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Abstract: Digital twins (DTs) are virtual entities that serve as the real-time digital
counterparts of actual physical systems across their life-cycle. In a typical applica-
tion of DTs, the physical system provides sensor measurements and the DT should
incorporate the incoming data and run different simulations to assess various sce-
narios and situations. As a result, an informed decision can be made to alter the
physical system or at least take necessary precautions, and the process is repeated
along the system’s life-cycle. Thus, the effective deployment of DTs requires fulfilling
multi-queries while communicating with the physical system in real-time. Nonethe-
less, DTs of large-scale dynamical systems, as in fluid flows, come with
three grand challenges that we address in this dissertation.

First, the high dimensionality makes full order modeling (FOM) methodologies unfea-
sible due to the associated computational time and memory costs. In this regard, re-
duced order models (ROMs) can potentially accelerate the forward simulations by or-
ders of magnitude, especially for systems with recurrent spatial structures. However,
traditional ROMs yield inaccurate and unstable results for turbulent and convective
flows. Therefore, we propose a hybrid variational multi-scale framework that benefits
from the locality of modal interactions to deliver accurate ROMs. Furthermore, we
adopt a novel physics guided machine learning technique to provide on-the-fly cor-
rections and elevate the trustworthiness of the resulting ROM in the sparse data and
incomplete governing equations regimes.

Second, complex natural or engineered systems are characterized by multi-scale, multi-
physics, and multi-component nature. The efficient simulation of such systems re-
quires quick communication and information sharing between several heterogeneous
computing units. In order to address this challenge, we pioneer an interface learning
(IL) paradigm to ensure the seamless integration of hierarchical solvers with different
scales, physics, abstractions, and geometries without compromising the integrity of
the computational setup. We demonstrate the IL paradigm for non-iterative domain
decomposition and the FOM-ROM coupling in multi-fidelity computations.

Third, fluid flow systems are continuously evolving and thus the validity of the DT
should be warranted across varying operating conditions and flow regimes. To do so,
we embed data assimilation (DA) techniques to enable the DT to self-adapt based on
in-situ observational data and efficiently replicate the physical system. In addition,
we combine DA algorithms with machine learning models to build a robust framework
that collectively addresses the model closure problem, the error in prior information,
and the measurement noise.
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CHAPTER 1

Introduction

1.1 Motivation and Scope of Current Work

With the advent in modeling and simulation capabilities as well as the availability

of modern data acquisition facilities, it is desired nowadays to seek ways that help

understand the world in a more dynamic and interactive way than ever before. De-

fined as the virtual counterpart of a physical system across its life-cycle, digital twin

(DT) technologies have placed themselves as an appealing solution in what is called

the fourth wave of industrial revolution (also known as Industry 4.0). DTs are not

only useful during the conceptualization and prototyping phases, but also during the

operation phase. Typically, the physical system sends real-time measurements and

observations to its DT which in turn runs multiple simulations to make predictions for

candidate what-if scenarios. These predictions are eventually embedded in a decision-

making process for active control, risk management, and monitoring purposes. Since

the physical system and its DT need to be communicated and coupled continuously,

efficient model-data fusion techniques are necessary for the reliable implementation

of DTs.

The objective of this dissertation is to develop efficient, accurate, and reliable

model-data fusion frameworks that address key challenges associated with large scale

dynamical systems, like those encountered in geophysical fluid flow systems. In par-

ticular, we focus on three major aspects of such systems: (1) dimensionality, (2) com-

plexity, and (3) evolution as shown in Fig. 1.1. The higher dimensionality dictates

the need to develop lightweight proxy models that are capable of providing reliable

predictions in near real-time. Common reduced order modeling techniques are briefly

outlined in Section 1.2 and our developments along these lines are presented in Part I.

In addition, the complexity of the system poses significant challenges for monolithic

computing environments due to the disparity of resolved temporal and spatial scales.

Alternatively, different solvers can be dedicated to different scales, physics, geome-

tries, and components and eventually information should be passed among these
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computing units. Section 1.3 and Part II respectively introduce and showcase the

new interface learning (IL) paradigm that we design to address various modeling and

data interfaces that appear in many forms in modern computational workflows and

can threaten computational efficiency, data integrity, or physical coupling. Finally,

Section 1.4 highlight the need to build self-adaptive models as the actual system un-

dergoes changes in the operation conditions or flow regimes. Part III details how we

combine machine learning, modal analysis, physical arguments, and data assimila-

tion to build efficient models where the underlying parameters and model outputs are

updated using new data streams.

Figure 1.1: A schematic representation of digital twin frameworks and the scope of
this dissertation.
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1.2 Fluid Flows Are High-Dimensional

Classical computational fluid dynamics (CFD) solving the full order model (FOM)

of the underlying system cannot fulfill the multi-query nature of DTs due to the

associated computational time and memory costs. Fluid flows are often extremely

high-dimensional once a standard discretization approach is applied. While the DT

is required to operate in real-time, a single run of the FOM simulations can take

hours, or even days, which makes the decision making process too delayed. In this

regard, reduced order models (ROMs) offer a key enabler for next-generation DT

frameworks. In general, ROMs present approximate substitutes to the original system

that are cheaper to solve and analyze while retaining the essential characteristics of

the original system. Significant successes of ROM efforts have largely relied on the

fact that high dimensional systems are often dominated by a few number of underlying

structures controlling most of the bulk mass, momentum, and energy transfer. ROMs

can be built by using available data to identify and rank these structures, choosing

the most effective few of them, and tracking their dynamical behavior in order to

approximate the evolution of the underlying flow. The computational cost of the

relatively low-dimensional ROMs is dramatically lower than the computational cost

of a direct numerical simulation that aims at capturing all the flow scales.

Reduced order modeling techniques can be widely sorted into three classes: (a)

intrusive methods that require knowledge of the underlying governing equations to

derive the ROM, (b) non-intrusive techniques that rely solely on the data to identify

approximate flow maps, and (c) hybrid techniques that aim at drawing from both

approaches. A brief overview of these methodologies is presented here while a detailed

discussion can be found in our recent review article on ROM techniques [1].

Intrusive reduced order models Classical ROM efforts have been mainly focused

on projection-based techniques, where the governing equations are projected onto a

set of basis functions that define a reduced order representation (ROR). Physically

interpretable RORs are possible when dominant coherent structure are present. This

is clearly ubiquitous in the fluid flows that we encounter in our daily life as well as

in large-scale and industrial settings. For spatio-temporal dynamical systems, the

rank-r ROR of the state u(x, t) can be simply written as

u((x, t) =
r∑
i=1

ai(t)ψi((x), (1.1)
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where x refers to the spatial coordinates, t is the time, ψi denotes the i-th mode in

the ROR, and ai is the corresponding amplitude or coefficient. In fluid dynamics

community, proper orthogonal decomposition (POD) is, generally speaking, the most

popular and effective technique to produce hierarchically ordered solution-adapted

basis functions (or modes) that provide the optimal basis to represent a given collec-

tion of field data or snapshots.

To emulate system’s dynamics and make predictions for the time-dependent co-

efficients ai, a surrogate model is often built by performing a Galerkin projection of

the FOM operators onto a reduced rank subspace spanned by the selected POD

modes. For computational efficiency, Galerkin ROMs (GROMs) usually work in

under-resolved regimes. This means that a severe modal truncation is performed,

keeping only the first few leading POD modes. The repercussions of the Galerkin

truncation and projection is two-fold (see Fig. 1.2). First, the representability of the

resulting subspace (i.e., approximating the state as a linear superposition of the re-

tained POD basis functions) is limited, giving rise to the projection error. Second,

the interactions between the truncated and the retained modes can be significant

and those interactions are often discarded in the Galerkin projection step. Thus, the

GROM cannot capture the dynamics of the resolved modes accurately, introducing

a closure error. As a result, traditional ROMs yield inaccurate and unstable predic-

tions for stiff systems and convection-dominated flows, which affects the reliability of

ROMs for realistic applications and hinders their applicability in DT frameworks.
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Figure 1.2: An illustration of error sources in GROM as example of intrusive ROMs
(adapted from Ahmed et al. [2]).

Nonintrusive reduced order models The emergence and popularity of data-

driven tools and open-source software libraries have given rise to a new class of ROM

techniques that rely solely on data to define a surrogate model. These are often

denoted as nonintrusive ROMs (NIROM) or physics-agnostic ROMs since they do

not require access to the governing equations or modification to the source codes of
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available solvers [3, 4]. Nonintrusive approaches are attractive due to their porta-

bility since they do not necessarily require the exact form of the equations or the

methods used to generate the data. In addition, nonintrusive models offer a unique

advantage in multidisciplinary collaborative environments, where only specific data

can be shared without revealing the proprietary or sensitive information. Nonintru-

sive approaches are also useful when the detailed governing equations of the problem

are unknown. This modeling approach can benefit from the enormous amount of

data collected from experiments, sensor measurements, and high-fidelity simulations

to build NIROMs based on the assumption that data is a manifestation of all the

underlying dynamics and processes.

Machine learning (ML) tools, in particular artificial neural networks (ANNs)

equipped with the universal approximation theorem [5], have been widely used in

this regard. A typical feed-forward neural network is depicted in Fig. 1.3, where a

mapping M from the input X to the output Y = M(X ) is inferred through a

learning algorithm. For example, the Galerkin projection of intrusive ROM in Sec-

tion 1.2 can be bypassed and a NIROM can be constructed by using ANNs to learn

the mapping from the current values of a = [a1, a2, . . . , ar] to their future values in a

sequential implementation. The application of variants of ANNs as regression models

for the dynamics of low-order states (e.g., POD amplitudes) has gained substantial

popularity [6–8]. In addition, ANNs can be utilized to identify a latent space with

lower dimensionality than POD using auto-encoder architectures, see Fig. 1.4. This

is a hot topic and dozens of new papers appear every week in different journals and

conferences all over the world, dealing with different aspects of NIROM based on

ANNs (e.g., different architectures, test bed problem, and error bounds).

Another family of NIROM that has gained special attention in recent years is the

dynamic mode decomposition (DMD) based on the Koopman approximation theory.

This approximation relies on a transformation that lifts the dynamics from state space

where dynamics might be nonlinear to the observable space where the dynamics

are linear but infinite-dimensional (see Fig. 1.5). DMD can be viewed as a data-

driven approximation of the Koopman operator spectrum and it can be applied to

both experimental and numerical data. In DMD, each mode is associated with a

unique growth/decay rate and oscillation frequency. Therefore, DMD not only reveals

information about the system’s spatial characteristics, but also delivers knowledge

about the system’s temporal evolution, resulting in a purely data-driven ROM [9].
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Figure 1.3: A schematic diagram of a typical feed-forward neural network with an
input layer, hidden layers, and an output layer (adapted from Ahmed et al. [1]).
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Figure 1.4: A schematic diagram for an autoencoder (AE) for latent space construc-
tion, where the input X is the full field, the output Y designates its reconstruction,
and the bottleneck Z represents the latent space (compressed) variables (adapted
from Ahmed et al. [1]).

Figure 1.5: The Koopman viewpoint: while the original system with state x evolves
according toM on a nonlinear manifold (left), the selection of appropriate observables
y = g(x) provides a substitute system where the dynamics can be approximated using
a linear flow map (right) (adapted from Ahmed et al. [10]).
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Hybrid reduced order models While physics-based GROMs are generally more

interpretable and generalizable than NIROM, the latter has the capability to effi-

ciently assimilate different sources of data and make use of advances in ML and data

analytic tools. The preference of one approach over the other is not often a clear-cut

choice. Therefore, hybrid ROMs aim to maintain the advantages of both intrusive

and nonintrusive ROM methodologies and mitigate their limitations by combining

key ideas and principles from physics-based modeling with the capabilities of modern

data-driven tools. In this regard, we propose two hybrid frameworks that leverage

the generalizability, interpretability and robustness of GROMs while complementing

them with data-driven capabilities to improve their accuracy and efficiency.

• In the first framework, we introduce an uplifted reduced order modeling (UROM)

approach through the integration of standard projection based methods with

long short-term memory (LSTM) embedding. UROM has three modeling lay-

ers or components to enable accurate and efficient predictive capabilities. In

the core layer, we utilize an intrusive projection approach to model the dynam-

ics represented by the largest modes. Then, the second layer consists of an

LSTM model to account for the residual effect of the discarded modes onto the

dynamics of the largest scales. Finally, the third layer employs an uplifting op-

eration that expands the span of the ROR by learning the correlations between

the leading and trailing modes in the POD expansion. This layer introduces a

super-resolution effect by recovering some of the truncated flow scales at desired

times. Therefore, our model integrates a physics-based projection model with a

memory embedded LSTM closure and an LSTM based super-resolution model.

Moreover, the generalizability of UROM for unseen conditions is enhanced by

employing efficient Grassmann manifold interpolation techniques.

• In the second approach, we propose a hybrid variational multi-scale (VMS)

framework that benefits from the locality of energy transfer and modal inter-

actions to deliver an accurate ROM trajectory. In particular, we leverage the

VMS framework to characterize the hierarchical structure of the ROM basis.

In the first step, ROM projection is used to naturally separate the scales into

three categories: (i) resolved large scales, (ii) resolved small scales, and (iii)

unresolved scales. In the second step, the terms representing the interactions

among the three types of scales are explicitly identified and we employ the ANN

to provide on-the-fly corrections to different ROM scales.
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Furthermore, we adopt a novel physics-guided machine learning (PGML) method-

ology to elevate the trustworthiness of traditional ML models such as ANNs in

real physical situations. We modify the ANN architectures by utilizing layer

concatenation to inject physical information at different points in the ANN la-

tent space. This adaptation improves the performance during both the training

and deployment phases and results in significant reduction in the uncertainty

levels of the model prediction, especially in the sparse data and incomplete

governing equations regimes. We extend the PGML algorithms to model the

interaction among the three types of ROM scales and build ROM operators that

are closest to the true terms evaluated with FOM. Moreover, we develop a mod-

ular nonlinear POD (NLPOD) methodology to reduce the projection error by

considering the correlations amongst the small unresolved scales. In particular,

a feedforward autoencoder is employed to to learn a latent space representation

of the unresolved ROM scales that yield a near-full rank approximation of the

flow field. The evolution of the latent space variables for the unresolved scales

is emulated using an LSTM neural network. Therefore, we address different

errors resulting from the Galerkin POD approach in a hybrid framework that

benefits from the locality of energy transfer, which is one of the cornerstone of

the VMS method.

1.3 Complex Systems Are Multi-X

The second thrust of our model-data fusion developments is related to the system

complexity. In particular, complex systems that constitute the target of the next

generation of digital twins are often characterized by a multi-scale, multi-physics and

multi-component (multi-X for short) nature. In a naive implementation, the stiffest

part of the system dictates the overall spatial mesh resolution and time stepping re-

quirements, making the numerical simulations computationally daunting. Instead, an

ensemble of different solvers should be considered to address different scales, physics,

domains and/or geometries. Nonetheless, efficient simulations of such systems re-

quire quick communication and information sharing between several heterogeneous

computing units. In order to address this challenge, we establish the interface learn-

ing (IL) paradigm shift to allow the seamless integration of hierarchical solvers with

different levels of complexity, fidelity and abstractions. We foresee that the develop-

ment of IL techniques will have far reaching impacts on a large variety of problems as

8



shown in Fig. 1.6. We also highlight that IL enables us to focus certain computational

resources on the region or scales of interest.

Multiphysics
& 

multiscale

Geometric
multiscale

INTERFACE
LEARNING

ROM-FOM
coupling

Domain
decomposition

Nested
solvers

Model fusion

Toward non-iterative domain decompositionFocus on coherent dynamics and patterns
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Classification and blendingAn informed extrapolation

Effective cyberinfrastructure

Generate a reduced order model (ROM)
representation for zones with coherent
structures to supplement full order model (FOM)
simulations, e.g., active flow control applications
to delay separation

Identify the interactions between
various physical phenomena at a
scale and mitigate resources
optimally considering e.g., fast and
slow dynamics, microscale and
macroscale descriptions, constitutive
models, fluid-structure interactions 

Establish a mechanism to provide accurate
prolongation operations from a low fidelity
(averaged) space to a high fidelity space, e.g.,
coupling between 0D lumped, 1D distributed, and
full 3D models in cardiovascular system modeling  

Utilize archival space-time background
information for reducing communication

cost, relaxing synchronization, and
improving load balancing

Develop a hierarchical spectral
nudging approach for complex

dynamical systems and architect
machine learning models to bridge

these nested solvers in an
automated fashion

Train machine learning (i.e., reinforcement
learning) tools for a continuous decision making

toward scale-aware and physics-specific blending
mechanisms among numerous models, e.g.,

smart hybridization criteria for RANS/LES models

Figure 1.6: Overview of the interface learning paradigm considering numerous scien-
tific and engineering interpretations.

We demonstrate the success of IL in two potential applications of particular in-

terest in multi-scale and multi-physics problems as follows:

• We propose an IL framework that allows for system partitioning and non-

iterative domain decomposition by utilizing time history of data to infer physically-

consistent boundary conditions at the interface to reduce the communication

costs between different computing units. Moreover, we put forth the concept

of upwind learning towards a physics-informed domain decomposition to en-

able IL for hyperbolic systems by considering the domain of influence and wave

structures into account. We highlight that high-performance computing envi-

ronments can benefit from this methodology to reduce communication costs

among processing units in emerging ML-ready heterogeneous platforms toward

exascale era.

• We devise an IL methodology that enable the efficient coupling of multi-fidelity

solvers. In particular, we consider scenarios where parts of the domain and

physics are emulated using a lower fidelity ROM while the rest of the compu-

tational domain is resolved using higher fidelity FOM as shown in Fig. 1.7. We

demonstrate the advantages of IL by developing a series of data-augmented cor-

rection, uplifting and prolongation mappings that communicate the information

between different solution spaces and varying fidelities.
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Figure 1.7: Hybrid analysis and modeling as a key enabler for FOM-ROM coupling
problems toward predictive digital twins.

1.4 Dynamical Systems Are Evolving

Surrogate models embedded in DT frameworks are often parameterized using pre-

recorded data or prior knowledge about the system. However, fluid flow systems

evolve continuously on high-dimensional nonlinear solution manifold, spanning a wide

range of flow regimes and operating conditions. Unless the system exhibits a limit

cycle behavior or quasi-steady state dynamics, it is highly possible that a model

calibrated at some conditions becomes invalid as the system evolves to other condi-

tions. Therefore, the reliability of the DT is highly dependent on the ability of the

underlying models to efficiently self-adapt to new situations. With measurements

and observational data being continuously collected, efficient model-data fusion are

desired to maintain the correspondence and matching between the physical system

and its digital counterpart. Sensor are often sparse and subject to external disrup-

tions (e.g., noise). In addition, we might not be able to measure the model’s state

directly, but only a function of it. We extend data assimilation (DA) and Bayesian

inversion methodologies to update the model’s parameters based on the live streams

of sensor data. DA is a family of algorithms that combine dynamical models with

observational data to account for missing processes in the governing equations, er-

rors in model’s parameters and incorrect initial and boundary conditions. DA has a

long history of decades in numerical weather predictions and is being used on a daily

basis in operational centers to make reliable forecasts. We refer interested readers to
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our introductory article on popular DA techniques with step-by-step implementation

tutorials [11].

In order to enable the efficient communication of DT with the physical system

and augment the reliability of the resulting predictions, the following frameworks are

developed:

• First, we employ a variational approach based on the forward sensitivity method-

ology to improve the surrogate model’s prediction by correcting its parameters.

In particular, we utilize physical arguments based on energy transfer analysis

to define scale-aware closure models that counteract the effect of ROM trunca-

tion. Streams of sparse and noisy measurements are then assimilated in a hybrid

model-data fusion framework to dynamically update components of these clo-

sure models.

• Second, we design a deep learning methodology that complement classical nudg-

ing approaches to estimate the discrepancy between the model’s forecast and

the target values. In particular, an LSTM-Nudging approach is implemented

to correct the GROM predictions using new observational data that are sparse

both in space and time. This framework collectively addresses the model closure

problem, the uncertainty in prior model’s structure and initialization, and the

measurement noise.

1.5 Dissertation Outline

The rest of this dissertation is split into three main parts. Part I is dedicated to

building accurate surrogate using reduced order modeling methodologies to fulfill the

multi-query and real-time response requirements of DTs. In Chapter 2, we develop the

uplifted reduced order model (UROM) framework to learn the discrepancy between

Galerkin ROM predictions and their optimal values that yield the lowest reduced

order representation (ROR) error. In addition, the uplifting component of UROM

aims at using the relationships between different ROM scales to recover some of the

small scales in the reconstructed flow fields. In Chapter 3, we propose a hybrid varia-

tional multi-scale (VMS) framework that leverage the physics guided machine learning

(PGML) algorithm to construct novel and robust models for the interaction among

the ROM scales. Moreover, we describe the nonlinear proper orthogonal decomposi-

tion (NLPOD) methodology to learn a compressed representation of the unresolved
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scales to reduce the projection error and improve the flow field predictions.

In Part II, we put forth the interface learning (IL) paradigm to account for different

modeling and data interfaces that appear among computational units. In Chapter 4,

we motivate the need for IL with a discussion on potential areas or applications that

can benefit from the IL methodologies. Demonstrations for non-iterative domain de-

composition are provided for a set of flow problems governed by hyperbolic dynamics.

We extend the IL for the efficient coupling of FOMs and ROMs in Chapter 5, with

application to multi-component and multi-physics problems.

The adaptability of DT to evolving flow regimes is addressed in Part III. In par-

ticular, Chapter 6 shows how the stream of sparse and noisy measurements can be

embedded in a forward sensitivity analysis framework to learn and update scale-aware

closure terms. In addition, the combination of machine learning capabilities with data

assimilation algorithms is depicted in Chapter 7 where an LSTM-Nudging framework

is developed for the wake-vortex transport and decay problem. Concluding remarks

and outlook regarding the proposed hybrid physics-based and data-driven frameworks

to enable next-generation of digital twins are drawn in Chapter 8.
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CHAPTER 2

A Long Short-Term Memory Embedding for Hybrid Uplifted Reduced

Order Models

2.1 Abstract

In this chapter, we introduce an uplifted reduced order modeling (UROM) approach

through the integration of standard projection based methods with long short-term

memory (LSTM) embedding. Our approach has three modeling layers or components.

In the first layer, we utilize an intrusive projection approach to model the dynamics

represented by the largest modes. The second layer consists of an LSTM model to

account for residuals beyond this truncation. This closure layer refers to the process

of including the residual effect of the discarded modes into the dynamics of the largest

scales. However, the feasibility of generating a low rank approximation tails off for

higher Kolmogorov n-width systems due to the underlying nonlinear processes. The

third uplifting layer, called super-resolution, addresses this limited representation

issue by expanding the span into a larger number of modes utilizing the versatility

of LSTM. Therefore, our model integrates a physics-based projection model with a

memory embedded LSTM closure and an LSTM based super-resolution model. In

several applications, we exploit the use of Grassmann manifold to construct UROM

for unseen conditions. We perform numerical experiments by using the Burgers and

Navier-Stokes equations with quadratic nonlinearity. Our results show the robustness

of the proposed approach in building reduced order models for parameterized systems

and confirm the improved trade-off between accuracy and efficiency.

2.2 Introduction

Physical models are often sought because of their reliability, interpretability, and

generalizability being derived from basic principles and physical intuition. However,

This chapter is adapted from: Ahmed, S. E., San, O., Rasheed, A., & Iliescu, T. (2020). A
long short-term memory embedding for hybrid uplifted reduced order models. Physica D: Nonlinear
Phenomena, 409, 132471.
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accurate solution of these models for complex systems usually requires the use of very

high spatial and temporal resolutions and/or sophisticated discretization techniques.

This limits their applications to offline simulations over a few set of parameters and

short time intervals since they can be excessively computationally-demanding. Al-

though those are valuable in understanding physical phenomena and gaining more

insight, realistic applications often require near real-time and multi-query responses

[12, 13]. Therefore, cheaper numerical approximations using “adequate-fidelity” mod-

els are usually acceptable [14]. In this regard, reduced order modeling offers a viable

technique to address systems characterized by underlying patterns [15–23]. This is

especially true for fluid flows dominated by coherent structures (e.g., atmospheric and

oceanic flows) [24–32].

Reduced order models (ROMs) have shown great success for prototypical problems

in different fields. In particular, Galerkin projection (GP) coupled with the capability

of proper orthogonal decomposition (POD) to extract the most energetic modes has

been used to build ROMs for linear and nonlinear systems [33–40]. These ROMs

preserve sufficient interpretability and generalizability since they are constructed by

projecting the full order model (FOM) operators (from governing equations) on a

reduced subspace. Despite that, Galerkin projection ROMs (GROMs) have severe

limitations in practice, especially for systems with strong nonlinearity. Most fluid

flows exhibit quadratic nonlinearity, which makes the computational cost of the re-

sulting GROMs ∼ O(R3), where R is the number of retained modes in the ROM

approximation. As a result, R should be kept as low as possible (e.g., O(5)) through

modal truncation for practical purposes; however, this has two main consequences.

First, the solution is enforced to live in a smaller subspace which might not con-

tain enough information to accurately represent complex realistic systems. Examples

include advection-dominated flows and parametric systems where the decay of Kol-

mogorov n-width is slow [41–43]. Second, due to the inherent system’s nonlinearity,

the truncated modes interact with the retained modes. In GROM, these interactions

are simply eliminated by modal truncation, which often generates instabilities in the

approximation [44–46]. Several efforts have been devoted to introduce stabilization

and closure techniques [47–64] to account for the effects of truncated modes on ROM’s

dynamics.

In the present study, we aim to address the above problems while preserving

considerable interpretability, and generalizability at the core of our uplifted ROM

(UROM) approach. In UROM, we present a three-modeling layer framework. In the
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first layer, we use a standard Galerkin projection method based on the governing

equations to model the large scales of the flow (represented by the first few R POD

modes) and provide a predictor for the temporal evolution. In the next layer, we

introduce a corrector step to correct the Galerkin approximation and make up for the

interactions of the truncated modes (or scales) with the large ones. These large scales

contribute most to the total system’s energy. That is why we dedicate two layers of

our approach to correctly resolve them, one of which (i.e., the Galerkin projection) is

totally physics-based to promote framework generality. In the third layer, we uplift

our approximation and expand the solution subspace to recover some of the flow’s

finer details by learning a map between the large scales (predicted using the first two

layers) and smaller scales.

In particular, we choose the first R ≈ O(5) modes to represent the resolved largest

scales and the next Q − R modes to represent the resolved smaller scales, where Q

is about 4 to 8 times larger than R. For the second and third layers, we incorporate

memory embedding through the use of long short-term memory (LSTM) neural net-

work architecture [65, 66]. Machine learning (ML) tools (of which neural networks

is a subclass) have been gaining popularity in fluid mechanics community and anal-

ysis of dynamical systems [67–75]. In particular, LSTMs have shown great success

in learning maps of sequential data and time-series [76–81]. It should be noted here

that UROM can be thought of as a way of augmenting physical models with data-

driven tools [82] and vice versa. For the former, an LSTM closure model (second

component) is developed to correct GROM and an LSTM super-resolution model

(third component) is constructed to uplift GROM and resolve smaller scales. This

relaxes the computational cost of GROM to account only for a few R modes. On the

other hand, LSTMs in UROM framework are fed with inputs coming from a physics-

based approach. This is one way of utilizing physical information rather than full

dependence on ML results.

To illustrate the UROM framework, we consider two convection-dominated flows

as test cases. The first is the one-dimensional (1D) Burgers equation, which is a

simplified benchmark problem for fluid flows with strong nonlinearity. As the sec-

ond test case, we investigate the two-dimensional (2D) Navier-Stokes equations for a

flow with interacting vortices, namely the vortex merger problem. We compare the

UROM approach with the standard GROM approach using R and Q modes. We

also investigate a fully non-intrusive ROM (NIROM) approach in these flow prob-

lems. We perform a comparison in terms of solution accuracy and computational
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time to show the pros and cons of UROM with respect to either GROM or NIROM

approaches. The rest of the chaptre is outlined here. In Section 2.3, we introduce the

POD technique for data compression and constructing lower-dimensional subspaces

to approximate the solution. For an out-of-sample control parameter (e.g., Reynolds

number), we describe basis interpolation via a Grassmann manifold approach in Sec-

tion 2.4. As a standard physics-informed technique for building ROMs, we introduce

Galerkin projection in Section 2.5 with a brief description of the governing equations

of the test cases as well as their corresponding GROM structures. In Section 2.6, we

present the proposed UROM framework with a description of its main features. We

give results and corresponding discussions in Section 2.7. Finally, we draw concluding

remarks and insights in Section 2.8.

2.3 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) is one of the most popular techniques for

dimensionality reduction and data compression [83, 84, 24, 85, 86]. Given datasets,

POD provides a linear subspace that minimizes the projection error between the

true data and its projection compared to all possible linear subspaces with the same

dimension. If a number of Ns data snapshots, u(x, tn), where n ∈ {1, 2, . . . , Ns}, x ∈
RN (N being the spatial resolution), are collected in a snapshot matrix A ∈ RN×Ns

(where N is much larger than Ns for typical flow problems), then a reduced (or thin)

singular value decomposition (SVD) can be applied to this matrix as

A = UΣVT , (2.1)

whereU ∈ RN×Ns is a matrix with orthonormal columns representing the left-singular

vectors of A, also known as spatial basis, and V ∈ RNs×Ns is also a matrix with

orthonormal columns which represent the right-singular vectors, sometimes referred

to as temporal basis. Σ ∈ RNs×Ns is a diagonal matrix whose entries are the singular

values of A (square-roots of the largest Ns eigenvalues of AAT or ATA). In Σ, the

singular values σi are sorted in a descending order such that σ1 ≥ σ2 ≥ · · · ≥ σNs ≥ 0.

For dimensionality reduction purposes, only the first R columns of U (denoted as

Û), the first R columns of V (denoted as V̂), and the upper-left R × R block sub-

matrix of Σ (denoted as Σ̂) are retained to provide a reduced order approximation
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Â of A as

Â = ÛΣ̂V̂T . (2.2)

It can be easily shown that this approximation Â satisfies the following infimum [87]

∥A− Â∥2 = inf
B∈RN×Ns

rank(B)≤R

∥A−B∥2 (2.3)

∥A− Â∥2 = σR+1, (2.4)

where ∥·∥2 refers to the matrix 2-norm. Equation (2.3) means that across all possible

matrices B ∈ RN×Ns of rank R (or less), Â provides the closest one to A in the ℓ2

sense. Moreover, the singular values {σi} provide a measure of the quality of this

approximation as Eq. (2.4) shows that the ℓ2 norm between the matrix A and its

R-rank approximation equals to σR+1. From now on, the first R columns of U will

be referred to as the POD modes or basis function, denoted as Φ = [ϕ1, ϕ2, . . . , ϕR].

2.4 Grassmann Manifold Interpolation

In recent years, Grassmann manifold has attracted great interest in various applica-

tions including model order reduction for parametric systems [88–92]. The Grassmann

manifold, G(q,N), is a set of all q-dimensional subspaces in RN , where 0 ≤ q ≤ N .

A point [Φ] ∈ G(q,N) is given as [93]

[Φ] = {ΦQ
∣∣ ΦTΦ = Iq, Q ∈ O(q)}, (2.5)

where Φ ∈ RN×q and O(q) is the group of all q × q orthogonal matrices. This point

represents a q-dimensional subspace S in RN spanned by the columns of Φ. At each

point [Φ] ∈ G(q,N), a tangent space T ([Φ]) of the same dimension, N × q, can be

defined as follows [94, 95]

T ([Φ]) = {X ∈ RN×q ∣∣ ΦTX = 0}. (2.6)

Similarly, each point [Γ] on T represents a subspace spanned by the columns of Γ.

This tangent space is a vector space with its origin at [Φ]. An exponential mapping
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from a point [Γ] ∈ T ([Φ]) to [Ψ] ∈ G(q,N) can be defined as

Ψ =

(
ΦV cos (Σ) +U sin (Σ)

)
VT , (2.7)

where U, Σ, V are obtained from the reduced SVD of Γ as Γ = UΣVT . Inversely,

a logarithmic map can be defined from a point [Ψ] in the neighborhood of [Φ] to

[Γ] ∈ T ([Φ]) as

Γ = U tan−1 (Σ)VT , (2.8)

where (Ψ−ΦΦTΨ)(ΦΨ)−1 = UΣVT . We would like to note here that the trigono-

metric functions are applied element-wise to the diagonal entries.

To demonstrate the procedure in our ROM context, for a number Np of control

parameters {µi}Np

i=1, different sets of POD basis functions are computed corresponding

to each parameter, denoted as {Φi}Np

i=1. These bases correspond to a set of points

on the Grassmann manifold G(R,N). To perform an out-of-sample testing, the basis

functions ΦTest for the test parameter µTest should be computed through interpola-

tion. However, direct interpolation of the POD bases is not effective since it is an

interpolation on a non-flat space and it does not guarantee that the resulting point

would lie on G(R,N). Moreover, the optimality and orthonormality characteristics of

POD are not necessarily conserved. Alternatively, the tangent space T is a flat space

where standard interpolation can be performed effectively. First, a reference point at

the Grassmann manifold is selected, corresponding to ΦRef. The tangent plane at this

point is thus defined using Eq. (2.6). Then, the neighboring points on Grassmann

manifold corresponding to the subspaces spanned by {Φi}Np

i=1 are mapped onto that

tangent plane using the logarithmic map, defined in Eq. (2.8) to calculate {Γi}Np

i=1.

Standard Lagrange interpolation can be performed to compute ΓTest as follows

ΓTest =

Np∑
i=1

( Np∏
j=1
j ̸=i

µTest − µj
µi − µj

)
Γi. (2.9)

Finally, the point [ΓTest] ∈ T ([ΦRef]) is mapped to the Grassmann manifold G(R,N)

to obtain the set of POD basis functions at the test parameter, ΦTest, using the

exponential map given in Eq. (2.7). Hence, an interpolation on the tangent plane to

Grassmann manifold provides a basis of the same dimension (i.e., [ΦTest] ∈ G(R,N)).
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Moreover, it preserves the orthonormality of the basis (i.e., the columns of ΦTest

are orthonormal to each other). Those properties are not guaranteed if conventional

interpolation techniques are used directly to inpterpolate basis.

2.5 Galerkin Projection

To emulate the system’s dynamics in ROM context, a Galerkin projection is usually

performed. In Galerkin projection-based ROM (GROM), the solution u(x, tn) is

constrained to lie in a trial subspace S spanned by the basis Φ. In our study, this

basis is computed using the POD method presented in Section 2.3. Then, the full-

order operators are projected onto the same subspace S. In other words, the residual

of the governing ODE is enforced to be orthogonal to S. Galerkin projection can be

viewed as a special case of Petrov-Galerkin method [96–99], by utilizing the same trial

subspace as a test subspace. In the following, we present the governing equations for

our test cases, namely Burgers equation and Navier-Stokes equations as well as their

low-order approximations.

2.5.1 1D Burgers equation

The one-dimensional (1D) viscous Burgers equation represents a standard benchmark

for the analysis of nonlinear advection-diffusion problems in a 1D setting with sim-

ilar quadratic nonlinear interaction and Laplacian dissipation. The evolution of the

velocity field u(x, t), in a dimensionless form, is given by

∂u

∂t
+ u

∂u

∂x
=

1

Re

∂2u

∂x2
, (2.10)

where Re is the dimensionless Reynolds number, defined as the ratio of inertial effects

to viscous effects. Equation (2.10) can be rewritten as

∂u

∂t
=

1

Re

∂2u

∂x2
− u∂u

∂x
. (2.11)

Then, the reduced-rank approximation u(x, t) ≈ ∑R
k=1 ak(t)ϕk(x) (where ϕk are the

constructed POD modes and ak are the corresponding coefficients) is plugged into

this equation and an inner product with an arbitrary basis ϕk is performed to give
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the following dynamical ODE, which represents the GROM for the Burgers equation

dak
dt

=
R∑
i=1

Li,kai +
R∑
i=1

R∑
j=1

Ni,j,kaiaj, k = 1, 2, . . . , R, (2.12)

where L and N are the matrix and tensor of predetermined model coefficients corre-

sponding to linear and nonlinear terms, respectively. They are precomputed as

Li,k =
〈 1

Re

∂2ϕi
∂x2

;ϕk
〉
,

Ni,j,k =
〈
− ϕi

∂ϕj
∂x

;ϕk
〉
,

where the angle-parentheses refer to the Euclidean inner product defined as ⟨x,y⟩ =
xTy =

∑N
i=1 xiyi.

We note here that the basis functions ϕk are spatial function and thus, standard

discretization techniques (e.g., finite difference methods) can be used to compute the

required derivatives. Moreover, to compute the inner product in Euclidean space, the

basis functions can be treated as regular vectors (i.e., values of ϕk(x) can be arranged

in a vector as [ϕk(x1), ϕk(x2), . . . , ϕk(xNx)]
T , where Nx is the number of grid points.

2.5.2 2D Navier-Stokes equations

The vorticity-streamfunction formulation of the two-dimensional (2D) Navier-Stokes

equations can be written as

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω, (2.13)

where ω is the vorticity and ψ is the streamfunction. The vorticity-streamfunction

formulation prevents the odd-even decoupling issues that might arise between pressure

and velocity components and enforces the incompressibility condition. The kinematic

relationship between vorticity and streamfunction is given by the following Poisson

equation,

∇2ψ = −ω. (2.14)
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Equations (2.13) and (2.14) include two operators, the Jacobian (J(f, g)) and the

Laplacian (∇2f) defined as

J(f, g) =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
, (2.15)

∇2f =
∂2f

∂x2
+
∂2f

∂y2
. (2.16)

Similar to the 1D Burgers problem, Eq. (2.13) can be rearranged as

∂ω

∂t
=

1

Re
∇2ω − J(ω, ψ). (2.17)

The reduced-rank approximations of the vorticity and streamfunction fields can be

written as follows

ω(x, y, t) ≈
R∑
k=1

ak(t)ϕ
ω
k (x, y), (2.18)

ψ(x, y, t) ≈
R∑
k=1

ak(t)ϕ
ψ
k (x, y). (2.19)

We note that the vorticity and streamfunction share the same time-dependent co-

efficients (ak(t)) since they are related through the kinematic relationship given by

Eq. (2.14) (i.e., streamfunction is not a prognostic variable). Moreover, as POD pre-

serves linear properties, the spatial POD modes for streamfunction can be obtained

from the vorticity modes by solving the following Poisson equations

∇2ϕψk (x, y) = −ϕωk (x, y), k = 1, 2, . . . , R. (2.20)

The GROM for the 2D Navier-Stokes equations is given by the same ODE (Eq. (2.12))

with the following coefficients

Li,k =
〈 1

Re
∇2ϕωi ;ϕ

ω
k

〉
,

Ni,j,k =
〈
− J(ϕωi , ϕψj );ϕωk

〉
.

Similar to the case of 1D Burgers problem, the basis functions are spatial function and

standard discretization techniques can be used to compute the required derivatives.

Moreover, they might be arranged in a vector form to compute the inner product in
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Euclidean space. In 2D case, a reshaping might be necessary to form the vector version

of ϕk(x, y), e.g., [ϕk(x1, y1), ϕk(x2, y1), . . . ϕk(xNx , y1), ϕk(x1, y2), ϕk(x2, y2), . . . , ϕk(xNx , y2),

. . . , ϕk(x1, yNy), . . . , ϕk(xNx , yNy)]
T , where Nx and Ny are the number of grid points

in the x and y directions, respectively.

Due to the modal truncation and inherent nonlinearity in Eq. (2.12), GROM no

longer represents the same system (i.e., it solves a different problem). As a result, the

obtained trajectory from solving the ROM deviates from the projected trajectory, as

shown in Fig. 2.1. Therefore, the optimality of the POD basis is lost. Moreover, due

to the triadic nonlinear interactions, instabilities can occur in GROMs. To mitigate

these problems, closure and/or stabilization techniques are usually required to obtain

accurate results. Increasing the ROM dimension can improve the results. However,

due to the nonlinearity of the resulting ROM, the computational cost of GROM is

O(R3), which severely constrains the ROM dimension used in practical applications.
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Figure 2.1: A representation of error sources in Galerkin ROM (e.g., see [86, 100] for
further details).

We note here that we are adopting the tensorial GROM approach [101], where

the coefficients L and N are computed offline. Other approaches can include online

computations while incorporating the empirical interpolation method (EIM) [102]

or its discrete version, the discrete empirical interpolation method (DEIM) [103] to

reduce the online computational cost.

Although, we focus on the standard GROM with POD in the present study, several

studies have been devoted to address the computational cost and stability/accuracy

trade-off for advection-dominated flows. For example, decomposing the time domain

via a principal interval decomposition approach can produce localized basis functions

and tailor more representative compact subspaces [104, 105], which improves the

ROM accuracy and keeps the online computational cost minimal. Rather than being

restricted to a linear basis, auto-encoders can be used to compute nonlinear subspaces

to approximate the solution manifold [106, 107]. Also, Grimberg et al. [108] recently
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demonstrated that many ROM instabilities can be attributed to the standard Galerkin

projection, and the Petrov-Galerkin approach can mitigate these instabilities and

provide more accurate ROM [96–99].

2.6 Uplifted Reduced Order Modeling

As noted in Section 2.5, the computational cost of GROM is O(R3), which limits

the number of modes to be used in the ROM. This modal truncation has two major

consequences. First, the flow field variable is constrained to lie in a small subspace,

spanned by the very first few modes. For convection-dominated flows or parametric

problems characterized by slow decay of the Kolmogorov n-width, these few modes

may be less representative of the true physical system, which might significantly

reduce the accuracy of the resulting ROM. This is shown as the projection error EΦ⊥

in Fig. 2.1, since the truncated modes are orthogonal to the subspace spanned by

Φ. Second, due to the inherent nonlinearity, the truncated modes (or scales) interact

with the retained ones. Thus, this truncation simply ignores these interactions, often

giving rise to numerical instabilities of solution. This error is represented as EΦ in

Fig. 2.1 since it lies in the same subspace Φ. In our uplifted reduced order modeling

(UROM) framework (presented in Fig. 2.2), we try to address these two problems.

We extend our reduced-order approximation to include the first Q modes, where

Q > R, assuming that the first R modes account for the resolved large scales, and the

next (Q−R) modes represent the resolved small scales (while the remaining truncated

modes account for the unresolved scales). So, the UROM approximation of the true

field u(x, tn) can be expanded as

u(x, tn) ≈
R∑
k=1

ak(t)ϕk(x)︸ ︷︷ ︸
core

(resolved large scales)

+

Q∑
k=R+1

ak(t)ϕk(x)︸ ︷︷ ︸
uplift

(resolved small scales)

, (2.21)

where u is a general notation for the flow field of interest, and ϕk denotes the POD

modes. ak represents the corresponding temporal coefficients (sometimes called the

generalized coordinates), defined as the projection of the field u onto the basis function

ϕk,

ak(t) = ⟨u(x, t);ϕk(x)⟩. (2.22)

Before presenting the UROM framework, we first briefly revisit the Galerkin ROM
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(GROM). Here, we denote the GROM solution as ãk(tn), where the initial condition

ãk(t0) can be computed from the projection of the initial field (at t0) onto the POD

modes (by using Eq. (2.22)). Then, GROM is used to evolve ã in time as

dãk
dt

= G(ãk), (2.23)

which can be numerically solved using a time-stepping integrator,

ãk(tn+1) = ãk(tn) + ∆t
s∑
q=0

βqG(ãk(tn−q)), (2.24)

where s and βq depend upon the numerical scheme used for the time integration. In

the present study, we use the third-order Adams-Bashforth (AB3) method, for which

s = 2, β0 = 23/12, β1 = −16/12, and β2 = 5/12. Here, G(ãk) is obtained by Galerkin

projection (e.g., see Section 2.5) as

G(ãk(tn)) =
R∑
i=1

Li,kãi(tn) +
R∑
i=1

R∑
j=1

Ni,j,kãi(tn)ãj(tn). (2.25)

However, due to the modal truncation and incurred errors and instabilities of GROM

(as discussed in Section 2.5), the resulting predictions ãk from Eqs. (2.23) to (2.25)

become erroneous.

UROM builds on the GROM, but considers the output of GROM at each time step

as a first predictor of ak rather than the final approximation. In other words, starting

from an initial condition ak(t0), we use the same GROM structure (being physics-

inspired) to evolve one time step. In standard GROM, this would be considered the

prediction at t1. Instead, we denote this as âk(t1) and treat it as just an initial guess.

Then, a correction term is introduced to steer âk(t1) to better approximate ak(t1).

This corrected value is subsequently fed back into GROM structure to evaluate âk(t2),

which is then corrected (and so on). Thus, at any time tn, the best-known value of

temporal coefficients (after corrections) is denoted as ak(tn). This is used to compute

an initial guess âk(tn+1) for ak(tn+1) for k = 1, 2, . . . , R (i.e., the large scales) using

âk(tn+1) = ak(tn) + ∆t
s∑
q=0

βqG(ak(tn−q)), (2.26)

After âk(tn+1) is computed from Eq. (2.26), a correction might be introduced before
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evolving GROM to the next time step, i.e., ak(tn+1) = âk(tn+1) + ck(tn+1), where ck

can be considered as the difference between the physics-based model estimate and

the true projection. In other words, the corrected temporal coefficient is assumed to

be the true value of ak (or at least the best-known value), which is therefore used as

input to GROM to evolve one time step further. That is why the corrected ak values

are used to compute the right hand side of Eq. (2.26).

In order to correct GROM results for the first R modes, closure and/or stabiliza-

tion are required. In our framework, we propose the use of LSTM architecture to learn

a correction term to steer the GROM prediction of the modal coefficients {âk(tn)}Rk=1

to the true values {ak(tn)}Rk=1 at each time step. In other words, an LSTM is trained

to learn the map from {âk(tn)}Rk=1 as input to {ck(tn)}Rk=1 as output, where c is a

correction (closure) term defined as

ck(tn) = ak(tn)− âk(tn). (2.27)

It should be noted here that the introduced data driven closure takes into account

the interactions of all fine scales (k = R + 1, . . . , Ns) with the resolved large scales

(k = 1, . . . , R), as manifested in the data snapshots. Finally, to account for small

scales, we train a second super-resolution LSTM neural network to predict the modal

coefficients of the next (Q− R) modes, where the input of the LSTM is {ak(tn)}Rk=1

and the output is {ak(tn)}Qk=R+1. To improve the parametric performance of the

UROM architecture and promote generality, the LSTMs’ inputs are augmented with

the control parameter. Therefore, the LSTM maps f and g corresponding to the

closure and super-resolution models, respectively, can be written as

f :


µ

â1(tn)
...

âR(tn)

 7→

c1(tn)

...

cR(tn)

 , g :


µ

a1(tn)
...

aR(tn)

 7→

aR+1(tn)

...

aQ(tn)

 . (2.28)

In brief, we first steer the red line in Fig. 2.1 to the blue one (i.e., introduce data-

driven closure by LSTM). Then, we reduce the projection error (difference between

the the blue and black lines) by expanding our solution subspace to span Q modes

rather than only R. Figure 2.2 demonstrates the building blocks and workflow of

our proposed UROM framework in both the offline and online phases, which can be
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described as follows.

Figure 2.2: A schematic diagram for the workflow of UROM framework.

During offline training, we suppose that we have access to the true fields at dif-

ferent time instants (those can come from experiments or numerical simulations).

Thus, we can obtain the true modal coefficients ak (see Eq. (2.22)). Moreover, we

use the Galerkin ROM equations to evolve the modal coefficients for one time step

(in that sense, GROM can be viewed as a mapping from ak(tn) to âk(tn+1). Then, a

correction term can be computed as the difference between ak(tn+1) and âk(tn+1) for

k = 1, 2, . . . , R. Therefore, a corrector LSTM is trained to learn the mapping from

âk to ck. Also, a super-resolver LSTM is trained to map ak for k = 1, 2, . . . , R to ak

for k = R + 1, R + 2, . . . , Q.

During online deployment (actual testing), we start with initial field (at time zero)

and project it onto the first R modes, to obtain the true ak(t0). Then, GROM is used

to evolve these R coefficients for one time step to obtain âk(t1) for k = 1, 2, . . . , R.

At this point, the corrector LSTM is fed by âk(t1) to output ck(t1), and the corrected
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modal coefficients are computed as ak(t1) = âk(t1) + ck(t1) for k = 1, 2, . . . , R. Those

values are again fed to GROM to compute âk(t2), which are subsequently corrected

by the corrector LSTM, and so on. Finally, before we reconstruct the full order field

at any time instant tn of interest, we utilize a super-resolver LSTM to recover the

finer field scales. This super-resolver LSTM is fed with the corrected values (ak(tn))

for k = 1, 2, . . . , R, representing the large scale dynamics resulting from the GROM

and the LSTM corrector. Then, ak(tn) for k = R + 1, R + 2, . . . , Q, are obtained

as output from this super-resolver. The workflow for online deployment is shown in

Fig. 2.3. Note the recursive nature of the deployment, where the corrected values

are fed back to GROM to advance one more time step. We also emphasize that the

super-resolver is only used at instants of interest (i.e., it is not necessarily required

at each time step), which makes further computational savings possible.

Few merits of the proposed UROM approach can be listed as follows.
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Figure 2.3: A schematic diagram for the online deployment of UROM approach. Note
that {ak(tn)}Rk=1 is a short-hand notation for a1(tn), a2(tn), . . . , aR(tn).

• The physics-constrained GROM is maintained to account for the large scales.

This enriches the framework interpretability and generalizability across a wide

range of control parameters.

• GROM acts on a few modes, minimizing the online computational cost (i.e.,

O(R3), where R < Q).

• GROM, being physics-informed, can be used as a sanity check to decide whether

or not the LSTM predictions should be considered.
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• Data-driven closure/correction encapsulates information from all interacting

modes and mechanisms.

• Since both LSTMs are fed with input from a physics-based approach, UROM

can be considered as a way of enforcing physical knowledge to enhance data-

driven tools.

• LSTMs’ inputs are augmented with the control parameter to provide a more

accurate mapping (sometimes also called physics-guided mapping).

2.6.1 Long short-term memory embedding

To learn the maps f and g in UROM, we incorporate memory embedding through the

use of LSTM architecture. LSTM is a variant of recurrent neural networks capable

of learning and predicting the temporal dependencies between given data sequences

based on the input information and previously acquired information. Recurrent neural

networks have been used successfully in ROM community to enhance standard pro-

jection ROMs [109] and build fully non-intrusive ROMs [110–112, 104, 113, 114]. In

the present study, we use LSTMs to augment the standard physics-informed ROM by

introducing closure as well as super-resolution data-driven models. We utilize Keras

API [115] to build the LSTMs used in our UROM approach. Details about the LSTM

architecture can be found in [104, 112]. A summary of the adopted hyperparameters

is presented in Table 2.1. We also found that the constructed neural networks are not

very sensitive to hyperparameters. Meanwhile, for optimal hyperparameter selection,

different techniques (e.g., gridsearch) can be used to tune them.

2.7 Results

In order to demonstrate the features and merits of UROM, we present results for the

two test cases at out-of-sample control parameters (interpolatory and extrapolatory).

For the number of modes, we use R = 4 for the core dynamics and Q = 16 for super-

resolution. We compare the accuracy of UROM prediction with the FOM results as

well as the true projection of the FOM snapshots on the POD subspace (denoted as
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Table 2.1: A list of hyperparameters utilized to train the LSTM network for all
numerical experiments.

Variables 1D Burgers 2D Navier-Stokes

Number of hidden layers 3 3
Number of neurons in each hidden
layer

60 80

Number of lookbacks 3 3
Batch size 64 64
Epochs 200 200
Activation functions in the LSTM
layers

tanh tanh

Validation data set 20% 20%
Loss function MSE MSE
Optimizer ADAM ADAM
Learning rate 0.001 0.001
First moment decay rate 0.9 0.9
Second moment decay rate 0.999 0.999

‘True’ in our results), where

aTruek (tn) =
〈
u(x, tn);ϕk(x)

〉
, (2.29)

uTrue(x, tn) =

Q∑
k=1

aTruek (tn)ϕk(x). (2.30)

Since UROM can be considered as a hybrid approach between fully intrusive and

fully non-intrusive ROMs, we compare it with standard Galerkin projection ROM

with 4 and 16 modes, denoted as GROM(4) and GROM(16), respectively. Moreover,

we show the results of a fully non-intrusive ROM approach using 16 modes (denoted

as NIROM). For this NIROM, we use the same LSTM architecture presented in

Section 2.6.1 as a time-stepping integrator. In particular, we learn a map between

the values of modal coefficients at current time step and their values at the following

time step. Also, we augment our input with the control parameter to enhance the

mapping accuracy. In other words, the NIROM map h can be represented as follows

h :


µ

a1(tn)
...

aQ(tn)

 7→

a1(tn+1)

...

aQ(tn+1)

 . (2.31)
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Finally, we present the CPU time for UROM, GROM(4), GROM(16), and NIROM

to demonstrate the computational gain. For interested readers, we also provide a

GitHub repository (https://github.com/shady-ahmed/UROM) describing a Python

implementation of UROM as well as the reproduction of the numerical experiments

discussed in the present study.

2.7.1 1D Burgers problem

For 1D Burgers simulation, we consider the initial condition [116]

u(x, 0) =
x

1 + exp

(
Re

16
(4x2 − 1)

) , (2.32)

with x ∈ [0, 1]. The 1D Burgers equation with the above initial condition and Dirichlet

boundary conditions accepts the following analytic solution representing a traveling

wave [116]

u(x, t) =
x
t+1

1 +
√

t+1
t0

exp
(
Re x2

4t+4

) , (2.33)

where t0 = exp(Re/8). For offline training, we obtain solution for different Reynolds

numbers (Re ∈ {200, 400, 600, 800}). Data generation is performed using the analytic

solution given in Eq. (2.33) after dividing the spatial domain [0, 1] into 1024 equally-

spaced spatial intervals (i.e., Nx = 1025). For each case, we collect 1000 snapshots for

t ∈ [0, 1] (i.e., ∆t = 0.001). That is, a snapshot matrix of {u(t0),u(t2), . . . ,u(t1000)}
is formed, where u(tn) is the velocity field u(x, tn) collected as a column vector. Then,

the POD basis functions are computed using the technique presented in Section 2.3.

For online deployment, we obtain the POD basis at Re = 500 and Re = 1000 using

Grassmann manifold interpolation as discussed in Section 2.4.

2.7.1.1 Re = 500: demonstrating interpolatory capability

A Reynolds number of 500 represents an interpolatory case, where we use the POD

basis at Re = 600 as our reference point for basis interpolation. The evolution of the

first 4 POD temporal coefficients using different frameworks is shown in Fig. 2.4. It

is clear that GROM(4) is incapable of capturing the true dynamics due to the severe

modal truncation. On the other hand, both GROM(16) and UROM show very good

results; however, GROM(16) is more computationally expensive as will be shown in
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Section 2.7.3.
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Figure 2.4: Temporal evolution of the first 4 POD modal coefficients for Burgers
problem as predicted by UROM, GROM(4), GROM(16), and NIROM compared
with the true values obtained by projection of FOM field on the interpolated modes
at Re = 500. Note that GROM(4) and NIROM yield inaccurate results.

For field reconstruction, we present the temporal field evolution in Fig. 2.5 for

FOM snapshots, true projection, UROM, GROM, and NIROM. It can be seen that

UROM gives more accurate for field reconstruction than those predicted by GROM(4)

and NIROM. For better visualizations, we show the velocity field at t = 1 in Fig. 2.6

with a close-up view on the region characterizing the wave structure.
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Figure 2.5: Temporal evolution of velocity fields for Burgers problem at Re = 500
with R = 4 and Q = 16.
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Figure 2.6: Final velocity fields (at t = 1) for Burgers problem at Re = 500 with
a zoom-in view on the right using R = 4 and Q = 16. Note that UROM is giving
smooth predictions while GROM(4) is showing significant oscillations.

2.7.1.2 Re = 1000: demonstrating extrapolatory capability

In order to investigate the exptrapolatory performance of UROM, we test the ap-

proach at Re = 1000, with the basis at Re = 800 as reference point for interpolation.
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The POD modal coefficients are shown in Fig. 2.7, where we can see that both UROM

and GROM(16) are still capable of capturing the true projected trajectory. Interest-

ingly, the NIROM predictions are less satisfactory, giving non-physical behavior at

some time instants. This suggests that the physical core of UROM promotes its gen-

erality, compared to the totally data-driven NIROM approach. However, we note that

the deficient behavior of NIROM can be partly due to the sub-optimal architecture

of our network as we only use the same hyperparameters (except for the size of input

and output layers) for all simulations (as given in Table 2.1). More sophisticated ar-

chitectures and further tuning of hyperparameters would probably improve NIROM

predictions.

Figure 2.7: Temporal evolution of the first 4 POD modal coefficients for Burgers
problem as predicted by UROM, GROM(4), GROM(16), and NIROM compared
with the true values obtained by projection of FOM field on the interpolated modes
at Re = 1000. GROM(4) deviates from true trajectory while NIROM gives non-
physical predictions.

The temporal field evolution of flow field is shown in Fig. 2.8, which illustrates the

non-physical and unstable behavior of both GROM(4) and NIROM approaches. The

final field is plotted in Fig. 2.9 with a close-up view on the right. It can be seen that

even the true projected fields do not match the FOM and show some fluctuations at
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the shock region. For this type of behavior, a larger subspace is required to capture

most of the dynamics of the flow at Re = 1000.

Figure 2.8: Temporal evolution of velocity fields for Burgers problem at Re = 1000
with R = 4 and Q = 16.

Figure 2.9: Final velocity fields (at t = 1) for Burgers problem at Re = 1000 with
a zoom-in view on the right using R = 4, and Q = 16. Oscillations in UROM and
GROM(16) occur mainly because a subspace spanning the first 16 modes is insufficient
to capture the dynamics at this Reynolds number.

As indicated in the previous discussion, a more sophisticated architecture for

LSTM and elegant tuning of the hyperparameters would be needed to get acceptable
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performance for NIROM. It is quite common that NIROM suffers in long time predic-

tions. In other words, during training and validation, the LSTM learns a map from

the true modal coefficients to their values after one time step. Therefore, the network

is always supposed to be fed with the true values. However, during actual deployment

in the testing phase, the network is fed with true values only at the initial time (t0).

Then, the output of the network is returned back as input in a recursive manner to

provide long time predictions. Thus, when the network encounters any error in the

output (which is to be expected for testing at different parameters/region), this error

is amplified in the subsequent time steps. Being fully non-intrusive, the network has

no way to account for errors. As a result, after a few time steps, the output of the

LSTM might blow-up giving non-physical results, unless the network is stabilized.

Figure 2.10 shows the predictions for NIROM at Re = 1000 with simple varia-

tions of the neural network architectures (different number of layers and neurons).

We note that all of these combinations give a converging performance during train-

ing/validation, where the training and validation losses fall below 1 × 10−5. On the

other hand, they are not doing very well during actual testing, in the presence of nu-

merical errors and instabilities. In that sense, a hybridization between physics-based

and data-driven models helps to stabilize the predictions during the online deploy-

ment phase. In the rest of the chapter, we use the same architecture for NIROM

and UROM, but the reader should be aware of these issues, which implies the need

for the development of more involved architectures and/or more elegant training and

validation.
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Figure 2.10: NIROM predictions for Burgers problem at Re = 1000 with Q = 16,
and different numbers of layers and neurons.
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2.7.2 2D vortex merger problem

As an application for 2D Navier-Stokes equations, we examine the vortex merger

problem (i.e., the merging of co-rotating vortex pair) [117]. The merging process

occurs when two vortices of the same sign with parallel axes are within a certain

critical distance from each other, ending as a single, nearly axisymmetric, final vortex

[118]. We consider an initial vorticity field of two Gaussian-distributed vortices with

a unit circulation as follows,

ω(x, y, 0) = exp
(
−ρ
[
(x− x1)2 + (y − y1)2

])
+ exp

(
−ρ
[
(x− x2)2 + (y − y2)2

])
,

(2.34)

where ρ is an interacting constant set as ρ = π and the vortices centers are initially

located at (x1, y1) =

(
3π

4
, π

)
and (x2, y2) =

(
5π

4
, π

)
. We use a Cartesian domain

(x, y) ∈ [0, 2π] × [0, 2π] over a spatial grid of 256 × 256, with periodic boundary

conditions. For this 2D problem, we collect 200 snapshots for t ∈ [0, 20], while

varying Reynolds number as Re ∈ {200, 400, 600, 800}. For solving the full order

model equations, we use a third-order Arakawa scheme [119] for spatial derivatives,

and a third-order total variation diminishing Runge–Kutta scheme (TVD-RK3) [120]

for temporal integration. Similar to the 1D Burgers problem, we test our framework

at Re = 500 and Re = 1000. Also, for basis interpolations, we use reference points at

Re = 600 and Re = 800, respectively.

2.7.2.1 Re = 500: demonstrating interpolatory capability

Figure 2.11 shows the temporal evolution of the first 4 POD coefficients for the vor-

ticity field. Recall that the temporal coefficients for vorticity and streamfunction

fields are the same, as discussed in Section 2.5.2. We can see that both UROM and

GROM(16) accurately predict the true modal dynamics. For better visualizations,

the final vorticity field at t = 20 is given in Fig. 2.12, where GROM(4) is showing in-

stabilities manifested in the reconstructed field. For this interpolatory case, NIROM

is providing acceptable results.
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Figure 2.11: Temporal evolution of the first 4 POD modal coefficients of vorticity
field for 2D vortex merger problem as predicted by UROM, GROM(4), GROM(16),
and NIROM compared with the true values obtained by projection of FOM field on
the interpolated modes at Re = 500.
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Figure 2.12: Final vorticity fields (at t = 20) for 2D vortex merger problem at
Re = 500 with R = 4, and Q = 16.
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2.7.2.2 Re = 1000: demonstrating extrapolatory capability

The investigated approaches, namely GROM, UROM and NIROM, are tested at

Re = 1000 as a case that is out-of-range compared to the training set. The POD

modal coefficients predicted by these approaches are given in Fig. 2.13. It can be

easily seen that as time increases, the predictions of GROM(4) and NIROM become

poor. Using a neural network as time-stepping integrator in NIROM increases its

sensitivity to computational noise and this recursive deployment accumulates the error

until predictions totally depart from the true trajectory. This is even clearer in the

reconstructed field shown in Fig. 2.14, where the orientation of the merging vortices is

not matching the true orientation. GROM(4) prediction is also suffering from severe

deformation of the true flow topology. On the other hand, the field reconstruction

via UROM is accurate compared to the true projection and GROM(16).
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Figure 2.13: Temporal evolution of the first 4 POD modal coefficients of vorticity
field for 2D vortex merger problem as predicted by UROM, GROM(4), GROM(16),
and NIROM compared with the true values obtained by projection of FOM field on
the interpolated modes at Re = 1000.
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Figure 2.14: Final vorticity fields (at t = 20) for 2D vortex merger problem at
Re = 1000 with R = 4, and Q = 16.

2.7.3 Accuracy-computational efficiency trade-off

Finally, we report the “online” computing time for the investigated approaches. In

particular, we show the computational time as well as the root-mean squared error

(RMSE) of reconstructed fields at final time for the two test cases at Re = 1000 in

Table 2.2. The reported RMSE is computed as

RMSE(t) =

√√√√ 1

N

N∑
i=1

(
uFOM(x, t)− uROM(x, t)

)2
, (2.35)

where N represents the spatial resolution (i.e., N = Nx ×Ny). In this table, we also

report the NIROM results using 4 modes in the input and output layers. Although

GROM(4) is the fastest, its predictions are very poor and further corrections and

stabilization might be required. Also, a subspace spanned by only the first four POD

modes might be insufficient in complex applications. On the other hand, GROM(16)

is the slowest. We can also observe that computation time of UROM is close to that

of NIROM and much lower than GROM(16). In Fig. 2.15, we present a bar chart for

both the computing time and RMSE of reconstructed fields at final time to illustrate

the time-accuracy trade-off.
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Table 2.2: Computing time (in seconds) and RMSE of UROM, GROM(4),
GROM(16), NIROM(4), and NIROM(16) for Re = 1000. We note that the com-
puting time assessments documented in this table are based on Python executions.

Framework 1D Burgers 2D vortex-merger

time(s) RMSE time(s) RMSE

UROM 2.46 4.13E− 3 0.54 5.44E− 3

GROM(16) 8.40 3.17E− 3 1.67 4.17E− 3

GROM(4) 0.17 5.17E− 2 0.06 3.99E− 2

NIROM(16) 1.16 4.64E− 3 0.25 7.80E− 2

NIROM(4) 1.07 3.14E− 2 0.23 8.58E− 2

1D Burgers 2D Vortex Merger
0

2

4

6

8

Co
m
pu
tin

g 
tim

e 
(s
)

1D Burgers 2D Vortex Merger
0.000

0.001

0.002

0.003

0.004

RM
SE

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

0.00

0.02

0.04

0.06

0.08

UROM GROM NIROM

Figure 2.15: Computing time of testing (online) stage at Re = 1000 and RMSE of
reconstructed fields at final time for UROM (4 + 12) (i.e., R = 4 and Q = 16),
GROM(16), and NIROM(16).

We note that Table 2.2 and Fig. 2.15 document the performance of our imple-

mentation rather than that of the approaches. We should emphasize that, in this

chapter, we are not aiming at benchmarking the computational performance of these

approaches. Instead, our main objective is to demonstrate the feasibility of hybrid

approaches fusing physics-based and machine learning models. Nonetheless, the run-

times in Table 2.2 indicate that GROM approximately (not exactly due to various

other loading/writing abstractions in our Python implementations) scales with R3.

Therefore, combining NIROM and GROM, UROM yields better computational per-

formance. We also note that, if written more optimally, we would also expect that the

execution time of UROM (with 16 modes) can be reduced to the sum of the execution

times of GROM (with 4 modes) and NIROM (with 16 modes). Indeed, we remark
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that the second LSTM in UROM (representing the map g) need not be used at all

times and can be deployed only at the instant of interest. In that case, the UROM

computing times become 1.31 s for Burgers case and 0.30 s for vortex merger (which

are very close to NIROM computing time).

In a nutshell, our investigation, for the considered test cases, shows that GROM

with 4 modes provides inaccurate results, while GROM with 16 modes gives good

predictions. However, the computational cost of the latter is significantly higher than

the computational cost of the former. Adopting the UROM approach, we are able

to get an accuracy similar to the GROM(16) accuracy, but with a minimal com-

putational cost. Moreover, UROM is more stable than NIROM for moderate LSTM

architectures, since the UROM is always constrained in its core by the GROM update

step. Conversely, NIROM is totally non-intrusive and the output is fed back to the

LSTM in recursively, resulting in amplification of error for long time predictions. This

framework can also be generalized to get higher accuracy or address more complex

problems by increasing R and/or Q.

2.8 Conclusions

In the present study, we have proposed an uplifted reduced order modeling (UROM)

approach to elevate the standard Galerkin projection reduced order modeling (GROM).

This approach can be considered as a hybrid approach between physics-based and

purely data-driven techniques. With GROM at the core of the framework, UROM

(with three modeling layers) enhances the model generalizability and interpretability.

Moreover, large scales (represented by the first few modes) are given due attention

since they control most of the bulk mass, momentum, and energy transfers. There-

fore, two out of a total of three layers in UROM aim at predicting the dynamics of

these modes as accurately as possible. Then, an uplifting layer is designed to en-

hance the prediction resolution (i.e., super-resolution). Performance of UROM has

been compared against standard GROM and fully non-intrusive ROM (NIROM) ap-

proaches.

Two test cases, representing convection-dominated flows in 1D and 2D settings,

have been used to evaluate the UROM. For testing, two out-of-sample control pa-

rameters have been investigated to study the interpolatory and extrapolatory per-

formances. In all cases, UROM has showed very good results, compared to GROM

and NIROM. In particular, UROM(4 + 12) has been demonstrated to provide more
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accurate results than both GROM(4) and NIROM. In contrast to NIROM where

the deployment is fully data-driven, the LSTMs in UROM take their inputs from a

physics-based approach. This can be considered as one way of leveraging physical

information and intuition into LSTM. On the other hand, UROM has provided sig-

nificant speed-ups compared to GROM(16) with comparable accuracy. Although we

have presented the results for Q = 16, more complex flows can require much larger

Q, which makes GROM(Q) unfeasible. Finally, this UROM approach is thought to

open new avenues to utilize data-driven tools to enhance existing physical models as

well as use physics to inform data-driven approaches to maximize the pros of both

approaches and mitigate their cons.
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CHAPTER 3

Physics Guided Machine Learning for Variational Multiscale Reduced

Order Modeling

3.1 Abstract

We propose a new physics guided machine learning (PGML) paradigm that leverages

the variational multi-scale (VMS) framework and available data to dramatically in-

crease the accuracy of reduced order models (ROMs) at a modest computational cost.

The hierarchical structure of the ROM basis and the VMS framework enable a nat-

ural separation of the resolved and unresolved ROM spatial scales. Modern PGML

algorithms are used to construct novel models for the interaction among the resolved

and unresolved ROM scales. Specifically, the new framework builds ROM operators

that are closest to the true interaction terms in the VMS framework. Finally, machine

learning is used to reduce the projection error and further increase the ROM accuracy.

Our numerical experiments for a two-dimensional vorticity transport problem show

that the novel PGML-VMS-ROM paradigm maintains the low computational cost of

current ROMs, while significantly increasing the ROM accuracy.

3.2 Introduction

The behavior of physical systems can be generally described by physical principles

(e.g., conservation of mass, momentum, and energy) together with constitutive laws.

The resulting models are often mathematically formulated as partial differential equa-

tions (PDEs) (e.g., the Navier-Stokes equations). Solving them allows prediction and

analysis of the system’s dynamics. The applicability of analytic methods for solving

PDEs is usually limited to simple cases with special geometry and under severe as-

sumptions. In practice, numerical approaches (e.g., finite difference, finite volume,

spectral, and finite element methods) are utilized to discretize the governing equa-

This chapter is adapted from: Ahmed, S. E., San, O., Rasheed, A., Iliescu, T., & Veneziani, A.
(2022). Physics guided machine learning for variational multiscale reduced order modeling. SIAM
Journal on Scientific Computing (under review).
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tions and approximate the values of the unknowns corresponding to a given grid.

For turbulent flows, we need to deal with an exceedingly large number of degrees

of freedom due to the existence of a wide range of spatio-temporal scales to be re-

solved. Although such models, called here full order models (FOMs), are capable

of providing very accurate results, they can be computationally demanding. There-

fore, FOMs become impractical for applications that require multiple forward eval-

uations with varying inputs (e.g., flow control [27, 33, 121], optimization [122–128],

and digital twinning [13, 129, 22, 130–132]) or studies requiring several simulations

like computational-aided clinical trials [133].

Reduced order models (ROMs) are defined as computationally light surrogates

that can mimic the behavior of FOMs with sufficient accuracy [16, 28, 25, 134, 1].

Projection-based ROMs have gained significant popularity in the past few decades

due to the increased amounts of collected data (either from actual experiments or nu-

merical simulations) as well as the development of system identification tools [97, 19].

Of particular interest, the combination of proper orthogonal decomposition (POD)

and Galerkin projection has been a powerful driver for ROM progress. The process

comprises an offline stage and an online stage. The offline stage starts with the collec-

tion of data corresponding to system realizations (called snapshots) at different time

instants and/or parameter values. With these data sets, POD provides a hierarchy

of basis functions (or modes) that capture the maximum amount of the underlying

system’s energy (defined by the data variance). The offline stage is concluded by

performing a Galerkin projection of the FOM operators onto the subspace spanned

by a truncated set of POD modes to obtain a system of ordinary differential equations

(ODEs) representing the Galerkin ROM (GROM). Although this offline stage can be

extremely expensive, the resulting GROM can be utilized during the online deploy-

ment phase to efficiently predict the system’s behavior at parameter values and/or

time instants different from those in the data preparation process.

The GROM framework has been successful in many applications (e.g., [34, 135,

136, 46, 137–140, 1]), especially those dominated by diffusion mechanisms or periodic

dynamics. Those are often referred to as systems with a solution manifold that is

characterized by a small Kolmogorov n-width [43, 141]. In the POD context, this

means that the dynamics can be accurately represented by a few modes. However,

for convection-dominated flows with strong nonlinearity, the Kolmogorov n-width is

often large with a slow decay, which hinders the linear reducibility of the underlying

system.
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The repercussions of a Galerkin truncation and projection are two-fold. First, the

span of the retained POD basis functions does not necessarily provide an accurate

representation of the solution and it gives rise to the projection error [142, 143, 2].

Second, the interactions between the truncated and the retained modes can be signifi-

cant. These interactions are ignored in the Galerkin projection step, and consequently

the GROM cannot in general capture the dynamics of the resolved modes accurately.

This introduces a closure error [59, 144, 49, 63, 145, 57, 146, 47, 147–149]. Several

efforts have been devoted to address the closure problem. A recent survey covering a

plethora of physics-based and data-driven ROM closure methodologies can be found

in [1].

The closure problem has been historically related to the stabilization of the ROM

solution, drawing roots from large eddy simulation (LES) studies, where the truncated

small scales are thought of having diffusive effects on the larger scales. Therefore,

eddy viscosity-based frameworks have been often used in the ROM literature [24].

Nonetheless, it was found that introducing eddy viscosity to all resolved scales can

actually unnecessarily contaminate the dynamics of the largest scales. To mitigate this

problem, the variational multi-scale (VMS) method, which was proposed by Hughes’

group [150–152] in the finite element setting (see, e.g., [153, 154] for a survey), was

utilized to add eddy viscosity dissipation to only a portion of the ROM resolved

scales in [155, 156, 59]. A data-driven version of VMS (DD-VMS) has been recently

proposed in [157], where the effects of the truncated modes onto the GROM dynamics

are not restricted to be diffusive.

In the present study, we transform the DD-VMS [157, 158] and provide an al-

ternative modular framework by utilizing machine learning (ML) capabilities. We

stress that this is a fundamental change in which the standard DD-VMS regression is

replaced by ML in order to better account for closure effects. Therefore, the proposed

neural network approach is essentially different from the regression based DD-VMS

[157]. In particular, the DD-VMS ansatz of a quadratic polynomial closure model is

relieved by utilizing the deep neural network (DNN) functionality with memory em-

bedding. We also leverage the long short-term memory (LSTM) variant of recurrent

neural networks (RNNs) to approximate scale-aware closures. In essence, the use of

LSTM encompasses a non-Markovian closure, supported by the Mori-Zwanzig for-

malism [159–163]. Moreover, we adopt the physics guided machine learning (PGML)

framework introduced in [164–166] to reduce the uncertainty of the output results.

In particular, we exploit concatenation layers informed by the VMS-ROM arguments
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to enrich the neural network architecture and constrain the learning algorithm to

the manifold of physically-consistent solutions. Finally, for problems with a large

Kolmogorov n-width, we utilize the nonlinear POD (NLPOD) methodology [167] to

reduce the projection error without affecting the computational efficiency, by learning

the correlations among the small unresolved scales to provide much fewer latent space

variables. We also perform a numerical investigation of the proposed strategies (ML-

VMS-ROM, PGML-VMS-ROM, and NLPOD-VMS-ROM), with a particular focus

on the locality of scale interactions, which is a cornerstone of the VMS framework.

The rest of the chapter is organized as follows. We briefly describe the reduced

order modeling methodology by the nexus of POD and Galerkin projection in Sec-

tion 3.3. The relevant background information and notations for the VMS approach

are given in Section 3.4. The use of the PGML methodology to provide reliable pre-

dictions is explained in Section 3.5, while the NLPOD approach is discussed in Sec-

tion 3.6. The proposed NLPOD-PGML-VMS framework is tested for the parametric

unsteady vortex-merger problem, which exemplifies convection-dominated flow sys-

tems. Results and discussions are presented in Section 3.7, followed by the concluding

remarks in Section 3.8.

3.3 Reduced Order Modeling

A Newtonian incompressible fluid flow in a domain Ω ⊂ Rd, where d defines the

spatial dimension (i.e., d ∈ {2, 3}), can be described by the Navier-Stokes equations

(NSE). In order to eliminate the pressure term, we consider the NSE in the vorticity-

vector potential formulation. In particular, we consider the 2D case where the vector

potential is reduced to the streamfunction as follows:

∂tω − ν∆ω + (u · ∇)ω = 0, in Ω× [0, T ],

∆ψ + ω = 0, in Ω× [0, T ],
(3.1)

where ω(x, t) and ψ(x, t) denote the vorticity and streamfunction fields, respectively,

for x ∈ Ω and t ∈ [0, T ], while ν stands for the kinematic viscosity (diffusion coef-

ficient). In dimensionless form, ν represents the reciprocal of the Reynolds number,

Re. The velocity vector field u(x, t) is related to the streamfunction as follows:

u = ∇⊥ψ, ∇⊥ = [∂y,−∂x]T . (3.2)
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By using Eq. (3.2), Eq. (3.1) can be further rewritten as follows:

∂tω − ν∆ω + J(ω, ψ) = 0, in Ω× [0, T ], (3.3)

where J(·, ·) denotes the Jacobian operator, which is defined as follows:

J(ω, ψ) =
∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x
. (3.4)

The vorticity transport equation (Eq. (3.3)) is equipped with an initial condition

and boundary conditions on Γ := ∂Ω. For convenience and simplicity of presentation,

we shall assume the following conditions:

IC : ω(x, 0) = ω0(x), in Ω,

BC (non− slip) : ψ(x, t) = 0,
∂ψ

∂n
= 0, in Γ× [0, T ].

(3.5)

In the remainder of this section, we describe the construction of the projection-based

ROM of the vorticity transport equation. This includes the use of POD to approxi-

mate the solution (Section 3.3.1), followed by the Galerkin method, where the FOM

operators in Eq. (3.1) are projected onto the POD subspace to define the sought

GROM (Section 3.3.2).

3.3.1 Proper orthogonal decomposition

We consider a collection of system realizations defined by an ensemble of vortic-

ity fields {ω(x, t0), ω(x, t1), . . . , ω(x, tM−1)}. These are often called snapshots and

come from either experimental measurements or numerical simulations of Eq. (3.1) or

Eq. (3.3) using any of the standard discretization schemes (e.g., finite element, finite

difference or finite volume methods). Without loss of generality, we assume that these

snapshots are sampled at equidistant M (> 1) time instants with tm = m∆t, where

m = 0, 1, . . . ,M − 1 and ∆t =
T

M − 1
. We note that, in general, these snapshots

can correspond to different types of parameters (e.g., operating conditions, physical

properties, and geometry).

In POD, we seek a low-dimensional basis {ϕ1, ϕ2, . . . , ϕR} that optimally approx-
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imates the space spanned by the snapshots in the following sense [24]:

min

〈∥∥∥∥ω(·, ·)− R∑
k=1

(
ω(·, ·), ϕk(·)

)
ϕk(·)

∥∥∥∥2
〉
,

subject to ∥ϕ∥ = 1,
(
ϕi(·), ϕj(·)

)
= δij,

(3.6)

where ⟨·⟩ denotes an average operation with respect to the parametrization, (·, ·) is

an inner product, and ∥ · ∥ is the corresponding norm. For example, an ensemble

average based on temporal snapshots can be defined as follows:

⟨ω⟩ = 1

M

M−1∑
m=0

ω(·, tm). (3.7)

The snapshots represent the approximation of the quantity of interest on a specific

grid. For example, a realization of the vorticity field at a given time can be arranged

in a column vector ω ∈ RN , where N is the number of grid points. It can be shown

that solving the optimization problem Eq. (3.6) amounts to solving the following

eigenvalue problem [168]:

DΦ = ΦΛ, (3.8)

where the entries of the diagonal matrix Λ and the columns of Φ represent the eigen-

pairs of the spatial autocorrelation matrix D ∈ RN×N with entries defined as

[
D
]
ij
=

〈
ω(xi, ·)ω(xj, ·)

〉
, (3.9)

where ω(xi, ·) is the i-th entry of ω. For fluid flow problems, the length of the vector

ω is often large, which makes the eigenvalue problem in Eq. (3.8) computationally

challenging.

Sirovich [169–171] proposed a numerical procedure, known as the method of snap-

shots, to reduce the computational cost of solving Eq. (3.8). This approach is efficient,

especially when the number of collected snapshots M is much smaller than the num-

ber of degrees of freedom (i.e., M ≪ N), as it reduces the N ×N eigenvalue problem

in Eq. (3.8) to an M ×M problem. The spatial autocorrelation matrix D ∈ RN×N is

replaced by the temporal snapshot correlation matrix K ∈ RM×M with entries defined

as follows: [
K
]
ij
=

1

M

(
ω(·, ti), ω(·, tj)

)
. (3.10)
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The following eigenvalue problem is thus considered:

Kvk = λkvk, (3.11)

where vk is the kth eigenvector of K and λk is the associated eigenvalue. To obtain

the hierarchy of the POD basis, the eigenpairs are sorted in a descending order by

their eigenvalues (i.e., λ1 ≥ λ2 · · · ≥ λM ≥ 0). Finally, the POD basis functions can

be computed as a linear superposition of the collected snapshots as follows [168]:

ϕk(·) =
1√
λk

M−1∑
m=0

[vk]mω(·, tm), (3.12)

where [vk]m denotes the mth component of vk. It can be verified that the basis

functions in Eq. (3.12) are orthonormal (i.e., (ϕi(·), ϕj(·)) = δij), where δij is the

Kronecker delta. The POD eigenvalues define the contribution of each mode toward

the total variance in the given snapshots. A metric that evaluates the quality of a

given set of retained modes in representing the system is the relative information

content (RIC) [1], defined as follows:

RIC(k) =

∑k
l=1 λl∑M
l=1 λl

, (3.13)

where k is the POD index at which modal truncation takes place. We emphasize

that the same approach can be applied considering parameters other than time. In

this case, the temporal correlation matrix is substituted by a generalized parameter

correlation matrix.

3.3.2 Galerkin projection

The GROM starts by the Galerkin truncation step, making use of the optimality

criterion in Eq. (3.6) as follows:

ω(x, tm) ≈ ωR(x, tm) =
R∑
k=1

ak(tm)ϕk(x), (3.14)

where {ak}Rk=1 are the time-varying modal coefficients (weights), known as generalized

coordinates. The optimal values of these coefficients are defined by the true projection
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of the FOM trajectory onto the corresponding POD basis function as follows:

ak(tm) =
(
ω(·, tm), ϕk(·)

)
. (3.15)

Next, the vorticity field ω in Eq. (3.3) is replaced by its approximation ωR from

Eq. (3.14). After this, the Galerkin projection step comes into play, by defining the

POD test subspace XR as follows:

XR := span{ϕ1, ϕ2, . . . , ϕR}. (3.16)

Finally, Eq. (3.3) with ω replaced by ωR is projected onto the POD space XR. This

yields the GROM of the vorticity transport equation: Find ωR ∈XR such that:

(∂tω, ϕ)− ν(∆ω, ϕ) +
(
J(ω, ψ), ϕ

)
= 0, ∀ϕ ∈XR. (3.17)

Equation (3.17) can be written in a tensorial form as follows:

ȧ = Aa+ a⊤Ba, (3.18)

where a(t) ∈ RR is the vector of unknown coefficients {ak}Rk=1, while A ∈ RR×R and

B ∈ RR×R×R are the matrix and tensor corresponding to the linear and nonlinear

terms, respectively.

The Galerkin truncation step restricts the approximation of the vorticity field to

live in a low-rank subspace XR (R ≪ N), which might not capture all the rele-

vant flow structures. Therefore, a projection error is introduced. Furthermore, the

Galerkin projection step enforces the dynamics of the ROM to be defined using only

the scales supported by XR. Nonetheless, due to the coupling between different

modes, the unresolved scales (i.e., the scales modeled by {ϕk}k≥R+1) influence the

dynamics of the resolved scales (i.e., the scales modeled by {ϕk}k≤R). By neglecting

these mutual interactions, the GROM becomes incapable of accurately describing the

dynamics of the retained modes, which is usually referred to as the closure problem [1].

The projection error and closure error are illustrated in Fig. 3.1, for a toy system

whose full-rank approximation can be represented with 3 modes as follows:

ω(x, t) = a1(t)ϕ1(x) + a2(t)ϕ2(x) + a3(t)ϕ3(x). (3.19)
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Figure 3.1: Representation of the repercussions of modal truncation onto the ROM
solution. The solid black curve denotes the FOM trajectory, assuming that the full
rank expansion is defined by a1, a2, and a3. The solid blue curve defines the projection
of the FOM trajectory onto a two-dimensional subspace. The vertical dashed blue
lines refer to the projection or representation error. Note that evaluating a1 and a2
still requires the knowledge of the FOM trajectory (i.e.,a1, a2, and a3) at every point.
In practice, we only have information regarding the resolved variables (i.e., a1 and
a2), so the contribution of a3 towards the dynamics of a1 and a2 is neglected. This
yields a closure error, denoted by the dashed red lines.

Assuming that the FOM is written in the following form:

ω̇ = F (ω), (3.20)

then the dynamics of {ak}3k=1 can be described as ȧk = (F (ω), ϕk). Thus, the FOM

trajectory can be written as follows:
ȧ1

ȧ2

ȧ3

 =


f1(a1, a2, a3)

f2(a1, a2, a3)

f3(a1, a2, a3)

 . (3.21)

In other words, evolving {ak}3k=1 using Eq. (3.21) and reconstructing ω with Eq. (3.19)

recovers the FOM field (equivalent to solving Eq. (3.20) using standard discretization

schemes). For the sake of demonstration, we suppose that we retain only 2 modes in

the ROM approximation. This corresponds to removing the third row in Eq. (3.21)
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as follows: [
ȧ1

ȧ2

]
=

[
f1(a1, a2, a3)

f2(a1, a2, a3)

]
. (3.22)

Approximating ω with just two modes results in losing the flow structures that are

contained in the truncated mode (the vertical direction in Fig. 3.1), which yields the

projection error. Furthermore, we note that f1 and f2 are usually functions of a1, a2,

and a3 for systems with strong nonlinearity and coupling between different modes.

However, during ROM deployment, we do not usually have information regarding

the unresolved dynamics (a3 in this example). Thus, in GROM, the effects of the

truncated scales onto the resolved scales are assumed to be negligible, as follows:[
ȧ1

ȧ2

]
=

[
f1(a1, a2, 0)

f2(a1, a2, 0)

]
. (3.23)

We denote the reference trajectory described by Eq. (3.22) as the true projection,

which is related to Eq. (3.15). This defines the best low-rank approximation that can

be obtained for a given number of modes, assuming we have access to the whole set of

FOM scales. The difference between the GROM trajectory (corresponding to solving

Eq. (3.23)) and the true projection trajectory represents the closure error. In the

present study, we address both the closure error and the projection error. First, to

tackle the closure problem, we leverage the VMS framework outlined in Section 3.4

to develop the PGML methodology in Section 3.5. Then, we utilize the NLPOD

approach in Section 3.6 to reduce the projection error by learning a compressed latent

space that encapsulates some of the truncated flow structures.

3.4 Variational Multiscale Method

The variational multi-scale (VMS) methods are general numerical discretizations that

significantly increase the accuracy of classical Galerkin approximations in under-

resolved simulations, e.g., on coarse meshes or when not enough basis functions are

available. The VMS framework, which was proposed by Hughes and coworkers [150–

152], has made a profound impact in many areas of computational mechanics (see,

e.g., [153, 154] for a survey).

To illustrate the standard VMS methodology, we consider a general nonlinear

partial differential equation

ω̇ = F (ω), (3.24)
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whose weak (variational) form is

(ω̇, ϕ) = (F (ω), ϕ), ∀ϕ ∈X, (3.25)

where F is a general nonlinear function and X is an appropriate test space. To build

the VMS framework, we start with a sequence of hierarchical spaces of increasing

resolutions: X1, X1 ⊕X2, X1 ⊕X2 ⊕X3, . . . . Next, we project system Eq. (3.24)

onto each of the spaces X1, X2, X3, . . . , which yields a separate equation for each

space. From a computational efficiency point of view, the goal is to solve for the ω

component that lives in the coarsest space (i.e., X1), since this yields the lowest-

dimensional system:

(ω̇, ϕ) = (F (ω), ϕ), ∀ϕ ∈X1. (3.26)

However, system Eq. (3.26) is not closed since its right-hand side involves ω compo-

nents that do not belong to X1 (i.e., ω2 ∈X2, ω3 ∈X3, . . . ):

(F (ω), ϕ) = (F (ω1, ω2, ω3, . . . ), ϕ), ∀ϕ ∈X1. (3.27)

Thus, the VMS closure problem needs to be solved. That is, Eq. (3.27) needs to be

replaced with an equation that involves only terms that belong to X1. In general, the

VMS system in Eq. (3.26) equipped with an appropriate closure model (i.e., a model

with components in X1 that captures the interaction between ω1 and the scales in

X2,X3, . . .) yields an accurate approximation of the X1 component of ω.

The POD procedure in Section 3.3.1 yields a hierarchy of orthogonal basis func-

tions, sorted by their contribution to the total energy. Therefore, it provides a natural

fit to the VMS framework. Next, we illustrate the adoption of VMS in GROM set-

tings to define a multi-level VMS ROM. In particular, we detail the two-scale and the

three-scale VMS ROMs, while further extensions become straightforward.

3.4.1 Two-scale VMS ROM

The two-scale VMS (VMS-2) ROM utilizes two orthogonal spaces, X1 and X2, de-

fined as follows:
X1 := span{ϕ1, ϕ2, . . . , ϕR},
X2 := span{ϕR+1, ϕR+2, . . . , ϕN},

(3.28)
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where X1 represents the span of the resolved ROM scales and X2 is the span of the

unresolved scales. Thus, ω can be written as follows:

ω =
R∑
k=1

akϕk +
N∑

k=R+1

akϕk = ωR︸︷︷︸
resolved

+ ω′︸︷︷︸
unresolved

, (3.29)

where ωR ∈X1 is the resolved ROM component of ω, while ω′ ∈X2 is the unresolved

component. Using this decomposition, Eq. (3.26) can be rewritten as follows:

(
ω̇R, ϕk

)
=
(
F (ωR), ϕk

)
+

[(
F (ω), ϕk

)
−
(
F (ωR), ϕk

)]
︸ ︷︷ ︸

VMS-2 closure term

, ∀k ∈ {1, . . . , R}. (3.30)

The bracketed term in Eq. (3.30) is the VMS-2 closure term, which models the in-

teraction between the ROM modes and the discarded modes. Since the unresolved

component of ω, ω′, is not available during online deployment stage, it is not possible

to exactly compute the closure term in practical settings. Instead, the closure term

can be approximated using a generic function G(ωR) as follows:

(
G(ωR), ϕk) ≈

(
F (ω), ϕk

)
−
(
F (ωR), ϕk

)
, (3.31)

and the VMS-2 ROM can be written as

(
ω̇R, ϕk

)
=
(
F (ωR), ϕk

)
+
(
G(ωR), ϕk). (3.32)

The form and parameters of G will be defined in Section 3.5.

3.4.2 Three-scale VMS ROM

The locality of modal interactions is a cornerstone of the VMS framework. It states

that neighboring modes have more mutual interactions than those who are far apart in

the energy spectrum. For this reason, it is natural to distinguish between neighboring

and far modes when closure modeling is performed. To this end, the flexibility of

the hierarchical structure of the ROM space is leveraged to perform a three-scale

decomposition of ω, leading to a three-scale VMS (VMS-3) ROM, which aims at

increasing the VMS-2 ROM accuracy. To construct the VMS-3 ROM, we first build
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three orthogonal spaces, X1, X2, and X3, as follows:

X1 := span{ϕ1, ϕ2, . . . , ϕr},
X2 := span{ϕr+1, ϕr+2, . . . , ϕR},
X3 := span{ϕR+1, ϕR+2, . . . , ϕN}.

(3.33)

Compared to the decomposition into resolved and unresolved scales in Section 3.4.1,

X1 now represents the large resolved ROM scales, X2 represents the small resolved

ROM scales, while X3 denotes the unresolved ROM scales. With these definitions,

ω can be written as follows:

ω =
r∑

k=1

akϕk +
R∑

k=r+1

akϕk +
N∑

k=R+1

akϕk

= ωL︸︷︷︸
large resolved

+ ωS︸︷︷︸
small resolved

+ ω′︸︷︷︸
unresolved

.
(3.34)

This is similar to Eq. (3.29) with ωR = ωL + ωS. To construct the VMS-3 ROM, we

project system Eq. (3.24) onto each of the spaces X1 and X2, as follows:

(
ω̇L, ϕk

)
=
(
F (ωL + ωS), ϕk

)
+

[(
F (ω), ϕk

)
−
(
F (ωL + ωS), ϕk

)]
, k = 1, . . . , r,

(3.35)(
ω̇S, ϕk

)
=
(
F (ωL + ωS), ϕk

)
+

[(
F (ω), ϕk

)
−
(
F (ωL + ωS), ϕk

)]
, k = r + 1, . . . , R.

(3.36)

Although the two bracketed terms in Eq. (3.35) and Eq. (3.36) defining the VMS-3

closure terms look similar, they have different roles. The first term models basically

the interaction between the large and the small resolved modes, because the inter-

action large-unresolved is assumed to be negligible (according to the VMS principle

of locality of modal interactions). The second term models the interaction between

the small resolved and the unresolved ROM modes. This allows great flexibility in

choosing the structure of the different VMS ROM closure terms. This concept is

investigated numerically in Section 3.7.
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3.5 Physics Guided Machine Learning

In this section, the VMS-2 and VMS-3 closure terms defined in Section 3.4 are ap-

proximated using only the information in the resolved scales. Specifically, we utilize

a purely data-driven approach to compute the parameters of the closure models.

However, instead of relying on heuristics or ad-hoc arguments to define the specific

structure of the closure model (as in the standard DD-VMS [157]), we exploit the

capabilities of deep neural network (DNN) in approximating arbitrary functions. In

particular, we use the long short-term memory (LSTM) variant of recurrent neural

networks (RNNs), which has shown substantial success in data-driven modeling of

time series [172–174]. We emphasize that, to mitigate well-known drawbacks of data-

driven modeling (e.g., sensitivity to noise in input data), the VMS ROM framework

utilizes data to model only the VMS ROM closure operators, but all the other ROM

operators are built by using classical Galerkin projection. Thus, our VMS ROM

framework incorporates “data-driven closure,” rather than “data-driven modeling”

for the resolved scales.

3.5.1 ML-VMS ROM

The VMS-2 ROM in Eq. (3.32) can be rewritten as follows:

ȧ = f(a) + c(a), (3.37)

where a = [a1, a2, . . . , aR]
T ∈ RR is the vector of coefficients for resolved POD modes,

f(a) = [
(
F (ωR), ϕ1

)
,
(
F (ωR), ϕ2

)
, . . . ,

(
F (ωR), ϕR

)
] represents the Galerkin projec-

tion of the FOM operators onto the POD subspace, and c(a) = [c1, c2, . . . , cR]
R ∈ RR

is the vector of the closure (correction) terms, i.e., ck = (G(ωR), ϕk). In the present

study, we use DNN to represent the closure model, i.e., c(·) ≈ πθ(a), where θ denotes

the parameterization of the LSTM. The general functional form of the DNN models

used for temporal forecasting can be written as follows:

h(n) = fhh (a
(n),h(n−1)),

c(n) = f oh(h
(n)),

(3.38)

where a(n) := a(tn) ∈ RR is the vector of modal coefficients at time tn and c(n) ∈
RR is the corresponding closure term, defining the input and output of the DNN,
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respectively. In Eq. (3.38), h ∈ RH represents the hidden-state of the neural network,

fhh and f oh the hidden-to-hidden and hidden-to-output mappings, respectively, and

H the dimension of the hidden state. The Mori-Zwanzig formulation [175–177, 146,

178] shows that non-Markovian terms are required to account for the effects of the

unresolved scales onto the resolved scales. Thus, the closure operators are modeled

as functions of the time history of the resolved scales. We emphasize that employing

a non-Markovian closure model is a key feature of the proposed PGML-VMS-ROM

that is in stark contrast with the DD-VMS in [157, 158], which considers only the

Markovian effects.

For memory embedding, we let c be a function of the short time history of the

resolved POD coefficients, i.e., c(n)(·) ≈ πθ(a
(n),a(n−1), . . . ,a(n−τ)) = πθ(a

(n):(n−τ)),

where τ defines the length of the time history of a that is required for estimating the

closure term. The LSTM allows modeling non-Markovian processes while mitigating

the issue with vanishing (or exploding) gradient by employing gating mechanisms. In

particular, the hidden-to-hidden mapping fhh is defined using the following equations:

g
(n)
f = σf (Wf [h

(n−1),a(n)] + bf ),

g
(n)
i = σi(Wi[h

(n−1),a(n)] + bi),

s̃(n) = tanh (Ws[h
(n−1),a(n)] + bs),

s(n) = g
(n)
f ⊙ s(n−1) + g

(n)
i ⊙ s̃(n),

g(n)
o = σo(Wo[h

(n−1),a(n)] + bo),

h(n) = g(n)
o ⊙ tanh (s(n)),

(3.39)

where gf ,gi,go ∈ RH are the forget gate, input gate, and output gate, respectively,

with the corresponding Wf ,Wi,Wo ∈ RH×(H+R) weight matrices, and bf ,bi,bo ∈
RH bias vectors. s ∈ RH is the cell state with a weight matrix Ws ∈ RH×(H+R) and

bias vector bs ∈ RH . Finally, σ is the sigmoid activation function, and ⊙ denotes the

element-wise multiplication.

We stack l LSTM layers to define the hidden states, followed by a fully connected

layer with a linear activation function to represent the hidden-to-output mapping.

Thus, the ML-VMS-2 closure model can be written as

c(n) ≈ L(·) ◦ h(n)
l (·) ◦ h(n):(n−τ)

l−1 (·) ◦ · · · ◦ h(n):(n−τ)
1 (·) ◦ I(a(n):(n−τ)) (3.40)

where L(·) represents the output layer with linear activation, and I(·) denotes the
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input layer. Note that each of the internal LSTM layers (i = 1, 2, . . . , l− 1) produces

a sequence of hidden states h
(n):(n−τ)
i , while the the lth layer passes only the hidden

state at the final time h
(n)
l to the output layer.

To summarize, Eqs. (3.37) to (3.40) yield the ML-VMS-2 ROM. In order to make

use of the locality of modal interactions, the VMS-3 ROM is written as[
ȧL

ȧS

]
= f(a) +

[
cL(a)

cS(a)

]
, (3.41)

where two separate terms are dedicated to model the closure for the resolved large

scales and resolved small scales. For the ML-VMS-3, the closure terms are defined as

follows:

c
(n)
L ≈ πL,θ(a

(n):(n−τ))

≈ L
L
(·) ◦ h(n)

lL
(·) ◦ h(n):(n−τ)

l−1L
(·) ◦ · · · ◦ h(n):(n−τ)

1L
(·) ◦ I(a(n):(n−τ)),

c
(n)
S ≈ πS,θ(a

(n):(n−τ))

≈ L
S
(·) ◦ h(n)

lS
(·) ◦ h(n):(n−τ)

l−1S
(·) ◦ · · · ◦ h(n):(n−τ)

1S
(·) ◦ I(a(n):(n−τ)).

(3.42)

We note that we have more flexibility in ML-VMS-3 than in ML-VMS-2. Hence, it is

possible to make richer descriptions of the interactions between large resolved, small

resolved, and unresolved scales.

3.5.2 PGML-VMS ROM

Critical aspects that should be considered during the adoption of ML based approach

include their reliability, robustness, and trustworthiness. Previous studies [164–166]

have reported high levels of uncertainty in the predictions of vanilla-type ML methods,

especially for sparse data and incomplete governing equations regimes. In order to

mitigate this issue, we utilize the physics-guided machine learning (PGML) paradigm

to incorporate known physical arguments and constraints into the learning process. In

particular, we exploit a modular approach to modify the neural network architectures

through layer concatenation to inject physical information at different points in the

latent space of the given DNN. This adaptation augments the performance during

both the training and the deployment phases, and results in significant reduction in

the uncertainty levels of the model prediction, as we demonstrate in Section 3.7.

In the PGML framework, the features extracted from the physics-based model
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are embedded into the generic ith intermediate hidden layer along with the latent

variables. In order to build the PGML-VMS framework, we consider the Galerkin

projection of the governing equations onto different POD modes to define the physics-

based features (since they are derived from physical principles). Thus, the PGML-

VMS-2 closure model can be written as

c(n) ≈ L(·) ◦ h(n)
l (·) ◦ · · · ◦ C

(
h
(n):(n−τ)
i (·),f (n):(n−τ)

)
◦ h(n):(n−τ)

i−1 (·)

◦ · · · ◦ h(n):(n−τ)
1 (·) ◦ I(a(n):(n−τ)),

(3.43)

where C(·, ·) represents the concatenation operation, and f (n):(n−τ) is the time history

of projecting the FOM operators onto the truncated POD subspace. We highlight

that there is no significant computational load for the calculation of f := Aa+a⊤Ba,

since A and B are already precomputed.

A schematic illustration of the PGML adaptation of the standard LSTM archi-

tecture is depicted in Fig. 3.2. In this figure, 3 LSTM layers are used (i.e., l = 3),

followed by a dense layer to provide the mapping from hidden state to the closure

terms. The physics-based features are injected into the LSTM latent space after two

hidden layers. One of the main advantages of the novel PGML framework in Fig. 3.2

is its modularity and simplicity. For example, based on the level of fidelity and our

confidence in the injected features, we can promptly change the layer at which we

embed them. Finally, the PGML-VMS-3 closure models can be written as

c
(n)
L ≈ LL

(·) ◦ h(n)
lL

(·) ◦ · · · ◦ C
(
h
(n):(n−τ)
iL

(·),f (n):(n−τ)
L

)
◦ h(n):(n−τ)

i−1L
(·)

◦ · · · ◦ h(n):(n−τ)
1L

(·) ◦ I(a(n):(n−τ)),

c
(n)
S ≈ LS

(·) ◦ h(n)
lS

(·) ◦ · · · ◦ C
(
h
(n):(n−τ)
iS

(·),f (n):(n−τ)
S

)
◦ h(n):(n−τ)

i−1S
(·)

◦ · · · ◦ h(n):(n−τ)
1S

(·) ◦ I(a(n):(n−τ)).

(3.44)

Note that in Eq. (3.44), we enjoy higher flexibility in choosing the physics-based

features injected for each of the large and small scale closure models. For instance,

in the present study, we benefit from the locality of modal interactions by embedding

the Galerkin propagator of only a few relevant neighboring modes (i.e., f
L
and f

S

in Eq. (3.44)), rather than including all of them in the LSTM learning (i.e., f in

Eq. (3.43)).
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Figure 3.2: Illustration of the PGML methodology with concatenated LSTM layers.
In this figure, a time history of 2 time steps is used while physics-based features
(yellow circles in the figure) are injected into the LSTM latent space after the second
hidden layer (i = 2).

3.6 Nonlinear POD

In Section 3.4 and Section 3.5, we addressed the closure problem. That is, we aimed

at correcting the ROM equations for the dynamics of the resolved scales including

the effects of the unresolved scales onto the dynamics of the resolved scales. How-

ever, the reconstructed flow fields were approximated within the span of the retained

modes, as shown in Eq. (3.14). Nonetheless, for turbulent flows the important flow

structures generally span a large number of modes. Thus, truncating the solution

beyond a small number of modes results in a large projection error. In other words,

62



the component ω′ =
∑N

k=R+1 akϕk that cannot be approximated by the resolved POD

basis becomes significant. In this section, we adapt the nonlinear POD (NLPOD)

framework, introduced in [167], to model the unresolved part of the field. Fig. 3.3

presents a schematic representation of the PGML-VMS-3 model for the large and

small resolved scales combined with NLPOD for enhanced field reconstruction. Note

that, although both the PGML-VMS-3 and the NLPOD aim at increasing the ROM

accuracy, they target different error sources: the PGML-VMS-3 aims at mitigating

the closure error, whereas the NLPOD aims at alleviating the projection error.

The NLPOD methodology is based on combining POD with autoencoder (AE)

techniques from ML to learn a latent representation of the POD expansion. It lever-

ages the predefined hierarchy of POD basis functions, which satisfy the conservation

laws and physical constraints, together with the capabilities of DNN to reveal the

nonlinear correlations between the modes. Rather than using the NLPOD for the

compression of the total set of POD coefficients, we constrain it to learn a few la-

tent variables, which represent only the unresolved scales. To construct the NLPOD,

we first define b = {ak}Kk=R+1 corresponding to an almost full-rank POD expansion,

where K ≤ N can be defined using the RIC spectrum (e.g., RIC(K) ≥ 99.99%). The

goal is to learn z = {zk}qk=1, where q ≪ K denotes the dimension of the AE latent

space.

The AE starts with an encoding process that involves applying a series of nonlinear

mappings onto the input data to shrink the dimensionality down to a bottleneck layer

representing the low rank or latent space embedding. An inverse mapping from the

latent space variables to the same input is performed by another set of nonlinear

mappings, defining the decoding part. For the NLPOD, the encoder and decoder can

be represented as follows:

Encoder η : b ∈ RK−R 7→ z ∈ Rq, Decoder ζ : z ∈ Rq 7→ b ∈ RK−R, (3.45)

and they are trained jointly to minimize the following objective function:

J =

Ntrain∑
n=1

∥b(n) − (η ◦ ζ)(b(n))∥, (3.46)

where Ntrain is the number of training samples.

In order to temporally propagate z, we can use any of the regression tools, in-

63



cluding sparse regression, Gaussian process regression, Seq2seq algorithms, temporal

fusion transformers, and auto-regression methods. In the present study, we use LSTM

architectures that are similar to the ones used in Section 3.5 to learn the one time-step

mapping from z(n) to z(n+1), as follows:

z(n+1) ≈ L(·) ◦ h(n)
l (·) ◦ h(n):(n−τ)

l−1 (·) ◦ · · · ◦ h(n):(n−τ)
1 (·) ◦ I(z(n):(n−τ)). (3.47)

Note that the number of layers, l, and the length of time history, τ , are not necessarily

equal to those in Section 3.5. Moreover, the LSTM and AE can be trained either

jointly or separately. In the present study, we train them separately for the sake of

simplicity and to facilitate the NLPOD combination with other time series prediction

tools.

GROM GROM

PGMLPGML

Encoder LSTM Propagator

NLPOD

Decoder

Figure 3.3: Schematic representation of the PGML-VMS-3 model for the large and
small resolved scales, combined with NLPOD for enhanced field reconstruction. We
note that PGML-VMS-3 is built upon a GROM for the first R modes and mitigates
the closure error (i.e., the effect of the truncated scales onto the resolved scales). In a
complementary fashion, NLPOD implements an equation-free model for the truncated
scales to reduce the projection error (i.e., the effect of the truncated scales onto the
flow field reconstruction).
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3.7 Results and Discussion

In this section, we perform a numerical investigation of the proposed PGML-VMS-

ROM methodologies (with and without the NLPOD extension) using the two dimen-

sional (2D) vortex merger problem [179], governed by the following vorticity transport

equation:

∂tω + J(ω, ψ) =
1

Re
∆ω, in Ω× [0, T ]. (3.48)

We consider a spatial domain of dimensions (2π × 2π) with periodic boundary

conditions. The flow is initialized with a pair of co-rotating Gaussian vortices with

equal strengths centered at (x1, y1) = (5π/4, π) and (x2, y2) = (3π/4, π) as follows:

ω(x, y, 0) = exp
(
−ρ
[
(x− x1)2 + (y − y1)2

])
+ exp

(
−ρ
[
(x− x2)2 + (y − y2)2

])
,

(3.49)

where ρ is a parameter that controls the mutual interactions between the two vortical

motions, set at ρ = π in the present study. For the FOM simulations, we consider a

regular Cartesian grid resolution of 256×256 (i.e., ∆x = ∆y = 2π/256), with a time-

step of 0.001. Vorticity snapshots are collected every 100 time-steps for t ∈ [0, 30],

totalling 300 snapshots. The evolution of the vortex merger problem at selected values

of the Reynolds number is depicted in Fig. 3.4, which illustrates the convective and

dissipative mechanisms affecting the transport and development of the two vortices.

In terms of POD analysis, we use R = 6 to define the total number of resolved

scales. For the three-scale VMS investigation, we split the resolved modes into 2

resolved large scales (i.e., r = 2) and 4 resolved small scales. For the NLPOD study,

we find that K = 20 corresponds to near full-rank approximation of the flow field at

all values of the Reynolds number. This is illustrated by the plot of the RIC values

as a function of the number of POD modes at Re = 3000 in Fig. 3.5.

Following a systematic approach, in Section 3.7.1, we first present our computa-

tional results for ML-VMS-2 and PGML-VMS-2 to quantitatively demonstrate the

benefit of incorporating the physics guided machine learning approach. We then

present the results for PGML-VMS-3 to highlight the flexibility and accuracy gain

of the three-scale approach. Finally, in Section 3.7.2, we reveal the additional role of

the NLPOD approach by illustrating the performance of the PGML-VMS-3+NLPOD

approach.
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Figure 3.4: Samples of temporal snapshots of the vorticity field for the vortex merger
problem at different values of Reynolds number.
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Figure 3.5: RIC values as a function of the modal truncation for the vortex merger
problem at Re = 3000.

3.7.1 Multi-level VMS closure for resolved scales

We store data corresponding to Re ∈ {500, 750, 1000, . . . , 3000}, but we use only the

data collected at Re ∈ {500, 750, 1000} for neural network training and reserve the

remaining data for testing purposes. First, we explore the combination of multi-level

variational multi-scale methods with machine learning. Figure 3.6 displays the results

of applying the ML-VMS-2 framework to model the closure term at Re = 3000. In

particular, we run a group of 10 LSTMs with different initializations of the neural

network weights and utilize the deep ensemble method to quantify the uncertainty

in the predictions. On the average, the ML-VMS-2 method provides accurate results

compared to the GROM results. However, the uncertainty levels, described by the

standard deviation in the ensemble predictions, are high. This is especially evident

at the late time instants as the uncertainty propagates and grows with time.

In order to increase the closure model robustness and reduce the uncertainty

levels, we apply the PGML to inject physics-based features, as detailed in Section 3.5.

Figure 3.7 shows the evolution of the first 6 POD modal coefficients using the PGML-

VMS-2. We can observe a significant reduction in the uncertainty levels as depicted

by the shaded area, compared to the ML-VMS-2. It is also clear that the GROM

yields inaccurate predictions. Moreover, we can observe that the deviations of the

GROM trajectory from the true projections are larger for the latest resolved modes.

In fact, this observation also applies to the ML-VMS-2 and PGML-VMS-2, which

provide better results for the first two or three modes than the remaining ones.
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Figure 3.6: The time evolution for the first 6 modes of the vortex merger problem with
the two-level VMS using ML closure, compared to the true projection and GROM
(without closure) predictions. The solid line represents the mean values (µ) from an
ensemble of 10 different LSTM neural networks trained with different weight initaliza-
tions, while the shaded area defines the uncertainty bounds using standard deviation
(σ) values. For better visualization, the shaded band is plotted with µ± 5σ.
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Figure 3.7: The time evolution for the first 6 modes of the vortex merger problem
with the two-level VMS using PGML closure, compared to the true projection and
GROM (without closure) predictions. The solid line represents the mean values (µ)
from an ensemble of 10 different LSTM neural networks trained with different weight
initalizations, while the shaded area defines the uncertainty bounds using standard
deviation (σ) values. For better visualization, the shaded band is plotted with µ±5σ.
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In Fig. 3.8, we plot the ROM propagator ȧ computed by the Galerkin method

(i.e., with truncation, with no access to the unresolved scales, and without correction)

against the true propagator (assuming access to all the flow scales). We find that the

GROM equations can adequately describe the dynamics of the first modes, but fail to

do so for the last ones. This can be explained by locality of information transfer, which

is one of the main concepts used in the VMS development. Such locality indicates

that the neighboring modes exhibit larger mutual interactions than the modes which

are far apart. Thus, describing the dynamics of the leading modes requires more

information from the first few scales than from the remaining scales. In other words,

the resolved scales become almost sufficient to define the propagator of the leading

modes. On the other hand, the last modes are adjacent to the unresolved scales.

Thus, the mode truncation considerably affects the dynamics of the last modes.
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ȧ
3
(t

)

0 10 20 30
t

−2.5

0.0

2.5

ȧ
4
(t

)

0 10 20 30
t

−2.5

0.0

2.5

ȧ
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Figure 3.8: Comparison between the ROM propagator computed by Galerkin pro-
jection (with truncation, i.e., ȧk = (−J(ωR, ψR) +∇2ωR, ϕk), against the true (FOM
projection) propagator (i.e., ȧk = (−J(ω, ψ) + ∇2ω, ϕk) at Re = 3000 and R = 6.
We notice that the Galerkin projection accurately captures the dynamics of the first
modes, but a discrepancy appears at the latest modes, which motivates the use of
multi-level VMS closure.

In order to improve the quality of the closure model, we leverage the locality

of modal interactions and apply the three-level VMS closure to correct the ROM

dynamics. In particular, we split the resolved scales into two parts: the first 2 modes

represent the largest resolved scales, while the remaining 4 modes represent the small

resolved scales. The ML-VMS-3 predictions of the temporal dynamics for the first 6

69



modes are shown in Fig. 3.9. Compared to Fig. 3.6, the ML-VMS-3 provides more

accurate results than the ML-VMS-2, even in terms of uncertainty levels.
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Figure 3.9: The time evolution for the first 6 modes of the vortex merger problem
with the three-level VMS using ML closure, compared to the true projection and
GROM (without closure) predictions. The solid line represents the mean values (µ)
from an ensemble of 10 different LSTM neural networks trained with different weight
initalizations, while the shaded area defines the uncertainty bounds using standard
deviation (σ) values. For better visualization, the shaded band is plotted with µ±5σ.

Finally, the PGML-VMS-3 results are shown in Fig. 3.10, where we can see im-

proved results across all the resolved scales with very low levels of uncertainty. The

mean squared error (MSE) between the true projection values of the resolved scales

and the prediction of the ROM with and without various closure models is shown

in Fig. 3.11. We can see that the VMS closure provides at least one order of mag-

nitude better predictions than the baseline GROM. Moreover, the PGML-VMS is

superior to the ML-VMS, especially for Reynolds number values that are not in-

cluded in the LSTM training. This can be attributed to the fact that PGML employs

physics-based features derived from the governing equations, resulting in improved

extrapolatory capabilities of the overall model. Finally, the three-level variant of

VMS is providing more accurate ROMs than VMS-2, making use of the locality of

information transfer to build more localized closure models.
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Figure 3.10: The time evolution for the first 6 modes of the vortex merger problem
with the three-level VMS using PGML closure, compared to the true projection and
GROM (without closure) predictions. The solid line represents the mean values (µ)
from an ensemble of 10 different LSTM neural networks trained with different weight
initalizations, while the shaded area defines the uncertainty bounds using standard
deviation (σ) values. For better visualization, the shaded band is plotted with µ±5σ.

500 1000 1500 2000 2500 3000
Re

10−3

10−2

10−1

100

M
S

E

in–sample out–of–sample

GROM

ML–VMS–2

ML–VMS–3

PGML–VMS–2

PGML–VMS–3

Figure 3.11: Mean squared error (MSE) between the true values of modal coefficients
and the predictions of GROM, ML-VMS-2, ML-VMS-3, PGML-VMS-2, and PGML-
VMS-3.
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3.7.2 NLPOD for unresolved scales

The reconstructed vorticity fields from GROM, true projection, and PGML-VMS-3

at final time (i.e., t = 30) at Re = 3000 are visualized in Fig. 3.12. We can see that

the GROM field is significantly inaccurate. In contrast, the PGML-VMS-3 is very

close to the true projection field. This suggests that the PGML-VMS-3 is successful

in providing accurate closure terms in such a way that the resulting ROM trajectory

converges to the best linear approximation with 6 modes. Nonetheless, compared to

the FOM solution, it is clear that 6 POD modes are not enough to capture all the

relevant flow structures, especially at large values of the Reynolds number. On the

other hand, building a projection-based ROM with increased number of modes will

result in an undesired higher computational burden.

In order to cure this limitation, we apply the NLPOD methodology from Sec-

tion 3.6 to learn a latent space representation of important unresolved scales. We find

that the value K = 20 corresponds to RIC ≥ 99.99%, so we consider b = {ak}20k=7 ∈
R14 in the NLPOD extension. We use the NLPOD to learn a two-dimensional com-

pression of the resolved scales, i.e., z = {zk}2k=1 ∈ R2. Fig. 3.13 displays the recon-

structed vorticity fields at the final time from the true projection of the FOM field

onto the first 6 and the first 20 POD modes. We notice that the FOM flow scales can

be adequately captured by the subspace spanned by the first 20 POD modes. Fur-

thermore, the plots clearly show that the combination of PGML-VMS-3 for the first

6 modes and NLPOD for the subsequent 14 modes (i.e., a total of 20 modes) provides

improved field reconstruction. We highlight that the computational overhead of the

online deployment of the PGML-VMS closure and NLPOD is negligible compared to

solving the projection-based ROM with 6 modes.

The CPU times for different portions of the FOM and ROMs are listed in Ta-

ble 3.1. For the ROMs, we can see that the majority of the time is spent to train the

neural networks during the offline stage. We note that this time can be significantly

reduced by considering parallel training algorithms that make use of distributed hard-

ware facilities. We also notice that the three-level VMS framework takes about twice

the time taken by the two-level VMS due to the use of two distinct neural networks,

which doubles the training and testing time. Nonetheless, we see that considerable

computational gains are achieved compared to the FOM, by offloading most of the

expensive computations to the offline stage resulting in computationally light models

that can be used efficiently in the online stage. Moreover, we notice that the costs of
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Figure 3.12: Comparison between the FOM vorticity field at the final time (i.e.,
t = 30) and the reconstruction from true projection (i.e., optimal reconstruction),
GROM, and PGML-VMS-3. Note that the PGML-VMS-3 field is very similar to
the true projection field, which implies that the closure error is minimized. However,
there are clear differences between the FOM and PGML-VMS-3 results, which suggest
a significant projection error in the PGML-VMS-3 model.

the ML and PGML frameworks are of the same order, which implies that incorporat-

ing physics-based features into the neural network latent space comes with negligible

overheads.

3.8 Conclusions

We propose a hybrid hierarchical learning approach for the reduced order modeling of

nonlinear fluid flow systems. The core component of the proposed method comprises a

multi-level variational multi-scale (VMS) framework for the natural separation of the

resolved modes of different length scales and unresolved modes. We develop a modular

physics-guided machine learning (PGML) paradigm through the concatenation of
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Figure 3.13: Comparison between the FOM vorticity field at final time (i.e., t =
30) and the reconstruction from true projection (i.e., optimal reconstruction) at two
different values of modal truncation as well as the predictions of the PGML-VMS-3
for the dynamics of the first 6 modes, augmented with NLPOD for the following 14
modes (i.e., a total of K = 20 modes) to reduce the projection error.

neural network layers to enable the convergence of the ROM trajectory of resolved

scales to the optimal low-rank approximation. We use the projection of the governing

equations onto the POD modes as physics-based features to constrain the output to

a manifold of the physically realizable solutions.

For a vorticity transport problem with high Reynolds numbers, we numerically

demonstrate that this injection of physical information yields more robust and reliable

ROM closures with reduced uncertainty levels. Moreover, we showcase the benefits of

exploiting the locality of information transfer by building a three-level VMS, which

centers around the scale-separation of the resolved modes into large resolved scales

and small resolved scales. The numerical results show that the VMS-3 provides
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Table 3.1: Comparison of the CPU times for the offline and online stages for FOM
and ROMs. Note that the PGML-VMS-3+NLPOD model yields a level of accuracy
which is similar to the GROM (R = 20) model with only a fraction of computational
overhead (i.e., with a total computational online execution time of 63.876 s for the
PGML-VMS-3+NLPOD model).

Offline CPU Time [s] Online CPU Time [s]
POD Basis 0.646 FOM 1860.056
GROM Operators 0.246 GROM (R = 6) 20.226
ML-VMS-2 Training 71.641 ML-VMS-2 (R = 6) 32.289
ML-VMS-3 Training 148.057 ML-VMS-3 (R = 6) 45.055
PGML-VMS-2 Training 65.324 PGML-VMS-2 (R = 6) 33.358
PGML-VMS-3 Training 139.863 PGML-VMS-3 (R = 6) 51.545
NLPOD Training (AE) 111.543 NLPOD (R = 6, K = 20) 12.331
NLPOD Training (LSTM) 85.234 GROM (R = 20) 604.427

significant flexibility in defining the closure terms and is superior to the classical

VMS-2 model used in previous studies. Finally, to decrease the projection error, we

adapt the nonlinear proper orthogonal decomposition approach to learn a latent space

representation of the unresolved ROM scales that yield a near-full rank approximation

of the flow field.

Further investigations are required to optimize the layer(s) at which physics-based

features are injected in the PGML framework. For example, we can add the injec-

tion at multiple points in the latent space, rather than a single point. Moreover, we

may fuse various information from different models by repeating the concatenation

operator for each piece of information. It is worth noting that advanced hyperpa-

rameter tuning approaches for the automated design of neural network architectures

(e.g., using genetic algorithms) can be utilized to find the optimal layer(s) to inject the

physics in the PGML architectures. In the present study, the ML-VMS, PGML-VMS,

and NLPOD components of the hybrid framework are treated separately. In other

words, the training of each neural network takes place independently of other neural

networks in the framework. In a follow-up study, we plan to explore the simultaneous

training of these neural networks to ensure that these models are integrated seam-

lessly in the computational workflow. Finally, the truncated scales that are recovered

by NLPOD can be further embedded in the PGML-VMS architecture to improve the

approximation of the closure model.
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Part II

Interface Learning

76



CHAPTER 4

Interface Learning of Multi-Physics and Multi-Scale Systems

4.1 Abstract

Complex natural or engineered systems comprise multiple characteristic scales, mul-

tiple spatiotemporal domains, and even multiple physical closure laws. To address

such challenges, we introduce an interface learning (IL) paradigm and put forth a

data-driven closure approach based on memory embedding to provide physically cor-

rect boundary conditions at the interface. To enable IL for hyperbolic systems by

considering the domain of influence and wave structures into account, we put forth

the concept of upwind learning towards a physics-informed domain decomposition.

The promise of the proposed approach is shown for a set of canonical illustrative prob-

lems. We highlight that high-performance computing environments can benefit from

this methodology to reduce communication costs among processing units in emerging

machine learning ready heterogeneous platforms toward exascale era.

4.2 Introduction

Specification of boundary conditions is essential for the accurate solutions of mathe-

matical models representing physical system [180]. Moreover, numerical simulations

of multi-scale, multicomponent, multi-physics and multi-disciplinary systems require

additional treatment of interface boundary conditions among solvers or heterogeneous

computational entities. Otherwise, in a naive implementation, the stiffest part of the

domain dictates the overall spatial mesh resolution and time stepping requirements,

making such simulations computationally daunting. Most of such hierarchical prob-

lems that incorporate some sort of information exchange can be put into the following

six categories, explained with examples as follows:

1. Reduced order model - full order model coupling: With the emergence of digital

This chapter is adapted from: Ahmed, S. E., San, O., Kara, K., Younis, R., & Rasheed,
A. (2020). Interface learning of multiphysics and multiscale systems. Physical Review E, 102(5),
053304.
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twin like technologies, there is a demand for lighter models that can run in real time

[128, 181]. In the context of weather prediction, the full order model (FOM) has been

in use for a long time; however, they are incapable of modeling phenomena associated

with scales smaller than what the coarse mesh can handle (like buildings and small

terrain variations). These fine scale flow structures can be modeled using a much

refined mesh but then the simulations become computationally intractable. To tackle

this problem, a large variety of reduced order models (ROMs) are being developed. In

order to make these ROMs realistic, there is a need to couple them to the FOM model

so that the interface conditions (both in space and time) are exchanged between the

FOM and ROM.

2. Multi-physics and multi-scale coupling: Various flow dichotomies with a multi-

physics coupling of interacting subsystems can be identified in many scientific and

engineering applications [182]. For instance, in a gas turbine flow, the rotating parts

and wall turbulence largely govern the flow within compressor and turbine sections.

On the other hand, for the flow within the combustor, chemical reactions, heat release,

acoustics, and the presence of fuel spray come into play. Thus, a simulation of the

flow within the combustion chamber is significantly more expensive and demanding

than other sections. It would require a finer and more sophisticated mesh, smaller

time step, and less numerical simplifications. Therefore, using a unified global solver

for the whole system would be either too expensive (matching the level of the fidelity

required for the more complex part), or unacceptably inaccurate (following the level

of fidelity required for the inexpensive part). Instead, multiple solvers are usually

utilized to address different parts [183–185], and information is transferred between

solvers. Another common example in this category might be the use of a particle

based approach in part of the domain, while using a continuum approach in the rest

of the domain [186, 187].

3. Geometric multi-scale: One example is the blood flow in the whole circulatory sys-

tem which is mathematically described by means of heterogeneous problems featuring

different degrees of detail and different geometric dimensions that interact together

through appropriate interface coupling conditions. Proper exchange of interface con-

ditions between models operating at different geometric approximations opens alto-

gether new vistas for biofluids simulations [188–190]. Such multi-dimension modeling

has been also promoted in porous media flows [191–193].

4. Model fusion: Turbulence modeling generally requires an apriori selection of the

most suited model to handle a particular kind of flow. However, it is seldom that
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one model is sufficient for different kind of zones in the computational domain. To

alleviate this problem, hybrid and blending models have been extensively utilized

to lift technical barriers in industrial applications, especially in settings where the

Reynolds-averaged Navier-Stokes (RANS) approach is not sufficient and large eddy

simulation (LES) is too expensive [194–196]. The approach can be extended to blend

any number of turbulence models provided the exchange of information at the inter-

face can be accurately modeled [197].

5. Nested solvers: To decrease the computational cost required for an accurate rep-

resentation of the numerous interconnected physical systems, e.g., oceanic and at-

mospheric flows, several classes of nested models have been developed and form the

basis of highly successful applications and research at numerous weather and climate

centers. Enforcing consistent flow conditions between successive nesting levels is also

considered one form of interface matching. For example, a spectral nudging approach

has been successfully implemented to force the large-scale atmospheric states from

global climate models onto a regional climate model [198–203].

6. Domain decomposition: Since various zones in multi-scale systems are connected

through interfaces, data sharing, and communicating consistent interface boundary

conditions among respective solvers are inevitable [204]. Likewise, multi-rate and lo-

cally adaptive stepping methods can yield a mismatch at the space-time interface, and

simple interpolation or extrapolation might lead to solution divergence or instabilities

[205]. An analogous situation usually occurs in parallel computing environments with

domain decomposition and distribution over separate processors with message passing

interface to communicate information between processors. The heterogeneity of dif-

ferent processing units creates an asynchronous computational environment, and the

slowest processors will control the computational speed unless efficient load-balancing

is performed [206, 207].

In short we can conclude that developing novel methodologies to model the infor-

mation exchange at the interface will have far reaching impacts on a large variety of

problems as shown in Fig. 4.1. To this end, the current chapter puts forth an approach

based on memory embedding via machine learning to provide physically correct in-

terfacial conditions. In particular, the proposed technique relies on the time history

of local information to estimate consistent boundary conditions at the sub-domain

boundaries without the need to resolve the neighboring regions (on the other side

of the interface). It enables us to focus our computational resources on the region

or scales of interest. We first present proof-of-concept computations on a bi-zonal
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Figure 4.1: Overview of the interface learning paradigm considering numerous scien-
tific and engineering interpretations.

one-dimensional Burgers’ problem to showcase the proposed approach’s promise for

stiff multi-scale systems. Moreover, we demonstrate that upwinding ideas can be

easily incorporated in the IL framework to make the proposed approach physically

more consistent with the underlying characteristics and wave structures in hyperbol-

icity dominated systems. With this in mind, we then propose the upwind learning

approach toward establishing an eclectic framework for physics-informed data-driven

domain decomposition approaches. The efficacy of the upwind learning is revealed us-

ing a set of canonical problems, including the hyperbolic Euler equations and pulsed

flow equations. We also highlight that high-performance computing environments

can benefit from this methodology to reduce communication costs among processing

units.

4.3 Two-Component System

As a first demonstration of IL, we consider an application to the one-dimensional (1D)

viscous Burgers problem. It combines the effects of viscous diffusion, friction, and

nonlinear advection, and thus serves as a prototypical test bed for several numerical

simulations studies. In order to mimic multi-scale and multi-physics systems, we

suppose the domain consists of two distinguishable zones corresponding to different
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physical parameters as follows,

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
− γu, (4.1)

(ν, γ) =

(10−2, 0), for 0 ≤ x ≤ xb,

(10−4, 1), for xb < x ≤ 1,
(4.2)

where xb is the spatial location of the interface. In a naive implementation, a numer-

ical solution of this problem would imply the use of a grid resolution and time step

corresponding to the stiffest part (i.e., the left zone in this case) all over the domain

unless we adopt an implicit scheme which is unconditionally stable but requires a

nonlinear solver typically at each time step. Certainly, this puts an excessive and

unnecessary computational burden. For instance, if we opt to using a spatial reso-

lution of 4096 grid spacings with a simple forward in time central in space (FTCS)

finite difference scheme, the maximum time step that can be used in the left zone

is approximately 2.5 × 10−6 (i.e., δt ≤ δx2/(2ν) based on von Neumann stability

analysis). On the other hand, the right zone gives the flexibility of using two orders

of magnitude larger time step. However, resolving the whole domain simultaneously

would dictate the smaller time step, even if we are only interested in the right zone.

A similar scenario would take place in multi-component systems with varying spatial

grid resolutions, where a unified resolution all over the domain becomes unpractical.

Thus, we explore the introduction of a memory embedding architecture to enable

resolving the zone of interest independently of the rest of the domain.

4.4 Memory Embedding of Interface Boundaries

For machine learning applicability, a pattern must exist and most fluid flows are

dominated by coherent structures. Thus, our underlying hypothesis is the existence

of a dynamical context or correlation between the time history of flow features at the

interface in addition to the interactions with its one-sided neighbors (i.e., u(xb, tn),

u(xb+δx, tn), u(xb+2δx, tn), . . . ), and the future state at the interface (i.e., u(xb, tn+

δt)). This corresponds to the Learn from Past (LP) model in Fig. 4.2. Since we

incorporate a fully explicit time stepping scheme in our simulation, the interface

neighboring points might be evolved in time before the interface condition is updated

(e.g., using locally-frozen boundary conditions). Thus, a variant of the LP model

based on a combination between old and updated values, namely the Learn from
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Figure 4.2: Different models to utilize LSTM mapping for learning boundary condi-
tions at the interface

Past and Present (LPP) model, can be utilized as well. Furthermore, we extend this

mapping to take into account the time history dependence in a non-Markovian manner

through the adoption of recurrent neural networks. Those exploit an internal state

feature that reserves information from past input to learn the context to improve and

refine the output. For the neural network architecture, we use a simplistic long short-

term memory (LSTM) of two layers, 20 neurons each. Although more sophisticated

ML architectures and/or numerical schemes might be utilized (e.g., [13, 208–210]), the

main objective of the present study is to emphasize the potential of neural networks to

advance computational fluid dynamics (CFD) simulations for multi-scale and multi-

component systems.
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4.5 Proof-of-Concept Results

For the demonstration and assessment of the introduced methodology of IL, we

first consider two examples of varying complexity for the 1D Burgers problem with

quadratic nonlinearity and Laplacian dissipation defined in Eq. (4.1). We then intro-

duce and discuss the need for upwind learning to provide physically-aware domain

decomposition to address hyperbolicity-dominated systems. For IL, we consider two

schemes/models for the training as illustrated in Fig. 4.2 to learn the dynamics at

the internal boundary separating the two compartments.

4.5.1 Example 1: travelling square wave

. In this first example, we address the problem of a travelling square wave, where the

initial condition is defined with an amplitude of 1 in the left zone (i.e., 0 ≤ x ≤ xb),

and zero in the right zone as below,

u(x, 0) =

1, for 0 ≤ x ≤ xb,

0, for xb < x ≤ 1.

In other words, the interface is placed exactly at the discontinuity location of the

initial propagating wave. So, the wave is guaranteed to instantaneously enter the right

zone once the flow is triggered. We solve the presented viscous 1D Burgers problem

for a time span of [0, 1] using a time step of 2.5 × 10−6 to resolve the whole domain

x ∈ [0, 1] over a spatial grid resolution of 4096. For external boundary conditions, we

assume zero Dirichlet boundary conditions (i.e., u(0, t) = u(1, t) = 0). Data snapshots

are stored every 100 time steps (corresponding to the coarse time step of 2.5× 10−4).

In particular, we generate data for xb ∈ {1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8}, and we use

field data at xb ∈ {1/8, 3/8, 5/8, 7/8} for training and reserve the remaining cases for

the out-of-sample testing.

We demonstrate IL performance by we considering a truncated 1D domain (defined

as xb ≤ x ≤ 1) and resolve the flow dynamics in this portion using a coarse time

step of 2.5 × 10−4, denoted the macro-solver here. We adopt the LSTM learning to

update the left boundary condition (i.e., at x = xb). For the right boundary (i.e., at

x = 1), we keep the standard zero Dirichlet conditions. To enhance the neural network

performance, we augment the input vector with the spatial and temporal information

as well. In other words, LP model can be interpreted as the mapping u(xb, tn +
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δt) = G1

(
u(xb, tn), u(xb + δx, tn), u(xb + 2δx, tn), . . . , xb, xb + δx, xb + 2δx, . . . , tn

)
,

while LPP scheme learns the map u(xb, tn + δt) = G2

(
u(xb, tn), u(xb + δx, tn), u(xb +

2δx, tn), . . . , u(xb+δx, tn+δt), u(xb+2δx, tn+δt), . . . , xb, xb+δx, xb+2δx, . . . , tn, tn+

δt
)
.

We compare the predicted velocity field within the truncated domain using the

proposed LSTM boundary condition (BC) closure approach with respect to the true

solution obtained by solving the whole domain. We note here that the LSTM BC

closure results are based on utilizing the macro-solver (i.e., using a time step of

2.5 × 10−4), while the true solution is obtained by adopting the micro-solver (i.e.,

using a time step of 2.5 × 10−6). The spatio-temporal evolution of the velocity field

for xb ∈ {1/4, 2/4, 3/4} is shown in Fig. 4.3, where xb is the location of the interface.

We note that Fig. 4.3 corresponds to a three-point stencil for the LSTM mapping. In

other words, the LP model uses values of u(xb, tn), u(xb + δx, tn), and u(xb +2δx, tn)

for the prediction of u(xb, tn+ δt), while the LPP model uses u(xb, tn), u(xb+ δx, tn),

u(xb+2δx, tn), u(xb+δx, tn+δt), and u(xb+2δx, tn+δt). Visual results advocate the

capability of the presented approach of predicting accurate values for the interface

boundary condition at different times.
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Figure 4.3: Results for LSTM boundary condition closure for different values of xb.
Predicted velocity fields are shown at t ∈ {0.0, 0.25, 0.50, 0.75, 1.0}.
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For more quantitative assessment, we also compute the resulting root mean-

squares error (RMSE) defined as

RMSE =

√√√√ 1

NtNx

Nt∑
n=1

Nx∑
i=1

(
uT(xi, tn)− uP(xi, tn)

)2
, (4.3)

where uT is the true velocity field, and uP represents the predictions by the LSTM

BC closure approach. In the above formula, Nx stands for the number of grid points

involved only in the truncated domain. In other words, it considers only the flow field

values within [xb, 1].

The RMSE values of the LSTM BC closure predictions using a two- and three-

point stencils are documented in Table 4.1 using the LP and LPP models. Quanti-

tative results imply that the LP model is giving slightly better results than the LPP

model. We believe that this behavior is because the LP model is more consistent with

the adopted explicit numerical scheme, where the time evolution relies solely on the

old values of the flow field. Moreover, this might be attributed to the sub-optimal ar-

chitecture we use for the LSTM. Although we found that results are not very sensitive

to the given hyper-parameters, further tuning might be required to provide optimal

performance. We also see from Table 4.1 that an increase in the stencil size from 2 to

3 improves results. Nonetheless, a 2-point stencil mapping still provides acceptable

predictions, confirming the validity and robustness of the LSTM memory embedding

skills to yield physically consistent and accurate state estimates at the interface using

local information, and may hold immense potential for designing ML-ready predictive

engines in physical sciences.

Table 4.1: RMSE of LSTM boundary condition closure results using different models
with two-point and three-point mapping.

LP Model LPP Model
xb 2 Points 3 Points 2 Points 3 Points

0.125 1.5× 10−2 2.9× 10−3 2.6× 10−2 1.4× 10−2

0.250 4.4× 10−2 3.5× 10−3 2.8× 10−2 3.4× 10−3

0.375 8.4× 10−3 3.6× 10−3 2.0× 10−2 1.6× 10−2

0.500 2.9× 10−2 2.6× 10−3 1.7× 10−2 2.3× 10−2

0.625 6.4× 10−3 3.7× 10−3 1.9× 10−2 1.3× 10−2

0.750 1.0× 10−2 5.4× 10−3 1.2× 10−2 1.7× 10−3

0.875 2.1× 10−3 1.8× 10−3 6.7× 10−3 4.4× 10−3
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4.5.2 Example 2: pulse problem

. In a second example of increasing complexity, we study the evolution of a pulse wave

completely contained in a portion of the left region. The initiation of flow dynamics in

the truncated domain is controlled by the interplay between advection, diffusion, and

friction in different regions. Specifically, we consider an initial condition of a pulse,

completely contained in the left region and study its propagation and travel from the

left to right compartments. In particular, the initial pulse can be represented as

u(x, 0) =

1, for 0 ≤ x ≤ wp,

0, for wp < x ≤ 1,

where wp is the pulse width. For illustration, we store results corresponding to 7

varying pulse widths as wp ∈ {0.20, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26}. The same nu-

merical schemes and resolutions of Example 1 are adopted here. Data corresponding

to wp ∈ {0.20, 0.22, 0.24, 0.26} are used for training and validation, while we assign

wp ∈ {0.21, 0.23, 0.25} for out-of-sample testing. For interface, we consider a fixed

interface location at xb = 0.3 (i.e., on the right of the largest pulse width). This

is to let the interplay between the different interacting mechanisms (i.e., advection,

diffusion, and friction) to come into effect before the pulse travels into the truncated

zone. Thus the state at the interface is more dependent on the flow dynamics in both

domain partitions. Since the pulse width is a key factor in this problem setting, we

augment our input vector with wp as well. For this particular example, we found that

enforcing higher memory embedding is crucial in providing accurate results. Specifi-

cally, we adopt a sliding window of a three-time step (also called a lookback of 3) in

our LSTM implementation [211]. Results for the LP and LPP schemes are shown in

Fig. 4.4 using 3-point mapping. We find that both schemes can sufficiently learn the

interface dynamics and accurately predict its condition at out-of-sample settings.

Although the wave in the previous examples moves from left to right, both LP

and LPP are able to predict the interface conditions from the right-sided neighbors.

In other words, the upstream conditions are inferred from the time history of the

downstream flow. However, we highlight that this was greatly feasible due to the

significant dissipative (viscous) effects that enable the rapid dissipation of information

across the whole domain. Therefore, as soon as the solver is initialized within the

right sub-domain, the incoming wave is already felt downstream. That is why a
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Figure 4.4: Results for LSTM boundary condition closure for the pulse prob-
lem using different values of wp. Predicted velocity fields are shown at t ∈
{0.0, 0.25, 0.50, 0.75, 1.0}.

deeper sliding window was needed in Example 2 to allow the effect of the pulse to

pass to the right zone. On the other hand, in the hyperbolic limit, this cannot

be established. For instance, if we look at the linear advection problem given as

ut + aux = 0 (where a is the constant wave speed), we know that the solution can be

written as u(x, t) = u(x − at, 0). This means that the specification of the interface

condition u(xb, t) relies on the information from the direction where the wave is coming

from (e.g., for positive a, we need information from the left sided neighbors).

This is one limitation of the presented interface learning framework. In order to

mitigate and treat this issue, we put forth an upwind learning methodology to enforce

physics into the learning process. For such, the domain decomposition procedure is

performed to allow upwind learning from the upstream neighbors. In other words,

instead of solving the whole domain, we replace the insignificant downstream sub-

components by an LSTM architecture and infer their effects from the time history of

upstream flow dynamics. Thus, the main purpose of the upwind learning framework

is to account for the effects of downstream domain with an ML model that provides
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the interface condition in order to be able to solve for the upstream domain. We illus-

trate the upwind learning methodology using a gas dynamics flow problem governed

by the hyperbolic Euler equations as well as a pulsatile flow through a network of

branched elastic tubes.

4.5.3 Example 3: Euler equations of gas dynamics

. In this example, we apply the proposed upwind learning concept on the Sod’s

shock tube problem [212], considering a long one-dimensional (1D) tube, closed at its

ends with a thin diaphragm dividing the tube into two regions. The governing one

dimensional Euler equations can be written in a conservative form as below

∂

∂t


ρ

ρu

ρe

+
∂

∂x


ρu

ρu2 + p

ρuh

 = 0, (4.4)

where ρ is the density, u is the horizontal component of the velocity, e is the internal

energy, p = ρ(γ − 1)(e− u2/2) is the pressure and h = e+ p/ρ is the static enthalpy.

Here, the ratio of specific heats is set to γ = 7/5. The two regions are initially filled

with the same gas, but with different thermodynamic parameters, as follows,

(ρ, p, u) =

(1.0, 1.0, 0.0), for 0 ≤ x ≤ 0.5,

(0.125, 0.1, 0.0), for 0.5 < x ≤ 1,

with Dirichlet boundary conditions at x = 0 and x = 1. Data are collected for the

time evolution from t = 0 to t = 0.2 using a time step of 10−4 and spatial step size

of 2.5 × 10−3. As a result of the diaphragm breakage, a contact discontinuity and a

shock wave move from the left the right, while a rarefaction (expansion) wave moves

from the right to the left.

First, we apply the interface learning approaches with the interface at xb = 0.5 and

consider the left zone to demonstrate the uplift learning concept. Results at final time

(i.e. t = 0.2) with both the LP and LPP implementations are given in Fig. 4.5, which

shows the success of the upwind learning framework to infer valid boundary conditions

at the interface from the dynamics and flow pattern of its left-sided neighbors.

In order to understand the performance of the upwind learning, we recall that

the directions of characteristics (i.e., the curves dx/dt = λ along which the Riemann
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Figure 4.5: Results for LSTM boundary condition closure for the Sod’s shock tube
problem at time t = 0.2 with LP (top) and LPP (below) implementations.

invariants are constant) are defined as λ1 = u, λ2 = u− a, and u+ a, where a is the

local speed of sound given as a =
√
γ(p/ρ). We plot the space-time contour plots of

u, u−a, and u+a in Fig. 4.6, along with the line plot of the characteristics directions

at the interface location. We observe that for x = 0.5, u and u + a are always non-

negative, while u−a is initially negative (since the gas is initially at rest), but quickly

approaches zero. In other words, the majority of the information at x = 0.5 flows

from left to right, and hence the success of the upwind learning scheme. Moreover,

we remark that the interface conditions are almost constant with time, except for the

initial transition period following the breakdown of the diaphragm, which minimizes

the computational burden on the LSTM model.

It can be seen from Fig. 4.6 that moving the interface to the left will result in

u − a being significantly negative. In other words, some of the information should

be inferred from the truncated region and the ML model has to account for this

contribution. Indeed, we find that the same architecture with a single step lookback

suffers in learning the interface conditions at xb = 0.4. However, augmenting the

upwind learning framework with an increased time history of the modeled quantities
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Figure 4.6: Contour plots of characteristics directions (top) as well as their time
variation at xb = 0.5 (bottom) for the Sod’s shock tube problem.

(i.e., using a lookback of 3 steps) significantly improves the predictive capability as

seen in Fig. 4.7. That is enforcing a deeper time dependence facilitates learning the

missing information due to domain truncation. Figure 4.7 also depicts the spatial

distribution of the velocity u, the density ρ and the pressure p at final time using the

LP approach, augmented with a history of 3 time steps.

4.5.4 Example 4: Fluid structure interaction in network flows

. To demonstrate the feasibility of the upwind interface learning in network domains,

we construct a bifurcating flow in elastic tubes. This system is ubiquitous in car-

diovascular system modeling [213, 214] and open channel networks [215, 216], and it

is often represented by the Saint-Venant equations. For such problems, a boundary

closure issue appears at the bifurcation points and constitutive relations have to be

imposed at these locations. Most often, this yields a system of nonlinear equations,

which has to be solved with iterative schemes (e.g., Newton-Raphson method). This
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Figure 4.7: Time evolution of velocity, density, and pressure at xb = 0.4 with differ-
ent lookback lengths (top), and their spatial distribution at final time with the LP
approach using a lookback of 3 steps (bottom).

incurs an additional computational cost to solve the system of nonlinear equations.

It also requires careful selection of the numerical scheme to solve this system in order

to guarantee its convergence after a few iterations. Therefore, adopting the inter-

face learning technique for these systems has the potential to address the bifurcation

points treatment. Moreover, when the network grows largely, a large number of seg-

ments have to be considered simultaneously. However, with interface learning, the

insignificant downstream segments can be truncated and their effects are modeled by

the adopted ML architecture.

In this example, we consider a 3-segment network with a single bifurcation point

with one mother (upstream) segment and two daughter (downstream) segments, gov-

erned by the following pulsed flow equations

∂A

∂t
+
∂(uA)

∂x
= 0, (4.5)

∂u

∂t
+ αu

∂u

∂x
= −1

ρ

∂p

∂x
+ ν

∂2u

∂x2
− βπν u

A
, (4.6)
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where ρ and ν are the density and kinematic viscosity of the fluid, and α and β are

parameters depending on the assumed radial velocity profile [217]. Here, ρ = 103

kg/m3, ν = 10−6 m2/s, α = 1, and β = 8. A linear theory of elasticity can be

used to relate the pressure and cross sectional area via p = p0 + 2ρc20(1 −
√
η),

where c0 is the wave propagation speed prescribed by the Moens-Korteweg equation,

c0 =
√
Eh/(2ρR0(1− v2)), and η = A0/A with A0 = πR2

0 being the nominal reference

value of cross sectional area when the pressure is p0. Here, E, v, and h refer to

the elastic modulus, Poisson ratio and thickness of the tube. A schematic diagram

of the problem setup we are solving is depicted in Fig. 4.8, where the length (L)

and nominal radius (R0) of each segment are given in Table 4.2. At bifurcation,

six quantities become unknown (i.e., the ending cross sectional area and velocity of

mother segment and the starting cross sectional area and velocity for each daughter

branch. Continuity and total pressure equivalence constitute three equations, and the

remaining three equations might come from characteristics (i.e., Riemann invariants).

For pulsating flow equations, the Riemann invariants are approximated as follows

[217],

q± = u± 4c0[1− η1/4], (4.7)

where the plus-minus sign defines the direction of the characteristics. Within the

mother segment, the information moves from the interior points to the bifurcation

point through the right-travelling wave (i.e, with positive sign). Similarly, within each

daughter branch, information flows from interior points (i.e, right-hand side points)

to the bifurcation point via the backward-travelling wave (i.e., with negative sign).

This forms a total of six nonlinear equations that can be solved using Newton-type

methods as discussed above.

Initial conditions read as A(x, 0) = A0 and u(x, 0) = 0 for all segments. A

composite Gaussian and triangular input wave signal is given as a boundary condition

to the mother segment as follows:

u(0, t) = 0.05max

(
e−k1(t−k2)

2

, 1−
∣∣∣∣t− k2 − 3.5k3

k3

∣∣∣∣, 0), (4.8)

A(0, t) = A0

(
1− u(0, t)

4c0

)−4

, (4.9)

where k1 = 104 s−2, k2 = 0.05 s, and k3 = k2/3 and reflecting outflow boundary con-

ditions are imposed at the end of daughter segments. The second order Lax-Wendroff
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Figure 4.8: Problem setup for the bifurcating flow example. Subscripts 1, 2, and
3 refer to the mother, first daughter, and second daughter, respectively, while the
subscript ∗ denotes the nearest point to the bifurcation location (i.e., the second
grid point for the daughter branches and second-to-last grid point for the mother
segment).

scheme is followed to collect equispaced 40, 000 time snapshots for a maximum time

of 0.4 collected with a spatial step size of 10−4. For the upwind learning, we only

solve for the mother branch and use an LSTM at the bifurcation point to model the

effects of the daughter branches. The obtained results for the cross sectional area and

axial velocity are given in Fig. 4.9 for the LP implementation in order to demonstrate

the feasibility of the proposed approach. Once the mother segment bifurcates to the

daughters of its half radius, the wave with one-third of its speed will be reflected from

the bifurcation point. As shown in Fig. 4.9, the reflected pulse has been modeled

accurately by LSTM boundary conditions (notice the middle and right panels of the

bottom row).

Table 4.2: Properties of the 3-segment branching network.

Segment L (m) R0 (cm) E (MPa) h (cm) v

Mother 1.0 1.0 0.4 0.10 0.5
Daughter 1.0 0.5 0.4 0.05 0.5
Daughter 1.0 0.5 0.4 0.05 0.5

93



0.0 0.2 0.4
t

3.14

3.16

3.18
A

(1
,
t)

×10−4

0.0 0.5 1.0
x

3.15

3.16

3.17

A
(x
,
0
.2

)

×10−4

0.0 0.5 1.0
x

3.145

3.150

A
(x
,
0
.4

)

×10−4

0.0 0.2 0.4
t

0.00

0.02

u
(1
,
t)

0.0 0.5 1.0
x

0.00

0.02

0.04

u
(x
,
0
.2

)

True LSTM BC Closure

0.0 0.5 1.0
x

−0.01

0.00

u
(x
,
0
.4

)
Figure 4.9: Results for cross sectional area (top) and axial velocity (bottom) in the
mother branch for the flow through a network of branched elastic tubes using the
upwind learning compared to reference values obtained by solving the whole network
and the bifurcation point. Subfigures in the middle and right columns illustrate the
wave structures at t = 0.2 s (before reaching to the bifurcation point) and t = 0.4 s
(after reflected from the bifurcation point), respectively.

4.6 Conclusions

In this work, we demonstrate the potential of machine learning tools to advance and

facilitate CFD simulations of multi-scale, multi-component systems. In particular,

we show the capability of memory embedding to learn the dynamics at the interface

between different zones. This is especially beneficial where the domain contains zones

with strong dynamics and components with complex configuration that might dictate

a very fine mesh resolutions and time stepping. The proposed approach enables us

to focus our efforts onto the domain portion of interest, while satisfying physically

consistent interface conditions. It can serve as a non-iterative domain decomposition

method. Toward model fusion technologies, such an interface learning methodology

might also hold significant promise for the development of blending criteria in hybrid

RANS/LES models. A proof-of-concept is first demonstrated using the 1D viscous

Burgers equation over a two-zone domain with different physical parameters. An

LSTM is used to bypass the micro-solver corresponding the stiff region and provide
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valid interface boundary conditions to enable the macro-solver to run independently.

To consider hyperbolicity and wave structures, we furthermore propose the concept

of upwind learning towards a physics-informed domain decomposition, with illustra-

tions using a shock tube problem in gas dynamics and a fluid-structure interaction

application in network flows. We illustrate the success and robustness of the proposed

methodology using different learning configurations. Both LP and LLP models are the

key concepts introduced in this chapter, especially for designing intelligent boundary

closure schemes, which may bear huge potential in many scientific disciplines. More-

over, we demonstrate that the performance of interface learning architectures can be

significantly improved by increasing the length of lookbacks (i.e., enforcing deeper

time history). Finally, we emphasize that a similar interface closure technique can be

adopted in high performance computing environments, to minimize the communica-

tion cost and delay between different asynchronous processors, a topic we would like

to pursue further in the future.
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CHAPTER 5

Multi-Fidelity Computing for Coupling Full and Reduced Order Models

5.1 Abstract

Hybrid physics-machine learning models are increasingly being used in simulations of

transport processes. Many complex multi-physics systems relevant to scientific and

engineering applications include multiple spatiotemporal scales and comprise a multi-

fidelity problem sharing an interface between various formulations or heterogeneous

computational entities. To this end, we present a robust hybrid analysis and model-

ing approach combining a physics-based full order model (FOM) and a data-driven

reduced order model (ROM) to form the building blocks of an integrated approach

among mixed fidelity descriptions toward predictive digital twin technologies. At the

interface, we introduce a long short-term memory network to bridge these high and

low-fidelity models in various forms of interfacial error correction or prolongation.

The proposed interface learning approaches are tested as a new way to address FOM-

ROM coupling problems solving nonlinear advection-diffusion flow situations with a

bifidelity setup that captures the essence of a broad class of transport processes.

5.2 Introduction

Numerical simulations are the workhorse for the design, testing, and implementation

of scientific infrastructure and engineering applications. While immense advances

in computational mathematics and scientific computing have come to fruition, such

simulations usually suffer a curse of dimensionality limiting turnaround. The field of

multi-fidelity computing, therefore, aims to address this computational challenge by

exploiting the relationship between high-fidelity and low-fidelity models. One such

multi-fidelity approach becomes crucial, especially for multi-query applications, such

as optimization, inference, and uncertainty quantification, that require multiple model

This chapter is adapted from: Ahmed, S. E., San, O., Kara, K., Younis, R., & Rasheed, A.
(2021). Multifidelity computing for coupling full and reduced order models. PLoS ONE, 16(2),
e0246092.
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evaluations in an outer-workflow loop. To this end, sampling-based approaches have

been often introduced to leverage information from many evaluations of inexpensive

low-fidelity models fused by only a few carefully selected high-fidelity computations.

An excellent review of the state-of-the-art multi-fidelity approaches for outer-loop

contexts can be found in [128].

In this chapter, we focus on a different type of multi-fidelity formulation targeting

domain decomposition type problems that consist of multiple zones with different

characteristics as well as multi-physics systems where different levels of solvers are

devoted to coupled physical phenomena. A key aspect of the zonal multi-fidelity

approach is its ability to handle intrinsic heterogeneous physical properties, varying

geometries, and underlying governing dynamics. This heterogeneity can be mild as in

aerospace applications with spatially varying parameters. However, in media where

there is a permittivity such as in electrostatics or porous media, this might be more

pronounced. For example, fluid flow in rock often follows Darcy’s law, whereas flow

in a fracture is modeled as Poiseuille flow. Moreover, a related process in subsurface

flows might include a high fidelity approach around wells (that drive the flow) and a

low-fidelity model for subdomains in the interior [218, 219]. This discussion can also

be extended to an active flow control problem to elucidate the concept of the zonal

multi-fidelity approach that we tackle in this work. In general, boundary-layer control

poses a grand challenge in many aerospace applications including lift enhancement,

noise mitigation, transition delay, and drag reduction. Among many other actuator

technologies, blooming jets [220–222] and sweeping jets [223–225] offer new prospec-

tive solutions in improving the aerodynamics efficiency and performance of the future

air vehicle systems. The size of these actuators is usually orders of magnitude smaller

than the length scales of the entire computational domain (e.g., an aircraft wing or

tail). Including the full representations of each controller’s internal flow dynamics

in a comprehensive numerical analysis of the entire system is an extremely daunting

approach [226]. Meanwhile, the effective flow physics of these actuators can often be

accurately characterized by a latent reduced order space due to the existence of strong

coherent structures such as quasi-periodic or time-periodic shedding, pulsation, or jet

actuation. Therefore, in practice, those flow actuators can be modeled by considering

a reduced order surrogate coupled and tied to the global simulation of the whole wing

or tail [227, 228].

The above examples illustrate that different levels of models and descriptions can

be devoted to different zones and components of the problem in order to allocate
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computational resources more effectively and economically. This might be the case

for many other coupled multi-physics systems, such as geometric multi-scale [188,

229, 189, 190, 192, 193] and heterogeneous multi-scale [230, 231] problems, fluid-

structure interactions [232], and industrial scale applications [183, 184, 233]. Since

various zones and/or physics in these systems are connected through interfaces, data

sharing, and consistent interface treatment among respective models are inevitable.

Likewise, multi-rate and locally adaptive stepping methods can yield a mismatch

at the space-time interface, and simple interpolation or extrapolation might lead

to solution divergence or instabilities [205]. Moreover, even if we are interested in

simulating just one portion of the domain corresponding to some specific dynamics,

we still need to specify the physically consistent interface conditions. Running a high

fidelity solver everywhere only to provide the flow state at the interface seems to be

unreasonable. Therefore, we consider formulating an interface modeling approach

to facilitate the development of efficient and reliable multi-fidelity computing. This

should serve and advance the applicability of the emerging digital twin technologies

in many sectors [13]. However, just like any technology, it comes with its own needs

and challenges [130, 22, 234, 235]. In practice, two modeling paradigms are in order.

• Physics-based modeling: This approach involves careful observation of a physical

phenomenon of interest, development of its partial understanding, expression

of the understanding in the form of mathematical equations, and ultimately,

solution of these equations. Due to the partial understanding and numerous as-

sumptions along the steps from observation to the solution of the equations, a

large portion of the essential governing physics might be, intentionally or unin-

tentionally, ignored. The applicability of high fidelity simulators with minimal

assumptions has so far been limited to the offline design phase only. Despite

this significant drawback, what makes these models attractive are sound foun-

dations from first principles, interpretability, generalizability, and existence of

robust theories for the analysis of stability and uncertainty. However, most

of these models are generally computationally expensive, do not adapt to new

scenarios automatically, and can be susceptible to numerical instabilities.

• Data-driven modeling: With the abundant supply of big data, open-source cut-

ting edge and easy-to-use machine learning libraries, cheap computational in-

frastructure, and high quality, readily available training resources, data-driven

modeling has become very popular. Compared to the physics-based modeling
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approach, these models thrive on the assumption that data is a manifestation

of both known and unknown physics and hence when trained with an ample

amount of data, the data-driven models might learn the full physics on their

own. This approach, involving in particular deep learning, has started achiev-

ing human-level performance in several tasks that were until recently considered

impossible for computers. Notable among these are image classification [236],

dimensionality reduction [237], medical treatment [238], smart agriculture [239],

physical sciences [67, 240, 241] and beyond. Some of the advantages of these

models are online learning capability, computational efficiency for inference,

accuracy even for very challenging problems as far as the training, validation

and test data are prepared properly. However, due to their data-hungry and

black-box nature, poor generalizability, inherent bias and lack of robust theory

for the analysis of model stability, their acceptability in high stake applications

like digital twin and autonomous systems is fairly limited. In fact, the numer-

ous vulnerabilities of deep neural networks have been exposed beyond doubt in

several recent works [242–244].

In this work, we put forth a hybrid analysis and modeling (HAM) framework as a

new paradigm in modeling and simulations by promoting the strengths and mitigating

the weaknesses of physics-driven and data-driven modeling approaches. Our HAM

approach combines the generalizability, interpretability, robust foundation and un-

derstanding of physics-based modeling with the accuracy, computational efficiency,

and automatic pattern-identification capabilities of advanced data-driven modeling

technologies. In the context of multi-fidelity computing, we advocate and explore the

utilization of statistical inference to bridge low-fidelity and high-fidelity descriptions.

In particular, we adopt the long short-term memory (LSTM) neural network to match

the reduced order model (ROM) and full order model (FOM) solutions at their inter-

sect. To form the building blocks of our HAM approach for coupling ROM and FOM

descriptions, we introduce an array of interface modeling paradigms as depicted in

Fig. 5.1 and described next.

The Direct Prolongation Interface (DPI) approach utilizes standard projection

based ROMs, where the system’s state at the interface is obtained by the reconstruc-

tion of a Galerkin projection ROM solution. However, traditional Galerkin ROM

often yields an inaccurate solution in case of systems with strong nonlinearity. There-

fore, we utilize machine learning to correct and augment ROM solution in a hybrid
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Figure 5.1: The proposed multi-fidelity concepts toward hybrid FOM-ROM coupling.
Dashed blocks refer to the interface learning approaches introduced in the present
work: (a) Direct Prolongation Interface (DPI), (b) Prolongation followed by a ma-
chine learning Correction Interface (PCI), (c) machine learning Correction followed
by a Prolongation Interface (CPI), and (d) Uplifted Prolongation Interface (UPI)
where the latent space is enhanced through machine learning before we apply the
prolongation operator.

framework.

In the Prolongation followed by machine learning Correction Interface (PCI) method-

ology, an LSTM is used to rectify the field reconstruction from Galerkin ROM at the

interface by learning the correction in the higher dimensional space. Although this

seems to be a straightforward implementation, it might amount to learning a high

dimensional correction vector, especially for two- and three-dimensional domains.

To mitigate the potential computational challenges dealing with excessively large

input/output vectors, a machine learning Correction followed by Prolongation In-

terface (CPI) approach can be employed to provide a closure effect to remedy the

instabilities and inaccuracies of Galerkin ROM due to modal truncation.

For CPI, the LSTM learns the correction terms in ROM space, defined by the

number of modes in ROM approximation. As a result, the reconstruction quality will

eventually be limited by the Galerkin ROM dimension. Therefore, the Uplifted Pro-

longation Interface (UPI) framework not only corrects the Galerkin ROM solution,

but also expands the ROM subspace to enhance the reconstruction quality. Our pri-
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mary motivation in this chapter is to describe and test these four interface modeling

approaches to tackle FOM-ROM coupling problems and show how we can elucidate

these multi-fidelity mechanisms within the HAM framework.

5.3 FOM-ROM Coupling Framework

In order to demonstrate the performance of the introduced HAM approaches for

FOM-ROM coupling, we consider a coupled system as follows,

∂u

∂t
= f1(u;µ1) + g1(u, v;µ1, µ2), (5.1)

∂v

∂t
= f2(v;µ2) + g2(u, v;µ1, µ2), (5.2)

where u and v are the coupled variables and g1 and g2 define this coupling, while

µ1 and µ2 denote the set of system’s parameters. We highlight that the coupled

variables might represent the state variables at different regions of the domain (e.g.,

multi-component systems), different physics (e.g., fluid-structure interactions) and/or

different scales within the same domain (e.g., multi-scale systems). We suppose that

the dynamics of u can be approximated by a reduced order model (ROM) while a full

order model resolves v and both solvers need to communicate information to satisfy

the coupling. We begin by describing the derivation of a reduced order model of u via

Galerkin projection equipped with proper orthogonal decomposition (POD) for basis

construction. Then, we formulate the coupling between ROM and FOM solvers.

5.3.1 Reduced order model

Introducing a spatial discretization to Eq. (5.1), it can be rewritten in a semi-discrete

continuous-time as follows,

du

dt
= F(u,v;µ) = L1u+ L2v +N (u,v), (5.3)

where the boldfaced symbols represent the arrangement of discretized variables in 1D

vector (e.g., u ∈ Rn1 and v ∈ Rn2 , where ni denotes the spatial resolution), µ ∈ Rp

defines the system’s parameters, and F : Rn1 ×Rn2 ×Rp → Rn is a deterministic op-

erator with linear and nonlinear components L, and N , respectively. These operators

depends on the numerical scheme adopted for spatial discretization.

We exploit the advances and developments of ROM techniques to build surrogate
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models to economically resolve portions of domain and/or physics. The ROM solution

can thus be used to infer the flow conditions at the interface so that a FOM solver

can be efficiently employed for the sub-domains of interest. The standard Galerkin

ansatz is applied for the dynamics of u as

u(t) ≈ Φα(t), (5.4)

where the columns of matrix Φ = [ϕ1, ϕ2, . . . , ϕr] ∈ Rn1×r form the orthonormal bases

of a reduced subspace with an intrinsic dimension of r, and α defines the projection

coordinates associated with Φ. Usually, the basis functions ϕ are constructed to

capture the dominant modes or underlying structures of the flow. Proper orthogonal

decomposition (POD) is one popular technique to systematically construct Φ such

that the solution manifold preserves as much variance as possible when projected

onto the subspace spanned by Φ [83, 84, 24]. By substituting this approximation into

Eq. (5.3) and performing the inner product with Φ, we get the following,

dα

dt
= ΦTL1Φα+ ΦTL2v + ΦTN (Φα,v). (5.5)

The first coefficient (ΦTL1Φ) can be precomputed, so the computational cost for

evaluating the linear term depends on r. However, in general, the evaluation of the

third term on the right hand side (nonlinear term) depends on the FOM dimension

n. Fortunately, most fluid flow systems are characterized by quadratic nonlinear

operator, which allows the reduction of Eq. (5.5) into

dα

dt
= Lα+αTNα+ C, (5.6)

where L is an (r × r) matrix and N is an (r × r × r) tensor representing the model

coefficients while C defines the contribution of v into the ROM of u. We will see that

the computation of C may either be computed offline during ROM construction or

as part of the online FOM solver of v with negligible computational overhead. Thus,

the floating point operation (flop) count to evaluate the right hand side of the ROM

(i.e., Eq. (5.6)) is often O(r3).

In the following, we formulate the four methodologies outlined in Fig. 5.1 to

match the ROM solution for α with the FOM solution at the interface. For all cases,

a ROM representation is adopted for u, which can be economically solved to compute
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an estimate of the interface flow condition to feed the FOM solver of v. For example,

in multi-component systems like that depicted in Fig. 5.2, the ROM solution at the

interface is regarded as a boundary condition for the FOM.

1. DPI: Direct Prolongation Interface. The objective of the DPI approach is to

recover the flow variables at the interface from the ROM solution (i.e., the

time integration of Eq. (5.6)). In other words, we seek to learn a mapping

G1 : Rr → Rd, that minimizes ∥u(i)−G1(α)∥ where u(i) represent the portion of

information at the interface that is shared from the ROM to the FOM solver,

with d being the dimension of the interface. For multi-component systems,

this interface can be a single point (e.g., for 1D systems), a line (e.g., for 2D

systems), or a surface (e.g., for 3D systems). Indeed, this prolongation map

naturally results from the Galerkin ansatz, and can be written as

G1(α) = Θα, (5.7)

where Θ represents the portion of the basis Φ that is computed at the interface

location.

Since the ROM approximation is built upon the assumption of representing the

flow within a low order subspace, the approximation given by Eq. (5.4) basically

introduces a projection error. This error can be significant for complex systems,

where the flow dynamics are characterized by a wide spectrum while only few

modes are considered to minimize the computational burden of solving the

ROM. Moreover, the nonlinear interactions as well as the modal truncation

coupled with the Galerkin projection methodology usually cause Eq. (5.6) to

yield erroneous predictions of the coefficients α(t). Therefore, the solution from

the DPI approach is potentially inaccurate [2]. Consequently, the reconstruction

G1(α) is no longer optimal and a correction needs to be introduced.

2. PCI: Prolongation followed by Correction Interface. The PCI framework aims

to correct the mapping G1 to yield more accurate interface condition. To do so,

we utilize a long short-term memory (LSTM) neural network to learn a mapping

G2 : Ri → Ri such that

G2 (G1(α)) = u(i) − G1(α). (5.8)
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In other words, LSTM is fed with a predictor of u(i) obtained by DPI and

approximates the deviation of this value from the true state variables at the

interface. Hence, this deviation estimate can be added as a correction term in

a predictor-corrector fashion. In PCI, both inputs and outputs of the LSTM

lie in the FOM space and thus the LSTM map can be considered as nudging

scheme from the ROM prolongation G1 to the FOM solution [245].

We highlight that the PCI approach can be feasible for one-dimensional (1D)

problems (where the interface can be just a single point). However, for higher

dimensional systems, the sizes of input and output vectors grow rapidly (unless

a too coarse mesh is adopted). For such cases, PCI becomes prohibitive, and the

learning and correction should be performed in a reduced latent space instead.

3. CPI: Correction followed by Prolongation Interface. The CPI methodology

works by introducing the correction in the latent subspace, rather than the FOM

space. This is especially crucial for 2D and 3D configurations. In particular, the

CPI aims at curing the deviation in modal coefficients predicted from solving the

Galerkin ROM equations, known as closure error. Due to the modal cut-off in

ROM approximation, Eq. (5.6) does not necessarily capture the true projected

trajectory of α(t). Therefore, we introduce an LSTM mapping G3 : Rr → Rr to

provide a closure effect to adjust the Galerkin ROM trajectory. Specifically, the

LSTM for CPI takes the values of modal coefficients acquired from integrating

Eq. (5.6) in time and predicts the discrepancy between these values and their

optimal values. Those are defined by the true projection (TP) of the FOM

solution onto the basis functions as follows,

αTP = ΦTu. (5.9)

Therefore, the CPI contribution can be written as

G3(α) = ΦTu−α. (5.10)

We highlight here that the size of the input and output vectors is O(r), indepen-

dent of the FOM resolution, which offers a potential flexibility dealing with 2D

and 3D problems. Once the modal coefficients are corrected, they are prolonged

from the ROM space to the FOM space using the reconstruction map G1. For

all results, we also show the results obtained from the true projection of FOM
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solution onto the ROM subspace at the interface as,

uTP = G1(αTP). (5.11)

We highlight that uTP represents the best approximation of the true flow field

that can be achieved using a linear subspace with an intrinsic dimension of r.

4. UPI: Uplifted Prolongation Interface. Although the CPI methodology cures the

closure error and provides a stabilized solution, it does not address projection

error. Unless a large number of modes are resolved, the projection error can

be significant, especially for problems with discontinuities and shocks. To deal

with those situations, an uplifting ROM has been proposed [2], where both

closure and projection errors are taken care of. For closure, similar to CPI, the

Galerkin ROM predictions are tuned to match their true projection values. In

addition, following Galerkin ROM solution, the ROM subspace is expanded to

capture some of the smaller scales missing in the initial subspace as follows,

u ≈ Φα+Ψβ, (5.12)

where the columns of Ψ = [ψ1, ψ2, . . . , ψq] form orthonormal basis functions for

a q-dimensional subspace complementing that spanned by Φ and β defines the

corresponding projection coordinates. Similar to Φ, Ψ can be computed through

the POD algorithm. Note that Φ and Ψ are orthogonal to each others (i.e.,

ΦTΨ = ΨTΦ = 0). Indeed, Ψ represents the next q basis functions generated by

POD after the first r being dedicated to Φ. Those are also constructed a priori

during an offline stage using the collected set of snapshot data. We highlight

that the Galerkin ROM equations only solve for α to keep the computational

cost as low as possible.

Therefore, a complementary model for β has to be constructed so that the up-

lifting approach can be employed. To accomplish this, a mapping from the first

r modal coefficients to the next q modes is assumed to exist. Nonlinear Galerkin

projection has been pursued to express this mapping as β = H(α), but it has

been found challenging for most systems [81]. Instead, we exploit the LSTM

learning capabilities to infer this map from data. This uplifting approach en-

hances the quality of prolonged solution by providing a super-resolution effect.

In particular, the UPI architecture is trained to read the Galerkin ROM predic-
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tion for the first r modal coefficients as input, and return the true coefficients

of the first r + q modes. Thus, it provides a closure effect for the first r modes

and a super-resolution effect for the next q modes, simultaneously in a single

network as follows,

G4 : Rr → Rr+q (5.13)

G4(α) =

[
αTP

βTP

]
. (5.14)

We note here that the first r + q spatial modes have to be built and stored

beforehand, which introduces slightly more storage costs. For the present study,

we explore the specific case where q = r, but a generalization is straightforward.

The FOM-ROM coupling philosophy as well as the introduced interface learning

approaches are summarized in the cartoon shown in Fig. 5.2. These methodologies

are also applicable to a wide range of computational problems with multi-fidelity

domain decomposition. The depicted system is assumed to be fully characterized by

three mutually orthogonal sets of basis functions, namely Φ, Ψ, and ζ as below

u = Φα+Ψβ + ζγ, (5.15)

where α, β, and γ are the corresponding projection coordinates. We also suppose

that Galerkin ROM resolves the Φ set of modes (i.e., truncating the contributions

of Ψ, and ζ). We reiterate here that the Galerkin ROM yields inaccurate solution

(sketched by the noisy (rough) curve of predicted α). Consequently, the quality of

the direct prolongation mapping is compromised. The PCI aims at correcting the

reconstructed solution at the interface. Even though the PCI technique acts only on

a small portion of the domain (i.e., the interface), it might amount to excessively

large input and output sizes.

On the other hand, CPI treats the Galerkin ROM deficiencies at the ROM level.

In particular, it introduces a closure effect to better predict α. This closure simply

compensates the effects of truncated modes (i.e., Ψ and ζ) onto the dynamics of Φ.

This yields a better estimate of α, as illustrated by the smooth curve in Fig. 5.2.

We note that in CPI, the effects of Ψ and ζ are only considered to improve the

prediction of α. However, their contributions to the solution manifold reconstruction

are not included, resulting in a substantial reconstruction error (projection error).
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To deal with this caveat, UROM seeks to add a super-resolution enhancement by

incorporating the Ψ set of basis into the reconstruction step by learning the dynamics

of the corresponding β coordinates. This is represented by a higher resolution (denser)

reconstruction in UPI case, compared to CPI, and DPI. Note that the PCI is still

showing the highest resolution (the densest reconstruction) as it nudges the prediction

at the interface to its FOM counterpart (i.e., including all Φ, Ψ, and ζ).

Figure 5.2: Schematic illustration of the methodologies introduced to utilize ROM to
economically provide sound interface conditions in a multi-fidelity domain decompo-
sition problems. Galerkin ROM yields inaccurate predictions (represented by rough
curve), and direct prolongation of these results might be not efficient. PCI adds a
correction effect to the prolonged solution in FOM space. Instead, CPI and UPI
introduce the correction at ROM level before prolongation. UPI adds an extra super-
resolution effect to augment solution quality.

5.4 Demonstrations

We demonstrate the FOM-ROM coupling methodologies using two examples of vary-

ing complexities. In the first one, we describe a fluid flow scenario over a bi-zonal

domain with heterogeneous physical properties using the one-dimensional Burgers

problem. For this case, we shall see that the interface between different sub-domains

is defined by a single point (i.e., d = 1). Second, we consider the Marsigli flow problem

represented by the two-dimensional Boussinesq equations to demonstrate the FOM-
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ROM coupling for multi-physics systems. In particular, a ROM solver is devoted for

the mass and momentum transport equations while a FOM is reserved for the energy

transport.

5.4.1 The one-dimensional Burgers problem

In order to represent a zonal multi-fidelity simulation, we consider the following one

dimensional (1D) viscous Burgers problem,

∂u

∂t
+ u

∂u

∂x
=

∂

∂x

(
ν
∂u

∂x

)
− γu, (5.16)

(ν, γ) =

(10−2, 0), for 0 ≤ x ≤ xb,

(10−4, 1), for xb < x ≤ 1,
(5.17)

where xb is the spatial location of the interface defining the physical heterogeneity.

We highlight that Eq. (5.16) includes the
∂

∂x

(
ν
∂u

∂x

)
term instead of the commonly

used ν
∂2u

∂x2
term to permit the spatial variation of ν. For the given setup, the stiffness

and physical properties in the left part dictates higher spatial as well as temporal

resolutions than those required for the right partition. If we opt to a global unified

(unique fidelity) solver over the whole domain, the quality of the solution will be

dominated by stiffness of the left zone. In other words, a smaller time step would

be required to satisfy numerical stability when using an explicit temporal integration

scheme. Specifically, assuming that we utilize the forward in time and central in

space finite difference scheme (FTCS) to solve Eq. (5.16) with a spatial grid reso-

lution of 4096, a time step of approximately 2.5 × 10−6 will be required for the left

part of domain, while a time step of 2.5 × 10−4 would be sufficient if we were able

to only resolve the right part. Therefore, domain decomposition approaches might

be adopted to segregate partitions with varying numerical requirements. Despite the

effectiveness and efficiency of these approaches, idle delays can arise in order to ac-

commodate information transfer from the left zone to the right zone through their

common interface. Instead, low-fidelity proxy models can be utilized to avoid such

lags by approximating the effective dynamics of stiff regions and providing sound

interface boundary conditions to the rest of the computational domain.

The discretized domain is divided into a left zone with uL ∈ Rn1 for x ∈ [0, xb]

and a right zone with uR ∈ Rn2 for x ∈ [xb, 1], where n1 + n2 = n + 1. We build a
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reduced order model for the left sub-domain as follows,

uL(t) = Φα(t), (5.18)

dα

dt
= Lα+αTNα, (5.19)

where L and N represent the tensorial ROM coefficients which can be precomputed

during the offline stage as,

Li,k =
〈 ∂
∂x

(
ν
∂u

∂x

)
− γϕi;ϕk

〉
, Ni,j,k =

〈
− ϕi

∂ϕj
∂x

;ϕk
〉
, (5.20)

where the angle parentheses denote the inner product (i.e., ⟨a;b⟩ = aTb).

For data generation, we solve the full order model representing the 1D Burgers

equation (i.e., Eq. (5.16)) over the entire domain using a spatial mesh resolution of

4096 and time step of 2.5×10−6. For initial condition, we consider a square-like wave

defined as,

u(x, 0) = 0.5− 0.5 tanh
x− xb
ϵ

, (5.21)

where a value of xb = 0.75 is considered as the location of the interface and ϵ = 0.005

is used to define the sharpness of the shock at xb. Dirichlet boundary conditions are

assumed at both boundaries (i.e., u(0, t) = u(1, t) = 0). We compute the evolution

of the velocity field for t ∈ [0, 2], and collect snapshots every 100 time steps.

For ROM construction, we consider the truncated solution snapshots for the left

part of the domain (i.e., 0 ≤ x ≤ 0.75) for t ∈ [0, 1]. For POD basis generation,

we use only 200 snapshots distributed evenly from t = 0 to t = 1, to reduce the

computational cost of solving the corresponding eigenvalue problem. Once ROM is

constructed, it is integrated in time with a time step of 2.5× 10−4 to match the time

step in the right part of the domain (to be handled via a FOM solver). During the

deployment phase of the coupled system, the ROM feeds the FOM solver with the

boundary condition at xb. On the other hand, the effects of the interface on the

ROM dynamics are considered during the offline stage of data generation and basis

construction.

We utilize labelled data at the time interval of t ∈ [0, 1] for the training and

validation of the LSTM neural networks. In particular, four fifths of the collected

data set are randomly selected for training while the remaining one fifth is reserved for

validation purposes (to avoid overfitting). We highlight that numerical experiments
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reveal that the performance in our case is not significantly sensitive to the neural

network hyperparameters. Thus, we manually tune the hyperparameters during the

training and validation stages by repeating the previous procedure multiple times

while varying the seeds for the random number generator and using averaged loss

values for assessment. We adopt an LSTM architecture of 2 layers with 20 cells in

each layer. In the meantime, we note that automated hyperparameter search tools can

be utilized for optimized architectures. Testing of the proposed schemes is performed

for t ∈ [0, 2], corresponding to a temporal extrapolation behavior with respect to the

training interval.

Since the coupling between ROM and FOM is represented by the physical interface

at xb, we notice that the Θ in the DPI map (i.e., G1(α) = α) is simply the last row

of the matrix Φ. In Fig. 5.3, we plot the velocity at the interface obtained from

adopting ROM for the left part of the domain, and corrected with machine learning

architectures as described before for r = 2 and r = 4. We note that FOM solution

corresponds to the velocity at the interface obtained by applying a FOM solver all

over the domain using a time step of 2.5 × 10−6, while the true projection (TP)

represents the projection of the truncated velocity field in the left zone onto the POD

subspace. The shaded area in Fig. 5.3 stands for the time interval utilized for POD

basis generation, ROM formulation, and LSTMs training.

Figure 5.3: Velocity at the interface obtained by considering ROM in the left part
of the domain, with r = 2 (top) and r = 4 (bottom). FOM solution corresponds to
solving the governing equation over the entire domain, while TP denotes the projec-
tion of the FOM solution in the left zone onto the corresponding POD subspace.

110



It can be seen that DPI results, especially for r = 2, are not very accurate due to

the mutual effects of modal truncation and model nonlinearity in Galerkin ROM. On

the other hand, the PCI solution gives almost perfect match with FOM. As the PCI

approach nudges the prolonged ROM solution to its FOM counterpart, it gives even

higher accuracy than TP. That is TP is limited by the maximum quality that can be

obtained using a rank-r approximation. For CPI, since the LSTM introduces a closure

effect, it steers the ROM results to match the TP solution. Finally, the UPI recovers

some of the smaller scales (truncated modes) so it yields better reconstruction than

TP since it spans a larger subspace. For r = 2, UPI uplifts the solution to a rank-4

approximation, while for r = 4, it is uplifted to a rank-8 approximation.

For quantitative assessment, we document the ℓ2 norm of the deviation of the

predicted velocity at the interface compared to the FOM solution in Table 5.1. Results

are reported for r ∈ {2, 4, 8}. We see that the error in the CPI case almost matches

that of TP, while PCI gives the highest accuracy since it is trained to learn the

correction with respect to the FOM solution. Also, CPI results are significantly close

to TP, illustrating the closure effect introduced by CPI to account for the effect of

modal truncation on ROM dynamics. Another interesting observation is that UPI

quality at a given value of r is equivalent to TP with twice that value. This indicates

that UPI is able to give a super-resolution effect up to 2r (since we select q = r).

Also, we notice that at r = 2, DPI yields lower ℓ2 norm than TP. This is because TP

solution is obtained by the projection of the FOM solution onto the POD subspace

generated using data at t ∈ [0, 1]. So, this subspace is optimal only for t ∈ [0, 1],

while testing is performed up to t = 2. Therefore, TP solution no longer represents

the best rank-r approximation beyond t = 1.

Table 5.1: ℓ2 norm for the deviation of the velocity at the interface with respect to
its FOM value for t ∈ [0, 2].

Setup r = 2 r = 4 r = 8
TP 4.56 1.25 0.21
DPI 3.67 1.46 0.44
PCI 0.23 0.07 0.03
CPI 4.57 1.27 0.23
UPI 1.28 0.24 0.11

Finally, we investigate the coupling efficiency by solving the right part (i.e., 0.75 ≤
x ≤ 1) using a high fidelity FOM solver applied only onto this subdomain. This

is fed with a boundary condition u(0.75, t) from the low-fidelity interface learning
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approaches described before. Figure 5.4 shows the spatiotemporal velocity profile with

r = 2, compared to the FOM predictions. Again, we observe that the solution with

PCI boundary is similar to this FOM solution. Also, CPI matches the TP results, but

they both smooth-out the surface peak because of the low rank limitations. Although

it seems that the accuracy of UPI cannot exceed that of CPI with r + q assuming

optimal performance for both CPI and UPI, there is a computational side in this

comparison. The CPI with r+ q modes implies the solution of a Galerkin ROM with

a dimension of r + q, while the UPI requires the solution of a Galerkin ROM with

r. We have seen that for fluid flows with quadratic nonlinearity, the computational

cost of solving a Galerkin ROM scales cubically with the number of modes. Thus,

the implementation of CPI with r + q with q = r is about 8 times more costly than

UPI with r + q. At this point, we highlight that the selection of r and q is highly

dependent on the problem in hand, the corresponding decay of POD eigenvalues, and

the level of accuracy sought. A compromise between computational cost of solving

a Galerkin ROM with r and the corresponding stability, the amount of information

captured by r and r + q modes, and reliability of UPI with r + q is always in place.

Figure 5.4: Spatio-temporal velocity profile obtained from applying high fidelity
(FOM) solver onto the right subdomain (0.75 ≤ x ≤ 1), fed with interface boundary
from a low-fidelity (ROM) solution with r = 2.
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5.4.2 The two-dimensional Boussinesq problem

Boussinesq equations represent a simple approach for modeling geophysical waves

such as oceanic and atmospheric circulations induced by temperature differences [246]

as well as other situations, like isothermal flows with density stratification. In the

Boussinesq approximation, variations of all fluid properties other than the density are

neglected completely. Moreover, the density dependence is ignored in all terms except

for gravitational force (giving rise to buoyancy effects). As a result, the continuity

equation can be adopted in its constant density form, and the momentum equation

can be simplified significantly. The dimensionless form of the 2D incompressible

Boussinesq equations in vorticity-streamfunction formulation can be represented by

the following two coupled transport equations [247, 248],

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω +Ri

∂θ

∂x
, (5.22)

∂θ

∂t
+ J(θ, ψ) =

1

RePr
∇2θ, (5.23)

where ω, ψ and θ denote the vorticity, streamfunction and temperature fields, re-

spectively. In Boussinesq flow systems, there are three leading physical mechanisms,

namely viscosity, conductivity, and buoyancy, giving rise to three dimensionless num-

bers; Reynolds number Re, Richardson number Ri, and Prandtl number Pr.

We utilize the 2D Boussinesq equation to illustrate the FOM-ROM coupling for

multi-physics situations. In particular, we suppose that we are more interested in

the temperature field predictions. Thus, we dedicate a FOM solver for Eq. (5.23).

However, we see that the solution of this equation requires evaluating the stream-

function field at each time step. The kinematic relationship between vorticity and

streamfunction is given by the following Poisson equation,

∇2ψ = −ω, (5.24)

which implies that the streamfunction is not a prognostic variable, and can be com-

puted from the vorticity field at each timestep. In typical simulations, the solution

of Eq. (5.24) consumes significant amount of time and computational resources and

is considered the bottleneck for most incompressible flow solvers. Therefore, we can
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consider a ROM solver for the voriticity dynamics as follows,

ω(x, y, t) = ω̄(x, y) +
r∑

k=1

αk(t)ϕ
ω
k (x, y), (5.25)

where ω̄ denotes the time-averaged vorticity field and the POD is performed on the

fluctuating part of ω. We note that Eq. (5.24) allows us to assume the same modal

coefficients αk(t) for both ω and ψ as follows,

ψ(x, y, t) = ψ̄(x, y) +
r∑

k=1

αk(t)ϕ
ψ
k (x, y), (5.26)

where the time-averaged streamfunction field and the corresponding basis functions

can be computed from the following relations,

∇2ψ̄(x, y) = −ω̄(x, y), (5.27)

∇2ϕψk (x, y) = −ϕωk (x, y). (5.28)

Thus, the Galerkin ROM of Eq. (5.22) can be written as

dαk
dt

= Bk +
R∑
i=1

L
(ω,ψ)
i,k αi +

R∑
i=1

L
(ω,θ)
i,k βi +

R∑
i=1

R∑
j=1

N
(ω,ψ)
i,j,k αiαj, (5.29)

where β represent the projection of the temperature fields onto the reduced subspace

defined as

βk(t) =
〈
θ(x, y, tn)− θ̄(x, y);ϕθk(x, y)

〉
, (5.30)

where the θ̄ denotes the time-averaged field of θ and Φθ are the corresponding or-

thonormal POD modes. The predetermined coefficients in Eq. (5.29) are calculated

as follows,

Bk =
〈
− J(ω̄, ψ̄) + 1

Re
∇2ω̄ +Ri

∂θ̄

∂x
;ϕωk
〉
, (5.31)

L
(ω,ψ)
i,k =

〈 1

Re
∇2ϕωi − J(ϕωi , ψ̄)− J(ω̄, ϕψi );ϕωk

〉
, (5.32)

L
(ω,θ)
i,k =

〈
Ri
ϕθi
∂x

;ϕωk
〉
, (5.33)

N
(ω,ψ)
i,j,k =

〈
− J(ϕωi , ϕψj );ϕωk

〉
. (5.34)
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We notice that the ROM defined by Eq. (5.29) equipped with Eq. (5.26) can be

adopted to approximate the instantaneous streamfunction field, which is required to

solve Eq. (5.23) for the temperature in FOM space. On the other hand, the solution

of the FOM (i.e., Eq. (5.23)) along with Eq. (5.30) feeds the ROM solver with β

values. This constitutes a two-way FOM-ROM coupling problem, in contrast to the

one-way coupling in the aforementioned 1D Burgers example. We also highlight that

the computational cost of the projection step (i.e., Eq. (5.30)) is minimal compared

to the solution of Eq. (5.23).

For demonstration, we consider a strong-shear flow exhibiting the Kelvin-Helmholtz

instability, known as Marsigli flow or lock-exchange problem. The physical process in

this flow problem explains how differences in temperature/density can cause currents

to form in the ocean, seas and natural straits. For example, Marsigli discovered that

the Bosporus currents are a consequence of the different water densities in the Black

and Mediterranean seas[249]. Basically, when fluids of two different densities meet,

the higher density fluid slides below the lower density one. This is one of the primary

mechanisms by which ocean currents are formed [250].

The problem is defined by two fluids of different temperatures, in a rectangular

domain (x, y) ∈ [0, 8] × [0, 1] with a a vertical barrier dividing the domain at x = 4,

keeping the temperature, θ, of the left half at 1.5 and temperature of the right half

at 1. Initially, the flow is at rest (i.e., ω(x, y, 0) = ψ(x, y, 0) = 0), with uniform

temperatures at the right and left regions (i.e., θ(x, y, 0) = 1.5 ∀ x ∈ [0, 4] and

θ(x, y, 0) = 1 ∀ x ∈ (4, 8]). Free slip boundary conditions are assumed for flow field,

and adiabatic boundary conditions are prescribed for temperature field. Reynolds

number of Re = 104, Richardson number of Ri = 4, and Prandtl number of Pr = 1

are set in Eqs. (5.22) and (5.23)). A Cartesian grid of 4096× 512, and a timestep of

∆t = 5×10−4 are used for the FOM simulations. Standard second-order central finite

difference schemes are adopted for the discretization of linear terms while the second

order Arakawa scheme [251] is used to compute the Jacobian term. The evolution of

the temperature field is shown in Fig. 5.5 at t = 0, 2, 4, 8. At time zero, the barrier

is removed instantaneously triggering the lock-exchange problem, where the higher

density fluid (on the right) slides below the lower density fluid (on the left) causing an

undercurrent flow moving from right to left. Conversely, an upper current flow moves

from left to right, causing a strong shear layer between the counter-current flows. As

a result, vortex sheets are produced, exhibiting the Kelvin-Helmholtz instability.
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Figure 5.5: Temperature field at different time instances for the 2D Boussinesq prob-
lem using 4096× 512 grid and ∆t = 0.0005.

Considering the dimensionality of this problem, we emphasize that the PCI ap-

proach becomes highly unfeasible. With the current mesh resolution (i.e., 4096×512),
the dimension of the state space of the prolonged interface is ≈ 2 × 106. Building

and training of LSTMs with an input and output vector sizes of two millions become

prohibitive. Even the training of convolutional neural network with such high reso-

lutions (which are typical in fluid flow simulations) requires excessive computational

resources. Therefore, we present results for FOM-ROM coupling using approaches

that operate in ROM space (i.e., DPI, CPI and UPI). We note that 800 time snap-

shots are stored for POD basis construction. For the Galerkin ROM solver, r = 8

modes are retained. We also utilize the dataset of the stored 800 snapshots for LSTM

training and validation (80% randomly selected for training and the rest for valida-

tion, similar to the previous example). A two-layer LSTM with 20 cell in each layer

constitutes our LSTM architecture. During the testing phase, the trained neural

networks are deployed at every timestep.
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Figure 5.6 shows the predictions of the temperature field at final time (i.e., t = 8)

computed from DPI, CPI, and UPI approaches compared to the FOM field. We

emphasize that the FOM-ROM coupling results correspond to the solution of the

vorticity equation with a ROM solver, which feeds the FOM solver with streamfunc-

tion to solve the temperature equation only as opposed to the FOM results which

comes from the solution of both the 2D Boussinesq equations using a FOM simula-

tion. Although the CPI results are better than those of DPI, we can observe that

the fine details of the flow field are not accurately captured. That is 8 modes are

not sufficient to sufficiently represent the flow field. This is a common problem for

convection-dominated flows which exhibit slow decay in the POD eigenvalues and the

generated global basis functions suffer from modal deformation [104]. On the other

hand, the implementation of the UPI approach with r = 8 and q = 8 recovers an

increased amount of the fine flow structures that are not well-represented by the first

r = 8 modes.

Figure 5.6: Final temperature fields as obtained from different FOM-ROM coupling
approaches, compared to the FOM solution. We note that the PCI becomes infeasible
for higher dimensional systems.
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Although the ROM is built for the vorticity equation only, the basis functions

of the temperature fields should be generated as well to carry-out the coupling from

FOM to ROM. Moreover, in order to illustrate the temporal variation of the coupling

quality, we project the resolved temperature fields at different times onto their POD

basis. This is depicted in Fig. 5.7, showing the effect of different approaches on

the resulting predictions of temperature fields. The FOM trajectory corresponds to

the solution of both the 2D Boussinesq equations in FOM space, then projecting

the obtained fields on the basis functions of θ (see Eq. (5.30)). For the rest, the

streamfunction fields are obtained from ROM predictions and fed into FOM solver to

compute the temperature fields.

Figure 5.7: Projection of the predicted temperature fields at different times from
FOM, DPI, CPI and UPI onto the POD basis function.

5.5 Conclusions

We provide an interface learning approach via FOM-ROM coupling for multi-fidelity

simulation environments. This learning paradigm is built with a hybrid analysis and

modeling (HAM) framework to enhance the ROM approximation of interface condi-

tions. A demonstration with a bi-zonal 1D Burgers problem is considered to assess
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the performance of the introduced learning schemes for multi-component systems.

For 1D problems, we find that a prolongation followed by a machine learning correc-

tion interface (PCI) yields very good predictions. However, this might be unfeasible

for 2D and 3D cases, where a correction in ROM subspace is essential. For such, a

machine learning correction in ROM space followed by a prolongation interface (CPI)

can produce sufficient accuracy. For complex systems where the projection error

is significantly large, an uplifted prolongation interface (UPI) methodology can be

adopted to recover some of the truncated scales. This is further illustrated using the

lock-exchange problem governed by the 2D Boussinesq problem, where the ROM and

FOM solvers address the vorticity and temperature equations, respectively. The cou-

pling from ROM to FOM is represented by the 2D streamfunction fields reconstructed

from the ROM solver, saving the run time for Possion equation, which is the most

demanding part of an incompressible flow solver. Owing to the relative simplicity,

robustness and ease of these interface learning methods, we expect a growing number

of applications in a large variety of interfacial problems in science and engineering. Of

particular interest, this FOM-ROM coupling could be a viable method for developing

next generation digital twin technologies.
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Part III

Data Assimilation and Machine

Learning
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CHAPTER 6

Forward Sensitivity Analysis for Adaptive Closures in Nonlinear

Reduced Order Modeling

6.1 Abstract

In this chapter, we propose a variational approach to estimate eddy viscosity using

forward sensitivity method (FSM) for closure modeling in nonlinear reduced order

models. FSM is a data assimilation technique that blends model’s predictions with

noisy observations to correct initial state and/or model parameters. We apply this

approach on a projection based reduced order model (ROM) of the one-dimensional

viscous Burgers equation with a square wave defining a moving shock, and the two-

dimensional vorticity transport equation formulating a decay of Kraichnan turbulence.

We investigate the capability of the approach to approximate an optimal value for

eddy viscosity with different measurement configurations. Specifically, we show that

our approach can sufficiently assimilate information either through full field or sparse

noisy measurements to estimate eddy viscosity closure to cure standard Galerkin re-

duced order model (GROM) predictions. Therefore, our approach provides a modular

framework to correct forecasting error from a sparse observational network on a la-

tent space. We highlight that the proposed GROM-FSM framework is promising for

emerging digital twin applications, where real-time sensor measurements can be used

to update and optimize surrogate model’s parameters.

6.2 Introduction

Data assimilation (DA) is a family of algorithms and techniques that aim at blending

mathematical models with (noisy) observations to provide better predictions by cor-

recting initial condition and/or model’s parameters [252–254]. DA plays a key role

in geophysical and meteorological sciences to make more reliable numerical weather

This chapter is adapted from: Ahmed, S. E., Bhar, K., San, O., & Rasheed, A. (2020). Forward
sensitivity approach for estimating eddy viscosity closures in nonlinear model reduction. Physical
Review E, 102(4), 043302.
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predictions. Standard popular algorithms that are often adopted in weather pre-

diction centers include variational methods (e.g., 3D-VAR [255, 256] and 4D-VAR

[257–262] methods), sequential methods (e.g., reduced rank (ensemble) Kalman fil-

ters [263–270]), and hybrid methods [271–277]. Another method that mitigates the

computational cost in solving the inherent optimization problem in variational meth-

ods is called the forward sensitivity method (FSM) developed by Lakshmivarahan

and Lewis [278, 279]. FSM builds on the assumption that model error stems from

incorrect specification of the control elements, which include initial conditions, bound-

ary conditions, and physical/empirical parameters. The FSM approach corrects the

control elements using information from the time evolution of sensitivity functions,

defined as the derivatives of model output with respect to the elements of control.

Other than meteorology [280], DA tools are gaining popularity in different disci-

plines like reservoir engineering [281], and neuroscience [282]. Recent works have also

drawn techniques and ideas from DA to enrich reduced order modeling of fluid flows

and vice versa [51, 283–288, 14, 289]. In conventional projection-based model reduc-

tion approaches, a set of system’s realizations are used to build a reduced order model

(ROM) that sufficiently represent the system’s dynamics with significantly lower com-

putational cost [15–22, 24–31]. This process includes the extraction of a handful of

basis functions representing the underlying flow patterns or coherent structures that

dominate the majority of the bulk mass, momentum and energy transfers. In the

fluid dynamics research community, proper orthogonal decomposition (POD) is, gen-

erally speaking, the most popular and effective technique that produces hierarchically

ordered solution-adapted basis functions (or modes) that provide the optimal basis to

represent a given collection of field data or snapshots [83, 84, 24, 85, 86]. To emulate

the system’s dynamics, a surrogate model is often built by performing a Galerkin

projection of the full order model (FOM) operators onto a reduced subspace spanned

by the formerly constructed POD modes [33–40].

However, the off-design performance of ROMs is usually questionable since the

reduced basis and operators are formed offline for a given set of operating conditions,

while the ROM has to be solved online for different conditions. Therefore, a dynamic

update of model operators and parameters is often sought to enhance the applicability

of ROMs in realistic contexts. That being said, adoption of DA tools to absorb real

observations to correct and update ROMs should present a viable cure for this caveat.

The present chapter aims at pushing towards utilizing DA techniques to improve the

performance of nonlinear ROMs. A common problem that emerges in such ROMs
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is the inaccuracy of solution trajectory, especially for long time integration of quasi-

stationary problems. This solution inaccuracy has been commonly attributed to the

modal truncation and intrinsic interactions between truncated modes and retained

modes. A correction term compensating the effects of truncated modes has been often

introduced to achieve more accurate ROM results [59, 49, 53, 290–292]. Furthermore,

recent studies have shown that model’s performance can be improved by the choice of

the projection method [293, 98, 108] and the definition of the adopted inner product

[56].

In order to enhance the solution accuracy, closure and stabilization techniques

have been introduced to account for the effects of discarded modes on the dynamics of

the ROM. In particular, eddy viscosity closures, inspired from large eddy simulations

(LES), have shown a significant success in ROM closure modeling [294, 295, 60, 52,

51, 63]. The estimation of an optimal value of the eddy viscosity parameter has been

the topic for many research works though. For example, empirical relations can be

adopted [296, 49, 297], or ideas can be borrowed from LES frameworks to dynamically

compute a better approximation of the eddy viscosity parameter [59, 47, 298, 147].

Moreover, a 4D-VAR approach has been suggested to provide an optimal nonlinear

eddy viscosity estimate in Galerkin projection based ROMs[51]. An adaptive nudging

technique has also been recently introduced to force ROMs towards the reference

solution corresponding to the observed data [283].

Instead, in the present chapter, we propose a novel framework to estimate eddy

viscosity closure using noisy observations from a sparse observation network. In

particular, we adopt the forward sensitivity method to evaluate the sensitivity of

ROM predictions to the eddy viscosity parameter. Observations, whenever available,

can therefore be used to approximate a more representative value of eddy viscosity to

better reflect the true system’s dynamics. We highlight that the proposed approach is

very suitable for emerging digital twin applications [130, 299, 300, 13, 234, 301], where

real-time measurements are abundant (and noisy). Thus, efficiently assimilating these

measurements to improve ROMs can be a key enabler for such applications which

require many-query and near real-time simulations. We test our approach using two

test cases of varying complexity, namely the one-dimensional viscous Burgers equation

with a square wave representing a moving shock and the two-dimensional vorticity

transport equation applied to Kraichnan turbulence. We apply the proposed GROM-

FSM to assimilate information from either full field or sparse field measurements.

Therefore, our approach provides a modular framework to optimally estimate closure
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parameters for submodal scale physics, which can be effectively used in emerging

sensor-centric applications in transport processes.

The rest of the chapter is outlined here. In Section 6.3, we review the forward sen-

sitivity method and its mathematical foundation as an established data assimilation

algorithm. We then construct the standard Galerkin ROM and the corresponding

reduced operators for the 1D Burgers problem and the 2D vorticity transport equa-

tion in Section 6.4. Then, we describe the proposed approach for closure estimation

via FSM, namely GROM-FSM, in Section 6.5. Results and relevant discussions are

provided in Section 6.6. In particular, we consider the assimilation of full field and

sparse field measurements. For the latter, we explore two approaches for assimilating

information from sparse observations. We also extend the eddy viscosity estimation

framework to permit mode-dependent closures. Concluding remarks and insights are

drawn in Section 6.7.

6.3 Forward Sensitivity Method

In this section, we briefly describe the forward sensitivity method (FSM) proposed by

Lakshmivarahan and Lewis [278]. The idea behind this technique is to find optimal

control parameters by iteratively correcting the control for the least squares fit of

the model to the observational data. The control parameters in question here can

be any unknown such as initial conditions, boundary conditions, and physical model

parameters. The correction to each control parameter is dictated by its corresponding

sensitivity function. In essence, the sensitivity function is the quantitative measure

of influence of each control parameter on the model states. The nature of combining

physical models with actual data to solve an inverse problem is what makes FSM a

modular DA approach.

Let the dynamical system of interest be defined by a set of ordinary differential

equations (ODEs) as below,
dx

dt
= f(x,α), (6.1)

where x(t) ∈ Rn is the system state-vector with the initial condition x0 and α ∈ Rp

denotes the physical parameters. The vector of control parameters is represented as

c = [x0,α]T ∈ Rn+p. Here, it is assumed that the solution x(t) exists and is unique

and has a smooth dependence with the control vector c.

Discretizing Eq. (6.1) by using some numerical method like Runge-Kutta schemes,
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we get a model equation which gives the evolution of model states in discrete time

as,

xk+1 = M(xk,α), (6.2)

where xk = [xk1, x
k
2, . . . , x

k
n]
T denotes the time-discretized model states at discrete

time tk and M = [M1(x
k,α),M2(x

k,α), . . . ,Mn(x
k,α)]T refer to the state transition

maps from time tk to tk+1. Differentiating Eq. (6.2) with respect to x0, we get

∂xk+1
i

∂x0j
=

n∑
q=1

(
∂Mi

∂xkq

)(
∂xkq
∂x0j

)
, (6.3)

where 1 ⩽ i, j ⩽ n. Similarly, differentiating Eq. (6.2) with respect to α, we obtain

∂xk+1
i

∂αj
=

n∑
q=1

(
∂Mi

∂xkq

)(
∂xkq
∂αj

)
+
∂Mi

∂αj
(6.4)

where 1 ⩽ i ⩽ n and 1 ⩽ j ⩽ p. In Eqs. (6.3) and (6.4), the superscript refers to

the discrete time index while the subscript refers to the specific component. Now,

we can define Uk as the sensitivity matrix of xk with respect to initial state, where

[Uk]ij = ∂xki /∂x
0
j for 1 ⩽ i, j ⩽ n. Also, we define Vk as the sensitivity matrix of xk

with respect to the parameter-vector α, where [Vk]ij = ∂xki /∂αj for 1 ⩽ i ⩽ n and

1 ⩽ j ⩽ p. Then, we can rewrite Eqs. (6.3) and (6.4) in matrix as below

Uk+1 = Dk
x(M)Uk, (6.5)

Vk+1 = Dk
x(M)Vk +Dα(M), (6.6)

initialized as U0 = I and V0 = 0.

Here,Dk
x(M) andDα(M)k are the Jacobian matrices ofM(·) with respect to x and

α at discrete time tk, respectively. Moreover, Uk ∈ Rn×n and Vk ∈ Rn×p are called

the forward sensitivity matrices with respect to initial conditions and parameters,

respectively. In effect, the system dynamics in Eq. (6.2) gets reduced to a set of

linear matrix equations (i.e., Eqs. (6.5) and (6.6)) which give the evolution of the

sensitivity matrices in discrete time. By first order approximation, we have

∆xk ≈ δxk = Ukδx0 +Vkδα, (6.7)

where δx ∈ Rn.
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So far, no observational data have been used. Let z(t) ∈ Rm be the observation

vector available for N time snapshots; and h : Rn → Rm maps the model space Rn to

the observation space Rm. Hence, the observation vector can be defined mathemati-

cally as follows,

z(t) = h(x̃(t)) + v(t), (6.8)

where x̃(t) ∈ Rn is the true state of the system and v(t) ∈ Rm represents the mea-

surement noise, which is assumed to be white Guassian noise with zero mean and

covariance matrix R(t) ∈ Rm×m. Writing Eq. (6.8) in the discrete-time form we get,

zk = h(x̃k) + vk, (6.9)

where vk is white Gaussian noise with the covariance matrix Rk. In most cases, Rk

is a diagonal matrix. For simplicity, we assume that Rk = σ2
ObsIm, where Im is the

m×m identity matrix.

Assuming that the model is a perfect representation of the actual physical phe-

nomenon and given a starting guess value of the control c, we can run the model

forward to predict xk ∀ 1 ⩽ k ⩽ N , then the forecast error ekF ∈ Rm defined as,

ekF = zk − h(xk). (6.10)

The forecast error ekF is composed of the sum of a deterministic part defined as

h(x̃k) − h(xk) and a random part vk. The random error stems from the inherent

error in the mapping h : xk → zk and we have no control on it, however it is the goal

of FSM to minimize the deterministic part in a least squares sense at all the N time

snaps by choosing an optimal value for c.

Now, the goal of FSM is to find a perturbation to the control δc from the given

starting guess c. This, in turn, would cause a δxk change in xk such that the actual

observation matches with the forecast observation from the model as follows,

zk = h(xk + δxk) ≈ h(xk) +Dk
x(h)δx

k. (6.11)

Thus, the forecast error ekF can be written as,

ekF = Dk
x(h)δx

k. (6.12)

126



Combining Eq. (6.7) with Eq. (6.12), and setting Hk
1 = Dk

x(h)U
k ∈ Rm×n, Hk

2 =

Dk
x(h)V

k ∈ Rm×p, we get,

ekF = Hk
1δx

0 +Hk
2δα. (6.13)

Equation (6.13) can be further simplified and written in terms of the perturbation to

the control δc as

Hkδc = ekF , (6.14)

where Hk = [Hk
1,H

k
2] ∈ Rm×(n+p) and δc = [δx0, δα]T ∈ Rn+p.

Equation (6.14) can be formulated for all the N time snapshots for which obser-

vations are available and the following linear equation is obtained,

Hδc = eF , (6.15)

where the matrix H ∈ RNm×(n+p) and the vector eF ∈ RNm are defined as follows,

H =


H1

H2

...

HN

 , eF =


e1F

e2F
...

eNF

 . (6.16)

Depending on the value of Nm relative to (n+p), Eq. (6.15) can give rise to either an

over-determined or an under-determined linear inverse problem. In either case, the

inverse problem can be solved in a weighted least squares sense to find an optimal

value of δc, with R−1 as a weighting matrix, where R is a block-diagonal matrix

constructed as follows,

R =


R1

R2

. . .

RN

 . (6.17)

For simplicity, we assume that R is a diagonal matrix defined as R = σ2
ObsINm,

where INm is the Nm×Nm identity matrix. Then, the solution of Eq. (6.15) can be

written as

δc =


(
HTR−1H

)−1
HTR−1eF , over-determined,

R−1HT
(
HR−1HT

)−1
eF , under-determined.

(6.18)
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It has been seen that the first order approximation progressively yield better results

by repeating the entire process for multiple iterations until convergence with certain

tolerance [278].

6.4 Reduced Order Modeling

In this section, we briefly derive a reduced order model (ROM) for a dynamical system

governed by the following autonomous partial differential equation (PDE)

∂q

∂t
= F(q), (6.19)

where q is the state of system (flow field variables) and F(q) governs the dynamics of

q. We follow the standard Galerkin projection to construct the sought ROM which

includes two main steps. First, the flow field variable q(x, t) (where q(x, t) represents

the vectorized form of q at time t) is approximated as a linear superposition of the

contributions of a few modes, which can be mathematically expressed as

q(x, t) = q̄(x) +
R∑
k=1

ak(t)ϕk(x), (6.20)

where q̄(x) represents the mean-field, ϕk(x) are the spatial modes (or basis functions),

ak(t) are the time-dependent modal coefficients (i.e., weighting functions), and R is

the number of retained modes in ROM approximation (i.e., ROM dimension). The

second step is to project the governing equation (i.e., Eq. (6.19)) onto the subspace

spanned by {ϕk}Rk=1. Thus, the two main ingredients for building a Galerkin ROM

(GROM) are the basis functions {ϕk}Rk=1 and a Galerkin projection of the governing

equation. To compute the basis functions {ϕk}Rk=1, we follow the popular proper

orthogonal decomposition (POD) approach described in Section 6.4.1, followed by

derivation of GROM equations in Section 6.4.2. Overall, this GROM approach utilizes

a linear decomposition technique that is able to properly treat the nonlinearity of

F(q), since it accounts for nonlinear coupling of terms acting within the linear space

defined by the POD basis functions [16].

6.4.1 Proper orthogonal decomposition

Proper orthogonal decomposition (POD) is a data-driven modal decomposition tech-

nique that gained remarkable popularity in the fluid mechanics community due to its
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simplicity as well as robustness. Given a set of solution trajectories or realizations

(known as snapshots), POD lays out a systematic approach to compute a solution-

adapted basis functions that provide the optimal basis to represent a given set of

simulation data or snapshots. Specifically, POD produces hierarchically organized

basis functions, based on their contribution to the total system’s energy, which makes

the modal selection a trivial process. In particular, given a collection of system real-

izations, we build a snapshot matrix A ∈ Rn×N as follows,

A =


q(x1, t1) q(x1, t2) . . . q(x1, tN)

q(x2, t1) q(x2, t2) . . . q(x2, tN)
...

...
. . .

...

q(xn, t1) q(xn, t2) . . . q(xn, tN)

 , (6.21)

where n is the number of spatial locations and N is the number of snapshots. A

mean-subtracted snapshot matrix Ã is defined as Ã = A− 1

N
A1N×N , where 1N×N

is an N ×N matrix of ones. Then, a thin singular value decomposition (SVD) is

performed on Ã as follows ,

Ã = UΣVT , (6.22)

where U ∈ Rn×N is a matrix with orthonormal columns are the left singular vectors

of Ã, which represent the spatial basis as,

U =


U1(x1) U2(x1) . . . UN(x1)

U1(x2) U2(x2) . . . UN(x2)
...

...
. . .

...

U1(xn) U2(xn) . . . UN(xn)

 , (6.23)

while the columns of V ∈ RN×N are the right singular vectors of Ã, representing the

temporal basis as

V =


V1(t1) V2(t1) . . . VN(t1)

V1(t2) V2(t2) . . . VN(t2)
...

...
. . .

...

V1(tN) V2(tN) . . . VN(tN)

 . (6.24)
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The singular values of Ã are stored in descending order as the entries of the diagonal

matrix Σ ∈ RN×N ,

Σ =


σ1

σ2
. . .

σN

 , (6.25)

where σ1 ≥ σ2 ≥ . . . σN ≥ 0. For dimensionality reduction purposes, only the first

R columns of U, corresponding to the largest R singular values, are stored. Those

represent the most effective R POD modes, denoted as {ϕk}Rk=1 in the rest of the

manuscript. The computed basis functions are orthonormal by construction as

⟨ϕi;ϕj⟩ =

1, if i = j,

0, otherwise,
(6.26)

where the angle parentheses ⟨·; ·⟩ stands for the standard inner product in Euclidean

space (i.e., dot product). We note that the presented direct algorithm might be

unfeasible for larger data sets, as stacking snapshots into a single huge matrix is

usually prohibitive. Instead, the method of snapshots [83] can be followed to efficiently

approximate the POD bases.

6.4.2 Galerkin ROM

Having a set of POD basis functions in hand, an orthogonal projection can be per-

formed to obtain the Galerkin ROM (GROM). To do so, the ROM approximation

(i.e., Eq. (6.20)) is substituted into the governing equation and an inner product with

the POD basis functions is carried out. In deriving the GROM equations, we high-

light that the POD bases are only spatial functions (i.e., independent of time) and the

modal coefficients are independent of space. We also utilize the orthonormality prop-

erty of the basis functions to get the following set of ordinary differential equations

(ODEs) representing the tensorial GROM,

dak
dt

= Bk +
R∑
i=1

Li,kai +
R∑
i=1

R∑
j=1

Ni,j,kaiaj, (6.27)

where B, L and N are the vector, matrix and tensor of predetermined model coeffi-

cients corresponding to constant, linear and nonlinear terms, respectively. We note
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here that the last term results from the quadratic nonlinearity encountered in most of

the fluid flow systems. In particular, we consider here two cases of particular interest.

First, we consider the one-dimensional Burgers equation as a prototypical test bed

for transport systems with quadratic nonlinearity and Laplacian dissipation. For this

case, we solve the problem of a moving shock, which can be considered as a challeng-

ing case for ROM applications [297]. In the second case, we consider the vorticity

transport equation, with an application to the two-dimensional decaying turbulence.

6.4.2.1 1D Burgers problem

The one-dimensional (1D) Burgers equation is defined with the following partial dif-

ferential equation (PDE)
∂u

∂t
= −u∂u

∂x
+

1

Re

∂2u

∂x2
, (6.28)

where Re is Reynolds number relating the inertial and viscous effects. Using the

following definition

u(x, t) = ū(x) +
R∑
k=1

ak(t)ϕk(x), (6.29)

the GROM model coefficients can be precomputed during an offline stage as

Bk =
〈
− ū∂ū

∂x
+

1

Re

∂2ū

∂x2
;ϕk
〉
,

Li,k =
〈
− ū∂ϕi

∂x
− ϕi

∂ū

∂x
+

1

Re

∂2ϕi
∂x2

;ϕk
〉
,

Ni,j,k =
〈
− ϕi

∂ϕj
∂x

;ϕk
〉
.

6.4.2.2 2D Kraichnan turbulence

The two-dimensional (2D) Kraichnan turbulence problem models how randomly gen-

erated vortices evolve [302]. Despite the apparent simplicity, the decaying 2D Kraich-

nan turbulence is very rich in its dynamics and follows the 2D Navier-Stokes equations,

which can be written in vorticity-streamfunction formulation (vorticity-transport

equation) as follows

∂ω

∂t
= −J(ω, ψ) + 1

Re
∇2ω, (6.30)
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where ω is the vorticity and ψ is the streamfunction. J(ω, ψ) and ∇2ω are the

Jacobian and Laplacian operators, respectively, which can be defined as

J(ω, ψ) =
∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x
, (6.31)

∇2ω =
∂2ω

∂x2
+
∂2ω

∂y2
. (6.32)

The vorticity-streamfunction formulation enforces the incompressibility condition,

where the vorticity and streamfunction fields are related by the following Poisson

equation

∇2ψ = −ω. (6.33)

With the POD algorithm implemented, a set of POD basis functions {ϕk(x, y)}Rk=1

are obtained from the snapshots of vorticity fields. The prognostic variable vorticity

in Eq. (6.30) is defined as

ω(x, y, t) = ω̄(x, y) +
R∑
k=1

ak(t)ϕk(x, y). (6.34)

Since the vorticity and streamfunction are related by the kinematic relationship given

by Eq. (6.33), the basis functions (θk(x, y)) and mean field (ψ̄(x, y)) corresponding to

the streamfunction can be obtained from those of the vorticity as follows,

∇2ψ̄(x, y) = −ω̄(x, y), (6.35)

∇2θk(x, y) = −ϕk(x, y), k = 1, 2, . . . , R, (6.36)

which might result in a set of basis functions for the streamfunction that are not nec-

essarily orthonormal. Moreover, the reduced order approximation of streamfunction

shares the same temporal coefficients ak(t),

ψ(x, y, t) = ψ̄(x, y) +
R∑
k=1

ak(t)θk(x, y). (6.37)
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The GROM coefficients for this case can be defined as follows [43],

Bk =
〈
− J(ω̄, ψ̄) + 1

Re
∇2ω̄;ϕk

〉
,

Li,k =
〈
− J(ω̄, θi)− J(ϕi, ψ̄) +

1

Re
∇2ϕi;ϕk

〉
,

Ni,j,k =
〈
− J(ϕi, θj);ϕk

〉
. (6.38)

Due to the quadratic nonlinearity in the aforementioned systems, the computa-

tional cost of solving Eq. (6.27) is O(R3). Therefore, the number of retained modes

has to be reduced as much as possible to keep the computational cost affordable.

However, this truncation ignores the dyadic interactions between the first R modes

and the remaining ones. As a result, an erroneous behaviour might arise in the ROM

solution [44–46, 64], and closure/stabilization techniques have been introduced to im-

prove ROM accuracy [61, 59, 62, 55, 52]. As highlighted earlier in Section 6.2, closure

approaches based on physical significance have been usually relied on the analogy be-

tween LES and ROMs, e.g., the addition of an artificial viscosity term [294]. Recently,

data-driven closure methods have been also pursued, e.g., using variational multi-

scale techniques [303, 304, 298], machine learning algorithms [305, 145, 306, 307], and

polynomial approximations [57, 58].

6.5 Closure Estimation via FSM

In order to stabilize the GROM, a closure model is usually necessary for complex

flows. In the present chapter, we consider adding a linear eddy-viscosity term to the

governing equation as follows,

1D Burgers:
∂u

∂t
= −u∂u

∂x
+ (ν + νe)

∂2u

∂x2
, (6.39)

2D Turbulence:
∂ω

∂t
= −J(ω, ψ) + (ν + νe)∇2ω, (6.40)

where ν is the physical (kinematic) viscosity and νe is an (artificial) eddy viscosity to

add an extra dissipation to stabilize the system. If we follow the same procedure in

Section 6.4.2, we get the following GROM with closure,

dak
dt

= Bk + νeB̂k +
R∑
i=1

Li,kai + νe

R∑
i=1

L̂i,kai +
R∑
i=1

R∑
j=1

Ni,j,kaiaj, (6.41)
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where B̂ and L̂ are the constant and linear coefficients resulting from the introduction

of the eddy viscosity term and defined as follows

1D Burgers: B̂k =
〈∂2ū
∂x2

;ϕk
〉
, L̂i,k =

〈∂2ϕi
∂x2

;ϕk
〉
,

2D Turbulence: B̂k =
〈
∇2ω̄;ϕk

〉
, L̂i,k =

〈
∇2ϕi;ϕk

〉
.

It remains to compute or assume a good estimate for νe. Using an a priori esti-

mate for νe can produce a stable ROM solution. However, as the flow evolves, this

prior value might become less effective. Therefore, there should be a strategy to

dynamically update this estimate based on the flow conditions/regimes.

In this regard, we borrow ideas from meteorological data assimilation to correct

and update our parameter estimate using live and realistic (possibly noisy) measure-

ments. In particular, we use the forward sensitivity method (FSM), described in

Section 6.3, to compute an optimal value for eddy viscosity given a few field ob-

servations. This also allows us to update our estimate whenever a new observation

becomes available. We start with a prior estimate of eddy viscosity (e.g., zero if no

priors are available), and solve the ROM equation for a given period of time, Tw. As

we solve GROM, we also collect some field measurements during this period Tw. A

penalty term is thus computed as the difference between the GROM prediction and

observations, which is used to update our prior estimate for νe. This updated value

is therefore used to evolve the GROM until new observations become available to

match with model’s predictions, and so on. The period over which measurements are

collected Tw is called the data assimilation window. Note that model’s states (e.g.,

ak(t)) can be different from the measured quantities (e.g., u(x, t)), and a mapping

between model space and observation space has to be defined. In the following, we

formalize our framework for FSM-based eddy viscosity estimation for GROM, called

GROM-FSM in the present study. Defining our dynamic model as

da

dt
= f(a, νe), (6.42)

where a is the vector of modal coefficients defined as a = [a1, a2, . . . , aR]
T (the super-

script T denotes transpose). The (time-continuous) model map f = [f1, f2, . . . , fR]
T

is defined as fk = Bk + νeB̂k +
∑R

i=1 Li,kai + νe
∑R

i=1 L̂i,kai +
∑R

i=1

∑R
j=1Ni,j,kaiaj.

A time-discretization scheme can be utilized to convert this model from continuous-
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time map f to a discrete-time map M as

ak+1 = M(ak, νe), (6.43)

where the superscript k denotes the time index. In our implementation, we adopt the

fourth-order Runge-Kutta scheme (RK4) for temporal discretization.

Suppose we collect measurements zk at a single time instant tk, where tk ∈ [0, Tw].

The forecast error is defined at tk as

ekF = zk − h(ak), (6.44)

where h(·) defines the mapping from model space to observation space. In our results,

we consider two mapping cases. In the first case, we preprocess field observations to

compute the “observed” coefficients (i.e., zk = akObs), where the mapping is simply

identity matrix (i.e., h(ak) = ak). In the second case, we keep observations as velocity

field measurement (zk = ukObs), where the mapping becomes a reconstruction map

(i.e., h(ak) = uk). Specific details are to be given in Section 6.6.

Although the FSM can be used to treat uncertainties in initial conditions as well

as model parameters, we only consider the estimation of the eddy viscosity parameter

νe. Thus,

Hk
2δνe = ekF , (6.45)

whereHk
2 = Dk

a(h)V
k as defined in Section 6.3. Details of defining model Jacobian are

given in Appendix A. For more than a single observation time, we stack Eq. (6.45)

at different observation times to get the following equation,

H2δνe = eF . (6.46)

Also, a block-diagonal matrix R is constituted with the measurement covariance ma-

tricesRk at subsequent observation times. Equation (6.46) defines an over-determined

system of linear equations in δνe. A weighted least-squares solution can be computed,

with a weighting matrix of R−1 as follows,

δνe =
(
HT

2R
−1H2

)−1
HT

2R
−1eF , (6.47)

where δνe is added to our prior estimate of νe (also called background) to obtain a
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better approximation and the process is repeated until convergence. The procedure

for using FSM to compute the eddy viscosity is summarized in Algorithm 1. A tol-

erance limit has to be set to define convergence (e.g., 1 × 10−6). We also note that

an initial guess for eddy viscosity parameter is required for proper implementation

of the algorithm. If no prior knowledge of νe is available, a zero initial guess usually

works fine. Meanwhile, since collected FOM snapshots are already available during an

offline stage, they can be treated as field measurement data with negligible noise (cor-

responding to the underlying solution’s assumptions and numerical approximations).

Thus, Algorithm 1 can be applied offline along with the construction of GROM model

to provide a prior estimate of the suitable closure parameter.

Algorithm 1: Forward sensitivity method for estimating eddy viscosity in
GROM closure
Input : Dynamic model M(·), observation operator h(·), initial condition

a1, a set of observations z1, z2, . . . zN , an initial guess for eddy
viscosity parameter νe, and a tolerance tol value

Output: An estimate of the eddy viscosity νe

initialization
for i← 1 to max iter do

V1 = 0
eF = z1 − h(a1)
H2 = D1

a(h)V
1

R = R1

for n← 1 to N − 1 do
an+1 = M(an, νe)
Vn+1 = Dn

a(M)Vn +Dn
νe(M)

if (observation zn+1 is available) then
en+1
F = zn+1 − h(an+1)

Hn+1
2 = Dn+1

a (h)Vn+1

eF =

[
eF
en+1
F

]
, H2 =

[
H2

Hn+1
2

]
, R =

[
R

Rn+1

]
end

end

δνe =
(
HT

2R
−1H2

)−1
HT

2R
−1eF

if (δνe ≤ tol) then
break

else
νe = νe + δνe

end

end
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6.6 Results

In this section, we present our results for the utilization the proposed methodology to

compute and update the eddy viscosity parameter via FSM, applied to the introduced

two test problems (i.e., 1D Burgers problem and 2D Kraichnan turbulence).

6.6.1 1D Burgers problem

For the 1D Burgers problem, we assume an initial condition of a square wave defined

as

u(x, 0) =

1, if 0 < x ≤ L/2,

0, if L/2 < x ≤ L,
(6.48)

with zero Dirichlet boundary conditions, u(0, t) = u(L, t) = 0. We consider a spatial

domain of L = 1, and solve at Re = 104 for t ∈ [0, 1]. For numerical computations,

we use a family of fourth order compact schemes for spatial derivatives [308], and

skew-symmetric formulation for the nonlinear term. Also, we use the fourth order

Runge-Kutta (RK4) scheme for temporal integration with a time step of 10−4 over

a spatial grid of 4096. For POD basis generation, we collect 100 snapshots (i.e.,

every 100 time steps). The temporal evolution of the 1D Burgers problem using the

described setup is shown in Fig. 6.1, where we can see the advection of the shock

wave.

The described Burgers problem with square wave is challenging for ROM appli-

cations. In our GROM implementation, we consider R = 8 modes and ∆t = 0.01

for time integration. In the following, we discuss the estimation of eddy viscosity via

FSM using full and sparse field measurements.

6.6.1.1 Full field measurement

In our first case, we investigate the assimilation of noisy full field measurement as

uObs(x, t) = u(x, t) + v(x, t), (6.49)

where v(x, t) is a white Gaussian noise with zero mean and covariance matrix R(t).

In particular, we define R(t) = σ2
ObsI, with σObs = 0.1. We assume a data assimilation

window of 0.5 s and collect measurements at t = 0.25 and t = 0.5, as demonstrated

in Fig. 6.2.
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Figure 6.1: Evolution of the FOM velocity field, characterized by a moving shock
with square wave.

Figure 6.2: Noisy measurement of velocity fields at t = 0.25 s and t = 0.50 s, assuming
sensors are located at all grid points.

Instead of defining a map between model space and observation space, we pre-

process our measurement by projecting them onto the POD basis to compute the
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“observed” modal coefficients as

aki,Obs = ⟨ukObs − ū;ϕi⟩. (6.50)

Thus, zk = akObs and the observation operator is defined h(a) = a, with a Jacobian

equal to the identity matrix (i.e., Da(h) = IR, where IR is the R×R identity matrix).

Also, the observational covariance matrix is set as Rk = σ2
ObsIR. If we implement the

procedure described in Section 6.3 to obtain an estimate for νe and solve GROM

with and without closure, we obtain the results in Fig. 6.3 for the temporal evolution

the modal coefficients. For comparison, we also plot the true projection values of a,

defined as

aki = ⟨ukFOM − ū;ϕi⟩. (6.51)

Figure 6.3: Temporal evolution of POD coefficients, assuming full field measurements
are available.
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Also, we sketch reconstructed velocity field at final time t = 1 in Fig. 6.4. It is

clear that GROM without closure is unable to capture the true dynamical behavior of

the described Burgers problem. On the other hand, GROM-FSM is shown to almost

match the true projection. It is assumed that true projected values represent the best

values that projection-based ROM can provide. For quantitative assessment, we also

plot the root mean squares error (RMSE) of ROM predictions defined as

RMSE(t) =

√√√√ 1

n

n∑
i=1

(
uFOM(xi, t)− uROM(xi, t)

)2

(6.52)

Figure 6.4: Velocity field reconstruction in case of full field measurements. Left: re-
construction of final velocity field using GROM and GROM with FSM eddy viscosity
compared to the FOM and true projection fields. Right: RMSE of reconstructed
fields at different time instants.

6.6.1.2 Sparse field measurement

Since full field measurements are usually inaccessible, we extend our study to con-

sider sparse field measurements. In particular, we locate sensors at 8 points, equally

spaced at 1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8, 8/8 as shown in Fig. 6.5. To assimilate those

measurements, we consider two cases. The first one is similar to the full field mea-

surement case, where we preprocess those measurements to compute a least-squares

approximation of the corresponding observed modal coefficients. In the second case,

we keep our observation as field measurements and define an operator to map model

state (i.e., modal coefficients) to observations (i.e., velocity).
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Figure 6.5: Noisy measurement of velocity fields at t = 0.25 s and t = 0.50 s, assuming
sensors are located at 8 grid points.

From measurements to POD coefficients In order to preprocess the sparse

measurements to approximate the observed modal coefficients, we sample Eq. (6.20)

at the sensors locations as follows,
ϕ1(xO1) ϕ2(xO1) . . . ϕR(xO1)

ϕ1(xO2) ϕ2(xO2) . . . ϕR(xO2)
...

...

ϕ1(xO8) ϕ2(xO8) . . . ϕR(xO8)




ak1,Obs

ak2,Obs
...

akR,Obs

 =


ukObs(xO1)− ū(xO1)

ukObs(xO2)− ū(xO2)
...

ukObs(xO8)− ū(xO8)

 , (6.53)

which can be generally solved using the pseudo-inverse. Then, the same observa-

tion operator and its Jacobian as defined in Section 6.6.1.1 are used. The temporal

evolution of the modal coefficients are given in Fig. 6.6. Although the GROM-FSM

results are better than GROM, they are significantly worse than those in Fig. 6.3.

Of course, this is to be expected since we are using measurements at only 8 points,

rather than 4096 locations. However, we also find that the observed modal coeffi-

cients calculations using Eq. (6.53) is greatly sensitive to the level of noise. Indeed,

we find that least-squares computations sometimes do not converge (a remedy will be

provided in Section 6.6.1.2). Moreover, we can see that the POD modal coefficients

from observations are significantly different than the true ones.

The reconstructed field at final time as well as the RMSE at different times are
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Figure 6.6: Temporal evolution of POD coefficients, where sparse field measurements
are preprocessed to estimate the observed POD coefficients.

demonstrated in Fig. 6.7. We see that a small improvement is obtained in GROM-

FSM, compared to GROM. We also note that for different noise levels, we get different

performances for the GROM-FSM. This implies that this way of assimilating sparse

observations is less reliable, and a more robust approach should be utilized. In Sec-

tion 6.6.1.2, we discuss another way of using sparse observations to perform data

assimilation for ROM closure.

From POD coefficients to measurements Now, we discuss defining an obser-

vational operator to construct a robust map between model space and measurement

space. Similar to Section 6.6.1.2, we sample Eq. (6.20) at sensor location, but we

introduce a map to reconstruct the velocity field at these locations using the model

predicted coefficients. In other words, in Section 6.6.1.2, we use the sensors mea-

142



Figure 6.7: Velocity field reconstruction in case of preprocessing sparse field mea-
surements to compute the observed POD coefficients. Left: reconstruction of final
velocity field using GROM and GROM with FSM eddy viscosity compared to the
FOM and true projection fields. Right: RMSE of reconstructed fields at different
time instants.

surements to approximate a value for akObs. But in this section, we use model pre-

dicted coefficients ak to approximate the velocity field values at sensor locations (i.e.,

uk(xO1), u
k(xO2), . . . , u

k(xO8)) as follows,
ϕ1(xO1) ϕ2(xO1) . . . ϕR(xO1)

ϕ1(xO2) ϕ2(xO2) . . . ϕR(xO2)
...

...

ϕ1(xO8) ϕ2(xO8) . . . ϕR(xO8)




ak1

ak2
...

akR

 =


uk(xO1)− ū(xO1)

uk(xO2)− ū(xO2)
...

uk(xO8)− ū(xO8)

 . (6.54)

Thus, we define zk = ukObs, and the observation operator h(a) = Ca, where C is

the matrix of basis functions sampled at sensors locations as follows,

C =


ϕ1(xO1) ϕ2(xO1) . . . ϕR(xO1)

ϕ1(xO2) ϕ2(xO2) . . . ϕR(xO2)
...

...

ϕ1(xO8) ϕ2(xO8) . . . ϕR(xO8)

 . (6.55)

Thus, the Jacobian of h(·) is defined as Da(h) = C. We repeat the same GROM-

FSM implementation with those redefined operators. Results are shown in Figs. 6.8

and 6.9, where we can see that this approach of assimilating measurements is more
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robust than the one discussed in Section 6.6.1.2 with higher accuracy. We also note

that similar performance is achieved using higher level of noise in measurements,

while the approach in Section 6.6.1.2 requires very low level of observational noise.

Figure 6.8: Temporal evolution of POD coefficients, where sparse field measurements
are compared against POD field reconstruction using the observer operator C.

Finally, for a big picture comparison, we plot the spatio-temporal evolution of

reconstructed velocity fields for all discussed measurement setups compared to FOM

and true projection fields in Fig. 6.10. From this figure, we notice that solution of

GROM without closure is unstable, and brings non-physical predictions. On the other

hand, predictions of GROM-FSM with full field measurements almost match the true

projected fields. Also, assimilating sparse observations via the reconstruction map

C is significantly superior to approximating observed coefficients using the pseudo-

inverse approach. The latter shows some non-physical predictions, similar to GROM.
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Figure 6.9: Velocity field reconstruction where sparse field measurements are com-
pared against POD field reconstruction using the observer operator C. Left: recon-
struction of final velocity field using GROM and GROM with FSM eddy viscosity
compared to the FOM and true projection fields. Right: RMSE of reconstructed
fields at different time instants.

Figure 6.10: Surface plots for the temporal evolution of velocity fields from (a) FOM,
(b) true projection, (c) GROM and FSM with (d) full and (e–f) sparse measure-
ments configurations. Note: (e) shows the results using the method presented in
Section 6.6.1.2, while (f) refers to the method presented in Section 6.6.1.2.
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6.6.2 2D Kraichnan turbulence

For 2D turbulence, the inertial range in the energy spectrum is proportional to k−3

in the inviscid limit according to the Kraichnan–Batchelor–Leith (KBL) theory [309–

311]. In our numerical experiments, the initial energy spectrum in Fourier space is

given by

E(k) =
4k4

3
√
πk5p

exp

[
−
(
k

kp

)2
]
, (6.56)

where k =
√
k2x + k2y and kp is the wavenumber at which the maximum value of initial

energy spectrum occurs. During the time evolution process, due to the nonlinear

interactions, this spectrum quickly approaches toward k−3 spectrum. The magnitude

of the vorticity Fourier coefficients is related to the energy spectrum as

|ω̃(k)| =
√
k

π
E(k). (6.57)

Thus, the initial vorticity distribution (in Fourier space) is obtained by introducing

a random phase. For more details regarding derivation of the initial vorticity dis-

tribution from an assumed energy spectrum can be found in [312]. In the present

study, we use a spatial computational domain of (x, y) ∈ [0, 2π] × [0, 2π] and a time

domain of t ∈ [0, 4]. Periodic boundary conditions are applied in both x and y di-

rections. A spatial grid of 5122 and a timestep of ∆t = 0.001 are used for FOM

solution, and 800 snapshots of vorticity fields are stored for POD basis generation.

A fourth-order accurate Arakawa scheme [119] is adopted for spatial discretization.

Contours of voriticy field at different time instants are shown in Fig. 6.11 initiated

by introducing a random phase shift in the Fourier space, with kp = 10.

For ROM implementation, we consider R = 16 corresponding to a RIC value of

around 80%. Similar to the 1D Burgers problem, we test the FSM capabilities to esti-

mate an optimal value of eddy viscosity considering full and sparse field measurements

with σObs = 0.1. We assume a data assimilation window of 2, and measurement data

are collected at t = 1 and t = 2, while testing is performed up to t = 4. We highlight

here that all the 2D fields are rearranged into 1D column vectors to follow the same

notations provided in Section 6.4 (e.g., the Euclidean inner product). However, for

contour plots, they are reshaped back into 2D fields.
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Figure 6.11: FOM results showing the time evolution of vorticity fields for the 2D
turbulence problem: (a) t = 0.0, (b) t = 2.0, and (c) t = 4.0.

6.6.2.1 Full field measurement

Since full field measurements are available (though noisy), we can project these

field data onto the basis functions ϕ to obtain the corresponding observed modal

coefficients as

aki,Obs = ⟨ωk
Obs − ω̄;ϕi⟩. (6.58)

Following the same procedure as in Section 6.6.1.1, an optimal value of eddy viscosity

parameter is estimated with the FSM methodology. In Fig. 6.12, we show the GROM

solution equipped by an eddy viscosity closure, computed by the proposed approach

compared to the background solution of standard GROM without closure. Also, we

plot the true projection (TP) results, where the true POD modal coefficients are

obtained as

aki = ⟨ωk
FOM − ω̄;ϕi⟩. (6.59)

From Fig. 6.12, we can observe an improvement in the prediction of modal co-

efficients incorporating the estimated eddy viscosity. Reconstructed vorticity fields

are also provided in Fig. 6.13 along with the variation of root mean squares error

with time. Although predictions are improved with the GROM-FSM implementation

compared to the GROM solution, it is observed that this improvement is only sig-

nificant at later times. Moreover, some modes (especially the first few) show better

results than the others, see Fig. 6.12. We believe this is caused by the assumption

of global (mode-independent) eddy viscosity contribution for all modes. Therefore,
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Figure 6.12: Time evolution of the modal coefficients for the 2D turbulence case,
assuming full field measurements are available at t = 1 and t = 2.

in the optimization process involved in FSM, higher importance is given to those

first few modes (since they possess the largest contribution). Consequently, a value

of eddy viscosity that yields the best correction for those first modes is computed

and applied for all modes. To mitigate this issue, we extend our closure estimation

framework to allow mode-dependent variations of the eddy viscosity parameter.

Figure 6.13: Reconstructed vorticity fields for the 2D turbulence problem at t = 4 for
(a) true projection, (b) GROM, and (c) GROM-FSM along with the RMSE variation
with time (d), assuming full field measurements are available at t = 1 and t = 2.
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Mode-dependent eddy viscosity. Instead of assuming a global eddy viscosity

parameter as is the case in Eq. (6.41), we permit the variation of this parameter with

modes as follows,

dak
dt

= Bk + νe,kB̂k +
R∑
i=1

Li,kai + νe,k

R∑
i=1

L̂i,kai +
R∑
i=1

R∑
j=1

Ni,j,kaiaj. (6.60)

Thus, our goal now is to compute the values of νe,k, where k = 1, 2, . . . , R. In other

words, we need to estimate R local values of eddy viscosity parameters, rather than a

single global value. Indeed, this approach is also common in large eddy simulations,

where a spatially varying eddy viscosity is considered. Figure 6.14 displays the time

evolution of modal coefficients with a mode-dependent eddy viscosity computations.

We can observe that almost equivalent improvements are obtained for all the modes,

which highlights the superiority of this approach over the assumption of global eddy

viscosity.

Figure 6.14: Time evolution of the modal coefficients for the 2D turbulence case, with
full field measurements and mode-dependent eddy viscosity closure. Note the equal
improvements in predictions for all the modes.
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The quality of vorticity field reconstruction is also manifested in Fig. 6.15 with

the contour plots at final time and variation of RMSE with time. Interestingly, it

can be noted that reductions of RMSE are obtained at earlier times than those in

Fig. 6.13. To understand this behavior, we investigate the GROM predictions without

closure. we can see that the deviation of GROM predictions for the dynamics of the

first few modes do not exhibit significant deviations during the assimilation window

of t = 2. On the other hand, the latest modes show larger deviations during the

same period. However, for a global eddy viscosity, the contribution of the first few

modes (corresponding to the large convective scales) is predominant. As a result, a

small value of eddy viscosity is computed to match the level of correction required

for those large scales. Considering global eddy viscosity implementation, the latest

modes (corresponding to small dissipating scales) receive minor corrections. On the

other hand, a mode-dependent eddy viscosity implementation allows for detection

of larger corrections required for disspative scales as seen in the modal coefficients

predictions in Fig. 6.14 and RMSE trend in Fig. 6.15.

Figure 6.15: Reconstructed vorticity fields for the 2D turbulence problem at t = 4 for
(a) true projection, (b) GROM, and (c) GROM-FSM along with the RMSE variation
with time (d), with full field measurements and mode-dependent eddy viscosity clo-
sure. Note the significant decrease in RMSE at earlier times than those in Fig. 6.13.

6.6.2.2 Sparse field measurement

For measurement sparsity investigation, we assume a sensor located each 32 grid

points. This corresponds to placing sensors at around 0.1% of the total spatial lo-

cations. Since it has already been shown that defining a mapping from the POD

coefficients to the measured field variables provides a robust data assimilation frame-

work, we follow the same procedure here. We also consider global and local eddy

viscosity implementations.
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Global eddy viscosity. With the mapping defined in Section 6.6.1.2, we apply the

FSM eddy viscosity estimation framework with sparse data and global eddy viscosity.

The time dynamics of the resolved modes is demonstrated in Fig. 6.16 for a few

selected modal coefficients. We obtain similar results as those obtained with full field

measurements, and we can observe that the predictions for the first few modes are

much better than the remaining modes. Also, the reconstructed vorticity fields and

computed RMSE are shown in Fig. 6.17.

Figure 6.16: Time evolution of the modal coefficients for the 2D turbulence case,
with sparse field measurements and global eddy viscosity closure. Note the better
improvements in the first few modes compared to the latest ones.

Mode-dependent eddy viscosity. Allowing the variation of eddy viscosity yields

notable enhancement of the prediction accuracy for all the modes as depicted in

Fig. 6.18, compared to Fig. 6.16. Reconstructed vorticity fields at t = 4 with GROM,

GROM-FSM and true projection results are plotted in Fig. 6.19. We also see the

reduction of RMSE even with the considered 0.1% sparsity in measurements data.
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Figure 6.17: Reconstructed vorticity fields for the 2D turbulence problem at t = 4
for (a) true projection, (b) GROM, and (c) GROM-FSM along with the RMSE
variation with time (d), with sparse field measurements and global eddy viscosity
closure. Reduction of RMSE compared to GROM without closure starts to become
remarkable around t = 2.

Figure 6.18: Time evolution of the modal coefficients for the 2D turbulence case, with
sparse field measurements and mode-dependent eddy viscosity closure.
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Figure 6.19: Reconstructed vorticity fields for the 2D turbulence problem at t = 4
for (a) true projection, (b) GROM, and (c) GROM-FSM along with the RMSE
variation with time (d), with sparse field measurements and mode-dependent eddy
viscosity closure.

6.6.3 Computational cost

The forward sensitivity method avoids the solution of the adjoint problem usually

encountered in variational approaches for assimilating observational data to improve

model’s predictions. Nonetheless, the main computational burden results from the

recursive matrix-matrix multiplication as described in Eq. (6.6). However, since all

computations are implemented in ROM space, the size of Jacobian matrices are O(R),

which reduces the memory and computational time requirements. Also, the deployed

forward model in each iteration is the GROM model, which is computationally ef-

ficient when a few modes are retained in the ROM approximation. Moreover, our

numerical experiments show that convergence occurs after a couple of iterations. We

document the computational time for each iteration and the number of iterations

for the explored test cases in Tables 6.1 and 6.2 using Python implementation. We

highlight here that each iteration takes around twice the time of solving the GROM

equations. For instance, for the 1D Burgers problem, the solution of the GROM

equations takes about 0.176s, while a single iteration of the FSM algorithm consumes

less than 0.35s. Similarly, for the 2D turbulence case, the CPU time to solve the

GROM equations is almost 4.445s, while a single iteration takes an order of 8s. This

is comparable to the computational time of variational approaches, where the for-

ward and adjoint problems have to be solved in each iteration. Further reductions

in FSM computing time might be achieved by efficient matrix-matrix multiplication

algorithms.

From Table 6.2, we can also see that the CPU time per iteration for full field

measurement case is slightly smaller than that in case of sparse data. We believe that
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this is attributed to the difference in measurement space sizes in each case. For the

full measurement case, we first project the data onto the basis functions to estimate

the observed modal coefficients, and assume our measurements live in ROM space.

So, the size of observational vector and forward sensitivty matrices are all O(R).

However, for the sparse case where we define a map from modal coefficient to field

reconstruction, the observations are assimilated in FOM space. Therefore, the size

of resulting vectors and matrices, corresponding to measurements, depends on the

number of sensor data. For the 2D case, this number is relatively larger than R, and

thus the resulting matrix computations become slightly more expensive. On the other

hand, for the 1D Burgers problem in Table 6.1, the CPU for either the full or sparse

measurements is similar since we are using 8 sensors for the sparse case. This is the

same as the number of modes in the ROM approximation. We also notice in Table 6.2

that the CPU time for mode-dependent (i.e., local) eddy viscosity estimation is larger

than that in case of fixed scalar eddy viscosity approximation. This is caused by the

larger sizes of the model Jacobians with respect to its parameters (see Eq. (6.4)) as

well as the solution of a bigger weighted least-squares problem (e.g., Eq. (6.47)).

Table 6.1: The CPU time (in seconds) per iteration and number of iterations required
for eddy viscosity estimation using the proposed FSM-based methodology for the 1D
Burgers problem. Sparse 1 refers to the implementation of mapping from measure-
ment to POD coefficients (Section 6.6.1.2), while Sparse 2 refers to the mapping from
POD coefficients to measurement (Section 6.6.1.2).

Measurement CPU time (s) No. of iterations
Full 0.342 7
Sparse 1 0.331 9
Sparse 2 0.344 8

Table 6.2: The CPU time (in seconds) per iteration and number of iterations required
for eddy viscosity estimation using the proposed FSM-based methodology for the 2D
turbulence problem. Here, [global] refers to the estimation of a global eddy viscosity
parameter for all modes, while [local] refers to the estimation of mode-dependent eddy
viscosities.

Measurement CPU time (s) No. of iterations
Full [global] 7.766 5
Full [local] 9.482 4
Sparse [global] 7.898 4
Sparse [local] 9.532 4
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6.7 Conclusions

In the present study, we propose a data assimilation-based approach to provide accu-

rate ROMs for digital twin applications. In particular, we use the forward sensitivity

method (FSM) to estimate as well as update an optimal value of eddy viscosity for

ROM closure. We exploit ongoing streams of observational data to improve the sta-

bility and accuracy of ROM predictions. We test the framework with the prototypical

one-dimensional viscous Burgers equation characterized by strong nonlinearity and

the two-dimensional vorticity transport equation for the 2D Kraichnan turbulence

problem. We investigate the assimilation of full field and sparse field measurements.

For full field measurements, we illustrate that projecting those noisy measurements

produces good estimate of observed modal coefficients, which can therefore used to

estimate an optimal value for eddy viscosity. However, we find that a similar approach

of using sparse field measurements to approximate the observed states is significantly

sensitive to measurements noise.

On the other hand, we demonstrate that defining an observational operator via

a ROM reconstruction map can be successful in utilizing sparse and noisy data.

Using real-time observations can steer ROM parameters and predictions to reflect

actual flow conditions. We also remark that the collected snapshots of full order

model solutions can be assimilated by treating them as full field measurements, with

negligible noise (corresponding to discretization and numerical approximation errors).

This should provide a prior estimate for the eddy viscosity parameterization during

an offline stage. We emphasize that fusing ideas between physics-based closures (e.g.,

the ansatz for eddy viscosity) and model reduction with variational data assimilation

techniques can provide valuable tools to construct reliable ROMs for long-time as

well off-design predictions. This should leverage ROM implementation for real-life

application.
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Appendix A: Computing Model Jacobians in Discrete-Time Formulation

We describe the computation of the model Jacobian (with respect to the sate a and the

parameter νe) in discrete-time formulations. while we show the derivations for the case

with a fixed global eddy viscosity parameter, extension to mode-dependent closure

estimation is straightforward. For temporal discretization of the GROM equations,

we use fourth-order Runge-Kutta (RK4) method as follows,

ak+1 = ak +
∆t

6
(g1 + 2g2 + 2g3 + g4), (6.61)

where: g1 = f(ak, νe),

g2 = f(ak +
∆t

2
· g1, νe),

g3 = f(ak +
∆t

2
· g2, νe),

g4 = f(ak +∆t · g3, νe).

(6.62)

Thus the discrete-time map defining the transition from time tk to time tk+1 is

written as

M(ak, νe) = an +
∆t

6
(g1 + 2g2 + 2g3 + g4). (6.63)

Then, the ‘total’ Jacobian of M is an R× (R + 1) matrix, computed as

Dk(M) = [Dk
a(M), Dk

νe(M)] (6.64)

= P+
∆t

6

(
Dg1 + 2Dg2 + 2Dg3 +Dg4

)
, (6.65)

where P =
[
IR, 0R×1

]
∈ RR×(R+1). The Jacobian of the model M with respect to

the model state ak is the first R columns of D(M), while the Jacobian of M with

respect to the the eddy viscosity parameter νe is the last column of D(M).
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Here, Dg1, Dg2, Dg3, and Dg4 are evaluated using the chain rule as follows,

Dg1 = Df(ak, νe),

Dg2 =

(
Df(ak +

∆t

2
· g1, νe)

)(
I(R+1) +

∆t

2

[
Dg1

Q

])
,

Dg3 =

(
Df(ak +

∆t

2
· g2, νe)

)(
I(R+1) +

∆t

2

[
Dg2

Q

])
,

Dg4 =

(
Df(ak +∆t · g3, νe)

)(
I(R+1) +∆t

[
Dg3

Q

])
,

(6.66)

where Q = 01×(R+1). Finally, the Jacobian of Df(ak, νe) is defined as Df(ak, νe) =

[Daf(a
k, νe), Dνef(a

k, νe)], where

∂fk
∂aj

= (ν + νe)Lj,k +
R∑
i=1

Ni,j,kai +
R∑
i=1

Nj,i,kai, (6.67)

∂fk
∂νe

=
R∑
i=1

Li,kai. (6.68)
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Appendix B: Extension to Generalized Latent Control Formulation

The closure problem can be approached by considering as a control input in the latent

space (i.e., latent control or latent action) that counteracts the induced instabilities

and inaccuracies from the GROM truncation. We employ a continuous time control

signal to correct and stabilize the GROM trajectory by deriving low-rank closure mod-

els with linear damping and dissipation terms using principles from the Kolmogorov

energy cascade of turbulence and energy conservation. We utilize the forecast error,

measured as the discrepancy between GROM predictions and collected sensor data,

as the feedback and develop a variational approach to update the control input. Fi-

nally, we extend the FSM to derive first-order estimates of the relationships between

the feedback and the desired control parameters.

The GROM for the 1D Burgers equation can be written in a compact form as

follows:

ȧ = b+ La+ aTNa, (6.69)

where b ∈ RR, L ∈ RR×R, and N ∈ RR×R×R respectively represent the constant,

linear, and nonlinear terms that result from the inner product between the FOM

operators and the POD basis functions. Then, we modify Eq. (6.69) by adding a

control input c(t) = [c1, c2, . . . , cR]
T as follows:

ȧ = b+ La+ aTNa+ c(t). (6.70)

The goal of the control c is to steer the GROM predictions toward the target trajectory

defined from the projection of FOM solution on POD subspace. The control input

that would result in values of a that are exactly equal to their optimal values can be

defined as follows:

ck(t) = ⟨F(u;µ);ϕk⟩ − ⟨F(ū+
R∑
i=1

aiϕi;µ);ϕk⟩. (6.71)

We highlight that Eq. (6.71) is not useful in practice because it requires solving the

FOM to compute u at each time step. Therefore, alternative approximate models

This discussion is adapted from: Ahmed, S. E., & San, O. (2022). Forward sensitivity analysis
and mode dependent control for closure modeling of Galerkin systems. International Journal of
Adaptive Control and Signal Processing (under review).
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are sought to estimate c as a function of the available information in the ROM

subspace (i.e., {ak, ϕk}Rk=1). The present study draws concepts from the Kolmogorov

energy cascade and energy conservation principles to define the effect of the modal

truncation on ROM dynamics. In order to derive the form of the closure model, we

add a combination of linear friction and diffusion terms to Eq. (6.28) as follows:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+ γu+ β

∂2u

∂x2
, (6.72)

where γ and β are the friction and diffusion parameters, respectively. Projecting

Eq. (6.72) onto the POD subspace leads to a model for c as follows:

c = γe+ γa+ βq+ βDa (6.73)

where: [e]k = ⟨ū;ϕk⟩, [q]k = ⟨
∂2ū

∂x2
;ϕk⟩, [D]k,i = ⟨

∂2ϕi
∂x2

;ϕk⟩. (6.74)

Thus, correcting the GROM trajectory amounts for estimating the parameters γ and

β and we refer to them as the control parameters or simply the control. We note

that when R = N , all the modes are retained and the FOM solution is obtained.

In this case, c = 0 and γ = β = 0, and thus Eq. (6.28) is recovered. Finally, we

set γ = [γ1, γ2, . . . , γR]
T ∈ Rn and β = [β1, β2, . . . , βR]

T ∈ Rn to allow variability

of the closure model with different modes. The use of mode-dependent correction

has been shown to provide better closure models, e.g., by matching energy levels

between FOM and ROM [313], incorporating spectral kernels [48, 49], or utilizing the

variational multi-scale framework [59, 156, 314].

Results We use the same setup for the FOM as in Section 6.6 and retain n = 6

modes for in the ROM computations. An eigenvalue analysis reveals that 6 modes

capture about 92% of the total system turbulent kinetic energy.

• Full field observations: First, we assess the feasibility of adopting the FSM

methodology to control the ROM trajectory by considering a direct measure-

ment of the full spatial flow field. We assume that the sensor signal is contami-

nated by a white Gaussian noise with zero mean and standard deviation of 0.1,

which represents 10% of the peak velocity. We collect measurement after every

10 time integrations of the GROM (i.e., ∆tObs = 0.1). We refer to the solution

with the target trajectory (given by Eq. (6.51)) as “True Closure” while the

solution of the uncontrolled GROM (i.e., Eq. (6.69)) is denoted as the “No Clo-
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sure” solution. Finally, the solution of the controlled GROM (i.e., Eq. (6.70))

with FSM used to parameterize the presumed closure model in Eq. (6.73) is

labeled as “FSM Closure”.

Figure 6.20 depicts the predicted dynamics in the latent ROM space using the

considered different approaches. We observe that GROM leads to inaccuracies

and significantly amplifies the magnitude of predicted coefficients, especially for

the last mode. This behavior is likely to cause long term instabilities in the solu-

tion even if the actual system is stable. On the other hand, the FSM effectively

controls the GROM trajectory and keeps it closer to the target trajectory. We

emphasize that we implement a mode-dependent control to respect the distinct

characteristics of the resolved modes defining recurrent flow structures.

Figure 6.20: Dynamics of the first and last modal coefficients with full field measure-
ment for the FSM Closure.

In Fig. 6.21, we evaluate the performance in the physical space by computing

the reconstructed flow field using Eq. (6.29) compared to the FOM fields. We

see that results from FSM Closure are very similar to the True Closure which

represents the minimum reconstruction error that could be obtained using 6

modes. On the other hand, vanilla-type GROM without closure yields inaccu-

rate and even non-physical solution in the spatio-temporal space.
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Figure 6.21: Spatio-temporal field predictions of Burgers problem using FOM and
GROM approaches. Full field measurements are considered for the FSM Closure.

• Sparse field observations: We extend our numerical experiments to explore in-

complete field measurement scenarios. In particular, we consider a sparse signal

s ∈ Rm of the flow field u as follows:

s = Θu, (6.75)

where Θ ∈ Rm×n is a sampling matrix, constructed by taking m rows of the

n×n identity matrix (i.e., [Θ]ij = 1 if the ith sensor is located at the jth location

and [Θ]ij = 0, otherwise). Sensors can be placed at equally-spaced locations,

random locations, or carefully selected places. Optimal observation placement

is an active field of research, also known as optimal experimental design (OED).

We utilize a greedy compressed sensing algorithm based on QR decomposition

with column pivoting to set-up a near-optimal sensor placement strategy as
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follows:

ΨTP := QR, (6.76)

whereΨ = [ψ1, ψ2, . . . , ψm] ∈ Rn×m includes the firstm POD basis functions for

u, and P ∈ Rn×n is the permutation matrix. Manohar et al. [315] showed that

by using the first m rows of P to define the sampling matrix Θ, a near optimal

sensor placement is obtained with similarities to the A- and D-optimality criteria

in OED studies.

Figure 6.22 displays the time evolution of the first and sixth modal coefficients

with the adopted FSM closure methodology in the case of sparse measurements.

In particular, we selected 25 locations (about 0.5% of the total number of grid

points) using the described QR-based algorithm to define the sensors data.

We see that FSM closure yields very accurate results that are close to the the

target trajectory even with the sparse measurement data. The reconstruction

accuracy is also demonstrated using Fig. 6.23, showing significant improvements

compared the GROM predictions without control.

Figure 6.22: Dynamics of the first and last modal coefficients with sparse field mea-
surement for the FSM Closure.
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Figure 6.23: Spatio-temporal field predictions of Burgers problem using FOM and
GROM approaches. Sparse field measurements are considered for the FSM Closure.
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CHAPTER 7

A Nudged Hybrid Analysis and Modeling Approach for Realtime

Wake-Vortex Transport and Decay Prediction

7.1 Abstract

We put forth a long short-term memory (LSTM) nudging framework for the enhance-

ment of reduced order models (ROMs) of fluid flows utilizing noisy measurements for

air traffic improvements. Toward emerging applications of digital twins in aviation,

the proposed approach allows for constructing a realtime predictive tool for wake-

vortex transport and decay systems. We build on the fact that in realistic applica-

tion, there are uncertainties in initial and boundary conditions, model parameters,

as well as measurements. Moreover, conventional nonlinear ROMs based on Galerkin

projection (GROMs) suffer from imperfection and solution instabilities, especially

for advection-dominated flows with slow decay in the Kolmogorov n-width. In the

presented LSTM nudging (LSTM-N) approach, we fuse forecasts from a combina-

tion of imperfect GROM and uncertain state estimates, with sparse Eulerian sensor

measurements to provide more reliable predictions in a dynamical data assimilation

framework. We illustrate our concept by solving the two-dimensional vorticity trans-

port equation. We investigate the effects of measurements noise and state estimate

uncertainty on the performance of the LSTM-N behavior. We also demonstrate that

it can sufficiently handle different levels of temporal and spatial measurement spar-

sity, and offer a huge potential in developing next-generation digital twin technologies

for aerospace applications.

7.2 Introduction

Aircraft wings are optimized to produce maximum lift and minimum drag. Their

design ensures that there is a high-pressure zone below the wing and a low-pressure

This chapter is adapted from: Ahmed, S. E., Pawar, S., San, O., Rasheed, A., & Tabib, M.
(2021). A nudged hybrid analysis and modeling approach for realtime wake-vortex transport and
decay prediction. Computers & Fluids, 221, 104895.
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zone above. Owing to this pressure gradient, air from below the wing is drawn around

the wingtip into the region above the wing causing a vortex to trail from each wing

tip. These wake vortices (WVs) are stable under calm atmospheric conditions and

remain present in the free atmosphere for a very long time, retaining its shape and

energy [316–318]. Furthermore, at very low altitudes, they might rebound from the

ground and linger on in the flight path corridor, posing significant risks to other

aircraft that might encounter them. This is, in particular, crucial for large jetliners

as WVs can cause violent rolling motions and even flip a small aircraft upside down

when a pilot trailing a large aircraft flies into such vortices [319].

It is due to the hazards posed by WVs left behind by a taking off or landing

aircraft that serious precautions are to be taken. The operational minimum aircraft

separation for different weight class configurations, used by the Air Traffic Control

(ATC), varies from 2.5 to 6 nautical miles. However, when deciding the separation

distance following those guidelines, the weather conditions and associated transport

and decay of WVs are not often taken into account. This was not a serious issue

a couple of decades ago, but with the significant increase of the air traffic and a

push for remote towers for cost effective and safe operation, major airports around

the world are feeling the pressure. In this regard, Digital Twins of airports appear

like a potential solution. In the current context, there is a need to develop a more

efficient wake turbulence separation consisting of time-based minima between different

aircraft types which takes into account the dynamic meteorological factors along with

the variation in the wake generation mechanism associated with different classes of

aircraft. Such information will enable air traffic controllers to deliver consistent and

safe spacing between aircraft leading to increased airport capacity, enhanced safety,

reduced fuel consumption, improved predictability and increased resilience.

While the current solutions range from actively modifying/dissipating the wake-

vortices using physical devices [320, 321] to accurately estimating the strengths of the

vortices using LIDARS and RADARS [322, 317], one shortfall of the two approaches is

that none of them predicts the evolution of the vortices in the future. This gap is being

filled by advanced computational fluid dynamics modeling which involves solving

the highly non-linear Navier-Stokes equations at varying levels of approximations.

However, their utility owing to their computationally demanding nature has been

limited to offline simulations geared towards developing a better understanding of

the WV dynamics. At the moment, most of the fast WV models that are state-of-the

art in WV predictive systems use physics-based empirical parameterizations to mimic
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vortex transport and decay. Unfortunately, the computational efficiency of the fast

WV models comes at the expense of accuracy. A good overview of the models can be

found in [323]. To alleviate the problems associated with the existing WV models,

data-driven machine learning methods might appear attractive at a first glance, but

their limited interpretability owing to their black-box nature make them a misfit for

the kind of safety-critical application under consideration.

To this end, building upon our recent works on the hybrid analysis and modeling

(HAM) framework [82, 305, 2], we present a data assimilation-empowered approach

to utilize a machine learning methodology to fuse computationally-light physics-based

models with the available real-time measurement data to provide more accurate and

reliable predictions of wake-vortex transport. In particular, we build a surrogate

reduced order model (ROM), by combining proper orthogonal decomposition (POD)

for basis construction [84, 85, 324, 86, 325, 326] and Galerkin projection to model the

dynamical evolution on the corresponding low-order subspace [35, 327–329, 27, 330,

331, 40, 332]. Although ROMs based on Galerkin projection (denoted as GROMs

in the present study) have been traditionally considered the standard approach for

reduced order modeling, they often become inaccurate and unstable for long-term

predictions of convection-dominated flows with strong nonlinearity [56, 108, 44–46].

Ideas like closure modeling [48–53, 55, 57, 58, 60–64, 295, 156, 333, 334, 47, 335, 336,

147] and Petrov-Galerkin projection [96, 97, 337, 98, 338–340, 99, 341] have been

investigated to address this deficiency. Alternatively, we exploit the nudging method

[342] as a data assimilation (DA) framework, which works by relaxing the model

state toward observations by adding correction (or nudging) terms, proportional to

the difference between observations and model state, known as innovation in DA

context. In classical DA nudging, this proportionality is assumed to be linear, and the

proportionality constants (or weights) are empirically tuned. Instead, we introduce

the hybridization at this stage, using a simplistic long short-term memory (LSTM)

architecture to generalize this relation to consider nonlinear mappings among the

innovation and nudging terms.

In other words, we utilize LSTM to combine the possibly defective model predic-

tion with noisy measurements to “nudge” the model’s solution towards the true states

[245, 148]. We apply the proposed LSTM nudging framework (denoted LSTM-N) for

the reduced order modeling of the two-dimensional wake vortex problem in order to

accurately predict the transport of wake vortices. Moreover, we suppose that both

inputs (i.e., the physics-based model and data) are imperfect, thus avoiding biases in
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predictions. GROMs are inherently imperfect due to the modal truncation and intrin-

sic nonlinearity. Recurrent neural networks, and in particular LSTMs, have shown

success modeling the effect of truncated scales on the retained ones (i.e., model clo-

sure) with roots from the Mori-Zwanzig formalism. For example, Wang et al. [178]

utilized a conditioned LSTM for the memory term in the GROM equations, repre-

senting the closure model, for parametric systems. In addition to model imperfection,

we also perturb the initial conditions to further mimic erroneous state estimates in

practice. Meanwhile, we realize that, more often than not, sensor signals are noisy.

So, we intentionally inject some noise to the synthesized observation data (using a

twin-experiment approach). We test the performance of LSTM-N with various levels

of measurement noises, initial field perturbations, and sensors signals sparsity.

7.3 Wake-Vortices Transport and Decay Prediction System

Every aircraft generates a wake of turbulent air as it flies. This disturbance is caused

by a pair of tornado-like counter-rotating vortices (called wake vortex) that trail from

the tips of the wings [343]. Relatively turbulent weather conditions and rough terrain

can help dissipate these vortices. A faster wake-decay was seen with increase in terrain

roughness in [344] for wind-farms, where it was observed that a secondary vortex (SV)

gets established more rapidly around the periphery of primary wake-vortex (WV), and

the subsequent interactions between SV and WV creates a higher turbulence state.

The phenomena of WV rebound and generation of omega-shaped hair-pin vortices

take place during this SV-WV interaction. This complex wake decay phenomena is

also applicable for wake-vortex emanating from aircraft. Such facts have also been

observed and exploited to artificially destroy wakes close to the ground using plates

[345]. Therefore, understanding the complex dynamics of these wake vortices (WV)

from its generation to decay is important in order to ensure flight safety, to increase

airport capacity and to test new methods for destroying WVs and mitigating their

effect.

Air traffic control can potentially benefit from the emerging concept of a digital

twin (DT), defined as the virtual replica of a physical system, where both of them

are able to actively communicate with each other [13, 234, 130]. Given the WV

and associated airport traffic case, a DT would receive streams of data, concerning

operating conditions, airport traffic status, aircraft characteristics (e.g., weight, size)

and flight mode (e.g., take-off or landing). Then, the DT should process these data
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and assess a bunch of possible scenarios corresponding to potential choices to provide

an informed decision with regard to the separation distance and flight scheduling, for

instance. Considering the WV problem, numerical modeling based on the Navier-

Stokes equation, if accurate, can be a cost effective and easily employable pursuit

for wake analysis. In Fig. 7.1, an aircraft is admitted to land safely, based on the

decay of wake-vortices from a leading aircraft. These wake-vortices are generated

using the aircraft information and an analytical function on a set of two-dimensional

(2D) planes (also called gates) perpendicular to the flight path [346]. Once the flight

corridor is clear and free of any influence of the wake-vortices left behind by the

leading aircraft, the following aircraft can land or take-off safely.

Figure 7.1: Transported and diffused wakes on a set of 2D planes (a.k.a. gates) to
make sure that the flight corridor is clear for the following aircraft.

Nonetheless, direct full order numerical simulations require large discretized sys-

tems for adequate approximation and are not practical for real-time wake prediction,

which is an essential ingredient for feasible DT technologies. Therefore, reduced or-

der modeling (ROM) rises as a natural choice for the successful implementation of

DT applications. ROM represents a family of protocols that aim at emulating the

relevant system’s dynamics with minimal computational burden. Typical ROM ap-

proaches consist of two major steps; (1) tailor a low-order subspace, where the flow

trajectory can be sufficiently approximated to live (see Section 7.4.2), (2) build a

surrogate model to cheaply propagate this trajectory in time (see Section 7.4.3). Tra-

ditionally, building surrogate models to evolve on a reduced manifolds has relied on

the projection of the full order model (FOM) operators onto a reduced subspace (e.g.,

using Galerkin-type techniques) to structure a reduced order model (ROM). Those

FOM operators are usually the outcome of the numerical discretization of the well-
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established governing equation, derived from first principles and conservation laws.

Such ROMs are attractive due to their reasonable interpretability and generalizabil-

ity, as well as the existence of robust techniques for stability and uncertainty analy-

sis. However, Galerkin ROM (GROM) can be expensive to solve for turbulent and

advection-dominated flows. GROM also might suffer from inaccuracies and instabili-

ties for long-time predictions. Meanwhile, in the digital twin context, the availability

of rich stream of data and measurements opens new avenues for further ROM develop-

ment. One way to utilize this abundance of data is the purely data-driven nonintrusive

ROM (NIROM) approach. NIROMs have largely benefited from the widespread of

open-source cutting edge and easy-to-use machine learning (ML) libraries, and cheap

computational infrastructure to solely rely on data for building stable and accurate

models, compared to their GROM counterparts [68, 67, 347–351, 211, 352–354]. How-

ever, purely data-driven tools often lack human interpretability and generalizability,

and sometimes become prohibitively “data-hungry”.

Alternatively, hybrid approaches can be pursued, where data-driven tools only

assist the physics-based models whenever data are available, rather than replacing

them entirely. Data assimilation (DA) is a framework which can efficiently achieve

this objective. DA generally refers to the discipline of intelligently fusing theory and

observations to yield an optimal estimate of the system’s evolution [252–254, 355, 356].

Measurements are usually sparse (both in time and space) and noisy, while dynamical

models are often imperfect due to the underlying assumptions and approximations

introduced during either model derivation (e.g., neglecting source terms) or numeri-

cal solution of the resulting model (e.g., truncation error). DA algorithms have rich

history in numerical weather predictions and are utilized on a daily basis to provide

reliable forecasts. In this chapter, we suppose that our dynamical model is the trun-

cated GROM and we aim at utilizing live streams of measurements to correct the

GROM trajectory. Specifically, we exploit the nudging method as our data assimi-

lation framework, which works by relaxing the model state toward observations by

adding correction (or nudging) terms, to mitigate the discrepancy between observa-

tions and model state [357]. We employ LSTM mappings to account for this nudging

term based on a combination between GROM predictions and available measurement

data (see Section 7.4.4). We highlight that a similar approach was proposed in [245]

for the state correction of the Lorenz 96 system. However, in that study, no model

order reduction was employed and the model was assumed to be perfect. Moreover,

a static correction was adopted using distinct background and assimilated trajecto-
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ries, where the background trajectory is not updated each assimilation window. In

contrast, we follow a dynamic correction approach where the corrected states after

each assimilation window act as the background initial condition for the following

window. This overall methodology was briefly introduced in [148] for the ROM of

the 1D Burgers problem, and in the present study, we extend this approach to the

2D case of wake vortex transport problem and exploring higher sparsity ratios. We

also aim at emphasizing and demonstrating the potential of the LSTM-N method for

digital twin frameworks for real-time monitoring and control.

7.4 Methodology

In this section, we first give an overview of the full order model used to simulate

the wake-vortex transport problem. Then, we present the reduced order formulations

adopted in this study. In particular, we utilize proper orthogonal decomposition

(POD) as a data-driven tool to extract the flow’s coherent structures and build a re-

duced order subspace that best approximate the flow fields of interest. After that, we

utilize a Galerkin approach to project the full order model operators onto that reduced

space to build a structure-preserving, physics-constrained reduced order model.

7.4.1 Vorticity transport equation

We consider the two-dimensional (2D) vorticity transport equation as our full order

model (FOM) that resolves the wake-vortex transport, defined by the 2D Navier-

Stokes equations in vorticity-streamfunction formulation as follows,

∂ω

∂t
+ J(ω, ψ) =

1

Re
∇2ω, (7.1)

where ω and ψ denote the vorticity and streamfunction fields, respectively. Re is

the dimensionless Reynolds number, relating the inertial and viscous effects. Equa-

tion (7.1) is complemented by the kinematic relationship between the vorticity and

streamfunction as below,

∇2ψ = −ω. (7.2)
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Equations (7.1) and (7.2) involve two operators, the Jacobian (J(·, ·)) and the Lapla-

cian (∇2(·)) defined as

J(ω, ψ) =
∂ω

∂x

∂ψ

∂y
− ∂ω

∂y

∂ψ

∂x
, (7.3)

∇2ω =
∂2ω

∂x2
+
∂2ω

∂y2
. (7.4)

In order to mimic the wake-vortex problem, several models have been investigated

[322, 358, 359, 316], including Gaussian vortex [360], Rankine vortex [361, 362], Lamb-

Oseen vortex [363, 364], and Proctor vortex [365, 366] among others. In the present

study, we initialize the flow with a pair of counter-rotating Gaussian vortices with

equal strengths centered at (x1, y1) and (x2, y2) as follows,

ω(x, y, 0) = exp
(
−ρ
[
(x− x1)2 + (y − y1)2

])
− exp

(
−ρ
[
(x− x2)2 + (y − y2)2

])
,

(7.5)

where ρ is an interacting parameter that controls the mutual interactions between

the two vortical motions. We also consider periodic boundary conditions for the

demonstration provided in the current study.

7.4.1.1 Numerical methods

For the spatial discretization of Eq. (7.1), we use the standard second-order central

finite difference scheme in linear term as follows,

∇2ωi,j =
ωi+1,j − 2ωi,j + ωi−1,j

∆x2
+
ωi,j+1 − 2ωi,j + ωi,j−1

∆y2
, (7.6)

where ∆x and ∆y are the mesh sizes in the x- and y-directions, respectively. For

the nonlinear term, Arakawa[251] suggested that the conservation of energy, enstro-

phy, and skew-symmetry is sufficient to avoid computational instabilities stemming

from nonlinear interactions. Therefore, we adopt the following second order Arakawa

scheme for the Jacobian term,

J(ωi,j, ψi,j) =
1

3
(J1 + J2 + J3), (7.7)
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where the discrete Jacobians have the following forms,

J1 =
1

4∆x∆y

[
(ωi+1,j − ωi−1,j)(ψi,j+1 − ψi,j−1)− (ωi,j+1 − ωi,j−1)(ψi+1,j − ψi−1,j)

]
,

J2 =
1

4∆x∆y

[
ωi+1,j(ψi+1,j+1 − ψi+1,j−1)− ωi−1,j(ψi−1,j+1 − ψi−1,j−1)

− ωi,j+1(ψi+1,j+1 − ψi−1,j+1) + ωi,j−1(ψi+1,j−1 − ψi−1,j−1)

]
,

J3 =
1

4∆x∆y

[
ωi+1,j+1(ψi,j+1 − ψi+1,j)− ωi−1,j−1(ψi−1,j − ψi,j−1)

− ωi−1,j+1(ψi,j+1 − ψi−1,j) + ωi+1,j−1(ψi+1,j − ψi,j−1)

]
.

Nonetheless, solving Eq. (7.2) is often the most computationally-demanding part

for typical incompressible flow solvers. In our study, we make use of the periodicity of

boundary conditions and implement a fast Poisson solver employing the fast Fourier

transform (FFT). We first discretize Eq. (7.2) using the standard second-order central

finite difference scheme (similar to Eq. (7.6)) as follows,

ψi+1,j − 2ψi,j + ψi−1,j

∆x2
+
ψi,j+1 − 2ψi,j + ψi,j−1

∆y2
= −ωi,j, (7.8)

Then, we apply the forward FFT to find the Fourier coefficients ω̂i,j from the grid val-

ues of ωi,j. Thus, the Fourier coefficients ψ̂i,j for the streamfunction can be evaluated

as follows,

ψ̂i,j = −
ω̂i,j

c1 cos (2πi/Nx) + c2 cos (2πj/Ny)− c3
, (7.9)

where c1 = 2/∆x2, c2 = 2/∆y2, and c3 = c1 + c2. Finally, we apply an inverse FFT

to find the grid values ψi,j from their Fourier coefficients ψ̂i,j.

7.4.2 Proper orthogonal decomposition

The first step for building a projection-based reduced order model is to tailor a low-

order subspace that is capable of capturing the essential features of the system of

interest. In the fluid mechanics community, proper orthogonal decomposition (POD)

is one of the most popular techniques in this regard [25, 134, 28]. Starting from a

collection of system’s realizations (snapshots), POD provides a systematic algorithm

to construct a set of orthonormal basis functions (called POD modes) that best de-

scribes that collection of snapshot data (in the ℓ2 sense). More importantly, those
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bases are sorted based on their contributions to the system’s total energy, making

the modal selection a straightforward process. This is a significant advantage com-

pared to other modal decomposition techniques like dynamic mode decomposition,

where further sorting and selection criterion has to be carefully defined. Usually, the

method of snapshots [83] is followed to perform POD efficiently and economically,

especially for high dimensional systems. However, we demonstrate the singular value

decomposition (SVD) based approach here for the sake of simplicity and brevity of

presentation.

We collect N system realizations, denoted as ωk = {ω(xi, yj, tk)}i=Nx,j=Ny ,k=N
i=1,j=1,k=1 ,

thus we build a snapshot matrix A ∈ RM×N as A = [Ω1,Ω2, . . . ,ΩN ], where Ωk ∈
RM×1 is the kth snapshot reshaped into a column vector, M is the number of spatial

locations (i.e.,M = NxNy), andN is the number of snapshots. Then, a thin (reduced)

SVD is performed on A,

A = UΣVT , (7.10)

where U ∈ RM×N is a matrix with orthonormal columns defining the left singular

vectors of A while the columns of V ∈ RN×N denote the right singular vectors of

A. We note that the columns of U represent the spatial basis, and the columns of

V carry the respective temporal information. The singular values of A are stored in

descending order as the entries of the diagonal matrix Σ ∈ RN×N . For model order

reduction purposes, only the first R columns of U, the first R columns of V, and

the upper-left R×R sub-matrix of Σ are considered, corresponding to the largest R

singular values. Specifically, the first R columns of U represent the most energetic R

POD modes, denoted as {ϕk}Rk=1 for now on.

The vorticity field ω(x, y, t) is thus approximated as a linear superposition of the

contributions of the first R modes, which can be mathematically expressed using the

Galerkin ansatz as

ω(x, y, t) =
R∑
k=1

ak(t)ϕk(x, y), (7.11)

where ϕk(x, y) stand for the spatial modes, ak(t) designate the time-dependent modal

coefficients/amplitudes (also known as generalized coordinates), and R is the number

of the retained modes in the ROM approximation (i.e., ROM dimension). We note
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that the POD basis functions ϕ are orthonormal by construction as follows,

⟨ϕi;ϕj⟩ =

1, if i = j,

0, otherwise,
(7.12)

where the angle parentheses ⟨·; ·⟩ stands for the standard inner product in Euclidean

space (i.e., dot product). We highlight that the SVD-based computation of the POD

basis imply the use of the Euclidean inner product. However, this might be prob-

lematic, especially when combined with non-uniform or unstructured grids. For such

cases, the of other inner products (e.g., L2 or H1) would be recommended.

Since the vorticity and streamfunction fields are related by Eq. (7.2), they share

the same modal amplitudes, ak(t). Moreover, the basis functions for the streamfunc-

tion (denoted as θk(x, y)) are derived from those of the vorticity as follows,

∇2θk = −ϕk, k = 1, 2, . . . , R, (7.13)

and the ROM approximation of the streamfunction field can be written as

ψ(x, y, t) =
R∑
k=1

ak(t)θk(x, y), (7.14)

7.4.3 Galerkin projection

After constructing a set of POD basis functions, an orthogonal Galerkin projection

can be performed to obtain the Galerkin ROM (GROM). To do so, the ROM approxi-

mation (Eqs. (7.11) and (7.14)) is substituted into the governing equation (Eq. (7.1)).

Noting that the POD bases are only spatial functions (i.e., independent of time) and

the modal amplitudes are independent of space, we get the the following set of ordi-

nary differential equations (ODEs) representing the tensorial GROM

dak
dt

=
R∑
i=1

Li,kai +
R∑
i=1

R∑
j=1

Ni,j,kaiaj, (7.15)

where L and N are the matrix and tensor of predetermined model coefficients cor-

responding to linear and nonlinear terms, respectively. Those can be precomputed
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once during an offline stage as

Li,k =
〈 1

Re
∇2ϕi;ϕk

〉
, Ni,j,k =

〈
− J(ϕi, θj);ϕk

〉
.

Equation (7.15) can be rewritten in compact form as

ȧ = f(a), (7.16)

where the (continuous-time) model map f is defined as follows,

f =


∑R

i=1 Li,1ai +
∑R

i=1

∑R
j=1Ni,j,1aiaj∑R

i=1 Li,2ai +
∑R

i=1

∑R
j=1Ni,j,2aiaj

...∑R
i=1 Li,Rai +

∑R
i=1

∑R
j=1Ni,j,Raiaj

 .

Alternatively, Eq. (7.16) can be given in discrete-time form as

an+1 = M(an), (7.17)

where M(·) is a one time-step forward mapping obtained by any suitable temporal

integration technique. Here, we use the fourth-order Runge-Kutta (RK4) method as

follows,

an+1 = an +
∆t

6
(g1 + 2g2 + 2g3 + g4), (7.18)

where

g1 = f(an), g2 = f(an +
∆t

2
g1), g3 = f(an +

∆t

2
g2), g4 = f(an +∆tg3).

Thus the discrete-time map defining the transition from time tn to time tn+1 is written

as

M(an) = an +
∆t

6
(g1 + 2g2 + 2g3 + g4). (7.19)

7.4.4 Long short-term memory nudging

Due to the quadratic nonlinearity in the governing equation (and consequently the

GROM), the online computational cost of solving Eq. (7.15) is O(R3) (i.e., it scales
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cubically with the number of retained modes). Therefore, this has to be kept as

low as possible for feasible implementation of ROM in digital twin applications that

require near real-time responses. However, this is often not an easy task for systems

with slow decay of the Kolmogorov n-width. Examples include advection-dominated

flows with strong nonlinear interactions among a wide span of modes. As a result,

the resulting GROM is intrinsically imperfect model. This imperfection implies that

the GROM might give inaccurate or false predictions even when fed with the true

initial conditions and in the absence of numerical discretization errors.

Moreover, in most realistic cases, proper specification of the initial state, boundary

conditions, and/or model parameters is rarely attainable. This uncertainty in prob-

lem definition, in conjunction with model imperfection, poses challenges for accurate

predictions. In this study, we put forth a nudging-based methodology that fuses prior

model forecast (using imperfect initial condition specification and imperfect model)

with the available Eulerian sensor measurements to provide more accurate posterior

prediction. Relating our setting to realistic applications, we build our framework

on the assumption that measurements are noisy and sparse both in space and time.

Nudging has a prestigious history in data assimilation, being a simple and unbiased

approach. The idea behind nudging is to penalize the dynamical model evolution

with the discrepancy between model’s predictions and observations [367–369]. In

other words, the forward model given in Eq. (7.17) is supplied with a nudging (or

correction) term rewritten in the following form,

an+1 = M(an) +G(zn+1 − h(an+1)), (7.20)

where G is called the nudging (gain) matrix and z is the set of measurements (obser-

vations), while h(·) is a mapping from model space to observation space. For example,

h(·) can be a reconstruction map, from ROM space to FOM space. In other words,

h(a) represents the “model forecast for the measured quantity”, while z is the “ac-

tual” observations. Despite the simplicity of Eq. (7.20), the specification/definition

of the gain matrix G is not as simple [370–372, 342].

In the proposed framework, we utilize a recurrent neural network, namely the

long short-term memory (LSTM) variant, to define the nudging map. We denote our

approach as LSTM-Nudging (LSTM-N). In particular, Eq. (7.20) implies that each

component of an+1 (i.e., a1, a2 . . . , aR) is corrected using a linear superposition of

the components of zn+1 − h(an+1), weighted by the gain matrix. Here, we relax this
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linearity assumption and generalize it to a possibly nonlinear mapping C(a, z) as,

an+1 = M(an) +C(an+1
b , zn+1), (7.21)

where the map C(a, z) is learnt (or inferred) using an LSTM neural network, and

an+1
b is the prior model prediction computed using imperfect model and/or imperfect

initial conditions (called background in data assimilation terminology), defined as

an+1
b = M(an). Thus, Eq. (7.21) can be rewritten as follows,

an+1 = an+1
b +C(an+1

b , zn+1). (7.22)

In order to learn the map C(ab, z), we consider the case with imperfect model,

defective initial conditions, and noisy observations. Moreover, we suppose sensors are

sparse in space and measurement signals are sparse in time, too. Specifically, we use

sensors located at a few equally-spaced grid points, but a generalization to off-grid

or adaptive sensor placement is possible. Also, we assume sensors send measurement

signals every τ time units. In order to mimic sensor measurements and noisy initial

conditions, we run a twin experiment as follows,

1. Solve the FOM equation (i.e., Eq. (7.1)) and sample true field data (ωtrue(x, y, tn))

each τ time units. In other words, store ωtrue(x, y, tn) at tn ∈ {0, τ, 2τ, . . . T}
where T is the total (maximum) time and τ is the time window over which

measurements are collected.

2. Define erroneous initial field estimate as ωerr(x, y, tn) = ωtrue(x, y, tn)+ϵb, where

tn ∈ {0, τ, 2τ, . . . T − τ}. Here, ϵb stands for noise in initial state estimate,

assumed as white Gaussian noise with zero mean and covariance matrix B (i.e.,

ϵb ∼ N (0, B)).

3. Define sparse and noisy measurements as z = ωtrue(xObs, yObs, tn) + ϵm, for

tn ∈ {τ, 2τ, . . . T}. Similarly, ϵm stands for the measurements noise, assumed to

be white Gaussian noise with zero mean and covariance matrix Q (i.e., ϵm ∼
N (0, Q)).

For LSTM training data, we project the erroneous field estimates (from Step 2) onto

the POD basis functions to get the erroneous POD modal coefficients (i.e., aerr(tn),

for tn ∈ {0, τ, 2τ, . . . T −τ}. Then, we integrate those erroneous coefficients for τ time

units to get the background prediction ab(tn), for tn ∈ {τ, 2τ, . . . T}. We note that in
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the actual deployment, the ROM solver is re-initialized with the nudged states each τ

time units when measurements become available. Therefore, we perform our training

on a bunch of samples initiated at time tn (with the Gaussian noise representing the

uncertainty) and integrated up to tn + τ to mimic the re-initialization each τ time

units. That said, in Step 2, we use the same level of uncertainty at t = 0 (defined

by the background covariance matrix B) as an upper limit for the uncertainty at the

beginning of the following periods (i.e., t = τ, 2τ, . . . ) since the nudging algorithm

does not provide an update for the background covariance matrix (unlike Kalman

filtering approaches which evolve this information along with the state).

We train the LSTM using ab(tn) and z(tn) as inputs, and set the target as the cor-

rection (atrue(tn)− ab(tn)), for tn ∈ {τ, 2τ, . . . T}. The true modal coefficients (atrue)

are obtained by projecting the true field data (from Step 1) onto the POD bases,

where the projection is defined via the inner product as ak(t) = ⟨ω(x, y, t);ϕk(x, y)⟩.
We remark that the LSTM-N framework is fed with the whole ab(tn) vector (not

individual components) after propagating the GROM in time. Therefore, it is inde-

pendent of the numerical method of time integration and it is generalizable to either

explicit or implicit schemes. In order to enrich the training data set, Step 2 and Step 3

are repeated several times giving an ensemble of erroneous state estimates and noisy

measurements at every time instant of interest. Each member of those ensembles

represents one training sample. This also assists the LSTM network to handle wider

range of noise.

We should highlight here that extra care should be taken when considering data-

driven correction approaches as data-driven closure might yield non-physical results,

and putting some extra constraints on the characteristics of the predicted closure

is essential in several cases. Wu et al. [373] demonstrated that the Reynolds-

averaged Navier–Stokes (RANS) with explicit treatment of data-driven closure can

be ill-conditioned and yield large errors. In another study, Wu et al. [374] also pro-

posed a physics-informed machine learning approach for improved data-driven RANS

closure by training the ML models for the linear and nonlinear parts of the Reynolds

stress separately. Nonetheless, we emphasize that the proposed LSTM-N approach

not only cures model imperfection (i.e., provides model closure as well as accounts

for any missing physical processes), but also treats uncertainties in initial state es-

timates. This might be caused by the selection of inaccurate wake vortex model, or

the idealizations embedded in this model compared to reality. Moreover, the field

measurements (i.e., the nudging data) are assumed to be sparse and noisy to mimic
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real-life situations.

7.5 Results

In order to test and verify the proposed ideas, we consider a square 2D domain

with a side length of 2π. Flow is initiated using a pair of Gaussian vortices as

given in Eq. (7.5) centered at (x1, y1) =

(
5π

4
, π

)
and (x2, y2) =

(
3π

4
, π

)
with an

interaction parameter of ρ = π. Results in this section are shown at Re = 104. For

FOM simulations, a regular Cartesian grid resolution of 512× 512 is considered (i.e.,

∆x = ∆y = 2π/512), with a time-step of 0.001. Snapshots of vorticity fields are

collected every 100 time-steps for t ∈ [0, 30], totalling 300 snapshots. The evolution

of the wake vortex problem is depicted in Fig. 7.2, demonstrating the convective and

interactive mechanisms affecting the transport and development of the two vortices.

Figure 7.2: Evolution of the FOM vorticity field for the wake vortex transport problem
with a Reynolds number of 104. Flow is initiated at time t = 0 with a pair of Gaussian
distributed vortices.

For ROM computations, 6 modes are retained in the reduced order approximation

(i.e., R = 6), capturing more than 99% of the snapshot data variance. A time step

of 0.1 is adopted for the temporal integration of GROM equations. In order to

implement the LSTM-N approach, we begin at erroneous initial condition defined as

ωerr(x, y, 0) = ωtrue(x, y, 0) + ϵb, where ωtrue(x, y, 0) is defined with Eq. (7.5), and ϵb

is a white Gaussian noise with zero mean and covariance matrix B. For simplicity,

we assume B = σ2
b I, where σb is the standard deviation in the “background” estimate

of the initial condition and I is the identity matrix. We note that this formulation

implies that the errors in our estimates of the initial vorticity field at different spatial
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locations are uncorrelated. As nudging field data, we locate sensors to measure the

vorticity field ω(x, y, t) every 64 grid points (i.e., 9 sensors in each direction, with

sfreq = 64, where sfreq is the number of spatial steps between sensors locations), and

collect measurements every 10 time steps (i.e., each 1 time unit with tfreq = 10, where

tfreq is the number of time steps between measurement signals). To account for noisy

observations, a white Gaussian noise of zero mean and covariance matrix of Q is added

to the true vorticity field obtained from the FOM simulation at sensors locations.

Similar to B, we set Q = σ2
mI, where σm is the standard deviation of measurement

noise. This assumes that the noise in sensors measurements are not correlated to

each other, and all sensors have similar quality (i.e., add similar amounts of noise to

the measurements). As a base case, we set σb = 1.0, and σm = 1.0. These levels

of initial condition perturbation and measurement noise are guided by the values

vorticity fields varying between −1.0 and 1.0 as indicated by the colorbar in Fig. 7.2.

Thus, setting σb = 1.0, and σm = 1.0 guarantees extensive levels of uncertainty in the

background information and collected observations.

The procedure presented in Section 7.4.4 is applied using the numerical setup de-

scribed above, and compared against the reference case of GROM with the erroneous

initial condition and inherent model imperfections due to modal truncation (denoted

as background forecast). Since we synthesize the initial condition perturbation and

measurement noise using a pseudo-random number generator, we utilize an ensem-

ble of 30 realizations with different seed numbers and the sample mean is computed

from these 30 experiments. Whenever applicable, we also sketch uncertainty regions

bounded by the sample mean +/- the standard deviation. In Fig. 7.3, the temporal

evolution of the POD modal coefficients is shown for the true projection, background,

and LSTM-N results. The true projection results are obtained by the projection of the

true FOM field at different time instants onto the corresponding basis functions (i.e.,

via inner product, ak,true(t) = ⟨ω(x, y, t);ϕk(x, y)⟩). The background trajectory is the

reference solution obtained by standard GROM using the erroneous initial condition,

without any closure or corrections. It can be seen that the background trajectory

gets off the true trajectory by time as a manifestation of model. Also, note that the

background solution does not begin from the same point as true projection due to

the noise in the initial condition. On the other hand, the LSTM-N yields very good

predictions, comparable to the true projection solution, implying that the approach

is capable of blending noisy observations with a prior estimate to gain more accurate

predictions.
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Figure 7.3: Temporal evolution of the POD modal coefficients for the 2D wake vor-
tex transport problem. The dark lines denote the mean value from a sample of 30
realizations (using different seeds for the random number generator to simulate ini-
tial condition perturbation and measurement noise). The shaded area defines the
mean values +/- the standard deviation of the sample. [Base case with σb = 1.0 and
σm = 1.0]

In order to better visualize the predictive capabilities of the LSTM-N method-

ology, we compute the reconstructed vorticity field using Eq. (7.11). The ensemble

average of final field reconstruction (at t = 30) is shown in Fig. 7.4, comparing the true

projection, background, LSTM-N results. Note that the field obtained from true pro-

jection at any time instant can be computed as ωtrue(x, y, t) =
∑R

k=1 ak,true(t)ϕk(x, y),

and represents the optimal reduced-rank approximation that can be obtained using a

linear subspace spanned by R bases. Comparing true projection results from Fig. 7.4

against FOM at final time from Fig. 7.2 reveals that, for this particular case, 6 modes

are qualitatively capable to capture most of the relevant features of the flow field.

The LSTM-N outputs significantly match the projection of the FOM field, while the

background forecasts show some visible deviations.

We also compare the LSTM-N results against a simple forward nudging imple-

mentation (denoted as linear nudging) [375], where Eq. (7.20) is rewritten as follows,

an+1 = M(an) + ζDT
h (z

n+1 − h(an+1)), (7.23)

where ζ is a constant and Dh is the Jacobian matrix of the observation operator

h(·). In the present study, we find that a value of ζ = ∆t provides acceptable re-

sults. We also highlight that different data assimilation techniques might be adopted.
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Figure 7.4: Final vorticity field (at t = 30) for the wake-vortex transport problem,
with σb = 1.0, and σm = 1.0. Results show the mean of an ensemble of 30 realizations
with different seeds for the random number generator.

For example, in the three dimensional variational (3DVAR) framework [254], solving

Eq. (7.20) and defining the gain matrix are reformulated as an optimization problem.

In particular, the output of the data assimilation (called analysis or analyzed state)

is defined as the minimizer of the following cost functional,

J(an+1) = ∥an+1 −M(an)∥2W1
+ ∥zn+1 − h(an+1)∥2W2

, (7.24)

where W1 and W2 are some suitable symmetric positive definite (SPD) matrix. Most

often, W1 is set as the background covariance matrix, while W2 is defined using

the measurement noise covariance matrix. The 3DVAR, as a variational approach,

addresses the inference problem by formulating an optimization problem, taking into

account measurement noise and background perturbation. For linear observation

operator h(·), this can be directly solved with proper definitions of the weighting

matrices. However, for nonlinear operators, some approximations and/or linearization

become necessary. Indeed, the LSTM-N can be also thought of as minimizing that cost

functional iteratively using the training samples and the back-propagation algorithm.

For quantitative assessment, the root mean-squares error (RMSE) of the whole

reconstructed field with respect to the FOM solution is calculated as a function of

time as follows,

ϵf (t) =

√√√√ 1

NxNy

Nx∑
i=1

Ny∑
j=1

(
ωFOM(xi, yj, t)− ωROM(xi, yj, t)

)2

, (7.25)
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where ωFOM is the true vorticity field obtained from solving the FOM equation,

while ωROM is the reduced order approximation computed through true projection,

background (reference) solution, or LSTM-N method. The RMSE at different times

is plotted in Fig. 7.5, comparing the LSTM-N, Linear Nudging, and 3DVAR results.

demonstrating the capability of LSTM-N framework to efficiently recover the optimal

reconstruction given a few sparse measurements. We also remark that we find that the

performance of the Linear Nudging and the 3DVAR approaches is highly dependent

on the level of measurement noise. Indeed, for larger values of σm, the solution does

not converge. This behavior might be attributed to the definition of the observation

map using the ROM reconstruction process. In particular, we find that the basis

functions, when sampled at sparse locations, yield ill-conditioned matrices, and the

resulting mapping becomes very sensitive to the measurement noise. One approach to

mitigate this issue is to exploit compressed sensing and adaptive sampling techniques

to improve this reconstruction mapping and minimize the effect of noise.

Figure 7.5: Root mean-squares error for the wake-vortex transport problem, with
σb = 1.0, and σm = 1.0, using the LSTM-N, Linear Nudging, and 3DVAR approaches.

Another metric to reveal the inference quality of the framework is defined using

the error between the true measurements and the predicted solution at the sensors

locations only as follows,

ϵi(t) =

√√√√ 1

Nmeas
x Nmeas

y

Nmeas
x∑
i=1

Nmeas
y∑
j=1

(
ωFOM(xi, yj, t)− ωROM(xi, yj, t)

)2

, (7.26)

where Nmeas
x and Nmeas

y represent the number of sensors in the x- and y-directions,

respectively. Results for LSTM-N, Linear Nudging, and 3DVAR are presented in

Fig. 7.6 (top row). We observe that the 3DVAR gives better accuracy at observation

locations than the nudging frameworks (LSTM-N and Linear Nudging). In order to
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understand this observation, we plot the absolute error between FOM solution and

the ensemble average at final time from LSTM-N, Linear Nudging, and 3DVAR (i.e.,

|ωFOM(xi, yj, t) − ωROM(xi, yj, t)|) in Fig. 7.6 (bottom row). We can notice that the

3DVAR error at the observation locations (denoted as black circles) is small (note

the bluish color). However, away from these measurement points, the error becomes

larger (as denoted by the reddish color). On the other hand, for the LSTM-N, the

error is small almost everywhere except for a small portion near the front of the

vortices.

Figure 7.6: Comparison of LSTM-N, Linear Nudging, and 3DVAR predictions, with
σb = 1.0, and σm = 1.0. Top rows depicts the inference quality metric define by
Eq. (7.26) and bottom row shows the absolute error between FOM solution and the
ensemble mean for the respective approaches. Observation locations are denoted
using black circles.

7.5.1 Effect of noise

Next, We explore the effect of noise on the LSTM-N results. In other words, we

investigate how much noise the framework can tolerate. We note that we keep the

same LSTM, trained with the base level of noise (i.e., σb = 1.0 and σm = 1.0) while

we test it using different levels of noise. First, we gradually increase the standard

184



deviation of measurement noise from 1.0 to 2.0 (2 times larger), 3.0 (3 times larger),

and 4.0 (4 times larger). In Fig. 7.7, we plot the temporal evolution of ϵf metrics for

the explored levels of measurement noise. We find that performance deteriorates a

bit with an increase in measurement noise, especially in terms of uncertainty levels.

Nonetheless, the predicted results are still significantly better than the background

forecast (starting from the same initial conditions).

Figure 7.7: Root mean-squares error of LSTM-N predictions for different levels of
measurement noise.

For testing the effect of initial state perturbation, we increase σb from 1 to 2, and

5. Figure 7.8 displays the effect of those levels of initial field perturbations on back-

ground forecasts. Despite that, LSTM-N is performing very well even at those high

levels of initial perturbations. This is even clearer from the RMSE plots, beginning

from relatively large values and quickly decaying to the level of true projection once

measurements are available. From Figs. 7.7 and 7.8, we can deduce that the influence

of the level of measurement noise on LSTM-N performance is more prominent that

of the initial field perturbation. We reiterate that in both cases, the LSTM is trained

with σb = 1.0 and σm = 1.0 and tested for different noise and perturbation levels.

7.5.2 Effect of measurements sparsity

Finally, we consider the effect of measurement sparsity on the accuracy of the pre-

sented approach. This is crucial for the trade-off between quality and quantity of

sensors, since it has been shown in Section 7.5.1 that measurement noise significantly

affects the LSTM-N output. For the base case, sensors are placed at every 64 grid

points. Now, we place sensors every 32 grid points, representing a denser case, as well

as 128 and 256 grid points, representing scarcer sensors. We find that the framework
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Figure 7.8: Reconstructed vorticity fields at final time, along with RMSE for different
levels of background noise.

is quite robust, providing very good results as illustrated in Fig. 7.9. We note here,

however, that the same original LSTM cannot be utilized for testing with varying

sparsity. This is because sensors sparsity controls the size of the input vector. There-

fore, a new LSTM has to be re-trained for each case with the corresponding number of

measurements. Moreover, we notice that the LSTM training suffers for the dense case

with sfreq = 32 (sfreq denote the number of grid points between every two consecu-

tive sensors). This is due to the very large input vector, requiring excessive amounts

of meta-data for proper training. We also observe that some of the features in the

input vector become either redundant or useless (e.g., away from the vortices). In

order to reduce the size of input vector in this case (i.e., sfreq = 32), we benefit from

the similarities between the left and right vortices and consider measurements from

only one half of the domain. We also emphasize that compressed sensing techniques

should be adopted for optimized sensors placement, rather than the simple collocated

equidistant arrangement followed in the present study.

Regarding temporal sparsity, we collect measurement each 5, 20, and 30 time-

steps, compared to the reference case where measurement are collected every 10
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Figure 7.9: Comparison of resulting vorticity fields at final time as well as the line
plots of root mean-squares error at different times, with different number of sensors
located sparsely at grid points. Here, sfreq denotes the number of grid points between
every two consecutive sensors.

time-steps. We can see from Fig. 7.10 that all cases yield very good predictions.

Nevertheless, we notice that increasing tfreq results in larger uncertainty bounds as

the LSTM-N interferes at fewer time instants. Furthermore, ϵf plots provide valuable

insights about the capability of LSTM-N to effectively fuse measurement with back-

ground forecast to produce more accurate state estimates. For example, when mea-

surement signals are collected every 30 time-steps, this corresponds to 3 time-units,

meaning that the LSTM-N directly adopts the GROM prediction without correction

for this amount of time, before correction is added. This is evident from Fig. 7.10c,

where the red curve starts and continues with the blue curve, then a sharp reduction

of the ϵf (and the corresponding uncertainty) is observed. This behavior is repeated

as the red curve departs from the black one (corresponding to true projection) before

correction is added every τ = 3 time-units (i.e., 30 time-steps). On the other hand,

when more frequent measurement signals are available (e.g., every 5 time-steps), de-

viation from the true projection results is less observed, as shown in Fig. 7.10a.
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Figure 7.10: Comparison of resulting vorticity fields at final time as well as the line
plots of root mean-squares error at different times using different measurement signal
frequencies. Here, tfreq denotes the number of time steps between the measurement
collection instants.

7.6 Conclusions

We demonstrate a machine learning based nudging approach for an idealized vortex

transport problem. Such a hybrid analysis and modeling (HAM) approach is envi-

sioned to be a promising enabler for digital twin application of an airport. Specifically,

we investigate the problem of wake-vortex transport and decay as a key factor for

the determination of separation distance between consecutive aircraft. Reduced or-

der modeling based on Galerkin projection and proper orthogonal decomposition is

adopted to provide computationally light models. We develop a methodology to ex-

ploit machine learning to cure model deficiency through online measurement data

adopting ideas from dynamic data assimilation. Specifically, an LSTM architecture

is trained to nudge prior predictions toward optimal state values using a combination

of background information along with sparse and noisy observations. The proposed

framework is distinguished from previous studies in the sense that it is built on the
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assumption that all the computing ingredients are intrinsically imperfect, including

a truncated GROM model, erroneous initial conditions, and defective sensors.

We study the effects of measurement noise and initial condition perturbation on

LSTM-N behavior. The framework works sufficiently well for a wide range of noise

and perturbation. Nonetheless, numerical experiments indicate relatively more de-

pendence of performance on measurement quality (noise). Meanwhile, we find that

sensors sparsity has minimal effects on results. We emphasize that the proposed

framework represents a way of merging human knowledge, physics-based models,

measurement information, and data-driven tools to maximize their benefits rather

than discarding any of them. This becomes a key concept for building novel HAM

approaches. The presented framework paves the way for viable digital twin applica-

tions to enhance airports capacities by regulating air traffic without compromising

consecutive aircraft safety. Nevertheless, the scalability of the approach has yet to be

tested using different vortex models and taking into account other effective factors

(e.g., wind). For example, the wake vortex initial conditions can be related to spe-

cific aircraft types, using aircraft mass, span and speed. Also, as outlined in [8], 3D

simulations are required to resolve instability mechanisms and turbulence in order to

mimic wake vortex decay in a realistic way. Finally, the important effects of ther-

mal stratification on WV descent and decay need to be considered in the transport

equations.
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CHAPTER 8

Concluding Remarks and Future Work

In this chapter we summarize the major facets of this study and outline some potential

research that may emerge from our developments.

8.1 Summary of Study

In this dissertation, we have proposed hybrid analysis and modeling frameworks to

enable next-generation of digital twins (DTs). The primary focus of the developed

methods is large scale dynamical systems like those in the convection-dominated

and turbulent fluid flow systems. In particular, we address three major challenges

that are associated with digital twinning of such systems. These include (1) the

large dimensionality of the system hindering the applicability of classical full order

model (FOM) simulations, (2) the complexity of the system that requires an efficient

synergy between heterogeneous solvers for different components, geometries, scales,

and physics, and (3) the dynamical nature of the physical system that requires its

digital replica to be self-adaptive for new flow regimes and operating conditions.

These three challenges correspond to the three thrusts of the dissertation.

8.1.1 Reduced order modeling

Reduced order models (ROMs) have been recently leveraged to enable DT applica-

tions. In particular, projection-based ROMs have gained large popularity, wherein

the governing equations or the FOM operators are projected onto a set of prede-

fined basis functions. This generates a system of much fewer dynamical equations

that define the evolution of the reduced variables. The standard approach involves

the proper orthogonal decomposition (POD) for basis construction and the Galerkin

method for predicting the ROM dynamics. Nonetheless, this approach usually yields

inaccurate and unstable results for convective flows when a few basis functions are

retained for computational efficiency. We put forth a set of hybrid physics-based and

data-driven approaches to improve the quality of ROMs. Some of our developments
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through the course of this research may be outlined in the following:

1. We put forth an uplifted ROM (UROM) methodology, characterized by three

modeling layers for the accurate predictions of flow fields. In the first layer,

we retain a physics-based ROM in the core of the framework to enhance the

generalizability of the method for off-design conditions. A data-driven correc-

tion for the ROM dynamics is embedded in the second layer to represent the

effects of the truncated modes onto the physics-based ROM dynamics. A key

novelty of the UROM approach is defined in the third layer, where we exploit

the capabilities of artificial neural networks to learn the nonlinear correlations

between the resolved scales and the truncated ones. This third layer acts as a

super-resolver that recovers some of the finer details of the flow field at the time

of interest.

2. We propose a hybrid variational multi-scale (VMS) framework that benefits

from the locality of modal interactions and information transfer to build more

accurate ROMs. We attach the VMS framework with a physics-guided machine

learning (PGML) methodology to learn the closure terms for different levels of

resolved and unresolved scales. We encode the governing equations into the long

short-term memory (LSTM) latent space by injecting the projection of the FOM

operators on the respective modes into the LSTM hidden layers. We find that

the developed three-level VMS ROM is superior to the standard two-level ROM.

Moreover, the PGML yields more robust and reliable on-the-fly corrections than

vanilla-type ML models as demonstrated with reduced uncertainty levels.

3. We devise a nonlinear POD (NLPOD) methodology that combines the physical

soundness of the POD with the compression capabilities of neural network-based

auto-encoders. The NLPOD provides a latent space compression for the near

full-rank approximation of the flow field. The resulting NLPOD compression

intrinsically respects the constitutive laws of underlying system. Moreover, it

is equally applicable to uniform and non-uniform, structured and unstructured,

and Cartesian, spherical, and cylindrical grids. This is in stark contrast to the

existing convolutional auto-encoders which are specifically tailored for uniform

and structured grids.
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8.1.2 Interface learning

Complex systems are often characterized by multiple scales, physics, dominating dy-

namics, geometries, and mathematical abstractions. Utilizing a unique global solver

for all of these is usually not possible as it would unnecessarily exhaust the avail-

able computational resources. Instead, a multitude of solvers are adopted to consider

different aspects and portions of the system. Due to near real-time response require-

ments, an efficient synergy should be maintained to reduce the communication costs

between different computing units and reduce the idle times. We launch an inter-

face learning (IL) paradigm that take advantage of of available data sets, machine

learning (ML) tools, and numerical analysis for the seamless integration of hetero-

geneous solvers. The following frameworks have been proposed to implement the IL

methodology in multi-scale, multi-physics, and multi-component systems:

1. We propose an upwind learning algorithm that takes into account the direction

of characteristics and wave structure in hyperbolic systems to enable physics-

informed and data-enabled non-iterative domain decomposition. This approach

significantly benefits high performance computing environments by reducing the

communication costs among processing units in emerging ML ready heteroge-

neous platforms toward exascale era.

2. We develop a series of correction, uplifting, and prolongation mappings to enable

the efficient coupling between FOM and ROM solvers. We apply the FOM-

ROM coupling for a multi-component system dominated by convection and

diffusion mechanisms with non-homogeneous physical properties. Moreover, we

enable the multi-physics coupling for the Marsigli flow problem by dedicating

ROM solver for the mass and momentum transfer while the energy transport is

addressed by FOM solver.

8.1.3 Data assimilation

In ML and data-driven paradigms, there is always the notion of offline training and

online deployment. In other words, the ML model is trained and parameterized by

considering a loss or a utility function that is defined by a given set of data sets. After

that, the model is put in place to make new predictions during an online phase. The

applicability of the ML models is usually limited by the training algorithm and the

training data sets. It can make predictions for conditions that are similar or close

192



to those that appear in the training phase. However, complex convection-dominated

and turbulent flows are continuously evolving. The operating conditions and the

flow regimes during the deployment stages might be significantly different from those

in the training. Therefore, the DT should self-adapt to the new condition as we

go. In order to add this capability, we ruggedize the hybrid framework using data

assimilation (DA) algorithms to take advantage of in-situ measurements from the

physical system. The following developments have been introduced in our study:

1. We utilize variational DA algorithms, including the forward sensitivity method

(FSM), for the dynamic parameterization of closure models. In particular, we

combine the Galerkin ROM dynamics with the sparse and noisy measurements

of the flow field variables to estimate and update scale-aware control parameters

to correct the ROM predictions.

2. We extend the classical nudging method by proposing an LSTM-Nudging frame-

work that benefits from the neural network capabilities to learn nonlinear nudg-

ing operators. We illustrate the LSTM-Nudging for the efficient prediction of

the wake-vortex transport and decay towards building DTs of airports.

8.2 Future Work

The studies described in this document give rise to some interesting questions and

may be built on for the following future research:

1. An immediate extension to the proposed frameworks is to perform scalability

tests and explore their performance and robustness in industrial settings with

increased system complexity and actual field data sets.

2. While the hybrid VMS framework yields improved results, the separation be-

tween large and small resolved scales is performed arbitrarily and is believed

to be sub-optimal. Instead, formal definitions of ROM length scales can be

utilized for the determination of the number of modes in each level of the VMS

framework.

3. Nonlinear proper orthogonal decomposition can be applied for the reduced or-

der modeling of compressible flows where classical Galerkin-based methods are

computationally expensive and unstable.
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4. Automated hyper-parameter selection tools can be utilized to optimize the

points of injecting the physics-based features into the latent space of the PGML

algorithm.

5. Interface learning methods can be explored for the coupling between solvers

with mixed geometries. For example, the blood flow in the whole circulatory

system is mathematically described by means of heterogeneous problems de-

scribing organs and arteries with different degrees of detail and different ge-

ometric dimensions. Interface learning would enable the efficient interaction

between these parts by learning appropriate interface coupling conditions.

6. Interface learning can be applied to enforce consistent flow conditions between

successive nested solvers. Examples include numerical weather prediction mod-

els featuring local models for specific region with increased levels of details and

global models covering larger portions of the globe.

7. Optimal design of experiments studies are required to optimize the experimental

configuration and sensor placements to decrease the costs of data collection and

improve the quality of the inference algorithm.

8. The portability of the proposed approaches onto edge computing devices can

be explored to enable the digital twin capabilities to be integrated in-situ with

the physical system.
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[23] S. Peitz, S. Ober-Blöbaum, and M. Dellnitz, “Multiobjective optimal control

methods for the Navier-Stokes equations using reduced order modeling,” Acta

Applicandae Mathematicae, vol. 161, no. 1, pp. 171–199, 2019.

[24] P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley, Turbulence, coherent

structures, dynamical systems and symmetry. Cambridge University Press,

New York, 2012.

[25] K. Taira, S. L. Brunton, S. Dawson, C. W. Rowley, T. Colonius, B. J. McKeon,

O. T. Schmidt, S. Gordeyev, V. Theofilis, and L. S. Ukeiley, “Modal analysis

of fluid flows: An overview,” AIAA Journal, vol. 55, pp. 4013–4041, 2017.

[26] K. Taira, M. S. Hemati, S. L. Brunton, Y. Sun, K. Duraisamy, S. Bagheri,

S. T. Dawson, and C.-A. Yeh, “Modal analysis of fluid flows: Applications and

outlook,” AIAA Journal, pp. 1–25, 2019.

[27] B. R. Noack, M. Morzynski, and G. Tadmor, Reduced-Order Modelling for Flow

Control. Springer-Verlag, Berlin, 2011, vol. 528.

[28] C. W. Rowley and S. T. M. Dawson, “Model reduction for flow analysis and

control,” Annual Review of Fluid Mechanics, vol. 49, pp. 387–417, 2017.

[29] N. J. Nair and M. Balajewicz, “Transported snapshot model order reduction ap-

proach for parametric, steady-state fluid flows containing parameter-dependent

197



shocks,” International Journal for Numerical Methods in Engineering, vol. 117,

no. 12, pp. 1234–1262, 2019.

[30] E. Kaiser, B. R. Noack, L. Cordier, A. Spohn, M. Segond, M. Abel, G. Daviller,
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