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Abstract: The objective of our study is to propose a procedure for intertemporal 
comparison of technical and cost efficiencies across years. The procedure measures the 
efficiency change while excluding the frontier shift effect using the base period approach. 
Our first contribution to the literature is to develop a procedure that can allow 
intertemporal comparison for cost efficiency (CE). The newly developed procedure first 
decomposes the change in the standard CE, estimated with a different frontier and input 
prices each year, into four factors: technology change, individual effort for technical 
efficiency (TE) change, price effect, and individual effort for allocative efficiency (AE) 
change. Then, the intertemporal change in CE, estimated with the base-period frontier, is 
calculated after eliminating technology change and price effect from the change in the 
standard CE.  Our second contribution is to statistically test mean differences of 
efficiency scores using a sample T-test based on the asymptotic normal distribution, 
following Kneip, Simar, and Wilson. (2015, 2016), and Simar and Wilson (2020). The 
third contribution is to conduct a two-stage analysis using efficiency scores estimated 
from the based period approach. A few earlier studies also conduct a two-stage regression 
analysis to show effects of factors other than already considered to estimate efficiency 
scores.  However, earlier studies use the standard efficiency scores estimated with 
changing frontiers each year, which makes difficult the scores comparable over time. We 
compare regression results estimated from our base period approach with those estimated 
with the standard approach. 

Overall, our study finds that the two methods produced different results. Technical and 
cost efficiency in 2017 are less than 2008 and 2013 when the standard method with 
different base-frontier approach. However, when the base period approach is used, 
technical and cost efficiencies in 2017 improved from 2008 and 2013, while two 
efficiency scores from the conventional approach decreased in 2017 from 2008 and 2013. 
The two distinctively different results show that the conventional approach with different 
base-frontiers could result in erroneous policy implications. Regression results with 
estimated efficiency scores from standard and base period approach show no distinct 
difference except year dummies. 
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CHAPTER I 
 

 

INTRODUCTION 

Efficiency scores have been widely used to measure performance of operating units such 

as public and private firms, agricultural farms, government, health care providers, and 

other businesses. Estimated efficiency scores are often used to compare the operating 

units’ performances to a target performance or compare these efficiencies 

intertemporally. The outcome of these comparisons should be essential to develop 

strategies and policies that can help improve efficient use of resources at both firm and 

government levels.  

Many previous studies in the literature empirically estimate efficiency scores and 

compare them between different time periods (e.g., Fare et al. 1994, Kwon and Lee 2004, 

Maniadakis and Thanassoulis 2004, O’Donnell, Rao, and Battese 2008, Flokou, Aletras, 

and Niakas 2017, Chen, Huang, and Chiu 2017). For example, Fare et al. (1994) examines 

efficiency change as the ratio of two technical efficiencies which are evaluated under 

different frontiers. However, comparing efficiency change is problematic if the two 

efficiencies are measured based on two different base frontiers. O’Donnell, Rao, and 

Battese (2008), Flokou, Aletras, and Niakas (2017), and Chen, Huang, and Chiu. (2017) 

suggest that the comparison of efficiencies under different frontiers is invalid. The meta-

frontier approach by O’Donnell, Rao, and Battese (2008) and the window approach in  
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Flokou, Aletras, and Niakas (2017) try to make a common frontier in the same group to 

compare efficiency scores. Chen, Huang, and Chiu (2017) set a base frontier for the base 

period and attempt to catch the efficiency change, while excluding frontier movement.  

The objective of our study is to propose a procedure for intertemporal comparison of 

both technical and cost efficiency across years. The procedure measures the efficiency 

change while excluding the frontier shift effect using the base period approach. Our first 

contribution to the literature is to develop a procedure that can allow intertemporal 

comparison for cost efficiency (CE).  Extending Chen, Huang, and Chiu (2017), the newly 

developed procedure first decomposes the change in the standard CE, estimated with a 

different frontier each year, into four factors: technology change, individual effort for 

technical efficiency (TE) change, price effect, and individual effort for allocative efficiency 

(AE) change. Then, the intertemporal change in CE, estimated with the base period frontier, 

is calculated after eliminating technology change and price effect from the change in the 

standard CE. To demonstrate the importance of using the based period approach, we compare 

the based period approach CEs with those from the standard approach. The meta-frontier and 

the window Data Envelopment Analysis (DEA) approaches also assume a common frontier 

so that one can compare efficiency change. However, it is impossible to find common input 

or output price in different years, and the window DEA approach fails to compare efficiency 

score in a distinct window. 

Our second contribution is to statistically test mean differences of efficiency scores 

using a sample T-test based on the asymptotic normal distribution, following Kneip, Simar, 

and Wilson. (2015, 2016), and Simar and Wilson (2020). Efficiency scores estimated by a 

non-parametric procedure such as DEA are biased, and the bias does not converge to zero 
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under the ordinary central limit theorem.  The adjusted central limit theorem, proposed by 

Kneip, Simar, and Wilson (2015) and Simar and Wilson (2020), can remove the bias and to 

derive the asymptotic normal distribution for estimated efficiency scores. 

The third contribution is to conduct a two-stage analysis using efficiency scores 

estimated from the based period approach. A few earlier studies also conduct a two-stage 

regression analysis to show effects of factors other than already considered to estimate 

efficiency scores, which includes farm owners’ socio-demographic characteristics, and 

environmental and policy factors (e.g., Ray 1991; Simar and Wilson 2007; Banker and 

Natarajan 2008; Souza and Gomes 2015).  However, earlier studies use the standard 

efficiency scores estimated with changing frontiers each year, which makes difficult the 

scores comparable over time. We compare regression results estimated from our base period 

approach with those estimated with the standard approach. 



4 
 

CHAPTER II 
 

 

LITERATURE REVIEW 

 

Although there have been many studies on estimating firm efficiency, only a limited 

number of studies focus on intertemporal comparison of these efficiencies. We review 

previous studies on the intertemporal comparison here. Fare et al. (1994) introduce the 

Malmquist productivity index that is decomposed into TE change and technology change; 

then, the TE change is divided to scale efficiency change and pure TE change. Efficiency 

scores from the Malmquist productivity index and those from the standard, different 

base-frontier, approaches are compared in Fare et al.’s study. The study shows that the 

two approaches produce different results because efficiency scores are affected by both 

technology change and individual effort. One limitation of the Malmquist productivity 

index approach is that it still fails to net out the individual effort effect from the TE 

change. Another attempt to compare the efficiency scores intertemporally is the window 

DEA approach proposed by Flokou, Aletras, and Niakas (2017). The window DEA 

assumes no technology change during the comparison period, which allows one to 

compare the efficiency in the same window. However, because of the assumption of no 

technology change under the same window, the window DEA is not applicable when the 

time difference is big. The third attempt is the meta-frontier approach
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developed by Hayami and Rutan (1970) and O’Donnell, Rao, and Battese (2008). The 

meta-frontier approach combines many frontiers from different groups or time periods to 

create one common frontier so that one can compare efficiency scores across groups or 

time periods. One drawback of the meta-frontier approach is that it assumes technology 

progress with time, which always expands the upward shift of the frontier line. As result, 

it does not include the possibility of technology regress.  Although the possibility may be 

rare for intertemporal comparison, it is possible that the meta-frontier could shift 

downward when adding or removing groups for cross-sectional comparison. Finally, 

Chen, Huang, and Chiu (2017) provide two indicators: technology progress ratio and 

individual progress ratio to investigate the frontier shift effect and the individual effort, 

respectively, on TE change. The individual progress ratio is the ratio of two TEs using the 

two efficiency scores evaluated under different frontiers. Since the study focuses on TE, 

the proposed procedure is not applicable to compare the economic efficiencies. As far as 

we know, no adequate procedure has been proposed for the intertemporal comparison of 

economic efficiencies in the literature. 

We extend previous studies, particularly Chen, Huang, and Chiu (2017) to 

develop a procedure that can compare economic efficiencies, specifically CEs. Unlike the 

standard approach and Chen, Huang, and Chiu. (2017), the base period approach 

developed in the study allows one to compare CEs across different time periods by 

netting out individual effort for change in TE and AE from the change in standard CEs. 

One drawback of the DEA estimator is that it is biased (Kniep, Simar, and Wilson 2015; 

Simar and Wilson 2020). The DEA estimator is biased because efficiency scores are 

estimated based on the frontier estimated not from the true population but a sample, 
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which typically causes a positive bias. To address the biasedness, Simar and Wilson 

(1998, 2000) suggest a bootstrapping approach to reduce bias. The DEA procedure is also 

a non-parametric estimator with no distribution attached. Therefore, no statistical 

inference, for example, comparing efficiency scores over time, can be drawn from 

estimated efficiency scores. One could assume that the mean of DEA scores follows the 

normal distribution by the central limit theorem. However, the bias does not converge to 

zero, which makes the ordinary central limit theorem not applicable (Kniep, Simar, and 

Wilson 2015; Simar and Wilson 2020; Cameron and Trivedi 2005). Kniep, Simar, and 

Wilson (2015) and Simar and Wilson (2020) provide the adjusted central limit theorem to 

address this problem by improving the convergence rate. Following Simar and Wilson 

(1998) and Kniep, Simar, and Wilson (2015) and Simar and Wilson (2020), our study 

first reduces the bias from DEA scores using a bootstrapping procedure and then compare 

their mean values after adjusting standard deviations, which allows the unbiased DEA 

estimator to follow the adjusted central limit theorem. 
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CHAPTER III 
 

 

THEORETICAL FRAMEWORK 

 

To derive the intertemporal change in efficiency, we first define TE, CE, AE, and their 

relationship. Consider a production possibility set: 

(1) 𝑇 = {(𝑥, 𝑦): 𝑥 can produce 𝑦}, 

where 𝑥 ∈ 𝑅   is input vector and 𝑦 ∈ 𝑅  is output vectors. It is assumed that the 

production possibility set is nonempty, closed, convex, bounded from above for all input 

vector, (𝑥, 0) ∈ 𝑇,(0, 𝑦) ∉ 𝑇 for 𝑦 ≥ 0, and satisfies disposability of 𝑥 and 𝑦 (Chambers 

1988). The input requirement set (𝑉(𝑦)) is defined as: 

(2) 𝑉(𝑦) = {𝑥 :( 𝑥, 𝑦) ∈ 𝑇}. 

We assume that the input requirement set is convex, closed, nonempty, bounded 

from below, 𝑉(𝑦 ) ⊆ 𝑉(𝑦 ) for 𝑦 ≥ 𝑦 , and 𝑥 ∈ 𝑉(𝑦) when 𝑥 ≥ 𝑥  and 𝑥 ∈ 𝑉(𝑦) 

(Chambers 1988; Varian 1992). The boundary of the input requirement set plays a role 

for technical frontier in efficiency analysis. Based on disposability of 𝑥 and y in 𝑇 and the 

latest properties in 𝑉(𝑦) there exist inefficient production plan for a certain firm. 
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Following Farrell (1957), the input oriented TE is defined as the ratio of input use 

on frontier to observed input use. Mathematically, the input-oriented TE for 𝑥 to produce 

𝑦 is defined as (Fried, Lovell, and Schmidt 2008): 

(3) 𝑇𝐸 = 𝑚𝑖𝑛{ 𝜃 : 𝜃 𝑥 ∈ 𝑉(𝑦)}1. 

Graphically, the technically efficient input use for a point of A is B which is an 

intersection of radial line from O to A and isoquant curve SS’ in Figure 1. So, in Figure 

1, the input oriented TE is:  

 (4) 𝑇𝐸 =
|| ||

|| ||
= , 

where 𝑥  is the technically efficient point of input quantity on frontier and the point B in 

figure 1, and ||𝑥 || and ||𝑥|| is the Euclidean distance from origin to each point. By 

definition, 0 < 𝑇𝐸 ≤ 1. If 𝑇𝐸 = 1, then a farm produces technically efficient way. A 

firm is technically inefficient when TE is less than one. 

Coelli et al. (2005) shows that the Shephard input distance function is inverse of 

Farrell input-oriented TE. Here the input distance function is defined as: 

(5) 𝐷(𝑦, 𝑥) = 𝑠𝑢𝑝{ 𝜌 : ∈ 𝑉(𝑦)}. 

By definition 𝐷(𝑦, 𝑥) ≥ 1, and the input distance function is one when a farm 

produces efficiently. The input distance function is nondecreasing in input and 

                                                           
1 TE and CE are calculated at the farm level. For simplicity, we decide not to include the farm specific 
notation throughout the paper. 
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nonincreasing in output. The input distance function is homogeneous degree of one in 𝑥. 

The function is concave in input use and quasi concave in output (Coelli et al. 2005). 

The cost oriented economic efficiency (CE) is defined as the ratio of the 

minimized cost to observed cost (Coelli et al. 2005).  Then, the CE can be written as: 

(6) 𝐶𝐸 =
′ ∗

′
=

( , )

′
= , 

where 𝑥 and 𝑤 represent input and price of input vectors, while a vector 𝑥∗ denotes the 

optimized input quantity given input prices. 𝐶(𝑤, 𝑦) is a cost function with given input 

price 𝑤 and output 𝑦 and 𝑤′𝑥 is an observed cost. In Figure 3, OC is radial distance from 

origin to optimized input mixture. CE is greater than 0 and below 1 likewise TE. When a 

farm is efficient under given input price and technology, then 𝐶𝐸 = 1. Unless a farm is 

economically efficient, CE is less than 1. In Figure 3, points for 𝑥, 𝑥∗ are A and D, and 

minimized cost line with input price 𝑤 is W. 

Next, AE is defined as the ratio of minimized cost to cost at technically efficient 

point. Then, mathematically, AE is (Maniadakis and Thanassoulis 2004):  

(7) 𝐴𝐸 =
′ ∗

′
=

( , )× ( , )

′
= . 

AE also ranges between 0 to 1. AE is less than one when its input mix does not 

reflect input price, even if it operates technically efficient way. If the minimized cost is 

equal to cost of production on frontier, then AE is one. 

Following Coelli et al. (2005), CE is also defined by the multiplication of TE and 

AE: 
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(8) 𝐶𝐸 = = × = 𝑇𝐸 × 𝐴𝐸. 
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CHAPTER IV 
 

 

METHODOLOGY 

 

This chapter first shows the decomposition of CE change into four factors: technology 

change (TC), individual effort for TE change (IETC), price effect (PE), individual effort 

for AE change (IEAC). Input-oriented TE is the ratio of efficient input use on frontier and 

observed input quantity. Change in TE is caused by technology change, more efficient 

production2, or both of them. Technology change means frontier shift of production set. 

Frontier improves or regresses by time (Chen, Huang, and Chiu, 2017). A farm faces 

different frontier at distinct time. Even if a farm uses the same input to produce the same 

output, TE of a certain farm diminishes when the technology improves (frontier shift 

upward). Comparison of TE under different frontiers is invalid (O’Donnell, Rao, and 

Battese 2008; Flokou, Aletras, and Niakas 2017). Excluding effect of technology change is 

needed to compare TE and CE across time periods. The IETC is the TE change after 

excluding the effect of frontier change. Our study first estimates the standard TE and CE 

for each year, then net out the TC and PE using the base-year frontier, which is the year,  

                                                           
2 More efficient production means less use of input factor given output level, more outputs under a given 
input set, or both of them. 
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2013 in this study to make the estimated TEs and CEs comparable across years. The 

second part of this chapter presents a procedure to compare efficiency score means across 

years following Kneip, Simar, and Wilson (2015, 2016) and Simar and Wilson (2020). 

Lastly, a two-stage analysis is discussed in this chapter to show how other factors such as 

the units’ demographic characteristics, business and risk behaviors, location, and farm 

size could affect farm efficiencies. 

 

Decomposition of Intertemporal Cost Efficiency Change3 

Equation (8) shows that the CE is the TE multiplied by the AE. Using equation (8), we 

first decompose change in TE into frontier shift and change in individual effort. Then, 

change in AE is decomposed into price effect and change in individual effort for input 

mix. We combine all four explanatory factors for the purpose of intertemporal CE 

change. Then, we compare individual effort for efficiency change by using two out of 

four factors. 

Change in CE between time period t+s and t is defined as the product of change 

in TE and AE. Then, the CE change from time period t+s and t is: 

(9) ∆𝐶𝐸 = ,

,
= ∆𝑇𝐸 × ∆𝐴𝐸, 

where ∆𝐶𝐸, ∆𝑇𝐸, and ∆𝐴𝐸 is intertemporal change in CE, TE, and AE. A superscript 

means time period of observed input and output tuple. The first subscript in CE is time 

                                                           
3 Please see Appendix I for detailed derivations. 
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period of frontier under which efficiency is evaluated. The second subscript in CE stands 

for time period of input price which is given to a farm. For example, 𝐶𝐸 ,  is CE of 

(𝑥 , 𝑦 ) evaluated under frontier and input price at time t. 

 TE is a ratio of technically efficient input to observed input use, so TE is 

changeable by the frontier change, the change in observed input use, or both. Chen, 

Huang, and Chiu (2017) state that change in TE is affected by frontier shift and individual 

effort to improve TE. Our research decomposes TE change between time t and t+s as4: 

(10) ∆𝑇𝐸 = =
𝐷𝑡(𝑦𝑡 ,𝑥𝑡)

𝐷𝑡+𝑠(𝑦𝑡+𝑠,𝑥𝑡+𝑠)
, 

where the superscript in TE is time period of input and output which is evaluated, and the 

subscript in TE indicates time of frontier under which input use is evaluated. For 

example, 𝑇𝐸  is a TE of (𝑥 , 𝑦 ) evaluated under frontier at time t+s. The 

superscript in distance function stands for time period of frontier. 𝐷 (𝑦𝑡+𝑠, 𝑥𝑡+𝑠) is input 

distance function of (𝑥𝑡+𝑠, 𝑦𝑡+𝑠) under the frontier at time t. In Figure 2, ∆𝑇𝐸 =
/

/
, 

where the point A and B correspond to input use at time t and t+s. If ∆𝑇𝐸 is bigger than 

one, then TE of a farm is better in time t+s than t. When ∆𝑇𝐸 is less than unity, TE 

declines. Chen, Huang, and Chiu (2017) propose Efficiency Progress Ratio (EPR), which 

is similar to ∆𝑇𝐸.  EPR equals  ∆𝑇𝐸 − 1. When TE improves or declines between time 

t+s and t, ∆𝑇𝐸 is greater or less than one and EPR is bigger or smaller than zero. 

Similar to ∆𝑇𝐸 in (10), TC at time period t+s and t is defined as: 

                                                           
4 Input distance function is homogeneous degree of one in input (Fare and Primont 1995). 
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(11) 𝑇𝐶 = =
(𝑦𝑡+𝑠,𝑥𝑡+𝑠)

(𝑦𝑡+𝑠,𝑥𝑡+𝑠)
, 

where 𝑥  is technically efficient input use of 𝑥  on frontier at t+s, and 𝑥  is 

technically efficient input quantity of 𝑥  on frontier at time t. In figure 2, 𝑇𝐶 = . The 

𝑇𝐶 is change of frontier across time t and t+s. If 𝑇𝐶 is less than one, then technology 

improves (frontier shift upward) between t+s and t. 𝑇𝐶 > 1 implies deterioration in 

technology (frontier shift downward). When the value of 𝑇𝐶 is unity, technology does not 

change. Unlike TE in (4) which evaluated under frontier at the same time period, 0 <

𝑇𝐸 =
(𝑦𝑡+𝑠,𝑥𝑡+𝑠)

. Therefore, there may exist 𝑇𝐸 > 1 and 𝐷 (𝑦𝑡+𝑠, 𝑥𝑡+𝑠) < 1 . 

𝑇𝐶 in (11) is similar to Technology Progress Ratio (TPR) in Chen, Huang, and 

Chiu (2017). TPR at t+s equals 1 − 𝑇𝐶. TPR is the ratio of gap between two frontiers of 

𝑥 at t+s and t to input use at time t+s ( ). When TPR is greater or less than 

zero, then it means technology improvement or regress, respectively. It responds to 𝑇𝐶 <

1 or 𝑇𝐶 > 1. If TPR is zero, then the value of 𝑇𝐶 is one. It indicates there does not exist 

frontier shift. The 𝑇𝐶 is the same with measure of technology change based on 

observation at t+s in Malmquist productivity analysis (Fare et al. 1992; Maniadakis and 

Thanassoulis 2004). In the Malmquist productivity analysis technology change is 

measured by geometric mean of 𝑇𝐶 of input and output at t+s and t. Technical change in 

Malmquist productivity index has the same direction with TC. When there is technical 

improvement, TC and the measure of technical change in Malmquist productivity index is 

less than one. They show the same sign around one in the other two cases for frontier 

shifts. 
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As stated in Chen, Huang, and Chiu (2017) TE is changed not only frontier shift 

but also individual effort to catch frontier. They define Individual Progress Ratio (IPR) as 

the difference between EPR and TPR. Likewise, we define IETC at time period t+s as the 

other part in ∆𝑇𝐸 in equation (11): 

(12) 𝐼𝐸𝑇𝐶 =
/ (𝑦𝑡,𝑥𝑡)

=
(𝑦𝑡 ,𝑥𝑡)

(𝑦𝑡+𝑠,𝑥𝑡+𝑠)
. 

In (12), IETC is an adjusted TE at time t+s and t evaluated with the frontier at 

time period t. The denominator of the first term in (12) is input quantity at time t+s 

deflated by TE of input at time t evaluated under frontier at t. In the denominator, 

𝑥 /𝐷 (𝑦𝑡, 𝑥𝑡), is a hypothetical input use at time t+s if the input use at t+s is reduced as 

much as input at t to be efficient (𝑇𝐸 ). The IETC implies the change in input quantity to 

reduce input use as much as the usage on the base period frontier. We apply IETC to 

compare TE of input in current and previous periods based on frontier in base year. In 

Figure 2, 𝐼𝐸𝑇𝐶 = . If IETC is bigger than one, then individual effort improves between 

t+s and t. When IETC is less than unity, individual effort regresses. 

Using equations (10), (11), and (12), ∆𝑇𝐸 is defined as multiplication of 𝑇𝐶 and 

𝐼𝐸𝑇𝐶: 

(13) ∆𝑇𝐸 = =
( , )

( , )
×

( , )

( , )
= 𝑇𝐶 × 𝐼𝐸𝑇𝐶. 

 ∆𝑇𝐸 is decomposed into TC and IETC. TC is technology change. IETC implies 

how close to frontier at t for 𝑥  and 𝑥 . One example is 𝑦 = 𝑦  and 𝑥 < 𝑥 . 
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Since 𝑥  is closer to frontier than 𝑥 , 𝑇𝐸  is bigger than 𝑇𝐸 . 𝑇𝐸 > 𝑇𝐸  means 

famer’s TE improves except technology change. 

The IPR indicator in Chen, Huang, and Chiu (2017) is positive when individual 

efficiency makes progress. IETC is greater than one, if individual efficiency is better in 

time t+s than t. IETC < 1 responds to negative IPR. Chen, Huang, and Chiu (2017) 

defined IPR is zero when TE at each period is one (𝑇𝐸 = 𝑇𝐸 = 1). However, IETC is 

bigger than one with technical improvement (TC < 1) and the same level of TE (∆𝑇𝐸 = 

1). When technology deteriorate (TC > 1), IETC is less than one. 

AE is the ratio of the minimized cost under input price and technology to cost at 

technically efficient input use. It implies that ratio of cost reduction by choosing input 

mix in response to input price. When observed input and cost minimized input are on the 

same radial line from origin, AE is one. Maniakadis and Thanassoulis (2004) state that 

the change in cost Malmquist productivity index is composed of change in TE and AE, 

technology change, and effect of input price change. Diewert (2014) decomposes 

observed cost change into output change, input price change, technology progress, and 

CE change. Based on equation (7) AE change is affected by input price change and 

individual effort for choice of input mix to minimize cost. We decompose AE between 

time period t and t+s as: 

(14) ∆𝐴𝐸 = ,

,
=

( , )× ( , )

′
( , )× ( , )

′

, 

where the superscript is time period of input and output to be evaluated in AE. The first 

subscript stands for time of frontier, and the second subscript means time of input price. 
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For example, 𝐴𝐸 ,  is AE of input and output at time t+s evaluated under frontier and 

input price at time t+s. The superscript in cost function is the time period of frontier. For 

instance, 𝐶 (𝑦𝑡+𝑠, 𝑤 ) is cost function of (𝑥𝑡+𝑠, 𝑦𝑡+𝑠) with input price 𝑤  and frontier at 

t+s. In figure 3, ∆𝐴𝐸 =
/

/
. The point D is on iso-cost line in time t+s, so cost at the 

point D is the same with 𝐶 (𝑦 , 𝑤 ). The point E is on iso-cost line at time t and its 

cost equals to optimal cost at time t like the point D at time t+s. If ∆𝐴𝐸 is bigger than 

one, then AE of a farm is better off in time t+s than t. When ∆𝐴𝐸 is less than unity, AE 

decreases. 

 Diewert (2014) defines effect of input price change on minimized cost based on 

period t+s technique to produce 𝑦  as 
( , )

( , )
. Maniadakis and Thanassoulis 

(2004) decomposes Malmquist productivity index based on cost minimization 

assumption5. As a result Maniadakis and Thanassoulis (2004) shows price effect on the 

movement of the minimum cost boundary given (𝑥𝑡+𝑠, 𝑦𝑡+𝑠) as ( , )× ( , )

( , )× ( , )

. 

In the light of Diewert (2014) PE at time t+s is defined as: 

 (15) 𝑃𝐸 =

( , )× ,

′
( , )× ,

′

= ,

,
 . 

PE means change of AE evaluated at (𝑥𝑡+𝑠, 𝑦𝑡+𝑠) under current frontier at t+s by 

input price change. In other words, 𝑃𝐸 indicates change of ability to reduce cost by input 

price change with given input use (𝑥 ) and technology at time t+s to produce 𝑦 . In 

                                                           
5 Fare et al. (1992, 1994) and other previous literature made the Malmquist productivity index by distance 
function.  
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figure 3, 𝑃𝐸 =
/

/
. When 𝑃𝐸 is greater than one, AE at 𝑥  is better off with current 

input price than previous price level to guarantee𝑦 . 𝑃𝐸 is one, when change of input 

price does not make any relative difference in ability to reduce cost. If a farm has bigger 

room to reduce cost given previous input price, then 𝑃𝐸 is less than one. 

 AE is changed not only by price change but also by choice of input mix by a farm. 

Previously this research decomposes ∆𝑇𝐸 into TC and IETC. TC means frontier shift. 

Each farm is hard for technology change, so we can consider TC is exogenous factor in 

change of CE and TE6. IETC is individual effort for TE change of each farm. A farm can 

decide about input use in each time period. IETC is endogenous factor in cost and TE 

change. If we assume that no farm has any market power in the input market, then input 

price in each time period is given to each farm. Based on the assumption about market 

structure, we can consider PE is exogenous factor in cost and allocative efficiency 

change. A certain farm can choose input mix to produce certain level of output by 

themselves. Change in input mix can affect change in AE change. We define IEAC at 

time period t+s to capture effect of change in input mix by a farm as: 

(16) 𝐼𝐸𝐴𝐶 =
( , )× ( , )

′
( , )× ( , )

′

= ,

,
. 

 Measure of IEAC is change of AE evaluated at different input mix 𝑥  and 𝑥  and 

different frontier at time t+s and t given the same previous input price. Since PE 

investigates effect of change in input price, IEAC as the remainder term in ∆𝐴𝐸 is 

                                                           
6 The true frontier is unknown. As a result, it is estimated by DEA in our study. If a firm is on the frontier, 
the firm’s change in input use can affect frontier shift and technical change. 
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evaluated price level at time t. IEAC represents the change in input mix in response to 

input price in the base year. In figure 3, 𝐼𝐸𝐴𝐶 =
/

/
. AE at 𝑥  is better off at given 

previous input price with IEAC > 1. IEAC > 1 means cost of input mix at 𝑥  is 

relatively smaller than cost of input mix at 𝑥  comparing to their minimized cost when 

input price is 𝑤 . IEAC < 1 means cost of previous input mix is closer than current input 

mix. 

 We have decomposed change of CE into four explanatory factors: technology 

change, individual effort for technical efficiency change, price effect, and individual 

effort for allocative efficiency change. The first two factors are components for ∆𝑇𝐸, and 

the last two are for ∆𝐴𝐸. We can consider TC and PE as exogenous factors and IETC and 

IEAC as endogenous factors for ∆𝐶𝐸. To summarize all four explanatory factors ∆𝐶𝐸 is 

redefined as: 

(17) ∆𝐶𝐸 = ,

,
= ∆𝑇𝐸 × ∆𝐴𝐸 = 𝑇𝐶 × 𝐼𝐸𝑇𝐶 × 𝑃𝐸 × 𝐼𝐸𝐴𝐶. 

IETC at t+s and t is 
(𝑦𝑡,𝑥𝑡)

(𝑦𝑡+𝑠,𝑥𝑡+𝑠)
, and IETC at t+h and t is 

(𝑦𝑡,𝑥𝑡)

(𝑦𝑡+ℎ,𝑥𝑡+ℎ)
. Then, two 

IETCs are comparable as: 

(18) 𝐼𝐸𝑇𝐶 , ℎ =

𝑦𝑡,𝑥𝑡

𝑦𝑡+𝑠,𝑥𝑡+𝑠

(𝑦𝑡,𝑥𝑡)

𝑦𝑡+ℎ,𝑥𝑡+ℎ

=
𝑦𝑡+ℎ,𝑥𝑡+ℎ

(𝑦𝑡+𝑠,𝑥𝑡+𝑠)
. 

Equation (18) implies the change in TE from t+s to t+h without TC are compared 

after setting the base period at t. 
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Individual Effort for Cost Efficiency Change (IECC) is the product of 

𝐼𝐸𝑇𝐶 and 𝐼𝐸𝐴𝐶 excluding TC and PE.  Then, IECC can be extended as: 

(19) 𝐼𝐸𝐶𝐶 = 𝐼𝐸𝑇𝐶 × 𝐼𝐸𝐴𝐶 

=

( , )

′
×

( , )

,

( , )

′

. 

The denominator in the last equation of (19) is 𝐶𝐸 , . In the same equation, the 

first term of the numerator is 𝐶𝐸 , , and the second term reflects the of the frontier from 

t+s to t. Therefore, the entire product term in the numerator of the last equation of (19) is 

𝐶𝐸 , . IECC from t+s to t+h can be compared as: 

(20) 𝐼𝐸𝐶𝐶 , ℎ =

𝐶𝑡+𝑠(𝑦𝑡+𝑠,𝑤𝑡)

𝑤𝑡′𝑥𝑡+𝑠 ×
𝐷𝑡+𝑠(𝑦𝑡+𝑠,𝑥𝑡+𝑠)

𝐷𝑡 𝑦𝑡+𝑠,𝑥𝑡+𝑠

𝐶𝑡(𝑦𝑡,𝑤𝑡)

𝑤𝑡′𝑥𝑡

𝐶𝑡+ℎ(𝑦𝑡+ℎ,𝑤𝑡)

𝑤𝑡′𝑥𝑡+ℎ
×

𝐷𝑡+ℎ(𝑦𝑡+ℎ,𝑥𝑡+ℎ)

𝐷𝑡 𝑦𝑡+ℎ,𝑥𝑡+ℎ

𝐶𝑡(𝑦𝑡,𝑤𝑡)

𝑤𝑡′𝑥𝑡

=

𝐶𝑡+ℎ(𝑦𝑡+ℎ,𝑤𝑡)

𝑤𝑡′𝑥𝑡+ℎ ×
𝐷𝑡+ℎ(𝑦𝑡+ℎ,𝑥𝑡+ℎ)

𝐷𝑡 𝑦𝑡+ℎ,𝑥𝑡+ℎ

𝐶𝑡+𝑠(𝑦𝑡+𝑠,𝑤𝑡)

𝑤𝑡′𝑥𝑡+𝑠 ×
𝐷𝑡+𝑠(𝑦𝑡+𝑠,𝑥𝑡+𝑠)

𝐷𝑡 𝑦𝑡+𝑠,𝑥𝑡+𝑠

. 

Equation (20) shows the change in CE from t+s to t+h without the change in TC 

and PE after setting the base period at t.  

Using the aforementioned derivations, we compare the change in TE estimated 

from the standard approach from t+s to t+h as ℎ
ℎ

, which still include technology 

change.  The change in TE estimated from the base period approach from t+s to t+h is 

represented by 𝐼𝐸𝑇𝐶 , ℎ, in (18), which now does not include technology change. We 

estimate TE at time t+s by on a base period at time t by using 𝑇𝐸 =
(𝑦𝑡+𝑠,𝑥𝑡+𝑠)

 in (18). 
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Comparing CE estimated from the standard approach from t+s to t+h b can be done as 

ℎ, ℎ
ℎ

,
, which still includes technology change and price effect. However, the change in 

CE estimated from the base-year approach derived in (20) as 𝐼𝐸𝐶𝐶 , ℎ now eliminates 

technology change and price effect. CE at time t+s based on base period at time t is 

estimated as 𝐶𝐸 ,  in (19). 

Using a DEA procedure, the input oriented TE for the standard approach at time t 

is estimated for each farm (Coelli et al. 2005)7 from: 

 (21) 𝑚𝑖𝑛
,

𝜃  

𝑠. 𝑡. 𝜆 𝑥 ≤ 𝜃 𝑥  

     ∑ 𝜆 𝑦 ≥ 𝑦  

     𝜆 ≥ 0, 

where 𝜃  is TE at time t, 𝑥  is pth input quantity for jth farm at time t, 𝑦  is rth output 

quantity for jth farm at time t, 𝜆  is jth  element in weight vector at time t and 𝜆 ≥ 0 for 

all j, and j = 1, … Nt, p = 1, … P, r = 1, …, R, Nt is the number of farm at time t, and time 

t = 1, … T. The weight vector is used to make benchmark point of the farm. Weight 

vector and efficient farms make frontier. The last constraint means the technology is 

constant return to scale (CRS). If one uses ∑ 𝜆 = 1 and 𝜆 ≥ 0, then technology visits 

                                                           
7 For simplicity, the subscript for a farm specific notation is not included. 
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variable return to scale (VRS). One assumes non-increasing return to scale production 

process by using constraint as ∑ 𝜆 ≤ 1. The optimized solution from (21) is 𝑇𝐸 =

( , )
.  The estimator is used for technical efficiency score under different frontier. 

Input and output data at time t are used to construct frontier at time t. 𝑇𝐸 =

( , )
 is estimated by using observations at time period t+s instead of data at time 

t.  

Estimating 𝐷 (𝑦 , 𝑥 ) in (11) and (12) for TC and IETC for the base period 

approach using input and output data at time t and t+s can be represented as: 

(22) 𝑚𝑖𝑛
,

𝜃 =
( , )

 

𝑠. 𝑡. 𝜆 𝑥 ≤ 𝜃 𝑥  

     ∑ 𝜆 𝑦 ≥ 𝑦  

    𝜆 > 0. 

 CE from the standard approach is obtained by minimizing farm cost under 

technology and input price at time t as (Coelli et al. 2005): 

(23) 𝑚𝑖𝑛
, ∗

∑ 𝑤 𝑥 ∗ 

𝑠. 𝑡. 𝜆 𝑥 ≤ 𝑥 ∗ 
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     ∑ 𝜆 𝑦 ≥ 𝑦  

     𝜆 > 0, 

where 𝑥 ∗ is the optimized input quantity of pth input under input price and technology at 

time t, and 𝑤  is pth input price at time t. CE for each farm is estimated by the ratio of 

minimized cost from (23) to observed cost. We use equation (23) to estimate 𝐶𝐸 ,  in (9), 

(17), and (19). 

Finally, CE from the base period approach is estimated by minimizing farm cost 

at t+s with input price at the base period t as:   

(24) 𝑚𝑖𝑛
, ∗

∑ 𝑤 𝑥 ∗ 

𝑠. 𝑡. 𝜆 𝑥 ≤ 𝑥 ∗ 

     ∑ 𝜆 𝑦 ≥ 𝑦  

     𝜆 > 0. 

In (24), the frontier is constructed with (𝑥 , 𝑦 ) as the frontier at time t. Therefore, 

the solution represents the minimized cost at time t+s under the base-year frontier with 

input price and frontier at time t. Equation (24) is employed to estimate 𝐶𝐸 ,  in (19). 
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Statistical Test of Mean Difference from Estimated Efficiencies 

The DEA estimator is biased because efficiency scores are estimated based on frontiers 

estimated from a sample not from the true population. Therefore, estimated TE and CE 

from (21) to (24) are biased, and the bias does not converge to zero when firms operate 

with multiple inputs and outputs under the central limit theorem (Kneip, Simar, and 

Wilson 2015; Simar and Wilson 2020). Therefore, an adjusted central limit theorem was 

introduced by Kneip, Simar, and Wilson (2015) and Simar and Wilson (2020) to remove 

the bias and to derive the asymptotic normal distribution for mean of estimated efficiency 

scores. Using the asymptotic normal distribution of estimated TE and CE, we conduct a 

sample T-test to compare the TE and CE scores estimated from standard and base period 

approaches. A t-statistic for a sample T-test following the asymptotic normal distribution 

can be written to compare samples 1 and 2 as: 

(25) 𝑇 =  
( ) ( )

𝑆2 𝑆2

 ~𝑡 , 

where 𝑇 is t-statistic; �̂�  and �̂�  are mean efficiency scores for samples 1 and 2; 𝐵  and 

𝐵  are estimated biases, estimated from a bootstrapping procedure applied to the two 

samples; S1 and S2 are standard deviations from the samples8; 𝑁1 = 𝑁1 ; 𝑁2 =

                                                           
8 Specifically, the central limit theorem cannot be applied when the sum of input and output numbers is 
more than 4. In this case, the bias goes to infinity as sample size goes to infinity. Kneip, Simar, and Wilson 
(2015), and Simar and Wilson (2020) propose an adjusted central limit theorem to address the bias 
problem. The earlier studies reduce the degree of freedom by limiting the sample size with smaller 𝑁  
observations, which should be 𝑁 < 𝑁 when the sum of input and output numbers is more than 4, i.e.,  
k < 1/2. For the bias correction procedure, we first split the sample into two subsamples, samples 1 and 2. 
Observations are drawn randomly from subsamples without replacement. Then, efficiency scores are 
estimated from each subsample. A hth bootstrap mean is the average of estimated efficiency from each of 
bootstrapped subsamples. Finally, the bias is calculated as the difference between the mean of all efficiency 
scores from bootstrap samples and the average of estimated efficiency scores (�̂� in (25)) divided by (2 −
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𝑁2 ; 𝑁1 and 𝑁2 are the number of observations for samples 1 and 2, respectively; 𝑘 =

 from (21) to (24) under CRS, a is the number of input variables, and b is the number 

of outputs; t-statistic follows t-distribution with degree of freedom with 𝑁1 + 𝑁2 − 2. 

We use 200 bootstrap samples to correct the bias. 

 

Two Stage Analysis 

The efficiency scores represent how much each of decision-making units is efficient 

relative to the benchmark units, the best-practice frontier ranging between 0 and 1. 

However, other factors such as the units’ demographic characteristics, business and risk 

behaviors, location, and farm size could affect farm efficiencies. Earlier studies use a 

two-stage regression analysis to investigate these factors in the form of Tobit regression, 

truncated maximum likelihood (MLE), ordinary least squares (OLS) with log 

transformed estimated efficiency score, or generalized method of moments (GMM) with 

instrumental variable (IV). 

 Our econometric model for the two-stage analysis is written as: 

(26) 𝜃 = 𝑍𝛽 + 𝜀, 

where 𝜃 is estimated efficiency score; 𝑍 represents environmental variables such as 

location, farmer’s age and education level, etc.; 𝛽 is a parameter vector; 𝜀 is a random 

error term. 

                                                           
1). See Kneip, Simar, and Wilson (2015), and Simar and Wilson (2020) for detailed discussions on the 
adjusted central limit theorem and the bootstrapping procedure. 
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The efficiency score has the limited range. Previous papers in the related literature 

proposed ways to address the limited range of dependent variable: Tobit regression (Ray, 

1991), truncated MLE (Simar and Wilson, 2007), and OLS with log-transformed 

efficiency score (Banker and Natarajan, 2008). Potential correlation problem between 

environmental variables and the error term, the endogeneity problem, in the second-stage 

equation could require an additional attention in estimating the model. Simar and Wilson 

(2007) claim that the endogeneity problem could disappear asymptotically under a certain 

condition, the separability condition9.  However, it is not likely that the separability 

condition is satisfied in most real-world situations. Banker and Natarajan (2008) estimate 

the OLS regression assuming no endogeneity problem between environmental variables 

and the regression error term. Souza and Gomes (2015) use the GMM procedure with IV 

to address the potential endogeneity problem. 

Following earlier studies, we estimate the second-stage equation using three 

regression procedures: truncated MLE, OLS with log-transformed efficiency score, and 

GMM with IV. Unlike Souza and Gomes (2015), we log-transform the dependent 

variable, estimated efficiency scores, to account for the limited range of dependent 

variable, following Banker and Natarajan (2008). Therefore, our GMM with IV 

procedure addresses both limited dependent variable and endogenous environmental 

variable problems. Our study estimates robust standard errors for the GMM/IV 

procedure, following Baum, Schaffer, and Stillman (2003). For the truncated MLE, 1000 

                                                           
9 The separability condition mentioned in Simar and Wilson (2007) refers to no effect of environmental 
variables on frontier shift. 
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bootstrap samples are used. We use PROC Qlim for truncated MLE, PROC Reg for OLS, 

and PROC Model for GMM with IV in SAS.
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CHAPTER V 
 

 

DATA 

 

Our study uses a dataset from the Agricultural Production Cost Survey (ALPCS) 

conducted by the Microdata Integrative Service in the Korean Statistics Bureau for four 

years, 2003, 2008, 2013, and 2017. The dataset includes labor input quantity and cost, 

fertilizer usage and cost, pesticide usage and cost, amount of capital input, other input 

costs, production quantity, revenue, and information about farm owner’s demographic 

characteristics (age, gender, education, number of family members, etc.). The ALPCS 

data focus on farms producing rice, chili pepper, bean, garlic, and onion. Out of the five 

products, rice is the main agricultural product in Korea.  

Table 1 reports descriptive statistics of input and output used to estimate farm 

efficiencies. Output, Rice (lbs.) is average rice production of net grain in pounds each 

year. Labor is total family and hired labor input in hours. Land is the sum of own and 

rented crop land area used for rice production in acre. Average arable land use for rice 

production does not change much in 2003 to 2017. Capital is the sum of depreciation of 

all capital inputs each year. Other inputs include total cost for pesticide, seed, fertilizer, 

heat and light use. Both capital and other input are deflated by average Korean Won per
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U.S. dollar exchange rate each year. Numbers of farms are 1333, 950, 1148, and 1118 

individual farms for 2003, 2008, 2013, and 2017, respectively.  

Overall, average rice production per farm is increasing as farm size (land size) 

increases and total number of farms decreases over time. Table 1 also shows that Korean 

rice farms use less labor force over time, probably because the rice farms substitute labor 

with capital and other inputs due to increased wage. The use of capital and other inputs, 

particularly other inputs, increases in general. 

Table 2 shows descriptive statistics of output and input prices. Our study uses unit 

prices for input and output prices because the ALPCS dataset does not collect market 

prices of input and output from farmers. Prices of capital and other inputs are set at one in 

Korea Won, which is equivalent to approximately $0.001. It is noticeable that wage in the 

Korean agricultural sector has increased significantly lately. Rice and land price are 

stable over time. 

 This study compares average efficiencies of Korean rice farms by size and 

possession of crop insurance. Average rice farm size in Korea is around 1.5ha in 2015. 

Therefore, in Table 3, we decided to classify the farm size into three categories: less than 

1ha, 1~3ha, and more than 3ha. Korean crop insurance program started in 2001. At that 

time, only two agricultural product, apple and pear were covered by the crop insurance. 

By 2010, 25 products were included in crop insurance program. Rice was included in the 

crop insurance program from 2013. Some rice producers who operated farms for rice and 

other fruits together bought crop insurance in 2003, but the number of farmers with crop 

insurance were small before 2013. As can be seen Table 3, the number of rice farms that 
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participate in the crop insurance increased significantly from 2013.   Our study uses the 

enrollment of the crop insurance as a proxy variable for rice farmers’ risk preference.  

Table 4 presents descriptive statistics of environmental variables for rice 

production that are used as explanatory variables for our econometric analysis, two-stage 

analysis. Data for these variables have been collected from three sources: precipitation in 

each province (using a representative city for each province) is collected from the Korea 

Statistical Information Service (KOSIS). The data for other variables such as No 

education (1 if the farm household head has less than an elementary school diploma; 0 

otherwise), Elementary (1 if the farm household head has an elementary school diploma; 

0 otherwise), Middle school (1 if the farm household head has a middle school diploma; 0 

otherwise), High school (1 if the farm household head has a high school diploma; 0 

otherwise), Age (household head’s age), Male (1 if household head is male; 0 otherwise), 

Capital includes Seoul, Incheon, and Gyeonggi province (1 if farm is located in the 

capital region; 0 otherwise); Central includes Daejeon, Chungbuk province, and 

Chungnam province (1 if farm is located in the central region; 0 otherwise); Northern 

represents Gangwon province (1 if farm is located in the northern region; 0 otherwise); 

Southeastern includes Gwangju, Jeonbuk province, and Jeonnam province (1 if farm is 

located in the southeastern region; 0 otherwise); The farm location data and total sales are 

obtained from the Farm Household Economy Survey (FHES) in the Microdata 

Integrative System of the Korean Bureau of Statistics. The data of farmland ownership 

and the ratio of family labor force to the total labor input are from the Agricultural 

Production Cost Survey (ALPCS); Rented (1 if farm uses only rental land; 0 otherwise), 

Own and rental (1 if farm uses both own and rental lands; 0 otherwise). Debt ratio is 
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calculated as debt divided by asset for each farm household, and non-farm income ratio is 

non-farm income over total income. Data for debt, asset, non-farm income, and total 

income are collected from FHES. The same key for farm household in the ALPCS and 

FHES means the same household at each year. In detail, the data from ALPCS are Rented 

(1 if farm uses only rental land; 0 otherwise), Own and rental (1 if farm uses both own 

and rental lands; 0 otherwise). 
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CHAPTER VI 
 

 

RESULTS 

 

Two TE estimates are reported in Figure 4: TE with different base-frontier each year and 

TE with a base year frontier The TE based on a changing frontier each year is estimated 

under the frontier made by production possibility set formed each year. The mean of TE 

in 2017 is lower than the mean of TE in 2013 when compared with TEs estimated using a 

different base-frontier approach. Based on the traditional efficiency estimation method, 

i.e., the different base-frontier approach, average TE of Korean rice farms increases from 

2003 to 2013 and then decreases from 2013 to 2017. Change in efficiency can be caused 

by technology shift (frontier shift) or farms’ own efficiency change. Therefore, one 

cannot conclude that the efficiency decreased in 2017 compared to 2013 because one 

cannot be sure if the efficiency change is the result of change in the base-frontier or 

change in farm’s own TE under the different base-frontier approach. 

TE with a base year frontier is estimated by setting a frontier at each year. In our 

paper, we set 2013 as the base year. As mentioned, advantage of the base period approach 

effectively eliminates the frontier shifting effect while catching a decision-making unit’s 

TE change as one’s own effort. For example, TE with a base period frontier in Figure 4 in 

2017 is 0.817. In this case, the overall TE in 2017 is higher than
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the scores from any previous years unlike the TEs estimated from the different base-

frontier approach. The TEs estimated using the base year frontier show that the Korean 

rice production farms’ TE was enhanced gradually from 2003 to 2017, while there was a 

decline of TE from 2008 to 2013. 

Table 5 shows pairwise comparisons of means of TE from each year using a 

simple two sample T-test. Hypotheses are 𝐻 : 𝜇 = 𝜇 , and 𝐻 : 𝜇 ≠ 𝜇 , where 𝜇 ( ) is 

the mean of TE at year t(s), and t ≠ s. Mean of TE in 2003 is lower than those from 

2007, 2013, and 2017 at the 1% significance level based on the different base-frontier 

approach. Mean of TE in 2008 is lower than the 2013 efficiency at the 5% significance 

level, and higher than one from 2017 at the 1% significance level. The TE estimated for 

2013 is higher than one from 2017 at the 1% significance level on average. Test results 

for TEs from the base period approach looks somewhat different. Mean of TE of Korean 

rice production farms in 2008 excluding the frontier-shift effect is higher than efficiency 

scores from 2003 and 2013 at the 1% significance level. However, it fails to reject the 

null hypothesis when TEs of 2008 and 2017 are compared. The T-test results show that 

mean of TE in 2017 is the highest based on efficiency estimates from the base year 

frontier approach. 

Figure 5 shows estimation result of CE. Mean of Korean rice farms’ CE using a 

standard approach is 0.533, 0.550, 0.554, and 0.454 in 2003, 2008, 2013, and 2017 

respectively. Estimates of CE are lower than those of TE, because TE is determined by 

the difference between input use and output produced, but CE is also affected by input 

mix under input price condition. The results show that CE improved from 2003 to 2013, 

then decreased in 2017. 
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However, the change in CE could have been affected by decision making unit’s 

own effort to change TE, frontier shift, input mixture under input price information. CE 

estimates based on a base period frontier and price should be better for intertemporal 

comparison. Results reported in Figure 5 show that when the base year frontier method is 

used, CE was improved in 2008 compared to 2003. There was a small decline in 2013, 

but it went up in 2017. Confidence intervals of CE do not contain mean values, which 

indicates estimates are all significant at the 5% level. The base period frontier approach 

gives a different result compared to the different frontier method. Unlike the standard 

estimation method with different base-frontier, the CE estimated from the base year 

frontier approach produces the highest CE in 2017. 

 Change in CE is statistically tested using a pairwise sample T-test, and results are 

reported in Table 6. Based on the different frontier approach the mean of CE in 2017 is the 

lowest at the 1% significance level. The difference between CE in 2003 and 2008 is not 

statistically significant. Test result shows that CE improved in 2013 compared to 2008 

based on the different frontier approach at the 1% significance level. Test result from the 

base period frontier approach shows the mean of CE in 2017 is the highest at the 1% 

significance level. When the same base year was used, CE in 2003 is the lowest at the 1% 

significance level. The difference between 2008 and 2013 is not statistically different10. 

                                                           
10In addition to intertemporal comparison, we conduct a sample T-test on mean difference of two 
efficiencies: one from the standard approach and the other from the base period approach each year. The 
null hypothesis is 𝐻 : 𝜇 − 𝜇 = 0 and the alternative hypothesis is 𝐻 : 𝜇 − 𝜇 ≠ 0, where 𝜇  and 𝜇  are 
means of efficiency scores from standard and base-year approaches, respectively. Test results are reported 
in the Table AII. Because the base year is 2013, estimates for TE and CE from both approaches are equal in 
2013, which results in zero mean differences. However, the sample T-test clearly show that the two 
approaches, standard and base period approaches, produce quite different efficiency scores in all other 
years.  That is, all differences are statistically significant at the 1% level. 
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 Table 7 presents statistical test for intertemporal TE and CE changes of small 

farms with land size less than 1 ha. Mean of TE in 2003 is the lowest, and TE in 2013 is 

the highest at the 1% significance level when the different frontier approach is used. The 

statistical test results show individual effort for TE from the base year frontier approach 

improved from 2003 to 2008, 2013, and 2017 at the 1% significance level, then decreased 

from 2008 to 2013. The individual effort also improved in 2017 compared to 2013. 

 For the same small farms, test results on CE change from the different frontier 

approach show that CE in 2013 is the highest and the lowest in 2017. TE in 2003 is lower 

than 2017, but CE in 2017 is higher at the 1% significance level. Unlike the different 

frontier approach, the base period frontier approach shows that the CE in 2017 is the 

highest and lowest in 2003. The result could be due to the improvement in individual 

effort for TE change as farm owners’ individual effort for AE change increases. Mean of 

intertemporal TE and CE change for medium and large farms with arable land of 1 to 3ha 

and more than 3ha shows similar results (see Tables 8 and 9).  

 We also examined if efficiencies between different farm size differ in a given 

year, and results are reported in Table 10. In 2003, TE based on both approaches (base 

period frontier and different frontier) increases with farm size. TE of farms with more 

than 3ha is the highest, and TE of small farms with less than 1ha is the lowest. However, 

farm size does not affect TE in 2008, 2013, and 2017, which implies that small farms 

tend to make effort to catch the efficiency of larger farms. In case of CE, small farms 

were inefficient in most years. According to base year frontier and different frontier 

approaches, CE from large farms with more than 3ha is higher than those of small farms. 

Except 2013, CE of medium size farm is better than small farms. The result shows that 
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small farm with less than 1ha arable land is insensitive with change in input prices. On 

the other hand, farm owners with bigger arable land are better in minimizing their 

production cost subject to change in input prices. 

 Tables 11 and 12 show statistical test result on intertemporal change of mean 

efficiency for farmers who do not participate in the crop insurance program and for 

farmers who participate in the crop insurance program. This implies that farmer who 

possesses crop insurance is more risk averse than those who does not have. Test result on 

TE and CE change shows similar results from both farmers. The result implies that 

efficiency change is not affected by farmer’s risk preference. 

 Table 13 confirms our findings from Tables 11 and 12.  Table 13 tests if 

efficiencies differ by risk preference in a same year. A sample T-test fails to reject the 

null hypothesis in most cases, which indicates that we do not have enough evidence on 

differences of efficiencies between the two farmer groups with different risk preferences.  

The result could be led by the data limitation because the crop insurance program was not 

implemented until 2012. Therefore, the number of farmers who buy crop insurance is 

small in 2003 and 2008. These farmers had a chance to participate in the insurance 

program because they grew fruits and other crops that were already allowed to participate 

in the insurance program. 

Tables 14 and 15 present two-stage analysis estimation results with TE and CE as 

dependent variables, respectively. We use three estimation methods: truncated MLE, 

OLS, and GMM with IV. Before running the GMM/IV procedure, the Hausman test is 

conducted for all five economic variables, rented land, own and rental land, ratio of 
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family labor force, debt ratio, and non-farm income ratio. The test rejected the null 

hypothesis of no correlation between each of economic variable and error term, implying 

the endogeneity problem. The selected instrumental variables include ratios of 

agricultural income, revenue from all agricultural products, and revenue from grain 

divided by total income and proportions of agricultural subsidy such as direct payment 

over total net income, total income, total revenue from agricultural products, and revenue 

from grain only. We also included square of each of the seven selected instrumental 

variables. Hansen’s J-test (Hansen 1982) show the validity of over identifying restrictions 

for all for models, TE_S, TE_B, CE_S, and CE_B at least at the 10% level.  

In Table 14, from five out of six columns, precipitation has a negative correlation 

with the change in efficiency, and the coefficient is significant at least at the 5% level. 

Farm owners’ age is not a significant factor affecting efficiencies.  However, education 

level, particularly, no education vs. college degree shows that it is likely that farmers with 

college degree have more efficient farms than those with no education. Gender is also an 

important factor; farms owned by female are less efficient. In terms of farm locations, 

farmers in northern and southeastern regions are less efficient than those located in the 

capital, central and southwestern regions in Korea. Results from truncate MLE and OLS 

show that farms with owned arable land has higher efficiency than farms with rented land 

and own and rental land. To account for year effect, we included year dummy variables 

in the model, and coefficients of year dummies shows that TE in 2013 is better than 2008 

and 2017, which is consistent with findings from in Table 5. 

Results of the two-stage analysis estimation with CE as the dependent variable is 

reported in Table 15. Again, overall results from all six columns look similar regardless 
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of estimations methods of CE and estimation methods of two-stage analysis. When CE is 

used as the dependent variable, precipitation has a negative relationship with CE. 

Negative sign on precipitation implies more rain leads additional input use. This result 

may reflect that most Korean rice farms already have sufficient water through irrigation 

system and heavy rain might cause more damage to farms. Again, regression results show 

that owners’ education level is an important factor affecting CE. Farm owners with 

college degree is better than those with less education level in improving CE, which 

suggests that farm owners with higher education tend to be more adaptable and flexible to 

input rice changes than those with less education level. Coefficients of farm locations are 

similar with results in Table 14. Farmers in northern and southeastern regions are still 

less efficient than those located in central and southwestern regions. Farm owners who 

operate on their own land shows higher cost efficiency than those only on rental land. 

Estimation result on year dummies is mostly consistent with findings in Figure 5. 
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CHAPTER VII 
 

 

CONCLUSION 

 

Our study presents a procedure for intertemporal comparison of both technical and cost 

efficiencies across years. Using a base period approach, our procedure is able to compare 

efficiency scores after excluding the frontier shift and input price change effect. Our 

procedure is applied to Korean rice production data from four separate years: 2003, 2008, 

2013, and 2017. Results from our base-year procedure are compared to efficiency scores 

estimated with the different base-frontier approach. Average TE by traditional approach 

in 2003, 2008, 2013, and 2017 are 0.642, 0.724, 0.746, and 0.696, respectively. TE of rice 

producers increases from 2003 to 2013, then decreases in 2017. Mean of TE based on the 

base period approach are 0.682, 0.796. 0.746, and 0.817 in 2003, 2008, 2013, and 2017, 

respectively. Average cost efficiencies of Korean rice producers are 0.533, 0.550, 0.554, 

and 0.454 in 2003, 2008, 2013, and 2017, respectively from the traditional approach, and 

0.393, 0.564, 0.554, and 0.636 from the base period approach. Then, we conduct a 

sample T-test to examine intertemporal change in farm efficiencies across years. Our 

results show that technical and cost efficiency in 2007, 2013, and 2017 improved from 

2003 from both methods. However, two methods produced different 
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results in other years. Technical and cost efficiency in 2017 are less than 2008 and 2013 when the 

standard method with different base-frontier approach. However, when the base period approach 

is used, technical and cost efficiencies in 2017 improved from 2008 and 2013, while two 

efficiency scores from the conventional approach decreased in 2017 from 2008 and 2013. The 

two distinctively different results show that the conventional approach with different base-

frontiers could result in erroneous policy implications. For example, our study finds that both TE 

and CE were deteriorated from 2013 to 2017 based on the standard approach, while the same 

efficiency scores were improved when the base period approach was used. Therefore, results 

from the two approaches should lead to opposite directions of policy implications. Results from 

the standard approach suggest the change in farm policy to improve farm efficiency, while 

findings from the base period approach indicate that the current farm policy is and working and 

appropriate in helping farmers improve their efficiencies.             

Regression results with estimated efficiency scores from standard and base period 

approach show no distinct difference except year dummies. Overall, less educated farm owners 

show lower CE than those with a college degree, which implies more educated farmers are more 

adaptable to change in market situation, for example, change in input price than less educated 

farm owners. We also find regional differences in farm efficiency. Farmers located in the 

northern and southeastern areas are less efficient than those located in the central and 

southwestern regions. Many parts of the northern and southeastern regions are mountainous. 

Therefore, these areas may not be good for rice production. Farmers in these areas may be better 

off by switching their operation from rice production to other crops such as fruits, wheat, or 

vegetables. Also, Korean government could invest more research money in developing new 

crops which are suitable for mountainous area. 
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One direction of future research might be to do a sensitivity analysis using alternative 

base periods. The current study uses the year 2013 as the base period.  However, the changing 

base period could lead to different outcomes. For example, if we change the base year from 2013 

to 2008, we expect to have a different reference group, i.e., a group of benchmarking farms. 

Therefore, efficiency scores estimated based on year 2008 could be different from those with the 

base year 2013. We believe sensitivity analysis could help improve the base-year approach. 

Another research that could be resolved in a future study might be to estimate efficiency score s 

and two-stage regressions using a panel approach. Our study was not able to conduct a panel 

regression because the farm-level ID was not available. In this case, one can further improve the 

base period approach combining with the meta frontier approach.  
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Table 1. Means and Standard Deviations of Input and Output Quantities 

Variable 2003 2008 2013 2017 

Rice (lbs.) 
14,940.90 

(20,980.61) 
14,468.47 

(18.256.77) 
17,029.76 

(24,093.29) 
19,283.34 

(26,801.80) 

Labor (hr) 
292.94 

(296.40) 
151.93 

(152.88) 
159.25 

(193.59) 
133.26 

(165.49) 

Land (ac) 
2.84 

(3.71) 
2.33 

(2.85) 
2.96 

(4.27) 
3.10 

(4.28) 

Capital ($) 
415.61 

(907.03) 
376.10 

(786.76) 
508.40 

(941.32) 
430.05 

(938.07) 

Other ($) 
647.17 

(816.51) 
770.97 

(986.03) 
1,083.25 

(1,483.97) 
1,160.81 

(1,753.39) 
No. of Farms 1333 950 1148 1118 

Numbers in parenthesis are standard deviations. 
Source: Agricultural Production Cost Survey each year 
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Table 2. Means and Standard Deviations of Input and Output Prices 

Variable 2003 2008 2013 2017 

Rice ($/lbs.) 
0.55 

(0.03) 
0.55 

(0.05) 
0.61 

(0.05) 
0.51 

(0.05) 

Labor ($/hr) 
4.11 

(0.66) 
5.40 

(0.75) 
12.55 
(0.41) 

14.73 
(0.52) 

Land ($/ac) 
835.34 

(250.35) 
901.55 

(295.80) 
955.89 

(397.69) 
851.39 

(354.85) 

Capital ($) 
0.001 
(0.0) 

0.001 
(0.0) 

0.001 
(0.0) 

0.001 
(0.0) 

Other ($) 
0.001 
(0.0) 

0.001 
(0.0) 

0.001 
(0.0) 

0.001 
(0.0) 

No. of Farms 1333 950 1148 1118 
Numbers in parenthesis are standard deviations. 
Source: Agricultural Production Cost Survey each year 
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Table 3. Number of Farms by Size and Participation of Crop Insurance 

Type 2003 2008 2013 2017 

Total 1333 950 1148 1118 

Size 

Less than 1ha 853 684 748 725 

1 - 3ha 404 229 306 298 

Over 3ha 76 37 94 95 

Insurance 
Participating 45 32 573 731 

Non-
participating 

1288 918 575 387 

Source: Agricultural Production Cost Survey and Farm Household Economy Survey each year 
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Table 4. Descriptive Statistics of Explanatory Variables for Two Stage Analysis Model 

Variable 2003 2008 2013 2017 

Precipitation (mm) 
1828.0 998.5 1178.5 961.2 
(162.9) (166.3) (126.3) (109.0) 

Age 
75.5 74.6 71.6 70.5 

(10.7) (10.2) (9.6) (8.9) 

No Education 
0.097 0.102 0.064 0.062 

(0.296) (0.303) (0.244) (0.240) 

Elementary School 
0.443 0.398 0.408 0.393 

(0.497) (0.490) (0.492) (0.489) 

Middle School 
0.200 0.225 0.234 0.237 

(0.400) (0.418) (0.424) (0.425) 

High School 
0.226 0.236 0.255 0.263 

(0.418) (0.425) (0.436) (0.440) 

Male 
0.976 0.963 0.956 0.945 

(0.153) (0.188) (0.206) (0.229) 

Capital 
0.143 0.149 0.103 0.100 

(0.350) (0.356) (0.303) (0.300) 

Central 
0.242 0.247 0.252 0.250 

(0.429) (0.432) (0.434) (0.433) 

Northern 
0.129 0.089 0.084 0.074 

(0.335) (0.286) (0.278) (0.262) 

Southeastern 
0. 223 0.248 0.294 0.305 
(0.416) (0.432) (0.456) (0.461) 

Rental Land 
0.146 0.178 0.183 0.192 

(0.354) (0.383) (0.387) (0.394) 

Own and Rental Land 
0.404 0.407 0.436 0.440 

(0.491) (0.492) (0.496) (0.497) 

Family Labor (%) 
0.792 0.876 0.907 0.904 

(0.120) (0.132) (0.120) (0.132) 

Debt Ratio (%) 
0.138 0.076 0.078 0.062 

(0.235) (0.182) (0.197) (0.127) 

Non-farm Income Ratio (%) 
0.274 0.366 0.291 0.256 

(2.505) (0.990) (0.477) (0.464) 

No. of Farms 1333 950 1148 1118 

Numbers in parenthesis are standard deviations. 
Source: KOSIS; Farm Household Economy Survey; Agricultural Production Cost Survey each year 
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Table 5. Mean Differences and Sample T-Test Results on Change in TE 

 TE_S TE_B 
2003 - 2008 -0.082*** -0.115*** 
2003 - 2013 -0.104*** -0.064*** 
2003 - 2017 -0.054*** -0.135*** 
2008 - 2013 -0.022** 0.050*** 
2008 - 2017 0.028*** -0.021 
2013 - 2017 0.050*** -0.071*** 

TE_S and TE_B denote TE with a standard approach based on different frontier each year and TE with base period 
frontier, respectively. 
*, **, and *** indicate that mean differences are significantly different from zero at 90%, 95%, and 99% levels, 
respectively 
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Table 6. Mean Differences and Sample T-Test Results on CE Change 

 CE_S CE_B 
2003 - 2008 -0.017 -0.171*** 
2003 - 2013 -0.021*** -0.161*** 
2003 - 2017 0.079*** -0.243*** 
2008 - 2013 -0.004*** 0.010 
2008 - 2017 0.096*** -0.073*** 
2013 - 2017 0.100*** -0.083*** 

CE_S and CE_B denote CE with a standard approach based on a different frontier and price each year and CE with a 
base period frontier and price, respectively. 
*, **, and *** indicate that mean differences are significantly different from zero at 90%, 95%, and 99% levels, 
respectively. 
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Table 7. Mean Differences and Sample T-Test Results on Change in TE and CE by Farm Size (Less than 1ha) 

Hypothesis TE_S TE_B CE_S CE_B 

μ − 𝜇 = 0 -0.083*** -0.123*** -0.021 -0.172*** 

μ − 𝜇 = 0 -0.110*** -0.072*** -0.027*** -0.169*** 

μ − 𝜇 = 0 -0.060*** -0.157*** 0.077*** -0.247*** 

μ − 𝜇 = 0 -0.027*** 0.051*** -0.006** 0.003 

μ − 𝜇 = 0 0.023*** -0.034* 0.098*** -0.074*** 

μ − 𝜇 = 0 0.050*** -0.086*** 0.104*** -0.078*** 

TE_S and TE_B denote TE with a standard approach based on different frontier each year and TE with base period 
frontier, respectively; CE_S and CE_B denote CE with a standard approach based on a different frontier and price 
each year and CE with a base period frontier and price, respectively. 
*, **, and *** indicate that mean differences are significantly different from zero at 90%, 95%, and 99% levels, 
respectively. 
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Table 8. Mean Differences and Sample T-Test Results on Change in TE and CE by Farm Size (1~3ha) 
Hypothesis TE_S  TE_B CE_S CE_B  

 μ − 𝜇 = 0 -0.088*** -0.019*** -0.025 -0.187*** 

 μ − 𝜇 = 0 -0.099*** -0.054*** -0.013* -150*** 

 μ − 𝜇 = 0 -0.047*** -0.128*** 0.079*** -0.244*** 

 μ − 𝜇 = 0 -0.011 0.064*** 0.012 0.037* 

 μ − 𝜇 = 0 0.041*** -0.010 0.104*** -0.057** 

 μ − 𝜇 = 0 0.052*** -0.074*** 0.092*** -0.095*** 

TE_S and TE_B denote TE with a standard approach based on different frontier each year and TE with base period 
frontier, respectively; CE_S and CE_B denote CE with a standard approach based on a different frontier and price 
each year and CE with a base period frontier and price, respectively. 
*, **, and *** indicate that mean differences are significantly different from zero at 90%, 95%, and 99% levels, 
respectively. 
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Table 9. Mean Differences and Sample T-Test Results on Change in TE and CE by Farm Size (More than 
3ha) 
Hypothesis TE_S  TE_B CE_S CE_B  

 μ − 𝜇 = 0 -0.063*** -0.096** 0.026 -0.150*** 

 μ − 𝜇 = 0 -0.061*** -0.025 0.010 -0.120*** 

 μ − 𝜇 = 0 -0.015*** -0.103*** 0.104*** -0.217*** 

 μ − 𝜇 = 0 0.002 0.071* -0.016 0.030 

 μ − 𝜇 = 0 0.048** -0.007 0.078*** -0.067 

 μ − 𝜇 = 0 0.046*** -0.078*** 0.094*** -0.097*** 

TE_S and TE_B denote TE with a standard approach based on different frontier each year and TE with base period 
frontier, respectively; CE_S and CE_B denote CE with a standard approach based on a different frontier and price 
each year and CE with a base period frontier and price, respectively. 
*, **, and *** indicate that mean differences are significantly different from zero at 90%, 95%, and 99% levels, 
respectively. 
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Table 10. Mean Differences and Sample T-Test Results on Change in TE and CE by Farm Size Each Year 

Year Hypothesis TE_S  TE_B CE_S CE_B  

2003 

 μ − 𝜇 ~ = 0 -0.009 -0.016 -0.029** -0.036*** 

 μ − 𝜇 = 0 -0.057** -0.055** -0.074*** -0.087*** 

 μ ~ − 𝜇 = 0 -0.048* -0.039* -0.044* -0.051*** 

2008 

 μ − 𝜇 ~ = 0 -0.014 -0.012 -0.033** -0.050*** 

 μ − 𝜇 = 0 -0.037 -0.028 -0.027 -0.065* 

 μ ~ − 𝜇 = 0 -0.023 -0.016 0.006 -0.015 

2013 

 μ − 𝜇 ~ = 0 0.001 0.001 -0.016 -0.016 

 μ − 𝜇 = 0 -0.008 -0.008 -0.037* -0.037* 

 μ ~ − 𝜇 = 0 -0.010 -0.010 -0.022 -0.022 

2017 

 μ − 𝜇 ~ = 0 0.004 0.013 -0.027** -0.033* 

 μ − 𝜇 = 0 -0.012 -0.001 -0.047** -0.057** 

 μ ~ − 𝜇 = 0 -0.016 -0.014 -0.020 -0.024 

TE_S and TE_B denote TE with a standard approach based on different frontier each year and TE with base period 
frontier, respectively; CE_S and CE_B denote CE with a standard approach based on a different frontier and price 
each year and CE with a base period frontier and price, respectively. 
*, **, and *** indicate that mean differences are significantly different from zero at 90%, 95%, and 99% levels, 
respectively. 
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Table 11. Mean Differences and Sample T-Test Results on Change in TE and CE by Risk Preference 
(Farmers Who Do Not Participate in the Crop Insurance Program) 

Hypothesis TE_S  TE_B CE_S CE_B 

 μ − 𝜇 = 0 -0.083*** -0.120*** -0.019 -0.173*** 

 μ − 𝜇 = 0 -0.105*** -0.065*** -0.027*** -0.167*** 

 μ − 𝜇 = 0 -0.053*** -0.152*** 0.081*** -0.242*** 

 μ − 𝜇 = 0 -0.022** 0.055*** -0.008** 0.007 

 μ − 𝜇 = 0 0.029*** -0.031 0.100*** -0.069*** 

 μ − 𝜇 = 0 0.052*** -0.086*** 0.108*** -0.076*** 

TE_S and TE_B denote TE with a standard approach based on different frontier each year and TE with base period 
frontier, respectively; CE_S and CE_B denote CE with a standard approach based on a different frontier and price 
each year and CE with a base period frontier and price, respectively. 
*, **, and *** indicate that mean differences are significantly different from zero at 90%, 95%, and 99% levels, 
respectively. 
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Table 12. Mean Differences and Sample T-Test Results on Change in TE and CE by Risk Preference 
(Farmers Who Participate in the Crop Insurance Program) 

Hypothesis TE_S  TE_B CE_S CE_B  

 μ − 𝜇 = 0 -0.055*** -0.084* 0.024 -0.113** 

 μ − 𝜇 = 0 -0.106*** -0.059 -0.020 -0.156*** 

 μ − 𝜇 = 0 -0.058*** -0.140*** 0.073*** -0.247*** 

 μ − 𝜇 = 0 -0.051** 0.025 -0.044** -0.043 

 μ − 𝜇 = 0 -0.002 -0.055* 0.048*** -0.134*** 

 μ − 𝜇 = 0 0.049*** -0.081*** 0.093*** -0.091*** 

TE_S and TE_B denote TE with a standard approach based on different frontier each year and TE with base period 
frontier, respectively; CE_S and CE_B denote CE with a standard approach based on a different frontier and price 
each year and CE with a base period frontier and price, respectively. 
*, **, and *** indicate that mean differences are significantly different from zero at 90%, 95%, and 99% levels, 
respectively. 
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Table 13. Mean Differences and Sample T-Test Results on Change in TE and CE by Risk Preference 
(Farmers Who Do Not Participate vs. Farmers Who Participate in the Crop Insurance Program) Each Year 

Year TE_S  TE_B CE_S CE_B  

2003 0.004 -0.004 0.005 0.001 

2008 0.031 0.032 0.048* 0.062* 

2013 0.003 0.003 0.011 0.011 

2017 0.000 0.008 -0.004 -0.004 

TE_S and TE_B denote TE with a standard approach based on different frontier each year and TE with base period 
frontier, respectively; CE_S and CE_B denote CE with a standard approach based on a different frontier and price 
each year and CE with a base period frontier and price, respectively. 
*, **, and *** indicate that mean differences are significantly different from zero at 90%, 95%, and 99% levels, 
respectively. 
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Table 14. Result from Two-stage Analysis Estimation with TE 

Variable 
TE_S TE_B 

Truncated 
MLE 

OLS GMM-IV 
Truncated 

MLE 
OLS GMM-IV 

Intercept 
0.913*** -0.094 -0.235 0.864*** -0.168 -0.326 
(0.082) (0.121) (0.361) (0.085) (0.121) (0.341) 

Precipitation 
-0.203*** -0.227*** -0.406** -0.158*** -0.157 -0.315** 
(0.056) (0.083) (0.169) (0.057) (0.082) (0.159) 

Precipitation Squared 
0.008 -0.013 0.059  -0.029 -0.036 0.026 

(0.019) (0.028) (0.069) (0.021) (0.028) (0.066) 

Age 
0.030* 0.037 -0.134  0.029 0.036 -0.122 
(0.020) (0.030) (0.131) (0.021) (0.030) (0.133) 

Age Squared 
-0.002 -0.002 0.010  -0.002 -0.002 0.009 
(0.001) (0.002) (0.008) (0.001) (0.002) (0.008) 

No education 
-0.054*** -0.078*** -0.141*** -0.044*** -0.063*** -0.119*** 
(0.011) (0.016) (0.046) (0.012) (0.016) (0.044) 

Elementary school 
-0.022** -0.030** -0.073** -0.013 -0.018 -0.056* 
(0.010) (0.014) (0.030) (0.010) (0.014) (0.029) 

Middle school 
-0.020** -0.027** -0.058* -0.012 -0.016 -0.043* 
(0.010) (0.014) (0.028) (0.010) (0.014) (0.026) 

High school 
-0.005 -0.008 -0.031  0.003 0.003 -0.019 
(0.009) (0.014) (0.024) (0.010) (0.013) (0.023) 

Sex 
-0.032*** -0.044*** -0.139*** -0.040*** -0.048*** -0.134*** 
(0.009) (0.013) (0.042) (0.010) (0.013) (0.043) 

Capital 
0.015** 0.027** 0.086** 0.013* 0.022** 0.080* 
(0.007) (0.011) (0.039) (0.008) (0.011) (0.039) 

Central 
0.038*** 0.053*** 0.094*** 0.035*** 0.047*** 0.086*** 
(0.006) (0.008) (0.025) (0.006) (0.008) (0.025) 

Northern 
-0.014* -0.018* 0.065 -0.013 -0.015 0.064 
(0.007) (0.011) (0.042) (0.008) (0.010) (0.043) 

Southwestern 
0.025*** 0.042*** 0.072*** 0.022*** 0.034*** 0.062*** 
(0.005) (0.007) (0.021) (0.005) (0.007) (0.022) 

Rental land 
-0.016*** -0.023*** 0.253  -0.019*** -0.025*** 0.211 
(0.005) (0.007) (0.250) (0.005) (0.007) (0.240) 

Own and rental land 
-0.001* -0.008 0.203  -0.009** -0.010* 0.172 
(0.001) (0.006) (0.150) (0.004) (0.006) (0.156) 

Ratio of Family Labor Force 
-0.028** -0.039* 0.918** -0.007 -0.011 0.902** 
(0.010) (0.021) (0.400) (0.015) (0.020) (0.412) 

Debt Ratio 
-0.016* -0.029** -0.720  -0.014 -0.026* -0.632 
(0.010) (0.014) (0.556) (0.010) (0.014) (0.551) 

Ratio of Non-farm Income 
-0.001 -0.002 -0.001 -0.002* -0.003* -0.002 
(0.001) (0.002) (0.003) (0.001) (0.002) (0.004) 

Year Dummy for 2003 
-0.007 0.014 0.153*** 0.058*** 0.081*** 0.213*** 
(0.010) (0.015) (0.058) (0.010) (0.015) (0.059) 

Year Dummy for 2008 
-0.057*** -0.077*** -0.049** 0.023*** 0.029*** 0.054*** 
(0.006) (0.009) (0.021) (0.006) (0.009) (0.021) 

Year Dummy for 2017 
-0.094*** -0.127*** -0.146*** 0.043*** 0.049*** 0.031** 
(0.006) (0.009)  (0.016) (0.007) (0.009) (0.016) 
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Sigma 
0.113 0.168 0.256 0.121 0.166 0.240 

(0.001)   (0.001)   

Hansen’ J-statistic 
  11.82   11.93 

  (0.224)   (0.217) 
No. of farms 4549 4549 4549 4549 4549 4249 

TE_S and TE_B denote TE with a standard approach based on different frontier each year and TE with base period 
frontier, respectively. 
Numbers in parenthesis are standard errors. For the GMM-IV, numbers in parentheses are adjusted standard errors. 
*, **, and *** indicate that mean differences are significantly different from zero at 90%, 95%, and 99% levels, 
respectively. 
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Table 15. Result from Two-stage Analysis Estimation with CE 

Variable 
CE_S CE_B 

Truncated 
MLE 

OLS GMM-IV 
Truncated 

MLE 
OLS GMM-IV 

Intercept 
0.708*** -0.202 -0.353 0.739*** -0.225 -0.242 
(0.083) (0.181) (0.405) (0.091) (0.188) (0.433) 

Precipitation 
-0.138** -0.334*** -0.430** -0.240*** -0.389*** -0.522*** 
(0.056) (0.123) (0.197) (0.062) (0.128)  (0.201) 

Precipitation Squared 
-0.002 0.019*** 0.055 0.039* 0.023 0.077 
(0.019) (0.042) (0.078) (0.022) (0.044) (0.080) 

Age 
0.006 -0.014 -0.039 0.016 0.018 -0.071 

(0.021) (0.045) (0.152) (0.023) (0.047) (0.156) 

Age Squared 
0.000 0.001 0.003 -0.001 -0.001 0.004 

(0.001) (0.003) (0.010) (0.002) (0.003) (0.010) 

No education 
-0.054*** -0.102*** -0.142*** -0.058*** -0.119*** -0.154*** 
(0.011) (0.024) (0.050) (0.013) (0.025) (0.052) 

Elementary school 
-0.033*** -0.061*** -0.083** -0.037*** -0.080*** -0.098*** 
(0.010) (0.020) (0.035) (0.011) (0.021) (0.035) 

Middle school 
-0.029*** -0.057* -0.078** -0.035*** -0.072*** -0.087*** 
(0.010) (0.021) (0.032) (0.011)  (0.022) (0.033) 

High school 
-0.018* -0.035* -0.046 -0.022** -0.046** -0.060** 
(0.010) (0.020) (0.029) (0.011) (0.021) (0.029) 

Sex 
-0.031*** -0.064*** -0.096*** -0.035*** -0.058*** -0.098** 
(0.009) (0.020) (0.053) (0.010) (0.020) (0.054) 

Capital 
0.062*** 0.138*** 0.143*** 0.071*** 0.164*** 0.185*** 
(0.007) (0.016) (0.050) (0.008) (0.017) (0.052) 

Central 
0.054*** 0.110*** 0.117*** 0.059*** 0.116*** 0.133*** 
(0.006) (0.012) (0.032) (0.006) (0.012) (0.032) 

Northern 
-0.008 -0.012 0.012 -0.007 -0.005 0.044 
(0.008) (0.016) (0.053) (0.008) (0.016) (0.053) 

Southwestern 
0.031*** 0.076*** 0.083*** 0.031*** 0.007*** 0.090*** 
(0.005) (0.011) (0.025) (0.006) (0.011) (0.025) 

Rental land 
-0.014*** -0.030*** 0.265 -0.016*** -0.033*** 0.166 
(0.005) (0.011) (0.270) (0.006) (0.011) (0.291) 

Own and rental land 
0.002 0.008 0.051 0.005 0.014 0.082 

(0.004) (0.008) (0.179) (0.004) (0.009) (0.176) 

Ratio of Family Labor Force 
-0.006 0.027 0.364 0.015 0.015 0.527 
(0.015) (0.031) (0.520) (0.016) (0.032) (0.525) 

Debt Ratio 
-0.015 -0.028 -0.379 -0.009 -0.017 -0.531 
(0.010) (0.020) (0.614) (0.011) (0.021) (0.607) 

Ratio of Non-farm Income 
-0.001 -0.003 -0.003 -0.001 -0.002 -0.002 
(0.001) (0.003) (0.004) (0.001) (0.003) (0.004) 

Year Dummy for 2003 
0.075*** 0.154*** 0.216*** -0.079*** -0.132*** -0.052 
(0.010) (0.022) (0.071) (0.011) (0.023) (0.072) 

Year Dummy for 2008 
-0.030*** -0.053** -0.045* -0.018*** -0.044 -0.029 
(0.006) (0.014) (0.026) (0.007) (0.014) (0.026) 

Year Dummy for 2017 
-0.131*** -0.268*** -0.284*** 0.049*** 0.065*** 0.048** 
(0.006) (0.014) (0.021) (0.007) (0.014) (0.021) 
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Sigma 
0.118 0.250 0.278 0.130 0.261 0.288 

(0.001)   (0.001)   

Hansen’ J-statistic 
  13.00   13.00 

  (0.163)   (0.163) 

No. of farms 4549 4549 4549 4549 4549 4549 

CE_S and CE_B denote CE with a standard approach based on a different frontier and price each year and CE with a 
base period frontier and price, respectively. 
Numbers in parenthesis are standard errors. For the GMM-IV, numbers in parentheses are adjusted standard errors. 
*, **, and *** indicate that mean differences are significantly different from zero at 90%, 95%, and 99% levels, 
respectively. 
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Figure 1. Geometrical Representation of TE, AE, and CE 

Source: Farrell (1957)  
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Figure 2. Geometrical Representation of ∆𝑻𝑬, TC, and ITEC 
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Figure 3. Geometrical Representation of ∆𝑨𝑬, PE, and IEAC 
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Figure 4. Mean of Technical Efficiency 

TE_S and TE_B denote TE with a standard approach based on different frontier each year and TE with base 
period frontier, respectively. 
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Figure 5. Mean of Cost Efficiency 

CE_S and CE_B denote CE with a standard approach based on a different frontier and price each year and 
CE with a base period frontier and price, respectively. 
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APPENDICES 
 

 

Appendix I 

The appendix shows detailed derivations for the decomposition procedure presented in 

Chapter 4. 

Equation (9) is decomposed into ∆𝑇𝐸 and ∆𝐴𝐸 as: 

(A1) ∆𝐶𝐸 = ,

,
= ∆𝑇𝐸 × ∆𝐴𝐸. 

Since the distance function is homogeneous degree of one in input, (10) is: 

(A2) ∆𝑇𝐸 = =
( , )

( , )
=

( ,
( , )

)
= ×

/ (𝑦𝑡,𝑥𝑡)
. 

In the last product term of (A2), the first ratio is a fraction of technically efficient 

point of 𝑥  evaluated on the frontier estimated at time t+s and t. The second ratio in the 

last product term is the fraction of TE for 𝑥  and 𝑥  which are evaluated on the frontier 

at time t. Then, (A2) is written with the distance function as: 

(A3) ∆𝑇𝐸 = ×
/ (𝑦𝑡,𝑥𝑡)

=
(𝑦𝑡+𝑠,𝑥𝑡+𝑠)

(𝑦𝑡+𝑠,𝑥𝑡+𝑠)
×

(𝑦𝑡,𝑥𝑡)

(𝑦𝑡+𝑠,𝑥𝑡+𝑠)
. 

In the last product term of (A3), the first ratio is TC, and the second ratio is IETC 

from (11) and (12). Combining (11), (12), and (A3), we have ∆𝑇𝐸 as the multiplication
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of TC and IETC: 

(A4) ∆𝑇𝐸 = =
( , )

( , )
×

( , )

( , )
= 𝑇𝐶 × 𝐼𝐸𝑇𝐶. 

AE is defined as a ratio of the cost of technically efficient input quantity to the 

minimized cost in (7). ∆𝐴𝐸 in (14) can be decomposed into two ratios as: 

(A5) ∆𝐴𝐸 = ,

,
=

, × ,

′
, × ,

′

 

=

( , )× ,

′
( , )× ,

′

×
( , )× ( , )

′
( , )× ( , )

′

. 

The last equation in (A5) is the multiplication of PE and IEAC from (15) and (16), 

respectively. Then, ∆𝐴𝐸 can be decomposed into PE and IEAC as: 

(A6) ∆𝐴𝐸 = ,

,
=

, × ,

′
, × ,

′

×

, × ,

′
, × ,

′

 

= ,

,
× ,

,
= 𝑃𝐸 × 𝐼𝐸𝐴𝐶. 

Combining (A1), (A4), and (A6) yields the decomposition of ∆𝐶𝐸 into four 

factors: TC, IETC, PE, and IEAC, which is: 

(A7) ∆𝐶𝐸 = ,

,
= ∆𝑇𝐸 × ∆𝐴𝐸 = × ,

,
 

=
( , )

( , )
×

, × ,

′
, × ,

′

. 
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=
(𝑦𝑡+𝑠,𝑥𝑡+𝑠)

(𝑦𝑡+𝑠,𝑥𝑡+𝑠)
×

(𝑦𝑡,𝑥𝑡)

(𝑦𝑡+𝑠,𝑥𝑡+𝑠)
. 

×

, × ,

′
, × ,

′

×

, × ,

′
, × ,

′

. 

=
( , )

( , )
×

( , )

( , )
×

𝐴𝐸𝑡+𝑠,𝑡+𝑠
𝑡+𝑠

𝐴𝐸𝑡+𝑠,𝑡
𝑡+𝑠 ×

𝐴𝐸𝑡+𝑠,𝑡
𝑡+𝑠

𝐴𝐸𝑡,𝑡
𝑡 . 

= 𝑇𝐶 × 𝐼𝐸𝑇𝐶 × 𝑃𝐸 × 𝐼𝐸𝐴𝐶. 

(A7) is detailed derivation procedure for (17). 

 IECC in (19) is a product of IETC and IEAC. Result of (19) is derived as: 

(A8) 𝐼𝐸𝐶𝐶 = 𝐼𝐸𝑇𝐶 × 𝐼𝐸𝐴𝐶 

=
,

( , )
×

, × ,

′
, × ,

′

. 

=

( , )

′
×

( , )

,

( , )

′

. 

 



70 
 

Appendix II 

Table AII. Sample T-Test Results on Mean Differences of TE and CE from Standard and Base 
Period Approaches Each Year 

Year TE_S - TE_B CE_S - CE_B 

2003 -0.039*** 0.140*** 

2008 -0.072*** -0.014*** 

2013 0.000 0.000 

2017 -0.121*** -0.182*** 

TE_S and TE_B denote TE with a standard approach based on different frontier each year and TE with base 
period frontier, respectively. 

CE_S and CE_B denote CE with a standard approach based on a different frontier and price each year and 
CE with a base period frontier and price, respectively. 
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