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Abstract:  In Chapter I, sometimes two measurements are available to collect soil 
information: a low-cost noisy measurement and an accurate expensive one. For example, 
soil testing in a laboratory is expensive and accurate. On-the-go pH meters are available, 
but they are not as accurate. The question addressed here is what is the best way to 
combine these measures to guide precision applications? Bayesian Kriging is proposed to 
estimate the joint spatial distribution considering spatial autocorrelation. This study also 
obtains the economic optimum ratio of expensive and accurate measurements by 
maximizing the expected net present value using Bayesian Decision Theory and a grid 
search procedure.  

In Chapter II, absent check plots, near-zero treatment rates, or non-limiting 
treatment levels, it may be difficult to estimate accurately yield response functions. a 
Bayesian multilevel modeling approach is proposed to incorporate response parameters 
from published studies into crop yield response estimation procedures when non-limiting 
or limiting treatments are omitted in agronomic experiments. A proof-of-concept 
simulation supplements an empirical application. The simulation investigates the small 
sample properties of the proposed procedure. The empirical example uses field trial data 
for a maize planter experiment under different nitrogen (N) fertilizer rates.  

In Chapter III, there are two alternative approaches to managing soil phosphorus 
(P): sufficiency and build-maintenance. Sufficiency seeks to apply the minimum amount 
of P fertilizer that the crop needs in that year. At higher yield potential or intensive crop 
rotation, the crops consume more P than applied amounts of P fertilizer with a sufficiency 
approach. As the soil P level decreases due to higher crop removal, the expected crop 
yield decreases over time until an equilibrium is reached. The build-maintenance (BM) 
approach, however, seeks to build and (or) maintain the soil P level for crops so that P is 
not the limiting nutrient. However, the BM recommendation rate costs more in the short-
term because it requires a higher rate than the sufficiency recommendation rate. The 
producer’s long-term returns will differ depending on each approach. This study 
compares the expected net present values of two alternative recommendation rates with 
various scenarios. 
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CHAPTER I 
 

COMBINING LOW-COST NOISY MEASUREMENTS WITH EXPENSIVE 

ACCURATE MEASUREMENTS TO GUIDE PRECISION APPLICATIONS 

*This paper published in Precision Agriculture 

Cho, W., A. ShalekBriski, B. W. Brorsen, and D. Poursina. (2022) Combining Low-Cost 
Noisy Measurements with Expensive Accurate Measurements to Guide Precision 
Applications, Precision Agriculture. https://doi.org/10.1007/s11119-022-09917-z 

 

Abstract 

Precision agriculture requires many local measurements. Sometimes two measurements 

are available: a low-cost noisy measurement and an accurate expensive one. For example, 

soil testing in a laboratory is expensive and accurate. On-the-go pH meters are available, 

but they are not as accurate. The question addressed here is what is the best way to 

combine these measures to guide precision applications? The first step is to estimate the 

joint spatial distribution of the two measures. The joint distribution is estimated using 

Bayesian Kriging since it can consider the information when the measures are spatially 

autocorrelated. The second step is to determine the economic optimum of how many of 

each measure to use. This study obtained the ratio of expensive and accurate 

measurements by maximizing the expected net present value using Bayesian Decision 

Theory and a grid search procedure. To demonstrate the method, a harmonization process 

that uses no spatial information was compared with Bayesian Kriging using Monte Carlo  

https://doi.org/10.1007/s11119-022-09917-z
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data. A wheat production example was used to parameterize the Monte Carlo simulation. 

Soil pH lab sampling and on-the-go soil pH sensors were simulated as the two different 

measurements for soil mapping in wheat fields. Bayesian Kriging led to more accurate 

soil mapping and a higher expected net present value. 

 

Introduction 

Precision agriculture depends on measuring attributes at multiple locations in a field. 

More accurate measurements usually cost more. Low-cost technology examples include 

on-the-go measurements for soil pH testing (Adamchuk et al. 2004; Schirrmann et al. 

2011), quality of sugarcane testing (Nawi et al. 2014), and rising plate meter for 

estimating forage mass (Cho et al. 2019). These low-cost measurements are less accurate 

than other expensive technologies such as the laboratory procedures for soil pH (Thomas 

1996; Eckert and Sims 2009), sugarcane quality (Purcell et al. 2005), and forage mass 

(Sollenberger and Cherney 1995). Some producers may utilize both low-cost and 

expensive measurements. This raises two questions. What methodology of combining 

information suits this data and what is the optimal allocation of low-cost and expensive 

measurements?  

Previous literature proposed methods to combine spatially heterogeneous data sets 

from multiple sources. Heuvelink and Bierkens (1992) propose a model averaging 

method of combining information by taking a weighted average of more accurate 

information. Various ways of weighting have been developed for efficient averaging of 

measured information. Ge et al. (2014) utilize the weights derived from the variance-

covariance matrix of errors to minimize the variance of the estimation errors. Malone et 
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al. (2014) suggest finding the weights using the covariance of the errors from ordinary-

least-squares (OLS) estimation. Caubet et al. (2019) find the weights obtained from OLS 

estimation can lead to accurate mapping even with a relatively small number of accurate 

observations.  

Harmonization is also a widely used method to combine spatial heterogeneous 

datasets (Maldaner et al. 2016; Sams et al. 2017; Leroux et al. 2019; Pichon et al. 2019). 

To harmonize the means, the collected data from multiple sources can be adjusted based 

on a correction factor, which is the ratio between means of measured values (Maldaner et 

al. 2016; Sams et al. 2017). Leroux et al. (2019) propose a spatial harmonization method 

in which different weights are assigned by distance as well as a two-step methodology 

can also be applied to harmonize heterogeneous data sets considering differences in 

variance (Leroux et al. 2019). With the two-step method, the noisy data set is scaled with 

respect to the accurate data set, and then centered to correct the bias (Leroux et al. 2019). 

Pichon et al. (2019) apply the Leroux et al. (2019)’s two-step harmonization process to 

two different hand-held sensors.  

Past literature including Pichon et al. (2019) did not incorporate cost differences 

between noisy and accurate measurements. This study goes beyond previous literature by 

using Bayesian Kriging to estimate the joint distribution of the two measurements. In 

addition, this study maximizes expected net present value to determine the optimal 

allocation of information from two different sampling methods. Bayesian Kriging 

provides spatially smoothed parameter estimates (Park, et al. 2019; Park et al. 2020) and 

imputes values when observations are unavailable (Cho and Brorsen 2021; Park et al. 

2021).  
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In this paper, the Bayesian Kriging approach is used to estimate a site-specific 

posterior density when data are obtained from two different sampling methods. This 

study simulates wheat production and considers two alternative soil pH measurements, 

which are the laboratory procedures for soil pH (Thomas 1996; Eckert and Sims 2009) 

and an on-the-go sensor for soil pH (Schirrmann et al. 2011). Based on the estimated soil 

pH information, aglime is assumed applied to treat low soil pH. Using a Monte Carlo 

study, this study compares Bayesian Kriging and the harmonization process in Pichon et 

al. (2019). The goal is to determine the optimal number of accurate measures to 

maximize expected net present values (NPV) with a 5-year planning horizon. The 

hypothesis tested is that the Bayesian Kriging method leads to a higher net present value 

than the method of Pichon et al. The accuracy is measured as the mean absolute errors 

between true values at each location and the estimates from each method. 

 

Bayesian Kriging 

Bayesian Kriging is used to estimate the joint posterior distribution when the values are 

measured through multiple sources with different accuracy. Two measures are available: 

expensive but accurate, and low-cost but noisy. In addition, the true measures are 

assumed to be spatially correlated while measurement errors are not. 

 

Two Different Measurements 

The noisy measure is assumed to be biased and have measurement error, which is not 

spatially correlated. On the other hand, the expensive measure has less measurement error 
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than the noisy measure. The expensive accurate measure and the low-cost noisy measure 

are represented mathematically as  

(1) Expensive measure:                    𝑚𝑚𝑠𝑠
1 = 𝑚𝑚𝑠𝑠 + 𝜀𝜀𝑠𝑠1 , 𝑠𝑠 ∈ 𝜃𝜃 ;   𝜀𝜀𝑠𝑠1~𝑁𝑁(0,𝜎𝜎12) 

(2) Low-cost measure:             𝑚𝑚𝑠𝑠
2 = 𝛼𝛼 + 𝛽𝛽 ∙ 𝑚𝑚𝑠𝑠 + 𝜀𝜀𝑠𝑠2 ,    𝑠𝑠 ∉  𝜃𝜃 ;   𝜀𝜀𝑠𝑠2~𝑁𝑁(0,𝜎𝜎22)  

where 𝑚𝑚𝑠𝑠 is the true latent value in location (𝑠𝑠 = 1, … , 𝑆𝑆), 𝜃𝜃 represents the locations 

where expensive measurements were taken, 𝑚𝑚𝑠𝑠
1 is the measured value from the expensive 

measurement that is assumed to be the true value, 𝑚𝑚𝑠𝑠
2 is the measured value from the 

low-cost measurements, 𝛼𝛼 is the bias, 𝛽𝛽 is the change in the sensitivity of low-cost 

measurements, 𝜀𝜀𝑠𝑠1 and 𝜀𝜀𝑠𝑠2 are the random errors that follow 𝜀𝜀𝑠𝑠1~𝑁𝑁(0,𝜎𝜎12) and 

𝜀𝜀𝑠𝑠2~𝑁𝑁(0,𝜎𝜎22), and the variance of the expensive measure’s error is smaller than the noisy 

measure’s error variance. 

The joint distribution of the two different measurements is 

(3)  �𝒎𝒎
1

𝒎𝒎2�  ~𝑁𝑁 ��𝟎𝟎𝟏𝟏� ∙ (𝛼𝛼 + 𝛽𝛽 ∙ 𝒎𝒎T) + (1 − �𝟎𝟎𝟏𝟏�) ∙ 𝒎𝒎T , �𝝈𝝈1
𝟐𝟐𝑰𝑰
𝟎𝟎

𝟎𝟎
𝝈𝝈2𝟐𝟐𝑰𝑰

�� 

where 𝒎𝒎1is a 𝑁𝑁1 × 1 vector of measured values from expensive measurements, 𝑁𝑁1 is the 

number of expensive measurements used, 𝒎𝒎2 is a 𝑁𝑁2 × 1 vector of noisy measured 

values from low-cost measurements, 𝑁𝑁2 is the number of low-cost measurements used 

that excludes the number of expensive measurements used (𝑁𝑁1) from the total number of 

measurements used (𝑁𝑁T); 𝑁𝑁2 = 𝑁𝑁T − 𝑁𝑁1, 0 and 1 are vectors indicating whether each 

measurement is biased or not, where a low-cost measurement corresponds to 1, and 𝒎𝒎T is 

a 𝑁𝑁T × 1 vector of true values.  

The true values 𝒎𝒎T are assumed to follow a Gaussian spatial process, so they 

have a multivariate normal distribution. Spatial dependency is reflected using a 
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simultaneous autoregressive (SAR) precision matrix. The true values 𝒎𝒎T are generated 

from a multivariate Gaussian process (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀):  

(4)     𝒎𝒎T~𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝒎𝒎𝑎𝑎,𝚺𝚺𝒎𝒎) 

    𝚺𝚺𝒎𝒎 = (𝜏𝜏(𝑰𝑰 − 𝜌𝜌𝑾𝑾′)(𝑰𝑰 − 𝜌𝜌𝑾𝑾)) −1 

where 𝒎𝒎𝑎𝑎 is the vector of whole field average measured value in which each element is 

the same, 𝚺𝚺𝒎𝒎 is the covariance matrix that uses simultaneous autoregressive form 

suggested by Poursina and Brorsen (2021), 𝑾𝑾 is the row standardized contiguity matrix 

between locations, 𝜏𝜏 is the precision parameter which is same as the inverse variance, and 

𝜌𝜌 is the spatial correlation parameter, which is between 0 and 1 since positive 

autocorrelation is a common scenario in soil pH. 

Following Bayes Rule, the joint posterior distribution is proportional to the 

product of the likelihood, process, and prior layers. The likelihood layer specifies the 

joint distribution of the two different measurements as shown in equation (3). The 

process layer models the spatial process of the parameters following equation (4). In 

addition, the prior layer consisted of priors for the parameters of the process layer (whole 

field average measured value, and Kriging parameters; spatial correlation and precision 

parameters) as well as the bias and standard deviation of measurement error parameters. 

The joint posterior distribution of parameters is  

(5)    𝑝𝑝(𝒎𝒎T,𝚯𝚯|𝑴𝑴) ∝ 𝑝𝑝1(𝑴𝑴|𝒎𝒎T)𝑝𝑝2(𝒎𝒎T|𝚯𝚯)𝑝𝑝3(𝚯𝚯) 

where 𝑝𝑝1, 𝑝𝑝2, and 𝑝𝑝3 are the densities associated with likelihood, process, and prior 

layers, respectively, 𝒎𝒎T is a vector for Gaussian spatial process of random parameters, 𝚯𝚯 

is a vector of hyper parameters, where 𝚯𝚯 = [𝑚𝑚𝑎𝑎,𝛼𝛼,𝛽𝛽, 𝜏𝜏,𝜌𝜌,𝜎𝜎1,𝜎𝜎2]′, and 𝑴𝑴 is a matrix of 

measured values in all locations.  
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The Hamiltonian Monte Carlo (HMC) algorithm within a Gibbs sampler was used 

for the Bayesian Kriging estimation. The HMC algorithm is a Markov Chain Monte 

Carlo (MCMC) method of obtaining the posterior density. MCMC creates the posterior 

density through numerical integration. The MCMC draws random parameter values from 

a candidate density and keeps only accepted values. The HMC algorithm is generally 

faster than Metropolis-Hastings. The rstan package in R (Stan Development Team 2020) 

performed the Bayesian Kriging estimation.  

 

Harmonization Process  

Pichon et al. (2019) used a harmonization process that harmonizes the spatial 

heterogeneous datasets from two different measurements. The harmonization process 

assumes the accurate measure (𝑚𝑚1) has a linear relationship with the noisy measure (𝑚𝑚2). 

The harmonization process requires two steps to transform the noisy measure with 

respect to the accurate measure. In the first step, a slope parameter was estimated to 

minimize the difference in variance between accurate and noisy measures. The standard 

deviation of the noisy data set was divided by accurate data set’s standard deviation to 

calculate a slope parameter. When only one accurate measure is available, this slope 

parameter would be undefined. Thus, this study substituted one as the slope parameter 

with only one accurate measure. The noisy measure 𝑚𝑚2 was scaled to. The first step was  

(6)     𝑎𝑎 =
𝜎𝜎𝑚𝑚2

𝜎𝜎𝑚𝑚1
 

where the parameter 𝑎𝑎 is a slope parameter that can be seen as a change in the sensitivity 

of the measuring system, 𝜎𝜎𝑚𝑚1 and 𝜎𝜎𝑚𝑚2 are standard deviations of accurate and noisy data 

sets, respectively. The intermediate harmonized noisy measure was  
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(7)     𝑚𝑚2′ = 𝑎𝑎 × 𝑚𝑚2 

where 𝑚𝑚2′is the intermediate harmonized noisy measure  based on the calculated slope 

parameter 

In the second step, an intercept parameter was estimated to minimize the 

difference in average values between accurate measure and intermediate harmonized 

noisy measure (𝑚𝑚2′). The difference between the averages can be represented as  

(8)     𝑏𝑏 = 𝑚𝑚1���� − 𝑚𝑚2′����� 

while the harmonized noisy measure is 

(9)     𝑚𝑚2∗ = 𝑏𝑏 + 𝑚𝑚2′ 

where 𝑚𝑚1���� is the mean of the expensive measures, 𝑚𝑚2′����� is the mean of the intermediate 

harmonized noisy measures, and the parameter 𝑏𝑏 is the bias correction. 

 

Data and Methods 

This study evaluated the performance of the Bayesian Kriging method and the 

harmonization process, using 30 sets of simulated data. A limited number of replications 

was used due to the program being computer intensive and that 30 proved adequate to 

demonstrate the differences. The simulated data sets assume a producer collects soil pH 

information from fields using two different sampling methods. Each data set simulated a 

field assuming a 1-hectare square field (100 m ×100 m) with 100 square plots (10 m × 

10 m). True soil pH values for each square plot were generated randomly from a 

multivariate normal distribution given mean soil pH of 5.4. The spatial covariance matrix 

was the simultaneous autoregressive covariance matrix with spatial correlation parameter, 

𝜌𝜌, of 0.8 and precision parameter, 𝜏𝜏, of 3. Even though the average soil pH in Oklahoma 
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is 6.4 (Zhang & McCray 2018), this study used a lower soil pH of 5.4 so that applying 

lime is relevant.  

 The low-cost measure was assumed to have a bias of 0.52 and a slope of 0.6. 

Random errors were from a normal distribution with zero mean and a standard deviation 

of 0.82. These assumptions are the reported on-the-go sensor’s mean error, slope, and 

mean absolute error from Schirrmann et al. (2011). Schirrmann et al. (2011) considered 

laboratory results as true values that can be compared with the measured values of an on-

the-go sensor. The random errors of accurate measurements were drawn from a normal 

distribution with zero mean and a standard deviation of 0.10. Moreover, this study 

included sensitivity analysis for the performance of the Bayesian Kriging method and the 

harmonization process by different error sizes of accurate measurements.  

The producer was also assumed to select the center point of the field as much as 

possible when using expensive measurements. For example, when 1% of expensive 

measurement was used, the location in row 5 and column 5 point was selected for the 

expensive measurement. Also, locations in row 3 and column 7 and in row 7 and column 

3 points were selected when 2% of expensive measurements were used. This study did 

not investigate the optimal location for the accurate measurements. 

 The prior of average soil pH (𝑚𝑚𝑎𝑎) was given as 𝑁𝑁(5.68, 2) based on Schirrmann 

et al. (2011). For the Kriging parameters, the priors of precision (𝜏𝜏) parameter and spatial 

correlation (𝜌𝜌) were 𝑁𝑁(3, 2) and 𝑈𝑈(0, 1), respectively. The priors of Kriging parameters 

used weakly informative priors. The standard deviation of precision parameter prior was 

given arbitrarily to reduce the probability that the parameter would become negative.1 

                                                           
1 The lower bounds for the spatial correlation, precision, sensitivity change of low-cost measurement, and 
standard deviation of low-cost measurement error parameters were set to zero, meaning non-negativity 
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The bias (𝛼𝛼) and sensitivity change (𝛽𝛽) of low-cost measurement were drawn from 

𝑁𝑁(0, 1) and 𝑁𝑁(0.6, 0.2), respectively. The prior for the standard deviation of low-cost 

measurement error (𝜎𝜎2) parameter was a truncated normal distribution with a mean of 0 

and a standard deviation of 1. The standard deviation of expensive measurement error 

(𝜎𝜎1) parameter was 0.1. In practice, more accurate priors might be possible, but these are 

used here to avoid biasing results in favor of Bayesian Kriging. 

Convergence of all parameters was checked using trace plots and all posterior 

densities converged. All 20,000 samples from the posterior distribution were used in 

calculating the expectation.2 The joint posterior distribution from Bayesian Kriging was 

used to determine expected net present value. The optimal percentage of expensive 

measurements was obtained using a grid search by calculating the net present value for 

each percentage and selecting the one with the highest net present value. 

 

Expected Net Present Value Maximization 

Wheat production was used to parameterize the simulation model. Wheat producers are 

assumed to use soil sampling and on-the-go soil pH sensors to collect soil pH information 

on their fields. Soil sampling represents the expensive accurate measurements while 

values from on-the-go soil pH sensors represent low-cost, noisy measurements. The 

aglime used to correct low soil pH is often applied every five to six years due to high 

application costs. Correcting the low soil pH would not generate economic benefits from 

                                                           
constraints. The upper bounds were also set to reduce the program execution time for convergence. This 
study set the upper bounds to be large enough, with spatial correlation parameter set to 1 and the other 
three to 10. For the bias parameter, lower and upper bounds set to ±10. 
2 For the Bayesian Kriging estimation, 10,000 iterations each for four MCMC chains were used. The first 
5,000 observations were burned in, so 5,000 iterations of each chain, total 20,000 samples were used.  
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a single year of farming (Cho et al. 2020). Therefore, the expected NPV with a 5-year 

planning horizon was used. The wheat producer’s expected NPV objective function is 

(10)     max
A

 𝐸𝐸(𝑁𝑁𝑀𝑀𝑀𝑀A) 

𝑠𝑠. 𝑡𝑡.  A ∈ [0,0.1] 

𝑁𝑁𝑀𝑀𝑀𝑀A =
∑ ∑ 𝑅𝑅𝑡𝑡(𝑀𝑀𝑠𝑠A)

(1 + 𝑑𝑑)𝑡𝑡
5
𝑡𝑡=1 − 𝑟𝑟𝐿𝐿 ∙ 𝐿𝐿𝐿𝐿𝑚𝑚𝐿𝐿(𝑀𝑀𝑠𝑠A)100

𝑠𝑠=1

100
− 𝑐𝑐1 ∙ 𝐴𝐴 − 𝑐𝑐2 

𝑅𝑅𝑡𝑡(𝑀𝑀𝑠𝑠A) = 𝑝𝑝𝑤𝑤 ∙ 𝑦𝑦(𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠𝑡𝑡) − 𝑟𝑟𝑁𝑁 ∙ 𝑁𝑁 

where A represents percentage of expensive measurements from 0% to 10%, 𝑁𝑁𝑀𝑀𝑀𝑀A is the 

average of NPV, 𝑀𝑀𝑠𝑠A is a soil pH of location 𝑠𝑠, 𝑅𝑅𝑡𝑡(𝑀𝑀𝑠𝑠A) is a function of return by the 

estimated values in year 𝑡𝑡, 𝑑𝑑 is the discount rate, which was specified to be 3.25%, the 

interest rate for farm ownership loans reported by the USDA Farm Service Agency 

(2021), 𝑐𝑐1 is the $10 per sample cost of soil pH lab testing, 𝑐𝑐2 is the $2 per sample cost of 

on-the-go soil pH sensor, 𝑁𝑁 is the amount of nitrogen fertilizer application that is 140 

kilograms per hectare following the fertilizer recommendation corresponding to YG that 

is 4035 kilograms per hectare (Zhang et al. 2017), and 𝑝𝑝𝑤𝑤, 𝑟𝑟𝐿𝐿, and 𝑟𝑟𝑁𝑁 are the price of 

wheat, lime, and nitrogen fertilizer that are $0.20 per kilogram, $48 per metric ton based 

on 100% effective calcium carbonate equivalent, and $0.85 per kilogram.  

This study used a target pH of 6.5 (Cho et al. 2020). Dynamics of soil pH changes 

were also considered to calculate the losses from imprecise soil pH information. Wheat 

grain yields are reduced if the target pH was not reached due to imprecise information. In 

addition, applying too much aglime could result in unnecessary extra costs. Following 

Mills et al. (2020), the equations for applying aglime for each location and dynamics of 

soil pH by year are  
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(11)    𝐿𝐿𝐿𝐿𝑚𝑚𝐿𝐿(𝑀𝑀𝑠𝑠) = 24.1584 − 4.0618 ∙ 𝑀𝑀𝑠𝑠 

(12) 𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡 = �𝑝𝑝𝑝𝑝𝑠𝑠0 − 0.0051 ∙ 𝑝𝑝𝑝𝑝𝑠𝑠0 ∙ 𝐿𝐿𝐿𝐿𝑚𝑚𝐿𝐿(𝑀𝑀𝑠𝑠) + 0.2270 ∙ 𝐿𝐿𝐿𝐿𝑚𝑚𝐿𝐿(𝑀𝑀𝑠𝑠) 𝑡𝑡 = 1
𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡−1 + 0.0001 ∙ 𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡−1 ∙ 𝑁𝑁 − 0.00037 ∙ 𝑁𝑁 𝑡𝑡 = 2, 3, … ,5 

where 𝐿𝐿𝐿𝐿𝑚𝑚𝐿𝐿(𝑀𝑀𝑠𝑠) is the function of the amount of aglime application according to the 

measured soil pH by each location, 𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡 is the soil pH in year 𝑡𝑡, and 𝑝𝑝𝑝𝑝𝑠𝑠0 is an initial 

soil pH that is a true value of soil pH from the simulation.  

 Soil pH was assumed as the only limiting factor for wheat grain yields in order to 

consider the economic benefit of the accuracy of soil pH mapping. The function of wheat 

grain yield by soil pH follows the relative yield equation of figure 7-b by Lollato et al. 

(2019). The equation of wheat grain’s yield response to pH is the relative wheat grain 

yield times yield goal. Following Lollato et al. (2019)’s relative grain yield equation, the 

wheat yield function by each location’s soil pH is  

(13)   𝑦𝑦(𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡) =  YG ∙ min(−61.3 + 62.3 ∙ 𝐿𝐿−1.24𝑝𝑝𝑝𝑝𝑠𝑠𝑠𝑠 , 1) 

where 𝑦𝑦(𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡) is a function of wheat grain yield for soil pH in year 𝑡𝑡, and YG is the yield 

potential of 4035 kilograms per hectare. 

 

Results 

Bayesian Kriging and Harmonization Process 

In addition to the true values, the procedure produced three types of measures: the 

observed value, the Bayesian Kriging measure, and the harmonization measure. The 

mean absolute errors for each of these three measures are depicted in Figure 1.1. As 

expected, the error decreased with all measures as more expensive measures were taken. 

Both Bayesian Kriging and harmonization work well and had less mean absolute errors 

than observed soil pH. Bayesian Kriging had consistently lower error than harmonization 
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(Figure 1.1). The paired samples t-test used with the null hypothesis of equal mean 

absolute errors for Bayesian Kriging and harmonized pH. The null hypothesis was 

rejected, which the mean of the differences was -0.153 as well as statistically significant 

(α=0.05, p <.001) (Table 1.1).   

Bayesian Kriging reduced more variance than harmonization by using spatial 

information as well as smoothing the values. Moreover, the Bayesian Kriging 

performance improved as decreasing the error sizes of accurate measurements (Table 

1.1). When the error sizes of accurate measurements were 0.05 and 0.01, the means of the 

difference were -0.152 and -0.150, respectively. The mean differences of mean absolute 

errors for Bayesian Kriging and harmonized pH were also larger as increasing error size 

of accurate measurements. When the error size of accurate measurements was 0.50, the 

mean of the difference was -0.194 as well as rejecting the null hypothesis.  

Table 1.2 shows the results of mean absolute errors with a larger variance for the 

expensive measure and with lower spatial correlation, which are precision parameter of 1 

and spatial correlation parameter 0.6, as the sensitivity analysis. Still, Bayesian Kriging 

had lower error than harmonization, which the mean of the differences was -0.128. 

However, the overall mean absolute errors of Bayesian Kriging and harmonization were 

increased because of more noise. 

Soil pH maps of estimated soil pH values when 2% expensive measurements were 

used are shown in Figure 1.2. These are from the first Monte Carlo replication. The 

observed soil pH and harmonized pH maps are noisy. The overall harmonized pH values 

were lower than the observed soil pH since the bias was corrected. However, there is no 

spatial smoothing, so the noisy patterns of the observed pH map still remained on the 
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harmonized pH map. The Bayesian Kriging pH map is smoother than the true soil pH, 

which is to be expected since an optimal forecast will have smaller variance than the 

variable being forecasted.  

 

Optimal Choices 

The average of expected NPV with a 5-year planning horizon is maximized when 2% of 

expensive measurements were used (Table 1.3).3 The expected NPV is $2999 per hectare 

when the observed soil pH values were used without smoothing or harmonization. The 

maximum expected NPV is $3236 per hectare with estimated soil pH values by Bayesian 

Kriging. The estimated soil pH values by Bayesian Kriging also led to $40 per hectare 

more NPV than soil pH values by harmonization (Table 1.3). Bayesian Kriging always 

had higher NPV than harmonization, regardless of the percentage of expensive 

measurements (Figure 1.3).  

 One caution is that the optimal number of expensive measurements depends 

heavily on the size of the area. With a larger area there is more benefit to accurate 

measurements and thus more accurate measurements would be optimal. For example, a 

sensitivity analysis was conducted assuming a 100-hectare square field with other 

parameters held constant. In this example, the percentage of expensive measurements for 

maximum NPV was 10%, the maximum considered.  

 

 

 

                                                           
3 The percentage of expensive measurements for maximum NPV remained at 2% regardless of error sizes 
of accurate measurements, although the dollars had changed. 
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Conclusions  

Bayesian Kriging was proposed as a way to combine information from two different 

measures. Bayesian Kriging smooths parameter estimates across space. Harmonization, 

an alternative method, can correct bias, but noise remains.  

Using wheat fields as an example, this study simulated combining soil pH 

information from soil lab samples and on-the-go soil pH sensors. Bayesian Kriging had 

$40 per hectare more NPV using 2% of expensive measurements. The advantage of 

Bayesian Kriging, in this example, is that there is information in the nearby samples that 

can be used to reduce error and produce lime applications that avoid yield losses from 

low pH.  

 There are many other situations where Bayesian Kriging can be used to combine 

information from multiple sources. Bayesian Kriging can produce a soil phosphorus map 

to guide precision phosphorus application. As another example, Bayesian Kriging can 

generate perennial crop monitoring maps for grape vines and sugarcane quality 

monitoring maps. It can help predict when the crop will ripen, which can increase profits 

by determining the appropriate harvest time for growers. However, further research is 

needed in that the speed of the program is still slow to be applied in practice when fast 

decision-making may be needed. 
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Table 1.1. The Mean Absolute Errors between True Values and Observed, Bayesian Kriging, and Harmonized Soil pH 
Values by the Percentage of Expensive Measurements by Different Error Sizes of Expensive Measurements 
Expensive 
Measurements (%) Observed  Bayesian Kriging  Harmonization Process 

Error Size  0.50 0.10 0.05 0.01  0.50 0.10 0.05 0.01  0.50 0.10 0.05 0.01 
1 1.609 1.606 1.606 1.606  0.820 0.740 0.733 0.727  1.119 0.999 0.989 0.981 
2 1.597 1.591 1.590 1.589  0.667 0.597 0.593 0.592  0.884 0.809 0.807 0.805 
3 1.584 1.574 1.573 1.572  0.644 0.594 0.591 0.587  0.848 0.751 0.746 0.744 
4 1.575 1.562 1.560 1.559  0.633 0.562 0.555 0.549  0.786 0.690 0.684 0.681 
5 1.561 1.546 1.544 1.542  0.618 0.555 0.548 0.544  0.785 0.678 0.671 0.666 
6 1.549 1.530 1.527 1.525  0.620 0.547 0.539 0.535  0.795 0.675 0.667 0.662 
7 1.537 1.514 1.511 1.509  0.581 0.517 0.511 0.509  0.761 0.647 0.639 0.634 
8 1.525 1.499 1.496 1.494  0.565 0.503 0.498 0.496  0.748 0.635 0.627 0.622 
9 1.513 1.485 1.481 1.478  0.548 0.493 0.489 0.488  0.728 0.621 0.614 0.609 

10 1.503 1.470 1.466 1.463  0.545 0.481 0.476 0.474  0.723 0.612 0.604 0.599 
Note. The mean absolute errors from 30 simulation data sets were averaged. 
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Table 1.2. The Mean Absolute Errors between True Values and Observed, Bayesian Kriging, and Harmonized Soil pH 
Values by the Percentage of Expensive Measurements by Different Kriging Parameters of Expensive Measurements 
Expensive 
Measurements (%) Observed  Bayesian Kriging  Harmonization Process 

Plot Size (hectare)a 0.01 1   0.01 1   0.01 1  
1 1.606 1.617  0.740 1.074  0.999 1.302 
2 1.591 1.601  0.597 0.875  0.809 1.087 
3 1.574 1.585  0.594 0.854  0.751 1.000 
4 1.562 1.571  0.562 0.804  0.690 0.910 
5 1.546 1.555  0.555 0.791  0.678 0.884 
6 1.529 1.539  0.547 0.765  0.675 0.873 
7 1.514 1.524  0.517 0.728  0.647 0.827 
8 1.499 1.509  0.503 0.711  0.635 0.810 
9 1.485 1.494  0.493 0.692  0.621 0.787 

10 1.470 1.480  0.481 0.679  0.612 0.770 
Note. The mean absolute errors from 30 simulation data sets were averaged.  
aA field with 100 plots, each 10 m x 10 m plot, was simulated with spatial correlation parameter of 0.8 and precision parameter 
of 3. For each hectare plot, a 100-hectare field was simulated with spatial correlation parameter of 0.6 and precision parameter 
of 1. 
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Table 1.3: The Average of Expected Net Present Value with a 5-Year Planning 
Horizon by the Percentage of Expensive Measurements 
Expensive  
Measurements (%) Observed Bayesian  

Kriging 
Harmonization  

Process 
0 2999 - -  (1429) 
1 2985 3210 3162 
 (1650) (10082) (18266) 

2 2978 3236 3196 
 (1684) (6998) (8139) 

3 2971 3222 3196 
 (1669) (6453) (7925) 

4 2964 3218 3193 
 (1733) (6370) (7829) 

5 2957 3206 3186 
 (1718) (6030) (7399) 

6 2950 3197 3176 
 (1756) (5989) (7574) 

7 2943 3187 3168 
 (1791) (5502) (6675) 

8 2936 3179 3160 
 (1797) (5215) (6698) 

9 2929 3172 3154 
 (1794) (5208) (6585) 

10 2922 3162 3144 
 (1803) (5280) (6629) 

Notes. The unit is dollars per hectare ($/ha). The net present values from 30 simulation 
data sets were averaged. Numbers in parentheses are the variance of the 30 net present 
values. 
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Figure 1.1. The mean absolute errors between true values and observed, Bayesian 
Kriging, and harmonized soil pH values by the percentage of expensive measurements 
Note. The mean absolute errors from 30 simulation data sets were averaged. 

 

 

 

 

 

 



25 

 

Figure 1.2. The soil pH maps with true, observed, Bayesian Kriging, and harmonization 
process with a 2% of expensive measurements 



26 

CHAPTER II 
 

A BAYESIAN APPROACH FOR SUPPLEMENTING YIELD RESPONSE DATA 

WITH LIMITED TREATMENT DESIGN 

Abstract 

Absent check plots, near-zero treatment rates, or non-limiting treatment levels, it may be 

difficult to estimate accurately yield response functions. This paper proposes a Bayesian 

multilevel modeling approach to incorporate response parameters from published studies 

into crop yield response estimation procedures when non-limiting or limiting treatments 

are omitted in agronomic experiments. A proof-of-concept simulation supplements an 

empirical application. The simulation investigates the small sample properties of the 

proposed procedure. The empirical example uses field trial data for a maize planter 

experiment under different nitrogen (N) fertilizer rates. The planter trial compared 

mechanical planting methods to methods used in developing countries with limited 

access to mechanized planter technology. Some experiments had no check plots and all 

experiments lacked non-limiting fertilizer rates. Linear and quadratic response functions 

with plateaus are used in the simulation study and empirical application. Monte Carlo 

results suggest that estimates were closest to true parameter values when priors for 

optimal N rates from published sources were used. The empirical application found that 

the Oklahoma State University (OSU) hand planter produced higher yields than 

mechanical or wooden stick planters did. 
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Introduction 

Researchers sometimes have limited input in the design of yield response experiments. In 

some cases, agronomic data might lack limiting and non-limiting treatment levels (or 

‘end-point’ treatments), or certain treatments may be omitted from the experimental 

design. There are several reasons why treatments might be omitted from a field trial. 

Yield outcomes at 0-fertilizer rates, or at other treatment levels or combinations, may not 

be central to the primary research question. Researchers may already know the most 

likely outcomes for check plot yields. Farmers conducting on-farm trials may be reluctant 

to incur yield losses when no inputs are applied. Cost is another reason why some 

treatments might be limited. Regardless, if estimating crop yield response to inputs is an 

important research objective, then under-replication of limiting or non-limiting treatment 

levels may compromise statistical power and make it difficult to identify important 

parameters. For example, if non-limiting levels are limited or absent, then finding 

biologically or economically optimal input levels may be problematic. If empirically 

determined parameters are required for modeling crop growth, then absence of 

counterfactual yield outcomes makes yield forecasting difficult and compromise 

predictive accuracy. Further, under-replication of end-point treatments may produce 

imprecise parameter estimates and mislead treatment comparisons. 

Omission of end-point or other important input levels may also complicate the 

economic analysis of crop response to inputs. For example, economic analysis of crop 

yield response to chemical or fertilizer inputs requires knowing the marginal physical 

product (MPP) of a crop’s response to the input. MPP is the physical amount yield 

changes when an additional unit of input is applied (Heady and Dillon, 1961). The MPP 
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is also the slope of a regression line in statistical models. Estimation of the MPP requires 

knowing how crops perform at limiting and non-limiting input levels. Researchers 

typically implement the counterfactual case of limiting inputs on yield by randomly 

assigning 0-rate replications, or ‘check plots’, to plots, strips, or blocks. For non-limiting 

cases, fertilizers or chemicals are applied at rates above an amount believed to maximize 

yield. 

This paper proposes a Bayesian multilevel modeling approach to estimate crop 

response to inputs using data from agronomic trials with limited or no end-point 

treatments. Yield response intercepts and optimal N rates for maize from published 

articles are used to formulate ‘hyper-priors’ (McElreath, 2020, discussed below) for yield 

response parameters when an agronomic experiment excludes limiting or non-limiting 

treatments. The proof-of-concept Monte Carlo simulation examines the small-sample 

properties of the proposed procedure. An empirical application supplements the Monte 

Carlo simulation. The empirical example uses data from a N-fertilizer/maize planter 

experiment. Check plots were unassigned to some treatments. No experiments included 

non-limiting N rates. 

 

Data 

The empirical example uses data from a four-year maize field trial (2013, 2014, 2017 and 

2018) conducted by the Plant and Soil Science Department of Oklahoma State 

University. The objective of the experiment was to compare the effects of N fertilization 

on maize planted with three methods. The planting methods were an Oklahoma State 

University (OSU) hand planter (HP), a long wooden stick planter (FP), and a John Deere 
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2-row MaxEmerge planter (JD). Smallholder farmers in developing countries use FP. HP 

is a planting method designed to address the FP’s shortcomings with respect to N 

management (Oyebiyi et al., 2019). The JD treatment is the reference technology to 

which the other planters are compared. Field experiments were conducted at Efaw and 

Lake Carl Blackwell (LCB) in Stillwater, Oklahoma. The soil classifications of the 

research plots were an Ashport silty loam (fine silty, mixed, super active, thermic 

fluventic Haplustolls) at Efaw and a port silt loam (fine silty, mixed, thermic cumulic 

Haplustolls soil) at LCB. 

The experimental design was a randomized complete block with nine treatments, 

including a 0-N rate check plot for some tillage methods, plus four combinations of 

seeding and N application methods. The two levels of N fertilizer were 30 and 60 kg N 

ha-1 for all treatments. Treatments were replicated three times for each planter. The 

highest rate of 60 kg N ha-1 is likely non-limiting, as the average optimal N fertilizer rate 

in Oklahoma is 139 kg N ha-1 (Miller et al., 2017). After planting, urea fertilizer (46-0-0) 

was side-dressed into the soil beside each plant with the HP method. Urea fertilizer was 

placed on the soil surface on plots planted with the FP method. The JD treatment applied 

a surface band on top of the ground after planting. Two types of N fertilizer were applied 

in the JD treatments; urea (46-0-0) and UAN (28-0-0). Check plots were planted with the 

JD method. The HP and FP treatments did not receive 0-N rates. Additional details of the 

experiment are summarized in Oyebiyi et al. (2019) and Fornah et al. (2020).  

In sum, there were four treatment combinations: 1) HP, 2) FP, 3) JD (the 

reference treatment), and 4) JD with UAN fertilizer (JDUAN). When, the highest average 

maize yields were observed at 60 kg ha-1 of N under the HP treatment. These yields were 
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13.29 Mg ha-1 for LCB (in 2013) and 8.75 Mg ha-1 at Efaw (in 2018). The lowest average 

maize yields were 2.39 Mg ha-1 at LCB (in 2017) under FP and 3.46 Mg ha-1 at Efaw (in 

2018) with FP when 30 kg ha-1 of N was applied (Table 2.1).  

Intercepts, optimal N fertilizer rates, and their respective standard errors were 

collected from 12 studies on maize yield response to N estimated with linear response 

with plateau (LRP) models (Schmidt et al., 2002; Jaynes, 2011; Shroyer et al., 2011; 

Gentry et al., 2013; Crozier et al., 2014; Halvorson & Bartolo, 2014; Rajkovich et al., 

2015; Kablan et al., 2017; Miller et al., 2017; Alotaibi et al., 2018; Ruark et al., 2018; 

Cho et al., 2020) (Table 2.2). The average of the maize yield intercepts was 6.12 Mg ha-1, 

with minimum and maximum values of 2.78 Mg ha-1 and 9.33 Mg ha-1. The standard 

errors for the intercepts reported in these studies ranged between 0.51 Mg ha-1 and 4.05 

Mg ha-1. The average of the optimal N estimates was 130 kg N ha-1, with a range of 84 kg 

N ha-1 to 195 kg N ha-1. The range of the standard errors for optimal N estimates was 

18.24 and 68.64 Mg ha-1. The external data are used to formulate hyper-priors for 

intercepts, MPP, and optimal N rates. Discussion of the methodology used to incorporate 

these data into Bayesian estimation procedures follows. 

 

Methods and Procedures 

Two response models are considered. The first is a linear response with plateau (LRP). 

The second is a quadratic response with plateau (QRP). The LRP and QRP models have 

broad theoretical and practical appeal in the agronomic literature and the economics of 

crop response to inputs (Lambert & Choi, 2022). The LRP and QRP are based on von 

Liebig’s law of the minimum, which states that plant growth occurs at a constant rate 
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with nutrients contributing to its production in fixed proportions until some factor 

becomes limiting (Blackman, 1905; Swanson, 1963).  

The LRP models yield response to an input as: 

(1)                       𝑦𝑦 = min(𝛽𝛽0 + 𝛽𝛽1 ∙ 𝑋𝑋, 𝑌𝑌�) 

where 𝑦𝑦 is maize yield, 𝛽𝛽0 is an intercept, 𝛽𝛽1 is the MPP of plant growth with respect to a 

1-unit increase in input 𝑋𝑋 (for example, nitrogen), and 𝑌𝑌� is a yield plateau. The plateau is 

the highest obtainable yield at the biologically optimal nitrogen rate of 𝑋𝑋∗ = 𝑌𝑌�−𝛽𝛽0
𝛽𝛽1

. The 

parameter 𝑋𝑋∗ is also called a “join-point” because it links the linear response to N to the 

plateau.   

 The QRP model is similar to the LRP but it imposes diminishing returns to an 

input up to the yield plateau. Yield increases at a decreasing rate as more input is applied 

up to 𝑋𝑋∗, past which yield plateaus at 𝑌𝑌�. The QRP model is: 

(2)                       𝑦𝑦 = � 𝛽𝛽0 + 𝛽𝛽1 ∙ 𝑋𝑋 + 𝛽𝛽2 ∙ 𝑋𝑋2 if 𝑋𝑋 < 𝑋𝑋∗ 
𝑌𝑌� if 𝑋𝑋 ≥ 𝑋𝑋∗

    

where 𝑋𝑋∗ is an amount required to achieve the plateau yield. The parameter 𝑋𝑋∗ is also the 

join-point of the QRP model, and links the slope of the response curve to the plateau, that 

is, 𝑌𝑌� = 𝛽𝛽0 + 𝛽𝛽1 ∙ 𝑋𝑋∗ + 𝛽𝛽2 ∙ 𝑋𝑋∗
2.  

 Both the LRP and QRP require imposing continuity at the join point. This 

constraint is required to identify the model’s parameters. As such, estimation of the LRP 

and QRP requires using nonlinear least squares (Lambert & Cho, 2022), maximum 

likelihood (Ouedraogo & Brorsen, 2018; Dhakal et al. 2019), or Bayesian procedures 

(Moeltner et al., 2021). The approach taken here uses a Bayesian estimation procedure 

because it is easy to incorporate prior information into the response models. 
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LRP and QRP Estimation with Priors from External Sources 

Bayesian estimation of the LRP and QRP generates posterior distributions of the maize 

yield parameters including intercepts, MPP, plateaus, and optimal input rates (Moeltner et 

al., 2021). Point estimates for the response parameters are calculated from the means, 

medians, or modes of posterior distributions. 

Cho et al. (2020) used a Bayesian procedure to estimate an LRP for maize 

response to nitrogen. That study used priors to delineate lower and upper bounds on 

response parameters, which imposed theoretical restrictions with respect to parameter 

signs. For example, MPP and intercept terms are expected to be positive, and the 

intercept cannot exceed the plateau. The priors used in Cho et al. were from the 

univariate statistics calculated with the experimental data, from which the minimum, 

maximum, and average of yields were used as priors to bound parameter signs. Normally, 

priors should be external to a study and not a function of the data used to estimate 

parameters. The approach suggested here bypasses this issue by formulating hyper-priors 

from external response data using a model averaging approach suggested by Gelman et 

al. (2013) (discussion follows).  

First, maize response to an input is assumed to be normally distributed with a 

mean response of 𝜇𝜇𝑖𝑖 and a standard deviation of 𝜎𝜎. The response model is: 

(3)                                       𝑦𝑦𝑖𝑖|𝜇𝜇𝑖𝑖,𝜎𝜎 ~ Normal(𝜇𝜇𝑖𝑖,𝜎𝜎),   𝐿𝐿 = 1, … , 𝑆𝑆  

where 𝑦𝑦𝑖𝑖 is maize yield from the 𝐿𝐿th plot and 𝑆𝑆 is the number of observations. The yield 

plateau (𝑌𝑌�) of equations (1) and (2) are reformulated as a function of an optimal level of 

input 𝑋𝑋 (for example, applied N fertilizer) and the intercept and MPP response 

parameters, 𝛽𝛽0 and 𝛽𝛽1. Formulated this way, the LRP’s mean response function is: 
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(4)                                               𝜇𝜇𝑖𝑖 = min(𝛽𝛽0 + 𝛽𝛽1 ∙ 𝑋𝑋𝑖𝑖,𝛽𝛽0 + 𝛽𝛽1 ∙ 𝑋𝑋∗) 

where 𝑋𝑋𝑖𝑖 is applied N fertilizer and 𝑋𝑋∗ is the amount of nitrogen required to achieve a 

biologically optimal yield (the plateau).  

The QRP requires a constraint to impose differentiability at the join-point. The 

constraint results from the first order condition of the QRP, which involves identifying 

the join-point as 𝑋𝑋∗ = − 𝛽𝛽1
2∙𝛽𝛽2

. The mean response function for the QRP is: 

(5)                                   𝜇𝜇𝑖𝑖 = �
𝛽𝛽0 + 𝛽𝛽1 ∙ 𝑋𝑋𝑖𝑖 −

𝛽𝛽1
2𝑋𝑋∗

∙ 𝑋𝑋𝑖𝑖2 if 𝑋𝑋𝑖𝑖 < 𝑋𝑋∗ 

𝛽𝛽0 + 𝛽𝛽1
2
∙ 𝑋𝑋∗ if 𝑋𝑋𝑖𝑖 ≥ 𝑋𝑋∗

   . 

The prior for 𝜎𝜎 is the half-Cauchy distribution with a lower bound of zero and a 

standard deviation of 10 for the LRP and QRP models. The half-Cauchy is conducive to 

modeling residual outliers because of its relatively fat tails. The prior for the MPP is the 

normal distribution centered on zero and truncated above zero, with a standard deviation 

of 100. Set this way, the MPP priors are relatively diffuse and weakly informative with 

no strong assumption about the response parameter’s location except that it is positive. A 

key contribution of the formulation in (4) and (5) is that it is written in terms of the 

optimal level of nitrogen, which will likely be easier to solicit its distribution from 

producers than trying to solicit the distribution of other plateau parameters like 

McFadden et al.’s (2018) specification would require. 

 

Model Averaged Data from Published Sources and Priors 

Bayesian estimation procedures provide an efficient method for combining prior 

information on a parameter’s distribution with empirical data (Gelman et al., 2013). The 

influence of priors on the shape and location of a parameter’s posterior distribution is 
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greater when data are sparse, limited in some level of a treatment, or lack sufficient 

variability. Conversely, when the sample data adequately represents a population’s 

variability, the information contained in a data set “overwhelms” the prior in terms of 

influence on the posterior distribution.  

One approach to incorporate priors from published sources is to use directly the 

reported averages of point-estimates. An alternative approach is to leverage the variation 

in parameters reported in published sources to make hyper-priors for the intercepts and 

join-points. Gelman et al. (2013)’s one-way multilevel normal random effects model 

(MNRE) procedure, which is used here, incorporates data from external sources into 

estimation procedures as modeled-averaged hyper-priors. The MNRE model is similar to 

procedures that treat missing observations as unknown parameters (McElreath, 2020).  

Consider, for example, the intercepts (𝛽𝛽0𝑗𝑗), optimal N-fertilizer rates (𝑋𝑋𝑗𝑗∗), and 

their respective standard errors (𝜎𝜎𝛽𝛽0𝑗𝑗 ,𝜎𝜎𝑋𝑋𝑗𝑗∗) reported in 𝑗𝑗 = 1, …, 12 published articles. 

The averages and standard deviations of point estimates found in these external sources 

are treated as observed data. These means and variances of these external data are 

estimated simultaneously with the response function LRP and QRP (Table 2.2). The 

weighted averages of the external data are subsequently used as hyper-priors for the 

response parameters’ distributions. Figure 2.1 summarizes the combined MNRE and 

LRP/QRP yield response models, their parameters, hyper-priors, and prior distributions. 

The distributions characterizing the modeled averages and the standard deviations 

of the external response data, 𝛽𝛽0𝑗𝑗 (published intercepts) and 𝑋𝑋𝑗𝑗∗ (published optimal N 

rates), are (respectively): 

(6)                                        𝛽𝛽0𝑗𝑗|𝜃𝜃𝛽𝛽0𝑗𝑗 ,𝜎𝜎𝛽𝛽0𝑗𝑗~Normal �𝜃𝜃𝛽𝛽0𝑗𝑗 ,𝜎𝜎𝛽𝛽0𝑗𝑗� 
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(7)                                        𝑋𝑋𝑗𝑗∗|𝜃𝜃𝑋𝑋𝑗𝑗∗ ,𝜎𝜎𝑋𝑋𝑗𝑗∗  ~Normal �𝜃𝜃𝑋𝑋𝑗𝑗∗ ,𝜎𝜎𝑋𝑋𝑗𝑗∗� 

where 𝜎𝜎𝛽𝛽0𝑗𝑗 and 𝜎𝜎𝑋𝑋𝑗𝑗∗ are standard errors from the published data, and the unknown 

parameters 𝜃𝜃𝛽𝛽0𝑗𝑗and 𝜃𝜃𝑋𝑋𝑗𝑗∗ are linear functions:  

(8)                                                𝜃𝜃𝛽𝛽0𝑗𝑗 = �̅�𝛽0 + 𝜎𝜎𝛽𝛽�0 ∙ 𝑧𝑧1𝑗𝑗 

(9)                                                𝜃𝜃𝑋𝑋𝑗𝑗∗ = 𝑋𝑋�∗ + 𝜎𝜎𝑋𝑋�∗ ∙ 𝑧𝑧2𝑗𝑗, 

The (�̅�𝛽0,𝑋𝑋�∗) parameters are also unknown modeled averages of the published intercept 

and join-point data, (𝜎𝜎𝛽𝛽�0 ,𝜎𝜎𝑋𝑋�∗) are modeled standard deviations of these data, and 

(𝑧𝑧1𝑗𝑗 , 𝑧𝑧2𝑗𝑗) are standardized normal random variables. The priors for the dispersion 

parameters, 𝜎𝜎𝛽𝛽�0 and 𝜎𝜎𝑋𝑋�∗, are the half-Cauchy distribution, with a lower bound of zero and 

a standard deviation of 10. The prior for the modeled averages, �̅�𝛽0 and 𝑋𝑋�∗, are normal, 

centered on zero with standard deviations of 100. This prior is relatively diffuse, meaning 

that its location over zero is uncertain. 

The parameters �̅�𝛽0, 𝑋𝑋�∗, 𝜎𝜎𝛽𝛽�0 and 𝜎𝜎𝑋𝑋�∗ enter into the prior distributions of the 

response parameters (equations 4 and 5) as hyper-priors (Figure 2.1):  

(10)                                                 𝛽𝛽0~Normal��̅�𝛽0,𝜎𝜎𝛽𝛽�0� 

(11)        𝑋𝑋∗~Normal(𝑋𝑋�∗,𝜎𝜎𝑋𝑋�∗). 

The joint-point is calculated as the ratio of the difference between the plateau and 

intercept divided by the MPP. The normal distribution centered on zero with a standard 

deviation of 100 is used for the prior of slope parameter. 
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Estimation 

Posterior distributions of the response parameters in equations 4, 5, 8 and 9 are recovered 

using R-Stan’s Hamiltonian Monte Carlo No U-turn Sampler (HMC-NUTS) (Hoffman 

and Gelman, 2014). The HMC-NUTS procedure exhibits superior convergence properties 

and typically requires shorter chains to achieve convergence compared to the Gibbs or 

other standard Metropolis-Hastings samplers (Vehtari et al., 2021). Four chains were run 

in parallel with a warm-up of 5,000 iterations and an additional 5,000 iterations to 

generate joint posterior distributions for the MNRE and yield response parameters. Chain 

convergence was verified using Gelman and Rubin’s (1992) diagnostic, 𝑅𝑅�. 𝑅𝑅�-statistics 

approaching one indicate convergence for a given parameter. 

 

Small-Sample Properties of the Proposed Estimator 

A Monte Carlo (MC) experiment evaluates the small-sample properties of the proposed 

procedure. Maize yield response parameters from Boyer et al. (2013) are used to generate 

yields with a ‘true’, known model. Boyer et al. (2013)’s intercept, slope, and plateau 

parameters are 2.58, 0.042, and 9.44 Mg ha-1, respectively. The standard deviation for 

yield was 2.23 Mg ha-1.  

The small-sample properties are investigated at sample sizes 𝑁𝑁 = 75 and 750. 

Three levels of applied nitrogen are 0, 123, and 247 N ha-1. This means, for each 

treatment and sample size, there are 25 (250) treatment replications for 𝑁𝑁 = 75 (750). The 

proposed MNRE method is compared to a Bayesian procedure that estimates yield 

response with limited treatment design data (no 0-N rates) but without hyper-priors. Data 

for the competing, model-averaging approach for hyper-priors, also excludes all 0-N 
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treatments. Thus, 𝑁𝑁 = 50 (500) for the response model with hyper-priors when check 

plots are deleted from the simulated data.  

The MC steps follow. For sample size 𝑁𝑁 = (75, 750) and for MC replication 𝑀𝑀 = 

1, 2, …, 500, the data generating process (d.g.p.) is: 

a. Draw random errors for maize yield, 𝐿𝐿𝑖𝑖∗~Normal(0,1), 𝐿𝐿 = 1,…, 𝑁𝑁; 

b. Simulate 𝑁𝑁 maize yields, 𝑦𝑦𝑖𝑖∗ = min(2.58 + 0.042 ∙ 𝑋𝑋𝑖𝑖, 9.44) + 2.23 ∙ 𝐿𝐿𝑖𝑖∗;  

c. Estimate (�̂�𝛽0𝑚𝑚, �̂�𝛽1𝑚𝑚,𝑌𝑌��𝑚𝑚) using the full sample and no hyper-priors; 

d. Remove 0-N rate check plots from the simulated data set of size 𝑁𝑁;  

e. Re-estimate (𝛽𝛽�0𝑚𝑚,𝛽𝛽�1𝑚𝑚,𝑌𝑌��𝑚𝑚) with 𝑦𝑦𝑖𝑖(−0)
∗ ,𝑋𝑋𝑖𝑖(−0), using four different hyper-prior 

scenarios (discussed below), where “-0” indicates removal of 0-N rates from the 

data; 

f. Return to (1) if 𝑚𝑚 < 𝑀𝑀. 

Sensitivity of the proposed procedure is evaluated by varying assumptions on the 

hyper-priors. The four different scenarios include: 1) no hyper-priors (‘reference 

scenario’), 2) both intercept and optimal N hyper-priors (‘B0 + NSTAR’), 3) intercept 

hyper-prior only (‘B0’), and 4) optimal N hyper-priors (‘NSTAR’). The reference 

scenario (the ‘control’) is the case where no hyper-priors are used but 0-N rate treatments 

are omitted. This case is compared with the other scenarios that used hyper-priors. For 

the case when no hyper-priors are used, the priors for the intercept and optimal N rate are 

the normal distribution with a mean of zero and a standard deviation of 100. 

Bias and mean squared error (MSE) of the estimators are calculated to compare 

performance to a ‘reference’ case (that is, no hyper-priors and no 0-N check plots), and 
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under the other assumptions for the hyper-priors. For each response parameter (𝛉𝛉 = 

intercept, slope, and plateau parameters), average bias is calculated as  

(12)                                     𝛉𝛉𝐵𝐵𝑖𝑖𝑎𝑎𝑠𝑠 = 1
𝑀𝑀
∑ �𝛉𝛉𝑚𝑚 − 𝛉𝛉��𝑀𝑀
𝑚𝑚=1               

and MSE is:              

(13)                                      𝛉𝛉𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑀𝑀
∑ �𝛉𝛉𝑚𝑚 − 𝛉𝛉��

2𝑀𝑀
𝑚𝑚=1             

The bias and MSE are expected to decrease as sample size increases, but there are no 

expectations on how the different hyper-prior scenarios will affect bias and MSE. It is 

expected that MSE and bias will be lower for the response models that use hyper-priors 

even though the priors used have an optimal N level considerably below that of the 

simulated data.  

 

Empirical Application 

The LRP and QRP models developed above are used to compare the effects of N 

fertilization across three planting methods with under-replication of limiting and non-

limiting fertilizer rates. Four different external prior scenarios are considered for each 

model: 1) no hyper-priors, 2) both intercept and optimal N hyper-priors (‘B0 + NSTAR’), 

3) intercept hyper-priors (‘B0’), and 4) optimal N rate hyper-priors (‘NTSAR’). The 

estimated parameters of the intercept, MPP, and optimal N are compared across 

treatments.  

Under-replicated data also complicates treatment comparisons. Normally, an 

ANOVA-type analysis would be conducted to statistically compare the intercept, slope, 

optimal N rates, and plateaus of each treatment. For example, a reference treatment 

would normally be selected and dummy variables for the other three treatment’s 
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intercepts, slopes, and plateaus would enter the response equations as intercept or slope 

shifters. Formulated this way, the dummy variables are the average difference from the 

mean of the reference category. For some treatments, under-replication precludes the 

identification of intercept and MPP terms, which rules out the use of conventional 

ANOVA procedures.  

Two alternative procedures are used here to address this complication. Both 

approaches pool the response data to identify treatment effects by including dummy 

variables. The first procedure compares planting method yields by introducing dummy 

variables, as follows: 

(14)   𝑦𝑦𝑖𝑖𝑖𝑖 = 𝛿𝛿0𝑖𝑖 ∙ min(𝛽𝛽0 + 𝛽𝛽1 ∙ 𝑋𝑋𝑖𝑖𝑖𝑖,𝛽𝛽0 + 𝛽𝛽1 ∙ 𝑋𝑋∗) + 𝜀𝜀𝑖𝑖𝑖𝑖 

where 𝛿𝛿0𝑖𝑖 is parameter for treatment 𝑘𝑘. The reference treatment is the JD planter, and its 

dummy parameter is restricted to be one. Written this way, the intercept, slope, optimal N 

rate, and plateau are common to all treatments, but the dummy parameters measure the 

proportional shift in yield caused by a treatment. The null hypothesis is that the product 

of the treatment dummies with the intercept, MPP, and optimal fertilizer rate estimates 

are not different from 𝛽𝛽0, 𝛽𝛽1, or 𝑋𝑋∗. 

The second procedure compares the effect of N treatments on MPP for each 

planter system. The augmented response model is: 

(15)  𝑦𝑦𝑖𝑖𝑖𝑖 = min(𝛽𝛽0 + 𝛽𝛽1 ∙ 𝑋𝑋𝑖𝑖𝑖𝑖 + ∑ 𝛿𝛿1𝑖𝑖 ∙ 𝑋𝑋𝑖𝑖𝑖𝑖3
𝑖𝑖=1 ,𝛽𝛽0 + 𝛽𝛽1 ∙ 𝑋𝑋∗) + 𝜀𝜀𝑖𝑖𝑖𝑖 

where 𝛿𝛿1𝑖𝑖 is dummy parameter for treatment 𝑘𝑘’s MPP. The optimal N rate, intercept, and 

plateau are common to all treatments, but the MPP is allowed to vary according to the 

planting method. The JD planter is also the reference technology for this comparison. The 
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priors for the dummy variables are the normal distribution with a mean of zero and a 

standard deviation of 10. 

 

Results 

Small Sample Properties of the Hyper-Prior Estimator 

Yield plateau, MPP, and intercept estimates, their bias, and MSE are reported in Table 

2.3. Relevant comparisons are the results estimated with hyper-priors and ‘no 0-N rates’ 

to the results estimated without hyper-priors and ‘no 0-N rates’ (cells shaded gray in 

Table 2.3). Bias and MSE for all parameters decreased as sample size increased, as 

expected.  

Bias and MSE for the intercept terms estimated using only the intercept hyper-

prior (B0) were larger than the bias and MSE of the intercept of the reference model (no 

hyper-priors) for both small (𝑁𝑁 = 50) and large (𝑁𝑁 = 500) samples. This result occurs 

because the intercept term reported in Boyer et al. was lower than the average of the 

intercept terms from prior studies (Table 2.2) used to formulate a hyper-prior. The same 

result obtains when the B0 + NSTAR hyper-priors are used. Bias and MSE for the 

estimator that only used the NSTAR hyper-prior was lowest relative to the reference 

group and the other hyper-prior scenarios. This finding suggests that, for this specific 

study and absent 0-N rates, a join-point hyper-prior provides enough information to 

identify the intercepts and MPP. If a different intercept value that was closer to the 

average of the published intercepts was used for the MC d.g.p., then the bias and MSE of 

the B0 and B0 + NSTAR hyper-prior scenarios would likely be lower.  
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A slightly different pattern was evident for the MPP estimates (Table 2.3). 

Compared to the reference group’s bias and MSE, estimates found using the B0, B0 + 

NSTAR, and NSTAR hyper-priors were lower. MSE was substantially lower by at least a 

factor of 92 (= 0.013/0.000141). For the sample size of 𝑁𝑁 = 50, the most precise MPP 

was estimated with the NSTAR hyper-prior, which had a bias of 0.003 and a MSE of 

0.0000847. The result for the MPP was similar at 𝑁𝑁 = 500. 

Bias and MSE for the plateaus estimated with the B0 hyper-prior were 

comparatively larger than the reference group when the sample size was 𝑁𝑁 = 50 (Table 

2.3). The B0 + NSTAR and NSATR hyper-prior models performed better than the 

reference model at the smaller sample size in terms of MSE and bias. Plateau bias and 

MSE estimated with B0. B0 + NSTAR, and NSTAR were all lower than the reference 

bias and MSE when 𝑁𝑁 = 500. 

The small sample study highlights some important caveats of this procedure. 

First, success of the procedure, which is measured in terms of bias and MSE, depends on 

the external data used to develop hyper-priors and how well these priors approximate 

intercepts, MPP, and optimal N rates recovered from the experimental data. For example, 

Boyer et al.’s intercept used in the MC d.g.p. was lower than the average of the intercepts 

retrieved from published studies. Researchers are generally discouraged from using 

statistics from data as priors. However, if the raw yield average at 0-N is considerably 

lower than the intercept terms borrowed from external sources, some adjustments are 

needed. One adjustment would be to eliminate studies that qualitatively differed in some 

way from the experimental conditions. Second, it is unlikely there is a ‘one-size-fits-all’ 

hyper-prior that improves model fit when data are limited treatment design. The luxury 
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an MC study affords in terms of choosing a best-performing estimator based on bias and 

MSE cannot be extended to empirical analyses. Rather, post-estimation information 

criterion such as Akaike’s Information Criterion, the widely applicable information 

criterion (WAIC, McElreath, 2020), or some other model performance index would be 

required to select which hyper-priors contributed to the best-fitting model. 

 

Empirical Application 

Estimated yield response curves and the raw data are plotted in Figure 2.2. The ‘no 

hyper-priors’ model had steeper MPP estimates than those estimated with hyper-priors. 

The MPP estimates with the3 B0 hyper-prior also had steeper MPPs. Those two hyper-

prior models, which were with no hyper-priors and B0 hyper-prior, over-estimated the 

yield plateau, as evidenced by their location above the raw data. The NSTAR or B0 + 

NSTAR hyper-prior models fit better the raw data. The highest level of N fertilizer (60 kg 

ha-1) used in this experimental data was not enough to reach the join point connecting 𝑁𝑁* 

and the plateaus. The 𝑁𝑁* estimated with the NSTAR and NSTAR + B0 hyper-priors are 

closer to the average N fertilizer rate for [suppressed for review], which is 139 kg N ha-1 

(Miller et al., 2017).  

Table 2.4 reports the maize yield response parameters of all treatments. The best 

fitting models were the ones with the smallest WAIC (Watanabe, 2013), which were the 

QRP model with the B0 + NSTAR hyper priors. The HP intercept estimates is 5.29 Mg 

ha-1, and the intercept estimates for HP and FP were 5.29 Mg ha-1 and 4.55 Mg ha-1, 

respectively. The JD and JDUAN treatments used the same planter, but their intercept 

estimates are different, at 5.12 Mg ha-1 and 5.23 Mg ha-1, respectively. Estimated optimal 
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N rates were similar regardless of the treatments, ranging from 120 kg N ha-1 to 123 kg N 

ha-1. For the plateau estimates, HP and JD are 9.14 Mg ha-1 and 9.35 Mg ha-1, 

respectively, which were higher than the two other treatments. The FP and JDUAN 

plateau estimates are 6.82 Mg ha-1 and 6.89 Mg ha-1, respectively.  

The B0 + NSTAR hyper priors worked best for each data set so that the B0 + 

NSTAR hyper-priors were used for pooled-model. The slope and plateau estimates were 

compared to identify treatment effects on Figure 2.-3 treatment were on Table 2.5. The 

differences with 90% of confidence intervals by each treatment and JD depicted for each 

proportional shift and the MPP parameters on Figure 2.3. The HP had significantly 

positive proportion shift than JD, which would have 17% more maize yields (Table 2.5). 

The other two treatments, FP (Treatment 2; Broadcast planted with a long wooden stick 

planter) and JDUAN (Treatment 4; Dribble surface band with UAN using John Deere 2-

row MaxEmerge planter), were slightly lower than JD, but they were not statistically 

lower (Figure 2.3).  From the differences of slope dummy parameters, HP had most 

steeper MPP, which could have more 0.0158 Mg ha-1 of maize yield by additional 1 kg of 

N fertilizer per hectare (Table 2.5). Moreover, the MPP of FP had statistically 0.0142 Mg 

ha-1 of maize yield lower than the MPP of JD. Therefore, this study showed HP have 

yielded more maize yields than other FP, JD, and JDUAN treatments. That might be 

because HP could lead efficient N fertilization as preventing loss of N from ammonia 

volatilization as reducing N fertilizer’s exposure to direct heat (Dhillon et al., 2017). At 

the same time, FP had lowest N use efficiency, which has lower MPP than other 

treatments. 
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Conclusions 

This paper introduced a Bayesian multilevel modeling approach for estimating yield 

response to inputs when data was limited in treatment levels. The procedure incorporates 

data from previous study on maize yield response to inputs. The proof-of-concept 

exercise used data from a plot trial comparing maize response to N under different 

planting methods. Two of the treatments planted with a John Deere 2-row MaxEmerge 

planter received three levels of N, with one of those levels a check plot of 0 applied N. 

The remaining two treatments with [suppressed for review] hand planter and stick planter 

did not receive 0-N check plots. The 0-N check plots are important for identifying yield 

intercepts. These N levels were not enough to identify linear/quadratic response plateau 

yields. Absence of these treatment levels is it challenging to estimate accurately MPP and 

yield plateaus. 

The problem of limited information was addressed by applying a Bayesian 

estimation procedure that infilled missing information with hyper-priors based on maize 

intercept and optimal N rates reported in the literature. An important caveat is the quality, 

or relevance, of the priors used to condition yield response estimates. For example, if 

priors taken from experiments located in regions with different weather, soil types, or 

other factors affecting growing conditions are applied to experiments conducted in a 

region with substantially different growing conditions, then estimates may lead to 

inadequate model fits of the data and lead to erroneous treatment comparisons. The onus 

of judiciously choosing which priors are appropriate for a given experiment lies on the 

researcher, and the empirical example and the Monte Carlo study both reinforce this 

conclusion. As demonstrated by the Monte Carlo study, the ‘true’ parameter values were 
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outside the range of priors retrieved from published articles, and some combinations of 

priors performed better for small and large samples. The empirical example is also 

demonstrative of this qualification, showing that while intercept, slope, and plateaus were 

estimated in all scenarios, the performance of some priors was superior in terms of model 

fit.  

The proposed method also has implications for producers who wish to use their 

production data to conduct on-farm trials. For example, a producer could use multiple 

years of their production data to conduct using their typical input application rates and 

forgo implementing 0-fertilizer check plots. Likewise, a producer could use supplemental 

data from other farmers or experiments that applied nonlimiting input rates, thereby 

avoiding the extra costs of applying rates that exceed their usual nutrient management 

plans. The proposed approach could also be useful in the design of medium- to long-term 

experiments. Findings from previous trials could be used to fine tune input rates, given 

target yield goals. 
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Table 2.1. Summary of Average Maize Yields by Treatment, Year and Location 

      Treatment 

   1 2 3 4 

  Nitrogen 
rate HP FP JD JDUAN 

Year Place  (kgha-1) (N=48) (N=48) (N=72) (N=72) 
2013 Efaw 0 - - 4.40 4.40 

  30 7.04 5.89 5.81 5.74 
  60 7.75 6.59 6.65 6.16 
 LCB 0 - - 8.73 8.73 
  30 9.96 9.40 9.56 9.22 
  60 13.29 11.69 11.96 9.24 

2014 Efaw 0 - - 6.15 6.15 
  30 7.90 6.11 7.07 7.73 
  60 8.75 6.57 8.00 6.66 
 LCB 0 - - 6.91 6.91 
  30 7.76 5.33 7.33 8.73 
  60 8.74 5.54 8.35 6.16 

2017 Efaw 0 - - 3.35 3.35 
  30 4.73 2.88 2.76 2.70 
  60 4.63 3.24 3.04 4.07 
 LCB 0 - - 3.90 3.90 
  30 5.25 2.39 4.36 4.73 
  60 5.23 2.46 4.68 4.66 

2018 Efaw 0 - - 2.95 2.95 
  30 5.29 3.46 3.97 4.29 
  60 4.95 3.77 5.12 4.58 
 LCB 0 - - 5.84 5.84 
  30 7.98 7.08 7.55 6.61 

    60 11.17 8.65 8.73 7.12 
Notes: The unit is metric tons per hectare (Mg ha-1). “HP” and “FP” were planted with a 
hand planter or a long wooden stick, respectively. “JD” and “JDUAN” were planted with 
a mechanical planter. “JDUAN” applied urea ammonium nitrate fertilizer. “LCB” and 
“Efaw” are the experimental field.
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Table 2.2. Intercepts and Optimal N rates from Previous Studies 
  Intercept  Optimal N Fertilizer 

Author Year Estimate Standard 
Error 

 Estimate Standard 
Error 

Schmidt et al.  2002 8.71 2.33  87.43 26.30 
Jaynes 2011 5.34 0.56  145.24 18.67 
Shroyer et al. 2011 6.74 1.52  88.09 22.66 
Gentry et al. 2013 5.33 0.94  192.77 52.50 
Croizer et al. 2014 9.33 4.05  126.67 53.93 
Halvorson and 
Bartolo 2014 5.65 0.44  274.00 21.00 

Rajkovich et al. 2015 5.73 2.75  135.90 33.01 
Kablan et al. 2017 5.37 2.01  195.32 29.89 
Miller et al. 2017 6.48 2.90  139.00 68.64 
Alotaibi et al. 2018 5.18 1.49  127.08 18.24 
Ruark et al.  2018 6.63 3.25  126.50 30.50 
Cho et al. 2020 2.78 0.51  83.75 27.66 
Average  6.12   130.00  

Notes: Units are metric ton per hectare (Mg ha-1). Units of the optimal N fertilizer rates 
are in (kg ha-1) 
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Table 2.3. Monte Carlo Simulation Results for Small Samples Properties by External Prior Scenarios 
 Missing  Intercept  Slope  Plateau 

N 0-N 
rate? 

Priors 
used? Estimate   Bias MSE  Estimate Bias MSE  Estimate Bias MSE 

75 No No 2.893 0.133 0.184  0.121 0.079 0.014  15.642 5.532 78.853 
50a YES No 3.879 1.119 3.342  0.127 0.085 0.013  16.387 6.277 91.506 
 YES B0 4.916 2.156 9.541  0.119 0.077 0.012  17.250 7.140 117.590 
 YES NSTAR 3.458 0.698 1.545  0.045 0.003 8.47E-05  11.087 0.977 2.731 
 YES BOTH 4.724 1.964 7.919  0.035 -0.007 1.41E-04  10.935 0.825 2.095 
750 No No 2.876 0.116 0.044  0.041 -0.001 3.31E-06  10.111 0.001 0.020 
500a YES No 2.999 0.239 0.152  0.040 -0.002 4.02E-06  10.508 0.398 0.337 
 YES B0 4.508 1.748 6.135  0.028 -0.014 1.97E-04  10.425 0.315 0.226 
 YES NSTAR 2.950 0.190 0.122  0.041 -0.001 3.07E-06  10.444 0.334 0.243 
 YES BOTH 4.416 1.656 5.516  0.029 -0.013 1.76E-04  10.368 0.258 0.159 

Notes: Units are metric tons per hectare (Mg ha-1). “MSE” stands for mean squared error. “B0 + NSTAR” means both intercept 
and optimal N hyper-priors were used. “B0” and “NSTAR” are scenarios that used intercept hyper-priors only and optimal N 
hyper-priors only, respectively. The base comparisons are missing N rate = YES and prior used = NO (shaded cells). The 0-
check plot is omitted (i.e., 25 and 250 observations dropped for N = 75 and 750, respectively). The gray-shaded cells are 
compared with the other scenarios where hyper-priors were used and 0-N rates omitted.
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Table 2.4. Maize Yield Response to Nitrogen with Best Fitting Model and Hyper-Prior Scenarios  
   Hyper-priors    Standard Effective  

Treatment N Model used? WAIC  Estimate Deviation Sample Size 𝑅𝑅� 
1 HP 48 QRP B0 + NSTAR 241.80 Intercept 5.29 1.00 4735 1.00 
     Slope 0.06 0.03 4104 1.00 
     X* 121.28 17.19 2557 1.00 
     Quadratic -2.74E-04 1.71E-04 1992 1.00 
     Plateau 9.10 0.96 6102 1.00 
2 FP 48 QRP B0 + NSTAR 240.90 Intercept 4.55 0.88 4397 1.00 
     Slope 0.04 0.02 4261 1.00 
     X* 121.81 16.68 3914 1.00 
     Quadratic -1.60E-04 1.72E-04 2154 1.00 
     Plateau 6.80 0.83 6519 1.00 
3 JD 72 QRP B0 + NSTAR 343.50 Intercept 5.12 0.45 6901 1.00 
     Slope 0.04 0.02 5918 1.00 
     X* 122.67 16.44 4920 1.00 
     Quadratic -1.69E-04 7.35E-05 5162 1.00 
     Plateau 7.59 0.72 6603 1.00 
4 JDUAN 72 QRP B0 + NSTAR 320.50 Intercept 5.23 0.38 6647 1.00 
     Slope 0.03 0.04 533 1.00 
     X* 120.34 20.56 1201 1.00 
     Quadratic -1.12E-03 2.42E-02 974 1.00 
     Plateau 6.69 0.56 6684 1.00 

Notes: Units are metric tons per hectare (Mg ha-1). “MSE” stands for mean squared error. The best fitting hyper-priors were 
selected having smallest WAIC (Watanabe, 2013). “B0 + NSTAR” means both intercept and optimal N hyper-priors were 
used. “QRP” stands for the quadratic response plateau functions. “Effective Sample Size” and “𝑹𝑹�” is the efficiency and 
convergence diagnostics for the posterior chains.  
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Table 2.5. Results of the Maize Yield Response to Nitrogen with Both Intercept and 
Optimal N Hyper-Priors (N=216) 

Procedure    Estimate Standard 
Deviation 90% of C. I. 

Effective 
Sample 

Size 
𝑅𝑅� 

Whole Intercept 5.14 0.33  4631 1.00 
 Slope 0.03 0.01  4399 1.00 
 X* 122.11 15.73  5325 1.00 
 Plateau 8.80     

Dummy HP 1.17 0.09 [1.02, 1.32] 6651 1.00 
 FP 0.95 0.07 [0.84, 1.06] 6314 1.00 
 JD 1.00     
 JDUAN 0.90 0.08 [0.77, 1.03] 7796 1.00 

Log Posterior 
Likelihood -514.53     

Slope Intercept 5.14 0.33  4631 1.00 
 Slope 0.03 0.01  4399 1.00 
 X* 122.11 15.73  5325 1.00 
 Plateau 8.80     

Dummy HP 1.58E-
02 9.05E-03 

[-0.0009,-
0.0307] 9433 1.00 

 FP -1.76E-
02 9.64E-03 

[-0.0335,-
0.0017] 10260 1.00 

 JD 0.00   7761 1.00 

 JDUAN -1.42E-
02 9.99E-03 

[-0.0306, 
0.0022] 7761 1.00 

Log Posterior 
Likelihood -512.50  

   

Notes: The unit is a metric ton per hectare (Mg ha-1).“X*” stands for the optimal N, and 
the unit of N is a kilograms per hectare (kg ha-1). “LRP” and “QRP” stand for the linear 
and quadratic response plateau functions, respectively. “Effective Sample Size” and “𝑹𝑹�” 
is the efficiency and convergence diagnostics for the posterior chains.  
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Figure 2.1. Summary of the multilevel normal random effects model (MNRE) and yield 
response models  
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Figure 2.2. Plots of observed maize yields and estimated yield response 
 
Notes. “LRP” and “QRP” stand for linear/quadratic response plateau functions. “Both” 
means using the both “B0” and “NSTAR” priors that are intercept and optimal nitrogen 
priors. “HP” and “FP” stand for the treatments that were planted by the hand planter and 
the long wooden stick, respectively, as well as having no check plots. “JD” and 
“JDUAN” were planted by a mechanical planter, and “JDUAN” is a treatment that 
applied urea ammonium nitrate fertilizer. 
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Figure 2.3. Plots of differences between treatments for whole model and slope parameter 
 

Notes. The reference treatment is “JD” planted by a mechanical planter. “HP” and “FP” 
stand for the treatments that were planted by the hand planter and the long wooden stick, 
respectively, as well as having no check plots. “JDUAN” was planted by a mechanical 
planter, but applied urea ammonium nitrate fertilizer unlike “JD”. The 90% of confidence 
intervals are depicted. The unit is a metric ton per hectare (Mg ha-1) for the proportional 
shift in yield and the unit of slope is a kilograms per hectare (kg ha-1). 
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CHAPTER III 
 

SHOULD PHOSPHORUS FERTILIZER RECOMMENDATIONS FOR WHEAT 

PRODUCTION BE BASED ON SUFFICIENCY OR ON BUILD-MAINTENANCE? 

Abstract 

There are two alternative approaches to managing soil phosphorus (P): sufficiency and 

build-maintenance. Sufficiency seeks to apply the minimum amount of P fertilizer that 

the crop needs in that year. At higher yield potential or intensive crop rotation, the crops 

consume more P than applied amounts of P fertilizer with a sufficiency approach. As the 

soil P level decreases due to higher crop removal, the expected crop yield decreases over 

time until an equilibrium is reached. The build-maintenance (BM) approach, however, 

seeks to build and (or) maintain the soil P level for crops so that P is not the limiting 

nutrient. However, the BM recommendation rate costs more in the short-term because it 

requires a higher rate than the sufficiency recommendation rate. The producer’s long-

term returns will differ depending on each approach. This study compares the expected 

net present values (NPV) of two alternative recommendation rates with three different 

yield potentials, which are 2690, 4035, and 5380 kilograms per hectare, under 4-, 8-, and 

20- year planning horizons. With a 20-year planning horizon, BM was always preferred. 

The sufficiency recommendation rates had higher NPV with the short 4-year planning 

horizon. 
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Introduction 

Phosphorus (P) is a vital nutrient for crop production and can be a yield limiting factor 

(Fageria & Baligar, 1999; Hinsinger, 2001; Takahashi & Anwar, 2007). Since P is an 

immobile nutrient with relatively little leaching by water, P not removed by the harvested 

crop is carried over to the next year (Sims et al., 2000; Kuo et al., 2005). Many soil 

testing labs (public university and commercial) offer P fertilizer recommendation rates 

based on one of the two alternative approaches to managing soil P. One approach is 

sufficiency that seeks to supply the least amount of P needed to achieve 90 to 95% of 

maximum yield (Leikam et al., 2003a). Since available P is utilized, a minimal amount of 

P fertilizer can be applied while satisfying crop uptake. High economic return in a given 

year can be achieved due to the P fertilizer cost savings (Leikam et al., 2003b). At higher 

yield potential, the equilibrium soil P level will fall, which requires more P fertilizer and 

provides reduced crop yields. In the long-term, it is not clear that sufficiency will have 

the highest economic returns. 

The other approach is build-maintenance that seeks to provide abundant nutrients 

to the soil so that P deficiency does not limit yield (Leikam et al., 1983; Wagar et al., 

1986). Build-maintenance recommends building soil P to a target level and maintaining it 

there. Since it is costly to build up to the target in a single year or two, it is usually 

recommended to reach the target over four to eight years. Once soil P level reaches the 

target soil P level, build-maintenance recommends applying P fertilizer at crop removal 

amounts to maintain the target soil P level. Build-maintenance recommends higher rates 

than the sufficiency approach until reaching the equilibrium soil P level. Build-

maintenance costs more than sufficiency in the short-term. On the other hand, the 
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equilibrium soil P level of sufficiency may have a P deficiency, which would result in 

differences in crop yields in the long-term. 

How best to choose between sufficiency and build maintenance? Two questions 

are raised for comparison of two approaches. Several studies showed both sufficiency 

and build-maintenance P recommendation rates have no perceptible crop yield difference 

in the same year (McCallister et al., 1987; Kaiser et al., 2005; Wortmann et al., 2009). On 

the other hand, Wagar et al. (1986) showed wheat grain yields increased over 5 years 

with build-maintenance recommendation rates. Corn yield with build-maintenance 

recommendation rates also increased 3.3% more than corn yield with sufficiency 

recommendation rates over 6 years (Wortmann et al., 2018). Hanzra (2021) found build-

maintenance recommendation rates built up to sufficient soil P level over 8 years, 

resulted in 12% more wheat grain yield than yield with the sufficiency recommendation 

rates.  

Many extension papers suggested producers could achieve 100% of yield 

potential when applying either sufficiency or build-maintenance P recommendation rate 

(Leikam et al., 2003b; Mallarino et al., 2013; Zhang et al., 2017). In practice, the 100 % 

of yield potential will not be guaranteed at low soil P level even if P fertilizer is applied 

(Dodd & Mallarino, 2005; Balemi & Negisho, 2012; Agegnehu et al., 2015). Agegnehu 

et al. (2015) also showed only 40% of relative wheat grain yield was achieved at low soil 

P level in the central Ethiopian highlands, despite the application of P fertilizer. There is 

still considerable uncertainty about crop yield response to P fertilizer under sufficiency 

and build-maintenance. 
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Ultimately, it is necessary to know the crop yield differences at the respective 

equilibrium soil P levels to properly compare the sufficiency and build-maintenance P 

recommendation rates. This is because both sufficiency and build-maintenance require 

similar amounts of P fertilizer at the respective equilibrium soil P levels, while their 

equilibrium levels are different. This study collects meta-data from previous literature to 

estimate the crop yield differences at the respective equilibrium soil P levels. The 

percentage of crop yield loss under the sufficiency approach is used for the different yield 

loss scenarios that can take into account uncertainty.   

According to Oklahoma agricultural soil test summary 2014-2017, 54% of 

sampled fields in Oklahoma were deficient in P and needed to be treated (Zhang & 

McCray, 2018). Oklahoma producers may want to know which P recommendation 

approach would be more profitable. The recommended approach could vary depending 

on their farm plan and field condition such as yield potential and current soil P level. This 

study aims to guide wheat producers in Oklahoma by comparing the net present value 

(NPV) of P recommendation with different approaches over varied time-period farm 

plans. This study considers three different factors of the farm plan: (i) time length of farm 

plan, (ii) soil P test level in beginning year, and (iii) wheat grain yield potential on the 

field. Each factor has three different levels; three time-periods, which are considered 4, 8, 

and 20 years, three soil P test levels in beginning year, which are 5, 15, and 25 Mehlich-3 

(M3) ppm, and three wheat grain yield potentials, which are 2690, 4035, and 5380 

kilograms per hectare. Ultimately, this study simulates 27 scenarios. The changes of soil 

P level over time are considered in the simulation. Due to uncertainty about the yield 

losses under the sufficiency approach, two different yield loss scenarios are considered.  
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Materials and Methods 

Sufficiency Recommendation Rate 

In the sufficiency approach, the recommendation rate is the minimum amount of P 

fertilizer to obtain 90-95% of the wheat yield potential at the soil test level of 15 M3 

ppm. Since this approach utilizes the available P in the soil to satisfy the wheat crop 

uptake, the recommendation rate is determined by the soil P test value only. Warren et al. 

(2017) assume that the P recommendation rate does not depend on the wheat yield 

potential unlike mobile nutrients such as nitrogen and sulfur. Oklahoma cooperative 

extension service by Oklahoma State University recommends different rates by the soil P 

test value (Macnack et al., 2017; Warren et al., 2017). Following Warren et al. (2017), the 

Oklahoma state sufficiency recommendation rate (kilograms of P2O5 per hectare) is   

(1)    OK State Sufficiecy Rate = max (90 − 3.23 ∙ 𝑆𝑆𝑆𝑆𝐿𝐿𝑆𝑆𝑀𝑀, 0)  

where 𝑆𝑆𝑆𝑆𝐿𝐿𝑆𝑆𝑀𝑀 is the soil P test value in M3 ppm. 

 Since high yields result in more P being removed with the crop, the equilibrium 

soil P level would be lowered at higher wheat yield potential. Likewise, the soil P level 

can keep increasing in low wheat yield potential fields if recommendation rates are only 

based on the soil P level. Kansas State University agricultural experiment station and 

Cooperative Extension Service offers the adjusted sufficiency recommendation rate 

depending on the wheat yield potential as well as soil P level (Leikam et al., 2003a; 

2003b). Following Leikam et al. (2003b), the Kansas state sufficiency recommendation 

rate (kilograms of P2O5 per hectare) is     

(2)  K State Sufficiecy Rate = max (52 + 0.47 ∙ YG − 2.20 ∙ 𝑆𝑆𝑆𝑆𝐿𝐿𝑆𝑆𝑀𝑀 − 0.02 ∙ YG ∙

𝑆𝑆𝑆𝑆𝐿𝐿𝑆𝑆𝑀𝑀, 0) 
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where YG is the wheat grain yield potential.  

 

Build- Maintenance Recommendation Rate 

Build-maintenance seeks to always meet the nutritional needs of wheat by maintaining 

rich P in the soil. The build-maintenance recommendation rate target to maintain a 

sufficient soil P level assumed to be 25 M3 ppm (Leikam et al., 2003b; Macnack et al., 

2017; Zhang et al., 2017). The recommendation rates depend on the initial soil P, 

planning years, and wheat yield potential. Initial soil P is used to calculate the total 

amount of P fertilizer required to reach 25 M3 ppm. The total required amounts of P 

fertilizer are usually too much for a single year, so that build-maintenance 

recommendation rates are recommended after dividing total amounts by planning years. 

In practice, the amounts of P fertilizer for wheat crop should also be applied, additionally. 

Since different amounts of P will be removed by actual wheat grain yields, the 

recommendation rates would differ by wheat yield potentials. If reaching 25 M3 ppm or 

over, the crop removal or less amounts of P fertilizer recommend to maintain the 25 M3 

ppm. The build-maintenance (BM) recommendation rate (kilograms of P2O5 per hectare) 

is 

(3)   Build − Maintenance Rate = (504−18∙𝑀𝑀𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆)
yr

+ P2O5 removal  

where yr is the build-up planning years that are four and eight years in this study, and 

wheat grain removes 0.008 kilograms of P2O5 per kilogram (Leikam et al., 2003b). In 

other words, wheat grain takes 22 and 32 kilograms of P2O5 when the yield potentials are 

2690, and 4035 kilograms per hectare, respectively. Table 3.2 shows the four 
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recommendation rates given the soil P level, which are Oklahoma and Kansas state 

sufficiency rates, and 4 and 8 years build-maintenance rates.  

 

Soil Phosphorus Level Changes 

Generally, the amount of P lost in the runoff is considered inconsequential (Hart et al., 

2004; Hussain et al., 2021). Nevertheless, in practice, there are many random effects. For 

example, sometimes, the soil P level increased even when no P fertilizer was applied on 

the field (McCallister et al., 1987). Agegnehu et al. (2015) found that a higher proportion 

of applied P fertilizer was accumulated at higher soil P levels. For simplicity, this study 

uses a deterministic simulation. This study also assumes that P loss is an immobile 

nutrients although P can be leached in sandy soils (Wyatt et al., 2019) and can be lost 

with soil erosion. Therefore, the remaining soil P level in the following year can be 

estimated based on the initial soil P level in a given year, the amount of fertilizer applied, 

and the amount removed with the crop. The soil P level in a following year is 

(4)     𝑆𝑆𝑆𝑆𝐿𝐿𝑆𝑆𝑀𝑀𝑡𝑡+1 = 𝑆𝑆𝑆𝑆𝐿𝐿𝑆𝑆𝑀𝑀𝑡𝑡 + 𝑅𝑅𝑘𝑘−0.008∙𝑌𝑌𝑠𝑠
19

 

where 𝑆𝑆𝑆𝑆𝐿𝐿𝑆𝑆𝑀𝑀𝑡𝑡+1 is the M3 soil P test value following year 𝑡𝑡 + 1, and 𝑅𝑅𝑖𝑖 is the 

recommendation rates by recommendation rate approach 𝑘𝑘 (𝑘𝑘 = OKSuff, KSuff, BM4, 

and BM8), and 𝑌𝑌𝑡𝑡 is the expected wheat grain yield in year 𝑡𝑡. The 19 kilograms of P2O5 

per hectare is the amount to change one M3 ppm (Hergert & Shaver, 2009; LaBarge & 

Lindsey, 2012). 
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Wheat Grain Yield 

This study uses a relative wheat grain yield response function to determine expected 

wheat grain yield potential. The relative wheat grain yield is expressed as a percentage of 

how much wheat yield potential can be obtained depending on the soil P test level. The 

soil 25 M3 ppm is assumed a target level that can get 100% of wheat grain yield potential 

without P fertilizer application (Leikam et al., 2003b; Macnack et al., 2017). 

The crop yields of seven previous studies were collected to compare the crop 

yield differences at the respective equilibrium soil P levels (Table 3.1). The collected 

crop yields followed the criteria that the same amounts of P fertilizer were applied at 

respective equilibrium soil P levels, which are 10-20 ppm for sufficiency and over 25 

ppm for build-maintenance. The collected crops varied, which are corn, soybean and 

wheat, so that the differences in percentage were used. The differences in percentage 

were tested under the null hypothesis that there is no percentage difference between crop 

yields at respective equilibrium soil P levels. The meta-analysis showed a significant 

percentage of crop yield loss under the sufficiency approach, which averaged 10% less at 

equilibrium soil P level of sufficiency approach than at build-maintenance equilibrium 

soil P level (Table 3.1).   

Macnack et al. (2017) and Zhang et al. (2017) assumed that the expected wheat 

grain yield would be 100% of yield potential if P fertilizer is applied following the 

sufficiency recommendation rate. However, as shown in Table 3.1, it is questionable 

whether 100% of the relative wheat grain yield potential can be achieved when the soil P 

test level is very low. Vitosh et al. (1995) and Leikam et al. (2003b) recommended 

applying at least 25 to 50% of recommended rates as a banded P application at low soil P 
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test level. This is because the wheat crop has difficultly to take available nutrients from P 

deficient soils. In other words, the relative wheat grain yield could not achieve the 100% 

of yield potential at low soil P level, even if sufficient P fertilizer is applied (Agegnehu et 

al., 2015).  

Therefore, this study assumes the relative wheat grain yields differentiate 

depending on the soil P test level even if P fertilizer is applied according to the 

recommendation rate. Our summary of past research showed that equilibrium soil P level 

for sufficiency achieved 90% of maximum yield. Moreover, following Leikam et al. 

(2003b)’s statement that “sufficiency recommendation rate can achieve about 90 to 95 

percent of maximum yield”, two possible percentage of relative wheat grain yield 

response are assumed as the 90% and 95% at the soil P test level of 15 M3 ppm. The soil 

P test level of 15 M3 ppm is the equilibrium soil P level. That would be reached and 

maintained when using the sufficiency approach for a long time in the wheat field with 

yield potential of 2690 kilograms per hectare. It is also assumed that 100% of relative 

wheat grain yield response can be achieved at the soil P test level of 25 M3 ppm and the 

function is linear. Then, at 0 M3 ppm, the 75% and 87.5% of relative wheat grain yield 

response assume to be yielded even if recommended P rates is applied. The relative 

wheat grain yield response functions with P fertilizer application are  

(5)      𝑀𝑀𝑡𝑡 = 0.010 ∙ 𝑆𝑆𝑆𝑆𝐿𝐿𝑆𝑆𝑀𝑀𝑡𝑡 + 0.750,  

which is assumed relative wheat grain yield response is 90% at the soil P test level of 15 

M3 ppm, 

(6)      𝑀𝑀𝑡𝑡 = 0.005 ∙ 𝑆𝑆𝑆𝑆𝐿𝐿𝑆𝑆𝑀𝑀𝑡𝑡 + 0.875, 
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which is assumed relative wheat grain yield response is 95% at the soil P test level of 15 

M3 ppm, and the expected wheat grain yield is  

(7)       𝑌𝑌𝑡𝑡 = 𝑀𝑀𝑡𝑡 ∙ YG 

where 𝑀𝑀𝑡𝑡 is a function of relative wheat grain yield with P fertilizer application, and 𝑌𝑌𝑡𝑡 is 

the expected wheat grain yield response function. Figure 3.1 depicts the relative wheat 

grain yields by soil P test level with and without P fertilizer applied, and the relative 

wheat grain yield without P fertilizer applied is from Zhang et al. (2017).  

 

Net Present Value 

To compare the NPV of P recommendation with different approaches over varied time-

period farm plans, the objective function is 

(8)     max
𝑖𝑖 

 𝑁𝑁𝑀𝑀𝑀𝑀(𝑘𝑘, SoilP0, YG) = ∑ (𝜋𝜋𝑠𝑠(𝑖𝑖,SoilP0,YG)
(1+𝑖𝑖)𝑠𝑠

)𝑇𝑇
𝑡𝑡=0  

s. t.𝑘𝑘 =  {OKSuff, KSuff, BM4, and BM8}  

SoilP0 = {5, 15, 25} 

YG = {2690, 4035, 5380} 

𝜋𝜋𝑡𝑡(𝑘𝑘, SoilP0, YG) = 𝑝𝑝 ∙ 𝑌𝑌𝑡𝑡(𝑘𝑘,𝑀𝑀𝑡𝑡(SoilP𝑡𝑡), YG) − 𝑟𝑟 ∙ 𝑅𝑅𝑡𝑡(𝑘𝑘, SoilP0, YG) 

𝑅𝑅𝑡𝑡 = {
𝑅𝑅(𝑘𝑘, SoilP𝑡𝑡, YG) 𝑡𝑡 = 0, 4, 8, 12, 16
𝑅𝑅(𝑘𝑘, SoilP𝑡𝑡−1, YG) 𝑡𝑡 = others  

where NPV is the per hectare net present value of returns (in dollars) by different P 

recommendation approaches 𝑘𝑘 (𝑘𝑘 = OKSuff, KSuff, BM4, and BM8), soil P test levels in 

beginning year SoilP0, which are 5, 15, and 25 ppm, and wheat grain yield potential, YG, 

which are 2690, 4035, and 5380 kilograms per hectare, 𝑇𝑇 is the length of the decision 

maker’s planning horizon in years, which are 4-, 8-, and 20-year, 𝜋𝜋𝑡𝑡 is the profit function 
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of wheat production in year 𝑡𝑡, 𝑌𝑌𝑡𝑡 and 𝑅𝑅𝑡𝑡 are the functions of wheat yield and 

recommendation rate in year 𝑡𝑡, 𝑀𝑀𝑡𝑡 is the function of relative wheat grain yield in year 𝑡𝑡, 𝑝𝑝 

is the price of wheat, $0.17 per kilogram (USDA, 2021), 𝐿𝐿 is the discount rate, 3% as I 

nterest rate for farm ownership loan (USDA Farm Service Agency, 2021), and 𝑟𝑟 is the 

phosphorus fertilizer (P2O5) cost, $0.39 per kilogram (Farmers Coop Association of 

Snyder, 2021). This study assumed that wheat producer conducts soil test every four 

years, and that the P recommendation rate changed every four years. 

 

Results 

The changes of soil P level are shown in Figure 3.2. BM recommendation rates maintain 

stable soil P test level over 25 M3 ppm that 100% of relative wheat grain yield response 

can be achieved. On the other hand, the soil P level converged to an equilibrium level of 

soil P 8 or more years later, when Oklahoma State or Kansas State sufficiency 

recommendation rates were applied. The equilibrium levels of soil P with sufficiency 

approaches were located below 25 M3 ppm and differed by yield goal. Higher yield goal 

led to convergence to a lower level of soil P.  

 The NPV by different scenarios is reported in Tables III-3 and III-4. When 

relative wheat grain yield response was assumed to be 90% at the soil P test level of 15 

M3 ppm, Kansas State sufficiency recommendation rates were always the most profitable 

in the 4-year planning horizon. In the 4-year planning horizon, the build-maintenance 

recommendation rates with 8-yr building up plan had higher NPV than 4-yr building up 

plan by saving the costs of P fertilizer. However, the build-maintenance recommendation 

rates with 4-yr building up plan finishes the four years with a higher soil P than 
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sufficiency and build-maintenance with 8-yr building up plan. In the 4-year planning 

horizon, the P remaining in the soil is given zero economic value. In 8-year or 20-year 

planning horizons, build-maintenance recommendation rates had an economic advantage. 

Build-maintenance recommendation rates could take an advantage of 100% of yield 

potential. The build-maintenance rates with 4-yr building up plan had an economic 

advantage over 8-yr building up plan in 8-year or 20-year planning horizons. Since the 

build-maintenance rates with 4-yr building up plan could build to the soil P test level of 

25 M3 ppm in a shorter period than the 8-yr building up plan, it reached 100% of yield 

potential during more years. Only when the wheat field already had enough soil P and 

yield potential is 2690 kilograms per hectare, Kansas State sufficiency recommendation 

rates had higher NPV in the 8-year planning horizon.  

On the other hand, the results changed when the relative wheat grain yield 

response was assumed to be 95% at the soil P test level of 15 M3 ppm (Table 3.4). 

Kansas State sufficiency recommendation rates had highest NPV in 4-year and 8-year 

planning horizons. Under this assumption, Kansas State sufficiency recommendation 

rates were also most profitable in 2690 and 4035 kilograms yield potentials per hectare in 

8-year planning horizon. This is because the 5% increment of expected wheat grain yield 

was not enough to offset the higher P fertilizer costs over the 8 years. The costs of P 

fertilizers could be a main driving factor for the NPV in the short-term. In the long-term 

planning horizons, build maintenance recommendation rates are still most profitable due 

to having higher yields.   

When wheat price was assumed to be above average, which is $0.27 per kilogram, 

sufficiency approach was only most profitable in 4-year planning horizon (Tables 5-6). 
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Even in 4-year planning horizon, the build-maintenance recommendation rates had NPV 

approximately the same as the sufficiency recommendation rates when yield potentials 

are 5380 kilograms per hectare (Table 3.5). When 95% of yield potential was assumed at 

the soil P test level of 15 M3 ppm, the sufficiency approach still had higher NPV than 

build-maintenance approach in 4-year planning horizon (Table 3.6). The results 

consistently show that sufficiency is a short-run strategy that is only optimal due to 

giving no value to higher levels of soil P at the end of the planning period.  

 

Conclusion and Discussions 

This study compared NPV of P recommendation with different approaches over varied 

time-period farm plans. Two possible relative wheat grain yield responses were assumed 

to compare due to uncertainty about the respective crop yield response to P fertilizer 

under sufficiency and build-maintenance. In the short-term, sufficiency approach was 

more profitable than build-maintenance. Even though sufficiency approach had yield loss 

from insufficient soil P under most assumptions considered, the cost saving offset the 

yield losses in a 4-year planning horizon. On the other hand, in a 20-year planning 

horizon, build-maintenance recommendation rates were always more profitable than the 

sufficiency recommendation rates. With an 8-year planning horizon, conclusions varied 

depending on assumptions. Build-maintenance was favored with high crop prices, high 

yields, assuming only 90% of yield is possible at 15 M3 ppm.  

This study had some limitations related to the relative wheat grain yield response 

function. In practice, the relative wheat grain yield response function after applied P 

fertilizer could have positive curvature instead of being linear like this study assumed. 
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This is because the ability of wheat crop to take P nutrients might be better at higher soil 

P levels (Balemi & Negisho, 2012; Sucunza et al., 2018). Likewise, the effects of applied 

P fertilizers on wheat grain yield are not as effective as theory, especially at low soil P 

levels (Agegnehu et al., 2015).   Therefore, the assumption could be too optimistic that P 

fertilizers could achieve 75% or 87.5% of relative wheat grain yield at the soil P test level 

of 0 M3 ppm. If the relative wheat grain yield after P applied is lower than this study’s 

assumption, the build-maintenance recommendation rate could be more profitable than 

sufficiency recommendation rate even in the short-term.  

 

Appendix 

Experiments in Oklahoma 

Two long-term continuous winter wheat P fertilizer experiments have been conducted in 

Oklahoma: Magruder plots and experiment 502. The Magruder plots located in 

Stillwater, OK were initiated in 1892, where had Krikland Silt Loam (fine, mixed, 

thermic Uderic). Magruder plots have two different P level treatments, which applied 0 

kg and 34 kg P2O5 per hectare with 0 kg N per hectare for both. Experiment 502 located 

in Lahoma, OK was established in 1970. Soil at experiment 502 is classified as Grant Silt 

Loam (fine-silty, mixed, superactive, termic, Udic Arigiustoll).  Experiment 502 had 5 

different P level treatments, which are 0, 22, 45, 67, and 90 kg P2O5 per hectare. All 

treatments have the same rates of nitrogen and potassium fertilizers, which are 67 kg N 

per hectare and 67 kg K2O per hectare.  

These real experimental data from two different stations are likely to bring some 

research questions about the actual wheat grain yield response function corresponding to 
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applying P fertilizer following two different approaches as well as the changes of soil P 

level. In the Magruder plots, the 34 kg of P2O5 led to soil P level being maintained 

around soil 30 M3 ppm (Figure 3.3) so it is higher than the build-maintenance rate. On 

the other hand, when no P fertilizer was applied, the soil P level decreased to soil 5 M3 

ppm. The wheat grain yield was 11% less with no P applied than when P was applied. 

Even when nitrogen was constraining yield, P still mattered. It still provides some weak 

evidence to support this study’s assumption that 5 to 10% less wheat grain yield would be 

achieved at soil 15 M3 ppm than at over soil 25 M3 ppm.  

In Experiment 502 plots, even when no P fertilizer was applied and wheat crops 

were harvested over 40 years, the soil P level maintained or built-up (Figure 3.4). All 

Experiment 502 plots had over soil 40 M3 ppm, which is higher than the recommended 

target of 25 M3 ppm. The Experiment 502 plots illustrate the uncertainty surrounding P 

fertilizer recommendations. Based on current P recommendations, all treatments should 

have the same yield. Yet, there was a yield boost from the highest levels of P.
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Table 3.1. Crop Yields Differences at Equilibrium Soil P Level of Sufficiency (10-20 ppm) and Build Maintenance (> 25 
ppm) From Seven Previous Studies  
Author Year Region Duration Crop Sufficiency Build-Maintenance Difference 
McCallister et al.  1987 Nebraska 6-yr Wheat 2480 3230 23% 
Dodd & Mallarino 2005 Iowa 27-yr Corn 9814 10136 3% 

   27-yr Soybean 2854 2964 4% 
Kaiser et al. 2005 Iowa 4-yr Corn 10880 11930 9% 
Slaton et al. 2007 Arkansas 2-yr Wheat 2421 3161 23% 
Wortmann et al.  2009 Nebraska 3-yr Corn 14080 14120 0% 
Wortmann et al.  2018 Nebraska 6-yr Corn 10290 10450 2% 
Singh & Brar 2022 India 10-yr Corn 4807 5664 15% 
      5-yr Wheat 4264 4724 10% 
     Paired t-Test Mean 10% 
      DF 8 
      t-value 3.33 
      p-value <.0001 

 
Note. The unit of crop yield is kilograms per hectare (kg ha-1). The Sufficiency and Build-Maintenance applied same amounts 
of P fertilizer, at respective equilibrium soil P level (10-20 ppm for Sufficiency, and over 25 ppm for Build-Maintenance).
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Table 3.2. Phosphorus Fertilizer Rates for Wheat Production Given Soil P Test 
Levels 
Yield 
Potential 2690 kg ha-1  4035 kg ha-1 

Mehlich-3 
ppm OKSuff KSuff BM4 BM8  OKSuff KSuff BM4 BM8 

0 90 71 148 85  90 80 160 97 
1 85 67 143 83  85 76 155 94 
2 81 64 139 81  81 73 150 92 
3 76 62 133 78  76 69 144 90 
4 72 58 129 75  72 66 140 86 
5 67 55 123 73  67 63 134 84 
6 63 53 119 71  63 59 130 82 
7 59 49 113 68  59 56 124 80 
8 56 46 109 65  56 53 120 76 
9 52 44 103 63  52 49 114 74 

10 48 40 99 60  48 46 110 72 
11 45 37 93 58  45 43 104 69 
12 41 35 88 55  41 39 100 66 
13 38 31 83 53  38 36 94 64 
14 35 28 78 50  35 33 90 62 
15 33 26 73 48  33 29 84 59 
16 29 22 68 45  29 26 80 56 
17 27 19 63 43  27 22 74 54 
18 24 17 58 40  24 19 69 52 
19 21 13 53 38  21 16 64 49 
20 19 10 48 35  19 12 59 46 
21 17 8 43 32  17 9 54 44 
22 15 4 38 30  15 6 49 41 
23 13 1 32 28  13 2 44 39 
24 11 0 28 25  11 0 39 36 
25 10 0 22 22  10 0 34 34 
26 8 0 18 20  8 0 29 31 
27 7 0 12 18  7 0 24 29 
28 6 0 8 15  6 0 19 26 
29 4 0 2 12  4 0 13 24 
30 3 0 0 10  3 0 9 21 
31 2 0 0 8  2 0 3 19 
32 1 0 0 4  1 0 0 16 
33 0 0 0 2  0 0 0 13 
34 0 0 0 0  0 0 0 11 
35 0 0 0 0  0 0 0 9 
36 0 0 0 0  0 0 0 6 
37 0 0 0 0  0 0 0 3 
38 0 0 0 0  0 0 0 1 
39 0 0 0 0  0 0 0 0 
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40 0 0 0 0  0 0 0 0 
Notes. The unit of P2O5 fertilizer rate is kilograms per hectare (kg ha-1). “OKSuff” and 
“KSuff” mean the sufficiency recommendation rates of Oklahoma State and Kansas 
State. “BM4” and “BM8” stand for the build-maintenance recommendation rate with the 
4-yr and 8-yr building up plans to the target level, respectively. 
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Table 3.3. Results of Net Present Values by 4-/8-/20-year Planning Horizons When 90% of Relative Wheat Grain Yield 
Response at the Soil P Test Level of 15 M3 ppm. 

   Initial Soil P level           
   5     15     25    
  Years OKSuff KSuff BM4 BM8  OKSuff KSuff BM4 BM8  OKSuff KSuff BM4 BM8 

Yield  2690 5 328 343 288 329  403 416 377 398  478 485 467 467 
Potential  10 698 699 714 671  792 794 799 778  886 891 884 884 
(kg ha-1)  20 1649 1606 1714 1681  1750 1710 1800 1783  1851 1819 1885 1885 

 4035 5 531 538 493 524  623 631 596 612  716 721 700 700 
  10 1084 1079 1129 1068  1198 1192 1227 1197  1313 1311 1326 1326 
  20 2472 2420 2629 2579  2594 2539 2728 2703  2716 2665 2827 2827 
 5380 5 730 732 698 721  840 844 816 827  950 954 934 934 
  10 1457 1455 1544 1466  1592 1581 1656 1617  1726 1716 1767 1767 
  20 3256 3217 3545 3479  3398 3346 3657 3625  3540 3484 3770 3770 

Note. The unit of NPV is dollars per hectare ($ ha-1). “OKSuff” and “KSuff” mean the sufficiency recommendation rates of 
Oklahoma State and Kansas State. “BM4” and “BM8” stand for the build-maintenance recommendation rate with 4-yr and 8-
yr building up plans to the target level, respectively. 
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Table 3.4. Results of Net Present Values by 4-/8-/20-year Planning Horizons When 95% of Relative Wheat Grain Yield 
Response at the Soil P Test Level of 15 M3 ppm. 

   Initial Soil P level           
   5     15     25    
  Years OKSuff KSuff BM4 BM8  OKSuff KSuff BM4 BM8  OKSuff KSuff BM4 BM8 

Yield  2690 5 367 385 317 367  424 439 392 417  480 489 467 467 
Potential  10 750 764 742 719  823 836 813 802  895 908 884 884 
(kg ha-1)  20 1722 1713 1742 1727  1800 1793 1813 1806  1878 1874 1885 1885 

 4035 5 591 601 536 581  657 668 618 641  723 731 700 700 
  10 1171 1178 1169 1137  1255 1261 1248 1231  1338 1346 1326 1326 
  20 2611 2593 2670 2646  2700 2681 2749 2737  2790 2773 2827 2827 
 5380 5 813 816 755 796  888 895 844 865  963 970 934 934 
  10 1585 1588 1598 1555  1679 1680 1682 1661  1773 1775 1767 1767 
  20 3477 3463 3599 3565  3578 3557 3684 3668  3678 3656 3770 3770 

Note. The unit of NPV is dollars per hectare ($ ha-1). “OKSuff” and “KSuff” mean the sufficiency recommendation rates of 
Oklahoma State and Kansas State. “BM4” and “BM8” stand for the build-maintenance recommendation rate with the 4-yr and 
8-yr building up plans to the target level, respectively. 
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Table 3.5. Results of Net Present Values by 4-/8-/20-year Planning Horizons When Above Average Wheat Price Used 
and 90% of Relative Wheat Grain Yield Response at the Soil P Test Level of 15 M3 ppm. 

   Initial Soil P level           
   5     15     25    
  Years OKSuff KSuff BM4 BM8  OKSuff KSuff BM4 BM8  OKSuff KSuff BM4 BM8 

Yield  2690 5 573 584 543 573  669 679 650 665  765 771 757 757 
Potential  10 1183 1170 1229 1163  1304 1294 1331 1298  1425 1422 1434 1434 
(kg ha-1)  20 2730 2645 2852 2796  2860 2780 2955 2927  2989 2924 3058 3058 

 4035 5 895 898 877 892  1019 1023 1007 1014  1143 1146 1136 1136 
  10 1800 1782 1902 1808  1954 1933 2026 1979  2109 2094 2151 2151 
  20 4055 3959 4337 4254  4219 4117 4462 4420  4383 4288 4587 4587 
 5380 5 1212 1212 1211 1212  1363 1363 1363 1363  1515 1515 1515 1515 
  10 2397 2388 2576 2455  2583 2559 2722 2661  2769 2745 2867 2867 
  20 5318 5248 5823 5715  5514 5421 5969 5915  5710 5612 6116 6116 

Note. The unit of NPV is dollars per hectare ($ ha-1). Above average wheat price $0.27 per kilogram is used. “OKSuff” and 
“KSuff” mean the sufficiency recommendation rates of Oklahoma State and Kansas State. “BM4” and “BM8” stand for the 
build-maintenance recommendation rate with the 4-yr and 8-yr building up plans to the target level, respectively. 
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Table 3.6. Results of Net Present Values by 4-/8-/20-year Planning Horizons When Above Average Wheat Price Used 
and 95% of Relative Wheat Grain Yield Response at the Soil P Test Level of 15 M3 ppm. 

   Initial Soil P level           
   5     15     25    
  Years OKSuff KSuff BM4 BM8  OKSuff KSuff BM4 BM8  OKSuff KSuff BM4 BM8 

Yield  2690 5 634 650 590 635  702 716 674 696  769 777 757 757 
Potential  10 1267 1274 1274 1240  1353 1360 1354 1337  1439 1448 1434 1434 
(kg ha-1)  20 2848 2817 2897 2870  2941 2913 2978 2964  3034 3012 3058 3058 

 4035 5 990 998 945 983  1072 1082 1041 1059  1154 1161 1136 1136 
  10 1940 1940 1968 1918  2044 2043 2059 2034  2148 2149 2151 2151 
  20 4278 4239 4404 4361  4390 4347 4495 4474  4501 4462 4587 4587 
 5380 5 1344 1346 1301 1331  1440 1445 1408 1423  1536 1541 1515 1515 
  10 2602 2602 2663 2597  2723 2717 2765 2732  2844 2838 2867 2867 
  20 5674 5644 5910 5853  5803 5762 6013 5984  5932 5888 6116 6116 

Note. The unit of NPV is dollars per hectare ($ ha-1). Above average wheat price $0.27 per kilogram is used. “OKSuff” and 
“KSuff” mean the sufficiency recommendation rates of Oklahoma State and Kansas State. “BM4” and “BM8” stand for the 
build-maintenance recommendation rate with the 4-yr and 8-yr building up plans to the target level, respectively. 
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Figure 3.1. The relative wheat grain yield by soil phosphorus test level before/after 
phosphorus fertilizer applied 
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Figure 3.2. Soil P changes by 20-year planning horizon depending on the yield potentials 
and initial soil P level 
Note. “OK sufficiency” and “K sufficiency” mean the sufficiency recommendation rates 
of Oklahoma State and Kansas State. “BM4” and “BM8” stand for the build-maintenance 
recommendation rate with the 4-yr and 8-yr plans to build up to the target level, 
respectively. 
 
 
 
 
 
 



88 

 

 
Figure 3.3. Soil P and wheat grain yield changes in Magruder plots in Stillwater, OK 
Note. Least squares means of soil P level are 5 and 34 ppm for 0 and 34 kg P2O5, 
respectively. Least squares means of wheat yield are 1143 and 1278 kg ha-1. 
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Figure 3.4. Soil P and wheat grain yield changes in Experiment 502 plots in Lahoma, OK 
Note. Least squares means of soil P level are 39, 98, 140, 172, and 231 ppm for 0, 22, 45, 
67, and 90 kg P2O5, respectively. Least squares means of wheat yield are 2757, 2892, 
2825, 2959, and 3026 kg ha-1. 
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