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Abstract: Undergraduate students’ choices and success in their career and life is 

influenced by their mathematics achievement and perception of themselves in life. 

Conceptual understanding of topics in undergraduate mathematics such as 

quantitative reasoning can be difficult for students with less sophisticated 

multiplicative reasoning than others. This study explores undergraduate students 

multiplicative reasoning and its connection to their solutions to optimization 

problems and their mathematics identity. Data was collected in two phases and 

synthesized into three articles. The first article is the validation of an assessment. 

The second is a case comparison study on undergraduate student solutions to 

optimization problems. The third is a case comparison study of undergraduate 

students’ mathematics identity. In the first phase, the Undergraduate 

Multiplicative Concept Assessment (UMCA) and scoring rubric were developed 

and tested to provide evidence towards its validity as an appropriate assessment 

for undergraduate students. Data in this phase was collected from 51 

undergraduate student assessments and 18 clinical interviews. Evidence towards 

the validity of the UMCA is discussed in the first article of this dissertation. In the 

second phase of data collection, 43 undergraduate students in an entry level math 

course took the UMCA and five of these participants participated in an interview. 

This interview was given in two parts: a semi-structured interview on their 

mathematics identity and a clinical interview asking them to solve optimization 

problems. Results from the clinical interview were discussed in the second article 

and results from the semi-structured interview are discussed in the third article. 

Findings from this study (1) supports the UMCA as a valid assessment for 

undergraduate students, (2) show that student solutions to the optimization 

problems included guess and check, tables, graphs, and equations and leveraged 

relational, algebraic, and covariational reasoning to get accurate answers, and (3) 

provides evidence towards the connection between students’ mathematics identity 

and multiplicative reasoning. 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

Mathematics achievement has lasting consequences on students’ future job salary, and 

socioeconomic and employment status (Gonzalez et al., 2020; Stinson, 2004). Researchers have 

discussed mathematics achievement as a gate-keeper to students’ college attendance, college 

completion, and level of academic success and attainment (Douglas & Attewell, 2017; Gonzalez 

et al., 2020). Students’ career choices and persistence in mathematics related fields is influenced 

by their mathematics achievement and their perceptions of their mathematics ability (Ehrenberg, 

2010; Gonzalez et al., 2020). Supporting students’ mathematics achievement is supporting their 

long-term career options, goals, and financial success.  

The purpose of learning mathematics is not solely students’ mathematics achievement. 

Learning mathematics allows students to develop mathematical reasoning that is beneficial for 

reasoning about the world around them. The National Research Council (2001) stressed the 

importance of teaching students to reason mathematically so they can participate in society and 

develop competence in everyday tasks. As such, mathematical reasoning became a major focus 
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in the goals of the Common Core State Standards for Mathematics (CCSSM; CCSSO, 2010). 

Similarly, entry-level college math courses focus on quantitative reasoning in their curriculum 

(Elrod, 2014; Lusardi & Wallace, 2013; Wolfe, 1993). Quantitative reasoning requires students 

to apply mathematics and critical thinking to interpret data and draw conclusions to solve 

problems, which are critical skills for students regardless of their pursued major (Elrod, 2014).  

An important aspect of developing students’ quantitative reasoning is the types of tasks 

students experience and reason about in their education. Education initiatives focus on students’ 

development of rich mathematical and quantitative reasoning. The National Research Council 

(2001) and the CCSSM (CCSSO, 2010) both discuss students’ conceptual understanding of 

mathematic topics as a priority in teaching mathematics. Conceptual understanding is students’ 

“comprehension of mathematical concepts, operations and relations” (CCSSO, 2010, p. 6). 

However, conceptual knowledge of some mathematical topics, such as rate of change, can be 

difficult for students to learn (Byerley, 2019). Some students prefer to memorize procedures due 

to the difficulty of conceptual learning (Byerley, 2019). Evidence from Byerley’s (2019) study 

indicated that many of these difficulties in conceptual learning may come from the limitations 

caused by the students’ available operations that became sources of frustration when asked to 

learn mathematics conceptually. As such, conceptual approaches to instruction should 

incorporate strategies that facilitate mathematic reasoning and accommodates limitations on 

students’ mathematical reasoning from their available operations.  

Statement of the Problem 

Supporting student’s conceptual learning requires a deep understanding of students’ 

problem-solving strategies, reasoning, and foundational knowledge (Linquist, 2015). Steffe 

(1992) argued that second-order models of student thinking that are constructed through the 
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lenses of both the researcher and the student are essential for understanding student thinking. 

Second-order models are hypothetical models constructed by observers to explain their 

observations of the behaviors of an observed subject (Steffe, 1992). As such, second-order 

models are a way for the researcher and teacher to develop an understanding of students’ 

mathematical thinking that prioritizes the students’ perspective and sense making. Steffe (1992) 

argued that to ignore the students’ lens in problem solving is to place an expert’s bias on student 

work that minimizes and excludes a wide variety of viable strategic thinking. Second-order 

models of student reasoning allow researchers to identify stages of student reasoning on topics 

such as number sequences (Steffe, 1992), the multiplicative concepts (Hackenberg & Tillema, 

2009; Steffe, 1994), fractions schemes (Steffe, 2010) and proportional reasoning (Steffe et al., 

2014) and explore students’ operations and mathematical reasoning that is supported by their 

stage in the model. Some examples include the relationship between the multiplicative concept 

stages and students’ understanding of rate of change (Byerley, 2019), the relationship between 

students’ fraction schemes and multiplicative concept stages and their ability to write 

generalizations and equations (Hackenberg & Lee, 2015; Hackenberg et al., 2021), and the 

relationship between students’ unit coordination structures and their problem solving with 

systems of equations (Olive & Caglayan, 2008). 

Research on second-order models of student thinking takes many approaches. Among 

these are three this study will use. First, there is an identification of students’ mathematical 

knowledge that serves as a foundation for their mathematical thinking (e.g., Kosko, 2019; Steffe 

1994; Steffe et al., 2014; Thompson & Carlson, 2017). Second, there is an exploration of student 

thinking on new tasks and topics through the lens of their prior mathematical knowledge (e.g., 

Byerley, 2019; Hackenberg & Lee, 2015; Olive & Caglayan, 2008; Steffe, 2013). Finally, there 
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is an exploration of the impacts of these models on the student learning (e.g., Boyce & Norton, 

2019; Boyce et al., 2021; Byerley, 2019; Hackenberg & Lee, 2015). 

This study aims to support undergraduate student’s mathematical thinking by taking 

similar approaches to those mentioned above. First, it is imperative to effectively identify 

undergraduate students’ foundational mathematical knowledge. Second, it is important to explore 

new avenues of undergraduate student thinking to add to our existing models. Finally, 

connecting these models to other areas of students’ lives that have an impact on their 

mathematics achievement provides additional ways to support students’ mathematical learning, 

experiences, and choices.  Each of these points serve one goal, to create more ways to support 

undergraduate students’ success in mathematics. To explore this problem, this paper will be 

assessing students’ ability to construct and coordinate unit structures, or their multiplicative 

concept stage (Hackenberg & Tillema, 2009), as a model to explore student thinking on 

optimization problems and students’ mathematics identity. 

Purpose and Research Questions 

 The three articles presented within this paper contribute to this study’s overarching 

purpose, to explore the relationship between undergraduate students’ multiplicative concept 

stage and their mathematical reasoning and mathematics identity. Each article will be discussed 

below in terms of its individual purpose and aligned research question(s). 

Article 1 

 The purpose of the first article is to develop an instrument and scoring rubric to assess an 

undergraduate students’ multiplicative concept stage without necessitating interview evidence, 

allowing for ease of data collection. Students who have the ability to construct and coordinate 

unit structures work on one of three stages of the multiplicative concepts referred to as the first 
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multiplicative concept (MC1), the second multiplicative concept (MC2), and the third 

multiplicative concept (MC3; Hackenberg & Tillema, 2009). The data collected by the 

assessment should accurately reflect literature on the multiplicative concepts and create clear 

delineations between students with different multiplicative concept stages. The research question 

that will be addressed in this study is: 

 How well do the assessment and rubric items align with the theoretical framework for 

multiplicative concepts and assess undergraduate students’ multiplicative concept stage? 

Article 2 

 The purpose of the second article is to explore undergraduate students’ problem solving 

on optimization problems and how students’ multiplicative concept stage influences their 

problem solving. The research questions that will be addressed in this study are: 

 How do undergraduate students reason about and solve optimization problems? 

 To what extent can the multiplicative concepts be used to explain undergraduate students’ 

reasoning on optimization problems? 

Article 3 

  The purpose of the third article is to explore how undergraduate students with different 

multiplicative concept stages discuss their mathematics identity. The research question that will 

be addressed in this study is:  

 How do students with different multiplicative concepts describe their mathematics 

identity? 

Significance of the Study 

Each of the articles outlined in this study expand the research field surrounding 

multiplicative concepts and student thinking. Previous research has developed assessment tools 
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for the multiplicative concept stages of second and third graders (Kosko & Singh, 2018), fourth 

and fifth graders (Kosko, 2019) and sixth graders (Norton et al., 2015). However, undergraduate 

MC2 students often bypass limitations in their conceptual understanding by memorizing 

procedures (Byerley, 2019). This can potentially make it difficult to distinguish MC2 and MC3 

undergraduate students from written work on existing assessment. The first article develops an 

assessment that is more appropriate for undergraduate students than current assessments. The 

newly developed assessment can be used to collect data on a larger scale in undergraduate 

education by minimizing the need for interview verification of stage attribution. This will assist 

the fields’ current movement towards research in undergraduate student thinking on college 

mathematics concepts (Boyce et al., 2021; Byerley, 2019). 

 With multiplicative concepts research expanding into undergraduate education, new 

mathematics topics and problems join the discussion. Current research has explored the 

relationships between students’ unit coordination structures and their reasoning and operations 

with fractions (Steffe, 2001), proportions (Steffe et al., 2014), variables and equations 

(Hackenberg, 2013; Hackenberg & Lee, 2015; Hackenberg et al., 2021; Olive & Caglayan, 2008; 

Zwanch, 2019), quantity and measurement (Steffe, 2013) and rates of change (Byerley, 2019).  

The second article explores student thinking on optimization problems in order to add to 

researchers’ understanding of students’ strategies when solving systems of equations, which was 

discussed in Olive and Caglayan’s (2008) study.  

Research in this field remains widely focused on creating and using second-order models 

to explore student mathematical thinking. These models involve multiple stages of student 

thinking and operations. Limitations in student thinking can cause students to struggle when 

learning new mathematical concepts. Byerley (2019) found that MC2 students were frustrated 
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during conceptual learning due to difficulties that resulted from limitations in their operations on 

unit structures. These struggles can create negative experiences in mathematics if they do not 

receive support. These negative experiences can have a detrimental influence on how they view 

themselves as a “math person”.  

The third article expands student multiplicative concept research into the identity field by 

exploring the potential connections between students’ mathematical experiences stemming from 

their multiplicative concepts and their development of their mathematics identity. A part of 

supporting student thinking is ensuring their persistence in problem solving. Students’ 

mathematics identity plays an important role in their persistence in mathematics (Cribbs et al., 

2020). It is important to support the construction of strong mathematics identities in students to 

help them persist in mathematics. Accommodating student problem solving to overcome 

limitations in their thinking could potentially create positive mathematics experiences that 

influence their constructed mathematics identity. Such research is beneficial for understanding 

the potential relationship that may exist between multiplicative concepts and students’ 

mathematics identity.  

Assumptions, Limitations, and Delimitations 

Assumptions 

It is an assumption for this study participants respond to questionnaire and interview 

questions with honesty. Additionally, it is assumed that each student participating in this study 

has completed the high school mathematics curriculum, which includes the topics of 

multiplication, improper fractions, equation representations of word problems, and solving 

systems of equations prior to attending university (CCSSO, 2010). While mastery may not have 
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been achieved, it is assumed undergraduate students have some prior knowledge of these 

concepts.  

Limitations 

 Conclusions from the optimization problem solutions inform the construction of a model 

of student thinking. While these serve as a general model situated in multiplicative reasoning 

research that can be transferred to other students with similar operations, it is important to note 

that these participants do not represent the entirety of MC2 and MC3 students. For this reason, it 

is important to develop an assessment and rubric for assessing the multiplicative concepts of the 

undergraduate populations, but also use the assessment and interpret any findings from it with 

this population in mind. Additionally, prior research has shown that undergraduate students have 

generally constructed an MC2 by the time they attend undergraduate mathematics (Boyce et al., 

2020). As such, MC1 students will be excluded from the sample for the second and third articles 

of this study.  

Past experience with problems posed influences their ability to problem solve and clinical 

interviews only capture a snap-shot of student understanding at a given time (Clements, 2000). It 

does not reflect what they could learn but rather what they know when they participated in the 

study.  

 Additionally, while we can look at individual students to determine a general pattern of 

mathematics identity construction, these conclusions are not indicative to the entire population of 

undergraduate MC2 and MC3 students. However, looking into the narratives of these 

participants provides key insights to the relationship that may exist between their multiplicative 

concepts and mathematics identity. These limitations do not take away from the study, but rather 
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add to the narrative surrounding multiplicative concepts and mathematics identity to allow for 

further research on these topics.  

Delimitations 

 A delimitation of this study is use of undergraduate education majors as a sample of 

convenience for the assessment and rubric validation in the first phase of this study. Restricting 

this sample allows greater access to students for the interviews necessary to accurately evaluate 

the instrument. Additionally, participants chosen for the second portion of this study (the 

participants for article 2 and 3) will be purposefully selected to ensure a wide variety of 

participant backgrounds.    

As stated in our limitations, only students with the MC2 and MC3 students will be 

interviewed. This choice is made to reflect the general absence of MC1 students in the 

undergraduate mathematics population (Boyce et al., 2021). Attempting to obtain a large enough 

sample of students with the first multiplicative concept for these studies would be difficult and 

disproportionate to the population as a whole.  

 Additionally, there will be one interview protocol to collect data on student solutions to 

optimization problems and their mathematics identity to help researchers manage time and allow 

the minimization of resources needed for participant recruitment. This decision also allows for 

the collection of participants’ identity statements during problem solving 

Summary 

 The articles discussed in this paper develop a way to assess the multiplicative concept 

stage of undergraduate students, explore undergraduate students’ problem-solving strategies for 

optimization problems, and explore connections between students’ multiplicative concept stages 

their mathematics identity. Research on these topics aim to expand the literature surrounding 
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undergraduate multiplicative concepts and the development of mathematics identities. Exploring 

these concepts allows us to re-evaluate the support we are providing for students in 

undergraduate mathematics classes for their success in higher level mathematics.  
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CHAPTER II 

 

 

LITERATURE REVIEW 

 

 

 To further explore the relationships between students’ operations, problem solving 

strategies, and mathematics identity, it is important to discuss what research has been published 

as a foundation for these topics. This chapter will discuss the epistemological stance and 

theoretical framework of schemes, literature on students’ unit coordination schemes, the 

definition of and supporting mathematical reasoning involved with optimization problems, and a 

conceptual framework connecting schemes to mathematics identity. This discussion will begin 

by exploring the theoretical underpinnings and frameworks for this study.  

Radical Constructivism 

 Radical constructivism, as discussed in Ernst von Glasersfeld’s (1995) book, is the 

culmination and adaptation of theories of existence and Piaget’s (1952) theory of cognitive 

development. Radical constructivism has two foundational principles for knowledge and 

cognition: 

 Knowledge is not passively received, but actively built up and constructed by a 

cognizant subject. 
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 Cognition is fundamentally adaptive attempting to find fit and viability in the active 

organization of the subjects’ experiential world (von Glasersfeld, 1995). 

Cognition does not pursue a development of an objective reality, but instead an optimal 

understanding of the reality experienced by the subject. As such, von Glasersfeld (1995) treated 

this learning theory as a tool for its usefulness in understanding learning rather than as a 

metaphysical proposal of reality.  

Under these foundations, radical constructivists seek to understand the knowledge and 

cognition of others through their constructions. Radical constructivist Leslie P. Steffe (1992) 

placed extreme importance in pursuing research in children’s mathematics rather than the 

mathematics of children. Children’s mathematics focuses on children’s problem solving with an 

emphasis on students’ knowledge, operations, and thinking. As such, models of children’s 

mathematics are second-order models that combine the researcher and subjects’ lenses to create a 

hypothetical model of children’s mathematical experiences (Steffe, 1992). In contrast, the study 

of the mathematics of children develops first-order models from the researcher’s or expert’s lens. 

Such models often minimize student solutions if they do not reflect the researcher’s expectation 

of children’s problem solving (Steffe, 1992). Children’s understanding of mathematical concepts 

are negotiated during their interactions with these concepts and their learning environments. As 

such, each child has potential for problem solving based on their prior understanding and 

learning experiences (Steffe, 1992). 

Theoretical Framework: Scheme Theory 

 The influence of students’ prior experiences are outlined in von Glasersfeld’s (1995) 

action scheme theory, which was adapted from Piaget’s (1952) idea of schemes. An action 

scheme is defined as a model for an individuals’ learned actions and thoughts that serve as a 
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pattern of interaction that comes into play when an individual is introduced to a situation (von 

Glasersfeld, 1995). It involves three parts: a recognition of the perceived situation, a specific 

mental activity that is associated with that activity, and an expected result based on previously 

experienced results (see Figure 2.1).   

Figure 2.1 

Pattern of an action scheme 

Note: Figure of an action scheme from the recognition phase to the activity phase and the 

expected result. 

 

For example, a student that is asked to solve a system of equations will first look at the 

problem and attempt to recognize it. If a student has previously worked with systems of 

equations, they may recognize the current problem as a familiar one and move on to the action 

phase. In the action phase they would use their known operations and procedures to solve the 

problem. These operations would be the ones they used previously and could include strategies 

such as substitution or guess and check. Students will have an idea of what the product of this 

strategy should look like based off their previous work solving systems of equations. They may 

expect this product to be an ordered pair, a value for x and y, or just a number. As such, the 

student can compare their result with their expected result. However, if the student has never 

seen systems of equations before, they may rely on their knowledge of similar concepts to solve 

the problem (e.g. their experience with single equations). In this case, the individual’s activity 

will reflect their work with single equations. Additionally, their expected result may be similar to 

their expected result when working with single equations, or it may be completely different as 

they expect the introduction of additional equations to change what is expected as a result. 

Recognition Activity Expected Result 
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Schemes are used in an eternal pursuit of equilibrium. Assimilation, as defined by von 

Glasersfeld (1995), is “an instance of knowing” (p. 62) and heavily influences the recognition 

stage of an action scheme. If the expected result of a scheme does not match the actual result, a 

perturbation occurs. Perturbations can be a positive beneficial surprise or a negative frustration. 

Either way, it is likely that the individual will first reflect on what is available post activity to 

identify a way to reestablish equilibrium in their schemes. This reestablishment of equilibrium 

can occur by the student identifying conditions to establish in the recognition phase to help avoid 

the unexpected result or additions to the recognition phase to create a new scheme. They may 

also make accommodations to the activity associated with the recognition phase of their scheme 

or adjust what they expect the outcome of their activity to be. The cycle of scheme perturbation 

and accommodation to reestablish equilibrium is what constitutes learning (von Glasersfeld, 

1995). The continual pursuit of equilibrium allows learning on an expansive level as more 

concepts are assimilated into the student’s knowledge. 

 Mathematics education research into children’s mathematics has explored students’ 

schemes for a variety of mathematical concepts. Such concepts include number sequences 

(Steffe, 1992; Ulrich 2016b), multiplicative and divisional schemes (Steffe, 1992; Steffe, 1994), 

fractional schemes (Hackenberg, 2007; Steffe, 2001; Steffe, 2010), and proportionality schemes 

(Steffe et al., 2014). Each set of schemes is developed from observations of students’ problem 

solving, strategic thinking, and operations. Schemes, once established, serve as a lens for 

understanding student thinking, operations, and limitations when problem solving, which 

researchers and teachers can leverage to develop curriculum and tasks that promote student 

learning and growth that are tailored to students’ current level of understanding.  
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Additionally, schemes provide insight into foundational mathematical concepts that if not 

mastered can lead to difficulty in understanding more advanced mathematics concepts. For 

example, students who have not constructed the third multiplicative concept (the most 

sophisticated stage of unit coordination) can struggle to understand the concepts behind rates of 

change (Byerly, 2019) and solving system of equation problems (Olive & Caglayan, 2008). 

Instructional practices for these advanced topics should then be adjusted to accommodate for 

limitations in students’ available operations. Research in this field continually strives to support 

student thinking across mathematic disciplines and concepts as it grows the literature 

surrounding student problem solving and schemes. 

Multiplicative Concepts 

 Students’ unit coordination schemes, or multiplicative concepts, were developed from 

Steffe’s (1992, 1994) exploration of students’ number sequences and student thinking on whole 

number multiplication and division problems. Steffe (1992) found that students’ multiplicative 

thinking related directly with their ability to construct and coordinate unit structures (i.e., units of 

units). Units are standard and non-standard units of measure (Ulrich, 2015). Unit structures are 

created from combining smaller units together to form a larger unit that contains subsets of units 

(Steffe, 2010). For example, a composite unit 28 can be thought of as the combination of 2 units 

of size 10 and 18 respectively, 2 units of size 14, 4 units of size 7, or 28 units of size 1.  These 

unit structures can be operated on using partitioning (breaking a whole unit into equal parts; 

Hackenberg et al., 2016), iterating (repeating a part to make a new amount, Hackenberg et al., 

2016), and dismbedding (removing a part of the unit mentally; Hackenberg et al., 2016) 

operations. 
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 In order to reason multiplicatively, students must be able to conceive of and construct a 

composite unit (a two-level unit structure; Ulrich, 2015; Ulrich, 2016a). This construction may 

be done physically with representations such as drawings or finger representations, or 

cognitively with strategies such as skip counting. The degree to which students anticipate, 

assimilate, construct, and coordinate multiple levels of units determines the stage of 

multiplicative concept the student has developed and the operations available to that student for 

problem solving (Hackenberg & Tillema, 2009; Ulrich, 2016a). There are three levels of 

coordination with unit structures within the multiplicative concepts. 

The First Multiplicative Concept 

 Students who have constructed the first multiplicative concept (MC1 students) assimilate 

with one level of unit and are capable of coordinating two levels of units in activity (during 

problem solving; Hackenberg & Tillema, 2009). Students are able to construct a composite unit 

by inserting one unit into another. MC1 students coordinate two-levels of units during activity 

but do not anticipate this coordination prior to problem solving. MC1 students have access to 

partitioning and iterating operations which allow them to create visual representations of 

multiplicative relationships during problem solving (Hackenberg, 2013). They may also keep 

track of their multiplication by monitoring the number of times they have counted using physical 

representations, fingers, or tally marks. While MC1 students can construct composite units in 

activity, the levels of the unit begin to decay after construction.  

For example, MC1 students can determine how many inches are in 3 feet by counting 12 

inches 3 times giving them a total of 36 inches. After this activity, MC1 students perceive these 

36 inches as 36 individual units that retain a number sequence of 1-36 (see Figure 2.2). Since 

these units retain a number sequence, the units are not interchangeable. To the student, the 
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second unit which is assigned a 2 from the number sequence is a different from the tenth unit that 

was assigned the number 10 even though they are the same size. Additionally, the composite unit 

they constructed during activity (the 3 feet containing 12 inches) decays from their unit structure 

and are unavailable to the student for reflection (Hackenberg et al., 2021).  

Figure 2.2 

Example of MC1 students’ operating structures 

 

Note: Visual representation of proposed MC1 students’ solutions to the question “How many 

inches are in three feet?” from Hackenberg et al. (2021). 

 

The Second Multiplicative Concept 

 When students can assimilate with two levels of units and can coordinate three levels of 

units in activity, they have constructed the second multiplicative concept. These students (MC2 

students) are able to anticipate the creation of the two-level unit structures that MC1 students 

could only construct in activity (Hackenberg & Tillema, 2009). MC2 students are able to 

perceive units as subsets of other units allowing them to define and reflect on these subsets and 

disembed them from the whole to operate on (Ulrich, 2015). Thus, MC2 students are able to 

construct three levels of units in activity by disembedding subsets of the two-level unit structure 

and then partitioning these subsets. MC2 students are also able to view the final unit structure, 
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post-activity, as a collection of iterable units of 1 that are interchangeable with one another. The 

three-level unit structure decays after the mental construction of the unit for MC2 students. This 

decay can occur during or after the problem-solving activity for the student.  

 For example, an MC2 student can solve the question of how many inches are in a yard by 

recognizing a yard as a composite unit containing 3 feet. They can then insert 12 inches into each 

of the 3 feet. Thus, they can determine that there are 36 inches in a yard. However, they now 

view these 36 units as identical and interchangeable units of 1 rather than as a number sequence 

of 1-36 (see Figure 2.3). The original unit structure of 1 yard containing 3 feet and the 

constructed 3 feet containing 12 inches each decay post-activity and will require the student to 

repeat their mental activity on the problem to reconstruct these structures (Hackenberg et al., 

2021).  

Figure 2.3 

Example of MC2 students’ operating structures 

 

Note: Visual representation of proposed MC2 students’ solutions to the question “How many 

inches are in one yard?” from Hackenberg et al. (2021). 
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The Third Multiplicative Concept 

 Students who assimilate with three levels of units now anticipate the creation of three 

levels of units prior to mental activity, are able to construct fourth or fifth level units, and can 

flexibly move between levels of units (Ulrich, 2016a). Students who have constructed the third 

multiplicative concept (MC3 students) now assimilate iterable composite units (Ulrich, 2016a). 

MC3 students can construct the splitting operation, which involves the simultaneous use and 

composition of partitioning and iterating operations (Steffe, 2010). Additionally, the third-level 

unit structures they use in problem solving do not decay and are available for reflection post-

activity (Hackenberg & Tillema, 2009).  

 MC3 students can easily determine that there are 36 inches in a yard by anticipating that a 

yard consists of 3 feet that each have 12 inches. They can also determine how many inches there 

are if you add five additional feet to that yard. MC3 students are able to iterate their composite 

units of 1 foot containing 12 inches five additional times to determine that there are a total of 96 

inches. An MC3 student would recognize the 96 inches as 9 feet each containing 12 inches 

(Hackenberg et al., 2021). As such, they retain their third level unit structure for reflection and 

can recognize this structure as a collection of iterations of a composite unit (see Figure 2.4).  
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Figure 2.4 

Example of MC3 students’ operating structures 

 

Note: Figure is a visual representation of proposed MC3 students’ solutions to the question 

“How many inches are in a yard?” and “How many inches are there in total if you add 5 more 

feet to the yard?” from Hackenberg et al. (2021). 

 

Impact of Students’ Multiplicative Concepts 

 Students’ ability to coordinate multiple levels of units plays a foundational role in their 

mathematical reasoning on a wide variety of subjects. Research has explored many avenues of 

students’ mathematical thinking in connection to their unit coordination structures including 

fractional reasoning (Hackenberg, 2007; Steffe, 2001), proportional reasoning (Steffe et al., 

2014), algebraic reasoning (Hackenberg, 2013; Hackenberg & Lee, 2015; Olive & Caglayan, 

2008; Zwanch, 2019, 2022a), recognition of quantity and use of measurement (Steffe, 2013), and 

conceptual understanding of derivatives and rates of change (Byerley, 2019). Students’ 

covariational and geometric reasoning are also areas that students’ multiplicative concepts may 

influence, but more research is needed to explore these potential connections (Boyce & Norton, 

2016). 
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Fractional Reasoning  

Students’ whole number concepts inform their fractional reasoning and schemes (Steffe, 

2001; Steffe, 2010). Students operate on fractions according to the operations available to them 

from their fraction schemes. Boyce and Norton (2016) found that students co-constructed their 

multiplicative concepts and fraction schemes, allowing students to use either scheme to inform 

and accommodate the other.  

 Steffe’s (2001) fractional schemes are primarily built from students use of partitioning 

and iterating operations to solve fractional problems. At the most basic level of fractional 

schemes, the part-whole fraction scheme, students can partition a whole to create a part-to-whole 

relationship. This scheme allows students to recognize a circle partitioned into 8 parts and 

identify what the fraction “3/8” of this circle would be by shading 3 pieces. Additionally, they 

could disembed the three pieces they shaded to indicate that this would be 3 pieces of the total 8 

pieces (Steffe, 2010).  

When students can partition the whole and then recognize a singular part as a “one-to-

many” (Steffe, 2010, p. 102) relationship or unit fraction, they have constructed a partitive unit 

fraction scheme. In this way, they can partition a circle into 8 pieces and identify one of these 

pieces as “one-eighth”. By labeling the unit fraction as “one-eighth”, the student is able to retain 

the relationship between the piece to the whole as a partition of the whole unit.  

Students who then iterate unit fractions to create new fractions of the whole that are less 

than one have developed the partitive fractions scheme (Steffe, 2010). By first partitioning and 

then iterating, a student can identify what fraction of a full circle an unpartitioned piece that is 

three-eighths of the circle takes up. They would be able to correctly identify this as a “three-

eighths” sized piece.  
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The Case of the Iterative Fraction Scheme 

In order to understand improper fractions as numbers in their own right, students must be 

able to simultaneously partition and iterate unit fractions of a “whole” by using a splitting 

operation and assimilate with three-levels of units (Hackenberg, 2007; Steffe, 2001). The 

iterative fraction scheme (IFS) require students to recognize the improper fraction as a unit 

containing iterated unit fractions (Steffe, 2001). When students can do this, they have developed 

the iterative fraction scheme (IFS; Steffe, 2001). This allows the student to consider the fraction 

7/3 as a unit containing 7 iterated 1/3 unit fractions (not units of 1s labeled 1/3) that can be 

reconstructed into 2 wholes and a 1/3 unit fraction, where both wholes contain 3 iterated 1/3 unit 

fractions.  Students who have not constructed an IFS will not know how to deal with the 

additional piece on the end and may ignore it or incorrectly label it. 

MC1 and MC2 students can struggle with more advanced fractional problems involving 

improper fractions that utilize a splitting operation (Hackenberg, 2007; Hackenberg & Lee, 2015; 

Steffe, 2010). In addition to the splitting operations, students must also develop an MC3 in order 

to construct improper fractions (Hackenberg, 2007). While MC2 students can construct a 

splitting operation, an MC3 is required to support the multilayered structure evident in improper 

fractions (Hackenberg, 2007). 

The construction of an IFS is an indicator that the student has constructed an MC3. This 

is an important concept as the IFS is often used in multiplicative concept measurement 

instruments to help delineate between MC2 and MC3 students (Norton et al., 2015). 

Proportional Reasoning  

Proportional reasoning is defined by Lamon (1993) as one’s ability to “construct and 

algebraically solve proportions” (p. 41). This type of reasoning depends heavily on the 



 

23 

 

construction and leverage of a unit ratio during problem solving. Students must assimilate with 

three levels of units in order to accurately identify and use unit ratios in proportional problems 

(Steffe et al., 2014). Students who cannot construct and use unit ratios may have an ephemeral 

awareness of a proportional relationship but have not constructed a proportionality scheme 

necessary for proportional reasoning (Steffe et al., 2014). This lack of a proportionality scheme 

may cause them to conflate scale factor operations that should be applied to their ratio with the 

answer to the proportion question. For example, Jill in Steffe et al.’s (2014) study was given a 2 

to 3 ratio between tablespoons of lemonade powder and cups of water in a recipe. When asked 

how many cups of water were needed to make lemonade with 1 tablespoon of powder, she knew 

to divide the recipe in half. However, she answered that you would need “one half” cups of 

water, confusing the idea of halving the recipe with how much water she would need (Steffe et 

al., 2014).  

MC3 students can identify the unit ratio and apply it to the proportion problem, indicating 

they have moved beyond an awareness of proportionality to the construction of a proportionality 

scheme (Steffe et al., 2014). For example, Jack in Steffe et al.’s (2014) study was also given the 

2 to 3 ratio between tablespoons of lemonade powder and cups of water in the recipe that Jill was 

given. When asked to determine how many tablespoons of powder would need to be mixed with 

one cup of water, he started by identifying that “three halves [cups of water] make up one 

tablespoon” (Steffe et al., 2014, p. 65). He could then use this unit ratio of 3/2 cups of water to 1 

tablespoon to determine that one cup of water would be 2/3 tablespoons of powder. Maintaining 

the proportional relationship between two quantities requires the assimilation of three levels of 

units (Steffe et al., 2014). As such, an MC3 is essential for proportional reasoning (Ulrich, 
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2016a). Zwanch’s (2022a) findings on undergraduate design students reasoning on proportion 

problems supports the necessity of an MC3 for the development of a proportionality scheme. 

Algebraic Reasoning  

A disembedding operation, which is unavailable to MC1 students, is necessary for 

writing multiplicative equations, algebraic expressions, and generalized relationships 

(Hackenberg, 2013). A disembedding operation allows for students to envision partitions of a 

whole as both separate from the whole and a part of the whole. This operation is essential for 

creating a generalization of a situation as students must understand a variable as a part of the 

whole that is independent from the whole but stays in relation to the whole (Hackenberg, 2013). 

When writing multiplicative equations, MC2 students struggle to represent a multiplicative 

relationship between two unknowns and will not use fractions as multipliers to unknowns 

(Hackenberg & Lee, 2015). While MC2 students have constructed a disembedding operation that 

is necessary for equation writing, to visualize the multiplicative relationship between two 

unknowns requires that the student be able to abstract their units coordinations (Hackenberg & 

Lee, 2015). As such, an MC3 is required to able to represent multiplicative relationships between 

unknowns and multiply unknowns with both whole numbers and fractions (Hackenberg & Lee, 

2015). This is further supported by Zwanch’s (2019) findings that the splitting operation (which 

MC3 students have constructed) is essential to representing multiplicative relationships between 

unknowns. 

The third multiplicative concept is essential for developing the meaning of an unknown 

as an indeterminate number of measurement units that contain a precise number of smaller 

subunits (Hackenberg et al., 2021). As such, MC3 students can create generalizable equations for 

different multiplicative relationships. MC2 students can create pictures to represent 
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multiplicative relationships between undetermined unknowns, but have difficulties representing 

these illustrations with algebraic symbols (Hackenberg et al., 2021). However, instruction that 

moves back and forth between pictorial representations and equations supports MC2 

constructions of generalizations for multiplicative relationships between unknowns (Hackenberg 

et al., 2017). Additionally, MC2 students often tie their variable symbols to specific numerical 

examples and create equations around that specific value. Delaying the introduction of numerical 

examples can help MC2 students avoid this tendency (Hackenberg et al., 2017). MC3 students 

can form these general statements without tying the variable to a specific example (Hackenberg 

et al., 2021).  

Olive and Caglayan (2008) found that in order to represent a system of equations that 

contains three-level unit relationships (e.g. the total monetary value of a collection of dimes, 

nickels, and quarters can be represented by the expression 0.10d + 0.05n + 0.25q with d, n, and q 

representing the number of dimes, nickels, and quarters respectively) students need to be able to 

coordinate and conserve units. Solving systems of equations requires the coordination of 

multiple two-level unit structures that helps conserve the units’ values, which is only possible 

with the anticipation of the construction of three level units that MC3 students have (Olive & 

Caglayan, 2008). As such, MC2 students can struggle to create generalized equations for similar 

contexts. 

Quantity and measurement 

Similarly, the multiplicative concepts inform students’ ability to reason with and 

recognize quantity (Steffe, 2013). As shown in the examples from the previous sections, the 

nature of measurement often requires the coordination of multiple levels of units in order to 

successfully solve measurement problems (Hackenberg et al., 2021). Additionally, students must 
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keep track of the types of measures connected to the units being operated on. Without the ability 

to reflect on multiple levels of units, students may struggle to accurately determine the units of 

measure of their answer because they do not maintain the unit structures they constructed during 

mental activity.  

Covariational Reasoning 

Covariational reasoning, as used in this dissertation, is a person’s conceptualization of 

two varying quantities that are varying simultaneously (Thompson & Carlson, 2017). This 

definition stems from Thompson’s (1993) theory of quantitative reasoning that defines 

quantitative reasoning as their conceptualization and analysis of a situation in terms of quantities 

and the relationships between those quantities. Relationships between quantities in more 

complex dynamic situations require covariational reasoning to accurately imagine and represent 

them (Thompson, 2011).  

Byerley (2019) hypothesized that MC2 students might struggle with covariational 

reasoning as it required the simultaneous imagining of multiple varying quantities at once. The 

MC2 participants in her study struggled with ideas of rates and slope, which require 

covariational reasoning to conceptualize (Byerly, 2019). Researchers have hypothesized that the 

splitting operation would be essential for students to calculate ratios between “successive 

changes in y-values for constant changes in x-values” (Ellis et al., 2016, p. 154) of the rate of 

change for exponential growth. In other words, the splitting operation available to the MC3 is 

required for covariational reasoning about rate of change of exponential growth (Ellis et al., 

2016). More research into covariational reasoning and the multiplicative concepts could help 

explore the limitations an MC2 might place on students’ covariational reasoning. 
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Geometric Reasoning 

According to van Hiele (1999), geometric reasoning involves noticing, describing, and 

deducting relationships between patterns and figures. As students move from just noticing 

geometric properties to describing and then informally deducing those properties, students are 

able to articulate and anticipate these properties. The Common Core State Standards for 

Mathematics emphasizes students’ ability to represent geometric relationships as generalized 

algebraic expressions and equations as a key objective in high school geometry (CCSSO, 2010). 

Students’ ability to write algebraic equations are influenced by their multiplicative concepts 

meaning that MC1 and MC2 students may struggle to generalize geometric relationships. 

Additionally, students’ ability to recognize of quantity and complete measurement problems are 

influenced by their multiplicative concept stage (Steffe, 2013).  

However, these ideas do not encompass all the types of geometric reasoning that 

students’ use. Boyce and Norton (2019) called for additional research on students’ geometric 

reasoning and its connection to their multiplicative concepts as this area is currently unexplored 

in the literature.  

Undergraduates Students’ Multiplicative Concepts 

 While much of the research regarding students’ multiplicative concepts revolves around 

grade school, recent studies have started exploring undergraduates’ multiplicative concepts 

(Boyce et al., 2021; Byerly, 2019). Students’ development of the multiplicative concepts begins 

as early as the second grade (Kosko & Singh, 2018). However, Boyce and Norton (2016) found 

that over half of their sixth grade participants had still not developed an MC3. Additionally, a 

study on undergraduate students’ calculus preparedness showed that half of the participants had 

only developed an MC2 (Boyce et al., 2021). 
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MC2 students generally rely heavily on rote memorization over conceptual understanding 

of mathematical operations (Byerley, 2019) and are less prepared for calculus concepts (Boyce et 

al., 2021). Researchers are concerned over the large number of students who have not 

constructed an MC3 in calculus and have made suggestions for both college and grade-school 

curriculum to help support and accommodate MC2 students’ conceptual understanding (Boyce et 

al., 2021; Byerley, 2019). 

While instruments assessing the multiplicative concepts of sixth graders (Norton et al., 

2015), second and third graders (Kosko & Singh, 2018), and fourth and fifth graders (Kosko, 

2019) have been developed, it is unclear if these assessments are valid for undergraduate 

students. The development of an instrument that can help eliminate false positives for MC3 

students from MC2 students will help further research on undergraduate students’ multiplicative 

concepts and their mathematical reasoning. 

Additionally, research on undergraduate students’ mathematical reasoning can benefit 

from explorations into complex problems that require layers of unit coordination for problem 

solving and interpretation. Optimization problems provide a dynamic problem to explore 

multiple facets of undergraduate students’ mathematical reasoning through the lens of their 

multiplicative concept stage. The following section will discuss the opportunity for exploring 

undergraduate student thinking that optimization problems provide. 

Optimization Problems 

Optimization problems provide a situation with varying parameters and ask the student to 

identify values within these parameters that would indicate an optimal solution. The problems 

that will be used in this study will explore students’ thinking on two different optimization 

problems that explore relationships passengers and revenue and area and length respectively. 
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The charter bus problem is an example of an optimization problem with varying 

parameters for passenger number and ticket cost. The charter bus problem is as follows: 

 

Marian owns a charter bus company that offers a route to the neighboring city that 

charges $40 per person if up to 30 passengers sign up for the trip. If more than 30 

passengers sign up, the fare for every passenger is reduced by $1 for every 

passenger in excess of 30. The bus can only hold up to 48 passengers. How many 

passengers does Marian want to sign up for her charter bus route if she wants to 

maximize her revenue for the trip? 

 

The barn pen problem is an example of a geometry optimization problem with a set 

parameter for the perimeter as a varying parameter for the area. The barn pen problem is shown 

below. 

 

John wants to build a rectangular pen next to his barn. To try and maximize his 

resources, he decides to use one side of the barn as a side of his pen. If he has 160 

feet worth of fence available to build his pen and the barn side was over 160 feet 

long, what dimensions of the pen will maximize its area? 

 

 For example, students who are solving the barn pen problem are expected to be able to 

represent the perimeter and area of the pen as functions. They should then be able to use the 

equation for the perimeter to provide a function for the length of one side and insert this function 

into their area function. Then students should be able to interpret this function to determine 
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dimensions that maximizes the area of the pen. While this is the general solution process, the 

mathematical reasoning required to conceptualize these problems involves sophisticated 

quantitative, algebraic, and covariational reasoning (Thompson & Carlson, 2017).  

Thompson (2011) defined quantification to be the conceptualization of an object and an 

attribute of the object so that the attribute both has a unit of measure and a proportional 

relationship with that unit. This definition of quantification outlines it as a process of 

determining what it means to measure a unit, what and how one measures the unit, and what that 

measurement means once obtained (Thompson, 2011). Optimization problems rely heavily on 

students’ ability to quantify the situations presented to represent, measure, and interpret the 

situation to find a desired result.  

Creating generalized representations of dynamic situations such as those found in 

optimization problems requires people to imagine two simultaneously varying variables 

expressed as functions that when combined create an invariant or steady relationship between the 

two variables (Thompson, 2011). This understanding is fundamentally tied to students’ ability to 

represent generalized geometric relationships and conceive of these generalizations as covarying 

unknown quantities. By uniting the two generalized expressions through embedding one within 

the other, students are required to maintain the image of the unit they are embedding and 

maintain the dynamic image of the situation this unit is being embedded into (Thompson, 2011). 

This conservation of both static and dynamic units can be difficult for students. I hypothesize 

that the third multiplicative concept is essential for conserving these relationships in problem 

solving. 

Analysis of students’ problem solving on optimization problems provides insight into 

three key areas of reasoning for students with different multiplicative concepts. First, it adds to 
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the existing research on students’ ability to construct algebraic representations of dynamic 

situations in geometric contexts. Second, it explores students’ ability to conceptualize, use, and 

interpret covarying functions. Finally, it explores students’ ability to conserve and interpret 

multiple units of measure throughout problem solving. 

Summary of Multiplicative Concept Research 

The multiplicative concepts serve as a theoretical lens to students’ problem-solving 

abilities. They are foundational to students’ mathematical knowledge and influence their 

fractional knowledge, proportional reasoning, algebraic reasoning, covariational reasoning, and 

geometric reasoning. Optimization problems provides a suitable problem to explore students’ 

covariational, geometric, and algebraic reasoning. This review of literature serves as an 

exploration into the foundational literature for this study. However, to address the hypothesized 

connections between students’ mathematics identity and the multiplicative concepts, it is 

important to establish the definitions and foundational literature of mathematics identity. 

In the following section, the foundations of mathematics identity research, how it is 

defined, and how it is operationalized will be discussed. This discussion will lead to the 

explanation of a conceptual framework for the influence of students’ multiplicative concepts on 

their mathematics identity. 

Mathematics Identity 

Identity research has been on the rise in the mathematics education research field for the 

last decade (Darragh, 2016; Graven & Heyd-Metzuyanim, 2019). Identity research was founded 

on Erickson’s (1950; 1968) and Mead’s (1934) identity frameworks. While Erickson (1950; 

1968) positioned identity as a single, self-determined, stable concept, Mead (1934) proposed 

identity as a multilayered, dynamic understanding of self, created through action that could 
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develop into multiple, occasionally clashing identities. Central to both of these frameworks is the 

inherent idea and perception of self. In this dissertation, identity will be discussed through the 

lens Cobb and Hodge (2011) provide.  

 Cobb and Hodge (2011) propose multiple approaches to exploring mathematics identity, 

which center around three different ways of framing identity: normative, core, and personal. For 

the purpose of this dissertation, core identity, which adopted a macro-identity approach, aligns to 

the way identity is being defined and explored. Core identity is defined as a students’ “enduring 

sense of who they are and who they want to become” (Cobb & Hodge, p. 189). This definition is 

a refinement of Gee’s (2000) discursive definition of identity as an individual’s views of 

themselves that are constructed through the negotiation with others whom the individual 

recognizes as rational. Individuals can have multiple identities or “selves” in accordance to the 

context in which they are considering themselves (Gee, 2000). For example, a student who 

identifies as a “mathematics person” may also identify as a “science person”, sibling, student, or 

athlete. Each of these roles in which a person identifies constitutes as a different identity 

(Godwin et al., 2020). 

 As such, we define mathematics identity as how students view themselves in relation to 

mathematics, based on their perceptions of their experiences with mathematics (Enyedy et al., 

2006). Mathematics identity, in this sense, can be discussed as how students’ view themselves as 

“doers of mathematics” in the context of their mathematics experiences and community (Nasir, 

2002, p. 214).  

The Explanatory Framework for Mathematics Identity 

 Cribbs et al. (2015) developed an explanatory framework for mathematics identity that 

comprised of two sub-factors, recognition and interest, and a sub-factor of 
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competence/performance that indirectly affected mathematics identity as mediated through 

recognition and interest.  

Recognition is defined as how an individual perceives others’ view them in relation to 

mathematics (Cribbs et al., 2015). Research shows that students’ self-perceptions and 

achievement in mathematics is influenced by their interactions with their parents and teachers 

(Gunderson et al., 2012). Students’ who discuss the recognition they receive from others may 

discuss the times their parents or teachers praised them for doing well in mathematics, times they 

felt they weren’t supported by their family in doing mathematics, an award they received in 

regard to their performance in mathematics, etc. Recognition also includes the idea of self-

recognition. Interest is defined as an individual’s curiosity or desire to learn and do mathematics 

(Cribbs et al., 2015). Interest is tied to students’ engagement in and motivation in doing 

mathematics (Frenzel et al, 2010). Students’ may discuss their interest by describing their love 

for mathematics, an excitement to learn knew mathematics concepts, the possibilities 

mathematics provide, a dread upon hearing they have to take a mathematics course, etc. The 

recognition and interest sub-factors directly influence students’ mathematics identity and serve 

as important foundations for the students’ self-perceptions in mathematics (Cribbs et al., 2015). 

In Cribbs et al.’s (2015) framework, competence and performance were not quantitatively 

different from one another. In prior qualitative research, these sub-factors were considered 

separately (Carlone & Johnson, 2007). As such, we will define these separately here. 

Competence is defined as an individual’s beliefs about their ability to understand mathematics 

(Cribbs et al., 2015). Students’ competence is linked to their goals as students (Ferla et al., 2010) 

and their views of their performance in mathematics (Bleeker & Jacobs, 2004; Bouchey & 

Harter, 2005). Students’ who are discussing their competence may describe instances that they 
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just “got math”, how easily they understood a new type of mathematics problem, how difficult 

certain mathematics concepts are, etc. Performance is defined as the individual’s beliefs about 

their ability to perform in mathematics (Cribbs et al., 2015). Students’ performance beliefs are 

linked to their motivations and actual performance in mathematics (Pajaras & Graham, 1999). 

Students’ discussing their performance may discuss their grades in mathematics, how easily they 

can solve a set of problems, how difficult a certain strategy or operation is to do, etc. The 

competence and performance sub-factors indirectly affect the development of students’ 

mathematics identity by directly influencing their interest in mathematics and the recognition 

they receive from others (Cribbs et al., 2015). Figure 2.5 provides a visual representation of the 

framework discussed and the relationship between the sub-factors and students’ mathematics 

identity.  

Figure 2.5 

Structural model of the developmental factors of mathematics identity 

 

Note: Figure from “Establishing an explanatory model for mathematics identity” by J. D. Cribbs, 

Z. Hazari, G. Sonnert, and P. M. Sadler, 2015, Child Development, 86(4), 1048-1062, 

(https://doi.org/10.1111/cdev.12363). 
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Significance of Students’ Mathematics Identity 

Research on students’ mathematics identity has shown that students’ self-perceptions in 

regards to mathematics strongly correlates to their mathematics achievement (Bouchey & Harter, 

2005; Sonnert, Barnett, & Sadler, 2020). Students’ mathematics identity and self-perceptions are 

also related to their persistence in mathematics (Cribbs et al., 2020) and affects the number of 

mathematics courses they choose to take (Simpkins et al., 2006). Supporting the construction of 

strong mathematics identities in students contributes to their persistence in mathematics and 

influences their career choices.  

Education initiatives have addressed this need for positive self-perceptions in 

mathematics in students in reports and standards related to teaching mathematics. The report 

Adding it all up (Kilpatrick et al., 2001), lists students’ positive disposition towards mathematics 

as one of the five strands of mathematical proficiency. The National Council of Teachers of 

Mathematics (NCTM) encourages teachers to create lesson plans and problems that promote 

curiosity, confidence, persistence, and flexibility in mathematics in their students’ (NCTM, 

2014).  

Developing problems that encourages curiosity, confidence, flexibility persistence in 

mathematics requires a consideration of the student’s ability to solve the problems presented. 

Schemes provide a framework to explore students’ experiences with mathematics and how these 

experiences influence their development of their mathematics identity. The following section 

hypothesizes how the multiplicative concepts influence students’ mathematics identity. 

Conceptual Framework for Mathematics Identity and Multiplicative Concepts 

 Action schemes serve as a pattern of action through which learning can occur through the 

perturbation and accommodation of these schemes (von Glasersfeld, 1995). In this framework, 
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an equilibrium is established when there are no perturbations found between the expected or 

beneficial result of the scheme and the actual result of a person’s activity. Should students never 

accommodate their scheme or create a new scheme, they would be left in a state of imbalance. 

This can cause continual frustration for the student in handling situations that are not supported 

by their constructed schemes.  

 In this way, the limitations in students’ thinking in mathematics problem solving that 

stem from an MC2 can create continued frustration and negative mathematics experiences in 

MC2 students. Indeed, Byerley’s (2019) study showed evidence that the limitations that arise 

from the lack of an MC3 when attempting to construct a conceptual understanding of rate of 

change led to frustration in problem solving for undergraduate MC2 students. These negative 

emotions and mastery experiences may lead to negative views of their mathematics competence 

and performance in turn influencing their mathematics identity. 

 It is useful to explore students’ mathematics identity within the context of their 

multiplicative concept schemes to determine if these limitations of an MC2 are having a negative 

influence on their mathematics identity. Should this hold true, it becomes more important that 

accommodations be made to help support MC2 students with their conceptual understanding of 

mathematics concepts and to help support them in constructing an MC3.  

Conclusion 

 The multiplicative concepts serve as a theoretical lens to students’ problem-solving 

abilities. They are foundational to students’ mathematical knowledge and influence their 

fractional knowledge, proportional reasoning, algebraic reasoning, covariational reasoning, and 

geometric reasoning. Differences in the sophistications of schemes can lead to limitations and 

frustrations in problem solving. Understanding these limitations is important to accurately 
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understanding and accommodating these students to support them in their mathematical pursuits. 

Additionally, research into the connection between schemes and mathematics identity may shed 

light to additional issues that the lack of support for MC2 students can have on their mathematics 

experiences.  
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VALIDATION OF ASSESSMENT FOR UNDERGRADUATE STUDENTS’ 

MULTIPLICATIVE CONCEPTS 

 

Target Journal: Investigations in Mathematics Learning 

Authors: Jianna Davenport, Jennifer Cribbs, and Karen Zwanch 

Abstract: 

Research on the multiplicative concepts of undergraduate students currently lacks 

a validated assessment for this population. This article examines strands of 

validity for the Undergraduate Multiplicative Concept Assessment (UMCA) and 

accompanying rubric. Validation evidence is collected through a combination of 

theoretical analysis, Rasch analysis, and qualitative data analysis on student 

written and interview responses. Data was collected from 51 undergraduate 

student assessments and 18 clinical interviews. Evidence towards the validity and 

reliability of the UMCA are shown in the results. Findings suggest that the 

UMCA is an appropriate assessment for assessing undergraduate students’ 

multiplicative concept stage. 
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Introduction 

 Students’ ability to construct and reason with multi-leveled unit structures serve as a 

foundation to their mathematical reasoning on concepts such as fractions (Hackenberg, 2007; 

Steffe, 2001), proportions (Steffe et al., 2014), algebraic symbols and equations (Hackenberg, 

2013, Hackenberg & Lee, 2015; Olive & Caglayan, 2008; Zwanch, 2019, 2022), recognition of 

quantity and use of measurement (Steffe, 2013), and derivatives and rates of change (Byerly, 

2019). Students who have less flexibility in their use of unit structures can struggle with 

understanding the mathematical concepts that inform mathematical procedures such as 

derivatives (Byerly, 2019). Entry-level college mathematics courses place much of their focus on 

quantitative reasoning or the ability to apply mathematics and critical thinking to interpret data 

and draw conclusions to solve problems (Elrod, 2014; Lusardi & Wallace, 2013; Wolfe, 1993). It 

is beneficial for research to explore ways students’ reasoning about unit structures can create 

limitations in their mathematical and quantitative reasoning to inform curriculum that helps 

students overcome these limitations to achieve conceptual understanding. 

 While research on students’ multiplicative concepts has recently begun exploring 

undergraduate student reasoning (Boyce et al., 2021; Byerly, 2019), current written assessments 

are only validated for second and third graders (Kosko & Singh, 2018), fourth and fifth graders 

(Kosko, 2019), and sixth graders (Norton et al., 2015). The questions on the assessments are 

appropriate for the grades they were validated for, but can be simplified into easy arithmetic 

procedures. Students that have reached calculus can overcome limitations in their conceptual 

understanding by memorizing procedures (Byerly, 2019). The simplicity of existing assessments 

may allow undergraduate students to answer these questions with minimal work or evidence to 

support their thinking. This creates a reliance on interview data to accurately assess students’ 
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ability to work with unit structures, which is time strenuous for large samples of undergraduate 

students.  

 The current study reports the creation and validation of an assessment for undergraduate 

students. Research on students’ ability to construct and reason with unit structures has separated 

this ability into three stages known as the multiplicative concepts (Hackenberg & Tillema, 2009; 

Steffe, 1992, 1994). The assessment, titled the Undergraduate Multiplicative Concepts 

Assessment (UMCA), is designed to collect qualitative data to assist in delineating between the 

three stages of multiplicative concepts. A rubric was created alongside this assessment as a tool 

for interpreting the qualitative evidence collected by the UMCA. The purpose of this article is to 

establish validity evidence for the UMCA for undergraduate students. 

Theoretical Framework 

 Scheme theory provides the theoretical lens for students’ multiplicative concepts that the 

current study uses. von Glasersfeld’s (1995) scheme theory defines an action scheme as a model 

for an individual’s learned actions and thoughts that serve as a pattern of interaction that comes 

into play when an individual is introduced to a circumstance or situation. This interaction 

involves three parts: the individual’s recognition of a situation, the individual’s mental activity 

that is tied to the situation, and the individual’s expected outcome based on previous experience 

with the activity and situation. Each multiplicative concept stage describes the degree to which 

an individual anticipates, constructs, and coordinates multiple levels of units and the operations 

they have available to use during problem solving (Hackenberg & Tillema, 2009; Ulrich, 2016).  

The Multiplicative Concepts 

 Multiplicative reasoning requires students to conceive of and construct multi-leveled unit 

structures (Ulrich, 2015, 2016). The multiplicative concepts consist of three levels of schemes 
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defined by the students’ ability to anticipate, construct, and operate on multi-leveled unit 

structures (Steffe, 1992; Hackenberg & Tillema, 2009; Ulrich, 2015).  

 Students who have developed the first multiplicative concept (MC1) assimilate with one 

level of units and can construct two levels of units in activity (during problem solving; 

Hackenberg & Tillema, 2009). These students can multiply two numbers together by inserting 

one unit into the other. In this way, they can find the number of inches in 3 feet by inserting 12 

inches into every foot and then skip counting to find the total (36 inches). These 36 inches are 

also not considered to be interchangeable and are each assigned a number 1-36. This unit 

structure decays after problem solving leaving the student to reflect on the 36 inches, but without 

its connection to the original 3 feet (Hackenberg et al., 2021).  

 Students who have developed the second multiplicative concept (MC2) assimilate with 

two levels of units and can construct three levels in activity (Hackenberg & Tillema, 2009). If 

asked to find the total number of inches in 2 yards, and MC2 student may anticipate the unit 

structure of 2 yards containing 6 feet. They could then insert 12 inches into each of the 6 feet to 

get a total of 72 inches. MC2 students have constructed iterable units of 1 meaning the 72 inches 

are no longer labeled from 1-72, but are instead considered the same an interchangeable. The 

32nd inch is the same as the 45th inch. MC2 students’ constructed three-level units decay after 

activity, leaving two levels of units for the student to reflect on (Hackenberg et al., 2021). In this 

way, the feet in the previous problem might decay from the MC2’s structure leaving the student 

to reflect on 2 yards containing 72 units.  

 Students who have developed the third multiplicative concept (MC3) assimilate with 

three levels of units and can construct four or five in activity (Hackenberg & Tillema, 2009; 

Ulrich, 2016). MC3 students can also move flexibly between levels of their constructed unit 
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structures (Ulrich, 2016). MC3 students can find the number of inches in two yards is 72 by 

anticipating the need to multiply 2 yards by 3 feet by 12 inches. If you asked to find the total 

number of inches if you added another 5 feet to the problem, and MC3 student could iterate the 

composite unit (two-level unit structure) of 12 inches in 1 foot five times to get a total of 132 

inches (Hackenberg et al., 2021). As shown in the example, MC3 student has constructed iterable 

composite units rather than just iterable units of 1 (Ulrich, 2016). These students retain their 

three level unit structures after problem solving, allowing them to reflect on the three-level units 

used in their problem solving.   

Table 3.1 

Construct map for the multiplicative concepts 

Stage Description Example 

First Multiplicative 

Concept (MC1) 

Student anticipate one 

level of units and can 

construct two levels of 

units in activity. 

 

Can find the number of inches in 6 feet, 

6 ft. x 12 in., by skip counting or using 

repeated addition.  

Second Multiplicative 

Concept (MC2) 

Student anticipate two 

levels of units and can 

construct three levels of 

units in activity. 

 

Can find the number of inches in 2 

yards by multiplying 3 ft. x 2 yd. = 6 ft. 

and then multiplying 6 ft. by 12 in. 

Third Multiplicative 

Concept (MC3) 

Student anticipate three 

levels of units and can 

construct four or more 

levels of units in activity. 

Can find the number of inches in 5 more 

feet (on top of the 2 yds.) by adding the 

5 ft. to the 6 ft. without reestablishing 

the 6 ft. and then multiplying the sum by 

12 in. 

 

Research on undergraduate students’ readiness for calculus and their multiplicative 

concept stage indicated that over half of the students were MC2 students with the rest being MC3 

students (Boyce et al., 2021). None of the undergraduate students in this study were MC1 

students. This suggests a low representative of MC1 students in the undergraduate student 

population. 
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Iterative Fraction Scheme 

Research on the multiplicative concepts has used the multiplicative concepts to inform 

their development of the fraction schemes (Steffe, 2001). Students’ fractions schemes are co-

constructed with their multiplicative concepts, allowing students to use either to inform and 

accommodate the other (Boyce & Norton, 2016). Some evidence found from students reasoning 

about fractions can inform researchers on the multiplicative concept stage of a student.  

Evidence that a student has developed an iterative fraction scheme (IFS) serves as 

evidence a student has developed an MC3 (Norton & Wilkins, 2012; Steffe, 2001). For a student 

to consider improper fractions as numbers in their own right, students must be able to 

simultaneously partition and iterate unit fractions from a “whole” and assimilate with three levels 

of units (Hackenberg, 2007; Steffe 2001). In other words, in order for students to reason about 

improper fractions as a unit structure containing iterated fraction units, the student needs to have 

an MC3. This allows the student to consider the fraction 7/3 as a unit containing 7 iterated 1/3 

unit fractions (not units of 1s labeled 1/3) that can be reconstructed into 2 wholes and a 1/3 unit 

fraction, where both wholes contain 3 iterated 1/3 unit fractions.  

This study addresses the validity of the UMCA as an assessment for undergraduate 

students’ multiplicative concepts stage. The literature surrounding the multiplicative concepts 

create the foundation for the development and theoretical analysis of the items on the UMCA.  

Methodology 

Assessment and Scoring Rubric Development  

The questions on the UMCA were chosen to collect written evidence of undergraduate 

students’ multiplicative concept stage through their problem-solving methods. The questions on 

the UMCA were designed to collect written evidence of students’ anticipated and constructed 
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units and operations that align with prior research to determine a student’s multiplicative concept 

stage. Researchers chose a total of 5 problems to be on the UMCA: 

1. A candy bar company packs 3 candy bars per package, and 6 packages per box. 

a. If a store buys 7 boxes, how many candy bars will they receive? 

b. If the same store orders another 8 boxes, how many total candy bars have they 

received? 

c. Assuming the store received all of their ordered candy bars, how many 

packages have they received? 

2. There are 6 plants in each row of my garden. 

a. How many tomato plants are in 8 rows? 

b. In addition to tomato plants, I also planted potatoes. If there are a total of 102 

plants, how many rows of potatoes did I plant? 

3. There are 12 inches in 1 foot and 3 feet in 1 yard. 

a. How many inches are in 2 yards? 

b. If you add an additional 5 feet onto the original yards, how many total inches 

are there? 

c. How many feet are in the total number of inches?  

d. How many yards are there in the total number of inches? 

4. The stick shown below is 3/5 of a whole stick. How many 1/15 sticks can you make 

from the 3/5 stick? 

 

5. The bar shown below is 7/3 as long as a whole candy bar. Draw the whole candy bar. 
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Problems 1, 2 and 3 on the assessment include multiple parts that challenge the student to 

construct and move fluidly between layers of units. This structure brings the total number of 

questions on the assessment to 11, and are the 11 items discussed throughout the analysis and 

results portion of this study.  

Problems 1, 2, and 3 all begin with an entry-level problem that asks the student to 

construct a composite unit. Question 2-a is the simplest, asking the student to simply multiply the 

number of plants by the number of rows to create the two-level unit structure, 8 rows containing 

48 plants. Questions 1-a and 3-a ask the students to construct a three-level unit structure: 7 boxes 

containing 42 packages containing 126 candy bars and 2 yards containing 6 feet containing 144 

inches. MC2 and MC3 students’ operations support their ability to construct these structures 

easily, and MC1 students should be able to solve these problems with the help of figurative 

materials. The remaining questions in problems 1, 2, and 3 ask the student to operate on their 

constructed composite units and move between the layers of their constructed unit structures. 

Question 1-b and 3-b both ask the student to add an additional number of one unit to find the 

total of another unit (i.e., if add boxes, how many candy bars or if you add feet, how many 

inches). These questions are similar to the problem explored in Hackenberg, Aydeniz, and Jones’ 

(2021) discussion of the multiplicative concepts that was covered in the theoretical framework. 

Evidence supporting the differences in MC2 and MC3 student reasoning on this problem is why 

they are included in this assessment.  

Questions 1-c and 3-c both ask the student to find the middle layer of their unit structures 

(i.e., packages and feet respectively). While both MC2 and MC3 students can construct three-

level unit structures, MC3 students reason more flexibly about each of the three levels. MC2 

students whose unit structure has decayed may treat this as a completely different problem from 
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1-a and 1-b and will start the problem over rather than using the numbers they had already 

calculated (Hackenberg & Tillema, 2009). They may also divide by the wrong unit, having lost 

the meaning behind its relationship to the other units in the problem (e.g., a student divides the 

total number of candy bars by the 6 packages per box instead of the 3 candy bars per package). 

Question 3-d is similar to questions 1-c and 3-c. However, the choice to add 5 feet instead of 5 

yards in problem 3 was intentional to create a remainder on question 3-d. MC2 students struggle 

to accurately represent remainders as a part of a whole. They may ignore the remainder or round 

their solution to the nearest whole number. 

Question 2-b asks the student to use the information from 2-a to split and operate on the 

whole garden. Students are given the total number of plants in the garden and must use the 

information they have to find the total number of rows of potatoes. The student is being asked to 

conceive the garden as a unit structure containing 2 types of plants, one of which contains 6 rows 

and 48 tomatoes and the other that contains an unknown number of rows and potatoes, all of 

which total to 102 plants. Students are being asked to operate on the middle layer of their 

constructed unit to find the number of rows. The researchers propose that due to the complex 

nature of the unit structure in this question, many MC2 students can struggle to reach the desired 

answer without a picture.  

Problems 4 and 5 were adapted from example problems on Wilkins, Norton, and Boyce’s 

(2013) written assessment for students’ fractional schemes. Problem 4 assesses whether or not 

the student has constructed the third multiplicative concept in regard to fractions. This question 

collects evidence towards the students’ ability to reason with the given bar as a unit structure 

containing 3 1/5ths, with each 1/5th containing 3 1/15ths. MC3 students can understand the bar 

as 3 iterated 1/5ths each containing 3 iterated 1/15ths. MC2 students may solve this problem by 
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extending the bar to reconstruct the original “whole” and then partitioning into 1/15ths. Problem 

5 specifically targets the iterative fraction scheme, which can only be constructed by MC3 

students (Hackenberg, 2007). Evidence that the student partitions the bar into 7 1/3rds and then 

uses three of them as a reference to construct the original bar is evidence towards the student 

having the iterative fraction scheme and thus the third multiplicative concept. This question was 

selected as a way to collect additional evidence for a student having a MC3. If a student cannot 

answer this question correctly, that does not provide evidence that they have not constructed a 

MC3. It only indicates they have not constructed an iterative fraction scheme. 

Prior to data collection, researchers met to create a scoring rubric for the UMCA based on 

predicted solutions for MC1, MC2, and MC3 students respectively (see appendix A).  This rubric 

provides an outline of specific written evidence that suggests a student has constructed an MC1, 

MC2, or MC3. The evidence for each question is divided into the appropriate multiplicative 

concept stage. An example for this system is provided in Table 3.2 alongside examples for each 

of the multiplicative concept stages of student work. The student examples provided in Table 3.2 

only include solutions that provided evidence for the multiplicative concepts stage to which they 

were assigned. Questions 1-a and 2-a are only separated into MC1 and MC2/3 as the researchers 

believed they did not provide enough cognitive demand to properly delineate between MC2 and 

MC3 student reasoning. Additionally, problem 5 is separated into two categories: iterative 

fraction scheme and non-iterative fraction scheme. The researchers felt this was appropriate as 

there was no clear way to delineate MC1, MC2, and MC3 reasoning from one another if the 

student had not developed the iterative fraction scheme.
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Table 3.2 

An excerpt from the rubric for Question 3-d with example solutions 

Multiplicative 

Concept Stage 

Student 

Reasoning  

Written Indicators of Reasoning Example Solutions 

MC1 Students attempt to 

rely on their 

created figurative 

material to 

determine how 

many yards are in 

their counted total 

of inches.  

 Student responses show heavy reliance on pictorial or tally 

mark representations of the problem of the units of 1 (inches). 

Composite units (i.e. feet and/or yards) may be drawn but not 

counted. 

 Student attempts to count their figurative material, but creates 

groups that are not representative of the inches to feet to yard 

relationship. 

 Student adds or multiplies incorrect combinations of 

numbers. 

 Student does not refer back to their answer as a part of 3-a, 3-

b, or 3-c. 

 Student does not make an attempt to account for the 

remainder of the yard. 

 Student does not respond or otherwise indicate they do not 

know the answer. 

 

MC2 Students use the 

given relationships 

and the total 

number of inches 

found to determine 

the total number of 

yards. 

 Student works indicates a reliance on repeated addition or 

skip counting or repeated subtraction to solve the problem. 

 Student divides by the wrong unit (i.e. they divide by 3 feet or 

some other related number that is not inches).  

 Student finds an incorrect remainder. 

 Student describes the remainder as “3 and a little bit”, 

“about 3”, or gives a range such as “between 3 and 4”.  

 Student does not interpret the remainder as a part of a 

yard. 

 

MC3 Students assimilate 

with all two-level 

unit structures 

given and readily 

coordinate all of 

these units to 

determine the total 

number of yards.  

 Student finds the total number of yards through division and 

addition (5/3 = 1 2/3, 1 2/3 + 2 = 3 1/3).  

 Student finds the total number of feet using division. 

 Student references the total number of yards in parts 3-a and 

3-b to determine how many total yards there are. 

 Student drawings are used to justify their answers rather than 

produce them as a part of Part B. 

 Student explanations discuss the unit structures as a three-

level unit structure. 

 Student presents multiple ways to solve the problem. 

 Student interprets the remainder as a part of the yard.  
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After all 11 items on the rubric were scored, the student was attributed an overall 

multiplicative concept stage based on these three criteria. 

 If a student has more questions scored at a MC1 level than a MC2, that student is 

assigned a MC1. In the case of a tie (5 MC1 scores and 5 MC2 scores), the 

student is assigned a MC2. 

 If the student has less than 3 questions scored at a MC3 level, that student is 

assigned a MC2. The categories designated as MC2/3 on questions 1-a and 2-a do 

not count towards the 3 MC3 item scores. MC2/3 scores on these questions 

indicate that the student has shown evidence of at least an MC2, but not enough 

evidence that the student could have constructed an MC3. 

 If the student has at least 3 questions scored at a MC3 level or answered question 

5 at the level of an IFS, that student is attributed an MC3. If a student did not 

answer the question at the level of an IFS, they can still be attributed an MC3 if 

they scored at least 3 questions at a level of an MC3 on the UMCA. 

The researchers determined the final scoring criteria based on the data collected from the current 

study. Researchers chose these cut offs as most indicative of their level of confidence in 

assigning a student a multiplicative concept stage. 

Participants and Data Collection 

Data for validation of the UCMA and UMCA rubric was collected as the first phase of a two-

phase study exploring undergraduates’ multiplicative concept stages by (1) validating an 

assessment for undergraduate students, (2) exploring their solutions to optimization problems, 

and (3) exploring how they discuss their mathematics identity. Data in this phase was collected 

from 51 undergraduate students from a mid-western university that were enrolled in education 
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major courses ranging from freshman-level general education courses to senior level 

mathematics-focused education courses. Participants were between 19 and 22 years of age and 

classified themselves as sophomores (47%), juniors (31%), and seniors (22%) in their university 

program. Participants were given 30 minutes in class to complete the UMCA. The 

assessments were handed out alongside a black and a blue pen. Participants were instructed to 

complete Part A of the assessment, which involved solving the questions on the UMCA, with the 

black pen. They were then asked to swap to the blue pen upon reaching Part B of the assessment. 

Here students were presented with the same questions they solved in Part A and asked to explain 

how they solved the problem. Students were instructed that they could mark on Part A while 

working on Part B as long as they used the blue pen. This allowed the researchers to distinguish 

between students’ original work and work they had added or changed after the initial problem 

solving. Students were instructed not to use a calculator for this assessment. 

The participants’ assessments were deidentified prior to scoring. To finalize the UMCA 

rubric, four assessments were chosen randomly for initial scoring. The researchers met to discuss 

their experience using the rubric to score the assessments and changes were made to clarify and 

improve the rubric. After the changes were finalized, the researchers scored all of the 

assessments independently. The set of assessment scores from each researcher were then 

compared and discussed and a final multiplicative concept stage was attributed to each 

participant.  

In addition to the final attribution of a multiplicative concept stage, the assessments were 

given an overall score based on the accuracy of student solutions. Each participant was given a 

score of 0 or 1 (i.e., incorrect or correct) for each problem on the assessment and a sum of these 

scores were provided as an overall score. Scores for the problems were considered correct if they 
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came to the correct answer regardless of their solution process except for question 5, where 

students had to provide their bar as 2 1/3, not as an estimate of 1 out of 2 and 1/3. This decision 

was made because question 5 collects evidence of the iterative fraction scheme, and should be 

considered correct within the context of UMCA only when it reflects the reasoning expected 

from a student with iterative fraction scheme. 

 From the initial sample of participants that took the UMCA, 18 volunteered to participate 

in follow-up clinical interviews. These interviews lasted between 5 to 15 minutes. Participants 

were asked to solve the following problems: 

 

1) I purchased packages of candy bars that come in 8 per package. 

a. If I bought 7 packages of Mr. Goodbar candy bars, how many candy bars do I 

have? (A: 56 Mr. Goodbar candy bars) 

b. I also bought some Almond Joy candy bars and now have a total of 104 candy 

bars, how many packages of Almond Joy candy bars did I purchase? (A: 6 

packages) 

2) There are 8 fluid ounces in a cup and there are 4 cups in a quart. If I am measuring water 

out,  

a. How many fluid ounces of water are in 3 quarts? (A: 96 fluid ounces) 

b. If I add an additional 7 cups of water to the original 3 quarts, How many ounces 

of water do I have now? (A: 152 fluid ounces) 

c. How many total cups of water do I have now? (A: 19 cups of water) 

d. How many total quarts of water do I have now? (A: 4 ¾ quarts of water) 



 

52 

 

The interview problems are similar to questions 2 and 3 on the UMCA to allow researchers to 

compare the multiplicative concept stages assigned from the written and video evidence directly. 

The participants’ UMCA and video transcripts were given separate identifiers prior to scoring to 

ensure that the researcher’s attributed multiplicative concept stage on the written UMCA did not 

interfere with their attributed multiplicative concept stage from the video evidence. The 

researchers then met to reach a consensus on the attributed multiplicative stage for each 

participant based on their work during the clinical interviews. The identification codes for the 

written assessment and interviews were not consolidated until the completion of all 

multiplicative concept stages across both sets of data to reduce researcher bias.  

Data Analysis 

  To ensure the scores of the assessment accurately reflect the developers’ intended 

interpretations of responses, multiple sources of validity evidence are provided, as emphasized in 

The Standards for Educational and Psychological Testing (AERA et al., 2014) and 

recommended by the field (Krupa et al., 2020). This study provides evidence towards the validity 

of the UMCA’s test content, response processes, internal structure, and generalization. Table 3.3 

outlines a brief overview of the validity evidence discussed in this article.  

Rasch analysis was used to provide evidence towards the validity and reliability of the UMCA. 

Boone (2016) describes Rasch analysis as a psychometric technique that allows researchers to 

provide robust validations of their instrument starting at the item selection phase. The Rasch 

model predicates on the assumption that students exist on a spectrum of ability and thus the 

difference of magnitude between incorrect and correct responses to a question should reflect the 

difficulty of the question. The percentage chance for a student to successfully answer a question 

is then converted to a measurement called a logit (Lamprianou, 2020). These measures can then 
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be analyzed for their fit statistics which provide supporting evidence to the appropriateness of the 

Rasch model. The spectrum of ability that is measured is called a construct or trait a person has 

that cannot be observed physically but are socially and/or politically defined (Lamprianou, 

2020). The evidence provided by Rasch analysis for the validity of the UMCA will be discussed 

in the following paragraphs in regards to the AERA (2014) strands of validity they support. 

Supplementary evidence from qualitative data will also be discussed. 

Table 3.3 

Summary of validity evidence for UMCA by validity strand 

Form of Validity Evidence Purpose of Evidence Primary Evidence 

Test Content Construct Overview Construct Map 

 Item Development Item Overview 

 Item Qualitative Data Overview UMCA Rubric 

 Item Technical Quality Point-Biserial Coefficients 

Response Processes Behavioral Observations Analysis of Written Work on  

    UMCA 

  Analysis of Clinical  

    Interviews 

 Person Fit Statistics Person Mean Square Fit  

    Statistics 

 Item Difficulty Hierarchy Wright Map 

Internal Structure Unidimensionality Infit and Outfit Statistics 

  PCA of standardized  

    Residuals 

 Interpretability Wright Map 

Generalization Reliability Item Separation and  

    Reliability 

  Person Separation and  

    Reliability 

  Cronbach’s Alpha  

    Coefficient 

 

  Test content validity refers to evidence that the wording of the items and tasks support 

the relationship between the content of the assessment and the construct it is measuring. For the 

UMCA, the researchers ask “do the questions on this assessment provide a space to collect data 
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on the students’ anticipation, construction, and reflection of units unit structures to accurately 

determine their multiplicative concept stage?” The construct map (Table 3.1) provides an 

overview of the multiplicative concepts as a construct and the item overview (Table 3.2) 

provides evidence to support the choice of questions and construction of the problems on the 

UMCA. Additionally, the UMCA rubric (see appendix B) provides an outline of the evidence 

collected from each question that aligns with student work found in prior research on the 

multiplicative concepts. This provides evidence toward the theoretical design of the UMCA 

items to collect evidence of students’ multiplicative concept stage. Qualitative evidence towards 

test content validity has already been discussed in depth as a part the theoretical framework and 

methodology portion of this article. Evidence towards the technical quality of the items will be 

given using the items point-biserial coefficients with the participant’s overall scores (i.e., how 

many items on the UMCA they answered correctly). 

 Response process validity refers to evidence supporting whether the interpretations of the 

results of the assessment accurately represent the fit between the construct and the participants’ 

responses. For this study the researchers ask “do the scores of the UMCA reflect the students’ 

ability to work with unit structures as shown in their written and verbal reasoning?” To provide 

evidence towards the response processes, analysis of both the written work on the UMCA and 

the work provided from clinical interviews will be provided. Person fit statistics for the logits 

will explore the appropriateness of the Rasch conversion for each participant. Agreement scores 

between the written and verbal evidence are also provided as evidence of the validity of the 

UMCA to attribute accurate multiplicative concept stages of participants. Evidence relating to 

item hierarchy will be discussed using a wright map. The wright map plots the response data for 

each item as logits on the x-axis in relation to the likelihood for a participant to correctly answer 
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the question on the y-axis (Boone, 2016). As such, the wright map provides a visual for the 

hierarchy of problem difficulty for questions on the UMCA. 

 Internal structure validity refers to how well the test items conform to the construct being 

measured. This study asks, “how well do the responses and overall scores reflect the 

multiplicative concepts as a measurable construct?” The item hierarchy data from the wright map 

provides evidence towards the interpretability of the assessment items. The unidimensionality is 

explored through statistics provided by the infit and outfit statistics of items and a principle 

component analysis (PCA) of standardized residuals.  

 Generalization validity refers to how well different aspects of the test extend or 

generalize to new situations. Researchers in this study ask, “are the responses for the UMCA 

generalizable to undergraduate students?” Reliability measures from the Rasch model will be 

used to provide evidence of generalization. Person and item reliability index and separation 

statistics will be provided. Person reliability scores estimates the reliability of the assessment 

scores if a similar assessment were given to the same sample and item reliability scores indicate 

the reliability of the item difficulty estimates if a similar sample was given the same assessment 

(Lamprianou, 2020). Cronbach’s alpha coefficient will also be reported to provide a measure for 

how closely related the items on the assessment are as a group. Additional evidence towards 

generalization can be pulled from the analysis of clinical interviews. These interviews provide a 

direct example of a parallel assessment for the same sample of participants that assesses their 

multiplicative concepts. 

 These sources of validity and reliability were used to determine the overall 

appropriateness of the assessment for determining undergraduate students’ multiplicative 

concepts stage. 
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Results 

Qualitative Results 

 Analysis of the written work by students as analyzed through the use of the UMCA 

rubric. After finalizations of the rubric were made, both researchers scored 51 assessments 

individually, using the rubric. Upon discussion, researchers agreed that every student solution 

across all items for the 51 assessments were represented on the rubric and appropriately reflected 

the multiplicative concept stage assigned to the written work. Researchers gave 49 out of the 51 

students the same multiplicative concept stage prior to discussion (an agreement score of 96.1%). 

Upon discussion, final multiplicative concept stages were decided, making the consensus on the 

written work scores unanimous. The final assessments indicated that 1 participant was a MC1 

student (2.0%), 22 were MC2 students (43.1%), and 28 were MC3 students (54.9%). This is 

consistent with results in prior undergraduate research on the multiplicative concepts (Boyce et 

al., 2021). 

 Clinical interviews were conducted with 18 volunteer participants. The researchers 

collaboratively assigned each participant with a multiplicative concept stage based on the 

students’ reasoning in the interview. Out of the 18 interviews, only 1 was assigned a different 

multiplicative concept stage from their UMCA assessment (an agreement score of 94.4%). 

Additionally, student’s written work on interview problems were visually similar to their written 

work on the UMCA. Figure 3.1 shows examples of student work during their interview and on 

the UMCA for comparison. The evidence from the written and interview data supports the 

validity of the student work on the UMCA as indicative of their multiplicative concept stage. 
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Figure 3.1 

Comparison of written work during clinical interviews and on the UMCA 
Student  UMCA Clinical Interview 

Felicity 

(MC3) 

 

 

 Felicity used the same method to solve these two problems, even keeping a similar format for her notation that clearly notates the steps she took in 

her thinking to get her answers. She recognized the need to divide the difference in both problems without outside help or pictoral reference. 

 

 
 

 
Felicity solves these two problems using the same exact steps. She anticipates the need for a conversion on each problem prior to activity (shown 

by her use of 12 x 5 to replace “5 feet” on the UMCA and her use of labels for her cups and ounces during the interview).  

Morgan 

(MC2) 

  

 Morgan uses a visual representation to help her understand the structure of the garden and the package before solving the problem. She is also able 

to solve both problems using the same strategy and without outside help. 

 

  
 Morgan estimates on both of these problems. Her justification for these answers is that there are “3 full yards” or “5 full quarts”. Morgan chooses 

not to work with the remainder on either problem.  
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Quantitative Results 

 The point-biserial coefficients for each item on the UMCA provide additional evidence 

towards the validity of the test content not covered in the theoretical framework and 

methodology (See Table 3.4). The point-biserial coefficient for 7 of the items on the UMCA 

were strong (𝑟 > 0.50) with items 3-a and 5 having a moderate correlation (𝑟 > 0.30; Field et 

al., 2012). These items all provided good discrimination between the students who scores higher 

and lower on the assessment. For example, students who answer 3-d correctly were highly likely 

to be attributed an MC3. Questions 1-a and 2-a had low correlations with their overall score, and 

do not provide good discrimination between lower and higher scoring students. 

Table 3.4 

Item analysis statistics 

Item Point-

Biserial 

SE Infit Outfit 

Mean 

Square 

Z Mean 

Square 

Z 

1-a 0.15 0.60 1.51 1.17 2.23 1.15 

1-b 0.51 0.40 1.06 0.32 0.76 -0.40 

1-c 0.60 0.36 0.96 -0.17 0.90 -0.13 

2-a 0.24 1.01 0.36 -1.06 0.04 0.37 

2-b 0.63 0.37 0.84 -0.91 0.92 -0.08 

3-a 0.34 0.68 1.02 0.20 0.53 0.16 

3-b 0.63 0.40 0.77 -1.08 0.48 -1.21 

3-c 0.68 0.38 0.77 -1.29 0.53 -1.30 

3-d 0.73 0.36 0.76 -1.55 0.68 -0.74 

4 0.62 0.36 0.98 -0.09 0.80 -0.28 

5 0.39 0.43 1.05 0.32 1.13 0.47 

Mean 0.50 0.49 0.92 -0.38 0.82 -0.18 

 

A summary of the statistics for each item on the UMCA are located in the Table 3.4 and 

provide an overview of the overall fit of each item on the UMCA. These fit statistics provide 

evidence towards the unidimensionality of the assessment. This study will consider the infit 

square means as a measure of fit as outfit statistics are generally inflated compared to infit 
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statistics (Lamprianou, 2020). Items that have an infit mean square between 0.7 and 1.3 are 

considered acceptable (Lamprianou, 2020). Out of the 11 items on the assessment, 9 fit within 

the acceptable range with only questions 1-a and 2-a infit mean squares falling outside of this 

range. The implications of the problematic infit and point-biserial coefficients for these problems 

will be discussed later alongside our rationale on their continued inclusion in the UMCA. These 

data support the items fit in this assessment as measures for the students’ overall scores. 

Item difficulty hierarchies allow assessments differentiate between varying levels of 

person ability from their scores. Before analysis of the item hierarchy for the UMCA, the 

researchers estimated the difficulty of each item on the assessment based on prior research into 

the multiplicative concepts. Researchers proposed four tiers of difficulty in the exam based on 

existing literature and the theoretical analysis of the problems. The items in Table 3.5 are ordered 

according to researcher’s theoretical item difficulties. The first difficulty tier are entry level 

problems and consist of questions 1-a, 2-a, and 3-a. Researchers anticipated that students could 

solve these problems by operating in ways consistent with the operations of an MC1 student. 

Therefore, they would likely be solved correctly by most if not all of the undergraduate students 

in this study. The second tier of difficulty are the connection questions. Researchers anticipated 

that these students would challenge students operating within the constraints of an MC1 and may 

challenge students operating within the constraints of an MC2. Questions in this tier include 1-b, 

1-c, 2-b, 3-b, and 3-c. The third difficulty tier includes questions that were anticipated to be 

challenging for students operating within the constraints of an MC2, and may challenge students 

operating within the constraints of an MC3. The two questions in this tier are 3-d and 4. The 

fourth difficulty tier only includes question 5. Researchers anticipated that students who operated 

with an MC3 but had not developed an IFS would be challenged by this problem. Calculating the 
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logit scores for each item shows that the researchers’ theoretical item difficulty hierarchy is 

similar to the actual item hierarchy. Additionally, the questions proposed to be in each difficulty 

tier group together on the wright map (see Figure 3.2).  This evidence supports that responses 

collected from the UMCA accurately represents the difficulty desired by the developers. 

Table 3.5 

Item difficulty ordered by hypothesized difficulty 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 

Wright map for UMCA items with histogram of participant logits 

 

 

Item Hypothesized 

Difficulty 

Item 

Difficulty 

2-a 1 -5.15 

1-a 1 -3.41 

3-a 1 -3.80 

1-b 2 -1.67 

3-b 2 -1.67 

3-c 2 -1.24 

1-c 2 -0.61 

2-b 2 -0.98 

3-d 3 -0.14 

4 3 0.31 

5 4 2.00 
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To provide evidence for how well these difficulty tiers reflect the intensions of the 

researchers, Table 3.6 provides an overview of the number of students who answered each item 

correctly from each of the multiplicative concept stages. The MC1 student failed to answer any 

question that was above the first tier correctly. The success rate for solving problems for MC2 

students dropped substantially on the tier 3 problems, 3-d and 4, as was hypothesized. 

Additionally, only 36% of MC3 students answered question 5 correctly, which aligns with the 

literature on the iterative fraction scheme (Norton & Wilkins, 2012; Steffe, 2001). These 

statistics support the interpretability of the questions on the UMCA. 

Table 3.6 

Number of correct responses per item by multiplicative concept stage with mean UMCA score 

 MC1 (n 

= 1) 

MC2 (n = 

22) 

MC3 (n = 

28) 

Overall (n = 

51) 

1-a 1 (1.0) 21 (0.95) 25 (0.89) 47 (0.92) 

1-b 0 (0) 17 (0.77) 22 (0.79) 39 (0.76) 

1-c 0 (0) 10 (0.45) 21 (0.85) 31 (0.61) 

2-a 1 (1.0) 21 (0.95) 28 (1.0) 50 (0.98) 

2-b 0 (0) 11 (0.50) 23 (0.82) 34 (0.67) 

3-a 0 (0) 21 (0.95) 27 (0.96) 48 (0.94) 

3-b 0 (0) 12 (0.55) 27 (0.96) 39 (0.76) 

3-c 0 (0) 10 (0.45) 26 (0.93) 36 (0.71) 

3-d 0 (0) 4 (0.18) 23 (0.82) 27 (0.53) 

4 0 (0) 3 (0.14) 20 (0.71) 23 (0.45) 

5 0 (0) 0 (0) 10 (0.36) 10 (0.20) 

Mean UMCA score 2.0 5.9 9.0 7.5 

 

Unidimensionality was also examined using results from a principal component analysis 

(PCA) of standardized residuals based on the items of the UMCA (Boone & Staver, 2020). The 

PCA indicated that 52.2% of the variance was explained by the Rasch model and 26.0% was 

explained by the assessment items. The first contrast for the items explain 11.1% of this variance 

and has an eigenvalue of 2.55. This is only half of the total variance explained by the items, 

which suggest that there is at least a second contrast. This constitutes a closer look at the 
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contrasts and how the items are loading in the PCA. The factor loadings are show in Table 3.7 

reveal an interesting loading pattern between the contrasts. Rather than loading distinctly 

between questions, the contrasts consist of similar or opposite levels of item difficulty. Taking 

this into consideration alongside the evidence that many of the questions load within multiple 

contrasts with different items from the UMCA, the results of the PCA support the idea that each 

item is collecting data about the same construct along a spectrum of difficulty.  

Table 3.7 

PCA of the residuals for the Rasch model of the UCMA 

Item Contrast 1 Contrast 2 Contrast 3 

1-a -0.56 0.53 -0.35 

1-b -0.67 0.60 -0.14 

1-c -0.47 -0.06 0.36 

2-a -0.07 0.08 -0.49 

2-b -0.32 -0.34 0.34 

3-a -0.12 -0.14 0.70 

3-b 0.74 0.51 0.01 

3-c 0.80 0.34 -0.08 

3-d 0.44 0.17 0.47 

4 0.07 -0.58 -0.52 

5 0.24 -0.59 -0.31 

Note: Loadings above 0.40 noted in bold. 

  

The internal reliability of the UMCA is acceptable with a Cronbach alpha coefficient of 

.76. Debate surrounding the appropriate cut off coefficient of the Cronbach alpha has placed .7 as 

an appropriate standard for tests measuring ability (Field et al., 2014). Additionally, the Rasch 

model for the UMCA has a sufficient item reliability of 0.93 with a separation index of 3.62, 

indicating that the model can differentiate between low and high difficulty items (Boone & 

Staver, 2020). The person reliability of the Rasch model is 0.68 with a separation index of 1.45. 

This is a moderate index and indicates that the model may have trouble differentiating between 

groups of people ability (low, medium, and high ability). It should be cautioned that this is lower 
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than the suggested person reliability of 0.8 and index of 2 (Boone & Staver, 2020). However, 

given the nature of the UMCA as an assessment for undergraduate students that’s primary job is 

to differentiate MC2 from MC3 students, there is a lack of MC1 students to support the 

instrument’s ability to differentiate them from medium and high scorers. Taking this into 

consideration, a person reliability index of 0.68 is sufficient for the UMCA’s intended population 

of test takers. This data supports the generalizability of the UMCA to similar samples. 

While this evidence supports the validity of the response processes, internal structure and 

generalization of the UMCA, adjustments made to the UMCA should consider the fit of the 

entry-level questions with overall assessments and possible numerical or question substitutions 

that could be made to increase validity.    

Discussion 

 The multiplicative concepts serve as foundations for student reasoning and problems 

solving on mathematical concepts such as recognizing and working with unknowns and variables 

(Hackenberg & Lee, 2015; Hackenberg et al., 2021; Zwanch, 2019), solving systems of 

equations (Olive & Caglayan, 2008; Zwanch, 2022), and understanding derivatives (Byerly, 

2019). With the recent extension of multiplicative concept research to the undergraduate 

population, it becomes important for researchers and professors to have access to an assessment 

appropriate for undergraduate students that can delineate between MC1, MC2, and MC3. Prior 

research has laid a rich theoretical framework for creating and validating an assessment for 

undergraduate students (Hackenberg & Tillema, 2009; Steffe, 1992, 1994). This study shows 

evidence that the UMCA questions and rubric aligns with literature outlining the multiplicative 

concepts and serves as a valid instrument for undergraduate students. The results of this study 

support the appropriateness of the responses through the analysis of creation and use of the 
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UMCA rubric. Students’ written and interview responses support the validity of the rubric in 

collecting and analyzing student written work according to the multiplicative concept stages. The 

validity evidence for the generalizability of the UMCA is supported by the acceptable Cronbach 

alpha coefficient and the reliability scores for both the items and persons of the Rasch model.  

The internal structure of the UMCA is supported by the infit and outfit statistics of the 

items, the item hierarchy shown in the wright map, and the results of the PCA of the residuals of 

the Rasch model. However, poor correlation and infit statistics for questions 1-a and 2-a merit a 

discussion of their performance on the UMCA. These two questions are considered entry-level 

questions for problems 1 and 2 and do not provide robust evidence for distinction between the 

second and third multiplicative concepts. The researchers hypothesized this prior to testing due 

to the simple composite unit constructions and low cognitive demand of the tasks and grouped 

evidence for MC2 and MC3 students together for these tasks. However, the population of 

students who took this exam were predominantly MC2 and MC3 students, with only 1 out of the 

51 participants being assessed as a MC1 student. This mirrors similar findings on the number of 

MC1 students in pre-calculus undergraduate mathematics courses (Boyce et al., 2021). This may 

make it difficult for these questions to correlate well with the overall scores as all students should 

be able to answer questions 2-a and 3-a successfully. However, question 3-a is easier than 

question 1-a according to the item hierarchy and correlates moderately with the overall 

assessment scores. An inspection of responses for question 1-a show that out of the 4 students 

who answered questions 1-a incorrectly, 3 of them miscalculated 18 x 7 (e.g., 18 x 7 = 136 or 18 

x 7 = 116). Miscalculating this number led to the student incorrectly answering 1-b. This may 

have led to a large impact on its correlation with the overall exam scores with this sample. 

However, the researchers chose to keep these items as they are on the UMCA in order to 
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maintain the entry-level problems for questions 1 and 2 and to provide a space to collect 

additional evidence for assigning an undergraduate student a MC1.  

The combination of qualitative and quantitative data provides evidence towards the 

validity argument for the UMCA. However, adjustments can and should be considered when 

moving forward with using the UMCA for research or in the classroom. The rest of our 

discussion will include limitations for the study, usage of the UMCA rubric, areas of 

improvement for the assessment, implications of this study, and future directions for research. 

Limitations 

 This study has covered various strands of validity evidence as an argument towards the 

validity of the UMCA. However, it is important to note the limitations of this study moving 

forward with the use and adjustment of this assessment and rubric. First, the population used in 

this study is not representative of the diverse backgrounds of undergraduate students found 

across all collegiate institutes. Second, while the spread of students assigned as MC1, MC2, and 

MC3 aligns with theory and research on the multiplicative concept stages, care should be taken 

to the validation of this instrument to accurately assess MC1 students. Since only one participant 

was assigned a MC1 and they did not participate in a clinical interview, the researchers were 

unable to analyze video evidence to compare the assignment of the students’ multiplicative 

concept stage to. Third, this assessment only collected evidence of validity to a certain extent and 

did not exhaust the spectrum of validity for assessment. Further validation of this assessment 

should consider comparisons with similar assessments, additional interview evidence and 

comparisons, additional analysis of results using a sample of students more likely to include 

MC1 students, and so on. 
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Suggested Areas for Assessment Improvement 

 Results of analysis of the validity for the UMCA supported it as a reflection of the 

developers’ intentions. It provides a space to collect rich qualitative data on undergraduates’ 

construction of multi-level unit structures while still providing challenges that delineate between 

MC2 and MC3 students. The difficulty level for the assessment is appropriate for undergraduate 

students. Further adjustments to this assessment may adjust the questions on the assessments to 

test changes in difficulty caused by numbers and/or contexts used in the assessment. Researchers 

that do not agree with our conclusion to leave questions 1-a and 2-a as they are on the assessment 

may consider consolidating questions 1-a and 1-b, and questions 2-a and 2-b into a single 

question. Additionally, the current study presented both the solution (Part A) and justification 

(Part B) portions of the assessment at the same time as a way to be mindful of class time. During 

our implementation of the assessment, we noticed that 2 of the students were simultaneously 

completing Part A and Part B. This led to difficulty scored their assessments. Therefore, we 

suggest that future administrations of this assessment consider presenting these separately to 

keep students from working on the justification portion of the assessment before or alongside 

their work on the solution portion.   

Assessment Rubric 

 The development and use of the UMCA relies heavily on analyzing qualitative evidence 

for the multiplicative concepts stages. In an effort to create a system for analysis, the researchers 

agreed the development of an extensive scoring rubric was essential for maintaining consistent 

scores across a large set of assessment data. After completing the discussion for the final scores 

for the participants, the researchers came to the consensus that the rubric for the UMCA is an 

important aspect of maintaining reliability in scoring between researchers. It provides a clear 
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foundation for discussion on conflicting researcher scores. Past rubrics for similar assessments 

have assisted in improving interrater reliability and scoring consensus (Norton et al., 2015). The 

researchers met prior to data collection to do a theoretical analysis on the assessment to develop 

the UMCA rubric. Adjustments that were made to the rubric based on collected data were 

clarifications and additions of specific examples to increase the readability of the rubric. Results 

show that this facilitated a 96.2% agreement between researchers. While this is a promising 

result, it is important to note that those who have worked with and on this rubric are well versed 

in literature on the multiplicative concepts research. While effort was taken to maintain general 

clarity and readability of the rubric, it is worded in a way that is specifically beneficial to the 

researchers working on this assessment. Future researchers should be sure to review and discuss 

the rubric prior to use to ensure that the points are clear to every member of the research team. 

 Additional adjustments to the rubric may choose to include recent findings on the 

“advanced MC2” stage discussed in Hackenberg and Sevinc’s (2021) article. The student 

discussed in this article, Milo, was an MC2 student who had worked with his available 

operations to be able to solve problems in ways that were novel to most MC2 students. He 

leveraged his use of his MC2 operations to strategically solve many of the problems at hand. 

Milo was not alone in his advanced reasoning either. As more research is published on the 

existence and operations of an advanced MC2 student, considerations should be made to adjust 

the rubric of the UMCA to identify evidence of these operations. Collection on the data for this 

assessment started prior to the publishing of the Hackenberg and Sevinc (2021) article and so did 

not take their findings into consideration in the development of the assessment or rubric. 
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Implications 

 The results of this study add to our knowledge of undergraduate students’ multiplicative 

concept stages. The validity for the generalizability of the UMCA suggests that it can be used in 

larger scale explorations of undergraduate students’ multiplicative concepts.  

 While most of the undergraduate students in this study have developed a MC3, 45% had 

only developed a MC1 or MC2. The third multiplicative concept stage is essential in supporting 

students conceptual understanding of unknowns (Hackenberg & Lee, 2015; Hackenberg et al., 

2021), systems of equations (Olive & Caglayan, 2008), derivatives (Byerly, 2019), and in 

developing proportional reasoning (Steffe et al., 2014). Students start developing the third 

multiplicative concept as early as second grade (Kosko & Singh, 2018). However, over half of 

the sixth grades students in Boyce and Norton’s (2016) study had not developed a MC3. 

Research on undergraduate students’ multiplicative concepts and their calculus readiness found 

over half of the participants to have not developed an MC3 and none of the students to be MC1 

students (Boyce et al., 2021). The spread of MC1, MC2, and MC3 students in this study suggests 

that undergraduate students have primarily developed an MC2 or MC3, and a small percentage 

have only developed an MC1. The large portion of MC2 students in these undergraduate studies 

suggests that professors should work to support these students in college mathematics by 

providing strategies that support MC2 student thinking. 

Future Research and Conclusion 

As research on the multiplicative concepts moves into the undergraduate population, 

assessments like the UMCA help researchers to collect a wider range of data. This study has 

examined evidence towards the validity of this assessment for undergraduate students. This 

assessment is not intended to be a definitive answer to an undergraduate students’ multiplicative 
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concept stage, but rather a tool for gaining an overview of the stages of students and participants 

in a sample. This information can help inform large sample studies or provide information to 

help select clinical interview participants. Additional interview evidence should still be collected 

to ensure an accurate representation of a students’ multiplicative concept stage for qualitative 

studies. Future research should explore ways to improve and implement this assessment in 

research on undergraduate students’ reasoning in mathematics topics such as matrices, geometry, 

conversions and measurement, covariation, etc. Future research may also use assessment format 

to examine the justification methods of students on multiplication based problems. 
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Appendix A 

 

1. A candy bar company packs 3 candy bars per package and 6 packages per box. 

1-a: If a store buys 7 boxes, how many candy bars will they receive? 

 
 Students’ Unit 

Structures 
Student Reasoning Written Indicators of Reasoning 

Stage 

1 

Students can work 

with one level of units 

as given and may 

coordinate two levels 

of units in activity. 

Two level unit 

structures decay after 

construction 

(Hackenberg & 

Tillema, 2009). They 

have access to 

partitioning and 

iterating operations 

(Steffe, 2010). 

Students rely on figurative 

materials such as tally 

marks or pictures to create 

composite units and then 

work through how many 

candy bars are in each 

package and subsequently 

how many packages are in 

each box. 

 Student responses show heavy reliance on 

pictorial or tally mark representations of the 

problem of the units of 1 (the candy bars). 

Composite units (i.e. packages and/or boxes) 

may be drawn but not counted. 

 Adds or multiplies incorrect combinations of 

numbers. 

 Student responses do not indicate the creation 

of a three-level unit structure (e.g., may only 

find how many candy bars are in a box or how 

many packages are in 7 boxes). 

 Students do not respond or otherwise indicate 

they do not know the answer. 

Stage 

2-3 

Students anticipate 

two levels of units as 

given and may 

coordinate three levels 

of units in activity. 

Three level unit 

structures decay after 

construction 

(Hackenberg & 

Tillema, 2009). 

Students have access 

to a disembedding 

operation (Steffe, 

2010). 

Students use the two given 

relationships to establish a 

third level unit structure to 

determine how many 

candy bars are in the given 

number of boxes.  

 Student uses a correct series of multiplications 

to solve. 

 Drawings indicate the creation of composite 

units (e.g. drawing 7 boxes and labeling them 

by 18). 

 Work indicates a reliance on skip counting to 

solve the problem. 

 Student drawings are used to justify their 

answers rather than produce them as a part of 

Part B. 

 Students just write down the answer with an 

explanation on Part B that indicates the use of 

a three-level unit structure. 
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1-b: If the same store orders another 8 boxes, how many total candy bars have they received? 

 
 Students’ Unit 

Structures 
Student Reasoning Written Indicators of Reasoning 

Stage 

1 

Students can work 

with one level of units 

as given and may 

coordinate two levels 

of units in activity. 

Two level unit 

structures decay after 

construction 

(Hackenberg & 

Tillema, 2009). They 

have access to 

partitioning and 

iterating operations 

(Steffe, 2010). 

 

 

Students rely on figurative 

materials such as tally 

marks or pictures to create 

composite units. They can 

then work out how many 

candy bars are in each 

package and subsequently 

how many packages are in 

each box. 

 Student responses show heavy reliance on 

pictorial or tally mark representations of the 

problem of the units of 1 (the candy bars). 

Composite units (i.e. packages and/or boxes) 

may be drawn but not counted. 

 Student responses do not indicate the 

creation of a three-level unit structure (e.g., 

may only find how many candy bars are in a 

box or how many packages are in 8 boxes). 

 Student adds or multiplies incorrect 

combinations of numbers. 

 Students’ answer is incorrect. 

 Student responses do not refer or utilize the 

numbers in 1-a. 

 Students do not respond or otherwise 

indicate they do not know the answer. 

Stage 

2 

Students anticipate 

two levels of units as 

given and may 

coordinate three levels 

of units in activity. 

Three level unit 

structures decay after 

construction 

(Hackenberg & 

Tillema, 2009). 

Students have access 

to a disembedding 

operation (Steffe, 

2010). 

Students use the two given 

relationships to establish a 

third level unit structure to 

determine how many 

candy bars are in the given 

number of boxes. They 

then add this total to the 

found total in 1-a. 

 Student finds the total number of candy bars 

in 8 boxes and then adds this to the total 

found in 1-a. 

 The student re-calculates the 18 candy bars 

to 1 box relationship from 1-b. 

 Drawings represents composite units (e.g. 

drawing 8 boxes and labeling them by 18). 

 Work indicates a reliance on skip counting to 

solve the problem. 

 Student explanations reference the 

coordination of two separate composite units 

(i.e. 144 candy bars and 126 candy bars.) 

Stage 

3 

Students take three 

levels of units as given 

and can flexibly 

switch between two 

and three-level 

structures during 

activity without 

relying on figurative 

material. Students 

have access to a 

splitting operation 

(simultaneous 

partitioning and 

iterating operations) 

(Steffe, 2010). 

Students assimilate with 

all two-level unit 

structures given and 

readily coordinate all three 

levels with a coordinated 

three level unit structure. 

 Student finds the total number of boxes (15) 

and multiplies by 18 bars per box. 

 Student drawings are used to justify their 

answers rather than produce them as a part of 

Part B. 

 

 



 

77 

 

1-c: Assuming the store received all of their ordered candy bars, how many packages have they 

received? 

 

 Students’ Unit Structures Student Reasoning Written Indicators of Reasoning 

Stage 

1 

Students can work with 

one level of units as given 

and may coordinate two 

levels of units in activity. 

Two level unit structures 

decay after construction 

(Hackenberg & Tillema, 

2009). They have access to 

partitioning and iterating 

operations (Steffe, 2010). 

Students mentally or 

physically attempt to 

count and track the 

number of packages per 

box in the problem. 

 Student responses show heavy reliance on 

pictorial or tally mark representations of the 

problem of the units of 1 (the candy bars). 

Composite units (i.e. packages and/or boxes) 

may be drawn but not counted. 

 Student adds or subtracts the numbers found 

in 1-a and 1-b. 

 Student finds the total number of boxes rather 

than the total number of packages. 

 Student responses do not reference back to 

the numbers in 1-a or 1-b. 

 Student does not respond or otherwise 

indicate they do not know the answer. 

Stage 

2 

Students anticipate two 

levels of units as given and 

may coordinate three levels 

of units in activity. Three 

level unit structures decay 

after construction 

(Hackenberg & Tillema, 

2009). Students have 

access to a disembedding 

operation (Steffe, 2010). 

Students use the given 

relationships to work 

backwards to find the 

number of intermediary 

units (packages) in the 

problem through a form 

of division.  

 Student uses division to solve the problem. 

(i.e. 270/3 = 90) 

 Student calculates or pulls from part a and b 

that there are 42 and 48 packages 

respectively and adds them to find the total 

(90 packages). 

 Student re-calculates the 18 candy bars to 1 

box relationship from 1-b. 

 Student divides the total sum by the wrong 

unit such as 6 or 18. 

 Student multiplies the total number of candy 

bars by 6 or 3 instead of dividing by 3.  

 Student starts working the problem from the 

beginning, using packages per box as the 

initial level-two unit on Part A or Part B. 

 Student explanations reference the 

coordination of two separate composite units 

(i.e. 270 total candy bars and 3 candy bars 

per package). 

Stage 

3 

Students take three levels 

of units as given and can 

flexibly switch between 

two and three-level 

structures during activity 

without relying on 

figurative material. 

Students have access to a 

splitting operation 

(simultaneous partitioning 

and iterating operations) 

(Steffe, 2010). 

Students assimilate with 

all two-level unit 

structures given and 

readily coordinate all 

three levels with a 

coordinated three level 

unit structure allowing 

them to work flexibly 

between layers to use 

multiplication or 

division to solve the 

problem. 

 Student drawings are used to justify their 

answers rather than produce them as a part of 

Part B. 

 Student work or explanations show flexibility 

between levels of units by referencing 

multiple ways of solving the problem or 

referencing the units of each part of the 

quotient or product.  
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2. There are 6 plants in each row of my garden. 

2-a: How many tomato plants are in 8 rows? 

 

 
Students’ Unit 

Structures 
Student Reasoning Written Indicators of Reasoning 

Stage 1 Students can work with 

one level of units as 

given and may coordinate 

two levels of units in 

activity. Two level unit 

structures decay after 

construction (Hackenberg 

& Tillema, 2009). They 

have access to 

partitioning and iterating 

operations (Steffe, 2010). 

 

Students mentally or 

physically use the total 

number of plants per 

row to create a two-

level unit structure to 

find the total number of 

plants. 

 Student responses show heavy reliance on 

pictorial or tally mark representations of the 

problem of the units of 1 (plants). Composite 

units (i.e. rows) may be drawn but not 

counted. 

 

Stage 

2-3 

Students anticipate two 

levels of units as given 

and may coordinate three 

levels of units in activity. 

Three level unit 

structures decay after 

construction. 

(Hackenberg & Tillema, 

2009). Students have 

access to a disembedding 

operation (Steffe, 2010). 

Students use the two 

given relationships to 

establish a third level 

unit structure to 

determine how many 

candy bars are in the 

given number of boxes. 

They then add this total 

to the found total in 1-a. 

 Student multiplies 6 by 8. 

 Drawings represents composite units (e.g. 

rows of 6 plants). 

 Skip counting may be used to find the 

product. 

 Student just writes the correct answer with 

no work shown on Part A. 
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2-b: In addition to tomato plants, I also planted potatoes. If there are a total of 102 plants, how 

many rows of potatoes did I plant? 

 

 Students’ Unit Structures Student Reasoning Written Indicators of Reasoning 

Stage 

1 

Students can work with one 

level of units as given and 

may coordinate two levels of 

units in activity. Two level 

unit structures decay after 

construction (Hackenberg & 

Tillema, 2009). They have 

access to partitioning and 

iterating operations (Steffe, 

2010). 

Students rely on 

figurative material to 

work backwards from 

the total number of 

plants to figure out how 

many rows of potatoes 

were planted. 

 Student responses show heavy reliance on 

pictorial or tally mark representations of the 

problem of the units of 1 (plants). 

Composite units (i.e. rows) may be drawn 

but not counted. 

 Student responses do not indicate the 

creation of a three-level unit structure. 

 Student only subtracts the total number of 

plants and the number found in 2-a. 

 Students subtracts, multiplies, or divides by 

incorrect numbers from part 2a (i.e. 102-8 

instead of 102-48).  

 Student does not respond or otherwise 

indicate they do not know the answer. 

Stage 

2 

Students anticipate two 

levels of units as given and 

may coordinate three levels 

of units in activity. Three 

level unit structures decay 

after construction 

(Hackenberg & Tillema, 

2009). Students have access 

to a disembedding operation 

(Steffe, 2010). 

Students use the two 

given relationships to 

establish a third level 

unit structure to work 

backwards to determine 

how many potatoes and 

then how many rows of 

potatoes were planted. 

 Student drawings indicate the creation of 

composite units. 

 Student begins work on the problem by 

dividing the total number of plants by 6 

plants per row but does not subtract the 

number of rows from 2-a. 

 Student divides by the wrong unit such as 

8. 

 Student work indicates a reliance on 

repeated addition or skip counting to solve 

the problem. 

 Student work shows a reworking of the 

problem as a part of their explanation in 

Part B. 

Stage 

3 

Students take three levels of 

units as given and can 

flexibly switch between two 

and three-level structures 

during activity without 

relying on figurative 

material. Students have 

access to a splitting 

operation (simultaneous 

partitioning and iterating 

operations; Steffe, 2010). 

Students assimilate 

with all two-level unit 

structures given and 

readily coordinate all 

three levels with a 

coordinated three level 

unit structure to work 

backwards.  

 Student finds the total number of plants by 

first using subtraction and then division 

(i.e. 102-48=54, 54/6 = 9). 

 Student finds the total number of plants by 

using division and then subtraction (i.e. 

102/6 = 17, 17-8 = 9). 

 Student drawings are used to justify their 

answers rather than produce them as a part 

of Part B. 

 Student explanations discuss the unit 

structures as a three-level unit structure. 
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3. There are 12 inches in 1 foot and 3 feet in 1 yard. 

3-a: How many inches are in 2 yards? 

 

 
Students’ Unit 

Structures 
Student Reasoning Written Indicators of Reasoning 

Stage 

1 

Students can work with 

one level of units as given 

and may coordinate two 

levels of units in activity. 

Two level unit structures 

decay after construction 

(Hackenberg & Tillema, 

2009). They have access to 

partitioning and iterating 

operations (Steffe, 2010). 

Students rely on 

figurative material to 

represent and count 

how many inches are in 

three feet and how 

many inches are in 2 

yards. 

 Student responses show heavy reliance on 

pictorial or tally mark representations of the 

problem of the units of 1 (inches). 

Composite units (i.e. feet and/or yards) may 

be drawn but not counted. 

 Student responses do not indicate the 

creation of a three-level unit structure. 

 Student adds or multiply incorrect 

combinations of numbers. 

 Student does not respond or otherwise 

indicate they do not know the answer. 

Stage 

2 

Students anticipate two 

levels of units as given and 

may coordinate three 

levels of units in activity. 

Three level unit structures 

decay after construction 

(Hackenberg & Tillema, 

2009). Have access to a 

disembedding operation 

(Steffe, 2010). 

Students use the two 

given relationships to 

establish a third level 

unit structure to 

determine how many 

how many feet are in 2 

yards and how many 

inches are in 6 feet. 

 Student drawings indicate the creation of 

composite units (i.e. representations of yards 

with 3 feet or feet with 12 inches each). 

 Student work indicates a reliance on 

repeated addition or skip counting to solve 

the problem. 

 Student work indicates the use of 

multiplication (i.e. 12 x 6 = 72) to solve. 

 Student work shows a reworking of the 

problem as a part of their explanation in Part 

B. 

Stage 

3 

Students take three levels 

of units as given and can 

flexibly switch between 

two and three-level 

structures during activity 

without relying on 

figurative material. Have 

access to a splitting 

operation (simultaneous 

partitioning and iterating 

operations) (Steffe, 2010). 

Students assimilate 

with all two-level unit 

structures given and 

readily coordinate all of 

these units to determine 

the total number of 

inches.  

 Student just writes the answer. 

 Student drawings are used to justify their 

answers rather than produce them in Part B. 

 Student explanations discuss the unit 

structures as a three-level unit structure. 
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3-b: If you add an additional 5 feet onto the original yards, how many total inches are there? 

 

 Students’ Unit Structures Student Reasoning Written Indicators of Reasoning 

Stage 

1 

Students can work with 

one level of units as given 

and may coordinate two 

levels of units in activity. 

Two level unit structures 

decay after construction 

(Hackenberg & Tillema, 

2009). They have access to 

partitioning and iterating 

operations (Steffe, 2010). 

Students rely on 

figurative material to 

represent and count 

how many inches are in 

in 5 feet. They may add 

this to their original 

representation from 3-a 

to count the total 

number of inches in the 

problem. 

 Student responses show heavy reliance on 

pictorial or tally mark representations of the 

problem of the units of 1 (inches). Composite 

units (i.e. feet and/or yards) may be drawn but 

not counted. 

 Student responses do not indicate the creation 

of a three-level unit structure. 

 Student adds or multiplies incorrect 

combinations of numbers. 

 Student does not refer back to their answer as 

a part of 3-a. 

 Student does not respond or otherwise 

indicate they do not know the answer. 

Stage 

2 

Students anticipate two 

levels of units as given and 

may coordinate three levels 

of units in activity. Three 

level unit structures decay 

after construction 

(Hackenberg & Tillema, 

2009). Students have 

access to a disembedding 

operation (Steffe, 2010). 

Students use the given 

relationships to find 

how many inches are in 

the additional 5 feet and 

add them to the original 

inches from part 3-a. 

 Student drawings indicate the creation of 

composite units (i.e. inches within feet). 

 Student work indicates a reliance on repeated 

addition or skip counting to solve the 

problem. 

 Student finds the total number of inches in 5 

feet and adds this to the inches in 3-a to get 

the total (i.e. 60 + 72 = 132) 

 Student work shows a reworking of the 

problem as a part of their explanation in Part 

B. 

Stage 

3 

Students take three levels 

of units as given and can 

flexibly switch between 

two and three-level 

structures during activity 

without relying on 

figurative material. 

Students have access to a 

splitting operation 

(simultaneous partitioning 

and iterating operations; 

Steffe, 2010). 

Students assimilate with 

all two-level unit 

structures given and 

readily coordinate all of 

these units to determine 

the total number of 

inches.  

 Student just write the answer of 132. 

 Student may determine the total number of 

feet (i.e. 6+5; this may not be written) across 

both 3-a and 3-b and then multiply 11 by 12. 

 Student drawings are used to justify their 

answers rather than produce them in Part B. 

 Student explanations discuss the unit 

structures as a three-level unit structure. 
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3-c: How many feet are in the total number of inches?  

 

 Students’ Unit Structures Student Reasoning Written Indicators of Reasoning 

Stage 

1 

Students can work with one 

level of units as given and 

may coordinate two levels 

of units in activity. Two 

level unit structures decay 

after construction 

(Hackenberg & Tillema, 

2009). They have access to 

partitioning and iterating 

operations (Steffe, 2010). 

Students attempt to rely 

on their created 

figurative material to 

determine how many 

feet are in their counted 

total of inches.  

 Student responses show heavy reliance on 

pictorial or tally mark representations of the 

problem of the units of 1 (inches). 

Composite units (i.e. feet and/or yards) may 

be drawn but not counted. 

 Student attempts to count their figurative 

material, but creates groups that are not 

representative of the 12 inches to 1 foot 

relationship. 

 Student adds or multiplies incorrect 

combinations of numbers. 

 Student does not refer back to their answer 

as a part of 3-a or 3-b. 

 Student does not respond or otherwise 

indicate they do not know the answer. 

Stage 

2 

Students anticipate two 

levels of units as given and 

may coordinate three levels 

of units in activity. Three 

level unit structures decay 

after construction 

(Hackenberg & Tillema, 

2009). Students have access 

to a disembedding 

operation (Steffe, 2010). 

Students use the given 

relationships and the 

total number of inches 

found to determine the 

total number of feet. 

 Student work indicates a reliance on 

repeated addition or skip counting to solve 

the problem. 

 Student finds the total number of feet 

through division (i.e. 132/12 = 11 feet). 

 Student divides by the wrong unit (i.e. they 

divide by 3 yards or some other related 

number that is not inches).  

 Student work shows a reworking of the 

problem as a part of their explanation in 

Part B. 

Stage 

3 

Students take three levels 

of units as given and can 

flexibly switch between 

two and three-level 

structures during activity 

without relying on 

figurative material. 

Students have access to a 

splitting operation 

(simultaneous partitioning 

and iterating operations; 

Steffe, 2010). 

Students assimilate 

with all two-level unit 

structures given and 

readily coordinate all of 

these units to determine 

the total number of feet.  

 Student finds the total number of feet 

through multiplication and addition. 

 Student just writes 11 feet. 

 Student references the total number of feet 

in parts 3-a and 3-b to determine how many 

total feet there are without reworking 3-a. 

 Student drawings are used to justify their 

answers rather than produce them in Part B. 

 Student explanations discuss the unit 

structures as a three-level unit structure. 

 Student presents multiple ways to solve the 

problem. 
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3-d: How many yards are there in the total number of inches? 

 

 Students’ Unit Structures Student Reasoning Written Indicators of Reasoning 

Stage 

1 

Students can work with 

one level of units as given 

and may coordinate two 

levels of units in activity. 

Two level unit structures 

decay after construction 

(Hackenberg & Tillema, 

2009). They have access to 

partitioning and iterating 

operations (Steffe, 2010). 

Students attempt to rely 

on their created 

figurative material to 

determine how many 

yards are in their 

counted total of inches.  

 Student responses show heavy reliance on 

pictorial or tally mark representations of the 

problem of the units of 1 (inches). Composite 

units (i.e. feet and/or yards) may be drawn 

but not counted. 

 Student attempts to count their figurative 

material, but creates groups that are not 

representative of the inches to feet to yard 

relationship. 

 Student adds or multiplies incorrect 

combinations of numbers. 

 Student does not refer back to their answer as 

a part of 3-a, 3-b, or 3-c. 

 Student does not make an attempt to account 

for the remainder of the yard. 

 Student does not respond or otherwise 

indicate they do not know the answer. 

Stage 

2 

Students anticipate two 

levels of units as given and 

may coordinate three 

levels of units in activity. 

Three level unit structures 

decay after construction 

(Hackenberg & Tillema, 

2009). Students have 

access to a disembedding 

operation (Steffe, 2010). 

Students use the given 

relationships and the 

total number of inches 

found to determine the 

total number of yards. 

 Student works indicates a reliance on 

repeated addition or skip counting or 

repeated subtraction to solve the problem. 

 Student divides by the wrong unit (i.e. they 

divide by 3 feet or some other related number 

that is not inches).  

 Student finds an incorrect remainder. 

 Student describes the remainder as “3 and a 

little bit” or gives a range such as “between 3 

and 4”.  

 Student does not interpret the remainder as a 

part of a yard. 

Stage 

3 

Students take three levels 

of units as given and can 

flexibly switch between 

two and three-level 

structures during activity 

without relying on 

figurative material. 

Students have access to a 

splitting operation 

(simultaneous partitioning 

and iterating operations; 

Steffe, 2010). 

Students assimilate 

with all two-level unit 

structures given and 

readily coordinate all of 

these units to determine 

the total number of 

yards.  

 Student finds the total number of yards 

through division and addition (5/3 = 1 2/3, 1 

2/3 + 2 = 3 1/3).  

 Student finds the total number of feet using 

division. 

 Student references the total number of yards 

in parts 3-a and 3-b to determine how many 

total yards there are. 

 Student drawings are used to justify their 

answers rather than produce them in Part B. 

 Student explanations discuss the unit 

structures as a three-level unit structure. 

 Student presents multiple ways to solve the 

problem. 

 Student interprets the remainder as a part of 

the yard.  
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4. The stick shown below is 3/5 of a whole stick. How many 1/15 sticks can you make from 

the 3/5 stick? 

 

 Students’ Unit Structures Student Reasoning Written Indicators of Reasoning 

Stage 

1 

Students can work with 

one level of units as given 

and may coordinate two 

levels of units in activity. 

Two level unit structures 

decay after construction 

(Hackenberg & Tillema, 

2009). They use 

equisegmenting to 

construct fractional units 

(Steffe, 2010). 

Students rely on the 

given bar to segment 

and count how many 

1/15th sticks are in the 

given length 

 Segments the given 3/5 bar into 5 parts. Parts 

may or may not be reasonable. 

 Student attempts to segment the bar into 15 

parts, but there is no consistent relationship 

between the fifths and fifteenths. Student 

may end up with too many or too few parts. 

 Student’s answer is 9, but the drawing does 

not reflect 9 fifteenths in 3/5.  

 The student guesses. 

 Students do not respond or otherwise 

indicate they do not know the answer. 

Stage 

2 

Students anticipate two 

levels of units as given and 

may coordinate three 

levels of units in activity. 

Three-level unit structures 

decay after construction 

(Hackenberg & Tillema, 

2009). Students use equi-

partitioning, simultaneous 

partitioning, and splitting 

operations (if constructed) 

to construct fractional 

units (Steffe, 2010). 

Students use the two 

given fractions to 

determine through 

drawings that there are 

9 total 1/15th sticks in 

the given bar. 

 Student work indicates a reliance on a 

drawing to problem solve, not just represent 

their thinking. 

 Student uses a separate representation (such 

as a circle or a new line) to partition into 

5ths, partition into 15ths, and then take away 

two 5ths. They then count the pieces 

individually or as 3s. 

 Student may extend their stick to show 

5/5ths of the stick before they partition it into 

15ths. 

 Student writes “3, 6, 9” which indicates the 

use of skip counting. 

 Written multiplication or division material to 

determine how many 15ths are in a third. 

This may be confused with the answer. 

 Student work shows a reworking of the 

problem as a part of their explanation in Part 

B. 

Stage 

3 

Students take three levels 

of units as given and can 

flexibly switch between 

two and three-level 

structures during activity 

without relying on 

figurative material. 

Students have access to a 

splitting operation (Steffe, 

2010). 

Students are able to 

represent the problem 

pictorially using their 

splitting operation to 

first determine the 

length of the whole as 

partitioned into 15ths 

and then how many 

total 1/15ths are in the 

given bar. They may 

also use a scale factor 

to determine this. 

 Student uses a ratio to determine the total 

number of 1/15ths in the 3/5ths (i.e. they use 

the 3/5 = x/15 relationship to determine the 

number of 15ths).  

 Student may just write 3x3=9 or 9 or 9/15ths.  

 Student drawings are used to justify their 

answers rather than produce them in Part B. 

 

 



 

85 

 

 

 

 

 

5. The bar shown below is 7/3 as long as long as a whole candy bar. Draw the whole candy 

bar. 

 

 Students’ Unit Structures Student Reasoning Written Indicators of Reasoning 

Non-

IFS 

Students have difficulties 

working with improper 

fractions. They may be able 

to use the splitting operation, 

but without assimilating 

with 3 levels of units, they 

have difficulties tracking 

and making sense of the 

relationships found in 

improper fractions. May 

simplify such fractions to 

offload the mental load and 

make the problem easier 

(Steffe, 2010). 

Students rely on the 

given bar to segment 

on or iterate. However, 

they do so arbitrarily. 

The student partitions 

the bar as well as they 

can into what they 

guess would be 7/3. 

They work with 7/3 in 

terms of whole 

numbers instead of as 

an improper fraction. 

 The student segments the bars into thirds.  

 The student guesses. 

 Student provides a drawing and 

explanation that shows they tried to 

estimate 2 “wholes” and a “bit”. 

 Student forms a mixed number to solve the 

problem. 

 Student does not respond or otherwise 

indicate they do not know the answer. 

Stage 

3 

with 

IFS 

Students take three levels of 

units as given and can 

flexibly switch between two 

and three-level structures 

during activity without 

relying on figurative 

material. They use this in 

combination with the 

splitting operation to work 

with and understand 

improper fractions in terms 

of wholes and fractional 

parts (i.e. a student can 

recognize 7/3 as 2 wholes 

comprising of 3pieces of 1/3 

length and an extra 1/3 of a 

whole; Steffe, 2010). This is 

used as a confirmation of an 

MC3 student. 

Students are able to 

partition the bars into 

7 1/3rd pieces and 

indicate three of these 

as comprising the 

whole. 

 Student partitions the bar into 7ths and then 

indicates or redraws three of these pieces is 

1 whole (between 4 & 5 cm) 

 Explanations indicate they thought of the 

given bar as 7 thirds that they then 

partitioned to determine the whole 

regardless of whether they indicated 1/3 (or 

three of the 7 parts) as the whole. 

 

 

  

  



 

86 

 

 

 

 

 

 

CHAPTER IV 

 

EXPLORING UNDERGRADUATE STUDENTS’ REASONING ON OPTIMIZATION 

PROBLEMS 

 

Target Journal: The Journal of Mathematical Behavior 

Authors: Jianna Davenport, Karen Zwanch, Jennifer Cribbs 

Abstract: 

This study examines students’ reasoning on optimization problems and how their 

mathematical reasoning is supported by their multiplicative reasoning. Five 

undergraduate students participated in clinical interviews solving two 

optimization problems. Three of the five students successfully answered both 

questions. Students used systematic guess and check, equations, tables, and 

graphs to represent both problems. Results showed that relational reasoning, 

numerical examples, and visual representations helped students provide accurate 

algebraic representations for the problems. 
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Introduction 

 The purpose of learning mathematics is to develop mathematical reasoning that is 

beneficial to a students’ career and ability to reason about the world around them. Sound 

mathematical reasoning is essential to a person’s ability to be an informed participant in society 

and to develop competence in everyday tasks (National Research Council, 2001). Many entry-

level undergraduate mathematics courses focus on quantitative reasoning in their curriculum 

(Elrod, 2014; Lusardi & Wallace, 2013; Wolfe, 1993). Quantitative reasoning is defined as 

applying mathematics and critical thinking to interpret data and draw conclusions from 

problems, critical skills for any student regardless of their career (Elrod, 2014). Education 

initiatives focus on the development of rich mathematical and quantitative reasoning in students. 

Both the National Research Council (2001) and The Common Core State Standards for 

Mathematics (CCSSM; CCSSO, 2010) discuss developing students’ conceptual understanding of 

mathematics, or comprehension of mathematical concepts, operations and relations (CCSSO, 

2010), as a priority in teaching mathematics.  

 However, students are not always receptive to teaching that emphasizes the conceptual 

approach to mathematics. Some of the students in Byerly’s (2019) study struggled with learning 

about derivatives from a conceptual approach to rate of change and expressed their preference 

for memorizing procedures and formulas over conceptual learning. Additionally, students’ ability 

to construct and coordinate unit structures were shown to influenced their ability to reason about 

rate of change conceptually. Limitations in their available operations due to their understanding 

of how to coordinate unit structures became of point of frustration for some when reasoning 

conceptually about derivatives. To help accommodate these students and reduce frustration when 

learning conceptually, it is important that we understand how these students leverage their 
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operations to solve problems. Prior research has explored connections between students’ ability 

construct and coordinate unit structures and how they recognize and their ability to understand 

and represent multiplicative relationships using unknowns (Hackenberg et al., 2017). However, 

current research has not explored how students reason about and represent covarying contexts 

within problems with equations. 

 The focus in this study is on how students reason quantitatively on problems involving 

covarying contexts and how they reason about representing these problems to find a solution. To 

support this focus, this study explores how undergraduate students solve optimization problems 

prior to any experience with them in calculus. Optimization problems provide students with a 

situation with varying parameters and ask them to identify values within these parameters that 

produce an optimum solution. Optimization problems are often introduced in calculus courses as 

problems for teaching and practicing the use and interpretations of derivatives. However, the 

unique covarying (simultaneous variation of variables) nature of optimization problems provides 

a challenge for students to reason about quantitatively (Thompson & Carlson, 2017). Thompson 

and Carlson (2017) propose that conceptualizing and representing an optimization problem 

requires sophisticated quantitative, algebraic, and covariational reasoning. Take the following 

problem titled the charter bus problem: 

Marian’s charter bus company offers a route to the neighboring city that charges 

$40 per person if up to 30 passengers sign up for the trip. If more than 30 

passengers sign up, the fare for every passenger is reduced by $1 for every 

passenger in excess of 30. The bus can only hold 48 passengers. How many 

passengers does Marian want to sign up for her charter bus route in order to 

maximize her revenue for the trip? 



 

89 

 

In this example, the student is first asked to recognize and reason about the discount 

provided by conceptualizing a covarying relationship where the fare price for the bus 

decreases by $1 for every increase in passenger over 30. They must also take into account 

that the fare price and number of passengers are being multiplied together in order to 

produce the total amount of revenue. Finally, they must identify they are looking for the 

maximum amount of revenue possible. Creating representations for optimization 

problems requires a combination of concepts such as algebraic reasoning, equation 

writing, and covariational reasoning. 

We propose there is be a connection between the students reasoning about 

optimization problems and their ability to construct and coordinate unit structures. 

Research on students’ ability to construct and coordinate unit structures has shown it to 

be a foundation for their reasoning with other mathematical concepts such as fractions 

(Hackenberg, 2007; Steffe, 2001), proportions (Steffe et al., 2014), algebraic reasoning 

and equation writing (Hackenberg, 2013; Hackenberg et al., 2017, 2021; Olive & 

Cagalayan, 2008; Zwanch, 2019, 2022a, 2022b), derivatives and rates of change (Byerly, 

2019), and recognition of quantity and use of measurement (Steffe, 2013).  

 The goal of this study is to explore how undergraduate students reason 

mathematically and solve optimization problems and how students’ ability to construct 

and coordinate unit structures supports their problem solving. The research questions for 

this study are: 

 How do undergraduate students reason about and solve optimization problems? 

 To what extent can the multiplicative concepts be used to explain undergraduate 

students’ reasoning on optimization problems? 
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Theoretical Framework 

 Scheme theory serves as the theoretical lens for the analysis of student work on 

optimization problems for this study. Within scheme theory, the goal of analysis of mathematical 

thinking in this study is not to define how each student thinks in terms of an expert’s lens, but in 

the terms of student thinking.  This aligns with Steffe’s (1992) emphasis on researching 

children’s mathematics, not the mathematics of children. We define our view of mathematical 

thinking as Hackenberg (2013) “in terms of mental actions, or operations” (p. 539). These 

operations are a piece of their developed schemes. Schemes, as defined by von Glasersfeld 

(1995), is a model of a person’s learned thoughts and actions that take place as a pattern of 

interaction when an individual is introduced to a circumstance or situation. A scheme involves 

three parts. The individual will (1) recognize the situation, (2) produce a mental action tied to the 

situation, and (3) have an expected or unexpected outcome of the situation (von Glasersfeld, 

1995). For example, a student given an optimization problem might first read the problem and 

recognize that it is asking them to find the maximum. Then the student may attempt to solve the 

problem by guessing, making an equation, or trying to find a graph. The student will expect an 

outcome based on their past experiences with operations. This could be a single maximum 

number, a linear or quadratic equation, or the highest point on a graph.  

Multiplicative Concepts 

The multiplicative concepts are stages that model the degree to which students anticipate, 

construct, and coordinate multiple levels of units and the operations tied to these units they have 

available during problem solving (Hackenberg & Tillema 2009; Ulrich, 2016). Units, as used in 

this study, are standard and non-standard units of measure (Ulrich, 2015). Units can be 

understood as multiple levels. For example, a yard is a unit that can be understood as 1 yard, 3 
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feet, and 36 inches. Constructing this into a unit that is a yard containing 3 feet containing 12 

inches each is the creation of a 3-level unit structure (Hackenberg et al., 2021). The 

multiplicative concepts consist of three stages of schemes that are defined by the degree to which 

students anticipate, construct and operate on unit structures that consist of multiple levels (Steffe, 

1992; Hackenberg & Tillema, 2009; Ulrich, 2015). Analysis of student thinking through the lens 

of their multiplicative concepts allows the researchers to explore how the operations available to 

students from these schemes interact with their reasoning on complex problems.  

Students who assimilate with one level of unit and can construct two in activity (during 

problem solving) have developed the first multiplicative concept (MC1; Hackenberg & Tillema, 

2009). These students insert one unit into another in order to multiply them together. An MC1 

student can find how many inches are in 6 feet by inserting 12 inches into each foot and skip 

counting by twelve 6 times to get a total of 72 inches. After problem solving the two-level unit 

structure constructed by the student, it decays leaving the student to only reflect on the 72 inches 

with no connection to the original 6 feet (Hackenberg et al., 2021). These 72 inches are not 

considered interchangeable to one another so the inch labeled 3 is equal but not identical to the 

inch labeled 45.  

 Students who assimilate with two levels of units and can construct three levels in activity 

have developed the second multiplicative concept (MC2; Hackenberg & Tillema, 2009). MC2 

students can find how many inches are in 2 yards by anticipating the composite unit of 2 yards 

that contain 6 feet and then constructing a three level unit structure by inserting 12 inches into 

each of the 6 feet to get 72 total inches. These 72 inches are iterable units of 1 meaning they are 

now considered interchangeable with one another. The third level of units constructed to solve 

the problem decay after activity, leaving the MC2 student to reflect only on two levels of units 
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(Hackenberg et al., 2021). Thus, the student may only reflect on the 2 yards containing 72 inches 

unit after problem solving.  

 Students who assimilate with three levels of units and construct four or five levels in 

activity have developed the third multiplicative concept (MC3; Hackenberg & Tillema, 2009; 

Ulrich 2016). These students can move flexibly between the levels of their constructed units 

during problem solving (Ulrich, 2016). MC3 students can find the number of total inches in 2 

yards by anticipating the composite unit of 2 yards containing 6 feet containing 12 inches each. 

They could also solve how many inches are in 5 more feet by taking the 72 inches they originally 

found and iterating the unit of a foot containing 12 inches 5 more times reaching a total of 132 

inches. This is possible as MC3 students have constructed iterable composite units (two-level 

unit structures; Ulrich, 2016). MC3 students can reflect on their three-level unit structures and 

can recognize that their 132 inches are contained within 11 feet contained within 3 2/3 yards.  

Connections to Optimization Problems 

The operations available to a student from their multiplicative concept stage influences 

the student’s reasoning with algebraic symbols and equations and their understanding of 

unknowns (Hackenberg, 2013; Hackenberg et al., 2017, 2021). Research on middle school 

students with number sequence schemes that align with MC1 and MC2 students showed that 

MC2 students were more successful than their MC1 counterparts at developing correct algebraic 

equations to represent on-step multiplicative relationships (Zwanch, 2019), generalizing linear 

patterns (Zwanch, 2022b), and solving systems of linear equations (Zwanch, 2022a). 

Additionally, researchers have conjectured that MC1 students would have a difficult time 

working with quantitative unknowns and variables due to their use of singleton units, which can 

make it difficult to write equations (Hackenberg et al., 2021). However, prior research on 
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undergraduate student populations suggests that most students have developed an MC2 or MC3 

by the time they have reached college (Boyce et al. 2021; Davenport et al., in preparation). As 

such, we will not be discussing MC1 student thinking on optimization problems as a part of this 

study. 

Research on MC2 and MC3 students’ algebraic equation writing supports a difference in 

operations between MC2 and MC3 students that can create an increase in difficulty for problems 

similar to optimization problems. Research on students’ abilities to write multiplicative 

relationships as algebraic expressions showed that MC2 students could write the equations with 

effort, while MC3 students wrote the expressions swiftly (Hackenberg et al., 2017). Additionally, 

MC2 students often struggle with conceptualizing a variable as a unit of unknown size and often 

use variables as a place holder for numeric examples (Hackenberg et al., 2017). However, MC2 

students can create accurate an algebraic representation for a set of equations that are in terms of 

a single variable (Olive & Caglayan, 2008; Zwanch, 2022a).  

Methodology 

Theoretical Analysis 

 Before collecting data for this study, researchers selected the optimization problems for 

this study and conducted a theoretical analysis of the problems. The theoretical analysis allows 

researchers to clarify and identify the unit structures of the problems and anticipate student 

solutions based on the current research on the multiplicative concepts stages.  

Olive and Caglayan (2008) claim that “one can interpret all the variables arising from 

word problems as not simply ordinary quantities named in the problem, but, rather, as 

mathematical objects with names, values, and associated units” (p. 288). Coordinating these 

values is what is essential to creating a quantitative structure (a network of quantitative 
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relationships; Thompson 1993). A quantitative structure is a unit of unknowns constructed of the 

relationships between these unknowns. Constructing quantitative structures requires complex 

coordination of units and relationships. The ability to construct three-level unit structures is 

important to being able to understand and conserve unit relationships in this structure (Olive & 

Cagalayan, 2008). As such, we hypothesize that MC2 and MC3 students should be able to 

understand an optimization problem, create a representation of the relationships expressed in the 

problem, and create an equation for the problem. However, the level of flexibility and ease of 

this process is hypothesized to differ depending on the constructed multiplicative stage of the 

student. To justify these hypotheses, we will present our theoretical analysis of the optimization 

problems explored in this study. Below is the charter bus problem: 

Marian owns a charter bus company offers a route to the neighboring city that 

charges $40 per person if up to 30 passengers sign up for the trip. If more than 30 

passengers sign up, the fare for every passenger is reduced by $1 for every 

passenger in excess of 30. The bus can only hold up to 48 passengers. How many 

passengers does Marian want to sign up for her charter bus route if she wants to 

maximize her revenue for the trip? (35 passengers) 

The charter bus problem, asks the student to find the optimum number of passengers for the 

charter bus if she wants the highest amount of revenue. As such, students must conceive of 

revenue as the product of the number of passengers and the price for each ticket (see Figure 4.1). 

They must then understand that the price of the fare varies such that for every passenger over 30, 

they must take $1 off the price of the ticket. If they want to express revenue as an equation, they 

can write the price of the ticket as (40-n) where n is number of passengers over 30. Additionally, 

the student must also recognize that the number of passengers can be assigned a relationship 
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based on this newly defined variable n. They can represent this relationship by writing (30+n). 

By substituting both, the student can conceive of the revenue as both the price of the ticket 

multiplied by number of passengers and (40-n)(30+n).  

Figure 4.1 

Quantitative structure for the charter bus problem 

 
The covariation of the ticket price and number of passengers can be a difficult challenge 

for MC2 students during equation writing. The student must define and retain the definition of 

their variable as the additional people over 30. Additionally, they must conceive of revenue as an 

equation of two unknowns that covary by the same term (n). The result is an equation of two 

expressions that are in a multiplicative relationship with one another. They must also remember 

that they are looking for the optimal number of passengers to get the maximum amount of 

revenue. This is a large cognitive load for MC2 students and may cause relationships constructed 

during in their work to decay with time. 

The other optimization problem explored in this study is the barn pen problem. It is as 

follows: 

John wants to build a rectangular pen next to his barn. To try to maximize his 

resources, he decides to use one side of the barn as a side of his pen. If he has 160 

feet worth of fence available to build his pen and the barn side was over 160 feet 

long, what dimensions of the pen will maximize its area? (80ft x 40ft x 40ft)  
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For the barn pen problem, the student is asked to find the dimensions of the pen based on 

the available fencing. The student must recognize that they are looking for the maximum 

area. Since this is a rectangular fence, they know they need to multiply the length and 

width of the pen to find the area (A = lw; see Figure 4.2). However, they are given 

information that pertains to the perimeter of the pen. Using the given information and 

what they know about rectangles, they can determine that the perimeter should be the 

sum of the lengths and widths (P = 2l + 2w). Since one of those sides is the barn, they can 

take out either a length or width (P = l + 2w). They know that the perimeter is 160 ft, so 

they can write the formula (160 = l + 2w). If they think to use substitution, they can 

rearrange the perimeter in terms of either length or width (l = 2w – 160). Substituting this 

into their area formula allows them to create one algebraic equation in terms of the single 

variable (w; A = (2w – 160)(w)). 

Figure 4.2 

Quantitative structure for the barn pen problem 

 

 

To write the equation for the barn pen problem, the student must recognize that 

they can use the perimeter to define the relationship between the length and width of the 

rectangle (l = 2w – 160). They can then insert this into their equation for the area of the 

rectangle to help determine the maximum area of the pen. However, the student must 

maintain the relationship between the length and the width during problem solving to find 

Length x Width 

l = 160 – 2w 160 = l + 2w w 

(160 – 2w)w 

Area 

Perimeter 
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the dimensions of the pen. Should the relationship decay after problem solving, the 

student may need to reestablish the relationship using the formula for the perimeter and 

the 160 feet of fencing. MC2 students may have difficulties retaining the relationships 

between the variables found in the problem.  

Participants and Data Collection 

 The current study is part of the second phase of a two-phase study exploring 

undergraduate students’ multiplicative concept stages by (1) validating an assessment for 

undergraduate students, (2) exploring their solutions to optimization problems, and (3) exploring 

how they discuss their mathematics identity. This article specifically addresses the second goal 

of the study, exploring student solutions to optimization problems. The participants in this phase 

of the study are separate from the participants in the first phase of this study whose data was used 

to validate an assessment for undergraduate students’ multiplicative concept stages (Davenport et 

al., in preparation). 

This study is a collective case study (Creswell & Poth, 2016) exploring the problem-

solving strategies of undergraduate students on optimization problems. They define a case study 

as “a qualitative approach in which the investigator explores a real-life, contemporary bounded 

system (or case) or multiple bounded systems (cases) over time, through detailed in depth data 

collection involving multiple sources of information” (Creswell & Poth, 2016, p. 95). In a 

collective case study, the researcher choses an issue or concern and bounds multiple cases to 

illustrate this issue (Creswell & Poth, 2016). The issue being explored in this study is the student 

reasoning on optimization problems. The cases being discussed in this study are (1) 

undergraduate non-STEM major MC2 students enrolled in an entry-level mathematics course 

who have not taken calculus before and (2) undergraduate non-STEM major MC3 students 
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enrolled in an entry-level mathematic courses who have not taken calculus before. This section 

outlines how the researchers chose the sample of participants for this study as bound by the 

cases.  

The Undergraduate Multiplicative Concepts Assessment (UMCA; Davenport et al., in 

preparation) was administered to 43 undergraduate students enrolled in either an entry-level 

mathematics course focusing on mathematical functions and their applications to natural 

sciences, agriculture, business, and social sciences or a freshman level course on elementary 

education taught at a mid-western university. Students in the elementary education course either 

were currently or had previously been enrolled in the function modelling course the prior 

semester. Participants were recruited from these courses to ensure they had not taken calculus as 

a part of their college coursework. By targeting this population of undergraduate students, 

researchers aimed to be able to explore the students’ work on optimization problems as the 

students first experience them. Scores from the UMCA were used to help evaluate the 

multiplicative concept stage of participants for participant selection (Davenport et al., in 

preparation).  

 From the students who took the UMCA, five volunteered to participate in a follow-up 

interview that was given in two parts. First, they participated in a semi-structured interview 

(Galletta, 2013) where they discussed their mathematics identity. Data collected from this 

portion of the interview will not be discussed in this article. The second part of this interview 

was a clinical interview (Clement, 2000) that took between 30 minutes and an hour and was 

given in two sections. In the first section of the interview, participants were asked to solve a 

series of problems as additional evidence towards the multiplicative concept stage of the 

participants alongside the evidence from the UMCA. The participants’ UMCA results and 
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interview evidence given in the first section of the interview indicated that two of the volunteer 

participants were MC2 students (Abigail and Diana), and three were MC3 students (Brian, 

Clarissa, and Eric). The stage attributed to each participant by the UMCA and the interview 

evidence matched for all participants. Participants were given pseudonyms for the purposes of 

discussion. In the second part of the interview, participants were asked to solve the charter bus 

problem and the barn pen problem. These optimization problems needed to be solvable by 

students who had not taken calculus, and so were restricted to scenarios where the resulting 

equation was a quadratic function.  

Participants were given a lined notebook to write on and a pen. The problems were 

printed on paper for participant reference. Four function calculators and graphing paper were 

readily available, but were not offered unless the student suggested and then requested it. Only 

one participant (Diana) requested the use of a calculator. 

 Participants were presented with each problem and asked to work out their own solution. 

The interviewer asked questions about the participants’ reasoning and solution process and 

helped clarify if the they had misunderstandings about the problem. After the participant initially 

found a solution, the researcher then asked them if they could write an equation or create a graph 

for the problem if they had not already done so. After the student had completed discussions of 

their solutions, equations, and graphs they were then presented with the correct graph from the 

problem and asked to interpret this graph and compare it to their own work. This graph was not 

presented as the graph for the problem, but rather a graph that was on hand. Students were then 

asked to interpret the graph in relation to appropriate optimization problem.  

Student work was recorded as video and audio footage and pdfs were kept of their written 

work. Transcriptions were made of the clinical interviews. Formatting choices were made during 
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transcription to better represent the students’ actions. All work that was pointed at or referenced 

while the interviewer or participant were talking were placed in brackets and italicized (e.g. “D: I 

like this one [1200 – 9x] better.”). Actions taken between dialogue were written out and 

italicized on a separate line from dialogue. Quotations were placed around any verbatim written 

work. 

Data Analysis 

Explicit analysis was used to analyze participants’ work solving the optimization 

problems (Clement, 2000). The first phase of explicit analysis is to use low-inference descriptors 

of the students work to observe and code the data outside of the theoretical framework (Clement, 

2000). The low-inference codes summarized and outlined how the student solved the problem 

without considering their multiplicative concept stage (e.g., guess and check, created table, 

covariational reasoning, referenced rate of change, etc.). Video recordings, transcriptions of 

interview audio, and written work were reviewed multiple times during analysis to create codes. 

These codes were then condensed into themes that reflected the solution process of the 

participants. Before moving onto the second phase of explicit coding, a comparison of the low-

inference codes between MC2 and MC3 solutions was conducted. The data from the low 

inference coding addresses our research question, how do undergraduate students reason about 

and solve optimization problems? 

The second phase of explicit coding uses high-inference descriptors to observe student 

work within the theoretical framework (Clement, 2000). The high-inference descriptors used in 

this study highlight evidence towards how the participants’ operations from their multiplicative 

concept stages influence and support their reasoning on the optimization problems (e.g., unit 

decay, iterable composite unit, numerical representation, etc.). Then comparison of high-
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inference codes between MC2 and MC3 students was conducted. The data from analysis of our 

high inference codes addresses our second research question, to what extent can the 

multiplicative concepts be used to explain undergraduate students’ reasoning on optimization 

problems? The comparison of solutions and evidence from the explicit analysis were then 

synthesized into narratives used in the discussion of the results and analysis. 

Results and Analysis 

Discussion of the results of this study will address and summarize participant solutions to 

each question respectively before discussing the solutions connections to the students’ 

multiplicative concepts. For reference, Appendix B provides the correct answers and equations 

and the given graphs for the charter bus problem and the barn pen problem. 

The Charter Bus Problem 

 Participants were first asked to solve the charter bus problem. Participants were allowed 

to solve the problem in any way they wanted after presenting the problem. Only after they had 

reached a conclusion on the solution to the problem did the interviewer ask for additional 

representation for the problem. Table 4.1 provides a summary of representations students used to 

model the charter bus problem. 

Table 4.1  

Participant charter bus problem representations 

  Guess and Check Table Equation Graph 

 Used Accurate Used Accurate Used Accurate Used Accurate 

MC2         

 Abigail Yes Yes No  Yes Yes No  

 Diana No  Yes Yes Yes Yes Yes Yes 

MC3         

 Brian Yes Yes No  Yes No Yes Yes 

 Clarissa Yes No No  Yes Yes Yes No 

 Eric Yes No No  Yes Yes Yes No 
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 All five participants in this study began their problem solving process by first calculating 

how much revenue Marian would make if she had 30 passengers on her bus. They then paused to 

reread the problem before starting their solutions. Abigail, Brian, Clarissa, and Eric all chose to 

use a guess and check strategy to solve the problem. Diana chose to write the problem as an 

equation and then create a table of points based on her equation to find the solution. While 

Abigail chose the guess and check strategy, she did express that her “first instinct was to put it in 

the calculator and make a graph”. However, with her given resources, she felt that a guess and 

check strategy was the most reliable way to solve the problem. 

 Participants were asked to provide additional representations for the problems if they did 

not do so in their original work. Abigail, Brian, Clarissa, and Eric were all asked to create an 

equation and graph to represent the problem. Diana provided an equation, table, and graph in her 

initial work.  

Guess and Check Strategies 

While Abigail, Brian, Clarissa, and Eric all produced a guess and check strategy, only 

Abigail and Brian did so systematically. Systematic guess and check is model based reasoning 

where the solver applies relational reasoning to situational context to solve a problem 

(Johanning, 2010). Abigail started with her original work to find how much revenue Marian 

would make with 30 passengers (see Figure 4.3). Abigail had solved this by multiplying the 

ticket price (the 40 on top) by the number of passengers (the 30 on bottom). She then took one 

from the fare price (39) and added one to the number of passengers (31) before finding the total 

revenue again. She continued this pattern, watching the change in revenue after each change in 

price. When she reached the point that there were 35 passengers, she said, “oh, I think I’m 

getting close. We only went up by one dollar this time.” As she went to write the next part of her 
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pattern, she stopped, saying, “Oh yeah, it would be 35 passengers. The next one is the same as 

the last one. 36 times 34 is the same as 34 times 36.” 

Figure 4.3 

Abigail’s guess and check written work 

 
 

Abigail described her work by saying, “I took one from the price each time [she runs her 

finger along her top row of numbers] and then added one to the people each time [she runs her 

finger along the bottom row of numbers]. Since it repeated here [she points at the second 34 x 

36], I know that the numbers will keep going down now.”  

 Brian’s work for his guess and check strategy was similar to Abigail’s. He began writing 

his pattern as an example of how he was thinking, keeping a column of numbers that was 

decreasing for the price and a column of numbers that was increasing for the passengers (see 

Figure 4.4). The row structure on the side served as his work for the calculations that he then 

placed in the column format to the left. Brian calculated the revenue in this way up to 37. Then 

he stopped, saying, “So basically what I did was I kept going a little bit, and now the number of 

the rate of change is decreasing… so it went from plus 9 to plus 7 to plus 5… I’m basically doing 

a guess and check, which takes a bit of time, but you could get the right answer”. He began 

working out “35 x 35 = 1225”. After a moments pause he said, “Oh wait. [he rereads the 

question] I think I have the answer.” He then solves “36 x 34 = 1224”. “So this [he points at 
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36x34] is what I think is one more than the maximum number I think she should do. And I found 

a smaller number, so I want to say it’ll be 35 passengers.” 

Figure 4.4 

Brian’s guess and check written work 

 
 

 Brian was able to find the correct number of passengers through guess and check and a 

bit of intuition. He didn’t need to check if 34 passengers would yield a smaller revenue than 35 

passengers since this was part of his increasing pattern. When he did write his work for “36 x 

34”, he explicitly named the 36 as the number of passengers and the 34 as the bus fare price. 

This drop in price was the evidence he needed that his guess of 35 passengers was the correct 

solution.  

 Both Abigail and Brian use their systematic guess and check work to model the charter 

bus problem. Abigail’s continual use of the “plus one, minus one” relationship to find the 

maximum solution to the problem leveraged her relational reasoning. Brian focused on the 

decreasing rate of change to support his guesses and used additional evidence as support for his 

conclusion. 

 Clarissa and Eric did not use their guess and check work to systematically model the 

problem, but rather to support their own conclusions. An excerpt from the interview with 

Clarissa is below: 
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 Clarissa: Ok, so if she wants the most money, she’ll be getting 30 passengers. 

 Interviewer: So how much money would she be making with 30 passengers? 

 Clarissa: That would be 1200. 

 Interviewer: And how could you check to see if that was the maximum? 

Clarissa: I could do the total number, the 48 passengers, to see if that was better or 

worse. 

Clarissa writes “40 x 30 = $1200”. She then writes “48 – 30 = 18” and “48 x 22 

= $956’. 

 Clarissa: So it would be $956. 

Clarissa was confident in her guess and did not look further into the problem. She also did not 

realize that her product for 48 x 22 was incorrect. She was satisfied with her initial response and 

only provided additional evidence for her response at the request of the interviewer. When the 

evidence provided supported her conclusion, she did not look further into the problem. 

 Eric initially misunderstood the question, commenting that it must be a “trick question” 

since she would still make more money even if she lost one dollar for every additional person. 

He concluded that 48 would be the optimum number of passengers to maximize the revenue as it 

would fill the bus. However, after clarification, he decided to check his answer of 48. He found 

that by fully loading the bus, there would be a total revenue of $1056. Below is an excerpt of the 

conversation following this find: 

Interviewer: So is that more or less than what you calculated for just 30 

passengers. 

 Eric: Wait, I marked that out. Let me write that again over here.  

 Eric wrote “40 x 30 = 1200”. 
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Eric: So if she wants to maximize the revenue, then she would want to have 30 

passengers with the caveat that for every passenger over 30, she loses one dollar. 

Interviewer: So do you think she would make more money if one more person 

signed up? 

 Eric: I don’t think that she would. But I can check. 

 Eric worked out “39 x 31 = 1209”. 

 Eric: Oh! Yes, she would. 

 Interviewer: So what about one more? 

 Eric: I imagine that adding one more passenger would lose her money. 

 Interviewer: Can you check that. 

 Eric wrote “38 x 32 = 1216”. 

Eric: She would make 16 dollars more than at 30. So there should be one point at 

like 38 or 39 where she starts losing money. 

Eric paused. Then he wrote “41 x 29 = 1064”. 

Eric: Yeah it should be 39. At 41 she starts losing money. 

Eric was confident with each of his guesses. It was only with prodding from the interviewer that 

he would check any of his guesses. Eric chose 39 as his final guess after finding that 41 x 29 was 

a decrease in revenue. This approximation was sufficient for Eric to feel confident in his answer. 

 Clarissa and Eric both used guess and check as a way to validate and justify their guesses 

for the problem’s solution. Neither systematically modeled the problem in a way that would 

yield a correct solution. Clarissa was confident in her conclusion that 30 passengers was correct 

while Eric was satisfied with his approximate answer of 39. 
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Starting with an equation 

Diana attempted to write an equation for the charter bus problem as her way to solve the 

problem. Diana started by calculating how much money she would make if 30 passengers signed 

up for the trip. After thinking a minute, she wrote “1200 – 1x” and then “40 – 1x” underneath it. 

She stopped to think for a minute. 

 Interviewer: So, what are you thinking about. 

 Diana: I don’t know. 

 Interviewer: Ok, so here you wrote “40 – 1x” and up here you wrote “1200 – 1x”. 

Diana: Well, I’m trying to decide which one to go with. 

Interviewer: Alright, what are you thinking about this one.  

Interviewer pointed to the “1200 – 1x” 

Diana: Well, this one is how much it would decrease in total. 

Diana then pointed at the “40 – 1x” 

Diana: And this one is how much the ticket price changes per person. 

Interviewer: Oh, per person. So is that what the x stands for? 

Diana: Yeah, it’s a person, so 1 people, 2 people… 

Interviewer: So is that 2 people or 32 people. 

Diana: In addition to 30 people. 

Diana was able to quickly develop two sets of equations she felt represented the problem at hand. 

Additionally, she accurately identified what the variable x stood for in her equations. Diana then 

moves on to find the revenue if all 48 people bought a ticket for the charter bus (48 x 22 = 1056). 

She then stated, “I wish I had a calculator. I want to graph it.” When asked what she thinks it 
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would look like, she drew a “bell graph” and explains it’s like the velocity graphs. She then 

circled the top point and said, “I want to find this point on it.” 

 Diana decided to see if she could keep working on an equation. She recognized that the 

“40 – 1x” was the price of the tickets and did not reflect the whole problem. When asked which 

part of her work it represented, she pointed to an equation she had written, “40 – 18 = $22”. 

When asked where she got the 18 from, she indicated where she had written “48 - 30 = 18” 

above this work. The instructor then asked what the x represented in her work “40 - 18 = 22”. 

She indicated the 18. 

 Interviewer: Ok, so can you rewrite 48 with the 18? 

 Diana: Well, 18 plus 30 is 48.  

Interviewer: Ok, and can we make any of that into the x? 

Diana nodded and wrote “x + 30 =”. 

Interviewer: Ok so this is? 

Diana: Number of people. Diana writes “# of people” to the left of the equal sign. 

Interviewer: And what was this one? [indicates “40 – 1x”] 

Diana: Price per person. 

Diana wrote “$ for every person” to the left of this work. 

Interviewer: So, you have number of people and price per person, what can you 

do now. 

Diana paused, looking confused. 

Interviewer: How does that relate to the work you did here. [Indicates the 48x22 

= 1056] 

Diana: You multiply them. 
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Diana wrote “(40-x)(x+30)”. 

With a bit of help and by referencing her work with 48 passengers, Diana was able to create an 

accurate equation to represent the charter bus problem. She then proceeded to multiply the 

binomials using what she called the FOIL approach (an acronym standing for “first, outer, inner, 

last” which references using the distributive property of multiplication) the expression to get “–x2 

+ 10x + 1200”. When finished, she started to draw a chart off to the side. She labeled her first 

column between 0 and 16 and then began filling out the output column by plugging in numbers 

to her (40-x)(x+30) expression. When she had filled out the chart to 6, she stopped. She circled 

(5, 1225) and said, “I’m done, you want 35 people.” 

 Diana approached the problem with the goal of creating an equation and graph. Once she 

was confident in her model for the problem, she used it to find the correct answer using her 

output from the equation. While finding the initial equation was challenging, she persisted in 

using her examples to help her accurately represent the charter bus problem as an equation.  

Other Equation Representations 

Abigail, Brian, Clarissa, and Eric were all asked to provide an equation for the charter 

bus problem after they had found their solution to the problem. All four participants provided 

linear expressions as their initial guesses, similar to Diana’s initial work with “1200 – 1x” and 

“40 – 1x”.  

Brian was the only participant who did not find an accurate equation for the charter bus 

problem at any point during the interview. His first guess was the equation “y = 40x + 30”. Brian 

kept thinking and talking through his thoughts, commenting that it wasn’t quite right, the rate 

was constantly changing. When asked about why he though the linear equation wasn’t quite 

right, he said, “Because the rate is not… This rate would only go for this equation [40 x 30 = 
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1200], it wouldn’t go for the entire equation”. He stopped, and wrote down off to the side “9, 7, 

5, 3, 1, …” He then said, “I’m not sure about the slope. It’s decreasing by 2 each time. The next 

one would be… 1/3?” Brian wrote down the 1/3. When asked what he thought was changing 

each time, Brian replied, “It would be x, because it’s changing”. After debating back and forth, 

Brian gave up finding the equation for the problem and focused on what the graph for this 

problem would look like. 

Clarissa provided the equation “F(x) = 40 – 1x” as her initial response. She explained the 

equation was for the price of the fare and that the variable x stood for the extra passengers on the 

bus. The interviewer then asked if there was a way to represent what she multiplied the fare price 

by in her previous work. After some thought, Clarissa wrote two equations: “F(p) = 40p” where 

p represented the 30 people, and “F(n) = 22n” where n represented the 48 people. The 

interviewer then asked if she could represent the 48 using the variable x she had previously 

defined. She wrote “48 = 30 + x”. The interviewer then reminded her of her initial response and 

asked if there is a way to model her work using the two equations she wrote. She then wrote 

“F(x) = (30 + x) (40 – 1x)”. When asked whether she thought the equation was representative of 

the charter bus problem, she replied that it “looks complicated” but was “believable”. 

Eric was the most independent solver of the participants. Eric’s first written equation 

was, “y = 40(30) – 1p” where he identified the variable p as additional people over 30. When 

asked why he multiplied the 30 by the 40, he replied, “to represent the people paying 40 a piece. 

I know this is not quite right”. The interviewer asked him what would happen if they added 1 

more passenger according to his equation. Thinking it through, he changed his mind, rewriting 

the equation to be “y = 30(40 – p)”. The interviewer then asked if this equation made sense. After 

a moment of thought, he wrote down, “y = (30 + p)(40 – p)”. When asked if this equation 
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reflected his previous work, he replied, “Not exactly, but I would say it’s about as close enough 

as I can handle right now”. 

Abigail needed substantial assistance thinking through her equation. Abigail initially 

wrote the equation “r = 40p + b”. Off to the side of her work she noted “p = x people; r = y 

revenue”.  When explaining the equation, she stated, “Yeah, this is what I have so far, but then 

I’d have to find out the plus over here, the b. I know r and p, and I do have some up here because 

we know that… [pause] Oh, what am I doing?”  Abigail then attempted to begin to find the value 

of b, saying, “We know somehow [r = 40p + b] equals 1200... So you know it should be [1200 = 

40(30) + b], if I did this correctly, or was 40 times 30 plus 1?” Abigail stopped working on the 

equation. 

Interviewer: So you are starting out with this idea that you know how to represent the 

initial one, she’s going to make 40 dollars for each person up to 30? 

Abigail: I forgot about the after 30 dollars. I wouldn’t know how to do that on a graph. 

Interviewer: Well, it’s reduced by one for every passenger that is over 30 correct? 

Abigail nodded. 

Interviewer: How do you think you could get your p to represent that? Is there anything 

you did up here [the guess and check work] that can be reflected in your equation? 

Abigail: I would think I would need to put a minus in there somewhere, but I wouldn't 

know where to put it to make it always work for every single, one of these [the individual 

steps in her guess and check pattern] So it increases by one... You minus it by one, or 

no... You reduce. These [the products] increased by nine, and then it suddenly increased 

by... What is that like 10 dollars? 10-11 dollars, then by 3 and then 1. So that's not really 

a constant pattern either... I feel like it would look something like this, 30 minus 
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something, but I don't know what it would minus us by to make sure you would always 

get the right number. 

Interviewer: So you're trying to subtract over here [the row for people starting at 30], so 

are you trying to directly influence the p and what is the p? 

Abigail: Amount of people, so… No. The amount of people you add… So maybe you 

should do it over here, 40 is also changing by the amount of people, so there’s a p again, 

but… 

Abigail wrote “30(40 - p)”. 

Abigail: So if you put the p there as well, so it could be, it kinda looks right. But I don’t 

know if that works because 40 minus 30 is just 10. 

Interviewer: Ok, so we’re getting at what you want, you have the 40 – p, and you have 30 

over here, but in your work up here [the guess and check work] you are increasing the 30. 

So is there anyway you can mess with the 30? 

Abigail: So 30, and that would be plus… however many people, just depends on the 

amount of people, but I don’t know how to put in like plus however many extra people, I 

guess... 

Interviewer: Over here you had 40 minus p and you said that reflected the top where it 

goes down by 1 every time. Can you do the same thing over here [30]? 

Abigail: I assume so, but I don’t know if it would work.  

Abigail wrote “(30 + p)(40 - p)” 

Abigail: That looks familiar ‘cause you can do the FOIL method. 

Abigail was able to provide an accurate equation for the charter bus problem by heavily 

referencing her initial guess and check work and with some assistance from the interviewer. 
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From here, Abigail simplified her equation to “9p + 1200” as her final equation. Abigail claimed 

that that her starting and ending equation were equivalent, even after review of her work with the 

interviewer. When asked which one made more sense to her, the “(30 + p)(40 – p)” or the “9p 

+1200” equation, Abigail indicated the “9p + 1200” as it “I understand this better as the initial 

amount goes up by the slope of 9”.  

 When asked to define the variable p in “9p + 1200”, Abigail replied, “well, I would just 

plug it in”. After further questioning, she said, “It might be the additional people on the bus”. 

The interviewer then pointed her back to the expression “(30 + p)(40 – p)” and asked her to 

define the variable p found there. Abigail replied, “So it’s either how much less money or more 

people… I don’t know.” The interviewer asked for her to think about her guess and check work 

to see if that helped. Abigail then said, “it’s additional people over… how much money you’re 

charging for over 30?” 

 Abigail was able to find the correct algebraic representation for the charter bus problem, 

but only with help and heavy reference to her initial guess and check work. 

Graph Representations 

Each participant was also asked what they thought the graph of the problem would look 

like. Throughout Abigail’s work on the equations, she stated that she did not know how to 

represent the problem as an equation because she didn’t know how to handle the “after 30” part 

of the problem. She ultimately did not draw or describe a graph before given the official graph to 

review by the interviewer. 
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Figure 4.5 

Graph representations of the charter bus problem 

 
 

 Brian’s graph reflected the rate of change relationship he had been heavily referencing in 

both his guess and check and equation writing work. He explained that the y-axis of his graph 

represented the amount of the fare price and the x-axis represented the number of passengers (see 

Figure 4.5). He then plotted the points (30, 40), (31, 39), (32, 38), (33, 37), (34, 36), and (35, 35) 

and labeled the spaces between each point by the change in revenue he saw as he moved along 

his graph. While this graph does not accurately represent an equation for the charter bus 

problem, it does accurately represent the covarying relationship between fare price and number 

of passengers. 

 Clarissa’s graph for the charter bus problem was a decreasing line. She explained that the 

y-axis was revenue and the x-axis was the number of passengers over 30. When asked, she 

confirmed that this represented the charter bus problem and her work for her solution.  
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 The top graph Diana provided (see Figure 4.5) reflects her initial explanation for what 

point she was looking for. She explained it as “a bell graph” where she was “looking for the top 

point”. The second graph she provided was an adjustment to her initial thought on the shape of 

her graph after completing her table. Realizing that when her variable x was 0, the starting 

revenue was 1200, she redrew her graph to represent the change she saw in her work.  

 Eric drew his graph prior to his work on making an equation for the charter bus problem. 

Here you can see where he labeled 30 people, the starting point for the charter bus problem. He 

explained that his x-axis represented passengers and his y-axis represented revenue. He then 

labeled the maximum as “39”, his initial answer to the problem. At 48, he continued the 

quadratic with a dotted line, but placed a solid line straight from the 48 mark. He stated that this 

is where Marian’s revenue would “flat line”. While discussing this graph, he began to change his 

initial thoughts on his answer. When asked if he thought 38 or 39 would be the maximum, he 

replied, “I would way 32 would be ideally where you want to be on an economic chart [he 

circled a point close to his 30 marker on his graph]. The 39 would be right here [indicated the 

maximum he labeled on the graph] which would be ideally not where you want to be since you 

are not making as much as what you would”. Eric moved on, satisfied with his answer. 

Discussion of the Given Graph 

To finish the conversation regarding the charter bus problem, Participants were asked to 

look at a graph of the equation y = (30 + x)(40 – x). This graph was not presented as the graph for 

the problem, but rather as a graph and they were asked to interpret this in terms of the problem. 

All five participants were able to correctly identify what each of the axis represented for the 

charter bus problem. Abigail, Brian, and Diana identified how the graph correlated with their 

earlier work on the problem. Diana confirmed that this graph was what she had envisioned 
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during problem solving and Abigail and Brian stated that the shape of the graph made sense 

since you were technically starting with 30 passengers, not 0.  

Eric agreed that this graph looked similar to his. He also identified that the maximum on 

this graph would be 35. When asked if that made sense, Eric replied, “I imagine if I sat down and 

thought it through, it probably would, but that would not be what I was guessing. I would 

probably stick to between 32 and 34 people”.  

Clarissa was able to interpret parts of the graph accurately, but made no comments about 

how the graph was a representation of the problem. She identified that both her graph and the 

given graph started at the same point (0, 1200), but the given graph went “higher” than her own. 

She did not change any conclusions about the solution to the problem after the discussion 

regarding the given graph. 

The Barn Pen Problem 

Participants were then asked to solve the barn pen problem. When presented the barn pen 

problem, participants seemed to naturally gravitate towards the idea of the answer being 

represented by a square pen. Participant solution strategies mirrored their approaches to the 

charter bus problem except for Abigail’s. Abigail, Brian, and Diana were able to find the correct 

solutions to the barn pen problem without consulting the provided graph while Clarissa and Eric 

did not. 
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Table 4.2 

Participant barn pen problem representations 

  Guess and Check Table Equation Graph 

 Used Accurate Used Accurate Used Accurate Used Accurate 

MC2         

 Abigail Yes Yes No  Yes No No  

 Diana No  Yes Yes Yes Yes Yes Yes 

MC3         

 Brian Yes Yes No  Yes No No  

 Clarissa Yes No No  Yes No Yes No 

 Eric Yes No No  Yes No No  

 

 Four of the five participants used guess and check to solve the problem. All five 

participants provided either one or two equations for the problem. However, only one participant 

found a single equation that accurately represented the problem rather than a system of 

equations. Only two of the students provided graphs when asked. The rest of the participants 

referenced the graph they were shown on the charter bus problem as a substitution for drawing 

one. 

The Square Pen 

All five participants made comments about the square pen after reading the barn pen 

problem prior to problem solving. Abigail, Brian, and Diana all commented that if the pen was a 

square, the problem would be “easier”. Abigail wrote off the possibility of the answer being the 

dimensions of a square pen due to the description of the pen as “rectangular” in the problem. 

When working on representing the perimeter of the pen, she wrote “160/4” before verbally 

noting that this was wrong because it was the perimeter of a square and not a rectangle. She is 

the only participant who did not find the dimensions of the pen if the pen was square. 

 Brian and Diana both chose to find the dimensions of the pen if it was a square as a 

starting point to their problem. They both found that 160 ft. divided by 3 was 53.3 ft. Brian said 
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this gave him a good reference point as he thought about the possible dimensions of the pen. 

Diana stated that she did this “to get a number” but “didn’t know why I did a square”. After 

some thought, she stated, “I guess it’s because [squares] are easier if they have nice numbers”. 

 Clarissa and Eric both found the dimensions of the pen if it was a square and then stated 

that these were the optimal dimensions since squares have the largest areas. The 53.3 ft. by 53.3 

ft. square pen was their solution rather than a starting or reference point for their problem 

solving. When asked about their reasoning for choosing a square as the optimal shape of the pen, 

Clarissa stated, “53 should be correct because it would be, all three [sides] are the same, which 

means the fourth side over here [the barn side] would also be 53, so you multiply them and it 

would be the biggest”. Eric replied saying, “I guess because it’s familiar, especially for fencing. 

If you want to max the area, you want a square”.  

Guess and Check Strategies 

Clarissa and Eric finished their solutions of the problem by multiplying the sides of the 

square as a way to “check” their solution. Neither considered other possible solutions to the 

problem or were interested in considering a solution contrary to their initial 53.3 ft. by 53.3 ft. 

pen.  

 Brian took a different approach to his guess and check work. After finding his baseline 

side length for the square pen, Brian took his first guess. He drew a rectangle with a barn on top 

and labeled the short sides x and the long side y. Then he said, “My first thought was just 80, 40, 

and 40”. He then labeled the two sides “x” as 40 and the side “y” as 80. He continued, “That was 

my first thought because that equals 160. I guess I could see what that gives you, but I can 

change it. I could decrease this number [40] and I would increase this one [80] because that 

would make it longer. Either that, or I can take a little bit of this [80] and put it into these two 
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[the two 40s]”. He wrote “45, 45, 70”. Underneath this he wrote “50, 50, 60” and finally “55, 55, 

50”. Then he stopped and said, “I think this one is right” indicating the “55, 55, 50” that is close 

to his starting point of “53.3, 53.3, 53.3”.  

When asked to check this guess, Brian multiplied the sides of each of his pens together. 

He started with his final dimensions of “55, 55, 50” and worked his way back towards “40, 40, 

80”. When he finished, he said, “I guess actually the 80, 40 was right”. He then wrote “30, 30, 

100” and found the area of this pen to be 3000. He nodded, saying “yeah, it’s like the bus 

problem. It goes back down and matches on both sides”. He then gestured to his work with the 

30 ft. x 100 ft. pen and the 50 ft. x 60 ft. pen. Brian used his knowledge of the relationship 

between the length of the sides of the pen and the perimeter of the pen to find possible 

dimensions of the pen and then to determine the maximum area.  

Writing and Using Equation Representations 

Brian, Clarissa, and Eric were all asked to create equations for the barn pen problem after 

their initial solutions. Brian first wrote “40x + 80y = z”. When questioned on what the variable z 

stood for, he replied “z is the total amount of feet”. By referencing the problem, he changed his 

equation to “z = x ∙ y”, with z now representing the total area. He was satisfied with this as a 

representative equation for the barn problem.  

Clarissa and Eric both provided two equations fairly quickly. Clarissa began by writing 

“P = w + w + l”. She then rewrote this as “P = 2w + l = 160”. When asked how she could 

represent the area of the pen, she wrote, “A = w(l)”. Eric began by writing out the equation for 

the perimeter for a rectangle, “2l + 2s = 160” before saying, “We don’t need this side, so scratch 

this one out” marking out the 2 in front of the “s” leaving “2l + s = 160”. He then wrote “ls = A”. 
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When Clarissa and Eric were asked if they could combine these two equations, both indicated 

that they “weren’t sure” and “didn’t know”, respectively.  

Abigail started by finding an equation to help her solve the problem. Abigail was initially 

confused and unsure where to begin problem solving, especially after she decided a square was 

not a legitimate solution to the problem. She drew a representation of the barn and pen labeling 

the matching sides x, and the other side y, but still wasn’t sure how to move forward. The 

interviewer asked her to identify what the 160 ft. stood for.  

Abigail: The perimeter? I don’t know what that looks like… 2y or something 

Interviewer: Okay, well how do you find the area? 

Abigail: Oh, x times y. 

Abigail wrote “xy = Area” 

Interviewer: Okay, so how would you usually find the perimeter of a rectangle? 

Abigail: x times… like 2x and then plus 2y. 

Abigail wrote “2x + 2y = P”. 

Interviewer: And what if we took off a side? 

Abigail: So 2x plus just y. 

Abigail wrote “2x + y = P” and “2x + y = 160”. 

While finding an equation for the perimeter was harder than for the area, she was able to use her 

knowledge of the formula for finding the perimeter of a rectangle, which enabled her to adjust it 

to fit the pen in the problem. Satisfied with the equation for the perimeter, Abigail began a 

systematic guess and check process using the equation 2x + y = 160 to find y at different values 

of x. She then takes the values of the x and y and multiplies them together to find the area of the 

pen. Figure 4.6 is an example of how she formatted her work for this process.  
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Figure 4.6 

Example of how Abigail formatted her work 

 
 

Abigail began by finding the area when x was equal to 10. She then increased the value of 

x by 5. After she found the area of the pen when x is 35, she stopped and asked, “Does the area 

keep going up by the same amount each time?” She checked the pattern, noticing that the current 

increase was by 150 and the previous was by 250 stating, “Oh, I guess not. They were just 

similar so I’ll just keep going”. She then checked the area of the pen when x is 40. Finding that 

the area is 3200, she said “Oh, I must be getting close”. Abigail found the area of the pen for 

when x is 45 and when x is 50. She pointed out that the area has gone down, so the maximum 

area must be 3200. She noted that the area for the pens when x is 45 and when x is 50 matches 

solutions from her earlier work. When asked why that was the case, she replied, “I don’t know, 

they’re different numbers”. 

When attempting to provide the dimensions for the pen, Abigail ran into difficulty with 

how to interpret the variable x. She said “I don’t know, the total x is 40 so they are both together 

40, or is one of them 40?” After some though, Abigail was asked to reference her equation for 

the perimeter (2x + y). She thought for a moment before saying, “it’s [indicated the “2x”] 80, so 
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both of them are 40. Then y equals 80, so the barn is 80”. Then she labeled a picture of the pen 

with the respective lengths of the pen sides. 

Diana provided an equation that is equivalent to the one outlined in the theoretical 

analysis ((2w - 160)w). She first tried finding a reasonable length for the side by presuming the 

pen was a square. She quickly rejected this solution as her answer and began looking for another 

solution. 

Diana: I know my thing will be, it’ll be equal to 160. 

Interviewer: What thing? 

Diana: My equation. So that’s 2x + x. No, that would be an x, it would be smaller. So 

that’ll be a y. 

Diana marked out the x and wrote a y above it. She then had “2x + y = 160”. 

Interviewer: So why is y smaller? 

Diana: I feel like if I were to make this pen, I would make this side longer [the x side] to 

give more breathing room. I just like it better that way. 

Interviewer: Ok. 

Diana: Oh! This is systems of equations! Is it? I feel like it is… 

Diana easily provided a formula to find the perimeter of John’s pen. She also recognized the 

problem as a system of equations problem which none of the other participants ever mention. 

Diana began to solve “2x + y =160” for x, before changing her mind to solve for y. She wrote “y 

= 160 – 2x”.  She plugged her new y back into her equation [2x + (160 – 2x) = 160] and then 

stopped. 

Interviewer: So, you’re substituting your equation back into your equation? 

Diana: Yes, but now that doesn’t look right. 
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Interviewer: You said system of equations earlier, so is there another equation in this 

problem? 

Diana: What are the dimensions of the pen when you maximize the area? 

Interviewer: So, what is this equation over here [2x + y = 160]? 

Diana: This is the amount of fencing. I subtracted 2x from both sides to make it easier. I 

really thought it was going to work out. 

Interviewer: Is this the inside or the outside of the pen? 

Diana: The outside. 

Interviewer: And what is the outside called? 

Diana: The perimeter, but we’re looking for the area! 

Diana was able to recognize the need to use her knowledge about solving systems of equations to 

solve this problem. However, while she still recognized that her initial substitution was incorrect, 

Diana was unable to recognize the need for an additional equation without some outside help 

even after her own review of the problem’s question. After recognizing the need for an equation 

for area, she wrote “x∙y = area” and then “x(160 – 2x)”. She simplified this equation to “-3x2 + 

160x = area”. This was later corrected to “-2x2 + 160x = area”.  

 Diana paused again after finding this equation. When asked what she wanted to do next, 

she replied that she “just doesn’t know how to make numbers”. When asked what the variable x 

represented, Diana said that they were the x sides of the pen, pointing to both on a drawing she 

had made. When asked if she wanted to make a table again like in the previous problem, she 

replied, “I’m not sure what exactly goes in the table”. When asked, she explained that you put in 

the length of the “x sides” and you get out the area. She labeled the columns and began to fill out 

the first column “0, 1, 2, 3, 4, 5”. She first found the area when x = 0 and when x = 1. After a 
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moment, she paused. “This is really small, it’s going to take forever”. She reflected on the 160 

feet available for fencing and decided to “go up by 10 instead of by 1”. She then filled out the 

first column up to 160 by increments of 10.  

 When Diana reached x = 50 she stopped her work, circling the row (40 | 3200). She 

explained that, “it started going back down, so this [3200] is the maximum”. She then pluged 40 

and 3200 into the area equation to get “40y = 3200” and “y = 80”. She then wrote out the 

dimensions as “40 x 80 x 40 ft.”.  

Discussion of the Given Graph  

All five participants were able to correctly identify the y-axis as representative of the area 

and the x-axis as representative of the length of the repeated side. While Abigail, Brian, Diana, 

and Eric felt the graph was appropriate for the problem, Clarissa did not. She answered all the 

questions for interpreting the graph, but made no connection between her answer and the graph 

and did not consider the graph as representative of her solution, even when asked by the 

interviewer.  

 In contrast, Eric reevaluated his solution to the problem based on the information from 

the graph. He was surprised that a 40 ft. by 80 ft. pen was the solution. He drew out this pen and 

similarities between the rectangular pen with the barn and a square pen made from 160 ft. of 

fence. He surmised that John was able to double the area by taking the fencing from one side, 

replacing it with the barn, and doubling the length of the other side of the fence.  

Connections Between Student Solutions and Multiplicative Concept Stage 

 To continue our discussion of the results, we will now outline our findings from the high-

descriptor coding analysis. Of the five participants in this study, three of them were able to find 

the answer to both the charter bus problem and the barn pen problem. Participants’ choice of 
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problem-solving strategy used to solve the optimization problems were not determined by their 

multiplicative concept stage. However, the way participants engaged with and reasoned about the 

equations of the problems were influenced by the operations they were leveraging from their 

multiplicative concept stage. Student successes or limitations as attributed to their operations 

from their multiplicative concept stage are discussed in this section. 

MC2 Student Solutions 

 Three key behaviors were exhibited by the MC2 students in this study: they were able to 

successfully quantify additive relationships with unknowns from the problem, they were able to 

insert a known composite unit into an unknown composite unit, but had difficulty inserting an 

unknown composite unit into an unknown composite unit, and they relied heavily on numerical 

examples to build the expressions for the problems. These behaviors can be explained by the 

underlying operations available to MC2 students.  

 The first behavior that the MC2 students displayed was the ability to successfully 

quantify additive relationships with unknowns. Both Abigail and Diana, were able to 

successfully quantify the “40 – x” and “30 + x” relationships from the charter bus problem which 

is supported by their MC2 operations. For example, to conceive of the ticket price as “40 – x”, 

the student first needs to readily conceive of an unknown as a unit of units, which requires 

operating with at least an MC2 (Hackenberg et al., 2017). Then they need to be able to 

understand the ticket price as a unit of 40 containing an undetermined amount of leftover units 

and an unknown number of “passengers over 30”. This requires the student to make an additive 

comparison within a two-level unit structure between two unknowns within the unit of 40. MC2 

students “construct additive comparisons as an assimilatory quantity” (Ulrich, 2016a, p. 38) 

which supports the additive reasoning necessary to conceive of the ticket price in this way.  
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Diana and Abigail’s work on the charter bus problems provides evidence of the ways 

MC2 students quantify additive relationships in these problems. Diana wrote two expressions at 

the beginning of her problem solving, “1200 – 1x” and “40 – 1x”. When asked for clarification 

on what these expressions represented, she stated that the “40 – 1x” relationship represented the 

ticket price for the bus route. She was readily able to conceive of the ticket price as a two level 

unit structure of 40 containing an unknown number of people and a leftover ticket price. She was 

also able to conceive of the number of passengers as “x + 30” separately from her understanding 

of ticket price as shown when she used her work finding the total revenue if the bus was full to 

write an expression. After defining the expression for the ticket price of the problem, Diana 

found the revenue if there were a total of 48 passengers. By doing so, she was able to track the 

18 in her problem to define the number of passengers as “x + 30”.  She understood that the 

number of passengers was a composite unit representing an undetermined number that contained 

30 passengers plus an unknown number of additional passengers. Similarly, Abigail defined “p” 

as the amount of people and was able to provide the expression “30(40 – p)”. She was able to 

quantify the ticket price just as Diana had. Additionally, after adjusting her definition of the 

variable “p” to “the number of people over 30”, Abigail was able to define the number of 

passengers as “30 + x”. Their ability to quantify these relationships from the problem are 

evidence of their MC2 operations supporting their ability to represent these additive relationships 

with unknowns. 

The second behavior the MC2 students displayed was a difficulty inserting a composite 

unit of unknown size into a composite unit of an unknown size. While Abigail and Diana were 

able to quantify the additive relationships in the problems, they had difficulties when 

coordinating those relationships multiplicatively to create an expression. Evidence from Abigail 
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and Diana’s work suggested that the MC2 students could insert a known (e.g., 30) into each unit 

of a composite unit with an unknown relationship (e.g., 40 – x), but could not insert an unknown 

relationship (e.g., 30 + x) into each unit of a composite unit with an unknown relationship (e.g., 

40 – x). To create the expression for the charter bus problem ((40 – x)(30 + x)), students must 

iterate a unit of unknown length (e.g., 30 + x) an unknown number of times (e.g., 40 – x), 

creating a composite unit of an unknown where an unknown has been inserted into it. To reflect 

on this, students would need to have constructed iterable composite units, which is available to 

MC3. MC2 students reflect on iterable units of 1, not iterable composite units (Ulrich, 2016a). 

Additionally, their ability to construct multiplicative relationships happens during activity, rather 

than being anticipatory (Ulrich, 2016a)., MC2 students’ ability to iterate composite units in 

activity allows them to insert a known into each unit of a composite unit with unknown 

relationships.  

Abigail and Diana’s work on the charter bus problem provides evidence for this 

difficulty. Abigail struggled with translating her guess and check work to an expressions. She 

knew that she needed to represent the “plus one, minus one” relationship for the problems, but 

struggled with how to represent this simultaneously in a single expression. She talked through 

her thinking about needing to subtract something and was able to provide the expression “30(40 

– p)” to represent the problem. Abigail was generally comfortable with this expression, though 

she did express that it had issues when plugging in numbers. When asked if she could adjust the 

30, which represented the number of people she said, “So 30, and that would be plus… however 

many people, just depends on the amount of people, but I don’t know how to put in like plus 

however many extra people, I guess”. Abigail was verbally quantifying the “30 + p” relationship, 

but was struggling with inserting this relationship into her expression. When asked if she could 
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replace this idea with the 30 from her expression, she said, “I assume so, but I don’t know if it 

would work”. Abigail was uncomfortable with the idea of multiplying two relationships of 

unknowns with one another, but goes ahead and writes the new expression ((30 + p)(40 – p)) 

anyway.  

Abigail was also unable to reflect on this multiplicative relationship after problem 

solving. After using the FOIL method to multiply the expression, she stated that she preferred 

her new equation “9p + 1200” to her original. When asked to redefine what the “(30 + p)(40 – 

p)” expression stood for, Abigail could not remember what the relationships in the equation 

stood for stating, “So it’s either how much less money or more people… I don’t know”. Without 

the ability to reflect on iterable composite units, understanding her expression became difficult 

for her without the use of a numerical example.  

Diana was able to provide the expression “40 – 1x” at the beginning of her problem 

solving. However, she had difficulties in trying to represent the changing number of passengers 

in the problem. She understood that “40 – 1x” did not represent the entire revenue, but wasn’t 

sure how to reflect the changing number of passengers with the whole problem. To try and figure 

out where to go from her ticket price expression, Diana worked out the revenue if there were 48 

passengers. Through this she was able to quantify the “30 + x” relationship representing the 

passengers. However, she was still unsure of how to combine the two expressions together. After 

labeling the two quantities as ticket price and number of passengers, she was able to use her 

written work to provide an accurate expression ((40 – x)(30 + x)). The discovery process she 

went through to create the final expression provides evidence that this insertion of an unknown 

into another unknown was done in activity. Diana was able to use the labels she had for her 
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expression to simplify and maintain the relationship between the unknowns in her expression 

after completing her table and finding a solution to the problem. 

The barn pen problem created a lot more difficulties for the MC2 students to complete 

since they had to take a composite unit for the perimeter of the pen that contained two unknowns 

and translate this into a composite unit for the length that contained the perimeter of the pen and 

the width twice. They then needed to use this unit to substitute it back into the area equation for 

the pen by inserting the “160 – 2w” relationship into the area “w” times. This is more difficult to 

conceptualize than the expression from the charter bus problem due to the required use of 

substitution where the student must replace one variable of an equation (e.g., l) with another 

expression that is equivalent to that variable (e.g., 160 – w). Abigail avoided this difficulty by not 

using any type of substitution, but strictly using her two equations “160 = l + 2w” and “Area = l 

x w” to systematically search for the best solution. In contrast, Diana did use substitution to 

complete the problem. However, this was instigated by her recognition of the familiar procedure 

of “substitution” not her anticipation of the need to insert an unknown into another unknown. 

This is shown when she substituted the adjusted equation “y = 160 – 2x” back into her original 

equation “160 = y – 2w”. She had to reestablish the relationships from the problem to identify the 

second equation in the system (A = xy) for her to use substitution correctly.  

The third behavior the MC2 students displayed was a reliance on numerical examples to 

build numerical expressions. For Abigail and Diana to build an expression to represent an 

unknown being inserted into an unknown, they relied heavily on numerical examples. This is 

clear on their work with the expression for the charter bus problem. MC2 students do not 

anticipate the creation of multiplicative comparisons as quantities and have to build them in 

activity (Ulrich, 2016a). This can make it difficult to represent multiplicative relationships with 
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an equation as was seen in Abigail and Diana’s avoidance of and procedural use of substitution 

on the barn pen problem, respectively. In previous research surrounding MC2 students’ ability to 

write equations representing multiplicative relationships, they showed heavy reliance on 

numerical and visual examples to establish the relationships they were trying to represent in their 

equations (Hackenberg et al., 2017). Evidence from Abigail and Diana’s work shows how they 

leveraged their numerical examples to build expressions for multiplicative relationships between 

unknowns. 

Abigail struggled to translate her guess and check work into an expression for the charter 

bus problem. She understood that she needed to represent the “plus one, minus one” relationship 

from her original work in her expression, but was struggling to do so. To help her establish the 

relationships in the problem, the interviewer repeatedly asked her to refer back to her guess and 

check work. When doing so, she would define the “plus one, minus one” relationship by running 

her fingers down the respective rows. Abigail explicitly discussed the idea that she would need to 

multiply two “changing” quantities together. When asked what the variable “p” represented she 

stated, “Amount of people, so… No. The amount of people you add… So maybe you should do 

it over here [she points to the row for passengers starting at 30]. 40 is also changing by the 

amount of people, so there’s a p again”. She then provided the expression “30(40 – p)”, and 

checked it as a solution using her work from her guess and check strategy. When this did not 

match her previous work, she had to return to her numerical example. She recognized that the 

“40 – p” represented the top row of her work where she was decreasing the ticket price by one 

every time. By reflecting on how this mirrored her work with the number of passengers 

increasing by one in the second row, Abigail was able to adjust the 30 from her expression to “30 

+ p” as a representation of the second row of her work. Abigail’s process to build her equation 
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was sequential. While she was able to quantify both of the additive relationships in the problem 

and even expressed the need to multiply a changing number of passengers with a changing ticket 

price, she could not anticipate the quantification of the multiplicative relationships between two 

unknowns and was only able to provide the “30(40 – p)” expression. She had to reference her 

numerical example to build the multiplicative relationship between unknowns in activity. We 

hypothesize that without this numerical example to reflect on, Abigail would have struggled to 

move past her original guess at a linear equation (r = 40p + b) for the problem.  

Diana’s use of numerical examples was explicit in her expression writing. She easily 

quantified the ticket price for the problem, but struggled to create an expression that represented 

the revenue. This was due to her ability to anticipate the quantification of an additive relationship 

supported by her MC2, but the inability to anticipate the quantification of a multiplicative 

relationship in activity which would require an MC3. To help her create an expression, Diana 

decided to solve how much money Marian would make when she had 48 passengers. This gave 

her three examples to work with: “48 – 30 = 18”, “40 – 18 = 22”, “22 x 48 = 1056”. By 

comparing “40 – 18 = 22” to her expression for the ticket price, “40 – 1x”, Diana was able to use 

the 18 to define “x”. She then used this knowledge to rearrange “48 – 30 = 18” to “18 + 30 = 48” 

and then replace the 18 to get “30 + x” which she identified as “number of people”. She then 

used the “22 x 48 = 1056” to justify her multiplication of the ticket price and the number of 

people to establish the expression “(40 - 1x)(30 + x)”. Diana relied heavily on her numerical 

example to establish the quantification of the number of passengers and to justify the 

multiplication of the two unknowns. This process was sequential, requiring first the defining of 

the ticket price, then the example for how to solve for the revenue, then the substitution of 

number 18 for the variable “x” to discover how to rewrite the number of passengers in terms of 
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“x”, and finally, a reflection on her solution to recognize the need to multiply her two quantified 

expressions together.  By leveraging her numerical example, she was able to build the expression 

needed for the charter bus problem and simplify the units used in order to overcome the 

limitations created by her MC2 that made it difficult for her to insert an unknown into an 

unknown unit. Diana’s lack of a numerical example on the second problem led to her reliance on 

a procedure to create an equation for the problem. 

The MC2 students in this study were able to successfully quantify the additive 

relationships between unknowns in the problems, but struggled with inserting an unknown into 

an unknown to create accurate representations of the problems. Their use of numerical examples 

allowed them to build these relationships into expressions through reference, but without these 

examples, they relied on familiar procedures and equations to work through the problems. 

MC3 Students 

 The MC3 students’ operations allowed them to insert an unknown into another unknown 

unlike the MC2 students. MC3 students anticipate and reflect on iterable composite units (Ulrich, 

2016a). They also anticipate the creation of multiplicative comparisons as quantities (Ulrich, 

2016a). This supports their reasoning about the expression for the charter bus problem and 

allows them to conceptualize a unit of unknown size being iterated an unknown number of times. 

Brian did not reason about the equations in the problems in a way that showed evidence he was 

using his MC3 operations but rather his own understanding of what equations should look like 

given his knowledge of functions. Additionally, none of the MC3 students considered the need 

for a single equation for the barn pen problem to be necessary and so this work will not be 

discussed in this section.  
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 Clarissa initially wrote the equation “F(x) = 40 – 1x”. She was able to explain that this 

represented the price of the fare when “x” number of additional passengers boarded the bus. 

When asked if this represented her work solving the problem where she found the revenue at 30 

passengers and then checked her answer by finding the revenue for 48 passengers, Diana 

provided two more equations: “F(p) = 40p” and “F(n) = 22n”. Her variables for these two 

equations now stood for a specific number of passengers, 30 and 48 respectively. However, 

when she was asked to rewrite 48 passengers using her original variable “x”, she quickly defined 

it as “48 = 30 + x”. Additionally, she was able to use this to write her final equation “F(x) = (30 + 

x)(40 – 1x)”. Clarissa said that this was a “complicated” but “believable” representation for the 

problem. This shows evidence that she was comfortable with the idea of allowing the 

multiplication between two unknowns in the problem and could reflect on this equation without 

needing to reestablish the relationships within the problem. Eric was able to quickly establish the 

equation “y = 30(40 – p)” from his initial linear guess for the equation. After asking him to 

reflect on this equation as an accurate representation of the charter bus problem, Eric rewrote this 

to be “y = (30 + p)(40 – p). Eric was able to easily reflect on his original equation to identify the 

need to adjust his known unit into an unknown unit. While neither Clarissa nor Eric were 

completely sold on the accuracy of these equations, both were able to flexibly adjust their 

equations to represent the relationship found in the problem. 

 While MC3 students can use numerical examples to help them build the equations for the 

charter bus problem, they don’t rely on them like the MC2 students did. MC3 students’ ability to 

anticipate the quantification of multiplicative comparisons(Ulrich, 2016a) supports their ability 

to write an equation for the charter bus problem. This allows them to anticipate the need to write 

an expression that reflects the multiplicative comparison found in the revenue of the charter bus 
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problem (e.g., (40 – x)(x + 30)). This anticipation makes them more independent from numerical 

examples when writing equations with multiplicative relationships between unknowns. 

Clarissa spent a small bit of time on her numerical example as a way to move past her 

equation that only represented the ticket price. Her initial representations of her work (“F(p) = 

40p” and “F(n) = 22n”) reflect her anticipation of representing the multiplicative relationship in 

the problem she was working towards with the number representing the ticket price and the 

variable representing the number of passengers. By asking her to create an equation for the 

number of passengers in terms of her original variable “x” Clarissa was able to smoothly 

transition from “48 = 30 + x” to “F(x) = (30 + x)(40 – 1x)”. While Clarissa was leveraging her 

previous work to create her equation, she wasn’t actively using the numeric examples to build 

her understanding of the relationships in the problem or as a justification for multiplying two 

unknowns together. Eric didn’t refer to his previous work at all during problem solving and just 

mentally reflected on his equations to make adjustments he thought necessary to create an 

accurate equation. This independence was supported by his anticipation of the multiplicative 

comparison for the revenue and his ability to insert an unknown composite unit into another 

unknown composite unit as discussed previously. 

The MC3 students’ ability to reflect on iterable composite units and their ability to 

anticipate the need to quantify multiplicative relationships (Ulrich, 2016a) supported their work 

creating equations for the charter bus problem. They were able to establish these multiplicative 

relationships between unknowns without relying solely on numerical examples to build them. 

Discussion 

 Undergraduate studies focus on quantitative reasoning for entry-level courses to develop 

skills useful for students pursuing any career (Elrod, 2014; Lusardi & Wallace, 2013; Wolfe, 
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1993). Optimization problems provide a place for students to reason quantitatively, algebraically, 

and covariationally (Thompson & Carlson, 2017). The participants’ solutions to optimization 

problems in this study provided examples of a spectrum of algebraic, relational, and quantitative 

reasoning through their use of systematic guess and check, algebraic representations, graphical 

estimations, and tables. Success in solving these problems stemmed from the persistence to 

thoroughness and use of relational thinking in conjunction with their available operations from 

their multiplicative concept stage.  

 Results from this study support prior research on MC2 and MC3 students’ construction of 

quantitative structures and algebraic equations (Hackenberg et al., 2017, 2021; Olive & 

Cagalayan, 2008; Ulrich, 2016a). Abigail and Diana, each of whom had constructed only an 

MC2, were able to successfully quantify the additive relationships from the problems, but 

struggled with inserting a unit of unknown size into another unit of unknown size. Their use of 

numerical examples to construct and build the equation for the charter bus problem led to their 

success in representing these problems algebraically. Their inability to reflect on iterable 

composite units created many difficulties in maintaining the relationships they built in their 

problem solving. The MC3 students’, Clarissa’s and Eric’s, creation of equations for the charter 

bus problem were supported by their ability to construct and reflect on iterable composite units 

and their ability to anticipate the need for multiplicative relationships within the contexts of the 

problems. 

 Clarissa’s and Eric’s lack of success in finding the solutions to the optimization problems 

did not stem from a lack of ability, but rather an oversimplification of the context that led them 

to believe that they did not need any additional reasoning. Their solutions served to support their 

initial misunderstandings towards the context of the problem rather than any quantitative or 
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relational reasoning. However, these estimations aligned with their idea of how “economics”, 

“fencing”, and “geometry” worked and so they did not challenge their own solutions. Their 

ability to quickly generalize the problems using variables proves they are more than capable of 

completing the procedures necessary to solve the problem. Instead, they saw no need to follow 

these procedures. This confidence went so far as for Clarissa to treat the given graphs as 

inaccurate representations of the problem.  

The third MC3 student’s, Brian’s, work displayed his ability to flexibly move and use 

relationships in his constructed quantitative structure to reason strategically about the problems. 

His struggles in creating equations stemmed from his focus on attempting to represent the change 

in the rate of change rather than generalizing the covarying relationship within the problems.  

Limitations 

This study has explored the participants’ solutions to optimization problems and how 

their multiplicative concept stages influenced their mathematical reasoning. However, it is 

important to note the limitations of this study when moving forward with research. This is a 

collective case study of five undergraduate students from entry-level math courses that have an 

MC2 or an MC3. While more students were planned to be used as participants, low interest from 

students, time constraints for participants and researchers, and concerns regarding COVID-19 

exposure limited the response rate of students. While participant numbers were limited, the data 

collected from those that participated are indicative of their knowledge and mathematical 

reasoning. These students each have their own experiences in life and mathematics that influence 

their ability to solve the problems, and clinical interviews can only provide a snap-shot of the 

students’ understanding at a specific time (Clement, 2000). Additionally, no MC1 undergraduate 

students volunteered to participant in the clinical interviews for this study. While this is 
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representative of the undergraduate student population (Boyce et al., 2021; Davenport et al., in 

preparation), it does not allow the exploration of MC1 student solutions to optimizations as a part 

of this study. 

Implications, Future Research, and Conclusion 

 The results of this study add to our understanding of undergraduate student solutions to 

optimization problems without the use of derivatives and how their multiplicative concept stage 

influences undergraduate students’ ability to represent covarying multiplicative relationships 

between unknowns. This study is a continuation of research on the connections between 

students’ ability to construct and coordinate unit structures and their ability to write equations 

representing the multiplication of two unknowns (Hackenberg et al., 2017, 2021) and their ability 

to construct and reason about quantitative structures (Olive & Cagalayan, 2008).  

 The results of this study indicate that MC2 students build multiplicative relationships in 

activity with the help of numerical examples that allow them to insert an unknown composite 

unit into an unknown composite unit. However, MC2 students have difficulty reflecting on these 

quantitative structures as they do not work with iterable composite units which is needed to 

reflect on these equations. MC3 students do work with iterable composite units which supports 

their ability to write these equations with little to no reference to numerical examples. Future 

research should explore additional ways students’ reasoning about dynamic covarying systems of 

equations are influenced by their operations from multiplicative concepts stages when working 

with more than two equations or covarying quantities. The results also displayed the quantitative, 

relational, and algebraic reasoning necessary for representing and solving optimization problems 

(Thompson & Carlson, 2017). This reasoning is available to both MC2 and MC3 students 
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provided they are willing to be persistent and thorough in their application of quantitative 

reasoning. 

 Research on the multiplicative concepts continues to expand our understanding of the 

complex interaction between the multiplicative concept stages and college mathematics. Finding 

ways to support students’ conceptual understanding of system of equations and covariation is an 

important part of improving their quantitative reasoning. Results from this study should be used 

to improve instruction of MC2 students in quantitative reasoning courses and serve as examples 

of just how successful MC2 students can be in mathematics. 
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Appendix B 

 

The charter bus problem 

Marian owns a charter bus company offering a route to the neighboring city that charges 

$40 per person if up to 30 passengers sign up for the trip. If more than 30 passengers sign 

up, the fare for every passenger is reduced by $1 for every passenger in excess of 30. The 

bus can only hold up to 48 passengers. How many passengers does Marian want to sign 

up for her charter bus route if she wants to maximize her revenue for the trip? (Answer: 

35 people) 

Equation Representation: y = (30 + x)(40 – x); y = - x2 + 10x + 1200 

Graph Provided: 
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The barn pen problem 

John wants to build a rectangular pen next to his barn. To try and maximize his resources, 

he decides to use one side of the barn as a side of his pen. If he has 160 ft worth of fence 

available to build his pen, what would be the dimensions of his pen if he maximized the 

area? (Answer: length: 80 feet, width: 40 feet). 

Equation Representation: y = x(160 – x) y = 160x – x2  

Graph Provided: 
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Abstract 

Effective teaching strategies are important in supporting students’ identification 

as a “mathematics person” (Hodge & Harris, 2015). This study explores the 

connection between how undergraduate students discuss their mathematics 

identity and their multiplicative reasoning. Forty-three participants participated in 

a Undergraduate Multiplicative Concept Assessment that also asked them to 

indicate whether or not they considered themselves as a “mathematics person”. 

Five of these participants were interviewed about their mathematics identity. 

Results from interviews showed that the MC2 students generally found math 

difficult to understand conceptually and did not identify as a “mathematics 

person”. The MC3 participants identified as a “mathematics person” and gauged 
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their success in mathematics by how quickly they could set up and solve a 

mathematics problem.  

Introduction 

 The mathematics education field has seen a rise in identity research for the last decade 

(Darragh, 2016; Graven & Heyd-Metzuyanim, 2019). Content-specific identities (e.g., 

mathematics identity, science identity, engineering identity) have been show to strongly correlate 

with students’ academic performance (Bohrnstedt et al. 2020; Sonnert et al. 2020) and choices in 

science, technology, engineering and mathematics (STEM) related fields (Cribbs et al., 2020; 

Godwin et al., 2016). Students’ mathematics identity and self-perceptions are related to their 

persistence in mathematics, their likelihood to pursue a mathematics career (Cribbs et al., 2020) 

and affects the number mathematics courses they choose to take (Simpkins et al., 2006). 

Undergraduate students’ mathematics identity influences many of the outcomes and choices they 

make related to their experience in college mathematics and their careers. 

The education initiative report Adding it all up (National Research Council et al., 2001), 

listed one of the five strands of mathematical proficiency as students’ positive disposition 

towards mathematics and the National Council of Teachers of Mathematics (NCTM) encourages 

mathematics teachers to promote curiosity, confidence, persistence, and flexibility in their lesson 

plans and problems (NCTM, 2014). Experiences in mathematics classrooms play a large role in 

the development of students’ mathematics identity. 

 Effective teaching strategies in mathematics have been shown to support equity and 

student identification with mathematics (Hodge & Harris, 2015). Effective strategies are largely 

dependent on how the student is able to understand, learn, and interact with the taught strategies. 

Research on modeling student thinking in mathematics has shown that students develop 
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knowledge in schemes (Piaget, 1952; Steffe, 1992: von Glasserfeld, 1995). These schemes are 

determined by how the student recognizes a problem, how they mentally operate on the problem, 

and what they expect the outcome of their work to be (von Glasersfeld, 1995). Research on the 

multiplicative concepts (schemes modeling how students construct and coordinate multi-leveled 

unit structures) shows an influence between their multiplicative concept stage and how they 

reason about fractions (Hackenberg, 2007; Steffe, 2001), unknowns and equations (Hackenberg, 

2013; Hackenberg et al., 2017), proportions (Steffe et al., 2014), derivatives (Byerly, 2019), and 

measurement quantities (Steffe, 2013). Research has shown that over half of their undergraduate 

student participants in courses taken before calculus have not constructed the scheme necessary 

to conceptually understand derivatives, rate of change, or proportions (Boyce et al., 2021; 

Davenport et al., in preparation). Negative and positive experiences in learning in the classroom 

may be influenced by their multiplicative concepts stage. These experiences in turn inform how a 

student perceives their mathematics identity. 

Current research on mathematics identity and the multiplicative concepts have not looked 

at a connection between these two areas of research. This study explores the connection between 

undergraduate students’ multiplicative concept stage and their mathematics identity. The 

research question for this study is  

 How do students with different multiplicative concept stages describe their 

mathematics identity? 

Theoretical Framework 

 Identity research began with Mead’s (1934) multilayered, dynamic understanding of self 

through created action and Erickson’s (1950; 1968) stable, self-determined, singular definition of 

identity. Both frameworks aimed to study and define the inherent idea and perception of one’s 
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“self”. Cobb and Hodge’s (2011) proposed that identity research centered around three different 

ways of framing identity: normative, core, and personal. This study uses core identity, a macro-

identity approach, to define mathematics identity. Core identity is defined as one’s “enduring 

sense of who they are and who they want to become” (Cobb & Hodge, 2011, p. 189). The 

enduring nature of core identity differs from other, approaches to identity research that focus on 

moment-to-moment changes. 

 People can have multiple identities or “selves” that vary by the context they are viewing 

themselves through (Gee, 2000). As such, a person may identify as a “mathematics person”, a 

“science person”, a “musician”, a “student”, and an “athlete” all at the same time. Each of these 

roles constitutes a different identity core to their sense of who they are (Godwin et al., 2020). In 

addition, these identities are not mutually exclusive but influence each other. In this study, we 

define mathematics identity as how students view themselves in relation to mathematics, based 

on their perceptions of their experiences with mathematics (Enyedy et al., 2006). As such, we 

can discuss students’ mathematics identity as how they view themselves as “doers of 

mathematics” in the context of their mathematics experiences (Nasir, 2002, p. 214). Drawing on 

these theories and related literature in the field, we use four sub-factors of mathematics identity 

(recognition, interest, competence, and performance) to explore how undergraduate students 

discuss different aspects of their mathematics identity. 

Factors of Identity 

 An explanatory framework for mathematics identity identifies recognition and interest as 

sub-factors of mathematics that directly inform their identity and competence/performance as a 

sub-factor that indirectly affected their identity as mediated through recognition and interest 

(Cribbs et al., 2015). Recognition is defined as how an individual perceives their own and other’s 
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views of themselves in relation to mathematics (Cribbs et al., 2015). Prior research shows that 

teacher and parent views of their children’s ability in mathematics influence their self-

perceptions and achievement in mathematics (Gunderson et al., 2012). Examples of recognition 

or lack of recognition include a teacher telling a student they are good at mathematics, parents 

praising their child’s mathematics grades, the student saying they are a math person, or a 

statement that no one had ever praised them for doing well in math.  

Interest is defined as an individual’s desire or curiosity to learn and do mathematics 

(Cribbs et al., 2015).  Students’ interest in mathematics influences how engaged and motivated 

they are when doing mathematics (Frenzel et al., 2010). When discussing their interest in 

mathematics, students may discuss problems or subjects they enjoyed, how excited they are by 

the possibilities mathematics provide, or how bored they are when doing mathematics. 

While prior research did not quantitatively differentiate between competence and 

performance (Cribbs et al., 2015), the way individuals discuss these concepts may differ as 

shown in qualitative research (Carlone & Johnson, 2007). Thus, these sub-factors will be 

considered separately in the current study. Competence is defined as an individuals’ beliefs about 

their ability to understand mathematics. Students who talk about their competence may say that 

they “just get” math or they really struggle with understanding why you use different procedures. 

Students’ competence is linked to their goals as students (Ferla et al., 2010) and their 

performance in mathematics (Blecker & Jacobs, 2014; Bouchey & Harter, 2005). Performance is 

defined as the individual’s beliefs about their ability to do well in mathematics (Cribbs et al, 

2015). These beliefs are linked to their motivations and actual performance in mathematics 

(Pajaras & Graham, 1999). Students may talk about their grades in mathematics, the difficulty 

they have doing mathematics, or how fast they can perform calculations. 
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Identity is informed by a student’s experiences and perceptions of their own abilities in 

mathematics. Students ability to reason multiplicatively and construct and coordinate multi-

layered unit structures is foundational to how they interact with and solve problems higher 

mathematics problems. We hypothesize that student experiences are influenced by their 

multiplicative concept stage where frustrations or relative ease (in comparison to their peers) in 

learning mold their views of themselves as a mathematics person.   

The Multiplicative Concepts 

 Students’ unit coordination schemes, or multiplicative concepts, are the student’s ability 

to construct and coordinate multi-level unit structures that ties directly to their thinking on 

multiplication and division problems (Hackenberg & Tillema, 2009; Steffe, 1992; Steffe, 1994). 

Units in this context refer to standard and non-standard units of measure (Ulrich, 2015). 

Research has found evidence of students developing the multiplicative concepts as early as 

second grade (Kosko & Singh, 2018). There are three stages of the multiplicative concepts that 

are defined by the level of unit the student assimilates with (initially recognizes; von Glasersfeld, 

1995)  prior to problem solving.  

 A student who has assimilated with one level of unit has developed the first 

multiplicative concept stage (MC1, Hackenberg & Tillema, 2009). They recognize one level of 

unit and can construct two in activity (during problem solving; Hackenberg & Tillema, 2009). If 

they were asked to solve 5 x 6, they would recognize the unit of 5 and then insert 6 into each 5 in 

activity. These students rely on physical representations of skip counting to keep track of their 

work. Problems involving more than two levels of units (e.g. find how many inches are in 3 

yards) can be difficult.  
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 A student who assimilates with two levels of units has developed the second 

multiplicative concept stage (MC2; Hackenberg & Tillema, 2009). They recognize two levels of 

units and can construct three in activity (Hackenberg & Tillema, 2009). If they were asked to find 

how many inches were in 1 yards, they would first recognize that there are 3 feet in 1 yard. Then 

they can insert 12 inches into every foot to find a total of 36 inches (Hackenberg et al., 2021). 

However, without assimilating with three levels of units, these students lack the flexibility with 

units needed to support more complex reasoning such as proportional reasoning (Ulrich, 2016). 

These students tend to struggle when reasoning about multiplicative relationships between 

unknowns, often using variables as placeholders for numerical examples during equation writing 

rather than treating them as a unit of variable length (Hackenberg et al., 2017). In Byerly’s 

(2019) study on Calculus students conceptual understanding of rate of change and derivatives, 

she found that students who only constructed an MC2 tended to prefer memorizing procedures 

for problem solving than conceptual learning as the concept behind rate of change was more 

difficult and frustrating to learn.  

  A student who has assimilated with three levels of units has developed the third 

multiplicative concept stage (MC3; Hackenberg & Tillema, 2009). They recognize three levels 

of units and can construct four or five in activity (Hackenberg & Tillema, 2009). If they were 

asked to find how many inches were in three yards, they would first recognize that there are 12 

inches in a foot and 3 feet in a yard, so they need 3 yards of 3 feet of 12 inches (Hackenberg et 

al., 2021). MC3 students flexibly move between their unit structures and maintain the 

relationships within them (Ulrich, 2016). This flexibility is beneficial for proportional reasoning 

(Steffe et al., 2014), representing multiplicative relationships algebraically (Hackenberg & Lee, 

2015; Hackenberg et al., 2021), and understanding derivatives conceptually (Byerly, 2019).  
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 The multiplicative concepts serve as a foundation for students’ learning in mathematics. 

Frustrations can arise when learning difficult concepts that are limited by their multiplicative 

concepts stage, similar to how MC2 participants’ in Byerly’s 2019 study were frustrated when 

learning derivatives conceptually. Students’ experiences in mathematics are influenced by formal 

education, such as in a mathematics classroom or doing homework. Successes or frustrations that 

arise from problem solving influence their perceptions of mathematics and themselves in 

mathematics.  

Methodology 

Participants and Data Collection 

 This study is part of a two-phase study exploring students’ multiplicative concept stages 

by (1) validating an assessment for undergraduate students, (2) exploring the connections 

between the multiplicative concept stages and undergraduate students’ solution to optimization 

problems prior to calculus, (3) exploring how undergraduate students with different 

multiplicative concept stages discuss their mathematics identity. The current article addresses 

part of the second phase of the study that focuses on the third goal listed above. Participants in 

this phase of the study are separate from the participants that helped validate the assessment for 

undergraduate students that occurred in the first phase of this study (Davenport et al., in 

preparation-a).  

This study is a collective case study (Creswell & Poth, 2016) exploring how 

undergraduate students with different multiplicative concept stages describe their mathematics 

identity.. A case study, as defined by Creswell and Poth (2016) is a qualitative approach of 

research that explores a bounded system or systems (case or cases) from real-life through the 

collection of detailed data from multiple information sources. When the researcher uses multiple 
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cases to explore a single issue, it is a collective case study (Creswell & Poth, 2016). The current 

study explores how students describe their mathematics identity through two cases: (1) 

undergraduate non-STEM major MC2 students enrolled in an entry-level mathematics course 

who have not taken calculus before, and (2) undergraduate non-STEM major MC3 students 

enrolled in an entry-level mathematics course who have not taken calculus before. Participants 

and cases were determined to benefit the current study and the other study in the second phase 

(Davenport et al., in preparation-b) that explored student solutions to optimization problems 

before they had taken calculus. 

The Undergraduate Multiplicative Concepts Assessment (UMCA; Davenport et al., in 

preparation-a) was administered to two sections of an entry-level mathematics course focusing 

on mathematical functions and their applications and one section of an education course that 

served as an introduction to elementary education all taught at a mid-western university. A total 

of 43 undergraduate students took the UMCA. Of these participants, 35% identified as male 

students and 65% identified as female. Participants in this study predominately identified as 

White (74%) with 9% identifying as White and Native American, 5% identifying as Black, 5% 

identifying as White and Asian, 2% identifying as Asian, 2% identifying as Native American, 

and 2% identifying as other. Of these participants, 9% identified as Hispanic. These statistics are 

representative of the university’s population for these two courses. 

 Administration and scoring of the UMCA followed guidelines outlined in the validation 

study for this instrument (Davenport et al., in preparation). Students were given 30 minutes to 

complete the UMCA.  Participants were asked to answer the question “Do you consider yourself 

as a mathematics person?” by selecting one of two choices labeled “Yes” or “No” located at the 

end of the demographics survey. Participants were also asked if they were willing to participate 
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in a follow-up interview. Five participants volunteered to participate in this portion of data 

collection. Participants were given pseudonyms for this study. Summary of their demographic 

data is shown in Table 5.1. 

Table 5.1 

Demographic data for participants 

Name 

Multiplicative Concept 

Stage 

Do you consider yourself as a 

mathematics person? 

Abigail MC2 No 

Brian MC3 Yes 

Clarissa MC3 Yes 

Diana MC2 No 

Eric MC3 Yes 

 

 The follow-up interview consisted of two parts. First, they participated in a semi-

structured interview (Galletta, 2013) where they were asked to describe certain aspects of their 

mathematics identity. Questions from the semi-structured interview include: 

 Describe yourself as a mathematics person. 

 If you can, describe a scenario where you have been recognized by a family member 

as a math person. 

 If you can, describe a scenario when you have been recognized by a math teacher as a 

math person. 

 Describe the ways you have enjoyed math. 

 Would you say that mathematics comes naturally to you? How do you know? 

 Describe how you know you are performing well in mathematics.  

Participants were also asked to describe topics in mathematics they exceled and struggled in.  

Following the semi-structured interview, the participants were asked to solve a series of 

four mathematics problems as part of a clinical interview (Clement, 2000). The first two 
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problems were used to confirm the students’ multiplicative concept stage. The last two problems 

were the optimization problems below: 

 Marian owns a charter bus company that offers a route to the neighboring city 

that charges $40 per person if up to 30 passengers sign up for the trip. If more 

than 30 passengers sign up, the fare for every passenger is reduced by $1 for 

every passenger in excess of 30. The bus can only hold up to 48 passengers. 

How many passengers does Marian want to sign up for her charter bus route if 

she wants to maximize her revenue for the trip? (35 people) 

 John wants to build a rectangular pen next to his barn. To try and maximize his 

resources, he decides to use one side of the barn as a side of his pen. If he has 160 ft 

worth of fence available to build his pen, what would be the dimensions of his pen if 

he maximized the area? (40ft. x 40 ft. x 80ft.). 

Students were given paper and a pen to solve these problems. They were not given a calculator 

unless it was requested.  

The sequencing of this interview ensured that their emotional experience during problem 

solving did not inform their discussion of their mathematics identity. The clinical interview 

problems were specifically selected as items that were appropriate in difficulty for the 

participants. This article will only explore statements made by the students or patterns of self-

perceptions and behaviors that are directly related to their individual discussions of their 

mathematics identity. Discussion of specific solutions will not be discussed as a part of this 

article as it does not pertain to the research question being addressed. 
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Data Analysis 

 The Pearson’s correlation coefficient was calculated between participant’s UMCA scores 

and their response to the question “Do you consider yourself as a mathematics person?” This 

coefficient provides evidence towards the existence of a relationship between a person’s 

multiplicative concept stage and their mathematics identity (Field et al., 2012). 

Video tapes and audio recordings of the interviews were transcribed and coded using a 

priori coding (Saldaña, 2016). A priori codes were determined based off previous research 

regarding mathematics identity (Cribbs et al, 2015). These codes are interest, recognition, 

performance, and competence. Researchers initially coded two interviews separately before 

meeting to confirm their use of codes and to discuss additional codes. At this time, researchers 

added codes regarding specific mathematical topics such as algebra, fractions, graphing, 

mathematics connections, and other mathematics conceptsand a code called helping others which 

was represented across all five participants. Table 5.2 outlines the codes used for this study along 

with a description and example for each. After finalizing the code book for the project. The 

researchers then coded each of the interviews separately before combining their codes. Interrater 

reliability in this stage of coding was 0.79, which is considered moderate agreement (McHugh, 

2012).  
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Table 5.2 

Code descriptions and examples 
Code Source Description Example 

A priori    

    Recognition Cribbs et 

al., 2015 

Statements pertaining to how an individual 

perceives their own and other’s views of 

themselves in relation to mathematics 

“I'd say probably when my dad recognized [me] when he got 
my first grades in high school, my math grade was always the 
highest, and he was like, it runs in the family.” 

    Interest Cribbs et 

al., 2015 

Statements pertaining to an individual’s desire 

or curiosity to learn and do mathematics 

I guess just 'cause I got it easily? So [mathematics] was just 

something fun I could do. 

    Competence  Cribbs et 

al., 2015 

Statements pertaining to an individuals’ beliefs 

about their ability to understand mathematics 
That's where I struggle, I think, the most is I can't understand 
it on like a deeper level, why we do that. And so I'm just in 
here, I'm like, I don't know why. That's right… but is it? 
 

    Performance Cribbs et 

al., 2015 

Statements pertaining to the individual’s beliefs 

about their ability to do well in mathematics 
I would say that I'm fairly skilled in math. 

Additional 

Codes 

   

    Helping 

Others 

 Statements made in connection to them helping 

other with mathematics 

Yes, my mom is terrible at math, so she'll often have me help 

out my younger brothers. 

    Algebra  Statements made specifically about topics 

within Algebra including statements about 

equations, unknowns, and variables. 

So I do not like letters [variables] with math, that's what gets 

me. 

    Fractions  Statements made specifically about learning and 

working with fractions 

I don't like fractions very much, I realized on the exam you 

gave me that I wasn't very good and I did not remember any of 

it. 

    Graphing  Statements made specifically about creating and 

interpreting graphs 

I can usually do pretty well when it comes to graphing and all 

that stuff. 

    Mathematics  

    Connections 

 Statements regarding connecting mathematics to 

contexts such as real-life contexts or multiple 

representations. 

I enjoy it when it's in a practical application. 

    Other  

    Mathematics  

    Concepts 

 Statements that do not fall under specifics in 

mathematics that do not fall under the previous 

codes 

Like the sin, cosine and all that stuff. I remember it from the 

way we have the pi circle. I remembered that section. I could 

figure out the triangles from that way, except trying to 

remember some of the functions, just numbers, that was a little 

bit hard. 
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 Coding for the clinical interviews where the participants were solving optimization 

problems was done using value coding (Saldaña, 2016). Emergent codes were created based off 

of the attitudes and beliefs the participants vocalized during problem solving. Value codes 

include difficulty (e.g., “This is hard”), slow solving speed (e.g., “This is going to take forever”), 

and lack of enjoyment (e.g., “I don’t like when I get things wrong”). The only emergent theme 

from the value coding was “frustration” as all codes had a negative connotation. These codes 

were then compared to the statements the participants made during their identity interviews. A 

narrative was written for each student’s view of their mathematics identity and a case 

comparison was conducted between the MC2 and MC3 participants’ narratives. An additional 

comparison was made between the MC2 and MC3 participants’ mathematics topics that they 

voiced they excelled and struggled with. Results from this analysis are discussed in the following 

section 

Results 

 Discussion of results will begin with a summary of the quantitative statistics surrounding 

the larger sample’s UMCA score and their willingness to identify as a mathematics person. A 

summary of participant responses to “Do you consider yourself a mathematics person?” 

separated by their UMCA stage assignments are provided in Table 5.3. 

Table 5.3 

Summary of participant’s responses to mathematics identity question by MC stage. 

 Do you consider yourself as a mathematics person? 

Multiplicative Concept Stage “No” “Yes” 

MC1 (n = 2) 2 0 

MC2 (n = 24) 18 6 

MC3 (n = 17) 8 9 

Total (n = 43) 28 15 
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 Out of 43 participants, only 15 considered themselves a mathematics person with over 

half of these students having an MC3. MC3 students were almost even in the number that 

considered themselves mathematics person and those who did not. Additionally, over 50% of the 

students who did not consider themselves to be a mathematics person were MC2 students. The 

Pearson’s correlation coefficient showed a moderate positive correlation, r(41) = .33, p = .034, 

between UMCA assigned stages and whether they considered themselves as a mathematics 

person. 

Identity Narratives 

 This section of the results will go over the identity narratives of each participant. This 

will be a synthesis of their interviews. 

Abigail 

Abigail stated that she was not a math person, but she worked hard to understand what 

she could of mathematics. She stated that only time she had ever received recognition as a 

mathematics person was when she got a good grade in math or helped her younger brothers out. 

She did a much better job at tutoring them than her older brother, and so was often praised by her 

parents. However, she stated that this praise was not towards her mathematics ability due to them 

never complimenting her grades in mathematics. Her previous teachers also never complimented 

her mathematics skills. She said, “I don’t know if anyone ever told me, ‘Oh yeah, you’re really 

good at math’”. None of her peers ever ask for her help in math like they do in English. Her 

current professor had complimented her a few times during office hours when she was getting 

questions correct on the homework. She said he’s the only teacher that had ever told her she’s 

good at math.  
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 Abigail discussed that she likes math when she’s getting it right and she understands it. It 

isn’t enough for her to just get it right or to just understand it. If she doesn’t understand math, she 

“doesn’t enjoy it as much”. When someone asks if she likes math, she replies, “Well, I like it 

more than science”. She likes geometry a lot especially the work with angles, but really struggles 

with conceptual ideas, problems with multiple answers, and writing equations that use variables. 

Solving equations makes a lot more sense to her.  

Abigail says that math doesn’t come naturally to her. She struggles understanding 

mathematics “on a deeper level”. If she doesn’t understand it on that level, she feels like she 

keeps on getting it wrong. She just has to accept what answer she gets, even if it doesn’t feel 

right. When she does understand a concept in math, she expects to forget it. She explains, “So I 

understand the velocity graph now, but I don’t know how long I will understand it before I just 

forget it again”. Abigail gauges how well she is doing in math by whether or not she understands 

it. She generally took harder mathematics classes in high school and made good grades. 

However, she felt she wasn’t very good at math since she couldn’t understand it. If she 

understood the topic, she got it right and she liked it. If she didn’t understand the topic, she 

would end up being wrong and wouldn’t like it. 

 During her work on the optimization problems, Abigail was very positive and persistent. 

She didn’t mind needing to work slow through the problem saying, “It’s gonna take a while this 

way, but I want to get it right”. A couple of times she did comment, “I am not very good at this” 

when attempting to write a couple of complex equations. 

Brian 

Brian felt that he was a mathematics person that liked the challenge of complex 

problems. Being good at math “runs in the family” for Brian. He was often recognized by his 
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father for having good grades. His middle school teacher even selected his group of friends to 

teach his younger schoolmates a mathematics lesson. He said their group was selected as the 

most interesting lesson that also explained the math the best.  

 Brian’s main interest in mathematics is the challenge of mathematics. He enjoys figuring 

out problems that others don’t. He explained, “I actually love doing my friend’s homework, 

because every time they can’t figure it out, they’ll ask me”. Brian said that there are a lot of 

different ways to do math, and that it’s interesting to explore data. He is confident in his 

knowledge of algebra, functions, and graphs, though he struggles with creating graphs to 

represent specific contexts and with “logs and cosines”.  

When asked if math comes naturally to him, Brian replied, “yes and no”. His quick 

understanding of something new depended on the topic. Some topics take time to “get used to” 

since they are harder. If he knows how to set the problem up and what to do with the numbers 

immediately, then he knows that he gets it. Brian gauges his performance in mathematics by how 

quickly he knows how to set up a problem. If he knows exactly what to do right away, he knows 

he is doing well.  

Brian was engrossed with the problems during the interview. He did not hesitate in his 

problem solving, but worked to quickly set up and solve each of the problems. He said that he 

enjoyed solving the problems. 

Clarissa 

Clarissa said that she was a mathematics person. She has been helping others with 

mathematics for a long time. Her dad often needs help and asks her for assistance. At school, she 

was nominated as the mathematics representative by her teachers to compete in a school wide 

competition. They had told her she was a “good fit” as the mathematics representative. 
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 Clarissa said that mathematics was easy, so it was fun to do. She found algebra, 

geometry, and fractions fun since they were easy to her. She did not enjoy learning mathematics 

online or “logs and cosine” functions. Clarissa said that her grades were some of the highest in 

the class, but that didn’t mean that she understood all of the work. However, she said that it came 

naturally to her since she just “got math easily”. She gauges her performance on her grades. 

Since she had always had good grades, she said that meant she was doing well in mathematics. 

Clarissa was quick to provide solutions to both problems in the interview. She was very 

confident in these answers even when given evidence these solutions may not be correct. 

Diana 

Diana insisted she was not a mathematics person. When asked to describe herself in the 

context of math she said, “Oh, I’m not a math person”. None of her family members or teachers 

had ever approached her to tell her she was good at math. 

Diana is “just not a fan” of mathematics. She liked it a lot better when it was just 

numbers, but now that they added letters it became confusing. Geometry and adding fractions are 

also difficult for her. However, she liked when the problems were realistic, saying “I don’t like 

when I’m doing math equations and I’m like, okay I was just solving an equation. But right now 

were are doing a lot of business stuff and I like it”. The context made it more interesting to do 

the math since it was useful. She stated that she was enjoying class because of the business 

applications, but then “just last week the class got so hard, I don’t like doing it anymore”. Diana 

said that the only topic in math that comes naturally to her is arithmetic. Her grades serve as her 

gauge of her performance in mathematics. Since arithmetic was easy for her, she used to like 

math. However, she explained that in 5th grade, she god her first “B”. From then on she hated 

math. She has an A in her current math class, but still hates math from her experience with her 
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first “B”. She does know she is doing well in a course if she is making a good grade and she is 

able to quickly complete the work. 

Diana was very positive during her work on the interview problems. She was persistent in 

finding a solution to both problems. She was concerned by the large amount of work needed to 

solve the problems saying, “it’s going to take a while”.  

Eric 

Eric confidently stated he was a mathematics person. He often helped his younger 

brothers out with math at home at the request of his mother since she was “terrible at math”. His 

high school algebra II teacher recognized him as a mathematics person when he got excited Eric 

aced the final exam.  

Eric explained that he didn’t really enjoy doing math, but it was useful as a tool for him. 

He enjoyed using math in practical applications like welding. This was especially beneficial as 

practice with fractions since much of welding required a lot of fractions. He said really only 

struggled with logarithmic and exponential function graphs. Eric said that mathematics comes 

naturally to him if it’s described well. He only struggles when the original explanation of the 

topic wasn’t good. Eric gauges his performance in mathematics by how fast he worked and 

understood the problem. The quicker he was, the better he performed. He explained, “I either get 

it or all my steps are correct and I just missed a number”. 

Eric quickly provided an answer to both problems. However, he became slightly 

frustrated when evidence showed his original answer may not be correct. During problem 

solving he said, “I hate being wrong” and he worked through correcting his solution.    
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Table 5.4 

Summary of key findings from narratives based on a priori codes 

Participant Recognition Interest Performance Competence 

Math 

Person? 

MC2      

    Abigail  Felt she received no 

recognition from parents 

or teachers before college. 

 Helped her younger 

brothers with math, but 

was never recognized for 

her math grades. 

 Only enjoys math if she 

understands it and gets it 

right. 

 Often feels like she 

struggles, so she doesn’t 

like math. 

 Uses her grades and correct 

answer to judge her 

performance. 

 Feels she needs to 

understand and get it right. 

 Math is difficult to 

understand.  

 She struggles with 

conceptual 

understandings. 

 She feels she ends up 

forgetting what she has 

learned most of the time. 

No 

    Diana  Has never felt recognized 

as a math person by 

anyone. 

 Is not a fan of math and 

liked it a lot more when 

it was simpler. 

 She bases her performance 

off her grades.  

 She also bases it off how 

fast she can do the problem. 

 Only basic arithmetic is 

easy. Everything else in 

math is hard 

No 

MC3      

    Brian  Recognized by his father 

for his good math 

grades. 

 Was chosen by his math 

teacher to teach others. 

 Enjoys the challenge 

mathematics brings 

 Likes solving things 

other people cannot 

solve. 

 Gauges performance by 

how quickly he knows what 

to do to solve the problem. 

 Is ok with not knowing 

things immediately as it 

takes time to learn some 

things. 

 Judges his competence by 

if he knows “what to do” 

immediately. 

Yes 

    Clarissa  Often helped her dad with 

math. 

 Was chosen by a math 

teacher as the 

mathematics 

representative for a 

competition 

 Math is something fun 

that she can do. 

 Math is fun for her since 

it is easy. 

 Bases her performance on 

how high her grades are 

compared to the rest of the 

class. 

 Her grades are some of the 

highest. 

 Her grades are high, but I 

don’t understand 

everything. 

 She just “gets a lot of it 

easily”. 

Yes 

    Eric  Often taught his younger 

brothers. 

 Was recognized by his 

teacher as a student who 

was quick and accurate in 

math. 

 Doesn’t actually enjoy 

doing math, but sees it as 

a tool. 

 Only likes math when it 

is applied practically. 

 How fast he can solve the 

problem is important to how 

well he performed. 

 Confident that math 

comes easily to him. 

 How the information is 

initially presented 

determines how well he 

knows it. 

Yes 
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Summary and Case Comparison 

Results from both the UMCA and clinical interviews indicated that Abigail and Diana 

were MC2 students while Brian, Clarissa, and Eric were MC3 students. Both MC2 students 

stated they were not mathematics people while all three MC3 students stated that they were 

mathematics people. Table 5.4 summarizes the findings found in the narratives above. 

Neither of the MC2 students felt they had been recognized as a mathematics person by 

the people around them. Abigail eventually talked about a couple of instances where she had 

been recognized helping her brothers in math and for her good grades, but overall felt she did not 

get recognition. Diana could not provide any examples of someone calling her a “math person”. 

Brian, Clarissa, and Eric all had examples of times they had been chosen specifically by their 

teachers in recognition of their mathematics achievement. They also outlined how they had 

helped out family members and friends with math growing up.  

Abigail and Diana’s enjoyment of math hinges on being able to understand the 

mathematics. Both receive generally high grades in mathematics, but struggle to understand 

underlying mathematics concepts. They pointed out that working with algebraic problems that 

used variables was difficult for them. They gauge their competence and performance in 

mathematics on their grades and their ability to comprehend the classwork. 

The MC3 students all enjoy math in different ways. Brian enjoys the challenge of 

mathematics. Clarissa enjoys math since it is easy. Eric enjoys math because it is useful. 

Comprehension time plays a large role in how the MC3 students talked about their competence 

and performance in mathematics. All three were very confident in their grades, and looked 

instead to the speed they completed their problem solving. For Clarissa and Eric, the faster they 

found a solution, the better they were performing in mathematics. This was further emphasized 
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by Eric’s frustrations when his quick answer turned out to be incorrect. Brian was less interested 

in the speed it took him to find and answer, but instead in the speed it took him to figure out how 

to set up the problem to solve it. If he knew how to set it up and “what to do with the numbers” 

then he considered himself to have done well on the problem. 

Participants were asked to give examples of topics in mathematics that they excelled and 

struggled in. Below is a table summarizing these results that are organized by the participant’s 

multiplicative concept stage. 

Table 5.5 

Mathematics topics participants excelled and struggled in 

Participant Excel Struggle 

MC2   

 Abigail  Graphing functions 

 Solving equations for X and Y 

 Geometry 

 Interpreting graphs (especially Velocity) 

 Writing equations with variables 

 Anything with “relative answers” or 

“multiple answers” 

 Conceptual concepts behind 

mathematics problems 

 Fractions 

 

 Diana  Arithmetic (multiplication, division, 

addition, and subtraction) 

 “Straightforward” numbers 

 

 Variables or “letters” 

 Geometry 

 Adding Fractions 

MC3   

 Brian  Functions 

 Graphs 

 Quadratic functions 

 Algebra 

 Creating graphs from contexts 

 Log and cosine functions 

 Interpreting graphs 

 Choosing the best model for a problem 

 

 Clarissa  Algebra 

 Geometry 

 Fractions 

 Online mathematics learning 

 Log and cosine functions 

 Radians/degrees 

 

 Eric  Multiplication 

 Exponents 

 “Easier” graphs 

 Logarithmic graphs 

 Exponential functions and graphs 

 

 



 

168 

 

Discussion 

 Student’s development of their mathematics identity is complex. Their experiences 

culminate into a perceived self that informs their outlook on mathematics. Positive experiences 

that stem from effective teaching strategies that support student learning in mathematics is 

beneficial to developing a positive disposition towards mathematics (Hodge & Harris, 2015). 

These teaching strategies should take into account the struggles of MC2 students have with 

conceptual learning by addressing multiple ways to model and reason about problems.  

 Initial results from this study suggest there is a correlation between students’ 

multiplicative concept stage and their identification as a mathematics person. MC2 students 

especially were shown to be more likely to not identify as a mathematics person. Additionally, 

the frustrating or difficult aspects of mathematics Abigail and Diana struggled with align with 

struggles MC2 students generally have. MC2 students have difficulty when writing complex 

equations with variables as explained by both Abigail and Diana (Hackenberg et al., 2017, 2021). 

They also struggle with the conceptual aspects of mathematics, which mirrors the sentiments of 

participants in Byerly’s (2019) study on the conceptual understanding of derivatives.  

The MC3 students also had their share of difficult topics. All three struggled with 

logarithms and cosine functions and their graphs. They said they had no difficulty in writing 

equations and general algebra. The MC3 students’ confidence came from their ability to see a 

problem and recognize the path to a solution. This speed was treasured above their grades as 

feedback. Since MC3 students assimilate with three levels of units, they can recognize more of 

the original problem’s unit structures than MC2 students can and are able to flexibly move 

between levels of units. This gives them an advantage when problem-solving in comparison to 

their MC2 peers that could hypothetically make them faster at solving problems.  Since this 
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supports their beliefs about what mastery of mathematics looks like, their multiplicative concept 

stage may be supporting their view of their competence and performance in mathematics.  

Early recognition from teachers and parents played a large role in the development of the 

mathematics identities for the participants which aligns with prior research (Cribbs et al., 2015; 

Gunderson et al., 2012). Interest for these participants varied, but ease of problem solving and 

usefulness of the material were both mentioned as factors of participant enjoyment. This aligns 

with the explanatory model for mathematics identity (Cribbs et al., 2015). 

Limitations 

 This study is an initial exploration into the connection between undergraduate students’ 

multiplicative concept and their mathematics identity. The students in this study are not 

representative of the entire undergraduate student body, but rather students who are enrolled in 

entry-level mathematics courses. Due to low volunteer numbers for interviews, we were unable 

to have a more diverse set of participants in regards to their mathematics identity. None of the 

MC2 students who identified as a mathematics person or the MC3 students who did not identify 

as mathematics students volunteered for the follow-up interview. Additionally, the low number 

of MC1 students is typical in the undergraduate setting (Boyce et al., 2021; Davenport et al., in 

preparation).  

Implications, Future Research and Conclusion 

 The results of this study show promise in the connection between students’ multiplicative 

concept stage and their mathematics identity. This study was the first step in exploring these 

connections. If we desire to create effective instruction that is beneficial for students and the 

development of their mathematics identity (Anderson et al., 2015; Hodge & Harris, 2015), it is 

imperative that we include considerations of students’ mathematical schemes.  
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Future research should explore the missed narratives of this study, a wider population of 

undergraduate students, and the narrative surrounding younger students. Since research has 

recorded students having developed the first multiplicative concept stage as early as 2nd grade 

(Kosko & Singh, 2018), a look at the connection between their multiplicative concept stage and 

their mathematics identity during the developmental years of both may be beneficial in 

developing effective instructional practices for younger students. 
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CHAPTER VI 

 

 

CONCLUSION 

 

 Research on modeling student thinking focuses on understanding the students’ 

perspective of mathematical reasoning and problem solving. Research has shown that students’ 

coordination of unit structures influences their comprehension of mathematics topics such as 

fractions (Hackenberg, 2007; Steffe, 2001), proportions (Steffe et al., 2014), algebraic symbols 

and equations (Hackenberg, 2013, Hackenberg & Lee, 2015; Olive & Caglayan, 2008; Zwanch, 

2019, 2022a, 2022b), recognition of quantity and use of measurement (Steffe, 2013), and 

derivatives and rates of change (Byerly, 2019). Undergraduate students’ multiplicative concept 

stage influences their readiness for calculus (Boyce et al., 2021). Understanding how to 

accommodate limitations that can arise from the available operations of a student can inform 

teaching strategies to help support these students and give them positive mathematical 

experiences to develop a strong mathematics identity. 
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 The goal of this study was to add to our existing knowledge of undergraduate student 

thinking by developing a multiplicative concept stage assessment valid for undergraduate 

students, exploring how undergraduate students solve optimization problems and how their 

available operations influenced these solutions, and exploring how students with different 

multiplicative concept stages described their mathematics identity. This study used the following 

research questions 

 How well do the assessment and rubric items align with the theoretical framework for 

multiplicative concepts and assess undergraduate students’ multiplicative concept stage? 

 How do undergraduate students reason about and solve optimization problems? 

 To what extent can the multiplicative concepts be used to explain undergraduate students’ 

reasoning on optimization problems? 

 How do students with different multiplicative concepts describe their mathematics 

identity? 

Data was collected in two stages and synthesized into three articles. In the first phase of 

data collection, 51 undergraduate students were administered the UMCA and 18 of these 

participants participated in clinical interviews. Data from the overall scores (number of correct 

responses) of the UMCA, the attributed MC stage from the UMCA, and the attributed MC stage 

from the interviews were analyzed to provide evidence towards the validity of the UMCA as an 

appropriate assessment for undergraduate students’ multiplicative concept stage. The validation 

of the UMCA and UMCA rubric were discussed in chapter III. 

 In the second phase of data collection, 43 undergraduate students in entry level 

mathematics courses took the UMCA and indicated whether or not they would describe 

themselves as a “Math Person”. Of these 43 students, five participated in a follow-up interview 
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that consisted of a semi-structured interview on their mathematics identity and a clinical 

interview solving optimization problems. The results from the clinical interview were outlined in 

chapter IV and the results from the semi-structured interview were discussed in chapter V. 

Findings 

 There are four main findings from this study. First, the quantitative and qualitative data 

provided towards the validity of the UMCA and UMCA rubric supports this assessment as valid 

for undergraduate students. Chapter III provides evidence to support the UMCA’s ability to 

accurately attribute the multiplicative concept stage of a student through data supporting valid 

test content, appropriate interpretation of response processes, internal structure that is 

unidimensional and interpretable, and generalizability through item and person reliability.   

 Second, undergraduate students solve optimization problems through the creation of 

systematic guess and check strategies, equations, tables and graphs that model the given 

problem. MC2 and MC3 students can solve these problems through the use of their available 

operations from their multiplicative concept stage and relational reasoning. 

Third, the undergraduate students in this study who had different multiplicative concept 

stages had different experiences in mathematics. Both MC2 students did not view themselves as 

a mathematics person and voiced that they struggled with their conceptual understanding of 

mathematics. The MC3 students all had positive experiences in mathematics, were recognized as 

a mathematics person by their parents and teachers, and viewed their ability to comprehend and 

do mathematics positively.  

Fourth, the majority of the undergraduate students had developed at least an MC2 (n = 91 

and almost half of these students had constructed an MC3 (n = 45). Only 3 participants were 
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attributed an MC1. This supports findings from prior research on undergraduate students’ 

multiplicative concept stages (Boyce et al., 2021). 

Implications 

 The validity evidence for the UMCA suggests that it can be used for larger scale studies 

of undergraduate students’ multiplicative concepts stages. It is a useful tool for researchers to use 

in the exploration of student thinking on college mathematics concepts.  

 The results of this study add to the fields current understanding of the connections 

between the students’ multiplicative concept stage their ability to construct and reason about 

quantitative structures. The results support prior research on MC2 and MC3 students’ 

construction of quantitative structures and algebraic equations (Hackenberg et al., 2017, 2021; 

Olive & Cagalayan, 2008; Ulrich, 2016a). The MC2 participants were able to successfully 

quantify the additive relationships from the optimization problems, but struggled with inserting a 

unit of unknown size into another unit of unknown size. However, the ability to anticipate the 

quantification of multiplicative relationships and ability to reflect on interable composite units 

available to an MC3 but not an MC2 (Ulrich, 2016a) was necessary to insert a composite unit 

with an unknown into another composite unit with an unknown as needed to represent the charter 

bus problem. These operations supported the MC3 participants’ equation writing. The MC2 

students’ use of numerical examples to construct and build the equation for the charter bus 

problem led to their success in in creating accurate algebraic representations for the charter bus 

problem.  The participants’ solutions to the optimization problems showcased the mathematical 

reasoning needed to represent optimization problems (Thompson & Carlson, 2017) that both 

MC2 and MC3 students have access to. 
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 The results of this study support the possible connection between students’ multiplicative 

concept stage and their mathematics identity. If we desire to create effective instruction that is 

beneficial for students and the development of their mathematics identity (Anderson et al., 2015; 

Hodge & Harris, 2015), it is imperative that we include considerations of students’ mathematical 

schemes. With the large percentage of MC2 students found in this study and prior research 

(Boyce et al., 2021), professors should provide strategies to students to support MC2 thinking 

and learning in undergraduate mathematics.  

Future Research 

 Future research should explore a larger sample for information on the multiplicative 

concept stage of undergraduate students and their mathematics identity for greater evidence of 

connections between the two concepts. Additionally, the missed narratives from this study due to 

the low sample size should be explored. These narratives include MC2 students who identified as 

a mathematics person, MC3 students who did not identify as a mathematics person, and MC1 

students. Additionally, an exploration of K-12 students’ mathematics identity and multiplicative 

concept stage may be beneficial for developing effective instructional practices to support 

students learning mathematics during their developmental years. 

 Future research on the multiplicative concepts should explore ways use the findings from 

this study to provide instruction in quantitative reasoning courses that support MC2 student 

thinking. Additional research should be done to explore the connection between proportionality 

schemes and covariational reasoning that was suggested by Brian’s solutions in this study. 

Concluding Remarks 

 It is important to provide effective support and instruction for student learning in 

undergraduate courses that allow all students to succeed and provide students with positive 
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experiences in mathematics. This study explored the nuanced interactions between students’ 

mathematics identity, their multiplicative concepts stage, and their problem solving strategies. 

Developing instruction and tasks that supports MC2 student learning is essential to helping them 

develop the conceptual understanding of mathematics that Abigail and Diana said they struggled 

with. 
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Appendix C: UMCA 

Undergraduate Student Multiplicative Concepts Assessment 
Part A 

Please complete the following problems with the black pen provided.  

1) A candy bar company packs 3 candy bars per package, and 6 packages per box. 

a) If a store buys 7 boxes, how many candy bars will they receive? 

 

 

 

 

 

 

 

b) If the same store orders another 8 boxes, how many total candy bars have they received? 

 

 

 

 

 

 

 

 

 

 

 

 

c) Assuming the store received all of their ordered candy bars, how many packages have 

they received? 
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2) There are 6 plants in each row of my garden. 

a) How many tomato plants are in 8 rows? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) In addition to tomato plants, I also planted potatoes. If there are a total of 102 plants, how 

many rows of potatoes did I plant? 
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3) There are 12 inches in 1 foot and 3 feet in 1 yard. 

a) How many inches are in 2 yards? 

 

 

 

 

 

 

b) If you add an additional 5 feet onto the original yards, how many total inches are 

there? 

 

 

 

 

 

 

 

c) How many feet are in the total number of inches?  

 

 

 

 

 

 

 

 

 

 

d) How many yards are there in the total number of inches? 
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4) The stick shown below is 3/5 of a whole stick. How many 1/15 sticks can you make from 

the 3/5 stick? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5) The bar shown below is 7/3 as long as a whole candy bar. Draw the whole candy bar. 
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Part B 

Please explain your reasoning behind your solutions to the problems from Part A. Please write 

your answers with the blue pen provided. You may mark on Part A with the blue pen if needed 

during this time. 

1) A candy bar company packs 3 candy bars per package, and 6 packages per box. 

d) If a store buys 7 boxes, how many candy bars will they receive? 

 

 

 

 

 

 

 

e) If the same store orders another 8 boxes, how many total candy bars have they received? 

 

 

 

 

 

 

 

 

 

 

 

 

f) Assuming the store received all of their ordered candy bars, how many packages have 

they received? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2) There are 6 plants in each row of my garden. 
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a) How many tomato plants are in 8 rows? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) In addition to tomato plants, I also planted potatoes. If there are a total of 102 plants, how 

many rows of potatoes did I plant? 
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3) There are 12 inches in 1 foot and 3 feet in 1 yard. 

a) How many inches are in 2 yards? 

 

 

 

 

 

 

 

 

 

b) If you add an additional 5 feet onto the original yards, how many total inches are 

there? 

 

 

 

 

 

 

 

 

 

c) How many feet are in the total number of inches?  

 

 

 

 

 

 

 

 

 

d) How many yards are there in the total number of inches? 

 

 

 

 

 

 

 

 

 

 

 



 

204 

 

4) The stick shown below is 3/5 of a whole stick. How many 1/15 sticks can you make from 

the 3/5 stick? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5) The bar shown below is 7/3 as long as a whole candy bar. Draw the whole candy bar. 
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Appendix D: Demographics Survey Phase 1 

Demographics 

 

What is your name? _________________________ 

What is your current class standing? 

1) Freshman 

2) Sophomore 

3) Junior 

4) Graduate 

5) Senior 

 

What is your age? _______ 

Do you identify as Hispanic/Latinx? 

1) Yes 

2) No 

 

What is your race? (Select all that apply) 

1) White 

2) Black 

3) Asian 

4) Pacific Islander 

5) American Indian or Alaskan Native 

6) Other 
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Appendix E: Demographics Survey Phase 2  

Demographics 

 

What is your name? _________________________ 

What is your current class standing? 

6) Freshman 

7) Sophomore 

8) Junior 

9) Graduate 

10) Senior 

 

What is your age? _______ 

What gender do you identify as? _______________ 

Do you identify as Hispanic/Latinx? 

3) Yes 

4) No 

 

What is your race? (Select all that apply) 

7) White 

8) Black 

9) Asian 

10) Pacific Islander 

11) American Indian or Alaskan Native 

12) Other 

 

What is your declared major? ____________________ 

 

Do you consider yourself a mathematics person? 

1) Yes 

2) No 
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Appendix F: Interview Protocol A 

Interview Protocol A 

This interview is a clinical interview for assessing the participants’ multiplicative concepts. The 

interview will be video recorded with the participants’ permission. Participants will be given a 

recording pen and paper to solve the problems. Participants can ask the interviewer at any point a 

question about the problem. The interviewer is to ask questions about the problem solving 

strategies of the student to help elaborate and articulate student work and thought. Participants 

can skip any question they do not feel like answering and may end the interview at any time. 

Participants are to be informed of their confidentiality agreement and voluntary participation at 

the beginning of the interview. 

Introductory Statement 

Hello, thank you for doing this interview with us. I am going to give you a couple problems to 

solve. Here is a pen and a notepad to write on. You can write whatever notes and work you want 

on here. As you work, I am going to ask you questions about what you are thinking and doing. 

Do you have any questions? If you do at any point, be sure to let me know if you have any 

questions. 

 

Multiplicative Concept Questions 

1) I purchased packages of candy bars that come in 8 per package. 

a. If I bought 7 packages of Mr. Goodbar candy bars, how many candy bars do I 

have? (56 Mr. Goodbar candy bars) 

 

b. I also bought some Almond Joy candy bars and now have a total of 104 candy 

bars, how many packages of Almond Joy candy bars did I purchase? (6 packages) 

 

2) There are 8 fluid ounces in a cup and there are 4 cups in a quart. If I am measuring water 

out,  

a. How many fluid ounces of water are in 3 quarts? (96 fluid ounces) 

b. If I add an additional 7 cups of water to the original 3 quarts, how many ounces of 

water do I have now? (152 fluid ounces) 

c. How many total cups of water do I have now? (19 cups of water) 

d. How many total quarts of water do I have now? (4 ¾ quarts of water) 
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Appendix G: Interview Protocol B 

Interview Protocol B 

This interview will consist of two parts. The first part pertains to the participants’ mathematics 

identity. The interview is semi-structured, allowing for follow-up questions to elaborate on 

participant responses. The second part will be a clinical interview and will have the participant 

answers some problems regarding their multiplicative concepts and optimization problems. 

Participants will be given a recording pen and paper to solve the problems. Participants can ask 

the interviewer at any point a question about the problem. Graphing paper and a four-function 

calculator will be available should the participants’ work indicate that these resources would 

assist in allowing the student to move forward in problem solving. The interviewer is to ask 

questions about the problem solving strategies of the student to help elaborate and define student 

work and thought. The interview will be recorded with the participants’ permission. Participants 

can skip any question they do not feel like answering and may end the interview at any time. 

Participants are to be informed of their confidentiality agreement and voluntary participation at 

the beginning of the interview. 

 

Identity Interview 

Note that participants were asked if they would consider themselves a mathematics person prior 

to this interview. Questions may be adjusted based of the answer they provided to this question. 

Suggestions for questions adjustments specifically for students who indicated they viewed 

themselves as a mathematics person will have a (Y) before them and those who indicated they 

were not will have a (N) before them. 

Introductory Statement 

Thank you for coming. In this part of the interview, we will be asking some questions about how 

you see yourself as a mathematics person. Your participation if completely voluntary will have 

no effect on any grade in any class. The responses you give me during this interview will remain 

confidential. If you need any clarity on a question or want to move on, please let me know. Do 

you have any questions for me? Ok, we asked you as a part of the assessment you took whether 

or not you viewed yourself as a mathematics person. You said (yes/no).  

Interview Questions 

(Self-Recognition) 

(Y) Describe yourself as a mathematics person  

(N) Describe yourself in the context of mathematics. 

(Family Recognition)  

(Y) Describe a scenario where you have been recognized by a family member as a math 

person. 

(N) If you can, describe a scenario where you have been recognized by a family member 

as a math person.  

(Teacher Recognition) 

(Y) Describe a scenario when you have been recognized by a math teacher as a math 

person. 

(N) If you can, describe a scenario when you have been recognized by a math teacher as a 

math person.  

(Interest) Would you generally say you enjoy math? 
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(Yes) Describe the ways you have enjoyed math.  

(No) Can you describe a way you have enjoyed mathematics? 

(No with no explanation) Can you describe the ways you haven’t enjoyed 

mathematics? 

(Competence)  

Would you say that mathematics comes naturally to you (do you just “get” mathematics)? 

How do you know? 

(Performance)  

Describe how you know you are performing well in mathematics.  

Potential Follow-up: how often did you feel like you were performing well in 

mathematics? 

What topics in mathematics do you feel you excel in? Why? 

What topics in mathematics do you feel you struggle in? Why? 

 

Optimization Problems 

Introductory Statement 

For this part, I am going to give you four problems to solve. Here is a pen and a notepad to write 

on. You can write whatever notes and work you want on here. As you work, I am going to ask 

you questions about what you are thinking and doing. Do you have any questions? If you do at 

any point, be sure to let me know if you have any questions. 

Multiplicative Concept Questions 

3) I purchased packages of candy bars that come in 8 per package. 

a. If I bought 7 packages of Mr. Goodbar candy bars, how many candy bars do I 

have? (56 Mr. Goodbar candy bars) 

 

b. I also bought some Almond Joy candy bars and now have a total of 104 candy 

bars, how many packages of Almond Joy candy bars did I purchase? (6 packages) 

 

4) There are 8 fluid ounces in a cup and there are 4 cups in a quart. If I am measuring water 

out,  

a. How many fluid ounces of water are in 3 quarts? (96 fluid ounces) 

b. If I add an additional 7 cups of water to the original 3 quarts, How many ounces 

of water do I have now? (152 fluid ounces) 

c. How many total cups of water do I have now? (19 cups of water) 

d. How many total quarts of water do I have now? (4 ¾ quarts of water) 

 

 

 

Optimization Problems 

5) Marian owns a charter bus company offers a route to the neighboring city that 

charges $40 per person if up to 30 passengers sign up for the trip. If more than 30 

passengers sign up, the fare for every passenger is reduced by $1 for every 
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passenger in excess of 30. The bus can only hold up to 48 passengers. How many 

passengers does Marian want to sign up for her charter bus route if she wants to 

maximize her revenue for the trip? (35 people) 

 

a) If the participant is struggling to develop a model. Is there any way you can represent the 

situation? Maybe a picture or a set of equations? 

 

b) If the student solved the problem from an equation and the use of a table or trial and 

error. Is there a way you could solve this solution graphically? 

 

c) If the student solved this problem using a graph only. Is there a way you could have 

solved this algebraically? 

 

 

d) If the student is struggling to provide any representation of the data or has gotten stuck at 

a previous stage of problem solving. Ok, I am going to give you a graph that represents 

the situation from our problem. I’m going to ask you a few questions about this graph. 

(The interviewer will then provide the following graph of 𝑓(𝑛) = −𝑛2 + 10 𝑛 + 1200) 

 

 
i) Based on this graph and our problem, what do you think the values on the x and y 

axis represent? (x axis values indicate the number of passengers over 30; the y axis 

indicates the amount of revenue that the charter bus receives for providing a route to 

30 + x passengers) 

 

ii) What situation does this point (indicating the point (0, 1200)) represent? (This is the 

amount of revenue Marian would receive if she only had 30 passengers) 
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iii) What about over here where it crosses the x axis (indicate (48,0))? (Giving the same 

discount to 78 people would cause Marian to not make any money. However, Marian 

can only fit 48 people on her charter bus) 

 

iv) What point on the graph would indicate how much money Marian would make if she 

filled her charter bus? (18, 1056) 

 

v) Can you use this graph to determine an answer for how many people Marian should 

want to sign up for her route in order to maximize revenue? (the point (5,1225) is the 

maximum of the graph and would be the highest amount of revenue she could receive 

with her current payment plan) 

 

 

6) John wants to build a rectangular pen next to his barn. To try and maximize his resources, 

he decides to use one side of the barn as a side of his pen. If he has 160 ft worth of fence 

available to build his pen, what would be the dimensions of his pen if he maximized the 

area? (length: 80 feet, width: 40 feet). 

 

a) If the participant is struggling to develop a model. Is there any way you can represent the 

situation? Maybe a picture or a set of equations? 

 

b) If the student solved the problem from an equation and the use of a table or trial and 

error. Is there a way you could solve this solution graphically? 

 

c) If the student solved this problem using a graph only. Is there a way you could have 

solved this algebraically? 

 

d) If the student is struggling to provide any representation of the data or has gotten stuck at 

a previous stage of problem solving. Ok, I am going to give you a graph that represents 

the situation from our problem. I’m going to ask you a few questions about this graph. 

(The interviewer will then provide the following graph of 𝑓(𝑥) = 160𝑥 − 𝑥2)
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i) Based on this graph and our problem, what do you think the values on the x and y 

axis represent? (x axis values indicate the length of the matching sides of the pen in 

feet; the y axis indicates the area of the pen) 

 

ii) What situation does this point (indicating the point (20, 2400) represent? (This the 

area of the pen if the length of the matching sides of the pen is 20 feet) 

 

a. If we chose this value (20) as the shorter side, what would be the length of the 

longer side? (120 feet) 

 

iii) What does this point ((0,0)) indicate in the context of our problem? Is this a possible 

pen we can make? (the length of the two matching sides would be 0, so it would be an 

unmade pen and impossible to create) 

 

iv) What about the other point that crosses the x axis (80,0)? What does that point tell 

you about the John’s pen? (In this case, if the two matching sides was 80, then the 

remaining side would be 0 feet long, which would again be an unconstructed pen). 

 

v) Can you use this graph to determine an answer for the dimensions of the pen needed 

to maximize the area of John’s pen? (the point (40, 3200) is the maximum of the 

graph and would be the greatest area possible. So the dimensions of the pen would be 

40 feet by 80 feet) 
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