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CHAPTER I 
 

 

INTRODUCTION 

 Nonlinear systems exist in many different fields and disciplines. The methods of analysis 

and procedures herein can be applied to most systems that experience nonlinear effects. This study 

focuses on nonlinear optics using the model: laser with injected signal (LIS), a complex system that 

has universal application. The calculations involve evaluating a set of nonlinear differential 

equations that must be solved numerically. Nonlinear systems, in general, have been studied for 

decades in order to understand the many mysteries that continue to challenge scientists.  

One study of nonlinear optics dates back to the 1960s where linear and nonlinear optics are 

compared in laser theory [1-3]. These studies showed that while the linear theory explained laser 

behavior for a small population inversion, there exists a critical threshold where the system can 

only be described accurately by a nonlinear approach. These early studies and many others laid the 

groundwork to evaluate different nonlinear systems. One such system is optical bistability (OB), 

where the name characterizes both the phenomenon and the system. 

1.1. Optical Bistability  

 Optical bistability describes a region where two stable states of the system exist 

simultaneously for the same control parameter. Early studies that examined OB were focused on 

passive systems. In 1976 Gibbs, et al. [4] studied optical bistability using a sodium vapor cell with 

a strong focus on nonlinear dispersion effects. These early experiments showed that bistability 

using
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a Fabry-Perot interferometer involved a large hysteresis effect in the system. This not only showed 

the possibility for two different outputs for the same input, but also that nonlinear dispersion could 

dominate smaller nonlinear absorption effects. Later, Bonifacio and Lugiato [5, 6] found bistability 

in resonance fluorescence and bistability in a fully quantum mechanical systems. The bistability 

was predicted by a first-order phase transition in the fluorescence. Other studies in the 1980s by 

Gibbs, et al. [7] were able to see optical turbulence and periodic oscillations in both ring-cavities 

and delay-line hybrid devices. These experiments showed that other interesting nonlinear features 

besides bistability were present in experimental systems. In 1982 Arecchi et al. [8] demonstrated 

good agreement between theory and experimental systems by showing “subharmonic bifurcations, 

generalized multistability, and chaotic behavior” experimentally for the first time in a Q-switched 

CO2 laser system. Later, intensive studies and comparisons were made by Orozco, Rosenberger, 

and Kimble [9 – 12] that compares the theoretical model and experimental system in order to 

investigate optical bistability. These investigations focused on systems with two energy levels and 

the occurrence of bistability in an absorptive system that was homogeneously broadened. The 

results showed that the experimental data did indeed match what was expected from the model, 

which included characteristic dynamics and quantum phenomena. Further, investigations of OB by 

Orozco et al. [13] continued to compare experimental and theoretical studies that led to further 

understanding of OB and showed that a gaussian wave matched the model while a plane wave did 

not. These studies and others in OB leed to the investigations of the laser with injected signal (LIS), 

which is the active counterpart to OB. 

1.2. The Laser with Injected Signal 

 The laser with injected signal is just as well studied and dynamically interesting as OB 

[14]. The LIS models further develop the understanding of nonlinear optics. The instabilities of OB 

and LIS are self-induced within the system. In one study by Lugiato et al. [15] interesting nonlinear 

phenomena were observed for a model of LIS that exhibited complicated self-pulsing regimes, 
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including limit cycles, torus behavior, period-double episodes, and chaos. Later various types of 

chaos and methods that transition to chaos were studied [16, 17]. Thirty years ago studies in LIS 

investigated and characterized nonlinear phenomena with an emphasis on coexisting attractors [18]. 

Recently, attractor selection [19] and unique universal Lyapunov exponent (LE) patterns are 

reported in Ref. [20]. Lyapunov exponents are calculated using the technique described in Benettin 

et al. [21]. They are used to predict dynamic behaviors in theoretical systems, such as chaos, steady 

states, limit cycles, and torus behaviors [22]. This dissertation explores new patterns and predictors 

of dynamic behavior in LIS that are different from previous studies. This study identifies 

predictable behaviors using LEs that have remained unexplained since the first LE characterizations 

of this system in 1985. Detailed explanations into the processes and methodology used to study and 

understand these new patterns and to gain better understanding of nonlinear effects are developed. 
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CHAPTER II 
 

 

LASER WITH INJECTED SIGNAL, SYSTEM AND ANALYSIS 

2.1. Laser with Injected Signal Model 

 The laser with injected signal is a semiclassical model that is developed from the Maxwell-

Bloch equations. In this study the laser is based on a homogeneously broadened two-level atom. 

The cavity frequency is usually tuned to the atomic frequency, ωa=ωc, and produces a stable carrier 

frequency, ωc, when no eternal signal is applied to the system. A continuous wave (cw) laser is 

injected into the cavity with a frequency of ω0≠ωa, where the driving field and the laser oscillator 

can compete with one another. The difference in these frequencies, |ωa-ω0|, can cause beats to 

appear when at lower input-signals. Here the laser acts as a local oscillator. For larger external field 

amplitudes, the laser stably locks to the injected field and produces a constant output amplitude, 

known as injection locking. The laser with injected signal in this study is a single-mode non-

resonant unidirectional ring laser. See Fig. 1.  
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Figure 1: Non-resonant unidirectional ring diagram. Y is the input field amplitude and |X| the modulus of the 

output field amplitude. There are four mirrors. The top left and top right mirrors are partially reflective 

mirrors with small transmissivity. The bottom two mirrors are 100% reflective, R = 1. The length of the 

lasing medium is L, and Λ is the round-trip path length of the cavity.  

The equations of motion consist of two complex variables and one real variable. X is the complex 

field amplitude and P is the complex polarization. D is the real population difference. Y is the 

control parameter. It is proportional to the incident field amplitude and is real and positive for 

definiteness. 

, (1) 

, (2) 

, (3) 

where the system parameters are: C is the small-signal atomic gain, Δ̃ = (ωa–ω0)/γ⊥ is the scaled 

atomic detuning from the injected signal carrier, κ̃ = κ/γ⊥ is the scaled cavity relaxation rate, γ̃ = 

γ∥/γ⊥ is the scaled population decay rate, and Φ = (ω0−ωc)/γ⊥ is the scaled cavity mistuning. The 

relaxation rate of the population inversion is γ∥ and γ⊥ is the polarization relaxation rate. The time 

τ is measured in units of the polarization relaxation time γ⊥
−1. In order to model a realistic laser 

system, the following parameter values were chosen: C = 3, Δ̃ = 0.5, κ̃ = 0.1, γ̃= 0.01, and Φ/ κ̃ = 

−0.5. The chosen parameter values are between the Class B [23] and Class C [24] laser types. See 

Appendix I for class characterizations.  

Between the regions of injection locking and the laser acting as a local oscillator, the system 

experiences complex, interesting nonlinear phenomena. This system of equations is studied by 

examining five real equations. That is, in order to make the evaluation process quick, the complex 

equations are split into two real equations. The output field amplitude X=A+iB, the polarization 

P=R+iS, and the real population difference D remains the same. The equation are as follows:  
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�̇� = −𝜅 ̃ [𝐴 + (𝐵 
𝜙

�̃�
) − 𝑌 + (2 𝐶 𝑅)], (4) 

�̇� = −𝜅 ̃ [𝐵 − (𝐴 
𝜙

�̃�
) + (2 𝐶 𝑆)], (5) 

�̇� = −[𝑅 − (𝛥 ̃𝑆)] + (𝐴 𝐷), (6) 

�̇� = −[(𝛥 ̃𝑅) + 𝑆] + (𝐵 𝐷), (7) 

�̇� = −𝛾 ̃[(𝐴 𝑅) + (𝐵 𝑆) + 𝐷 + 1] (8) 

The five equations are solved numerically using Mathematica’s NDSolve function. The system can 

be explored in a variety of ways: Temporally, in phase-space, using Fourier analyses, by sweeps, 

by volumes, and by studying their Lyapunov exponents. The collected information is used to create 

a map of the system’s dynamics and complex phenomena. Each attractor is numbered in the order 

in which it was found.  

Attractors are a set of points, or system states, that the system is drawn to when allowed to evolve 

in time [25]. They are invariant and cannot be split into smaller attractors or subgroups. Each 

attractor has its own shape temporally and in phase space. It has unique features such as frequency 

spectra, periodicity, domain of existence in terms of the range of the control parameter, and basins 

of attraction [26]. The phase space of an attractor can be as simple as a circle with a single period, 

called a 1P. It is typically more complicated having a series of subharmonics, and/or corkscrews as 

seen in this study. However, to confirm that the attractor has a higher periodicity other than a 1P, 

whether that is a 2P, 3P, etc., requires confirmation of a Fourier analysis. See Appendix II for a 

more in depth explanation.  

Another type of dynamic feature that appears in the system is a window in chaos. Windows are 

regions surrounded by chaos, but they do not coexist with chaos. Chaos is characterized as a 

broadband spectrum with no overriding frequencies in the Fourier analysis. In phase space chaos 

simply fills in the space and temporally never repeats itself. In Fig. 2, each attractor is vertically 

positioned by its relative frequency. The horizontal ranges of the attractors are the identified 
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domains of the attractors as a function of the input field amplitude, Y. The callouts for the smaller 

attractors are in blue. Highlighted in red are two windows in chaos. The windows only exist for a 

brief region of the input amplitude, and in these regions, chaos cannot coexist with the windows. 

This is unlike an attractor where they can coexist with chaos. The windows for these parameters 

have a high periodicity and inverse bifurcations. Only two windows are found in this system so far.  

 

Figure 2: Attractor map of the laser with injected signal for the identified parameters. The map shows the 

relative position of each attractor and window using their fundamental frequencies as a function of the input 

field amplitude, Y. Two windows are found in the chaos, shown in red. Attractor callouts are in blue. The * 

denotes Y=1.948 at the beginning of the domain of AVI.  
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2.1.1. Steady State 

 The steady state is a point in phase space where the system is invariant in time. To 

determine the steady state, the time dependent derivatives of the model equations are taken to be 

zero and reduced to the equation below: 

𝑌 = |𝑋| √{1 −
2 𝐶

1+�̃�2+|𝑋|2
}
2
+

2 𝐶 �̃�

1+�̃�2+|𝑋|2
− (

𝛷

�̃�
)
2
. (9) 

The resulting equation is plotted in Fig. 3 with the input field amplitude, Y, on the horizontal axis 

and the output field amplitude, |X|, on the vertical axis.  

 

Figure 3: Shows the steady-state curve for the laser with injected signal. The input amplitude, Y, is on the 

horizontal and the output amplitude, |X|, is on the vertical axis. The two turning points are identified by their 

coordinates. A marks injection locking. The lower branch of the curve is unstable, 0<Y<2.16478 and 

0<|X|<2.08. The blue region above point A denotes the stable region, and the orange region below point A 

is unstable.  
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2.1.2. Stability Analysis 

 To do the stability analysis it is easiest to start with the set of five real equations, Eqs. (4)-

(8), and linearize each around a steady state. The Hurwitz criterion is used to determine the stability 

or instability of the system. See Appendix III. For this set of parameters, the entire lower branch 

and some of the upper branch are unstable. This is color coded in Fig. 3. The blue stable region is 

where injection locking occurs and no interesting features are observed. Nonlinear phenomenon 

are observed in the orange unstable region.  

2.2. Dynamics 

 Evaluation of the dynamics in LIS requires specialized programs in order to understand the 

dynamics and collect the appropriate data on the state variables. Since there are five interconnected 

nonlinear equations, and they are only solved numerically, then most programs are built in 

Mathematica and analyzed using the function NDSolve. As the system is allowed to evolve in time 

it can be drawn to an attractor. Different values of the input amplitude can affect the final state of 

the system depending on the existence of attractor types and coexisting attractors. Once stably on 

the attractor it is possible to collect data about the specific attractor. While following the attractor 

the system is allowed to evolve in time and the attractor can be followed adiabatically for its domain 

of existence in Y. “The idea behind an adiabatic scan is similar to a thermodynamic adiabatic 

expansion” [20]. Once the system is stable on an attractor, small steps of the control parameter are 

taken such that the system remains on the attractor until the end of its domain. Several potential 

dynamics can occur, possible states include attractors, chaos, torus behavior, and steady states.  

 

 

 



10 
 

2.2.1. Sweeps 

 A sweep of the system is another tool that can be applied to find regions where different 

instabilities might exist. This is calculated by putting a time dependent ramp on the input amplitude, 

Y=Y0+r τ, Y0 is the original input, r is the rate of change, this makes the system non-autonomous. 

The system is linearly evolved through a series of input field amplitudes and it does not have time 

to equilibrate on a single event. Thus, the system is essentially being dragged in time causing a lag 

effect in the dynamic events. The linear ramp therefore does demonstrate changes to the system; 

however, it only gives an approximate location of the feature and/or event. Further, the direction, 

whether increasing or decreasing the ramped Y, can also affect the output of the sweep depending 

on which attractors the system encounters. The domains of those attractors and the rate that the 

system changes with respect to time are critical to what is observed. A unique benefit to this tool is 

that the discrepancies can show the potential for coexisting attractors. To observe this, the ramp is 

completed twice, both forward and backward. One starts at an input amplitude of Y0=0 with a 

positive rate of 2*10-4*(t) in the forward sweep, the second starts in the region of injection locking 

at Y0≈2.5 with an equivalent but negative rate for the backward sweep. Figures 4 show the forward 

and backward sweeps for the chosen LIS system. The difference in the dynamics that occur between 

1.0<Y<1.6 indicates the possibility of coexisting attractors in this region. The instabilities around 

Y≈2.0 in the backward ramp are caused by initiating the system in the stable region of injection 

locking and moving the system quickly into the unstable region. The system reacts with a jolt or a 

large set of erratic oscillations that require some time to normalize. 
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Figures 4: (a) A forward sweep for ΔY=(2.0*10-4)*τ that shows instabilities from 0<Y<1.35, followed by a 

region of chaos, and then another period of instability, 1.67<Y<2.2. (b) The backward sweep for ΔY=2.5—

(2.0*10-4)*τ, its regions of instability are 1.6<Y<2.1, chaos 1.6<Y<1.15, followed by periodic instabilities 

until Y=0.0.  

2.2.2. Volume Calculation 

 The volume is calculated using the Mathematica function of RegionMeasure and 

ConvexHullMesh. To do this, a set of points is placed into the ConvexHullMesh function which 

generates a mesh for the area within the points that corresponds to the volume of the attractor for 

that value of Y and outputs data in a usable form for RegionMeasure. RegionMeasure takes the 

generated mesh and calculates the volume from the irregularly shaped phase space of the attractor. 

Figures 5 display the volumes for AII, AIII, AV, and AVI, respectively. While AIII, AV, and AVI 

keep the same periodicity throughout their domain of existence, AII experiences an inverse 

bifurcation sequence which is visible at Y=1.39 and Y=1.66, where the system transitions from a 

4P to a 2P and a 2P to a 1P, respectively. AIII, AV, and AVI do not experience bifurcations and 

keep their periodicity, 3P, 4P, and 5P, respectively. The volumes of these attractors increase and 

then decrease as the input amplitude changes over the domain of the attractor. That is, the volume 

of the attractor is lowest as the domain of the attractor begins and ends.  
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Figures 5: The volumes are color coded (a) AII in red, (b) AIII in green, (c) AV in blue, and (d) AVI in 

yellow.  

2.3. Lyapunov Exponents  

 Lyapunov exponents are a way of analyzing close trajectories of a system for infinitesimal 

changes by indicating if the system is stable, oscillating, or chaotic. They are also used to identify 

torus behavior and other system dynamics depending on the pattern that the LE values take, as 

demonstrated in Table 1. In this system there are five LEs, LE1 is the largest Lyapunov exponent. 

It shows whether the system is stable LE1<0, unstable LE1≅0, or chaotic LE1>0. The other four 

LEs (LE2, LE3, LE4, and LE5) are in order from largest to smallest, and are typically negative 

numbers. They can demonstrate unique patterns that impart more information about the system 

dynamics. Table 1 shows the dynamics and their associated LE characteristics, followed by the 

pattern type [20, 22].  
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Table 1. Patterns of Lyapunov Exponents  

Dynamics as a function of Y LE characteristics  

LE4 < 0, LE5 < 0 

LE pattern 

Steady state LE1 < 0, LE2 < 0, LE3 < 0  

Limit cycle;  LE1 = 0, LE2 < 0, LE3 < 0  

2D torus LE1 = LE2 = 0, LE3 < 0;  

LE1 = LE2 = LE3 = 0;  

LE1 = LE2 = LE3 = 0; 

 LE1 = LE2 = 0, LE3 < 0 

Converging LE1 and  

LE2 = LE3 to  

LE1 = LE2 = LE3 = 0 

Chaos LE1 > 0, LE2 = 0, LE3 < 0 One or more LE > 0 

Period-doubling episode at each 

apex 

Begin: Linear formation  

LE1 = 0, LE3 = LE2 < 0; 

asymmetric bubble  

LE1 = 0, LE3 < LE2 ≤ 0; 

apex LE1 = LE2 = 0, 

LE3 < 0; ending is 

reverse of beginning 

Asymmetric bubble repeats with 

an interval of equal LEs 

between bubbles 

Imminent path to period-

doubling 

LE1 = 0, LE3 < LE2 < 0 Symmetric-like bubble 

Beginning of coexisting attractor 

Ending of coexisting attractor 

Maximum at  

LE1 = LE2 = 0, LE3 < 0; 

LE3 < LE2 ≤ 0  

converge to LE2 = LE3 

Reverse of beginning 

LE3 < LE2 ≤ 0 diverge 

to maximum at  

LE1 = LE2 = 0, LE3 < 0 

Attractor birth: LE1 = LE2 at 

max; LE2, LE3 converge to 

LE2 = LE3 < 0e Attractor 

death: Reverse process of 

attractor birth 

 

These patterns range from simple to complex, and are unique predictors of system characteristics 

and dynamics. Figures 6 show the three largest LEs and plots of these LE values are a function of 

Y for the attractors AII, AIII, and AV. The asymmetric bubble is a predictor of a bifurcation 

occurring in the system. This is shown in Fig. 6(a) where the peak of the asymmetric bubble occurs 

at the value of the input amplitude where the bifurcation occurs. The LE pattern that illustrates the 

bifurcation, as shown in Table 1, is where LE1=LE2=0 and LE3<0. An example of this can be seen 

in AII in Fig. 6(a) at Y=1.2905, 1.395, and 1.6656. Symmetric-like bubbles have LE1=0, LE2 thru 

LE5<0, and do not show bifurcations, or any significant change to the attractor. As seen in AIII of 

Fig. 6(b). It is determined that they predict an imminent bifurcation. When one of the system 

parameters is changed the symmetric-like bubble changes to an asymmetric bubble. This was 



14 
 

initially discovered to be the case when the value of the gain was changed and a bifurcation 

occurred. This was a suggestion by Erikk Burton after initial investigations of the region only 

showed small changes to the dynamics and no major cause for the pattern. A more extensive 

investigation was carried out after this discovery that shows changes to the system parameter not 

only can cause the system to bifurcate, but additional increases in the input can cause further 

bifurcations to occur. Lowering the gain on the other hand caused the symmetric-like bubble to 

vanish to two equal LEs. The last pattern in Table 1 is an open, one sided, bubble that denotes the 

origin and demise of an attractor, which can be seen in both Figure 6(b) and (c). Similar to the 

asymmetric bubble when LE1=LE2=0 the attractor has reached a point where the attractor no 

longer exists after/before that point. It is not seen in Fig. 6(a) because of injection locking. 

 



15 
 

 

 

Figures 6: The three largest LEs, showing the domain of existence for (a) AII, (b) AIII, and (c) AV. (a) On 

the scale shown AII displays asymmetric bubbles throughout its inverse bifurcation sequence, points of 

bifurcations are marked, as well as the peaks of the asymmetric bubbles. (b) AIII shows first the converging 

and diverging patterns for the beginning and ending of an attractor’s domain, and second, a symmetric-like 
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bubble structure with the peak of the bubble at Y=1.715. (c) AV only shows the beginning and ending LE 

attractor domain.  

A set of Lyapunov exponents has unique patterns that characterizes each attractor and gives a 

comprehensive, but not complete, understanding of the system. Figures 7 show the LEs for the LIS 

system plotted against the input amplitude, Y. The number of LEs that can be obtained for a system 

is based on the number of system coordinates. For LIS, five LEs can be obtained. For this system 

the trace of the Jacobian, -2.21, can characterize the system also. Figure 7(a) shows the first three 

LEs as a function of Y and some interesting structures: a symmetric-like bubble as in AIII, 

asymmetrical bubbles as in both AI and AII. Note, these patterns are seen also in AIV, AVII, and 

AVIII, the scale of the graph makes them difficult to see. These types of structures were reported 

by Gu et al. [22] for a different set of parameters, but were not understood and generally dismissed 

as unimportant at the time. Figure 7(b) shows the lowest two LEs as a function of Y. Each attractor 

has a unique LE spectrum associated with the attractor and when a non-adiabatic scan of the system 

is done using the LEs, the system can fall off to another attractor. This results in a clear discontinuity 

and identifies a region of coexistence. 
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Figures 7: The Lyapunov exponent spectra for the global domain of the system before injection locking. The 

domain of each attractor is plotted in a unique color, AI is orange, AII is red, AIII is green, AIV is purple, 

AV is blue, AVI is yellow, AVII is gray, and AVIII is pink. (a) Displays the first three Lyapunov exponents 

as a function of Y for each individual attractor. Each of the smaller coexisting attractors has a dashed boundary 

around its domain of existence. (b) The bottom two smallest Lyapunov exponents for each attractor.  

2.4. Attractor Identifier 

 Barring labor intensive manual identification of attractors, it becomes apparent that a faster 

computational method is needed to identify known attractors, in order to have a reliable way of 

identifying unique attractors for their full range of existence. One idea was to allow the system to 

evolve for enough time to stabilize on an attractor and then save the coordinates of that attractor 

for one period of the motion. This is archived for the computer to check against the known data of 

each attractor of the system. While this method is effective, there were some drawbacks. The first 

being that each individual attractor must be saved at every value of the input amplitude. This leads 

to the second problem, the attractor changes adiabatically when the input amplitude is changed. 

Since there is no fixed value for the entire domain of the attractor, the data has to be collected for 
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every Y value for the attractor’s domain of existence. Also, several periods of motion need to be 

taken in order to make an accurate comparison to the known attractors. Collecting the archived data 

of known attractors takes a lot of time and is not 100% accurate. To identify an unknown attractor 

the system has to be allowed to evolve for a significant amount of time for every perturbation taken; 

otherwise the program runs the risk of misidentifying an attractor. So a better method for quickly 

and effectively having the computer identify attractors became important.  

During an investigation of the temporal graphs, interesting result appeared. Since each attractor 

has a unique frequency and amplitude, as well as a different number of peaks (though it can have 

the same number of peaks as another attractor), a comparison between the local maximums can 

be used as a quick identifier of an individual attractor in a range of input signals where two or 

more attractors coexist with little risk of misidentification. By taking the difference between the 

maxima for one period of motion at a single value of the input amplitude, Y, the peak difference is 

obtained. This process is repeated for a range of Y values in order to collect enough data to form a 

curve for the full domain of the attractor. This difference is then plotted against the Y values and 

an equation is fit to the curve. Figures 8 show the calculated peak difference and fitted curve for 

AII, AIII, and AV. Attractors with multiple peaks were tested using primarily the 3P of AIII, and 

the 4P of AV. For consistency and ease of programing the largest peak difference was used since 

it also possessed the biggest difference in values and the most distinct numbers.  
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Figures 8: Peak difference for attractor identification. (a) AII for the region where it is a 2P, and a third order 

polynomial fit to the data with an accuracy of R2=0.9919. (b) AIII for its entire domain of existence, with a 

fourth order polynomial fit of R2=0.9989. (c) AV for its domain of existence, with a fourth order polynomial 

fit of R2=0.9909. 

Another benefit of these distinct unique values is that the amount of points that are needed to 

evaluate and compare the attractor to a reference is greatly reduced. In this way only a small 

number of points for an attractor need to be evaluated and calculated in order to obtain a higher 

order polynomial that uniquely fits an attractor. This equation for the fitted curve can now be 

used for comparison instead of having lists of saved values. A buffer of 2%-5% is allowed for any 

variations between the equation and the data. The process is not only quick but less memory 

intensive, since it now only relies on the higher order polynomial. The only real draw back to this 

process is that it requires a minimum of a 2P attractor. If the attractor is a 1P, then the peak 

difference obtained is zero. Since there are not two maxima, so when AII transitions to a 1P at 

Y≈1.66 the peak difference goes to zero, as seen in Fig. 8(a). Other methods have to be used in 
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the identification of these types of attractors. For example, the amplitude of the peak or the 

difference between the minimum and maximum can be used.  

2.5. Perturbations 

 The study of perturbations was initially designed to test if the proximity to coexisting 

attractors effected the systems preference to one of the attractors. By moving the initial starting 

point a fixed amount away from the base attractor it was possible to then observe if the system 

returned to that attractor or if it transitioned to a coexisting attractor. The total number of times that 

the system landed on a specific attractor is recorded and the percentage chance of going to that 

attractor is calculated.  

In order to do a perturbation calculation on the system, it must first be stably on a base attractor. 

This is the attractor that the system moves off by a fixed amount for one of the state variables. Once 

the base attractor is selected, 40 equally spaced points around one period of motion of the attractor 

are taken and used as the set of initial values for future perturbations. Figures 9 are 2-D projections 

of coexisting attractors AII, AIII, and AV showing the 40 points evenly spaced in time for a single 

period of the attractors at Y=1.83. Each one of those 40 points are perturbed for the full range of 

the perturbations, -0.3≤δv≤0.3, with a step size of Δδv = 0.005. Where δv is a vector representing 

the displacement from one of the 40 points on the attractor.  
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Figures 9: One period of motion for (a) AII in red, (b) AIII in green, and (c) AV in blue at Y=1.83. Each 

figure has 40 points that are evenly spaced in time depending on the period of the motion for each attractor. 

AII has a period of ~52τ, AII has a period of ~156τ, and AV has a period of ~208τ. 

As each point is moved away by the perturbation the new coordinate point is saved. This point 

becomes the initial condition for the system to evolve in time until it lands stably on an attractor. 

After enough time has elapsed the system either returns to the starting attractor or transitions to a 

coexisting attractor. The final attractor and the original perturbed coordinate is recorded. This is 

done for the full range of perturbations, -0.3≤δv≤0.3, for all 40 points around the attractor. The 

input field amplitude is then increased and the next Y value is evaluated using the same process. 

The full coexisting range of the two attractors is completed in this fashion. Then the whole 

procedure is repeated using a different base (starting) attractor, whether that is AII, AIII, or AV for 

this study. The number of times that the system lands on an attractor is plotted against each 

perturbation. The results for each base attractor are shown in Appendix IV. Figure 10 shows the 

perturbation to base attractor AII at Y=1.68, where only AII and AIII coexist. For small 

perturbations the system returns to AII, but once the system crosses a certain threshold it begins 

transitioning to AIII. The value of the threshold varies for each base attractor. Attractor AII requires 
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the largest perturbation to start transitioning to a coexisting attractor. A distinct difference can be 

seen in the positive and negative perturbations. The total chance of returning to AII is 71.20%, 

while the chance of transitioning to AIII is 28.80% of this Y value.  

 
Figure 10: Perturbation for Y=1.68 for the base attractor AII. The system returns to AII 71.20% of the time, 

and transitions to AIII 28.80% of the time.  

2.6. Basins of Attraction  

 The basins of attraction are a time intensive way of visualizing which attractor the system 

ends on for a specific set of initial conditions once the system is allowed to evolve in time. To 

actually form the basin a large number of initial conditions must be used. An easy way of making 

the basin of attraction comprehensible is to use a 2-D plane that is a viewable slice of the 5-

dimensional LIS system. The structure of the 5-D basin is determined by the five real nonlinear 

equations. So when looking at the slice of the basin, depending on how many coexisting attractors 

exist for that input value, different patterns can form. In Fig. 11 the basin for Y=1.88 is shown for 

the state variables of -0.5<D<0.5 verses -1.5<Re X<2.5. The other state variables are fixed and 
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each point on the graph is used as a set of initial conditions. Once the system is allowed to evolve 

in time all of the state variables can change. Only the initial conditions used to generate the plane 

and the final attractor the system lands on are recorded. For Fig. 11, the system only has two 

coexisting attractors for this value of the input field amplitude, AII in red and AV in blue. If the 

system were to start on any initial condition in this plane, then the attractor that the system stabilizes 

on is known. However, changes to any state variable that causes the system to move away from 

this region results in uncertainty as to the final state of the system. When the system has more than 

two coexisting attractors the complexity of the basin increases. For this LIS system the maximum 

number of known coexisting attractors is three. 

 

Figure 11: Basin of attraction for Y=1.88. The plot is a 2-D slice of a 5-D basin. The population difference, 

D, is plotted against the real component of the output field amplitude, Re X, for the ranges of -0.5<D<0.5 

and -1.5<Re X<2.5. The other variable are held constant for their use as initial conditions and are allowed to 

change as time evolves. Im X=-2.2937, Re P=0.3035, and Im P=0.2611. 
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Figure 12 shows the system with three coexisting attractors at Y=1.823. The basin at this value of 

Y is more complicated than the system with only two coexisting attractors. Other systems, whether 

that is for different parameters of LIS or an entirely different set of modeled equations, can have 

more coexisting attractors for the same value of the control parameter.  

 

Figure 12: At Y = 1.823 the basins of attraction for three coexisting attractors are illustrated as a two-

dimensional slice in phase space. The system is evaluated as Re X and Im X are changed from -15 to 15, D, 

Re P, and Im P are held at zero. The colored regions correspond to the different coexisting attractors, AII is 

red, AIII is green, and AV is blue.  
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CHAPTER III 
 

 

DATA AND ANALYSIS 

 The results for the Lyapunov exponent studies, the perturbation studies, and the 

corresponding analysis of the basins of attraction are discussed in this chapter. Further 

explanation of the LE patterns and predictions are expounded upon in the case of the symmetric-

like bubble where a system parameter is changed. The results of the perturbations and the 

attractor schemes that are formed for each value of the input field amplitude are developed. A 

comparison is then made to the basins of attraction for these regions.  

3.1. Lyapunov Exponents 

 Recently, LE patterns were found as predictors of system characteristics associated with 

the attractor’s dynamics [27]. When a value of the system parameters is changed the LE spectrum 

demonstrates changes to the attractor’s pattern. Figures 13 show these features for AIII as the value 

of the system’s gain, C, is changed. The LIS system in this study has a gain at C=3.0, when the 

symmetric-like bubble was first found; the dynamics around the peak of the bubble were evaluated 

and no appreciable dynamic change was observed. So what did the symmetric-like bubble mean? 

The implication was that some potential change to the system might occur when a parameter is 

changed [28]. When the value of the gain was increased to C=3.1 the system was found in fact to 

experience a bifurcation. Figure 13(c) shows the system at the new value of the gain; the system 

developed a bifurcation, 3P to 6P, at Y=1.7233 and an inverse-bifurcation, 6P to 3P, at Y=1.7709. 

When the gain is decreased, Fig. 13(a), the system loses the symmetric-like bubble and instead has 
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a curved section of the LE spectrum where LE2=LE3<0. 
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Figures 13: Variations in the gain for AIII. (a) Shows AIII when the gain is decreased to C=2.7 causing the 

symmetric-like bubble to vanish. (b) At C=3.0 the system has its symmetric-like bubble. Finally, (c) at C=3.1 

the symmetric-like bubble changes to a bifurcation and inverse-bifurcation sequence.  

This pattern is observed in not only AIII but AV and AVI as well. As shown in Figs. 14 for AV 

and AVI, when the value of the gain is increased, the system develops from two equal LEs and 

forms a symmetric-like bubble. As the value of the gain is increased further, bifurcations start to 

appear in the system. In Fig. 14(g), another symmetric-like bubble forms when the gain is increased 

to C=3.3, and then further bifurcations are observed when the gain is increased to C=3.35, Fig. 

14(h). Two interesting notes: (i) The system develops not only a bifurcation, but an inverse-

bifurcation as the gain is increased. (ii) The changes to the gain cause the domain of the attractors 

to change as well.  
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Figures 14: AV is shown with increasing gain in the system, (a) C=3.0, (b) C=3.1, and (c) C=3.2. The 

attractor transitions from two equal exponents, LE2=LE3, to a symmetric-like bubble followed by a 

bifurcation when the gain is increased further. AVI goes through the same series as the gain is increased from 

(d) C=3.0 to (e) C=3.2, (f) C=3.25, (g) C=3.3, and (h) C=3.35. Another symmetric-like bubble forms in the 
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middle between the two bifurcation at (g) C=3.3 which bifurcates further as the gain is increased to (h) 

C=3.35. 

3.2. Perturbations and Basins of Attraction  

 The first set of perturbations that is evaluated for the system involves perturbing all of the 

state variables of the system. However, changing the output field amplitude |X| is not 

experimentally viable. Further studies of the other parameters lead to the discovery that the 

polarization, Re P and Im P, caused an insignificant effect on the system when perturbed. This can 

be seen by comparing Figs 15. The system returns to AII for every perturbation of all 40 points 

around the attractor. When the system is perturbed for the state variable D however, the system 

transitions from the base attractor to one of the coexisting attractors a significant percentage of the 

time: The likelihood of the system returning to AII is 41.43%, to AIII is 49.03%, and to AV is 

9.44%. The perturbations were only evaluated for D due to the chance of transitioning attractors. 

The full domains of AIII, 1.61<Y<1.83, and AV, 1.82<Y<1.93, are evaluated using the 

perturbations. The domain of AII is so extensive that only the regions of coexistence are analyzed. 

It should also be noted that the order of magnitude of the population difference, D, is the same as 

the range of the perturbations.  
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Figures 15: Perturbations from base AII where (a) Re P and Im P are perturbed, and (b) D is perturbed. The 

range of the perturbation is from -0.3<δv<0.3 in step of Δδv = 0.005. For the perturbations to the polarization, 

(a) the system never transitioned away from AII. When the perturbations are applied to the population 

difference, (b) the system returns to AII 41.43% of the time and transitions to AIII 49.03% of the time, and 

to AV 9.44% of the time. 
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A significant difference is shown between positive and negative values of the perturbations. When 

the percentages are plotted against the input amplitude, Figs. 16 exhibit interesting features for 

several different base attractors in the coexisting region. For example, base attractors AII and AIII 

both show several changes to the slope of the data at the same values of Y=1.695, 1.75, and 1.77 in 

both Figs. 16(a) and (b). Similarly, Figs. 16(a) and (c) both have changes in slope at the 

corresponding value of Y=1.89. It is certain the system experiences a change in either the dynamics, 

or some other property, that results in the slope change at these points of interest. Appendix IV 

shows the plots for all three of the discussed base attractors for each value of Y for the attractor’s 

domain of existence.  
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Figures 16: Percentage chance of transferring to an attractor with a positive or negative perturbation from 

base (a) AII, (b) AIII, and (c) AV.   

The evaluation of the attractor dynamics where the slope of the data changes dramatically yields 

no significant change to the system. Figures 17 compares the temporal graphs, phase space plots, 

and Fourier analysis of AV at Y=1.88, 1.89, and 1.90. Comparing Figs. 17(a-c), no significant 
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change occurs between the temporal graphs. All three Y values have the same period of motion and 

similar amplitudes. For the phase space plots, minor changes to the size of the attractor’s phase-

space loops are visible. However, the increase in the control parameter could account for the 

changes to the loop size. The Fourier analysis for all three Y values show the height of the harmonics 

and subharmonics changing as Y is increased. Though the power of these peaks change again after 

this range of values as well. No significant change occurs in the system that correlates to the slope 

changes observed in Figs. 16. The volumes for each attractor show small dips do occur around the 

points of interest, as shown in Figs. 5. However, dips also occur that do not correlate to a change 

in the slope of the perturbation percentages. Finally an analysis of the system is explored by looking 

for changes in the basin of attraction.  

 

Figures 17: The temporal, phase space, and Fourier plots for AV at (a) Y=1.88, (b) Y=1.89, and (c) Y=1.90. 

The basins of attraction show changes around these slope changes. Figures 18 show two 

perspectives: 2-D slices of the basin of attraction in phase space and the basin as a 2-D plot. The 
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basins shown in Figs. 18 are for the regions where only AII and AV coexist. This corresponds to 

the value of the input field amplitude around the point of interest Y=1.89. A clear difference can 

be observed between Figs. 18(a) and (b) when transitioning from Y=1.88 to Y=1.89. In the upper 

region of the basin of attractor for Fig. 18(a) the system transitions to AV primarily for positive 

values of D. In Fig. 18(b) the positive domain of the population difference now primarily transitions 

for AII. Comparing Figs. 18(b) and (c) on the other hand shows less observable difference between 

the two basins. The shapes of the attractors in all three dimensions do not change significantly as 

previously observed.  
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Figures 18: The basin of attraction of AII and AV at (a) Y=1.88, (b) Y=1.89, and (c) Y=1.90, also show the 

location of the slice is in the third dimension. 

Another part of the perturbations that is predicted by the basins of attraction is seen when one point 

of the 40 points on the attractor is taken and perturbed with respect to the population difference, D. 

Since the basin is a 2-D plane with respect to the population difference D vs Re X, then the 

perturbation being applied to the system causes the point to move linearly up, or down, the plane 

depending on the perturbation sign. This line is shown in Fig. 19 for Y=1.80. Starting on base AII 
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located at the magenta dot, the black line denotes the path the initial conditions follow when 

perturbed in D. At this Y value only AII and AIII coexist. When the plot in Fig. 19 is compared to 

Fig. 20 in the region of positive or negative perturbation values, the magenta dot represents one 

value of the initial conditions that when perturbed causes the coordinates to cross from one 

attractor’s domain in the basin to the other attractor’s domain.  

 

Figure 19: Basin of attraction for Y=1.80. The magenta point marks the location of AII when crossing through 

the plane. The black line shows where the coordinate point moves to if a perturbation in D were applied. 
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Figure 20: Changes in attractors occur for perturbations applied to a single point on base AII at Y=1.80. The 

attractor changes coincide with the basin of attraction shown in Fig. 19. 
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CHAPTER IV 
 

 

CONCLUSIONS 

This study of the laser with injected signal shows that attractor characteristics can be predicted 

using various methods of analysis. Using Lyapunov exponents it is possible to discover, identify, 

and predict dynamic behaviors of not only the LIS system actively being studied, but variations of 

other nonlinear systems as well. Symmetric-like bubbles and asymmetric bubbles configured by 

the LEs indicate immanent bifurcations and active bifurcations, respectively. The symmetric-like 

bubbles are the most interesting. Their initial mystery existence can now be explained by 

changing a system parameter, whereby the symmetric-like bubble becomes asymmetric; ergo the 

symmetric-like bubbles are forecasters of immanent bifurcation dynamics. Further universal LE 

boundary conditions were found to predict the origin and demise of the active regions of all given 

attractors—domains of existence. Note, these three LE configurations are also identified in a 

nonlinear optomechanical system that is more complex than LIS. Therefore, it is suggested that 

these defined LE patterns are universal predictors.  

The investigation into perturbing the LIS system away from a base attractor to see whether the 

system transitions or not to the coexisting attractor results in an unexpected unique feature of the 

LIS system. There is a significant difference in attractor dispensation between the positive and 

negative perturbation values imposed on the population difference. When the occurrence 

percentages of the two attractors are plotted against the input amplitude, the system exhibits 

significantly different attractor percent schemes associated with negative perturbations versus that  
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of positive perturbations in the coexisting region. Investigations show interesting changes in the 

dynamics. 

 Another comparison is made between the perturbation results and the basins of attraction. This 

comparison shows that the system follows the basin of attraction for any set of initial conditions 

and lands on the attractor that the basin predicts. However, the way that the basin is calculated is 

by starting on sets of initial conditions and evolving them in time until the system lands on an 

attractor. This circular logic does not explain why the system has a sudden change to the basin 

between two closely valued control parameters, and it is not understood at this time. One other 

speculation is that the density of points around the attractor could change causing the shifts in the 

basin, though the periods of motion stay the same.  
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APPENDICES 
 

 

Appendix 1. Class B and Class C Laser 

 The classification of lasers is defined by its relationship between the cavity linewidth and the 

material linewidths [23]. For a plane-wave ring laser: the Class B laser has the polarization 

relaxation rate much greater than the cavity relaxation rate which is greater than the relaxation 

rate of the population inversion, γ⊥>>κ>> γ∥, and “these lasers are often sensitive to harmonic 

perturbations~√(2κγ∥ (A-1)), where A is the threshold parameter. Laser frequencies are very close 

to cavity resonance frequencies” [23]. The Class C laser has all three rates approximately equal, κ 

~γ⊥ ~γ∥, and “Unstable oscillations from a single mode steady state are possible for κ> γ⊥+ γ∥. 

Laser frequencies may be strongly pulled from cavity resonances towards the atomic frequency if 

κ >>γ⊥.” [23]  
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Appendix 2. Common Dynamic Analysis 

Appendix 2.1. Temporal 

Temporal plots are made by plotting the combined state variables, |𝑋| = √𝐴2 + 𝐵2, against 

time for a specific value of the input amplitude, Y. Numerical solutions must be obtained to generate 

the plots, and when on an attractor show that attractor’s periodicity. This can be used to make a 

quick visual check to see if the system has landed on a certain attractor assuming that the attractors 

for the system are already known. Temporal graphs look at the time evolution of a single system 

variable. These two-dimensional plots typically are used to determine, roughly, the period and 

frequency of an attractor for a fixed value of Y. For a precise value of the frequency, or period, a 

Fourier analysis must be done. However, the temporal graphs also show the amplitude of the state 

variable observed, and the minimums and maximums for the oscillation within one period. In order 

to do this the set of five equations are solved numerically as the system evolves in time and then 

one of the state variables is plotted against time. The temporal plots of AII, AIII, and AV are shown 

in Figs. A1. The attractors have different periodicities associated with each. AIII has a period that 

is three times that of AII, because it has a subharmonic of 1/3 of its fundamental frequency it is 

considered a 3P. AV is a 4P due to its 1/4 subharmonic frequency. The period of the cycle is dictated 

by the subharmonics that the attractor has, this is shown further in the Fourier spectra. All three 

attractors coexist at the same value of the input amplitude, Y = 1.83, as shown in Fig. A4. These 

plots display the timing and amplitude of the attractor in terms of the output amplitude and can be 

used to identify the attractors. 
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Figures A1: Temporal plots of the output field amplitude, |X|, vs time τ at Y = 1.83. (a) AII is a 1P limit cycle. 

(b) AIII is a 3P limit cycle (c) AV is a 4P.  
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Appendix 2.2.  Fourier  

A Fourier analysis is performed on the temporal graph, in order to obtain the frequencies of the 

attractor. These frequency plots have fundamental frequencies along with harmonics and 

subharmonics. These types of plots can clearly confirm the periodicity of an attractor based on the 

fundamental frequency and what fraction the smallest subharmonic it is of that frequency. A Fourier 

analyses is shown in Fig. A2. The graphs show the dominant frequency and harmonics or 

subharmonics of the attractor. The power spectra for AII, AIII, and AV are plotted at Y=1.83 in 

Figs. A2 (a-c), respectively. For this LIS system, each attractor has a shared commensurate 

frequency of ≈0.12. Some coexisting attractors have different multiples of harmonics and/or 

subharmonics. Due to these differences in their frequency spectra, the periods can be multiples of 

each other, in the case of commensurate frequencies. 
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Figures A2: Fourier spectra for (a) AII, (b) AIII, and (c) AV. AIII and AV both have subharmonics as 

fractions of the shared frequency ≈0.12.  

Appendix 2.3. Phase Space 

As written above after the system is solved numerically three of the five system variable are plotted 

in order to view a 3-dimensional representation of the attractor. Depending on the attractor’s 

frequencies and harmonics/sub-harmonics the attractor can appear as a variety of 3-dimensional 

shapes that loop back onto itself. The simplest is an elliptical shape, but they can be as complicated 

as an n-dimension torus. A phase-space graph is a three-dimensional plot of three of the five state 

variables as the system evolves in time. The attractors are typically plotted using the Re X, Im X, 

and D. For this discussion Y = 1.83 continues to be the control parameter. Figure A3 shows the 

phase space for AII, AIII, and AV, with each receiving its own phase space plot. All three 

coordinates are plotted as a function of time, forming the limit cycles shown. Figure 2 shows the 

full domain of coexistence is from 1.822<Y<1.833. 
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Figures A3: Phase space plots of Re X, Im X, and D for three coexisting attractors at Y = 1.83. (a) The 1P 

limit cycle for AII. (b) The 3P limit cycle for AIII. (c) The 4P limit cycle for AV. 

Since all three attractors coexist for a domain of Y, Figure A4 shows AII, AIII, and AV at Y=1.83. 

The Xs mark the region where the density is lowest for the number of points plotted in phase space. 
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The dots mark where the points are densest. The density corresponds to how far the system travels 

in a single unit of time. Where longer distance cause lower densities, and short distance higher 

densities.  

 

Figure A4: Phase space plot of three coexisting attractors at Y=1.83: AII, AIII, and AV in red, green, and 

blue, respectively. The dots show the location on the attractor where the density of points is greatest, while 

the Xs show the location where the density of points is least. 
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Appendix 3. Hurwitz Criterion  

In this section the coefficients from the fifth order polynomial in λ, equation (10), are given. They 

are in terms of the system parameters and the modulus of the output field amplitude. For example, 

A=Ass + δA, where Ass is the steady state and δA is an extremely small step away from that steady 

state such that δA2 is considered zero. When the partial derivative with respect to each of the state 

variables small perturbation is taken for the current equations, since the steady states are constant 

they go to zero. The only terms remaining are with respect to the state variable after the partial 

derivative is applied. The solution of ci*eλt is used, where i=0, 1, 2, 3, 4, or 5. This gives a 5x5 

matrix, where each diagonal has a λ-term. The determinant is taken to get a fifth order polynomial 

in terms of λ. The coefficients are used in the stability analysis. It should be noted that the K’s are 

actual κ̃ and that other tildes are dropped due to programming limitations. The coefficients must be 

positive to be considered stable, as well as the Hurwitz determinants. The Hurwitz determinants 

[29] form the following matrix, equation (11), and are determined by the number of coefficients 

that are in the polynomial, each determinant, hn, is the determinant of an n × n matrix, where n = 1, 

2, 3, ….  

c0 λ5 + c1 λ4 + c2 λ3 + c3 λ2 + c4 λ1 + c5       (10) 

 

 

𝐻 =

(

 
 

𝑐1 𝑐3
𝑐0 𝑐2

𝑐5 0
𝑐4 0

0
0

0 𝑐1
0 𝑐0

𝑐3 𝑐5
𝑐2 𝑐4

0
0

0 0 𝑐1 𝑐3 𝑐5)

 
 

 (11) 

The Hurwitz determinants must also be positive for the system to be stable. If even one coefficient 

or determinant is negative the system is determined to be unstable at that point. The system is 

evaluated for each value of the input parameter. The Hurwitz determinants, the principal minors of 

the matrix generated from the 5th order polynomial, and the coefficients must both be positive for 
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the system to be considered stable. A single negative coefficient or determinant means that the 

system is unstable. The results from this analysis are used to find any instabilities in the system and 

the location of those regions of instability. If the system exhibits a stable behavior, then has a fixed 

output with no oscillations for a specific input value, a steady state. The explicit determinants are 

written below. 

h1 = c1 (12) 

h2 = c1 c2 - c0 c3 (13) 

h3 = c1 (c2 c3 - c1 c4) - c0 (c3
2 - c1 c5) (14) 

h4 = c1 [-c5(c2
2-c0 c4) + c4(c2 c3-c1 c4)] - c0 [-c5 (c2 c3 - c0 c5) + c4 (c3

2 - c1 c5)] (15) 

h5 = c5 h4 (16) 
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Appendix 4. Perturbations 

 Perturbations for individual values of the input amplitude for AII, AIII, and AV. These 

plots were combined to make the plots in Figs. 16. Each plot looks at 40 points around the 

attractor for one period of the motion. Each of those points are perturbed off of each of those 

points for a total range of -0.3<δv<0.3 by steps of Δδv = 0.005. The figures are in order of 

increasing input field amplitude. Starting with AII in Appendix IV.1, AII in Appendix 4.2, and 

AV in Appendix 4.3. 

Appendix 4.1. AII Perturbations 
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Figure A5. Perturbations of AII for 1.62<Y<1.93. Each plot has the percentage chance of transitioning 

attractors for the total range of perturbations displayed. 
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Appendix 4.2. AIII Perturbations 
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Figure A6. Perturbations of AIII for 1.62<Y<1.83. Each plot has the percentage chance of transitioning 

attractors for the total range of perturbations displayed. 

Appendix 4.3. AV Perturbations 
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Figure A7. Perturbations of AV for 1.82<Y<1.93. Each plot has the percentage chance of transitioning 

attractors for the total range of perturbations displayed. 
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Appendix 5. Mathematica Code 

Appendix 5.1. Steady State and Stability Analysis 
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Appendix 5.2. Lyapunov Exponents 
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Appendix 5.3. Perturbation Program 
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