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Abstract:

A theoretical technique is developed herein which allows for the experimental access of
attractors in a coherent laser with injected signal. This technique is theoretically tested for
use in other nonlinear systems such as an optomechanical system. The technique, known as
the power-shift method, works by rapidly changing the control parameter of the nonlinear
dynamical system in order to access specific dynamics in the system.

Noise and time lags in the shift are added to study the viability of the technique under
experimental conditions. The time lags are found in some situations to enhance the effec-
tiveness of the power-shift method. Another version of the power-shift method is developed
which generalizes the technique to other system parameters, namely the gain parameter.
Pulse versions of the technique are tested using Gaussian, sech2, and square wave pulses.
The pulses are initially tested with a constant peak and then with a constant area under the
curve while varying the full width half maximum.

The power-shift method is also tested in an optomechanical system. In this system, the
power-shift method succeeds and possesses a new option in the form of shifting from stable
system points. By using stable points, the system need not be timed to access attractors
therefore removing a potential point of failure.

The investigation finds that the power-shift method is able to access coexisting attractors
with small levels of noise and with time lags in the power shift. Of the pulse variants, the
square wave shows the most promise; this is followed by the Gaussian pulse. The investigation
finds that fast intense pulses are effective at perturbing the system to an attractor.

Finally, examples of how a power-shift method might be executed experimentally are demon-
strated along with examples shown in the laser with injected signal and the optomechanical
system.
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CHAPTER I

INTRODUCTION

1.1 Background

For the past 50 years, the field of nonlinear dynamics has grown to find use in various dis-
ciplines from physics to economics [1]. Nonlinear dynamics involves the study of dynamic
systems modeled by nonlinear differential equations. These nonlinear differential equations
are typically unsolvable through analytical means and therefore need to be solved numeri-
cally. This requires heavy use of computer simulations to demonstrate the system’s evolution
over time. A defining feature of nonlinear dynamics is multistability or multiple “coexisting
attractors.” Nonlinear systems are sensitive to initial conditions which means, even with all
the parameters exactly the same, a different set of initial conditions may result in completely
different behaviour. This causes these systems to be difficult to predict or control, which
continues to challenge investigators to search for various experimental ways to investigate
and utilize nonlinear systems.

1.2 History

Originally, scientists controlled nonlinear systems using two main techniques: (i) by intro-
ducing feedback loops to the system [2, 3] (ii) by changing the system parameters [4, 5].
Scientists such as Ott, Grebogi and Yorke set about controlling chaos via feedback methods
[2]. Later Pyragas [3] stabilized unstable orbits using feedback loops which do not require,
a priori, knowledge of the system to use. Scientists such as Pisarchik [4], and Li and Sprott
controlled nonlinear systems by changing the system parameters [5]. Both of these methods
changed the nature of the systems making them ultimately different systems. If one wishes
to investigate coexisting attractors already present in the system, these techniques do not
work. The problem then, is how does one control a nonlinear system without fundamentally
changing the system in the process? This question led to the creation of the power-shift
method, a method that keeps the system unchanged in its original parameters.

1.3 Power-shift method

The power-shift method is a technique which uses the system’s own dynamics to control
the system and is specifically designed for experimental use. The essence of the power-shift
method is perturbing the control parameter while the system is at a certain state in order to
access a coexisting attractor. In this process, only the control parameter is changed leaving
the system intact.
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The technique is similar to the one Chizhevsky in 2000 developed [6]. This technique
used a modulated loss pulse to perturb a CO2 laser in order to move the system to and
from different attractors by timing the pulse at specific times on the limit cycle. The system
remains unaltered as the parameters are the same after the pulse. As opposed to Chizhevsky’s
technique, the power-shift method uses the known values of the dynamical states to access
attractors and is mainly a shift instead of a pulse.

1.3.1 Power-shift history

Before the power shift

Attractors were originally accessed by perturbing or directly setting the variable values to
conditions within the desired attractor’s basin. The problem with directly setting the vari-
ables is that it is not realistic in experiment. Variables such as the electric field and the
polarization cannot be set directly without fundamentally changing the experimental condi-
tion, thus unintentionally affecting other variables. This fact led to investigations into other
ways attractors are accessed.

One part of analyzing attractors is measuring the range of the control parameter for
which the attractor is available. This is called the attractor domain. The attractor domain
is measured by adiabatically scanning the control parameter as in Ref. [7]. This is performed
in incremental steps of the control parameter then allowing the system to evolve in time to
its stable state. When attempting to map out attractor domains in the laser with injected
signal, the system sometimes falls off the attractor because the step size in the input signal
is too large. This begs the question; what if, instead of accidentally falling off the attractor,
one intentionally falls off to a different attractor using a large step in the control parameter?
This question led to the creation of the power shift.

Literature on power shift

In January 2021, Burton et al. [8] published the initial results of the power-shift method.
The study tested the basic theoretical uses of the technique such as its ability to discover and
reliably access attractors, along with some preliminary results on its experimental viability.
Experimentalists have new tools to control nonlinear systems that are effective and straight
forward to apply.

1.3.2 Power-shift variants

To expand on the power-shift method, additional experimental-type conditions are developed
which generalize the method. In particular, the gain parameter is tested as the parameter to
shift. Additionally, instead of a sudden or linear shift, the use of an interim shift where the
parameter is modulated only temporarily is investigated. This is done with different types of
pulses: square, Gaussian and sech2 pulse. The system is temporarily changed but ultimately
it remains the same at the end of the process because it ends with the same parameters as
before. These pulses are therefore merely perturbations to the system.

Some preliminary investigations by Hall et al [9] show viability for gain shifting. In this
work, an interim gain shift successfully moves the system from one attractor to another
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which shows there is a probability that the variant technique is successful The interim pulse
used is essentially a wide square wave pulse where the parameter is temporarily modified to
a new value and then returns to its original value after an interval of time. Hall and others
kept the time fixed to return to its original value at t = 10, 000τ

This dissertation broadens the study of pulses by first changing the pulse duration while
keeping a constant peak and then by keeping a constant area under the curve.

1.4 Attractor basics

This study predominately examines attractors. According to Ref. [10], an attractor is a set of
states where neighboring states within its basin of attraction asymptotically approaches with
time. The attractor is the smallest unit which cannot be subdivided into smaller attractors.

Examples of attractors

To better understand attractors, let us look at some different oscillating systems starting
with the simple harmonic oscillator governed by the equation:

m
d2x

dt2
+mω2

0x = 0. (1.4.1)

In this case, the system oscillates with an amplitude based on its initial conditions. See Fig.
1 for the phase spaces of two different initial conditions for the simple harmonic motion.

Figure 1: The phase spaces for a simple harmonic oscillator. The red and blue circles arise
from two different initial conditions, x′ = 0, x = 2 and x′ = 0, x = 5 respectively.

This system has no attractors because the states the system cycles through do not attract
any neighboring states. The beginning circle is the cycle the system stays on.
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If one adds a damping term to equation 1.4.1, it becomes:

m
d2x

dt2
+ ϵ

dx

dt
+mω2

0x = 0. (1.4.2)

Here the system loses energy until it eventually reaches its stopping point at dx
dt

= x =
0. Because all the other states asymptotically approach this point, it is the systems only
attractor. This single point is known as a steady state and is the simplest type of attractor.

If one switches the damping term to −ϵ(1− x2), then the system becomes the nonlinear
van der Pol equation; in particular, one without the forced oscillation term in Ref. [11], the
equation becomes:

m
d2x

dt2
− ϵ(1− x2)

dx

dt
+mω2

0x = 0. (1.4.3)

If ϵ > 0, then the system is dissipative when x2 > 1, and driven when x2 < 1. Except
when x = dx

dt
= 0, the system always approaches the same amplitude regardless of initial

conditions. The amplitude produced does not depend on the initial position of the system
as it does in the linear simple harmonic oscillator. See Fig. 2 for an example of the attractor
and two initial conditions. The attractor does not change with different conditions; if the

Figure 2: The van der Pol attractor is the limit cycle in black, the black and red dots are
two different initial conditions, the spirals from the dots are the transient behavior as the
system evolves to the limit cycle.

trajectory changes then it means the system is now on a different attractor. For more
information on attractor, refer to the Appendix, Attractor information.
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CHAPTER II

THE MODELS

Two different models are used to test the power-shift method’s capacity to access attractors,
the laser with injected signal and an optomechanical system. Both models are nonlinear and
possess a control parameter in the form of an incoming laser signal.

2.1 The laser with injected signal (LIS)

The laser with injected signal is a model known for its universal application to nonlinear
systems in general. In the model, an optical signal with frequency ω0 is injected into a laser
ring cavity with cavity frequency ωc and atomic frequency ωa. The three frequencies are close,
but are typically detuned from the injected signal. The laser ring cavity has two perfectly
reflective mirrors and two partially reflective mirrors. The different frequencies interact along
with the nonlinearities and produce various nonlinear phenomena. At low injected signal
amplitudes, beat notes are found. At high input amplitudes, injection locking occurs leaving
a single point in phase space or a constant signal in time. In between these extremes the
system can possess various nonlinear phenomena such as limit cycles, tori and chaos. It is
in this region the bulk of research is done. Figure 3 shows a schematic of LIS.

Figure 3: LIS schematic.
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The system is modeled by the coupled nonlinear equations:

dX

dt
= −κ̃[(1− i

Φ

κ̃
)X − Y + 2CP ], (2.1.1)

dP

dt
= −(1 + i∆̃)P +XD, (2.1.2)

dD

dt
= −γ̃[

1

2
(XP ∗ +X∗P ) +D + 1]. (2.1.3)

where X is the complex electric field, P is the complex polarization, and the real population
difference is D. This investigation uses the parameters from Ref. [12]. The parameters are
all scaled by the polarization dephasing rate γ⊥, κ̃ is the cavity relaxation rate. ∆̃ is the
detuning between the laser and atomic frequency. Φ is the mistuning between the laser and
cavity frequency. Y is the injected signal amplitude, γ̃ is the scaled atomic linewidth, and

C is the gain parameter. The parameter values used are: ∆̃ = 0.5,
Φ

κ̃
= −0.5, κ̃ = 0.1,

γ̃ = 0.01, C = 3. These parameters are chosen because they reveal interesting phenomena
while still being within the bounds of reality.

Laser classes

There are three general types of laser classes [13, 14], Class A, B, and C. In Class A, the
polarizing dephase rate and population relaxation rates are much greater than the cavity
relaxation rates. In Class B, the polarizing dephase rate greatly exceeds the cavity and
atomic relaxation rates. In Class C, all the rates are similar. The parameters in this study
fall between Class B and C.

2.1.1 Stability analysis

One of the first steps of analyzing a new system is to check for instabilities. The equations
are solved around steady state, then tested for stability by linearising the equations and using
an analysis routine called the Huritz criterion. To check the stability of steady states the
Hurwitz criterion is used [15]. The nonlinear equations are linearised by expanding around
steady state and then partial derivatives are taken with respect to each state variable. These
are placed into a matrix and z is subtracted along the diagonal. The determinant is taken
and the z terms are combined to create the equation:

f(z) = cnz
n + cn−1z

n−1 + cn−2z
n−2 + cn−3z

n−3 + ...+ c0 (2.1.4)

The coefficients are placed on a matrix in this form:

H(f) =


cn−1 cn−3 cn−5 ... 0
cn cn−2 cn−4 ... 0
0 cn−1 cn−3 ... 0
0 cn cn−2 ... 0
. . . ... .

 (2.1.5)
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Then the matrix is used to create multiple determinants where each hn is the determinate
is an n×n matrix made by taking the top left portion of H(f). If any of the ci terms or the
hn determinants of H(f) are negative, then the system is unstable at steady state.

The parameters in this study yield a steady-state curve shown in Fig. 4. At Y = 2.16478,
the system reaches injection locking. Note, the entire lower branch and a portion of the upper

Figure 4: The steady-state curve for LIS.

branch is unstable, which means there is no possibility for bistable behaviour in this system.

2.1.2 LIS attractors

The LIS system used for this study contain eight known attractors (AI - AVIII) and two
periodic windows within chaos. Figure 5 is a map of the known attractors and windows
in this model. Here the attractors are sorted by their relative ‘characteristic frequency’.

Figure 5: A map of the attractors in LIS. The abscissa is the injected signal amplitude Y .
The ordinate is the relative characteristic attractor frequency. The yellow shaded region is
three coexisting attractors. The * is the lower domain edge of AVI, Y = 1.948.
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That is, by the lowest unique frequency which exists throughout the entirety of the attractor
domain relative to other attractors. WI and WII are two periodic windows in quasichaos.
The first seven attractors were discovered using traditional theoretical tools such as variable
perturbations, adiabatic scans of Lyapunov exponents, and global sweeps [7].

2.2 Optomechanical system (OM)

The other model explored is an optomechanical system used in Ref. [16]. The model is
based on an optical fiber tapered to a few microns which touches, or is closely placed next
to, a microresonator along its equator; light is injected through one end of the fiber [17].
The light, while in the untapered region, is confined by total internal reflection between the
core and cladding. Once in the tapered region, the light changes from the core-cladding
guidance to cladding-air guidance which creates an external evanescent field that couples
into the resonator. Eventually the resonator’s evanescent field allows the light to couple
back into the fiber. The photons optically tunnel from the tapered fiber into the resonator
which excites a whispering gallery mode (WGM) and then tunnels back into the fiber. A
schematic for this is shown in Fig. 6.

Figure 6: OM schematic. Light travels through an optical fiber with some optical tunnelling
in and out of the microresonator sphere.

The photon that enters the glass bead-like resonator interacts with the medium creating
a new photon and a phonon. The phonon and new photon’s momentum and energy add up
to that of the original photon. The modeled equations are [18]:

Ės1 = −[k1 − i2π∆̃1]Es1 − [
t1t2
2τ

− ic1ρ]Es2 + i
t1
τ
Ein, (2.2.1)

Ės2 = −[k2 − i2π∆̃2]Es2 − [
t1t2
2τ

− ic1ρ
∗]Es1 + i

t2
τ
Ein, (2.2.2)

ρ̇ = −[
ΓB

2
+ i2π(∆̃2 − ∆̃1)− i2πν̃0]ρ+ ic2(∆̃2 − ∆̃1)Es1E

∗
s2, (2.2.3)

where Es1 is the electric field of the incoming photons, Es2 is the electric field of the generated
photons and ρ is the density wave of the phonon. All three of these variables are complex and
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can be split into real and imaginary components, making the system six dimensional. Ein

is the input electric field’s amplitude. kj = π
c

λQj

and Qj (j = 1, 2) are the cavity qualities

of individual field modes. itj are the input/output coupling coefficients of Esj. ∆̃j are the
scaled detuning of the two field modes from the input resonance frequency. ν0 is the scaled
acoustic whispering gallery mode frequency. τ is the round trip time of modes 1 and 2. ΓB

is the Brillouin linewidth or acoustic relaxation rate based on silica with λ = 1, 550nm Pin

is the input power, c1 = 2× 105 and c2 = (2π)4.14× 10−19 are the scaled couplings, and the
output power Pout is give by:

Pout = |c1
√

Pin + it1Es1 + it2Es2|2c−2
1 . (2.2.4)

Time in the OM system is measured in microseconds, frequency in Megahertz, and power is
measured in milliwatts. In this study, the parameters are:

ΓB = 13, ∆̃1 = 2π, ∆̃2 = 44 · 2π, a = 175, kj =
6.08× 108

Qj

, ν0 = 50(2π),

Q1 = Q2 = 108, tj = 2.29

√
a

Qi

, τ = 3× 10−8a.(j = 1, 2)

2.2.1 OM attractors

This system contains attractors and chaos much like LIS but also contains ghosting and
stable states which can coexist with with either one. The system has more attractors than
the LIS system used herein. For Pin ≥ 20 only one attractor appears to exist and eventually
it collapses to a single stable point in phase space in the tested region. The OM system
possesses tori and chaos along with quasichaos, hyperchaos, and limit cycles. The stable
points contained in the system prove useful for power shifting as they provide a base that
does not need to be timed.

A map of some of the system attractors is shown in Fig. 7 along with the steady state
that is color coded on the reverse S-curve of the model. The blue regions are stable and the
orange are unstable. There is a region of bistability around Pin = 1.76 shown in Fig. 8.
While it is close, there is not any bistability around Pin = 3.5.
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Figure 7: [1] steady state, [2] steady state → limit cycle → chaos [3] chaos → limit cycle →
steady state, [4] limit cycle → chaos, [5] limit cycle → torus → limit cycle, [6] chaos → limit
cycle. A map of the attractors in the OM model. The abscissa is the Pin. The ordinate is
the output power.

Figure 8: The steady-state curve for the low power region of OM. The abscissa is the Pin.
The ordinate is the attractor’s output power.
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CHAPTER III

POWER-SHIFT METHOD TECHNIQUES

3.1 Power shift in LIS

The power-shift method is investigated using programs written in Wolfram Mathematica.
The nonlinear equations are solved numerically with NDSolve with a time step ∆t = 0.2
for LIS. The method for power shifting varies depending on whether the shift is a sudden
change, a linear ramp, or a pulse. The Mathematica programs used for the power shift are
shown in the Appendix section 5.6.

3.1.1 Method to discover attractors

Below is the generic procedure to discover attractors in a nonlinear system via power shift:

Step 1: Take the desired range of the control parameter and divide it into equally spaced
segments. This creates a sequence of n numbers.

Step 2: Shuffle the segment values to create a new random sequence of n numbers.
The Mathematica program uses RandomSample[] to shuffle the list of
Y values.

Step 3: Initiate the dynamic evolution using the first control value of the sequence
and allow the system to evolve for an interval T of time. T should be long enough
for the system to settle on a limit cycle if one exists. If possible, record the state of the
system at time T .

Step 4: Shift the control parameter to the next value in the random sequence and let the
system evolve for an additional interval T of time.

Repeat steps 3 and 4 until all the values in the sequence are run. Create another random
sequence and repeat the process. Then compare the dynamics found at each value of the
control parameter. Two contradicting phase space images imply coexistence.

3.1.2 Results of the Power-shift discovery

The domain of interest from 0 < Y < 2 is divided into 501 segments and shuffled to make two
random sequences. The sequences are evolved for T = 20, 000τ so the system can settle. At
t = T , the final conditions are recorded and Y is changed to the next value in the sequence.
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In the first two sequences a discrepancy in the dynamic trajectory appears at Y = 1.272.
In one sequence the phase space is of the expected chaos but in the other, a previously
unknown limit cycle appeared. The phase spaces of the two are shown together in Fig. 9.
This discrepancy implies a new attractor. The new attractor is drawn in red lines and the
chaos in black dots. Their trajectories are close together in phase space which could explain
why AVIII was not discovered earlier.

Figure 9: AVIII (red lines) coexisting with chaos (black dots)

In addition to the new attractor, 5 of the 7 other attractors appeared in the first two
sequences with power shifting. In a 3rd sequence the other attractors appear.

3.1.3 Method to reliably access attractors

The procedure for discovering attractors is not reliable for accessing attractors, because of
its inherent randomness. To account for this, another implementation of the power-shift
method is needed. The method needs to power shift intentionally instead of randomly to
access the desired attractor reliably. This means starting on a known attractor, called the
base attractor, and power shifting at some location on it so the system evolves to a new
attractor, called the resultant attractor. If the resultant attractor is the desired attractor,
then the power shift is successful.

Due to the fractal nature of attractor basins, only some of a base attractor’s points may
reside in the basin of attraction of a desired attractor (at a different control parameter value)

12



while the rest reside in another. This means a blind power shift is unreliable. As an example
of an unreliable power shift, one can look at the discovery of AVIII.

Starting from the power-shift results in the first two sequences, it is known that the power
shift from Y = 1.04 to Y = 1.272 can access AVIII. Figures 10 show the temporal and phase
space graphs of base AI at Y = 1.04. The point’s color describes the resulting attractor when
power shifted from the point to Y = 1.272. Red signifies chaos and blue is AVIII. Only eight
points successfully evolve to AVIII, the rest go to chaos. This base attractor is therefore not
a reliable power shift candidate because of the small number of points on the limit cycle that
successfully evolve to AVIII. Additionally, these points are dispersed throughout the limit
cycle meaning that timing needs to be extremely accurate.

Figure 10: Power shift from Y = 1.04 to Y = 1.272

There are two ways to increase the reliability of the power shift: (i) time the shift to
be within a certain time window and (ii) change the base attractor to one where said time
window is as large as possible.

Time after peak

In order to time the shift one needs some landmark on an attractor’s structure to begin
the timing. For LIS, we use the largest peak of the output amplitude |X| observed in the
temporal dynamics. Because a limit cycle has a known fundamental frequency and amplitude
along with a closed trajectory, any coordinate on the limit cycle can be described by the
amount of time it takes to evolve the system from the designated peak to the coordinate.
This time is called the time after peak (TAP). By doing so, a multidimensional limit cycle
can be reduced to a single dimension. After power shifting at TAP and allowing the system
to evolve, the resultant attractor and TAP are recorded in a table and then graphed to
find any potential contiguous TAP points. The power shift in the NDSolve thus becomes
WhenEvent[t = TAP, Y → Ypert] see Fig. 11, for example. Here the maximum tranche of
TAPS is graphed as a function of the control parameter Y (associated with AIII).
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Finding a good base attractor

To find a better base attractor, one can test different starting control parameter values to
find the base attractor with the largest tranche of points which go to the desired attractor.
To find a good base attractor, an attractor is selected to be the base attractor and is broken
down into sections evenly divided in time. This gives a number of points to sample around
the base attractor. The system is power shifted to a new control parameter value and allowed
to evolve from each point on the base attractor. The resulting attractor is analyzed to see if
it is the desired attractor or not. Once all the points are tested, the resulting attractors and
the power-shifted location on the base attractor are both recorded in a table. The largest
continuous string of successful power shifts is recorded and evaluated as the base attractors
viability.

Reliable results

AV is chosen as the desired attractor because its domain is relatively small but is shown to
still survive some noise. This makes it a reasonable attractor to try to access experimentally.
Figure 11 is created to look for a better base attractor to access AV. Here the time tranche to
AV is analyzed starting from base AIII. The abscissa is the initial injected signal amplitude
Y and the ordinate is the size of the largest time window (or tranche of points) on the limit
cycle which evolves to AV. All the power shifts for the graph shift to Y = 1.84. In this case
Y = 1.63 possesses the largest tranche.

Figure 11: The results of finding a more optimal power shift to AV from base AIII

The power shift is displayed on the temporal graph of the limit cycle of AIII in Fig. 12.
Here the blue dots are the places on the limit cycle where a power shift from Y = 1.63
to Y = 1.84 successfully accesses AV. The red are where the power shift instead accesses
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Figure 12: The optimal power shift from AIII to AV. Red is where the system evolves to AII
when power shifted from Y = 1.63 to 1.84. Blue is where the system evolves to AV instead.

AII. Because limit cycles have closed trajectories, the end of the period lines up with the
beginning of the graph making the two blue ends one large tranche.

3.1.4 Time window integrity

While a tranche may be discovered, the basin’s fractal nature may mean that there are small
discontinuities inside the time window. To check for these potential anomalies, the data set
is increased to 2000 random points within the time window. These points are tested to see
if any evolve to an attractor other than AV when power shifted. These points are generated
by taking 2,000 pseudorandom numbers within the time window and then are used as the
TAP for each power shift. This is first done without noise to see the statistical chance of
success and then with noise to find a success rate under experimental conditions.

3.1.5 Noise

To simulate realistic conditions, a Gaussian noise is incorporated into the injected signal
frequency by modulating ∆̃ and ϕ. This noise has a full width at half maximum (FWHM) of
0.003 and is added at a rate of 0.2τ . The “WhenEvent” and “NormalDistribution” functions
make the Gaussian noise: WhenEvent[Mod[t,0.2]==0, RAR→ NormalDistibution[0,nW]
where nW = FWHM/

√
2 ∗ Ln(2). The results of adding Gaussian noise is shown in Fig.

13. The power shift is the same base and shift as in Fig. 12
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Figure 13: The results of the power shift while adding Gaussian noise with FWHM = 0.003

Integrity test results

Of the 2,000 points taken, all 2,000 went to the expected attractor AV. With Gaussian noise
with FWHM = 0.003, 1, 890 points still evolve to AV. This shows the tranche holds and is
not likely to be within a fractal part of the basin.

3.2 Experimental conditions

3.2.1 Time lag

In an experimental system, the input amplitude does not instantly change; the amplitude
changes over some time. To account for this lag time, a scheme for the time lag is developed
below:

Y (t) = Y − 0, t ≤ tLag,

Y (t) = Y0 + (t− TAP ) ∗ (YPert − Y0)/tLag, TAP ≤ t ≤ TAP + tLag,

Y (t) = YPert, TAP + tLag ≤ t.

(3.2.1)

The variable tLag is the time it takes for the control parameter to reach its final value. This
equation gives the power shift a linear ramp. Figure 14 reveals the results of a linear ramp
of tLag = 15τ on the power shift. By using a lag of 15τ the number of points which go to
the desired attractor actually slightly increased. Figure 15 shows, with a 15τ lag, the system
falls off 7τ earlier than without the lag and gets back on AV 11τ earlier giving a net increase
of 7τ to the tranche.
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Figure 14: Results of the time lag power shift for a time lag of 15τ

Figure 15: The resultant attractor vs the TAP for power shift from base AIII Y = 1.63 to
Y = 1.84. The blue dots are the results for no lag in the shift and the orange xs are the
results for the 15τ time lag
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3.2.2 Noise and time lag

Figure 16 shows the results when both Gaussian noise and a time lag are added. There are
some points inside the tranche which go to AII instead.

Figure 16: Results of adding Gaussian noise and a 15τ time lag to the power shift
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CHAPTER IV

POWER-SHIFT VARIANTS

4.1 Varying the pulse

There may be situations where one wishes to access a coexisting attractor without changing
the current control parameter. In these cases, a pulse is more appropriate than a shift.
Using a pulse instead of a shift is closer to how Chizhevsky performed his experiments with
a pulse-loss perturbation [6]. Chizhevsky used a pulse of 15ns duration for his experiment.
In this study, three different pulse shapes are tested. These pulse shapes have their FWHM
adjusted to find the ideal width in two different tests. The first test keeps the pulse peak
constant and the second keeps the area under the curve constant resulting in varying peak
heights. The control is a pulse with FWHM= 50τ and peak of 0.16. The percent of the
base attractor which the pulse sends the system to AIII is plotted verses the FWHM of the
pulse. See Fig. 17b This study uses a Gaussian, a sech2, and a square pulse. A sech2 pulse
more closely models the shape of certain symmetric type of laser pulses such as passively
Q-switched microchip lasers [19].

The pulse’s FWHM for all the pulse types is varied to see which width gives the best
success rate. The pulse peak stays constant for this while the gain changes by ∆C = 0.3.
That is, the gain parameter changes from C = 3 to C = 3.3. The test results for the
Gaussian pulse varying the FWHM is shown in Fig 17a. The abscissa is the pulse’s FWHM.
The ordinate is the % chance the system goes from base AII to AIII (assuming the pulse is
not timed and is therefore at a random spot on the limit cycle). For a constant area under
the pulse, Fig. 17b results for the Gaussian pulse. The area is 18.7997; it is calculated using
a pulse with peak ∆c = 0.3 and FWHM = 50τ .

(a) constant peak C = 3.3 (b) constant area=18.7997

Figure 17: The constant (a) peak and (b) area percentage of times the pulse moved the
system from AII to AIII

With a constant pulse, the peak value changes from around 50τ to around 7τ .
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4.2 Power-shift pulse

With a square wave pulse the results change to that of Fig. 18a. Figure 18b shows the
results of a sech2 pulse instead. In Fig. 18c, a Gaussian pulse is used to perturb the system.
The red dots are where on the limits cycle the gain pulse successfully perturbed the system
to AIII.

(a) A square pulse (b) A sech2 pulse

(c) A Gaussian pulse

Figure 18: A (a) square pulse with a time lag = 10τ and peak time = 50τ , and a (b) sech2,
and (c) Gaussian pulse with FWHM= 50τ and peak at Y = 1.96 from Y = 1.8.

4.3 Gain-pulse modulation

Another generalization for the power-shift method is to use a different parameter in the
shifting process. Out of all the parameters in LIS, the gain parameter is particularly useful
for its ease of change experimentally. It is therefore chosen as the next variable to shift. The
gain is modulated using different pulse shapes to find which one offers the greatest chance
to access attractors. The system ultimately is unchanged because the system parameters (in
theory) return to their original state.
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4.3.1 Square pulse

The following is a scheme to theoretically create a square pulse:

C(t) =



c0 t ≤ TAP

c0 + (cpert − c)(t− TAP )/rmp TAP ≤ t ≤ TAP + rmp

cpert TAP + rmp ≤ t ≤ TAP + len+ rmp

cpert − (cpert − c)(t− TAP )/rmp TAP + len+ rmp ≤ t ≤ TAP + len+ 2 ∗ rmp

c0, TAP + len+ 2 ∗ rmp ≤ t

(4.3.1)
The original gain value is c0, cpert is the new value of C, rmp is the time it takes the system
to go from c0 to cpert and vice versa, and len is the time the system stays at the new gain.
Figure 19 Illustrates the square pulse.

Figure 19: The schematic of the square wave pulse. The abscissa is time, the ordinate is the
modulated parameter.

Figure 20a shows the results of a square pulse on AII at Y = 1.8. Figure 20b shows the
results with a Gaussian noise added. The pulse took 10τ to go from C = 3 to C = 3.3 where
it stayed for 50τ . In this case, the pulse actually perturbed the system to AIII more times
than it failed. When Gaussian noise with FWHM = 0.01 is applied the system still goes to
AIII fairly often. From this we see there is some merit to the square pulse.

4.3.2 Sech2 pulse

To simulate the gain pulse, the c becomes a time dependent piecewise function. For a gain
shift with time lag the function is written as:

C(t) = c0, t ≤ tLag

C(t) = c0 + (t− TAP ) ∗ (cPert − c0)/tLag, TAP ≤ t ≤ TAP + tLag

C(t) = cPert, TAP + tLag ≤ t
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(a) Without noise (b) With Gaussian noise

Figure 20: A square pulse from C = 3 to C = 3.3 (a) without and (b) with noise = 0.01τ
time lag = 10τ peak duration = 50τ

When a sech2 pulse is used, the gain becomes the function:

C(t) = c0 + (cpert − c0)sech(t− TAP − prd)2. (4.3.2)

Note, prd is a multiple of the attractor’s period. This is done because the program starts
the system at t = 0 and in order to have a proper Gaussian curve the system needs to start
further back. Figure 21a shows the sech2 gain pulse effect on the system. The results of
Gaussian noise on the gain pulse are shown in Fig. 21b. The green dots are where the
Gaussian pulse sends the system to AIII. The red are where the system remains on AII.

(a) Results for sech2 pulse on the gain (b) Results for Gaussian gain pulse

Figure 21: A (a) sech2 and (b) Gaussian pulse FWHM= 50τ

4.4 Optomechanical power shift

In the optomechanical system, a power shift works the same as in LIS except the variable is
the input power, Pin, instead. Two different power shifts to the same final power are shown
in Figs. 22. The shift in Fig. 22(a) goes from Pin = 0.03 to Pin = 4 the system ultimately
lands on AIX. Figure 22(b) goes from Pin = 0.035 to Pin = 4 and lands on AXIV. The base
attractor for these power shifts, AVI,is a stable point at the starting Pin. Because it is stable,
time does not change the variables.
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(a) AIX (b) AXIV

Figure 22: Power shift to Pin = 4 from (a) Pin = 0.03 and (b) Pin = 0.035 in the OM model

4.5 Pulse variation results

The results for varying the power-shift pulse with constant peaks are shown in Fig. 23a.
When the area under the pulse is kept constant, a different pattern emerges as seen in Fig.
23b. The constant area shows higher percent success with short pulses compared to the
constant peaks. A sech2 pulse version is shown in Fig. 24a When the area under the pulse is

(a) (b)

Figure 23: Results of the power-shift Gaussian pulse varying the FWHM of the pulse keeping
(a) the peak the same and (b) keeping the peak a constant area of 10.0265 under the curve

kept constant, the results change to Fig. 24b. The results are similar to the Gaussian only
with a lower % chance of success.
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(a) With constant peak (b) With constant area under the curve

Figure 24: A sech2 pulse (a) with a constant peak and (b) with constant area
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CHAPTER V

APPLICATIONS AND EXAMPLES

5.1 Conclusions

5.1.1 Power-shift pulse effectiveness

Of the three pulses, the square wave pulse shows the highest probability of moving the system
to a new attractor. The Gaussian pulse was more effective than the sech2 pulse. From here
it seems that the more abrupt the change for the given pulse, the more effective it is for
changing attractors.

5.1.2 Gaussian noise effects

Small amounts of Gaussian noise on the frequency does not destroy the larger attractors. The
power shift and pulse variants are still relevant with noise but but there is some reduction
in the reliability. Namely, the system prefers AII as more noise is added until the other
attractors vanish. The smaller domain attractors vanish before the larger ones making them
less likely to appear in experiment.

5.2 Experimental methods

To perform the power-shift method experimentally, an experimentalist needs to use a com-
puter setup to control the laser system. An electro-optic modulator can shift the power at
speeds faster than the time lag used in this study. The computer can record the temporal
output via an oscilloscope. To discover attractors, some software can compare the output of
two different sequences and find any discrepancies between the two outputs which implies
coexisting attractors.

5.3 Roadmap to access attractors

One can create a “roadmap” to access system attractors using only a power shift. Table 1
is an example of one using the LIS system. The ± represents the maximum allowable time
uncertainty in which the power shift is viable. Table 1 reads as the instructions on how to
access any of the eight known attractors. It is read simply by combining the header with
the attractor row of interest. If, for example, one wished to land on AVI using Table 1, one
would read the row and follow the instructions. According to Table 1: To land on AVI start
on AIII at Y0 = 1.7 with period 159τ . Then at TAP = 15± 12τ , shift to Y = 1.96.
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Table 1: Roadmap to access the LIS attractors

To land on: Start on At Y0 = with has a period Then at TAP: Shift Y to:
AI Any Any −−− Any ≤ 1
AII Any Any −−− Any 1.54
AIII AII 1.54 108τ 7± 49τ 1.8
AIV AI 0.854 63τ 3± 4τ 1.114
AV AIII 1.7 159τ 154± 26τ 1.84
AVI AIII 1.7 159τ 15± 12τ 1.96
AVII AIII 1.8 157τ 138± 2τ 1.269
AVIII AIII 1.7 159τ 126.5± 2τ 1.272

5.4 Power shift vs. pulse variants

A power shift relies on the dynamics of the attractors in the system to access other attractors.
The gain pulse shows success comparable to that of the injected signal amplitude pulse. This
implies parameters other than the standard control parameter are viable for shifting.

5.5 OM Power shift from steady states

In the optomechanical model, there are some steady-state domains. This means once on
these points the system remains. For this case, timing becomes irrelevant in the OM system.
Table 2 gives an example of how to use the power-shift method to go from a steady state to
an attractor. As done is Table 1, instructions are given on how to acquire an attractor by
starting somewhere in phase space and power shifting to a different value. If one wishes, for

Table 2: Attractor roadmap for OM system starting from a steady state, then power shifting
to an attractor.

To land on Attractor: Start on At P0in= then shift Pin to:
AVI Any Any 1
AII Any Any 2
AIX AVI 0.03 4
AXIV AVI 0.035 4
AIV AVI 0.08 3.616
AV AVI 0.005 3
AVII AVI 0.555 3.1
AX AIV 5.33 16.46

example, to access AVII, Table 2 states: To land on AVII, start on AVI at P0in = 0.555 then
shift Pin to Pin = 3.1.

The drawback to using steady states is that they are zero-volume attractors. This means
finding a steady state within a specific attractor’s basin is difficult. In contrast a limit cycle
with a large volume is statistically more likely to have tranches in a specific basin.
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5.6 Results of shifting off limit cycles

The power-shift method is shown to be capable of discovering and reliably accessing attrac-
tors in a laser with injected signal model. It also survives reasonable amounts of Gaussian
noise and time lags. The pulse version, in general, is shown to be effective in changing to
a different attractor provided the right amplitude and FWHM is used. A Gaussian pulse is
found to generally be better at shifting attractors compared to a sech2 pulse with similar
peaks. A square wave pulse is more effective than the Gaussian. In essence, short intense
pulses appear more effective than slow shallow pulses. The gain pulse variant shows promise
with a square wave pulse.

One of the more interesting results is how the limit cycles possess tranches of points on
the limit cycle (large time windows) where the system moves to only one attractor. This
seems to contradict the fractal nature of the basin of attraction. A reason could be: while
the basin is fractal, the basins still have large areas which are contiguous. Additionally,
the attractor shape may actually conform to the basin’s general shape in higher dimensions.
This could be because the five dimensional shape of the LIS attractors have a similar shape
to the 5 dimensional basin. The continuous sections are beneficial for experiment because
one can reliably access attractors without worrying about fractal basins.
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APPENDICES

Attractor information

In order for a nonlinear system to contain attractors, energy must not be conserved. This
is because according to Ref. [20] a conservative system always returns to or within some
neighborhood of the starting point. Because of this, a conservative system does not typically
asymptotically approach an attractor. The only exception is when a conservative system
escapes and approaches infinity. In this case, infinity acts as the attractor [21]. If the system
is only dissipative, then the attractor is a single point. In order for the attractor to have a
non-zero volume, it must be driven and dissipative.

Limit cycles

A limit cycle is an attractor which has repeating amplitudes and a characteristic frequency
regardless of the initial conditions used to reach it [22]. The van der Pol equation with
ϵ > 0 yields a limit cycle attractor. The limit cycle’s trajectory is closed in phase space.
A limit cycle in phase space is shown in Fig. 25. To get the full image of the attractor,

Figure 25: An example of a limit cycle in phase space. The points in red are the values that
the system cycles through as it evolves.

other methods are used as well including a temporal and Fourier series shown in Figs. 26. A
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(a) Temporal (b) Fourier

Figure 26: The (a) temporal and (b) Fourier series for the limit cycle shown in Fig. 25

temporal solution is a graph showing the values of a variable with respect to time. A Fourier
series breaks down the attractor’s temporal dynamic into a series of sines and cosines.

Coexisting attractors

It is possible for a system to possess two or more attractors for the same set of parame-
ters. The system will show different dynamics when the only difference is different initial
conditions. When a system has multiple possible attractors, it is said to possess coexisting
attractors or have coexistence. Figure 27 shows an example of two coexisting attractors.

Figure 27: An example of coexisting attractor in LIS phase space, AII and AIII
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Poincaré region

Some attractors have complicated structures which require additional methods to analyze.
In those cases a Poincaré map is useful. A Poincaré map is created by tracing the points
which pass through a selected plane in phase space while the system evolves [11].

Strange attractors

An interesting type of dynamic that shows up in nonlinear systems is called a strange at-
tractor. If one looks at the phase space, temporal, and Fourier series for a strange attractor,
it looks chaotic i.e a messy phase space and a broadband spectrum in the Fourier series. A
Poincaré in the phase space however, reveals a structure. The Poincaré of a strange attractor
is in green in Fig. 28. This structure constitutes a set of points where the system is attracted

Figure 28: An example of a strange attractor in green. The axes are the Real and imaginary
components of X and the D = 0.05.

to. This means, by the prior definition, a strange attractor is in fact an attractor despite
being chaotic. Note, not all chaos is an attractor. The chaos found in conservative systems
is not an attractor as it does not asymptotically approach a set of points.

Quasichaos

Unlike regular chaos, quasichaos may possess overriding frequencies and converges to a cer-
tain trajectory regardless of initial conditions [23]. Quasichaos still has positive Lyapunov
exponents but is typically of smaller value than “full-blown” chaos.

Tori

Another attractor type is called a torus. A torus is an attractor of a higher dimension than
a limit cycle. A limit cycle can be mapped to a single dimension. In this dissertation, time
is the dimension used. In a torus, there is an extra frequency which is incommensurate with
the fundamental frequency. This results in a non closed trajectory. A torus needs at least
two coordinates to map. Figure 29 shows the phase space and Poincaré map of a torus
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(a) Phase Space (b) Poincaré map

Figure 29: An example of the (a) phase space and (b) Poincaré map of a torus attractor

attractor found in LIS. This attractor exists for a different set of parameters than the one
used in this investigation. It is found using the parameters in Ref. [24]. Note, instead of
dots there are ellipses where the system crosses the plane.

In regards to the Power-shift method, a torus does not make for a good base attractor
because it lacks the timing reliability of a limit cycle due its lack of a closed trajectory.

Periodic windows

Within the chaotic domain there are small regions of the control parameter where the chaos
becomes periodic. These are called windows of periodicity or periodic windows. The periodic
windows are not labeled as attractors in Fig. 5 but instead as windows WI and WII. By the
definition used in this study periodic windows are a type of attractor. However, for the sake
of clarity they are referred to as windows to distinguish them from the regular limit cycles
and tori found.

Programs

Fourier analysis

Case = 2;Case = 2;Case = 2;

Attractor = 3;Attractor = 3;Attractor = 3;

YLoad = 1.65;YLoad = 1.65;YLoad = 1.65;

YInitial = 1.65;YInitial = 1.65;YInitial = 1.65;
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YMax = 1.68;YMax = 1.68;YMax = 1.68;

YMin = 1.64;YMin = 1.64;YMin = 1.64;

YStep = 0.01;YStep = 0.01;YStep = 0.01;

thres = 0.5;thres = 0.5;thres = 0.5;

Y = YInitial;Y = YInitial;Y = YInitial;

Upload = True;Upload = True;Upload = True;

wthywtni = {{Y, “Ω Zero”}};wthywtni = {{Y, “Ω Zero”}};wthywtni = {{Y, “Ω Zero”}};

δv = 0;δv = 0;δv = 0;

A0 = δv;A0 = δv;A0 = δv;

B0 = δv;B0 = δv;B0 = δv;

R0 = δv;R0 = δv;R0 = δv;

S0 = δv;S0 = δv;S0 = δv;

d0 = δv;d0 = δv;d0 = δv;

∆t = 0.02;∆t = 0.02;∆t = 0.02;

tlimit = 30000;tlimit = 30000;tlimit = 30000;

If[Upload,If[Upload,If[Upload,

file =file =file =

ToExpression[ToExpression[ToExpression[

Import[“Lis System\\Case ” <> ToString[Case] <> “\\Attractor ”Import[“Lis System\\Case ” <> ToString[Case] <> “\\Attractor ”Import[“Lis System\\Case ” <> ToString[Case] <> “\\Attractor ”

<> ToString[Attractor] <> “\\SteadyState Y=” <> ToString[YLoad] <><> ToString[Attractor] <> “\\SteadyState Y=” <> ToString[YLoad] <><> ToString[Attractor] <> “\\SteadyState Y=” <> ToString[YLoad] <>

“.txt”]];“.txt”]];“.txt”]];
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A0 = file[[1]];A0 = file[[1]];A0 = file[[1]];

B0 = file[[2]];B0 = file[[2]];B0 = file[[2]];

R0 = file[[3]];R0 = file[[3]];R0 = file[[3]];

S0 = file[[4]];S0 = file[[4]];S0 = file[[4]];

d0 = file[[5]];d0 = file[[5]];d0 = file[[5]];

,,,

{A0, B0, R0, S0, d0}] ;{A0, B0, R0, S0, d0}] ;{A0, B0, R0, S0, d0}] ;

Print[file];Print[file];Print[file];

If[Case == 1,If[Case == 1,If[Case == 1,

c = 20.0;c = 20.0;c = 20.0;

K = 0.5;K = 0.5;K = 0.5;

ϕ = −1.0;ϕ = −1.0;ϕ = −1.0;

γ = 0.05;γ = 0.05;γ = 0.05;

∆ = 1.0];∆ = 1.0];∆ = 1.0];

If[Case == 1.1,If[Case == 1.1,If[Case == 1.1,

c = 21.0;c = 21.0;c = 21.0;

K = 0.5;K = 0.5;K = 0.5;

ϕ = −1.0;ϕ = −1.0;ϕ = −1.0;

γ = 0.05;γ = 0.05;γ = 0.05;

∆ = 1.0];∆ = 1.0];∆ = 1.0];

If[Case == 2,If[Case == 2,If[Case == 2,

c = 3.0;c = 3.0;c = 3.0;

K = 0.1;K = 0.1;K = 0.1;

ϕ = −0.5 ∗K;ϕ = −0.5 ∗K;ϕ = −0.5 ∗K;

γ = 0.01;γ = 0.01;γ = 0.01;

∆ = 0.5];∆ = 0.5];∆ = 0.5];

If[Case == 2.1,If[Case == 2.1,If[Case == 2.1,
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c = 3.1;c = 3.1;c = 3.1;

K = 0.1;K = 0.1;K = 0.1;

ϕ = −0.5 ∗K;ϕ = −0.5 ∗K;ϕ = −0.5 ∗K;

γ = 0.01;γ = 0.01;γ = 0.01;

∆ = 0.5];∆ = 0.5];∆ = 0.5];

If[Case == 2.2,If[Case == 2.2,If[Case == 2.2,

c = 3.2;c = 3.2;c = 3.2;

K = 0.1;K = 0.1;K = 0.1;

ϕ = −0.5 ∗K;ϕ = −0.5 ∗K;ϕ = −0.5 ∗K;

γ = 0.01;γ = 0.01;γ = 0.01;

∆ = 0.5];∆ = 0.5];∆ = 0.5];

If[Case == 3,If[Case == 3,If[Case == 3,

c = 3.0;c = 3.0;c = 3.0;

K = 0.1;K = 0.1;K = 0.1;

ϕ = −0.5 ∗K;ϕ = −0.5 ∗K;ϕ = −0.5 ∗K;

γ = 4.0 ∗ 10∧ − 4;γ = 4.0 ∗ 10∧ − 4;γ = 4.0 ∗ 10∧ − 4;

∆ = 0.5];∆ = 0.5];∆ = 0.5];

If[Case == 4,If[Case == 4,If[Case == 4,

c = 3.0;c = 3.0;c = 3.0;

K = 5.24;K = 5.24;K = 5.24;

ϕ = −1.0;ϕ = −1.0;ϕ = −1.0;

γ = 1.0 ∗ 10∧ − 4;γ = 1.0 ∗ 10∧ − 4;γ = 1.0 ∗ 10∧ − 4;

∆ = 1.0];∆ = 1.0];∆ = 1.0];

While[YMin<=Y <=YMax,While[YMin<=Y <=YMax,While[YMin<=Y <=YMax,
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solution = NDSolve[{solution = NDSolve[{solution = NDSolve[{

A′[t] == −K ∗
(
A[t] +

(
B[t] ∗ ϕ

K

)
− Y + (2 ∗ c ∗R[t])

)
,A′[t] == −K ∗

(
A[t] +

(
B[t] ∗ ϕ

K

)
− Y + (2 ∗ c ∗R[t])

)
,A′[t] == −K ∗

(
A[t] +

(
B[t] ∗ ϕ

K

)
− Y + (2 ∗ c ∗R[t])

)
,

B′[t] == −K ∗
(
B[t]−

(
A[t] ∗ ϕ

K

)
+ (2 ∗ c ∗ S[t])

)
,B′[t] == −K ∗

(
B[t]−

(
A[t] ∗ ϕ

K

)
+ (2 ∗ c ∗ S[t])

)
,B′[t] == −K ∗

(
B[t]−

(
A[t] ∗ ϕ

K

)
+ (2 ∗ c ∗ S[t])

)
,

R′[t] == −(R[t]− (∆ ∗ S[t])) + (A[t] ∗ d[t]),R′[t] == −(R[t]− (∆ ∗ S[t])) + (A[t] ∗ d[t]),R′[t] == −(R[t]− (∆ ∗ S[t])) + (A[t] ∗ d[t]),

S ′[t] == −((∆ ∗R[t]) + S[t]) + (B[t] ∗ d[t]),S ′[t] == −((∆ ∗R[t]) + S[t]) + (B[t] ∗ d[t]),S ′[t] == −((∆ ∗R[t]) + S[t]) + (B[t] ∗ d[t]),

d′[t] == −γ ∗ ((A[t] ∗R[t]) + (B[t] ∗ S[t]) + d[t] + 1),d′[t] == −γ ∗ ((A[t] ∗R[t]) + (B[t] ∗ S[t]) + d[t] + 1),d′[t] == −γ ∗ ((A[t] ∗R[t]) + (B[t] ∗ S[t]) + d[t] + 1),

A[0] == A0,A[0] == A0,A[0] == A0,

B[0] == B0,B[0] == B0,B[0] == B0,

R[0] == R0,R[0] == R0,R[0] == R0,

S[0] == S0,S[0] == S0,S[0] == S0,

d[0] == d0d[0] == d0d[0] == d0

}, {A,B, S,R, d}, {t, 0, tlimit} ,PrecisionGoal → ∞,MaxSteps → ∞,}, {A,B, S,R, d}, {t, 0, tlimit} ,PrecisionGoal → ∞,MaxSteps → ∞,}, {A,B, S,R, d}, {t, 0, tlimit} ,PrecisionGoal → ∞,MaxSteps → ∞,

MaxStepSize → ∆t,MaxStepSize → ∆t,MaxStepSize → ∆t,

Method → “StiffnessSwitching”];Method → “StiffnessSwitching”];Method → “StiffnessSwitching”];

AA[t ]:=A[t]/.solution;AA[t ]:=A[t]/.solution;AA[t ]:=A[t]/.solution;

BB[t ]:=B[t]/.solution;BB[t ]:=B[t]/.solution;BB[t ]:=B[t]/.solution;

RR[t ]:=R[t]/.solution;RR[t ]:=R[t]/.solution;RR[t ]:=R[t]/.solution;

SS[t ]:=S[t]/.solution;SS[t ]:=S[t]/.solution;SS[t ]:=S[t]/.solution;

dd[t ]:=d[t]/.solution;dd[t ]:=d[t]/.solution;dd[t ]:=d[t]/.solution;

X[t ]:=
√

AA[t]2 + BB[t]2/.solution;X[t ]:=
√

AA[t]2 + BB[t]2/.solution;X[t ]:=
√

AA[t]2 + BB[t]2/.solution;

P [t ]:=
√

RR[t]2 + SS[t]2/.solution;P [t ]:=
√
RR[t]2 + SS[t]2/.solution;P [t ]:=

√
RR[t]2 + SS[t]2/.solution;

Print [Plot [X[t], {t, tlimit − 400, tlimit} ,PlotRange → All,Print [Plot [X[t], {t, tlimit − 400, tlimit} ,PlotRange → All,Print [Plot [X[t], {t, tlimit − 400, tlimit} ,PlotRange → All,

AxesLabel → {Style[t,Large,Bold], Style[|X| ,AxesLabel → {Style[t,Large,Bold], Style[|X| ,AxesLabel → {Style[t,Large,Bold], Style[|X| ,

Large,Bold]},AxesStyle → Thick]];Large,Bold]},AxesStyle → Thick]];Large,Bold]},AxesStyle → Thick]];
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datas = Table[{AA[t][[1]],BB[t][[1]], dd[t][[1]]},datas = Table[{AA[t][[1]],BB[t][[1]], dd[t][[1]]},datas = Table[{AA[t][[1]],BB[t][[1]], dd[t][[1]]},

{t, tlimit − 4000, tlimit(*,∆t*)}] ;{t, tlimit − 4000, tlimit(*,∆t*)}] ;{t, tlimit − 4000, tlimit(*,∆t*)}] ;

Print[ListPointPlot3D[datas,AxesLabel → {“Re |X|”, “Im |X|”, “D ”},Print[ListPointPlot3D[datas,AxesLabel → {“Re |X|”, “Im |X|”, “D ”},Print[ListPointPlot3D[datas,AxesLabel → {“Re |X|”, “Im |X|”, “D ”},

BaseStyle →BaseStyle →BaseStyle →

{FontWeight → “Bold”,FontSize → 18},PlotRange → Full]];{FontWeight → “Bold”,FontSize → 18},PlotRange → Full]];{FontWeight → “Bold”,FontSize → 18},PlotRange → Full]];

t2 = tlimit;t2 = tlimit;t2 = tlimit;

t1 = t2/2;t1 = t2/2;t1 = t2/2;

xtabtemp = Table[X[t][[1, 1]], {t, t1, t2− 1}];xtabtemp = Table[X[t][[1, 1]], {t, t1, t2− 1}];xtabtemp = Table[X[t][[1, 1]], {t, t1, t2− 1}];

FX = Flatten[Abs[Fourier[xtabtemp]]];FX = Flatten[Abs[Fourier[xtabtemp]]];FX = Flatten[Abs[Fourier[xtabtemp]]];

FX = Drop[Table[{N [(n− 1)/(t2− t1)] ∗ 2Pi,Extract[FX, {n}]},FX = Drop[Table[{N [(n− 1)/(t2− t1)] ∗ 2Pi,Extract[FX, {n}]},FX = Drop[Table[{N [(n− 1)/(t2− t1)] ∗ 2Pi,Extract[FX, {n}]},

{n, 0,Length[FX]− 1}], 2];{n, 0,Length[FX]− 1}], 2];{n, 0,Length[FX]− 1}], 2];

fouriertab = {};fouriertab = {};fouriertab = {};

top = Max[Table[FX[[it, 2]], {it, 1,Length[FX]}]] ∗ 1.1;top = Max[Table[FX[[it, 2]], {it, 1,Length[FX]}]] ∗ 1.1;top = Max[Table[FX[[it, 2]], {it, 1,Length[FX]}]] ∗ 1.1;

temp1 = 0;temp1 = 0;temp1 = 0;

temp2 = 0;temp2 = 0;temp2 = 0;

temp3 = 0;temp3 = 0;temp3 = 0;

thres = 0.01;thres = 0.01;thres = 0.01;

ofx = {Y };ofx = {Y };ofx = {Y };

n = 2;While[n ≤ Length[FX]− 1,n = 2;While[n ≤ Length[FX]− 1,n = 2;While[n ≤ Length[FX]− 1,

temp1 = Extract[FX, {n, 2}];temp1 = Extract[FX, {n, 2}];temp1 = Extract[FX, {n, 2}];

temp2 = Extract[FX, {n+ 1, 2}];temp2 = Extract[FX, {n+ 1, 2}];temp2 = Extract[FX, {n+ 1, 2}];

temp3 = Extract[FX, {n− 1, 2}];temp3 = Extract[FX, {n− 1, 2}];temp3 = Extract[FX, {n− 1, 2}];

If[temp1 > temp2&&temp3 < temp1,If[temp1 > temp2&&temp3 < temp1,If[temp1 > temp2&&temp3 < temp1,

ptn = ListPlot[{Tooltip[Extract[FX, n]]},ptn = ListPlot[{Tooltip[Extract[FX, n]]},ptn = ListPlot[{Tooltip[Extract[FX, n]]},

PlotStyle → {PointSize[0.009],RGBColor[.847, 0.347, 0]}];PlotStyle → {PointSize[0.009],RGBColor[.847, 0.347, 0]}];PlotStyle → {PointSize[0.009],RGBColor[.847, 0.347, 0]}];
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If[temp1 > thres, fouriertab = Append[fouriertab, ptn];If[temp1 > thres, fouriertab = Append[fouriertab, ptn];If[temp1 > thres, fouriertab = Append[fouriertab, ptn];

If[temp1 > temp2&&temp3 < temp1,AppendTo[ofx,Extract[FX, {n, 1}]],If[temp1 > temp2&&temp3 < temp1,AppendTo[ofx,Extract[FX, {n, 1}]],If[temp1 > temp2&&temp3 < temp1,AppendTo[ofx,Extract[FX, {n, 1}]],

False],False],False];False],False],False];False],False],False];

n++];n++];n++];

(*AppendTo[wthywtni, ofx]; *)(*AppendTo[wthywtni, ofx]; *)(*AppendTo[wthywtni, ofx]; *)

Print[Show[{ListLinePlot[FX,PlotRange → {{0, 0.5}, {0, top}}],Print[Show[{ListLinePlot[FX,PlotRange → {{0, 0.5}, {0, top}}],Print[Show[{ListLinePlot[FX,PlotRange → {{0, 0.5}, {0, top}}],

fouriertab}]];fouriertab}]];fouriertab}]];

Print[“Y=” <> ToString[Y ] <>Print[“Y=” <> ToString[Y ] <>Print[“Y=” <> ToString[Y ] <>

“ Case=” <> ToString[Case]];“ Case=” <> ToString[Case]];“ Case=” <> ToString[Case]];

Print[“c = ” <> ToString[c] <>Print[“c = ” <> ToString[c] <>Print[“c = ” <> ToString[c] <>

“; Y = ” <> ToString[Y ] <>“; Y = ” <> ToString[Y ] <>“; Y = ” <> ToString[Y ] <>

“; K = ” <> ToString[K] <>“; K = ” <> ToString[K] <>“; K = ” <> ToString[K] <>

“; ϕ = ” <> ToString[ϕ] <>“; ϕ = ” <> ToString[ϕ] <>“; ϕ = ” <> ToString[ϕ] <>

“; γ = ” <> ToString[γ] <>“; γ = ” <> ToString[γ] <>“; γ = ” <> ToString[γ] <>

“; ∆ = ” <> ToString[∆] <>“; ∆ = ” <> ToString[∆] <>“; ∆ = ” <> ToString[∆] <>

“; δv = ” <> ToString[δv] <>“; δv = ” <> ToString[δv] <>“; δv = ” <> ToString[δv] <>

“; Time Range(t1)=” <> ToString[t1]];“; Time Range(t1)=” <> ToString[t1]];“; Time Range(t1)=” <> ToString[t1]];

tstop = tlimit;tstop = tlimit;tstop = tlimit;

Export[“Lis System\\Case ” <> ToString[Case] <> “\\Attractor ” <>Export[“Lis System\\Case ” <> ToString[Case] <> “\\Attractor ” <>Export[“Lis System\\Case ” <> ToString[Case] <> “\\Attractor ” <>
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ToString[Attractor] <> "\\ToString[Attractor] <> "\\ToString[Attractor] <> "\\

SteadyState Y=" <> ToString[Y ] <> “.txt”,SteadyState Y=" <> ToString[Y ] <> “.txt”,SteadyState Y=" <> ToString[Y ] <> “.txt”,

Table [{A[t], B[t], R[t], S[t], d[t]}, {t, tstop, tstop, 1}] /.Table [{A[t], B[t], R[t], S[t], d[t]}, {t, tstop, tstop, 1}] /.Table [{A[t], B[t], R[t], S[t], d[t]}, {t, tstop, tstop, 1}] /.

solution[[1]]];solution[[1]]];solution[[1]]];

A0 = First [A [tstop] /.solution] ;A0 = First [A [tstop] /.solution] ;A0 = First [A [tstop] /.solution] ;

B0 = First [B [tstop] /.solution] ;B0 = First [B [tstop] /.solution] ;B0 = First [B [tstop] /.solution] ;

R0 = First [R [tstop] /.solution] ;R0 = First [R [tstop] /.solution] ;R0 = First [R [tstop] /.solution] ;

S0 = First [S [tstop] /.solution] ;S0 = First [S [tstop] /.solution] ;S0 = First [S [tstop] /.solution] ;

d0 = First [d [tstop] /.solution] ;d0 = First [d [tstop] /.solution] ;d0 = First [d [tstop] /.solution] ;

Y = Y +YStep;Y = Y +YStep;Y = Y +YStep;

];];];

(*wthywtni = Append[wthywtni, {“...”}];(*wthywtni = Append[wthywtni, {“...”}];(*wthywtni = Append[wthywtni, {“...”}];

Export[“Lis System\\Case ” <> ToString[Case] <> “\\Attractor ” <>Export[“Lis System\\Case ” <> ToString[Case] <> “\\Attractor ” <>Export[“Lis System\\Case ” <> ToString[Case] <> “\\Attractor ” <>

ToString[Attractor] <> “\\Excel Data\\Table of Y Omega sub 0.xlsx”,ToString[Attractor] <> “\\Excel Data\\Table of Y Omega sub 0.xlsx”,ToString[Attractor] <> “\\Excel Data\\Table of Y Omega sub 0.xlsx”,

wthywtni]; *)wthywtni]; *)wthywtni]; *)

Attractor finder code

Case = 2;Case = 2;Case = 2;

chain = {{y, a, b, r, s, d}};chain = {{y, a, b, r, s, d}};chain = {{y, a, b, r, s, d}};

δv = 0;δv = 0;δv = 0;

A0 = δv;A0 = δv;A0 = δv;

B0 = δv;B0 = δv;B0 = δv;

R0 = δv;R0 = δv;R0 = δv;
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S0 = δv;S0 = δv;S0 = δv;

d0 = δv;d0 = δv;d0 = δv;

If[Case == 1,If[Case == 1,If[Case == 1,

c = 20.0;c = 20.0;c = 20.0;

K = 0.5;K = 0.5;K = 0.5;

ϕ = −1.0;ϕ = −1.0;ϕ = −1.0;

γ = 0.05;γ = 0.05;γ = 0.05;

∆ = 1.0];∆ = 1.0];∆ = 1.0];

If[Case == 1.1,If[Case == 1.1,If[Case == 1.1,

c = 21.0;c = 21.0;c = 21.0;

K = 0.5;K = 0.5;K = 0.5;

ϕ = −1.0;ϕ = −1.0;ϕ = −1.0;

γ = 0.05;γ = 0.05;γ = 0.05;

∆ = 1.0];∆ = 1.0];∆ = 1.0];

If[Case == 2,If[Case == 2,If[Case == 2,

c = 3.0;c = 3.0;c = 3.0;

K = 0.1;K = 0.1;K = 0.1;

ϕ = −0.5 ∗K;ϕ = −0.5 ∗K;ϕ = −0.5 ∗K;

γ = 0.01;γ = 0.01;γ = 0.01;

∆ = 0.5];∆ = 0.5];∆ = 0.5];

If[Case == 2.1,If[Case == 2.1,If[Case == 2.1,

c = 3.1;c = 3.1;c = 3.1;

K = 0.1;K = 0.1;K = 0.1;

ϕ = −0.5 ∗K;ϕ = −0.5 ∗K;ϕ = −0.5 ∗K;

γ = 0.01;γ = 0.01;γ = 0.01;

∆ = 0.5];∆ = 0.5];∆ = 0.5];
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If[Case == 3,If[Case == 3,If[Case == 3,

c = 3.0;c = 3.0;c = 3.0;

K = 0.1;K = 0.1;K = 0.1;

ϕ = −0.5 ∗K;ϕ = −0.5 ∗K;ϕ = −0.5 ∗K;

γ = 4.0 ∗ 10∧ − 4;γ = 4.0 ∗ 10∧ − 4;γ = 4.0 ∗ 10∧ − 4;

∆ = 0.5];∆ = 0.5];∆ = 0.5];

If[Case == 4,If[Case == 4,If[Case == 4,

c = 3.0;c = 3.0;c = 3.0;

K = 5.24;K = 5.24;K = 5.24;

ϕ = −1.0;ϕ = −1.0;ϕ = −1.0;

γ = 1.0 ∗ 10∧ − 4;γ = 1.0 ∗ 10∧ − 4;γ = 1.0 ∗ 10∧ − 4;

∆ = 1.0];∆ = 1.0];∆ = 1.0];

YMin = 0;YMin = 0;YMin = 0;

YMax = 2;YMax = 2;YMax = 2;

steps = 2000;steps = 2000;steps = 2000;

Ybase = Table[YMin + i ∗ (YMax− YMin)/steps, {i, 0, steps}];Ybase = Table[YMin + i ∗ (YMax− YMin)/steps, {i, 0, steps}];Ybase = Table[YMin + i ∗ (YMax− YMin)/steps, {i, 0, steps}];

YChain = RandomSample[Ybase];YChain = RandomSample[Ybase];YChain = RandomSample[Ybase];

Print[YChain[[5]]];Print[YChain[[5]]];Print[YChain[[5]]];

tLimit = 20000;tLimit = 20000;tLimit = 20000;

∆t = 0.02;∆t = 0.02;∆t = 0.02;

n = 0;n = 0;n = 0;

runNum = 1;runNum = 1;runNum = 1;

While[runNum ≤ 100,While[runNum ≤ 100,While[runNum ≤ 100,

If[FileExistsQ[“Lis System\\Case ” <> ToString[Case] <> “\\MC\\MC Run ” <>If[FileExistsQ[“Lis System\\Case ” <> ToString[Case] <> “\\MC\\MC Run ” <>If[FileExistsQ[“Lis System\\Case ” <> ToString[Case] <> “\\MC\\MC Run ” <>

ToString[runNum] <> “ Y From ” <> ToString[YMin] <> “ to ” <> ToString[YMax]ToString[runNum] <> “ Y From ” <> ToString[YMin] <> “ to ” <> ToString[YMax]ToString[runNum] <> “ Y From ” <> ToString[YMin] <> “ to ” <> ToString[YMax]

<> “ Steps=” <> ToString[steps] <> “ tlim=” <> ToString[tLimit] <> “.xlsx”],<> “ Steps=” <> ToString[steps] <> “ tlim=” <> ToString[tLimit] <> “.xlsx”],<> “ Steps=” <> ToString[steps] <> “ tlim=” <> ToString[tLimit] <> “.xlsx”],
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runNum++,Print[“Run num=” <> ToString[runNum]runNum++,Print[“Run num=” <> ToString[runNum]runNum++,Print[“Run num=” <> ToString[runNum]

<> “.”]; Break[]]];<> “.”]; Break[]]];<> “.”]; Break[]]];

While[n < Length[YChain],While[n < Length[YChain],While[n < Length[YChain],

n++;n++;n++;

Y = YChain[[n]];Y = YChain[[n]];Y = YChain[[n]];

Print[“Y=” <> ToString[N [Y ]] <> “.”];Print[“Y=” <> ToString[N [Y ]] <> “.”];Print[“Y=” <> ToString[N [Y ]] <> “.”];

(*Run NDSolve here and collect new ics at *)(*Run NDSolve here and collect new ics at *)(*Run NDSolve here and collect new ics at *)

solution = NDSolve[{solution = NDSolve[{solution = NDSolve[{

A′[t] == −K ∗
(
A[t] +

(
B[t] ∗ ϕ

K

)
− Y + (2 ∗ c ∗R[t])

)
,A′[t] == −K ∗

(
A[t] +

(
B[t] ∗ ϕ

K

)
− Y + (2 ∗ c ∗R[t])

)
,A′[t] == −K ∗

(
A[t] +

(
B[t] ∗ ϕ

K

)
− Y + (2 ∗ c ∗R[t])

)
,

B′[t] == −K ∗
(
B[t]−

(
A[t] ∗ ϕ

K

)
+ (2 ∗ c ∗ S[t])

)
,B′[t] == −K ∗

(
B[t]−

(
A[t] ∗ ϕ

K

)
+ (2 ∗ c ∗ S[t])

)
,B′[t] == −K ∗

(
B[t]−

(
A[t] ∗ ϕ

K

)
+ (2 ∗ c ∗ S[t])

)
,

R′[t] == −(R[t]− (∆ ∗ S[t])) + (A[t] ∗ d[t]),R′[t] == −(R[t]− (∆ ∗ S[t])) + (A[t] ∗ d[t]),R′[t] == −(R[t]− (∆ ∗ S[t])) + (A[t] ∗ d[t]),

S ′[t] == −((∆ ∗R[t]) + S[t]) + (B[t] ∗ d[t]),S ′[t] == −((∆ ∗R[t]) + S[t]) + (B[t] ∗ d[t]),S ′[t] == −((∆ ∗R[t]) + S[t]) + (B[t] ∗ d[t]),

d′[t] == −γ ∗ ((A[t] ∗R[t]) + (B[t] ∗ S[t]) + d[t] + 1),d′[t] == −γ ∗ ((A[t] ∗R[t]) + (B[t] ∗ S[t]) + d[t] + 1),d′[t] == −γ ∗ ((A[t] ∗R[t]) + (B[t] ∗ S[t]) + d[t] + 1),

A[0] == A0,A[0] == A0,A[0] == A0,

B[0] == B0,B[0] == B0,B[0] == B0,

R[0] == R0,R[0] == R0,R[0] == R0,

S[0] == S0,S[0] == S0,S[0] == S0,

d[0] == d0d[0] == d0d[0] == d0

}, {A,B, S,R, d}, {t, 0, tLimit},PrecisionGoal → ∞,MaxSteps → ∞,MaxStepSize → ∆t];}, {A,B, S,R, d}, {t, 0, tLimit},PrecisionGoal → ∞,MaxSteps → ∞,MaxStepSize → ∆t];}, {A,B, S,R, d}, {t, 0, tLimit},PrecisionGoal → ∞,MaxSteps → ∞,MaxStepSize → ∆t];

AA[t ]:=A[t]/.solution;AA[t ]:=A[t]/.solution;AA[t ]:=A[t]/.solution;

BB[t ]:=B[t]/.solution;BB[t ]:=B[t]/.solution;BB[t ]:=B[t]/.solution;

RR[t ]:=R[t]/.solution;RR[t ]:=R[t]/.solution;RR[t ]:=R[t]/.solution;
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SS[t ]:=S[t]/.solution;SS[t ]:=S[t]/.solution;SS[t ]:=S[t]/.solution;

dd[t ]:=d[t]/.solution;dd[t ]:=d[t]/.solution;dd[t ]:=d[t]/.solution;

X[t ]:=
√

AA[t]2 + BB[t]2/.solution;X[t ]:=
√

AA[t]2 + BB[t]2/.solution;X[t ]:=
√

AA[t]2 + BB[t]2/.solution;

P [t ]:=
√

RR[t]2 + SS[t]2/.solution;P [t ]:=
√
RR[t]2 + SS[t]2/.solution;P [t ]:=

√
RR[t]2 + SS[t]2/.solution;

Print[Plot[X[t], {t, tLimit− 1500, tLimit},PlotRange → All,AxesLabel →Print[Plot[X[t], {t, tLimit− 1500, tLimit},PlotRange → All,AxesLabel →Print[Plot[X[t], {t, tLimit− 1500, tLimit},PlotRange → All,AxesLabel →

{Style[t,Large,Bold],{Style[t,Large,Bold],{Style[t,Large,Bold],

Style[|X| ,Large,Bold]},AxesStyle → Thick]];Style[|X| ,Large,Bold]},AxesStyle → Thick]];Style[|X| ,Large,Bold]},AxesStyle → Thick]];

datas = Table[{AA[t][[1]],BB[t][[1]], dd[t][[1]]}, {t, tLimit− 4000, tLimit(*,∆t*)}];datas = Table[{AA[t][[1]],BB[t][[1]], dd[t][[1]]}, {t, tLimit− 4000, tLimit(*,∆t*)}];datas = Table[{AA[t][[1]],BB[t][[1]], dd[t][[1]]}, {t, tLimit− 4000, tLimit(*,∆t*)}];

Print[ListPointPlot3D[datas,AxesLabel → {“Re |X|”, “Im |X|”, “D ”},BaseStyle →Print[ListPointPlot3D[datas,AxesLabel → {“Re |X|”, “Im |X|”, “D ”},BaseStyle →Print[ListPointPlot3D[datas,AxesLabel → {“Re |X|”, “Im |X|”, “D ”},BaseStyle →

{FontWeight →{FontWeight →{FontWeight →

“Bold”,FontSize → 18},PlotRange → Full]];“Bold”,FontSize → 18},PlotRange → Full]];“Bold”,FontSize → 18},PlotRange → Full]];

A0 = First[A[tLimit]/.solution];A0 = First[A[tLimit]/.solution];A0 = First[A[tLimit]/.solution];

B0 = First[B[tLimit]/.solution];B0 = First[B[tLimit]/.solution];B0 = First[B[tLimit]/.solution];

R0 = First[R[tLimit]/.solution];R0 = First[R[tLimit]/.solution];R0 = First[R[tLimit]/.solution];

S0 = First[S[tLimit]/.solution];S0 = First[S[tLimit]/.solution];S0 = First[S[tLimit]/.solution];

d0 = First[d[tLimit]/.solution];d0 = First[d[tLimit]/.solution];d0 = First[d[tLimit]/.solution];

link = {Y,A0, B0, R0, S0, d0} ;link = {Y,A0, B0, R0, S0, d0} ;link = {Y,A0, B0, R0, S0, d0} ;

AppendTo[chain, link];AppendTo[chain, link];AppendTo[chain, link];

(*loop end*)(*loop end*)(*loop end*)

];];];

Print[chain];Print[chain];Print[chain];

CreateDirectory[“Lis System\\Case ” <> ToString[Case] <> “\\MC”];CreateDirectory[“Lis System\\Case ” <> ToString[Case] <> “\\MC”];CreateDirectory[“Lis System\\Case ” <> ToString[Case] <> “\\MC”];

Export[“Lis System\\Case ” <> ToString[Case] <> “\\MC\\MC Run ” <>Export[“Lis System\\Case ” <> ToString[Case] <> “\\MC\\MC Run ” <>Export[“Lis System\\Case ” <> ToString[Case] <> “\\MC\\MC Run ” <>

ToString[runNum] <> “ Y From ” <> ToString[YMin] <> “ to ” <>ToString[runNum] <> “ Y From ” <> ToString[YMin] <> “ to ” <>ToString[runNum] <> “ Y From ” <> ToString[YMin] <> “ to ” <>

ToString[YMax] <> “ Steps=” <> ToString[steps] <> "ToString[YMax] <> “ Steps=” <> ToString[steps] <> "ToString[YMax] <> “ Steps=” <> ToString[steps] <> "
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tlim=" <> ToString[tLimit] <> “.xlsx”, chain];tlim=" <> ToString[tLimit] <> “.xlsx”, chain];tlim=" <> ToString[tLimit] <> “.xlsx”, chain];

(*Exportthechainwiththenumberintheexcelfile′stitle*)(*Exportthechainwiththenumberintheexcelfile′stitle*)(*Exportthechainwiththenumberintheexcelfile′stitle*)

Power shift codes

LIS Power shift

Clear[“Global̀*”]Clear[“Global̀*”]Clear[“Global̀*”]

Case = 2;Case = 2;Case = 2;

Attractor = 3;Attractor = 3;Attractor = 3;

YLoad = 1.63;YLoad = 1.63;YLoad = 1.63;

YInitial = 1.63;YInitial = 1.63;YInitial = 1.63;

AttractorR = 5;AttractorR = 5;AttractorR = 5;

AttractorL = 2;AttractorL = 2;AttractorL = 2;

thres = 0.5;thres = 0.5;thres = 0.5;

Y = YInitial;Y = YInitial;Y = YInitial;

YPert = 1.84;YPert = 1.84;YPert = 1.84;

runN = 2000;runN = 2000;runN = 2000;

tLag = 15;tLag = 15;tLag = 15;

tR = 49;tR = 49;tR = 49;

outPut = True; (*set if you want to see output to check phase space*)outPut = True; (*set if you want to see output to check phase space*)outPut = True; (*set if you want to see output to check phase space*)

SetSharedVariable[attrat]SetSharedVariable[attrat]SetSharedVariable[attrat]

(*switched from the test Y vary*)(*switched from the test Y vary*)(*switched from the test Y vary*)

attrat = {{“TAP”, “Att ”}};attrat = {{“TAP”, “Att ”}};attrat = {{“TAP”, “Att ”}};

Upload = True;Upload = True;Upload = True;

45



wthywtni = {{Y, “Ω Zero”}};wthywtni = {{Y, “Ω Zero”}};wthywtni = {{Y, “Ω Zero”}};

δv = 0;δv = 0;δv = 0;

A0 = δv;A0 = δv;A0 = δv;

B0 = δv;B0 = δv;B0 = δv;

R0 = δv;R0 = δv;R0 = δv;

S0 = δv;S0 = δv;S0 = δv;

d0 = δv;d0 = δv;d0 = δv;

thr = 0.15;thr = 0.15;thr = 0.15;

∆t = 0.02;∆t = 0.02;∆t = 0.02;

tLimit = 30000;tLimit = 30000;tLimit = 30000;

tPert = 1490;tPert = 1490;tPert = 1490;

nW0 = 0.003nW0 = 0.003nW0 = 0.003

nW = nW0/Sqrt[2 ∗ Log[2]];nW = nW0/Sqrt[2 ∗ Log[2]];nW = nW0/Sqrt[2 ∗ Log[2]];

nWeight = 1;nWeight = 1;nWeight = 1;

nRate = 0.2;nRate = 0.2;nRate = 0.2;

noiseT = 20000;noiseT = 20000;noiseT = 20000;

num = 1;num = 1;num = 1;

(*make sure not to overwrite previous runs*)(*make sure not to overwrite previous runs*)(*make sure not to overwrite previous runs*)

While[num ≤ 100,While[num ≤ 100,While[num ≤ 100,

If[FileExistsQ[“Lis System\\Case ” <> ToString[Case] <> "\\Power shift data\\runIf[FileExistsQ[“Lis System\\Case ” <> ToString[Case] <> "\\Power shift data\\runIf[FileExistsQ[“Lis System\\Case ” <> ToString[Case] <> "\\Power shift data\\run

" <> ToString[num] <> “ FN GNoise Power shift from Attractor ” <> ToString[Attractor]" <> ToString[num] <> “ FN GNoise Power shift from Attractor ” <> ToString[Attractor]" <> ToString[num] <> “ FN GNoise Power shift from Attractor ” <> ToString[Attractor]

<> “ for Y = ” <> ToString[Y ] <> “ to ” <> ToString[YPert] <> “ tLag=” <><> “ for Y = ” <> ToString[Y ] <> “ to ” <> ToString[YPert] <> “ tLag=” <><> “ for Y = ” <> ToString[Y ] <> “ to ” <> ToString[YPert] <> “ tLag=” <>

ToString@tLag <> “ gnWeight=” <> ToString[nW0] <> “.xlsx”], num++; ,ToString@tLag <> “ gnWeight=” <> ToString[nW0] <> “.xlsx”], num++; ,ToString@tLag <> “ gnWeight=” <> ToString[nW0] <> “.xlsx”], num++; ,

Print[“run number ” <> ToString[num] <> “.”]; Break[]]];Print[“run number ” <> ToString[num] <> “.”]; Break[]]];Print[“run number ” <> ToString[num] <> “.”]; Break[]]];

If[num ≥ 101,Print[“too many runs”]; Exit[],False];If[num ≥ 101,Print[“too many runs”]; Exit[],False];If[num ≥ 101,Print[“too many runs”]; Exit[],False];

If[Upload,If[Upload,If[Upload,

file = ToExpression[Import[“Lis System\\Case ” <> ToString[Case] <> “\\Attractor ”file = ToExpression[Import[“Lis System\\Case ” <> ToString[Case] <> “\\Attractor ”file = ToExpression[Import[“Lis System\\Case ” <> ToString[Case] <> “\\Attractor ”
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<> ToString[Attractor] <> “\\SteadyState Y=” <> ToString[YLoad] <> “.txt”]];<> ToString[Attractor] <> “\\SteadyState Y=” <> ToString[YLoad] <> “.txt”]];<> ToString[Attractor] <> “\\SteadyState Y=” <> ToString[YLoad] <> “.txt”]];

A0 = file[[1]];A0 = file[[1]];A0 = file[[1]];

B0 = file[[2]];B0 = file[[2]];B0 = file[[2]];

R0 = file[[3]];R0 = file[[3]];R0 = file[[3]];

S0 = file[[4]];S0 = file[[4]];S0 = file[[4]];

d0 = file[[5]];d0 = file[[5]];d0 = file[[5]];

file = ToExpression[Import[“Lis System\\Case ” <> ToString[Case] <> "\\Attractorfile = ToExpression[Import[“Lis System\\Case ” <> ToString[Case] <> "\\Attractorfile = ToExpression[Import[“Lis System\\Case ” <> ToString[Case] <> "\\Attractor

" <> ToString[AttractorR] <> “\\SteadyState Y=” <> ToString[YPert] <> “.txt”]];" <> ToString[AttractorR] <> “\\SteadyState Y=” <> ToString[YPert] <> “.txt”]];" <> ToString[AttractorR] <> “\\SteadyState Y=” <> ToString[YPert] <> “.txt”]];

A1 = file[[1]];A1 = file[[1]];A1 = file[[1]];

B1 = file[[2]];B1 = file[[2]];B1 = file[[2]];

R1 = file[[3]];R1 = file[[3]];R1 = file[[3]];

S1 = file[[4]];S1 = file[[4]];S1 = file[[4]];

d1 = file[[5]];d1 = file[[5]];d1 = file[[5]];

prd = ToExpression[Import[“Lis System\\Case ” <> ToString[Case] <> "\\Attractorprd = ToExpression[Import[“Lis System\\Case ” <> ToString[Case] <> "\\Attractorprd = ToExpression[Import[“Lis System\\Case ” <> ToString[Case] <> "\\Attractor

" <> ToString[AttractorR] <> “\\Periods\\Y=” <> ToString[YPert] <> “.txt”]];" <> ToString[AttractorR] <> “\\Periods\\Y=” <> ToString[YPert] <> “.txt”]];" <> ToString[AttractorR] <> “\\Periods\\Y=” <> ToString[YPert] <> “.txt”]];

Print[prd];Print[prd];Print[prd];

prd0 = ToExpression[Import[“Lis System\\Case ” <> ToString[Case] <> "\\Attractorprd0 = ToExpression[Import[“Lis System\\Case ” <> ToString[Case] <> "\\Attractorprd0 = ToExpression[Import[“Lis System\\Case ” <> ToString[Case] <> "\\Attractor

" <> ToString[Attractor] <> “\\Periods\\Y=” <> ToString[YLoad] <> “.txt”]];" <> ToString[Attractor] <> “\\Periods\\Y=” <> ToString[YLoad] <> “.txt”]];" <> ToString[Attractor] <> “\\Periods\\Y=” <> ToString[YLoad] <> “.txt”]];

Print[prd0];Print[prd0];Print[prd0];

,,,

{A0, B0, R0, S0, d0}] ;{A0, B0, R0, S0, d0}] ;{A0, B0, R0, S0, d0}] ;

TAP0 = 7;TAP0 = 7;TAP0 = 7;

If[tR ≥ TAP0,If[tR ≥ TAP0,If[tR ≥ TAP0,
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TAP0+=prd0; ,False];TAP0+=prd0; ,False];TAP0+=prd0; ,False];

If[Case == 1,If[Case == 1,If[Case == 1,

c = 20.0;c = 20.0;c = 20.0;

k = 0.5;k = 0.5;k = 0.5;

ϕ = −1.0;ϕ = −1.0;ϕ = −1.0;

γ = 0.05;γ = 0.05;γ = 0.05;

∆ = 1.0];∆ = 1.0];∆ = 1.0];

If[Case == 2,If[Case == 2,If[Case == 2,

c = 3.0;c = 3.0;c = 3.0;

k = 0.1;k = 0.1;k = 0.1;

ϕ = −0.5 ∗ k;ϕ = −0.5 ∗ k;ϕ = −0.5 ∗ k;

γ = 0.01;γ = 0.01;γ = 0.01;

∆ = 0.5];∆ = 0.5];∆ = 0.5];

If[Case == 3,If[Case == 3,If[Case == 3,

c = 11.6883;c = 11.6883;c = 11.6883;

k = 1.0 ∗ 10∧ − 3;k = 1.0 ∗ 10∧ − 3;k = 1.0 ∗ 10∧ − 3;

ϕ = −5.0 ∗ 10∧ − 4;ϕ = −5.0 ∗ 10∧ − 4;ϕ = −5.0 ∗ 10∧ − 4;

γ = 1.0 ∗ 10∧ − 5;γ = 1.0 ∗ 10∧ − 5;γ = 1.0 ∗ 10∧ − 5;

∆ = 5.0 ∗ 10∧ − 4];∆ = 5.0 ∗ 10∧ − 4];∆ = 5.0 ∗ 10∧ − 4];

If[Case == 4,If[Case == 4,If[Case == 4,

c = 3.0;c = 3.0;c = 3.0;

k = 5.24;k = 5.24;k = 5.24;

ϕ = −1.0;ϕ = −1.0;ϕ = −1.0;

γ = 1.0 ∗ 10∧ − 4;γ = 1.0 ∗ 10∧ − 4;γ = 1.0 ∗ 10∧ − 4;

∆ = 1.0];∆ = 1.0];∆ = 1.0];
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A5peaks[yv ]:=− 263.55yv2 + 982.43yv− 912.61;A5peaks[yv ]:=− 263.55yv2 + 982.43yv− 912.61;A5peaks[yv ]:=− 263.55yv2 + 982.43yv− 912.61;

A3peaks[yv ]:=− 5414.9yv4 + 37358yv3 − 96674yv2 + 111207yv− 47975;A3peaks[yv ]:=− 5414.9yv4 + 37358yv3 − 96674yv2 + 111207yv− 47975;A3peaks[yv ]:=− 5414.9yv4 + 37358yv3 − 96674yv2 + 111207yv− 47975;

If[Upload,If[Upload,If[Upload,

solution0 = NDSolve[{solution0 = NDSolve[{solution0 = NDSolve[{

A′[t] == −k ∗
(
A[t] +

(
B[t] ∗ ϕ

k

)
− YPert + (2 ∗ c ∗R[t])

)
,A′[t] == −k ∗

(
A[t] +

(
B[t] ∗ ϕ

k

)
− YPert + (2 ∗ c ∗R[t])

)
,A′[t] == −k ∗

(
A[t] +

(
B[t] ∗ ϕ

k

)
− YPert + (2 ∗ c ∗R[t])

)
,

B′[t] == −k ∗
(
B[t]−

(
A[t] ∗ ϕ

k

)
+ (2 ∗ c ∗ S[t])

)
,B′[t] == −k ∗

(
B[t]−

(
A[t] ∗ ϕ

k

)
+ (2 ∗ c ∗ S[t])

)
,B′[t] == −k ∗

(
B[t]−

(
A[t] ∗ ϕ

k

)
+ (2 ∗ c ∗ S[t])

)
,

R′[t] == −(R[t]− (∆ ∗ S[t])) + (A[t] ∗ d[t]),R′[t] == −(R[t]− (∆ ∗ S[t])) + (A[t] ∗ d[t]),R′[t] == −(R[t]− (∆ ∗ S[t])) + (A[t] ∗ d[t]),

S ′[t] == −((∆ ∗R[t]) + S[t]) + (B[t] ∗ d[t]),S ′[t] == −((∆ ∗R[t]) + S[t]) + (B[t] ∗ d[t]),S ′[t] == −((∆ ∗R[t]) + S[t]) + (B[t] ∗ d[t]),

d′[t] == −γ ∗ ((A[t] ∗R[t]) + (B[t] ∗ S[t]) + d[t] + 1),d′[t] == −γ ∗ ((A[t] ∗R[t]) + (B[t] ∗ S[t]) + d[t] + 1),d′[t] == −γ ∗ ((A[t] ∗R[t]) + (B[t] ∗ S[t]) + d[t] + 1),

A[0] == A1,A[0] == A1,A[0] == A1,

B[0] == B1,B[0] == B1,B[0] == B1,

R[0] == R1,R[0] == R1,R[0] == R1,

S[0] == S1,S[0] == S1,S[0] == S1,

d[0] == d1d[0] == d1d[0] == d1

}, {A,B, S,R, d}, {t, 0, tLimit},PrecisionGoal → ∞,MaxSteps → ∞,}, {A,B, S,R, d}, {t, 0, tLimit},PrecisionGoal → ∞,MaxSteps → ∞,}, {A,B, S,R, d}, {t, 0, tLimit},PrecisionGoal → ∞,MaxSteps → ∞,

MaxStepSize → ∆t];MaxStepSize → ∆t];MaxStepSize → ∆t];

AA1[t ]:=A[t]/.solution0[[1]];AA1[t ]:=A[t]/.solution0[[1]];AA1[t ]:=A[t]/.solution0[[1]];

BB1[t ]:=B[t]/.solution0[[1]];BB1[t ]:=B[t]/.solution0[[1]];BB1[t ]:=B[t]/.solution0[[1]];

RR1[t ]:=R[t]/.solution0[[1]];RR1[t ]:=R[t]/.solution0[[1]];RR1[t ]:=R[t]/.solution0[[1]];

SS1[t ]:=S[t]/.solution0[[1]];SS1[t ]:=S[t]/.solution0[[1]];SS1[t ]:=S[t]/.solution0[[1]];

dd1[t ]:=d[t]/.solution0[[1]];dd1[t ]:=d[t]/.solution0[[1]];dd1[t ]:=d[t]/.solution0[[1]];

atrad[t ]:={AA1[t],BB1[t],RR1[t], SS1[t], dd1[t]}/.solution0[[1]];atrad[t ]:={AA1[t],BB1[t],RR1[t], SS1[t], dd1[t]}/.solution0[[1]];atrad[t ]:={AA1[t],BB1[t],RR1[t], SS1[t], dd1[t]}/.solution0[[1]];

Print[ListPointPlot3D[Table[{AA1[t],BB1[t], dd1[t]}, {t, tLimit− prd− 0.5,Print[ListPointPlot3D[Table[{AA1[t],BB1[t], dd1[t]}, {t, tLimit− prd− 0.5,Print[ListPointPlot3D[Table[{AA1[t],BB1[t], dd1[t]}, {t, tLimit− prd− 0.5,

tLimit, 0.25}]]];tLimit, 0.25}]]];tLimit, 0.25}]]];
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lineR = Table[{AA1[t],BB1[t],RR1[t], SS1[t], dd1[t]}, {t, tLimit− prd− 0.5,lineR = Table[{AA1[t],BB1[t],RR1[t], SS1[t], dd1[t]}, {t, tLimit− prd− 0.5,lineR = Table[{AA1[t],BB1[t],RR1[t], SS1[t], dd1[t]}, {t, tLimit− prd− 0.5,

tLimit,∆t}]tLimit,∆t}]tLimit,∆t}]

,False];,False];,False];

solution = NDSolve[{solution = NDSolve[{solution = NDSolve[{

A′[t] == −k ∗
(
A[t] +

(
B[t] ∗ ϕ

k

)
− Y + (2 ∗ c ∗R[t])

)
,A′[t] == −k ∗

(
A[t] +

(
B[t] ∗ ϕ

k

)
− Y + (2 ∗ c ∗R[t])

)
,A′[t] == −k ∗

(
A[t] +

(
B[t] ∗ ϕ

k

)
− Y + (2 ∗ c ∗R[t])

)
,

B′[t] == −k ∗
(
B[t]−

(
A[t] ∗ ϕ

k

)
+ (2 ∗ c ∗ S[t])

)
,B′[t] == −k ∗

(
B[t]−

(
A[t] ∗ ϕ

k

)
+ (2 ∗ c ∗ S[t])

)
,B′[t] == −k ∗

(
B[t]−

(
A[t] ∗ ϕ

k

)
+ (2 ∗ c ∗ S[t])

)
,

R′[t] == −(R[t]− (∆ ∗ S[t])) + (A[t] ∗ d[t]),R′[t] == −(R[t]− (∆ ∗ S[t])) + (A[t] ∗ d[t]),R′[t] == −(R[t]− (∆ ∗ S[t])) + (A[t] ∗ d[t]),

S ′[t] == −((∆ ∗R[t]) + S[t]) + (B[t] ∗ d[t]),S ′[t] == −((∆ ∗R[t]) + S[t]) + (B[t] ∗ d[t]),S ′[t] == −((∆ ∗R[t]) + S[t]) + (B[t] ∗ d[t]),

d′[t] == −γ ∗ ((A[t] ∗R[t]) + (B[t] ∗ S[t]) + d[t] + 1),d′[t] == −γ ∗ ((A[t] ∗R[t]) + (B[t] ∗ S[t]) + d[t] + 1),d′[t] == −γ ∗ ((A[t] ∗R[t]) + (B[t] ∗ S[t]) + d[t] + 1),

A[0] == A0,A[0] == A0,A[0] == A0,

B[0] == B0,B[0] == B0,B[0] == B0,

R[0] == R0,R[0] == R0,R[0] == R0,

S[0] == S0,S[0] == S0,S[0] == S0,

d[0] == d0d[0] == d0d[0] == d0

}, {A,B, S,R, d}, {t, 0, tLimit},PrecisionGoal → ∞,MaxSteps → ∞,}, {A,B, S,R, d}, {t, 0, tLimit},PrecisionGoal → ∞,MaxSteps → ∞,}, {A,B, S,R, d}, {t, 0, tLimit},PrecisionGoal → ∞,MaxSteps → ∞,

MaxStepSize → ∆t];MaxStepSize → ∆t];MaxStepSize → ∆t];

AA[t ]:=A[t]/.solution;AA[t ]:=A[t]/.solution;AA[t ]:=A[t]/.solution;

BB[t ]:=B[t]/.solution;BB[t ]:=B[t]/.solution;BB[t ]:=B[t]/.solution;

RR[t ]:=R[t]/.solution;RR[t ]:=R[t]/.solution;RR[t ]:=R[t]/.solution;

SS[t ]:=S[t]/.solution;SS[t ]:=S[t]/.solution;SS[t ]:=S[t]/.solution;

dd[t ]:=d[t]/.solution;dd[t ]:=d[t]/.solution;dd[t ]:=d[t]/.solution;

X[t ]:=
√

AA[t]2 + BB[t]2/.solution;X[t ]:=
√

AA[t]2 + BB[t]2/.solution;X[t ]:=
√

AA[t]2 + BB[t]2/.solution;

Print[Plot[X[t], {t, tLimit− 1000, tLimit},PlotRange → All,AxesLabel → {Style[t,Print[Plot[X[t], {t, tLimit− 1000, tLimit},PlotRange → All,AxesLabel → {Style[t,Print[Plot[X[t], {t, tLimit− 1000, tLimit},PlotRange → All,AxesLabel → {Style[t,
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Large,Bold], Style[|x| ,Large,Bold]},AxesStyle → Thick]];Large,Bold], Style[|x| ,Large,Bold]},AxesStyle → Thick]];Large,Bold], Style[|x| ,Large,Bold]},AxesStyle → Thick]];

datas = Table[{AA[t][[1]],BB[t][[1]], dd[t][[1]]}, {t, tLimit− 1000, tLimit}];datas = Table[{AA[t][[1]],BB[t][[1]], dd[t][[1]]}, {t, tLimit− 1000, tLimit}];datas = Table[{AA[t][[1]],BB[t][[1]], dd[t][[1]]}, {t, tLimit− 1000, tLimit}];

spiral0Base = ListPointPlot3D[datas,AxesLabel → {“Re |X|”, “Im |X|”, “D ”},spiral0Base = ListPointPlot3D[datas,AxesLabel → {“Re |X|”, “Im |X|”, “D ”},spiral0Base = ListPointPlot3D[datas,AxesLabel → {“Re |X|”, “Im |X|”, “D ”},

BaseStyle → {FontWeight → “Bold”,FontSize → 18},PlotRange → Full,PlotStyleBaseStyle → {FontWeight → “Bold”,FontSize → 18},PlotRange → Full,PlotStyleBaseStyle → {FontWeight → “Bold”,FontSize → 18},PlotRange → Full,PlotStyle

→ Green];→ Green];→ Green];

Print[spiral0Base];Print[spiral0Base];Print[spiral0Base];

(*need to find CTTC for base att*)(*need to find CTTC for base att*)(*need to find CTTC for base att*)

firstRun = Plot[X[t], {t, tLimit− 1000, tLimit},PlotRange → All,AxesLabel →firstRun = Plot[X[t], {t, tLimit− 1000, tLimit},PlotRange → All,AxesLabel →firstRun = Plot[X[t], {t, tLimit− 1000, tLimit},PlotRange → All,AxesLabel →

{Style[t,Large,Bold], Style[“|X|”,Large,Bold]},AxesStyle → Thick];{Style[t,Large,Bold], Style[“|X|”,Large,Bold]},AxesStyle → Thick];{Style[t,Large,Bold], Style[“|X|”,Large,Bold]},AxesStyle → Thick];

Print[firstRun];Print[firstRun];Print[firstRun];

maxP = Max[Last/@Level[Cases[firstRun, Line, Infinity], {−2}]];maxP = Max[Last/@Level[Cases[firstRun, Line, Infinity], {−2}]];maxP = Max[Last/@Level[Cases[firstRun, Line, Infinity], {−2}]];

Print[maxP];Print[maxP];Print[maxP];

sns = Position[firstRun,Max[Last/@Level[Cases[firstRun, Line, Infinity],sns = Position[firstRun,Max[Last/@Level[Cases[firstRun, Line, Infinity],sns = Position[firstRun,Max[Last/@Level[Cases[firstRun, Line, Infinity],

{−2}]]][[1]];{−2}]]][[1]];{−2}]]][[1]];

Print[sns = ReplacePart[sns,Length[sns] → 1]];Print[sns = ReplacePart[sns,Length[sns] → 1]];Print[sns = ReplacePart[sns,Length[sns] → 1]];

Print[Extract[firstRun, sns]];Print[Extract[firstRun, sns]];Print[Extract[firstRun, sns]];

maxXPoint = {AA[Extract[firstRun, sns]][[1]],BB[Extract[firstRun, sns]][[1]],maxXPoint = {AA[Extract[firstRun, sns]][[1]],BB[Extract[firstRun, sns]][[1]],maxXPoint = {AA[Extract[firstRun, sns]][[1]],BB[Extract[firstRun, sns]][[1]],

RR[Extract[firstRun, sns]][[1]], SS[Extract[firstRun, sns]][[1]],RR[Extract[firstRun, sns]][[1]], SS[Extract[firstRun, sns]][[1]],RR[Extract[firstRun, sns]][[1]], SS[Extract[firstRun, sns]][[1]],

dd[Extract[firstRun, sns]][[1]]};dd[Extract[firstRun, sns]][[1]]};dd[Extract[firstRun, sns]][[1]]};

Print[maxXPoint];Print[maxXPoint];Print[maxXPoint];

A1 = maxXPoint[[1]];A1 = maxXPoint[[1]];A1 = maxXPoint[[1]];

B1 = maxXPoint[[2]];B1 = maxXPoint[[2]];B1 = maxXPoint[[2]];

R1 = maxXPoint[[3]];R1 = maxXPoint[[3]];R1 = maxXPoint[[3]];
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S1 = maxXPoint[[4]];S1 = maxXPoint[[4]];S1 = maxXPoint[[4]];

d1 = maxXPoint[[5]];d1 = maxXPoint[[5]];d1 = maxXPoint[[5]];

SetSharedVariable[prog];SetSharedVariable[prog];SetSharedVariable[prog];

prog = 0;prog = 0;prog = 0;

Dynamic[Row@{ProgressIndicator[prog, {0,Ceiling[prd0]}], prog, “/”,Ceiling[prd0]},Dynamic[Row@{ProgressIndicator[prog, {0,Ceiling[prd0]}], prog, “/”,Ceiling[prd0]},Dynamic[Row@{ProgressIndicator[prog, {0,Ceiling[prd0]}], prog, “/”,Ceiling[prd0]},

TrackedSymbols → {},UpdateInterval → 2]TrackedSymbols → {},UpdateInterval → 2]TrackedSymbols → {},UpdateInterval → 2]

ParallelDo[ParallelDo[ParallelDo[

If[tLag == 0,YV[t ] = Piecewise[{{Y, t < TAP}, {YPert, t ≥ TAP}}],YV[t ] =If[tLag == 0,YV[t ] = Piecewise[{{Y, t < TAP}, {YPert, t ≥ TAP}}],YV[t ] =If[tLag == 0,YV[t ] = Piecewise[{{Y, t < TAP}, {YPert, t ≥ TAP}}],YV[t ] =

Piecewise[{{Y, t < TAP}, {Y + (t− TAP) ∗ (YPert− Y )/tLag,Piecewise[{{Y, t < TAP}, {Y + (t− TAP) ∗ (YPert− Y )/tLag,Piecewise[{{Y, t < TAP}, {Y + (t− TAP) ∗ (YPert− Y )/tLag,

TAP ≤ t < TAP + tLag}, {YPert, t ≥ tLag + TAP}}]];TAP ≤ t < TAP + tLag}, {YPert, t ≥ tLag + TAP}}]];TAP ≤ t < TAP + tLag}, {YPert, t ≥ tLag + TAP}}]];

nWeight = 1;nWeight = 1;nWeight = 1;

solution = NDSolve[{solution = NDSolve[{solution = NDSolve[{

A′[t] == −k ∗
(
A[t] +

(
B[t] ∗ ϕ−rar[t]

k

)
− YV[t] + (2 ∗ c ∗R[t])

)
,A′[t] == −k ∗

(
A[t] +

(
B[t] ∗ ϕ−rar[t]

k

)
− YV[t] + (2 ∗ c ∗R[t])

)
,A′[t] == −k ∗

(
A[t] +

(
B[t] ∗ ϕ−rar[t]

k

)
− YV[t] + (2 ∗ c ∗R[t])

)
,

B′[t] == −k ∗
(
B[t]−

(
A[t] ∗ ϕ−rar[t]

k

)
+ (2 ∗ c ∗ S[t])

)
,B′[t] == −k ∗

(
B[t]−

(
A[t] ∗ ϕ−rar[t]

k

)
+ (2 ∗ c ∗ S[t])

)
,B′[t] == −k ∗

(
B[t]−

(
A[t] ∗ ϕ−rar[t]

k

)
+ (2 ∗ c ∗ S[t])

)
,

R′[t] == −(R[t]− ((∆ + rar[t]) ∗ S[t])) + (A[t] ∗ d[t]),R′[t] == −(R[t]− ((∆ + rar[t]) ∗ S[t])) + (A[t] ∗ d[t]),R′[t] == −(R[t]− ((∆ + rar[t]) ∗ S[t])) + (A[t] ∗ d[t]),

S ′[t] == −(((∆ + rar[t]) ∗R[t]) + S[t]) + (B[t] ∗ d[t]),S ′[t] == −(((∆ + rar[t]) ∗R[t]) + S[t]) + (B[t] ∗ d[t]),S ′[t] == −(((∆ + rar[t]) ∗R[t]) + S[t]) + (B[t] ∗ d[t]),

d′[t] == −γ ∗ ((A[t] ∗R[t]) + (B[t] ∗ S[t]) + d[t] + 1),d′[t] == −γ ∗ ((A[t] ∗R[t]) + (B[t] ∗ S[t]) + d[t] + 1),d′[t] == −γ ∗ ((A[t] ∗R[t]) + (B[t] ∗ S[t]) + d[t] + 1),

A[0] == A1,A[0] == A1,A[0] == A1,

B[0] == B1,B[0] == B1,B[0] == B1,

R[0] == R1,R[0] == R1,R[0] == R1,

S[0] == S1,S[0] == S1,S[0] == S1,

d[0] == d1,d[0] == d1,d[0] == d1,
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rar′[t] == 0,rar′[t] == 0,rar′[t] == 0,

rar[0] == 0,rar[0] == 0,rar[0] == 0,

WhenEvent[0 == Mod[t, nRate], rar[t] → nWeight∗WhenEvent[0 == Mod[t, nRate], rar[t] → nWeight∗WhenEvent[0 == Mod[t, nRate], rar[t] → nWeight∗

RandomVariate[NormalDistribution[0, nW]]],RandomVariate[NormalDistribution[0, nW]]],RandomVariate[NormalDistribution[0, nW]]],

WhenEvent[t > noiseT, nWeight = 0]}, {A,B, S,R, d, rar}, {t, 0, tLimit},WhenEvent[t > noiseT, nWeight = 0]}, {A,B, S,R, d, rar}, {t, 0, tLimit},WhenEvent[t > noiseT, nWeight = 0]}, {A,B, S,R, d, rar}, {t, 0, tLimit},

PrecisionGoal → ∞,PrecisionGoal → ∞,PrecisionGoal → ∞,

MaxSteps → ∞,MaxStepSize → ∆t,Method → “StiffnessSwitching”];MaxSteps → ∞,MaxStepSize → ∆t,Method → “StiffnessSwitching”];MaxSteps → ∞,MaxStepSize → ∆t,Method → “StiffnessSwitching”];

AA[t ]:=A[t]/.solution;AA[t ]:=A[t]/.solution;AA[t ]:=A[t]/.solution;

BB[t ]:=B[t]/.solution;BB[t ]:=B[t]/.solution;BB[t ]:=B[t]/.solution;

RR[t ]:=R[t]/.solution;RR[t ]:=R[t]/.solution;RR[t ]:=R[t]/.solution;

SS[t ]:=S[t]/.solution;SS[t ]:=S[t]/.solution;SS[t ]:=S[t]/.solution;

dd[t ]:=d[t]/.solution;dd[t ]:=d[t]/.solution;dd[t ]:=d[t]/.solution;

pointShift = {{First[A[TAP]/.solution],First[B[TAP]/.solution],pointShift = {{First[A[TAP]/.solution],First[B[TAP]/.solution],pointShift = {{First[A[TAP]/.solution],First[B[TAP]/.solution],

First[d[TAP]/.solution]}};First[d[TAP]/.solution]}};First[d[TAP]/.solution]}};

(*where the first shift happens*)(*where the first shift happens*)(*where the first shift happens*)

datSB = ListPointPlot3D[pointShift,AxesLabel → {“Re |X|”, “Im |X|”, “D ”},datSB = ListPointPlot3D[pointShift,AxesLabel → {“Re |X|”, “Im |X|”, “D ”},datSB = ListPointPlot3D[pointShift,AxesLabel → {“Re |X|”, “Im |X|”, “D ”},

BaseStyle → {FontWeight → “Bold”,FontSize → 12,PointSize → Large},PlotStyle →BaseStyle → {FontWeight → “Bold”,FontSize → 12,PointSize → Large},PlotStyle →BaseStyle → {FontWeight → “Bold”,FontSize → 12,PointSize → Large},PlotStyle →

Magenta,PlotRange → Full];Magenta,PlotRange → Full];Magenta,PlotRange → Full];

X[t ]:=
√

AA[t]2 + BB[t]2/.solution;X[t ]:=
√

AA[t]2 + BB[t]2/.solution;X[t ]:=
√

AA[t]2 + BB[t]2/.solution;

datas = Table[{AA[t][[1]],BB[t][[1]], dd[t][[1]]}, {t, noiseT− 4000, noiseT}];datas = Table[{AA[t][[1]],BB[t][[1]], dd[t][[1]]}, {t, noiseT− 4000, noiseT}];datas = Table[{AA[t][[1]],BB[t][[1]], dd[t][[1]]}, {t, noiseT− 4000, noiseT}];

spiral = ListPointPlot3D[datas,AxesLabel → {“Re |X|”, “Im |X|”, “D ”},spiral = ListPointPlot3D[datas,AxesLabel → {“Re |X|”, “Im |X|”, “D ”},spiral = ListPointPlot3D[datas,AxesLabel → {“Re |X|”, “Im |X|”, “D ”},

BaseStyle →BaseStyle →BaseStyle →
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{FontWeight → “Bold”,FontSize → 18},PlotRange → Full,PlotStyle → Blue];{FontWeight → “Bold”,FontSize → 18},PlotRange → Full,PlotStyle → Blue];{FontWeight → “Bold”,FontSize → 18},PlotRange → Full,PlotStyle → Blue];

datas = Table[{AA[t][[1]],BB[t][[1]], dd[t][[1]]}, {t, tLimit− 4000, tLimitdatas = Table[{AA[t][[1]],BB[t][[1]], dd[t][[1]]}, {t, tLimit− 4000, tLimitdatas = Table[{AA[t][[1]],BB[t][[1]], dd[t][[1]]}, {t, tLimit− 4000, tLimit

(*,∆t*)}];(*,∆t*)}];(*,∆t*)}];

(*Attractor checker here*)(*Attractor checker here*)(*Attractor checker here*)

AEpeaks = {};AEpeaks = {};AEpeaks = {};

temporalX = Table[{t, If[X[t][[1, 1]] > X[t−∆t][[1, 1]]&&X[t][[1, 1]] >temporalX = Table[{t, If[X[t][[1, 1]] > X[t−∆t][[1, 1]]&&X[t][[1, 1]] >temporalX = Table[{t, If[X[t][[1, 1]] > X[t−∆t][[1, 1]]&&X[t][[1, 1]] >

X[t+∆t][[1, 1]]X[t+∆t][[1, 1]]X[t+∆t][[1, 1]]

, X[t][[1, 1]]; AppendTo[AEpeaks,Round[X[t][[1, 1]], 0.0001]], X[t], X[t][[1, 1]]; AppendTo[AEpeaks,Round[X[t][[1, 1]], 0.0001]], X[t], X[t][[1, 1]]; AppendTo[AEpeaks,Round[X[t][[1, 1]], 0.0001]], X[t]

[[1, 1]]]},[[1, 1]]]},[[1, 1]]]},

{t, tLimit− prd− 0.5, tLimit,∆t}];{t, tLimit− prd− 0.5, tLimit,∆t}];{t, tLimit− prd− 0.5, tLimit,∆t}];

AEpeaks = DeleteDuplicates[AEpeaks];AEpeaks = DeleteDuplicates[AEpeaks];AEpeaks = DeleteDuplicates[AEpeaks];

AtPeakDiff = Sort[Max[AEpeaks]− AEpeaks];AtPeakDiff = Sort[Max[AEpeaks]− AEpeaks];AtPeakDiff = Sort[Max[AEpeaks]− AEpeaks];

(*Print[cc]; *)(*Print[cc]; *)(*Print[cc]; *)

If[outPut,If[outPut,If[outPut,

If[Max[AtPeakDiff] ≥ A5peaks[YPert] ∗ (1− thr)&&Max[AtPeakDiff] ≤ A5peaks[YPert]∗If[Max[AtPeakDiff] ≥ A5peaks[YPert] ∗ (1− thr)&&Max[AtPeakDiff] ≤ A5peaks[YPert]∗If[Max[AtPeakDiff] ≥ A5peaks[YPert] ∗ (1− thr)&&Max[AtPeakDiff] ≤ A5peaks[YPert]∗

(1 + thr),AppendTo[attrat, {TAP,AttractorR}];(1 + thr),AppendTo[attrat, {TAP,AttractorR}];(1 + thr),AppendTo[attrat, {TAP,AttractorR}];

Print[Grid[{{Show[datSB, spiral, spiral0Base,PlotRange → All,BaseStyle →Print[Grid[{{Show[datSB, spiral, spiral0Base,PlotRange → All,BaseStyle →Print[Grid[{{Show[datSB, spiral, spiral0Base,PlotRange → All,BaseStyle →

{FontWeight → “Bold”,FontSize → 12,PointSize → Small}]}, {Graphics@{FontWeight → “Bold”,FontSize → 12,PointSize → Small}]}, {Graphics@{FontWeight → “Bold”,FontSize → 12,PointSize → Small}]}, {Graphics@

Text[“run ” <> ToString[prog] <> “ Went to Att ” <> ToString[AttractorR]Text[“run ” <> ToString[prog] <> “ Went to Att ” <> ToString[AttractorR]Text[“run ” <> ToString[prog] <> “ Went to Att ” <> ToString[AttractorR]

<> “”]}}]]; ,AppendTo[attrat, {TAP,AttractorL}];<> “”]}}]]; ,AppendTo[attrat, {TAP,AttractorL}];<> “”]}}]]; ,AppendTo[attrat, {TAP,AttractorL}];

Print[Grid[{{Show[datSB, spiral, spiral0Base,PlotRange → All,BaseStyle →Print[Grid[{{Show[datSB, spiral, spiral0Base,PlotRange → All,BaseStyle →Print[Grid[{{Show[datSB, spiral, spiral0Base,PlotRange → All,BaseStyle →

{FontWeight → “Bold”,FontSize → 12,PointSize → Small}]}, {Graphics@Text{FontWeight → “Bold”,FontSize → 12,PointSize → Small}]}, {Graphics@Text{FontWeight → “Bold”,FontSize → 12,PointSize → Small}]}, {Graphics@Text

[“run ” <> ToString[prog] <> “ Went to Att ” <> ToString[AttractorL] <> “”][“run ” <> ToString[prog] <> “ Went to Att ” <> ToString[AttractorL] <> “”][“run ” <> ToString[prog] <> “ Went to Att ” <> ToString[AttractorL] <> “”]
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}}]]]; , If[Max[AtPeakDiff] ≥ A5peaks[YPert] ∗ (1− thr)&&Max[AtPeakDiff] ≤}}]]]; , If[Max[AtPeakDiff] ≥ A5peaks[YPert] ∗ (1− thr)&&Max[AtPeakDiff] ≤}}]]]; , If[Max[AtPeakDiff] ≥ A5peaks[YPert] ∗ (1− thr)&&Max[AtPeakDiff] ≤

A5peaks[YPert] ∗ (1 + thr),AppendTo[attrat, {TAP,AttractorR}]; ,AppendTo[attrat,A5peaks[YPert] ∗ (1 + thr),AppendTo[attrat, {TAP,AttractorR}]; ,AppendTo[attrat,A5peaks[YPert] ∗ (1 + thr),AppendTo[attrat, {TAP,AttractorR}]; ,AppendTo[attrat,

{TAP,AttractorL}]; ]{TAP,AttractorL}]; ]{TAP,AttractorL}]; ]

];];];

prog++;prog++;prog++;

, {TAP, 1,Ceiling[prd0]}];, {TAP, 1,Ceiling[prd0]}];, {TAP, 1,Ceiling[prd0]}];

Export[“Lis System\\Case ” <> ToString[Case] <> “\\Power shift data\\run ” <>Export[“Lis System\\Case ” <> ToString[Case] <> “\\Power shift data\\run ” <>Export[“Lis System\\Case ” <> ToString[Case] <> “\\Power shift data\\run ” <>

ToString[num] <> “ FN GNoise Power shift from Attractor ” <>ToString[num] <> “ FN GNoise Power shift from Attractor ” <>ToString[num] <> “ FN GNoise Power shift from Attractor ” <>

ToString[Attractor] <> “ for Y = ” <> ToString[Y ] <> “ to ” <>ToString[Attractor] <> “ for Y = ” <> ToString[Y ] <> “ to ” <>ToString[Attractor] <> “ for Y = ” <> ToString[Y ] <> “ to ” <>

ToString[YPert] <> “ tLag=” <> ToString@tLag <> “ gnWeight=”ToString[YPert] <> “ tLag=” <> ToString@tLag <> “ gnWeight=”ToString[YPert] <> “ tLag=” <> ToString@tLag <> “ gnWeight=”

<> ToString[nW0] <> “.xlsx”, attrat];<> ToString[nW0] <> “.xlsx”, attrat];<> ToString[nW0] <> “.xlsx”, attrat];

OM Power shift

Case = 20;Case = 20;Case = 20;

Attractor = 0;Attractor = 0;Attractor = 0;

PLoad = 3.75;PLoad = 3.75;PLoad = 3.75;

P1 = 0.05;P1 = 0.05;P1 = 0.05;

PMax = 3;PMax = 3;PMax = 3;

PMin = 0;PMin = 0;PMin = 0;

PStep = 0.001;PStep = 0.001;PStep = 0.001;

thres = 0.5;thres = 0.5;thres = 0.5;

P = P1;P = P1;P = P1;

PPert = 16.46;PPert = 16.46;PPert = 16.46;

Upload =!True;Upload =!True;Upload =!True;

wthywtni = {{P, “Ω Zero”}};wthywtni = {{P, “Ω Zero”}};wthywtni = {{P, “Ω Zero”}};

δv = 0;δv = 0;δv = 0;
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A0 = δv;A0 = δv;A0 = δv;

B0 = δv;B0 = δv;B0 = δv;

F0 = δv;F0 = δv;F0 = δv;

G0 = δv;G0 = δv;G0 = δv;

R0 = δv;R0 = δv;R0 = δv;

S0 = δv;S0 = δv;S0 = δv;

∆t = 0.001;∆t = 0.001;∆t = 0.001;

tlimit = 500;tlimit = 500;tlimit = 500;

TAP = 200;TAP = 200;TAP = 200;

If[Upload,If[Upload,If[Upload,

file = ToExpression[file = ToExpression[file = ToExpression[

Import[“ROM\\Case ” <> ToString[Case] <>Import[“ROM\\Case ” <> ToString[Case] <>Import[“ROM\\Case ” <> ToString[Case] <>

“\\Attractor ” <> ToString[Attractor] <>“\\Attractor ” <> ToString[Attractor] <>“\\Attractor ” <> ToString[Attractor] <>

“\\SteadyState P=” <> ToString[PLoad] <>“\\SteadyState P=” <> ToString[PLoad] <>“\\SteadyState P=” <> ToString[PLoad] <>

“.txt”]];“.txt”]];“.txt”]];

A0 = file[[1]];A0 = file[[1]];A0 = file[[1]];

B0 = file[[2]];B0 = file[[2]];B0 = file[[2]];

F0 = file[[3]];F0 = file[[3]];F0 = file[[3]];

G0 = file[[4]];G0 = file[[4]];G0 = file[[4]];

R0 = file[[5]];R0 = file[[5]];R0 = file[[5]];

S0 = file[[6]];S0 = file[[6]];S0 = file[[6]];

,,,
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{A0, B0, F0, G0, R0, S0}] ;{A0, B0, F0, G0, R0, S0}] ;{A0, B0, F0, G0, R0, S0}] ;

Print[file];Print[file];Print[file];

v0 = 50 ∗ 2. ∗ π;v0 = 50 ∗ 2. ∗ π;v0 = 50 ∗ 2. ∗ π;

c1 = 2 ∗ 105;c1 = 2 ∗ 105;c1 = 2 ∗ 105;

c2 = 4.15 ∗ 10−19;c2 = 4.15 ∗ 10−19;c2 = 4.15 ∗ 10−19;

c3 = 1
c12

;c3 = 1
c12

;c3 = 1
c12

;

Q1 = 108;Q1 = 108;Q1 = 108;

Q2 = 108;Q2 = 108;Q2 = 108;

k1 = 6.08∗108
Q1

;k1 = 6.08∗108
Q1

;k1 = 6.08∗108
Q1

;

k2 = 6.08∗108
Q2

;k2 = 6.08∗108
Q2

;k2 = 6.08∗108
Q2

;

a = 175;a = 175;a = 175;

t1 = 2.29
√ a

Q1
;t1 = 2.29

√ a
Q1

;t1 = 2.29
√ a

Q1
;

t2 = 2.29
√ a

Q2
;t2 = 2.29

√ a
Q2

;t2 = 2.29
√ a

Q2
;

τ = 3 ∗ 10−8a;τ = 3 ∗ 10−8a;τ = 3 ∗ 10−8a;

ξ = t1t2
2τ

;ξ = t1t2
2τ

;ξ = t1t2
2τ

;

If[Case == 1,If[Case == 1,If[Case == 1,

ΓB = 102;ΓB = 102;ΓB = 102;

∆1 = 0 ∗ 2. ∗ π; (*(0to5) ∗ 2 ∗ π*)∆1 = 0 ∗ 2. ∗ π; (*(0to5) ∗ 2 ∗ π*)∆1 = 0 ∗ 2. ∗ π; (*(0to5) ∗ 2 ∗ π*)

∆2 = 50 ∗ 2. ∗ π(*(40to60) ∗ 2 ∗ π*)∆2 = 50 ∗ 2. ∗ π(*(40to60) ∗ 2 ∗ π*)∆2 = 50 ∗ 2. ∗ π(*(40to60) ∗ 2 ∗ π*)

];];];

If[Case == 2,If[Case == 2,If[Case == 2,

ΓB = 3 ∗ 10−2;ΓB = 3 ∗ 10−2;ΓB = 3 ∗ 10−2;

∆1 = 0 ∗ 2. ∗ π; (*(0to5) ∗ 2 ∗ π*)∆1 = 0 ∗ 2. ∗ π; (*(0to5) ∗ 2 ∗ π*)∆1 = 0 ∗ 2. ∗ π; (*(0to5) ∗ 2 ∗ π*)

∆2 = 50 ∗ 2. ∗ π; (*(40to60) ∗ 2 ∗ π*)∆2 = 50 ∗ 2. ∗ π; (*(40to60) ∗ 2 ∗ π*)∆2 = 50 ∗ 2. ∗ π; (*(40to60) ∗ 2 ∗ π*)

];];];
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If[Case == 7,If[Case == 7,If[Case == 7,

ΓB = 0.011;ΓB = 0.011;ΓB = 0.011;

∆1 = 2 ∗ 2. ∗ π; (*(0to5) ∗ 2 ∗ π*)∆1 = 2 ∗ 2. ∗ π; (*(0to5) ∗ 2 ∗ π*)∆1 = 2 ∗ 2. ∗ π; (*(0to5) ∗ 2 ∗ π*)

∆2 = 50 ∗ 2. ∗ π,False(*(40to60) ∗ 2 ∗ π*)∆2 = 50 ∗ 2. ∗ π,False(*(40to60) ∗ 2 ∗ π*)∆2 = 50 ∗ 2. ∗ π,False(*(40to60) ∗ 2 ∗ π*)

];];];

If[Case == 20,If[Case == 20,If[Case == 20,

ΓB = 13;ΓB = 13;ΓB = 13;

∆1 = 1 ∗ 2. ∗ π; (*(0to5) ∗ 2 ∗ π*)∆1 = 1 ∗ 2. ∗ π; (*(0to5) ∗ 2 ∗ π*)∆1 = 1 ∗ 2. ∗ π; (*(0to5) ∗ 2 ∗ π*)

∆2 = 44 ∗ 2. ∗ π,False(*(40to60) ∗ 2 ∗ π*)∆2 = 44 ∗ 2. ∗ π,False(*(40to60) ∗ 2 ∗ π*)∆2 = 44 ∗ 2. ∗ π,False(*(40to60) ∗ 2 ∗ π*)

];];];

If[Case == 9.1,If[Case == 9.1,If[Case == 9.1,

ΓB = 13;ΓB = 13;ΓB = 13;

∆1 = 1 ∗ 2. ∗ π; (*(0to5) ∗ 2 ∗ π*)∆1 = 1 ∗ 2. ∗ π; (*(0to5) ∗ 2 ∗ π*)∆1 = 1 ∗ 2. ∗ π; (*(0to5) ∗ 2 ∗ π*)

∆2 = 44.013 ∗ 2 ∗ π,False(*(40to60) ∗ 2 ∗ π*)∆2 = 44.013 ∗ 2 ∗ π,False(*(40to60) ∗ 2 ∗ π*)∆2 = 44.013 ∗ 2 ∗ π,False(*(40to60) ∗ 2 ∗ π*)

];];];

∆21 = ∆2−∆1;∆21 = ∆2−∆1;∆21 = ∆2−∆1;

While[PMin ≤ P ≤ PMax,While[PMin ≤ P ≤ PMax,While[PMin ≤ P ≤ PMax,

Print[TAP];Print[TAP];Print[TAP];

PV[t ] = Piecewise[{{P, t < TAP}, {PPert, t ≥ TAP}}];PV[t ] = Piecewise[{{P, t < TAP}, {PPert, t ≥ TAP}}];PV[t ] = Piecewise[{{P, t < TAP}, {PPert, t ≥ TAP}}];

solution = NDSolve[{solution = NDSolve[{solution = NDSolve[{

A′[t] == −(k1)A[t]−∆1B[t]− ξF [t]− c1R[t]G[t]−A′[t] == −(k1)A[t]−∆1B[t]− ξF [t]− c1R[t]G[t]−A′[t] == −(k1)A[t]−∆1B[t]− ξF [t]− c1R[t]G[t]−

c1S[t]F [t],c1S[t]F [t],c1S[t]F [t],

B′[t] == −(k1)B[t] + ∆1A[t]− ξG[t]+B′[t] == −(k1)B[t] + ∆1A[t]− ξG[t]+B′[t] == −(k1)B[t] + ∆1A[t]− ξG[t]+

c1R[t]F [t]− c1S[t]G[t] + t1
τ
c1 ∗

√
PV[t],c1R[t]F [t]− c1S[t]G[t] + t1

τ
c1 ∗

√
PV[t],c1R[t]F [t]− c1S[t]G[t] + t1

τ
c1 ∗

√
PV[t],

F ′[t] == −(k2)F [t]−∆2G[t]− ξA[t]−F ′[t] == −(k2)F [t]−∆2G[t]− ξA[t]−F ′[t] == −(k2)F [t]−∆2G[t]− ξA[t]−

c1R[t]B[t] + c1S[t]A[t],c1R[t]B[t] + c1S[t]A[t],c1R[t]B[t] + c1S[t]A[t],
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G′[t] == −(k2)G[t] + ∆2F [t]− ξB[t]+G′[t] == −(k2)G[t] + ∆2F [t]− ξB[t]+G′[t] == −(k2)G[t] + ∆2F [t]− ξB[t]+

c1R[t]A[t] + c1S[t]B[t] + t2
τ
c1 ∗

√
PV[t],c1R[t]A[t] + c1S[t]B[t] + t2

τ
c1 ∗

√
PV[t],c1R[t]A[t] + c1S[t]B[t] + t2

τ
c1 ∗

√
PV[t],

R′[t] == −ΓB
2
R[t] + ∆21S[t]− v0S[t]−R′[t] == −ΓB

2
R[t] + ∆21S[t]− v0S[t]−R′[t] == −ΓB

2
R[t] + ∆21S[t]− v0S[t]−

c2B[t]F [t]∆21 + c2A[t]G[t]∆21,c2B[t]F [t]∆21 + c2A[t]G[t]∆21,c2B[t]F [t]∆21 + c2A[t]G[t]∆21,

S ′[t] == −ΓB
2
S[t]−∆21R[t] + v0R[t]+S ′[t] == −ΓB

2
S[t]−∆21R[t] + v0R[t]+S ′[t] == −ΓB

2
S[t]−∆21R[t] + v0R[t]+

c2A[t]F [t]∆21 + c2B[t]G[t]∆21,c2A[t]F [t]∆21 + c2B[t]G[t]∆21,c2A[t]F [t]∆21 + c2B[t]G[t]∆21,

A[0] == A0,A[0] == A0,A[0] == A0,

B[0] == B0,B[0] == B0,B[0] == B0,

F [0] == F0,F [0] == F0,F [0] == F0,

G[0] == G0,G[0] == G0,G[0] == G0,

R[0] == R0,R[0] == R0,R[0] == R0,

S[0] == S0S[0] == S0S[0] == S0

}, {A,B, F,G,R, S}, {t, 0, tlimit} ,PrecisionGoal → ∞,}, {A,B, F,G,R, S}, {t, 0, tlimit} ,PrecisionGoal → ∞,}, {A,B, F,G,R, S}, {t, 0, tlimit} ,PrecisionGoal → ∞,

MaxSteps → ∞,MaxStepSize → ∆t,MaxSteps → ∞,MaxStepSize → ∆t,MaxSteps → ∞,MaxStepSize → ∆t,

Method → “StiffnessSwitching”];Method → “StiffnessSwitching”];Method → “StiffnessSwitching”];

Print[“test1”];Print[“test1”];Print[“test1”];

AA[t ]:=A[t]/.solution;AA[t ]:=A[t]/.solution;AA[t ]:=A[t]/.solution;

BB[t ]:=B[t]/.solution;BB[t ]:=B[t]/.solution;BB[t ]:=B[t]/.solution;

FF[t ]:=F [t]/.solution;FF[t ]:=F [t]/.solution;FF[t ]:=F [t]/.solution;

GG[t ]:=G[t]/.solution;GG[t ]:=G[t]/.solution;GG[t ]:=G[t]/.solution;

RR[t ]:=R[t]/.solution;RR[t ]:=R[t]/.solution;RR[t ]:=R[t]/.solution;

SS[t ]:=S[t]/.solution;SS[t ]:=S[t]/.solution;SS[t ]:=S[t]/.solution;

ES1[t ]:=
√

A[t]2 +B[t]2/.solution;ES1[t ]:=
√

A[t]2 +B[t]2/.solution;ES1[t ]:=
√
A[t]2 +B[t]2/.solution;

ES2[t ]:=
√

F [t]2 +G[t]2/.solution;ES2[t ]:=
√

F [t]2 +G[t]2/.solution;ES2[t ]:=
√
F [t]2 +G[t]2/.solution;

ρ[t ]:=
√

R[t]2 + S[t]2/.solution;ρ[t ]:=
√
R[t]2 + S[t]2/.solution;ρ[t ]:=

√
R[t]2 + S[t]2/.solution;

pOut[t ]:=pOut[t ]:=pOut[t ]:=
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Abs
[
c1 ∗

√
PV[t] + i ∗ t1 ∗ ES1[t] + i ∗ t2 ∗ ES2[t]

]
∧2∗Abs

[
c1 ∗

√
PV[t] + i ∗ t1 ∗ ES1[t] + i ∗ t2 ∗ ES2[t]

]
∧2∗Abs

[
c1 ∗

√
PV[t] + i ∗ t1 ∗ ES1[t] + i ∗ t2 ∗ ES2[t]

]
∧2∗

c1∧(−1)/.solution;c1∧(−1)/.solution;c1∧(−1)/.solution;

Print [Plot [pOut[t], {t, tlimit − 2, tlimit} ,Print [Plot [pOut[t], {t, tlimit − 2, tlimit} ,Print [Plot [pOut[t], {t, tlimit − 2, tlimit} ,

PlotRange → All,AxesLabel → {Style[t,Large,Bold],PlotRange → All,AxesLabel → {Style[t,Large,Bold],PlotRange → All,AxesLabel → {Style[t,Large,Bold],

Style[“Pout”,Large,Bold]},AxesStyle → Thick]];Style[“Pout”,Large,Bold]},AxesStyle → Thick]];Style[“Pout”,Large,Bold]},AxesStyle → Thick]];

preShift =preShift =preShift =

Table[{ES1[t][[1]],ES2[t][[1]], ρ[t][[1]]},Table[{ES1[t][[1]],ES2[t][[1]], ρ[t][[1]]},Table[{ES1[t][[1]],ES2[t][[1]], ρ[t][[1]]},

{t,TAP− 10,TAP, 0.02}];{t,TAP− 10,TAP, 0.02}];{t,TAP− 10,TAP, 0.02}];

datas = Table[{ES1[t][[1]],ES2[t][[1]], ρ[t][[1]]},datas = Table[{ES1[t][[1]],ES2[t][[1]], ρ[t][[1]]},datas = Table[{ES1[t][[1]],ES2[t][[1]], ρ[t][[1]]},

{t, tlimit − 30, tlimit, 0.01(*,∆t*)}] ;{t, tlimit − 30, tlimit, 0.01(*,∆t*)}] ;{t, tlimit − 30, tlimit, 0.01(*,∆t*)}] ;

Print[Print[Print[

Show[ListPointPlot3D[datas,Show[ListPointPlot3D[datas,Show[ListPointPlot3D[datas,

AxesLabel → {“Es1”, “Es2”, “ρ ”},BaseStyle →AxesLabel → {“Es1”, “Es2”, “ρ ”},BaseStyle →AxesLabel → {“Es1”, “Es2”, “ρ ”},BaseStyle →

{FontWeight → “Bold”,FontSize → 18},{FontWeight → “Bold”,FontSize → 18},{FontWeight → “Bold”,FontSize → 18},

PlotRange → Full,BoxRatios → {1, 1, 1}],PlotRange → Full,BoxRatios → {1, 1, 1}],PlotRange → Full,BoxRatios → {1, 1, 1}],

ListPointPlot3D[preShift,ListPointPlot3D[preShift,ListPointPlot3D[preShift,

AxesLabel → {“Es1”, “Es2”, “ρ ”},AxesLabel → {“Es1”, “Es2”, “ρ ”},AxesLabel → {“Es1”, “Es2”, “ρ ”},

PlotStyle → Red],PlotRange → All]];PlotStyle → Red],PlotRange → All]];PlotStyle → Red],PlotRange → All]];

Print[“P=” <> ToString[P ] <>Print[“P=” <> ToString[P ] <>Print[“P=” <> ToString[P ] <>

“ Case=” <> ToString[Case]];“ Case=” <> ToString[Case]];“ Case=” <> ToString[Case]];

(*Export[“ROM\\Case ” <> ToString[Case] <>(*Export[“ROM\\Case ” <> ToString[Case] <>(*Export[“ROM\\Case ” <> ToString[Case] <>

“\\Attractor ” <> ToString[Attractor] <>“\\Attractor ” <> ToString[Attractor] <>“\\Attractor ” <> ToString[Attractor] <>

“\\SteadyState Y=” <> ToString[P ] <> “.txt”, ppos]; *)“\\SteadyState Y=” <> ToString[P ] <> “.txt”, ppos]; *)“\\SteadyState Y=” <> ToString[P ] <> “.txt”, ppos]; *)

(*Print[“c = ” <> ToString[c] <>(*Print[“c = ” <> ToString[c] <>(*Print[“c = ” <> ToString[c] <>

60



“; Y = ” <> ToString[Y ] <>“; Y = ” <> ToString[Y ] <>“; Y = ” <> ToString[Y ] <>

“; K = ” <> ToString[K] <>“; K = ” <> ToString[K] <>“; K = ” <> ToString[K] <>

“; ϕ = ” <> ToString[ϕ] <>“; ϕ = ” <> ToString[ϕ] <>“; ϕ = ” <> ToString[ϕ] <>

“; γ = ” <> ToString[γ] <>“; γ = ” <> ToString[γ] <>“; γ = ” <> ToString[γ] <>

“; ∆ = ” <> ToString[∆] <>“; ∆ = ” <> ToString[∆] <>“; ∆ = ” <> ToString[∆] <>

“; δv = ” <> ToString[δv] <>“; δv = ” <> ToString[δv] <>“; δv = ” <> ToString[δv] <>

“; Time Range(tf1)=” <> ToString[tf1]];“; Time Range(tf1)=” <> ToString[tf1]];“; Time Range(tf1)=” <> ToString[tf1]];

*)*)*)

tstop = tlimit;tstop = tlimit;tstop = tlimit;

A0 = First[A[TAP]/.solution];A0 = First[A[TAP]/.solution];A0 = First[A[TAP]/.solution];

B0 = First[B[TAP]/.solution];B0 = First[B[TAP]/.solution];B0 = First[B[TAP]/.solution];

F0 = First[F [TAP]/.solution];F0 = First[F [TAP]/.solution];F0 = First[F [TAP]/.solution];

G0 = First[G[TAP]/.solution];G0 = First[G[TAP]/.solution];G0 = First[G[TAP]/.solution];

R0 = First[R[TAP]/.solution];R0 = First[R[TAP]/.solution];R0 = First[R[TAP]/.solution];

S0 = First[S[TAP]/.solution];S0 = First[S[TAP]/.solution];S0 = First[S[TAP]/.solution];

P+=PStep;P+=PStep;P+=PStep;

Print [A0] ;Print [A0] ;Print [A0] ;

];];];
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Poincaré map

Clear[“Global̀*”]Clear[“Global̀*”]Clear[“Global̀*”]

Case = 1;Case = 1;Case = 1;

Attractor = 4;Attractor = 4;Attractor = 4;

YLoad = 1.1192;YLoad = 1.1192;YLoad = 1.1192;

YInitial = 13;YInitial = 13;YInitial = 13;

YMax = 14;YMax = 14;YMax = 14;

YMin = 4.0;YMin = 4.0;YMin = 4.0;

YStep = 0.1;YStep = 0.1;YStep = 0.1;

Y = YInitialY = YInitialY = YInitial

Upload = True;Upload = True;Upload = True;

If[Case == 1,If[Case == 1,If[Case == 1,

c = 20;c = 20;c = 20;

K = 0.5;K = 0.5;K = 0.5;

ϕ = −2.0;ϕ = −2.0;ϕ = −2.0;

γ = 0.05;γ = 0.05;γ = 0.05;

∆ = 1.0];∆ = 1.0];∆ = 1.0];

If[Case == 2,If[Case == 2,If[Case == 2,

c = 3;c = 3;c = 3;

K = 0.1;K = 0.1;K = 0.1;

ϕ = −0.5;ϕ = −0.5;ϕ = −0.5;

γ = 0.01;γ = 0.01;γ = 0.01;

∆ = 0.5];∆ = 0.5];∆ = 0.5];

If[Case == 3,If[Case == 3,If[Case == 3,
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c = 3;c = 3;c = 3;

K = 1.0/3.0;K = 1.0/3.0;K = 1.0/3.0;

ϕ = −3.0;ϕ = −3.0;ϕ = −3.0;

γ = 1.0 ∗ 10∧ − 4;γ = 1.0 ∗ 10∧ − 4;γ = 1.0 ∗ 10∧ − 4;

∆ = 1.0];∆ = 1.0];∆ = 1.0];

If[Case == 4,If[Case == 4,If[Case == 4,

c = 4;c = 4;c = 4;

K = 0.125;K = 0.125;K = 0.125;

ϕ = −3.0;ϕ = −3.0;ϕ = −3.0;

γ = 1.0 ∗ 10∧ − 4;γ = 1.0 ∗ 10∧ − 4;γ = 1.0 ∗ 10∧ − 4;

∆ = 0.375];∆ = 0.375];∆ = 0.375];

If[Case == 5,If[Case == 5,If[Case == 5,

c = 3;c = 3;c = 3;

K = 1.0/3.0;K = 1.0/3.0;K = 1.0/3.0;

ϕ = −3.0/2.0;ϕ = −3.0/2.0;ϕ = −3.0/2.0;

γ = 0.0006;γ = 0.0006;γ = 0.0006;

∆ = 0.5];∆ = 0.5];∆ = 0.5];

δv = N [0.001, 64];δv = N [0.001, 64];δv = N [0.001, 64];

A0 = δv;A0 = δv;A0 = δv;

B0 = δv;B0 = δv;B0 = δv;

R0 = δv;R0 = δv;R0 = δv;

S0 = δv;S0 = δv;S0 = δv;

d0 = δv;d0 = δv;d0 = δv;

tab2 = {{Y, “Ω Zero”}};tab2 = {{Y, “Ω Zero”}};tab2 = {{Y, “Ω Zero”}};

∆t = 0.05;∆t = 0.05;∆t = 0.05;

tlimit = 20000;tlimit = 20000;tlimit = 20000;
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(*ics*)(*ics*)(*ics*)

If[Upload,If[Upload,If[Upload,

file = {6.466399618413315,−7.751209696152986,−0.24649692245477814,file = {6.466399618413315,−7.751209696152986,−0.24649692245477814,file = {6.466399618413315,−7.751209696152986,−0.24649692245477814,

0.3556284953127857,−0.03859780519097036};0.3556284953127857,−0.03859780519097036};0.3556284953127857,−0.03859780519097036};

A0 = file[[1]];A0 = file[[1]];A0 = file[[1]];

B0 = file[[2]];B0 = file[[2]];B0 = file[[2]];

R0 = file[[3]];R0 = file[[3]];R0 = file[[3]];

S0 = file[[4]];S0 = file[[4]];S0 = file[[4]];

d0 = file[[5]];d0 = file[[5]];d0 = file[[5]];

,,,

{A0, B0, R0, S0, d0}] ;{A0, B0, R0, S0, d0}] ;{A0, B0, R0, S0, d0}] ;

m = 0m = 0m = 0

m++m++m++

eqns = {A′[t] == −K ∗ (A[t] + (B[t] ∗ ϕ)− Y + (2 ∗ c ∗R[t])),eqns = {A′[t] == −K ∗ (A[t] + (B[t] ∗ ϕ)− Y + (2 ∗ c ∗R[t])),eqns = {A′[t] == −K ∗ (A[t] + (B[t] ∗ ϕ)− Y + (2 ∗ c ∗R[t])),

B′[t] == −K ∗ (B[t]− (A[t] ∗ ϕ) + (2 ∗ c ∗ S[t])),B′[t] == −K ∗ (B[t]− (A[t] ∗ ϕ) + (2 ∗ c ∗ S[t])),B′[t] == −K ∗ (B[t]− (A[t] ∗ ϕ) + (2 ∗ c ∗ S[t])),

R′[t] == −(R[t]− (∆ ∗ S[t])) + (A[t] ∗ d[t]),R′[t] == −(R[t]− (∆ ∗ S[t])) + (A[t] ∗ d[t]),R′[t] == −(R[t]− (∆ ∗ S[t])) + (A[t] ∗ d[t]),

S ′[t] == −((∆ ∗R[t]) + S[t]) + (B[t] ∗ d[t]),S ′[t] == −((∆ ∗R[t]) + S[t]) + (B[t] ∗ d[t]),S ′[t] == −((∆ ∗R[t]) + S[t]) + (B[t] ∗ d[t]),

d′[t] == −γ ∗ ((A[t] ∗R[t]) + (B[t] ∗ S[t]) + d[t] + 1)};d′[t] == −γ ∗ ((A[t] ∗R[t]) + (B[t] ∗ S[t]) + d[t] + 1)};d′[t] == −γ ∗ ((A[t] ∗R[t]) + (B[t] ∗ S[t]) + d[t] + 1)};

psect[{A0 ,B0 ,R0 , S0 , d0 }]:=psect[{A0 ,B0 ,R0 , S0 , d0 }]:=psect[{A0 ,B0 ,R0 , S0 , d0 }]:=

Reap[NDSolve[{eqns, A[0] == A0, B[0] == B0, R[0] == R0, S[0] == S0,Reap[NDSolve[{eqns, A[0] == A0, B[0] == B0, R[0] == R0, S[0] == S0,Reap[NDSolve[{eqns, A[0] == A0, B[0] == B0, R[0] == R0, S[0] == S0,

d[0] == d0,WhenEvent[d[t] == −0.05, Sow[{A[t], B[t]}]]},d[0] == d0,WhenEvent[d[t] == −0.05, Sow[{A[t], B[t]}]]},d[0] == d0,WhenEvent[d[t] == −0.05, Sow[{A[t], B[t]}]]},

{}, {t, 0, 1000000},MaxSteps → ∞]][[−1, 1]]{}, {t, 0, 1000000},MaxSteps → ∞]][[−1, 1]]{}, {t, 0, 1000000},MaxSteps → ∞]][[−1, 1]]
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caredata = Map[psect, {file}]; (*insert steady state here*)caredata = Map[psect, {file}]; (*insert steady state here*)caredata = Map[psect, {file}]; (*insert steady state here*)

giraffe = ListPlot[caredata, ImageSize → Medium,giraffe = ListPlot[caredata, ImageSize → Medium,giraffe = ListPlot[caredata, ImageSize → Medium,

AxesLabel → {“Re |X|”, “Im |X|”},AxesLabel → {“Re |X|”, “Im |X|”},AxesLabel → {“Re |X|”, “Im |X|”},

BaseStyle → {FontWeight → “Bold”,FontSize → 10},PlotStyle → Green]BaseStyle → {FontWeight → “Bold”,FontSize → 10},PlotStyle → Green]BaseStyle → {FontWeight → “Bold”,FontSize → 10},PlotStyle → Green]

65



VITA

Erikk Kenneth Tilus Burton

Candidate for the Degree of

Doctor of Philosophy

Thesis: A POWER-SHIFT METHOD TO CONTROL NONLINEAR SYSTEMS

Major Field: Physics

Biographical:

Education:

Completed the requirements for the Doctor of Philosophy in Physics at Oklahoma State
University, Stillwater, Oklahoma in May, 2022.

Completed the requirements for the Bachelor of Science in Physic at Oklahoma State
University, Stillwater, Oklahoma in 2013.

Completed the requirements for the Bachelor of Science in Mathematics at Oklahoma
State University, Stillwater, Oklahoma in 2013.

Worked as teaching assistant from August 2017-2022

Performed research under Dr. Bandy from June 2014-2022

Professional Membership:

OPTICA


