 

𝑟𝑎 

Wind direction 

Wind direction angle (East: 0 

degrees) in Sorghum Field (most 

common wind direction converted 

to degrees) 

 

𝑎𝑛 

Sugarcane aphid 

population 

characteristics 

Total 

population of 

SCA 

Number of sugarcane aphids per 

plant 
𝑡𝑝 

Winged SCA 

ratio 

Proportion of winged sugarcane 

aphid to total population of 

sugarcane aphid per plant 

𝑤 

Source: Dr. Norman Elliott, USDA-ARS (personal conversation, 2021), Oklahoma Mesonet 

(https://www.mesonet.org) 
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Table 2-2. Covariate Descriptive Statistics (N = 47 fields) 

 Mean 
Standard 

deviation 
Min Max Range 

Infestation 0.72 0.45 0 1 1 

Period (days) 49.38 28.01 0 92 92 

      

Distance to last field 

infested in Texas 

(miles) 

207.61 72.14 105.46 317.89 212.43 

Distance to first field 

infested in Oklahoma 

(miles) 

116.87 66.27 0 260.77 260.77 

Distance between the 

first infested field in a 

region and other fields 

in that region (miles) 

39.67 30.41 0 106.47 106.47 

Distance between 

temporally consecutive 

infested fields (miles) 

43.76 66.25 0 290.44 290.44 

Population per plant 11.66 75.60 0 518.78 518.78 

Winged SCA ratio 0.05 0.09 0 0.33 0.33 

TAVG (°C) 24.96 1.06 22.90 27.00 4.10 

RAIN (mm) 0.02 0.01 0 0.04 0.04 

PDIR (degrees) 120.47 6.02 109.50 131.40 21.90 

Note: Infestation is indicated as ‘1’ if the field is infested (the number of sugarcane aphid 

populations per plant is ‘0’ or more) during the infestation investigation period, otherwise ‘0’. 

TAVG, RAIN, wind direction are the median of temperature, rainfall, and angle of wind 

direction variables from the first infestation date in Oklahoma to the first infestation date. 

Sources: Dr. Norman Elliott, USDA-ARS (personal communication, 2021), Oklahoma Mesonet 

(https://www.mesonet.org)  
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Table 2-3. Proportional Hazards Test Results (N = 47) 

Category Covariate 
Coefficient 

Estimate 
P-value 

Geographic 

relationship 

North-west region 2.36 0.04 

North-central region 4.06 0.18 

Distance between the last infested sorghum 

field in Texas and the sorghum field in 

Oklahoma 

4.80 0.17 

Distance between the first sorghum field in 

Oklahoma and other fields in Oklahoma 
5.10 0.32 

Distance between the first infested field 

and other fields in the region 
2.52 0.45 

 
Distance between temporally consecutive 

infested fields 
1.26 0.15 

Weather 

Temperature in Sorghum Field 1.49 0.42 

Precipitation in Sorghum Field 1.65 0.13 

Wind direction in sorghum field 1.55 0.17 

Sugarcane 

aphid 

population 

characteristics 

Total population of SCA 0.16 0.35 

Winged SCA ratio 1.32 0.20 
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Table 2-4. Cox Proportional Hazards Model Results (N = 47) 

Category Covariate Estimate 
Hazard 

ratio 

Infestation 

Probability 

Geographic 

relationship 

North-west region -1.126 0.324 0.245 

North-central region 0.536 1.710 0.631 

Distance between the last 

infested sorghum field in Texas 

and the sorghum field in 

Oklahoma 

-0.942 0.390 0.281 

Distance between the first 

sorghum field in Oklahoma and 

other fields in Oklahoma 

0.510 1.665 0.625 

Distance between the first 

infested field and other fields in 

the region 

-1.936 0.144 0.126 

 
Distance between temporally 

consecutive infested fields 
0.398 1.489 0.598 

Weather 

Temperature  -0.696* 0.499 0.333 

Precipitation  -10.570** 0.000 0.000 

Wind direction  -0.129* 0.879 0.468 

Sugarcane 

aphid 

population 

characteristics 

Total SCA population -0.039* 0.962 0.490 

Winged SCA ratio -4.186 0.015 0.015 

Likelihood Ratio 75.62*** 

Wald χ2 117.83*** 

Likelihood 66.57 

AIC 88.58 

SBC 105.69 

Note: ***, **, and *, significant at the 1%, 5%, and 10% significance levels, respectively. 
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Figure 2-1. Oklahoma Sorghum Field Location used for Analysis, Infestation Status, 

and Infestation Date (or last reported date). 

Note: The number in each field indicates the field’s identifier, if the field was infested 

(‘1’ if SCA present in the field, ‘0’ otherwise), and the date of infestation. The red line 

indicates the chronological connection of the fields infested by SCA. 
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Figure 2-2. Median Kriged Values for Temperature, Precipitation, and Wind 

Direction. 
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Figure 2-3. Sugarcane Aphid Infestation Curves Between Groups of Region Dummy 

Variable (A), Lagged Wing Ratio (B), Distance between the Last Infested Sorghum 

Field in Texas and the Sorghum Field in Oklahoma (C), Distance between the First 

Sorghum Field Infested in Oklahoma to Other Sorghum Fields in Oklahoma (D), 

Distance between the First Infested Field and Other Fields in the Region (E), 

Distance between Temporally Consecutive Infested Fields (F) Covariates 
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APPENDICES 

 

Table 1-4. Summary Statistics for Weather in Oklahoma, 2013-2020 

Variable Statistics 2013 2014 2015 2016 2017 2018 2019 2020 

TAVG 

(°F) 

Mean 79.86 78.24 78.76 83.02 78 78.75 76.56 77.47 

S.D. 4.07 3.37 3.83 2.36 4.14 4.45 4.82 3.32 

Min 68.28 68.55 68.62 73.45 66.67 66.25 64.1 67.52 

Max 90.28 87.79 86.63 89.57 88.14 89.38 90.5 86.08 

PDIR 

(16-point) 

Mean 6.94 7.57 7.79 7.45 5.65 7.41 7.78 6.66 

S.D. 1.97 1.91 2.79 1.53 2.54 2.72 2.72 2.08 

Min 0 0 0 0.5 0 0 0 0 

Max 15 15 15 15 15 15 15 15 

WSPD 

(miles/hours) 

Mean 10.52 9.95 8.95 8.36 7.91 9.34 8.15 8.52 

S.D. 4.71 4.65 3.63 3.04 3.29 3.8 3.78 3.97 

Min 2.85 1.92 2.49 2.49 1.6 2.47 1.58 2.2 

Max 24.55 23.54 20.22 17.71 18.29 21.72 22.23 23.16 

RAIN 

(inches) 

Mean 0.13 0.16 0.29 0.04 0.09 0.26 0.26 0.16 

S.D. 0.32 0.4 0.79 0.23 0.29 0.55 0.55 0.39 

Min 0 0 0 0 0 0 0 0 

Max 2.48 3.34 7.98 4.43 2.37 4.74 5.34 3.14 
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Figure 1-17. Oklahoma's Sorghum Area Distribution (the larger the area, the lower the brightness) and Kiowa 

County's Centroid (green dot) 
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Figure 1-18. PDIR Distribution for 10 days after June 15, 2018 in Oklahoma (white area is missing data) 
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Figure 1-19. TAVG Distribution for 10 days after June 15, 2018 in Oklahoma (white area is missing data) 
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Figure 1-20. RAIN Distribution for 10 days after June 15, 2018 in Oklahoma (white area is missing data) 
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Figure 1-21. TAVG Distribution for 10 days after June 15, 2018 in Oklahoma (white area is missing data)  
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Figure 1-22. Oklahoma's 2017 Infection Survey Field and First Survey Date 

Note: The green dot is the initial location used in the moving probability model. 
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Figure 1-23. Oklahoma's 2018 Infection Survey Field and First Survey Date 

Note: The green dot is the initial location used in the moving probability model. 
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Figure 1-24. Oklahoma's 2019 Infection Survey Field and First Survey Date 

Note: The green dot is the initial location used in the moving probability model. 
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R code  

#Angle of centroid and fields in Kiowa County 

x <- vector("double", length(field$Id )) 

y <- vector("double", length(field$Id )) 

B <- vector("double", length(field$Id )) 

for (i in 1:length(field$Id )) { 

  x[[i]] <- 

as.numeric(((cos(deg2rad(field$Lati[length(field$Lati)])))*(sin(deg2rad(field$Lati[i]))))-

((sin(deg2rad(field$Lati[length(field$Lati)])))*(cos(deg2rad(field$Lati[i])))*(cos(deg2rad(field$

Long[i]-field$Long[length(field$Long)]))))) 

  y[[i]] <- as.numeric(((sin(deg2rad(field$Long[i]-

field$Long[length(field$Long)]))))*(cos(deg2rad(field$Lati[i])))) 

  B[[i]]<- rad2deg(atan2(x[[i]],y[[i]]))} 

field$angle<- B 

field$angle <- ifelse(field$angle<0, field$angle+360,field$angle) 

 

#Bearing of centroid and fields in Kiowa County (North:0) 

Bear <- vector("double", length(field$Id )) 

for (i in 1:length(field$Id )) { 

  Bear[[i]] <- bearing(c(field$Long[length(field$Long)],field$Lati[length(field$Lati)]), 

c(field$Long[i],field$Lati[i]), a=6378137, f=1/298.257223563)} 

field$bearing<- Bear 

 

# Kiowa County's daily weather information and PDIR converted to angles 

A <- read_excel("G:/Group/Common/Seokil 

Lee/Kiowa/Kiowatodesti/data_kiowa.xlsx",sheet='Sheet1') 

A$angle <- ifelse(A$angle<0, A$angle+360,A$angle) 

#Angle range for PDIR: PDIR angle +-11.25 

A$angle_low <- A$angle-(22.5/2) 

A$angle_up <- A$angle+(22.5/2) 

 

 

#Identify the field in the PDIR angular range for each day 

Z <- data.frame(matrix(nrow=(length(field$Id)),ncol=nrow(A))) 
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for (i in 1:length(A$pdir)){ 

  for(j in 1:length(field$Id)){ 

    Z[j,i] <- ifelse((A$angle_low[i] <= field$angle[j] & field$angle[j] 

<=A$angle_up[i]),"true","false")}} 

head(Z) 

colnames(Z) <-c(paste0("indicator",1:length(A$pdir))) 

field <- data.frame(cbind(field,Z)) 

 

#calculate probability for each day using triangle distribution;1-1*(abs(angle-pdirangle)/11.25); 

parameter:1 

C <- data.frame(matrix(nrow=(length(field$Id)),ncol=nrow(A))) 

for (i in 1:length(A$pdir)){  C[,i] <- 1-1*(abs(field$angle-A$angle[i])/11.25)} 

C[C<0] <- 0 

colnames(C) <-c(paste0("P_PDIR",1:length(A$pdir))) 

data.frame(C) 

summary(C) 

field <- data.frame(cbind(field,C)) 

 

# calculate distance between centroid and fields 

a <- data.frame(matrix(nrow=(length(field$Id)),ncol=5)) 

colnames(a) <-c("Long_cen","Lati_cen","Long","Lati","dis") 

a$Long_cen <- field$Long[length(field$Long)] 

a$Lati_cen <- field$Lati[length(field$Lati)] 

a$Long <-field$Long 

a$Lati <-field$Lati 

for (i in 1:length(a$Long_cen)){  a$dis[i]<- distm(c(a$Long_cen[i], a$Lati_cen[i]), c(a$Long[i], 

a$Lati[i]))} 

 

#change the unit from meter to miles: 

a$dis <- a$dis*0.000621371 

field$dis <- a$dis 
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#calculate probability for each day using triangle distribution 

T <- data.frame(matrix(nrow=(length(field$Id)),ncol=nrow(A))) 

for (i in 1:length(A$pdir)){ 

  T[,i] <- 1-(1*((abs(field$dis-5*A$wspd[i]))*(1/(5*A$wspd[i]))))} 

head(T) 

T[T<0] <- 0 

colnames(T) <-c(paste0("P_WSPD",1:length(A$pdir))) 

field <- data.frame(cbind(field,T)) 

 

#combine P of PDIR, P of WSPD 

P_PW <- data.frame(matrix(nrow=(length(field$Id)),ncol=nrow(A))) 

for (i in 1:length(A$pdir)){  P_PW[,i] <- C[,i]*T[,i]} 

colnames(P_PW) <-c(paste0("P_PW",1:length(A$pdir))) 

field <- data.frame(cbind(field,P_PW)) 

 

#identify field location  

ok_field <- read_excel("G:/Group/Common/Seokil Lee/Kiowa/State/OK.xlsx", sheet = "OK") 

ok_field <- data.frame(ok_field) 

ok_field<-ok_field[!(ok_field$CLASS_NAME=="Station"),] 

ok <- st_as_sf(maps::map("county","oklahoma", plot = FALSE, fill = TRUE)) 

testPoints <- data.frame(x=c(field$Long), y=c(field$Lati)) 

testPoints <- st_as_sf(testPoints, coords = c("x", "y"), crs = st_crs(ok)) 

ok<-st_join(testPoints, ok) 

field[,c("state","county")] <- tstrsplit(ok$ID,",") 

field$county <- str_to_title(field$county) 

 

#get TAVG, RAIN for each county, day 

#for TAVG 

weather <- read_excel("G:/Group/Common/Seokil Lee/weather after all county___final.xlsx", 

sheet = "Interpolation") 

weather <-weather[!with(weather,is.na(TAVG)),] 

weather1$TAVG_C <- (weather1$TAVG-32)*5/9 
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weather1 <- data.frame(weather1) 

weather1_t <- weather1 %>% group_by(DAY,county) %>% 

summarize_at(vars(TAVG_C),list(TAVG_C=mean)) 

 

#divide tavg,rain for each day 

tv <- data.frame(split(weather1_t, weather1_t$DAY)) 

colnames(tv)[seq(1,ncol(tv),3)] <- c("DAY") 

colnames(tv)[seq(2,ncol(tv),3)] <- c("county") 

colnames(tv)[seq(3,ncol(tv),3)] <- c("TAVG_C") 

tv <-split.default(tv, rep(1:nrow(A), each =3)) 

 

#combine data  

for (i in 1:length(tv)) { 

  field=inner_join(field, pivot_wider(tv[[i]], names_from=DAY, names_prefix="TAVG_C", 

values_from=TAVG_C), by="county")} 

 

##P of TAVG 

P_T <- data.frame(matrix(nrow=(length(field$Id)),ncol=nrow(A))) 

for (i in 1:length(A$pdir)){ 

  P_T[,i] <- (0.1*(field[ncol(field)-nrow(A)+i])) - (0.0026*((field[ncol(field)-nrow(A)+i])^2))} 

colnames(P_T) <-c(paste0("P_TAVG",1:length(A$pdir))) 

P_T[P_T<0] <- 0 

field <- data.frame(cbind(field,P_T)) 

 

#for Rain 

weather <- read_excel("G:/Group/Common/Seokil Lee/weather after all county___final.xlsx", 

sheet = "Interpolation") 

weather$RAIN[is.na(weather$RAIN)]=0 

weather1 <- data.frame(weather) 

weather1_r <- weather1 %>% group_by(DAY,county) %>% 

summarize_at(vars(RAIN),list(RAIN=mean)) 

 

#divide tavg,rain for each day 



 

92 
 

m <- data.frame(split(weather1_r, weather1_r$DAY)) 

colnames(m)[seq(1,ncol(m),3)] <- c("DAY") 

colnames(m)[seq(2,ncol(m),3)] <- c("county") 

colnames(m)[seq(3,ncol(m),3)] <- c("RAIN") 

m <-split.default(m, rep(1:nrow(A), each =3)) 

 

#combine data  

field=data.frame(field) 

for (i in 1:length(m)) { 

  field=inner_join(field, pivot_wider(m[[i]], names_from=DAY, names_prefix="RAIN", 

values_from=RAIN), by="county")} 

 

##P of RAIN: 

P_R <- data.frame(matrix(nrow=(length(field$Id)),ncol=nrow(A))) 

for (i in 1:length(A$pdir)){  P_R[,i] <- 1/exp(3*field[ncol(field)-nrow(A)+i])} 

colnames(P_R) <-c(paste0("P_RAIN",1:length(A$pdir))) 

P_R[P_R<0] <- 0 

field <- data.frame(cbind(field,P_R)) 

 

#P of PDIR,WSPD,TAVG,RAIN 

P_total <- data.frame(matrix(nrow=(length(field$Id)),ncol=nrow(A))) 

for (i in 1:length(A$pdir)){  P_total[,i] <- (field %>%  

dplyr::select(starts_with('P_PW')))[i]*P_T[,i]*P_R[,i]} 

colnames(P_total) <-c(paste0("p_to",1:length(A$pdir))) 

field <- data.frame(cbind(field,P_total)) 

field<-field[!(field$CLASS_NAME=="centroid"),] 

col<-(colnames((field %>%  dplyr::select(starts_with('p_to'))))) 

 

#cumulative probability by date 

P_total<-head(P_total,-1) 

P_cul <- data.frame(matrix(nrow=(length(field$Id)),ncol=nrow(A))) 

for (i in 1:length(A$pdir)){  P_cul[,i] <- rowSums(P_total[1:i])/i} 
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colnames(P_cul) <-c(paste0("P_cul",1:length(A$pdir))) 

field <- data.frame(cbind(field,P_cul)) 

 

#for 25th  

field$cilow<- as.numeric(cilow) 

field$cihigh<- as.numeric(cihigh) 

 

#95 percentile 

b <- subset(field,field$P_cul1>0) 

quantile(b$P_cul1,probs = 0.95) 

per <- data.frame(matrix(nrow=(length(field$Id)),ncol=nrow(A))) 

quantile((subset(field,field$P_cul1>0))$P_cul1,probs = 0.95) 

per[,1] <- ifelse((field$P_cul1>=(quantile((subset(field,field$P_cul1>0))$P_cul1,probs = 

0.95))),"T","F") 

 

for (i in 1:nrow(A)) { 

  q<-data.frame(((subset(field,(field %>%  dplyr::select(starts_with('P_cul')))[i]>0))[ncol(field)-

13+i])) 

  quantile(q[,1], probs = 0.95) 

  per[,i] <- ifelse((field$P_cul1>=(quantile(q[,1], probs = 0.95))),"T","F")} 

colnames(per) <-c(paste0("percen_indi",1:length(A$pdir))) 

percen <- data.frame(ifelse(per=="T",P_cul,0)) 

#______________________________________________________________ 

#only p greater than 95% percentile for each day 

percen <- data.frame(matrix(nrow=(length(field$Id)),ncol=nrow(A))) 

for (i in 1:length(A$pdir)){ 

  for(j in 1:length(field$Id)){ 

    percen[j,i] <- ifelse((per[j,i]=="T"),P_cul[j,i],"0")    }} 
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Table 2-5. Field Statistics 

Id  
Reg

ion 

Infest

ation 

Last 

Report 

(m/d) 

Period 

(day) 
Wing 

Distanc

e to 

Field in 

Region 

(mile) 

Distance to 

Last Field 

Infested in 

Texas 

(mile) 

Distance to 

First South 

Field 

Infested in 

Oklahoma 

(mile) 

Distance 

between 

Temporally 

Consecutive 

Infested 

fields (mile) 

Populat

ion per 

Plant 

TAV

G 

(°C) 

RAIN 

(mm) 

Wind 

Direction 

Angle 

(degree) 

1 ph 0 7/12 42 0 106 105 261 0 0 24.1 0.026 109.5 

2 ph 1 8/16 77 1 106 106 260 11 0.25 23.5 0.028 122.2 

3 ph 1 8/16 77 0 95 108 251 5 0.02 23.6 0.034 122.9 

4 ph 1 8/16 77 1 91 108 246 27 0.03 23.7 0.035 122.9 

5 ph 0 7/12 42 0 91 108 246 27 0 24.2 0.030 113.7 

6 ph 1 8/16 77 1 65 113 222 21 0.25 24.2 0.034 122.4 

7 ph 1 8/16 77 1 44 116 201 28 3.28 24.3 0.031 124.4 

8 ph 1 8/29 90 1 21 125 178 12 0.84 24.2 0.035 126.8 

9 ph 1 8/16 77 0 16 128 174 16 0.06 25.2 0.037 127.9 

10 ph 1 8/29 90 1 10 133 168 176 1.61 24.5 0.034 126.1 

11 ph 0 7/12 42 0 0 134 158 0 0 25.4 0.030 123.5 

12 ph 1 8/16 77 0 0 135 158 18 0.02 25.5 0.034 126.9 

13 ph 0 7/7/ 37 0 3 136 155 0 0 24.1 0.028 123.6 

14 ph 1 8/16 77 1 18 151 147 16 0.19 25.8 0.026 127.8 

15 ph 0 7/7/ 37 0 31 162 135 0 0 24.3 0.028 121.6 

16 ph 1 8/16 77 1 33 164 133 18 0.29 25.9 0.031 128.4 

17 ph 1 8/16 77 0 51 178 118 70 0.05 25.9 0.031 123.5 

18 ph 0 7/12 42 0 55 181 114 0 0 25.5 0.031 118.8 

19 sw 1 7/13 43 1 32 178 92 5 2.08 27.0 0.014 123.5 

20 sw 1 6/27 27 0 33 179 92 135 0.01 26.0 0.006 131.4 

21 sw 1 6/14 14 1 35 181 94 167 0.03 24.1 0.009 125.1 

22 sw 1 7/13 43 1 28 179 87 203 6.99 26.8 0.018 124.5 

23 sw 1 8/30 91 1 38 188 96 96 0.03 26.7 0.028 128.7 
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24 sw 1 5/31 0 1 0 197 59 16 0.08 23.3 0.000 109.5 

25 sw 1 6/19 19 0 15 200 70 21 0.04 24.5 0.006 121.9 

26 sw 1 6/19 19 1 13 210 50 43 0.03 24.1 0.008 118.0 

27 sw 1 5/31 0 1 16 211 45 50 0.06 22.9 0.001 109.5 

28 sw 1 8/30 91 1 59 241 0 11 9.1 25.9 0.029 127.0 

29 nc 1 7/10 40 0 2 251 53 52 0.06 25.5 0.033 120.6 

30 nc 0 6/21 21 0 0 252 52 0 0 24.6 0.032 112.5 

31 nc 1 8/31 92 0 0 252 52 0 0.59 26.0 0.030 121.6 

32 nc 0 6/21 21 0 1 253 53 0 0 24.6 0.032 112.5 

33 nc 0 6/21 21 0 2 254 52 0 0 24.6 0.032 112.5 

34 sw 1 8/30 91 1 68 252 11 53 518.78 25.8 0.031 129.6 

35 nc 1 6/15 15 0 31 278 78 24 0.08 24.2 0.013 111.2 

36 nc 1 8/3/ 64 1 32 281 79 12 0.02 26.9 0.014 118.4 

37 nc 1 8/3/ 64 1 42 287 90 30 0.18 26.8 0.016 115.6 

38 nc 0 7/10 40 0 45 288 93 0 0 25.0 0.018 116.7 

39 nc 1 7/10 40 0 52 295 100 186 0.06 24.9 0.017 116.4 

40 nc 1 6/16 16 0 36 288 68 17 0.02 24.1 0.008 109.5 

41 nc 1 8/3/ 64 0 73 312 120 290 2.69 26.1 0.023 122.3 

42 nc 1 7/25 55 0 74 315 121 11 0.01 26.1 0.019 120.2 

43 nc 0 6/23 23 0 52 303 77 0 0 24.6 0.006 121.3 

44 nc 1 6/16 16 1 53 304 77 2 0.01 24.0 0.005 114.6 

45 nc 1 6/16 16 0 53 304 78 149 0.02 24.0 0.005 113.9 

46 nc 0 6/28 28 0 69 316 112 0 0 24.3 0.013 119.5 

47 nc 0 7/25 55 1 73 318 116 40 0.05 26.0 0.016 121.1 

Note: region means the northwest (ph), southwest (sw), and north-central (nc) regions, respectively. Infestation means that the sugarcane 

aphid population per plant is positive and the field is infested during the infestation investigation period. The last report means the date of 

the first infestation if there is an infestation, and the date of the last investigation if there is no infestation. Period means the difference 

between the first infestation (May 31) and the date of infestation or the last investigation in each field. wing means that the field is infested 

with alatae with wings. Distance to field in region is the distance between the first infested field for each local region and other fields in 

the region. Distance to last field infested in Texas is the distance between the last infested sorghum field in Texas and the sorghum field in 



 

96 
 

Oklahoma. Distance to first south field infested in Oklahoma is distance between the sorghum field where the first infestation occurred in 

Oklahoma and other fields in Oklahoma. The population per plant is the number of wing/wingless sugarcane aphid per sorghum plant. 

TAVG, RAIN, Angle are the median of temperature, rainfall, and angle of wind direction variables from the first infestation date in 

Oklahoma to the first infestation date.
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Table 2-6. Field Ties by Date of Infestation Report 

Date 

(M/D) 

Number 

of Tie 

Fields 

ID 
Total Population 

per Plant 
Region Latitude Longitude 

05/31  2 
24 0.08 swok 34.900 -98.864 

27 0.06 swok 34.985 -98.603 

06/16  3 

40 0.02 ncok 36.262 -97.369 

44 0.01 ncok 36.232 -97.073 

45 0.02 ncok 36.257 -97.073 

06/19 2 
25 0.04 swok 34.677 -98.862 

26 0.03 swok 34.912 -98.639 

07/10  2 
29 0.06 ncok 36.233 -98.036 

39 0.06 ncok 36.810 -97.433 

07/13  2 
19 2.08 swok 34.585 -99.283 

22 6.99 swok 34.644 -99.246 

07/25  2 
42 0.01 ncok 37.059 -97.181 

47 0.05 ncok 36.934 -97.058 

08/03  3 

36 0.02 ncok 36.532 -97.586 

37 0.18 ncok 36.702 -97.554 

41 2.69 ncok 37.056 -97.231 

08/16  10 

2 0.25 phok 36.733 -102.466 

3 0.02 phok 36.769 -102.264 

4 0.03 phok 36.758 -102.182 

6 0.25 phok 36.765 -101.703 

7 3.28 phok 36.679 -101.339 

9 0.06 phok 36.615 -100.841 

12 0.02 phok 36.529 -100.568 

14 0.19 phok 36.630 -100.277 

16 0.29 phok 36.621 -99.982 

17 0.05 phok 36.601 -99.660 

08/29  2 
8 0.84 phok 36.617 -100.925 

10 1.61 phok 36.620 -100.714 

08/30  3 

23 0.03 swok 34.407 -99.168 

28 9.1 swok 35.467 -98.076 

34 518.78 swok 35.465 -97.874 

Note: region means the northwest (ph), southwest (sw), and north-central (nc) regions, 

respectively. 
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Figure 2-4. Direction and Angle of the 16-wind Compass 
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