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Entangled spin squeezed states generated via dipolar interactions in lattice models provide unique
opportunities for quantum enhanced sensing and are now within reach of current experiments. A
critical question in this context is which parameter regimes offer the best prospects under realistic
conditions. Light scattering in deep lattices can induce significant decoherence and strong Stark
shifts, while shallow lattices face motional decoherence as a fundamental obstacle. Here we analyze
the interplay between motion and spin squeezing in itinerant fermionic dipoles in one dimensional
chains using exact matrix product state simulations. We demonstrate that shallow lattices can
achieve more than 5dB of squeezing, outperforming deep lattices by up to more than 3dB, even
in the presence of low filling, loss and decoherence. We relate this finding to SU(2)-symmetric
superexchange interactions, which keep spins aligned and protect collective correlations. We show
that the optimal regime is achieved for small repulsive off-site interactions, with a trade-off between
maximal squeezing and optimal squeezing time.

Dipolar quantum gases made from polar molecules,
Rydberg atoms, or magnetic atoms are emerging as
promising platforms for near-term quantum technolo-
gies [1–6]. These systems are now routinely cooled to
ultralow temperatures [7–18], and recently pushed into a
new regime where individual particles can be controlled
and measured using e.g. quantum gas microscopes or op-
tical tweezers [19–24].

Taking advantage of these impressive developments
defines a new frontier for quantum enhanced sensing.
Of particular importance in this context is spin squeez-
ing [25, 26], which quantifies the reduction of uncer-
tainty along a measurement axis due to quantum cor-
relations [27] and also serves as a probe for many-body
entanglement [27–29]. It has been predicted that exten-
sive spin squeezing can be generated in frozen dipoles
trapped in deep optical lattices or optical tweezer arrays,
where motional degrees of freedom are frozen and on-site
collisions suppressed [19, 21–24, 30–35]. However, the
generation of spin squeezing via dipolar interactions re-
mains an open challenge and so far spin squeezing has
been only created in atom and ion experiments with col-
lective interactions [36–50]. This is partially because in
frozen dipole setups [51] dephasing and dissipation in-
duced by off-resonant light scattering and low filling frac-
tions can significantly limit spin coherence times. In the
context of polar molecules, itinerant systems confined in
stacks of 2D pancakes have been considered as a promis-
ing alternative [52, 53]. However at currently achievable
temperatures, inelastic and lossy collisions in the pan-
cakes [54–60] cannot be fully suppressed, and have been
observed to give rise to motional dephasing and particle
loss [53].

Here, we study the exact quantum dynamics of
fermionic itinerant dipoles trapped in a 1D chain achiev-

able for example by imposing additional lattices along
the 2D pancakes. Using matrix product states (MPS),
and starting from a spin-coherent initial state, we find
that in all cases considered spin squeezing and coher-
ence time are increased by reducing the lattice depth.
For shallow lattices, particles remain itinerant [62, 63]
reducing positional disorder at non-unit filling fractions,
0 < f < 1, while undesirable lossy on-site collisions can
be suppressed by the quantum Zeno effect [30, 64, 65].
Fig. 1(c) summarizes these main results. We further find
that squeezing is enhanced when the signs of nearest
neighbor dipole-dipole interactions and on-site interac-
tions match, such that superexchange and dipole-dipole
interactions add up. Smaller dipolar interactions give
rise to larger squeezing, albeit at the cost of slower dy-
namics. We qualitatively explain these effects in a spin
model valid for unit filling and sufficiently small tun-
neling. We also find that dephasing noise e.g. due to
differential lattice polarizability can be echoed away, as
observed in recent experiments [53], without affecting
squeezing dynamics. Even though we focus the analy-
sis on polar molecules, our predictions apply to generic
itinerant fermionic systems featuring both contact and
short-range off-site interactions.

Model — We consider a 1D chain of fermionic dipoles
trapped in an optical lattice with a spin-1/2 degree of
freedom, which can for example be realized in the rota-
tional states of molecules as |↑〉 = |N = 1,NZ = 0〉 and
|↓〉 = |N = 0,NZ = 0〉, where a weak external field (elec-

tric field ~E or magnetic field ~B) defines a preferred polar-
ization axis [see Fig. 1(a)]. The system is modeled as an
extended Hubbard model with Hamiltonian [66, 67] (see
Supplemental [61] for a discussion of approximations)

Ĥ = ĤFH + Ĥdip . (1)
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FIG. 1. (a) Schematic of the system: Fermionic dipoles en-
coding a spin-1/2 degree of freedom in two internal levels
(for molecules two rotational states |N ,NZ〉 ) are loaded in
a 1D chain. The rotation axis is set by an external electro-
magnetic field at an angle θ to the lattice axis ( ~E for elec-
tric dipoles). Our model includes tunneling J , dipole in-
teractions V⊥, on-site interactions U , and two-body losses
Γ. (b) A π/2 pulse prepares all dipoles in a superposition
of both spin states, followed by free evolution with Liouvil-
lian L. Bottom: Schematic illustration of time evolution
in the Sy-Sz-plane. With time, the interaction V⊥ gener-
ates spin squeezing by shearing the quantum noise distri-
bution. (c) Maximal squeezing ξ2 for t < 10ms versus fill-
ing fraction f and lattice depth. In x and y/z directions
(Vlatt,x, Vlatt,⊥)/ER = (3, 3), (3, 40), (5, 40), (40, 40) (top to
bottom, see Supplemental for detailed parameters [61]). The
black line indicates where the system can be approximated
by a spin model. The striped area indicates where squeezing
is growing past 10ms.

Here, ĤFH is the single-band Fermi-Hubbard Hamilto-
nian describing tunneling and on-site dipolar and contact
interactions. It reads

ĤFH = −
∑
j,σ

Jσ(b̂†j,σ b̂j+1,σ + h.c.) + U
∑
j

n̂j↑n̂j↓ , (2)

with fermionic annihilation operators on site j with spin
σ, b̂j,σ, and number operators n̂jσ = b̂†j,σ b̂j,σ. The tun-
neling rates Jσ, and the contact interaction Ucontact are
controlled by the optical lattice depth, while the on-site
dipolar interactions Udd can be tuned via lattice depth,
lattice anisotropy, and electric field (U = Ucontact +Udd).
In general, a differential polarizability of the rotational
states leads to spin-dependent tunneling rates, which can
be tuned by the lattice polarization axis and are equal at
a magic angle [68]. Close to zero field, the states |↑〉 and
|↓〉 are spherically symmetric and have no induced dipole
moments. Then, interactions between dipoles on differ-
ent lattice sites are given by the dipolar exchange Hamil-
tonian Ĥdip =

∑
i>j

1
|j−i|3V⊥

(
ŝxi ŝ

x
j + ŝyi ŝ

y
j

)
, and can be

approximated as

Ĥdip = V⊥
∑
j

(
ŝxj ŝ

x
j+1 + ŝyj ŝ

y
j+1

)
. (3)

Here, the spin-operators ŝαj = σ̂αj /2 with Pauli matrices

σ̂x,y,z are defined by σ̂−j = b̂†j,↓b̂j,↑. In 1D, the 1/r3 tail of
the interactions neglected in Eq. (3) speeds up the squeez-
ing dynamics, but the maximum attainable squeezing re-
mains unchanged within numerical precision [61]. The
interaction strength V⊥ ∝ [1− 3 cos2(θ)] is controlled by
the angle θ between the field and the orientation of the
1D chain [Fig. 1(a)].

We assume that particles are prepared in their ground
state |↓〉 and uniformly distributed along the lattice such
that each lattice site is occupied with probability 0 <
f ≤ 1. Subsequently, a π/2-pulse prepares the dipoles in
an x-polarized product state [see Fig. 1(b)] with density
matrix ρ̂(t = 0) =

⊗
j ρ̂j with

ρ̂j = (1− f) |0〉 〈0|j + f |→〉 〈→|j . (4)

Here, |0〉 is an empty lattice site and |→〉 = (|↑〉+|↓〉)/
√

2.
The system’s dynamics is described by the Lindblad

master equation

∂tρ̂ = Lρ̂ = −i
[
Ĥ, ρ̂

]
+
∑
j

D
[
L̂j

]
ρ̂ , (5)

D
[
L̂
]
ρ̂ = 2L̂ρ̂L̂† − L̂†L̂ρ̂− ρ̂L̂†L̂ . (6)

On-site two-body losses e.g. due to chemical reactions
are described by Lindblad operators of the form L̂j =√

Γ/2b̂j,↓b̂j,↑, where the loss rate Γ increases with lattice
depth [61, 64]. We numerically simulate the dynamics
of Eq. (5) by representing the vectorized density ma-
trix as an infinite MPS directly in the thermodynamic
limit, which we time-evolve with an infinite time evolv-
ing block-decimation algorithm [61, 69–71]. We measure
squeezing by the Wineland squeezing parameter, which
quantifies the precision gain in a Ramsey spectroscopy
experiment [25–27]

ξ2 =
N(∆S⊥)2

min

〈~S〉2
. (7)

Here, ~S = (Ŝα)α=x,y,z = (
∑
j ŝ
α
j )α=x,y,z is the Bloch vec-

tor, 4〈~S〉2/N2 = 4〈Ŝx〉2/N2 is the square of the contrast
(since 〈Ŝy〉 = 〈Ŝz〉 = 0) , and (∆S⊥)2

min is the minimal
spin variance perpendicular to the Bloch vector [see illus-
tration in Fig. 1(b)]. We use a novel method to compute
squeezing from infinite MPS directly in the thermody-
namic limit, details of which are given in the Supple-
mental [61]. In all Figures, we use parameter values for
fermionic KRb molecules, but we expect our findings to
be relevant for arbitrary fermionic dipoles.

Optimal parameter regimes — We start by discussing
the numerical findings for J↑ = J↓ = J , and give an ana-
lytical understanding in the following section. The max-
imal squeezing achieved within the first 10ms is shown in
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FIG. 2. Full system dynamics. Time evolution of (a) squeez-
ing ξ2 and (b) contrast for various lattice depths [from light
to dark, (Vlatt,x, Vlatt,⊥)/ER = (3, 3), (3, 40), (5, 40), (40, 40)].
The inset shows the normalized molecule number N(t)/N0.
Parameters: V⊥/h = 40Hz, f = 0.8, Γ = Ucontact/~. (c,d)
Same as (a,b) for varying dipolar interaction strength V⊥,
while keeping the on-site interaction, U , and loss rate, Γ,
fixed, and (Vlatt,x, Vlatt,⊥)/ER = (3, 40). See Supplemental
for lattice and MPS parameters [61].

Fig. 1(c) as a function of initial filling fraction and lat-
tice depth. For all filling fractions, decreasing the lattice
depth increases the squeezing. This is the main result
of our paper and will be discussed in the remainder by
considering time traces for parameters along the indi-
cated arrows. We can see that while for deep lattices
with frozen molecules (J/U < 10−3) even for unit filling
f = 1 squeezing is limited to around 3dB, which con-
stitutes a global maximum [see Fig. 3(a) below], shallow
lattices can match and even out-perform these results for
f & 0.4. As will be discussed below in Fig. 4(b), for such
small filling fractions squeezing is limited by the evolu-
tion time and does not constitute a global maximum, as
indicated by the grey striped area. This implies that
if times longer than 10ms were considered, the results
would shift even more in favor of shallow lattices at low
filling since the apparent saturation with lattice depth for
small f is limited only by the short-time growth, which
we will show to be independent of lattice depth [Fig. 2(a)
and Fig. 3(a)].

Figs. 2(a),(b) show the dynamics for different lattice
depths at fixed filling f = 0.8. Changing the lattice depth
modifies both tunneling rate and on-site interaction, such
that shallower lattice lead to a larger value of J/U . At
short times, squeezing is generated at a rate indepen-
dent of the lattice depth. For deep lattices, squeezing
peaks at ξ2 ≈ 2dB. In contrast, for shallower lattices
when molecules are itinerant, the growth persists longer,
leading to larger maximal squeezing at later times. This
is mirrored in the contrast decay in panel (b). While
for deep lattices the contrast decays quickly, it remains
much larger for shallower lattices. One might expect that

FIG. 3. Full and spin model coherent dynamics at unit filling.
Compared to Fig. 2 we set f = 1 and Γ = 0. Time evolution of
(a) squeezing ξ2 and (b) doublon population 〈n̂j,↓n̂j,↑〉 for dif-
ferent lattice depths (as in Fig. 2). Symbols represent results
of the full dipolar Fermi-Hubbard model [Eq. (1)], continuous
lines represent the spin model [Eq. (8)]. The black dashed
line is the one axis twisting limit. V⊥/h = 40Hz, Γ = 0.

the larger on-site loss rate and faster contrast decay and
thus reduced Pauli blockade in deep lattices result in in-
creased molecule loss. However, due to a combination
of Zeno blockade and energetically suppressed doublon
formation, the molecule loss is actually slowest in the
deepest lattice [see Fig. 2(b) inset]. As a consequence,
losses remain below 10% at all lattice depths.

Fig. 2(c),(d) show the squeezing dynamics for a range
of dipolar interaction strengths V⊥. First, focusing on the
results for V⊥/h = 40Hz and V⊥/h = −40Hz, it is clear
that positive values of V⊥ are preferable: The growth
of squeezing persists longer and the coherence is main-
tained for longer. In order to observe the dependence on
|V⊥|, consider the curves for V⊥/h = (20, 40, 80)Hz. We
find that increasing the interaction strength leads to a
speed up of the dynamics, however at the cost of reduc-
ing the maximal squeezing. In order to achieve maximum
squeezing, one thus wants to work with shallow lattices,
and repulsive interactions. The optimal value of |V⊥| is
then determined by any dephasing mechanisms, which
set a time scale limiting how slow the dynamics can be
made.

Analytical explanation: Spin model — In order to pro-
vide insight into the underlying physics and qualitatively
understand the results discussed above, we now consider
the limit J � U , f = 1, and Γ = 0, where we can define
an effective spin model [see Fig. 1(c)]. Due to a combi-
nation of Pauli and interaction blockade mechanisms at
a small tunneling rate, molecules are essentially frozen in
space. Each molecule can then be described as a local-
ized spin [72]. The spins’ interactions are governed by
Eq. (3) and additional super-exchange interactions from
virtual hopping processes. The resulting Hamiltonian is
an XXZ model given by:

Ĥsm = Vsym,eff

∑
j

~sj~sj+1 + Vz,eff

∑
j

ŝzj ŝ
z
j+1 (8)

with Vsym,eff = (4J2/U) + V⊥ and Vz,eff = −V⊥ [61].
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The XXZ model generates spin squeezing, which is
largest for small negative values of Vz,eff/Vsym,eff [51].
The term proportional to Vsym,eff in Eq. (8) is SU(2)
symmetric and thus cannot generate squeezing by it-
self, but favors spin alignment. It is largest for shal-
low lattices where one can reach larger values of J/U ,
and for sgn(V⊥) = sgn(U) = +1. For these parame-
ters the contrast is enhanced and the squeezing remains
large (see Fig. 2). Additionally decreasing |V⊥| and thus
|Vz,eff/Vsym,eff | further increases the maximal attainable
squeezing. Finally, choosing V⊥ > 0 maximizes squeez-
ing by ensuring Vz,eff/Vsym,eff < 0. Since Vsym,eff is
SU(2) symmetric, the initial squeezing speed is deter-
mined solely by |Vz,eff | = |V⊥|, independent of the lattice
depth or the sign of V⊥. It can be estimated by restricting
dynamics to the fully symmetric manifold |〈~S〉| = N/2,
where the model reduces to the analytically solvable one
axis twisting (OAT) model Ĥ = −ξŜ2

z with ξ = V⊥/N .

In Fig. 3 we analyze the validity of the spin model for
different lattice depths in absence of losses (Γ = 0). We
find that, except for the shallowest lattice, the squeezing
dynamics is well reproduced by the spin model [panel
(a)]. For that case, while the initial growth rate is con-
sistent with the OAT model, it overestimates squeezing
at later times. A direct indicator of beyond spin model
physics is the doublon population 〈n̂j↑n̂j↓〉 [panel (b)]
which we find remains small 〈n̂j↑n̂j↓〉 < 1% at the time
of maximal squeezing except for the shallowest lattice.
For the latter, however, the doublon population becomes
significantly larger 〈n̂j↑n̂j↓〉 ≈ 5% at the peak time, and
the spin model breaks down. In the presence of losses,
the small doublon population at moderate lattice depths
also translates into losses, but they are small and typi-
cally less than 10% of the initial molecules at the time of
maximal squeezing [61].

Experimental considerations — Finally, we consider
the impact of experimental imperfections on the gener-
ation of squeezing in Fig. 4. Panel (a) shows the effect
of spin-dependent tunneling rates, and panel (b) shows
different filling fractions. Spin dephasing naturally arises
due to the distinct polarizabilities of the spin states and
the resulting state-dependent trapping potentials and
tunneling rates J↑ 6= J↓. Typical values for KRb at a
lattice depth of 3ER for the |↑〉 state, are J↑/h = 153Hz,
J↓/h = 131Hz [61]. In Fig. 4(a) we find that this leads
to a reduction of spin squeezing from ∼ 4dB to ∼ 2dB.
The tunnelling anisotropy can in principle be removed
by a dynamical decoupling sequence, which effectively
averages the tunneling rates of both states [23, 24, 53].
Here, we consider a sequence of (infinitely fast) X pulses
exp(iπŜx) spaced by a time τ and find that pulses with
a pulse spacing of τ = 500µs are sufficient to almost fully
recover the peak squeezing.

Panel (b) shows the squeezing dynamics at differ-
ent filling fractions, corresponding to a horizontal cut

FIG. 4. Spin squeezing ξ2 in the presence of imperfections.
(a) X-pulses with different pulse spacing τ protect against
dephasing due to spin-dependent tunneling. We consider
J↑/h = 153Hz, J↓/h = 131Hz compared to the no anisotropy
reference with J↓/h = J↑/h = 142Hz. Other parameters
f = 0.8, Ucontact/h = 529Hz, Udd = 0, Γ = Ucontact/~,
V⊥/h = 40Hz. (b) Dynamics for different filling fractions f .
Inset shows the contrast decay. Parameters: J/h = 153Hz,
U/h = 434Hz, Γ = 2π × 512s−1, V⊥/h = 40Hz.

through the diagram in Fig. 1(c), versus time scaled by
the initial filling fraction. In experiments, the filling frac-
tion is limited by the temperature of the gas before load-
ing it into a lattice. We can compute the maximal achiev-
able filling fraction by matching the entropy of free space
gases to the entropy in the respective optical lattice.
While in 2015 experiments in optical lattices achieved
filling fractions up to f = 0.25 [73], for T/TF = 0.3 re-
ported in Ref. [74], theoretically filling fractions up to
f = 0.9 should be reachable [75].

We observe a collapse of all curves when plotted as a
function of the rescaled time t× f . The slowdown of the
dynamics is due to the reduction of average interactions
∝ f . At later times, systems with lower filling fractions
have reduced squeezing compared to the f = 1 case, in-
dicating that small filling fractions lead to a reduction
of maximal attainable squeezing. Since the contrast is
barely affected, the reduction in squeezing is due to an
increase in the variance in Eq. (7), which may be e.g. due
to enhanced motion at lower filling or disorder in the ini-
tial state.

Nevertheless, the most important reduction of the
maximally reported spin squeezing for smaller filling frac-
tions in Fig. 1(c) is imposed by the runtime of the dy-
namics, which here we set to 10ms, but will ultimately
be limited by additional sources of spin dephasing in an
experiment. Previous experiments in pancakes had co-
herence times limited by collisions [53] which are already
included in our analysis. In a lattice, interaction-limited
spin coherence times can be larger than 400ms [22], lead-
ing to negligible coherence loss on the 10ms time scales
considered here [61], thus supporting the possibility to
generate several dB squeezing in current experiments.

Conclusion — In this paper, we have shown that spin
squeezing is maximal in shallow lattices. While our study
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is focused on 1D due to the availability of exact numeri-
cal methods, we expect these results to extend to higher
dimensions. In fact, the spin model arguments generalize
directly to higher dimensions, and the better lattice con-
nectivity in higher dimensions was shown to be beneficial
in the case of deep lattices [51]. Larger ~E-fields and Flo-
quet engineering provide additional tuning knobs, which
can turn the XY into an XXZ model [67, 76], and thus
further control Vz,eff . Additional density-spin interaction

terms [66] for large ~E-fields may constitute an additional
source of dephasing, which can however be removed by
the pulse sequence discussed in Fig. 4(a).

Furthermore, we emphasize that although in this paper
we focused on KRb, we expect our results to generalize to
other short-range interacting systems such as magnetic or
Rydberg atoms. Indeed, the only necessary ingredients
for our results are short-range interactions, the trapping
in a tight-binding lattice, and the fermionic nature of the
particles. The observed increase of squeezing with de-
creased interaction strength is particularly interesting for
emerging experiments with magnetic atoms, which typi-
cally have much weaker interactions than molecules but
longer coherence times [4]. It is an interesting prospect to
consider if our results can be further extended to bosons,
and how they ultimately translate when pushing to even
shallower lattices when corrections to the Fermi-Hubbard
model become important [77, 78].
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[55] G. Quéméner, J. L. Bohn, A. Petrov, and S. Kotochigova,
Universalities in ultracold reactions of alkali-metal polar
molecules, Phys. Rev. A 84, 062703 (2011).

[56] J. F. E. Croft, J. L. Bohn, and G. Quéméner, Unified
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Appendix A: Hamiltonian Derivation and Parameters

In the tight binding limit, we write the Hamiltonian in a basis set of localized Wannier orbitals on site j, ψj(x) =
ψ(x− ja), with a the lattice spacing. The derivation of the Fermi-Hubbard model for an optical lattice is well known,
and can e.g. be found in Refs. [77, 80]. Here, we only repeat some main results for convenience and point out some
important features for molecules. The tunneling rate is generally given by

J = − ~2

2m

∫
dxψ∗(x)∂2

xψ(x− a) + Vlatt

∫
dxψ∗(x)ψ(x− a) sin2(πx/a) , (A1)

with m the particle mass. The on-site interactions are the sum of contact and dipole-dipole interactions U =
Ucontact + Udd. The contact interactions can be computed from the overlap integral and the s-wave scattering length
as

Ucontact =
4π~2 Re(asc)

m

∫
d3r |ψ(~r)|4 . (A2)

The values for the lattice depths considered in the paper are given in Tab. I.

Differential spin polarizabilities

If the lattice depth experienced by the two spin states is different, the spin states will have different Wannier
orbitals ψ↑(x) and ψ↓(x), and thus distinct tunneling rates J↑ 6= J↓. The overlap integral needs to be adapted to

Ucontact = Re(asc)
∫
d3r |ψ↑(~r)|2|ψ↓(~r)|2. In particular, for KRb, at a 90◦ angle between the lattice polarization and

the ~E-field, the lattice for the |↓〉 state is approximately 20% deeper than for the |↑〉 state [68], leading to the values
shown in Tab. I.

Dipole-dipole interactions

In this section we give a concise summary of the dipole-dipole interactions at weak field closely following Ref. [66].
The rotational level structure of a single molecule in its electronic and vibrational ground state is described by the
Hamiltonian

Ĥ = BN̂2 − Ed̂0 , (A3)

where B is the rotational constant, N̂ is the angular momentum operator, E is the electric field, and d̂0 = dZ is the
dipole operator in the direction of the electric field Z with the permanent dipole moment of KRb d = 0.566 ea0 [7].
For weak field, the eigenstates of this Hamiltonian are the rotational eigenstates |N ,NZ〉 with N̂2 |N ,NZ〉 =
N (N + 1) |N ,NZ〉, where the electric field lifts the degeneracy between different NZ .

For M = 0 states, the dipoles are oriented parallel to the electric field, and the angular dependence of the dipole-
dipole interactions is

Vdd(~r) =
1− 3 cos2(θ)

r3
, (A4)

Lattice depth [ER] J/h J⊥/h Ucontact/h Udd/h
3× 3× 3 153Hz 153Hz 101Hz 0

3× 40× 40 153Hz 0.15Hz 512Hz -78Hz
(3/3.6)× 40× 40 131Hz 0.15Hz 529Hz

5× 40× 40 90.9Hz 0.15Hz 614Hz -73Hz
40× 40× 40 0.15Hz 0.15Hz 1151Hz 0

TABLE I. Lattice parameters for KRb with lattice laser wavelength 1064nm (532nm lattice spacing). The case 3/3.6 refers to
the anisotropic lattice with depth 3ER for molecules in |↑〉 and 3.6ER for molecules in |↓〉. Udd is here given for an angle of
47.4◦, which matches V⊥/h = 40Hz. J⊥ is the tunneling rate perpendicular to the x direction, which we set to zero for a 1D
geometry.
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where θ is the angle of molecule separation relative to the electric field axis and r = |~r|. In second quantization, the
interaction Hamiltonian reads

Ĥdd =
1

2

∫
d3r

∫
d3r′ Vdd(~r − ~r′)

{[∑
mm′

µmµm′ ψ̂†m(~r)ψ̂†m′(~r
′)ψ̂m′(~r′)ψ̂m(~r)

]
+ µ2

↑↓

[
ψ̂†↑(~r)ψ̂

†
↓(~r
′)ψ̂↑(~r

′)ψ̂↓(~r) + h.c.
]}

,

(A5)

with (m,m′ =↑, ↓), field operators ψ̂, the transition dipole moment µ↑↓ = 〈↑| d̂0 |↓〉, and permanent dipole moments
µm of state m. At zero field, µ↑↓ = d/

√
3 and µm = 0.

When expanding Eq. (A5) into Wannier orbitals that are strongly localized, only those terms with ψ̂†σ(~r) and ψ̂σ′(~r)
on the same lattice site contribute. The dipole contribution to the on-site interactions is then given by the on-site
integral

Udd =
1

2

∫
d3rd3r′ µ2

↑↓Vdd(~r − ~r′)
[
ψ∗↑(~r)ψ↓(~r)ψ

∗
↓(~r
′)ψ↑(~r

′) + c.c.
]
. (A6)

Numerical values for Udd are given in Tab. I.
In order to estimate the nearest neighbor dipole interactions, we again assume strongly localized orbitals such that

we can replace Vdd(~r − ~r′) ≈ Vdd(~a). We then find

Ĥdip =
∑
i,j

1

2
Vdd(~a)µ2

↑↓
(
ŝ+
i ŝ
−
j + ŝ−i ŝ

+
j

) ∫∫
d3rd3r′ ψ∗↑(~r)ψ↓(~r)ψ

∗
↓(~r
′)ψ↑(~r

′) , (A7)

where the integral becomes 1 for ψ↑(~r) = ψ↓(~r), and is less than 1 otherwise. When the extent of the Wannier orbitals
approaches the lattice spacing further corrections need to be taken into account [77]. Using 0 ≤ cos2(θ) ≤ 1 and
a = 532nm, we find −220Hz ≤ V⊥ ≤ 110Hz.

Decay rate

In order to derive an expression for the decay rate, we adapt the derivation of Ref. [81] to fermions. The idea is
to first derive an effective Lindbladian description of the free space scenario and then integrate over a lattice site,
analogous to elastic s-wave scattering/contact interactions. In a 3D gas with inelastic scattering, the evolution of the
number of particles in state |↑〉 is determined by

∂tn↑ = −n↑σv , (A8)

v =
~k
m
. (A9)

Here, v is the velocity, m is the mass, ~k is the momentum, and σ is the inelastic scattering cross section with particles
in |↓〉. It depends on the complex scattering length asc as [82]

σ = n↓ ×
−4π Im(asc)

k[1 + k2|asc|2 + 2k Im(asc)]
. (A10)

Thus, in the limit where particles have small momentum compared to the scattering length k|asc| � 1

∂tn↑ =
4π~ Im(asc)

m
× n↑n↓ . (A11)

For KRb, in the paper we use the universal s-wave scattering parameters [54], which have been experimentally
confirmed by measurements of loss rates for molecules in two different hyperfine states [83]. For rotational states,
measurements in a 3D lattice observe a factor of 5 larger loss rate [30], which require the inclusion of higher bands
when computing the dynamics [64]. Nevertheless, the renormalized loss rate parameters were similar to the ones
obtained for nuclear spin states. Therefore, we use the latter in this paper.

We match this evolution to a master equation with Lindblad operator

L̂~r =

√
Γ3D

2
ψ̂↑(~r)ψ̂↓(~r) , (A12)
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FIG. S1. Truncation of interaction radius. Squeezing evolution for different interaction truncation radii dmax, i.e. dipolar
interactions between sites i and j are set to zero for |i− j| > dmax. We simulate coherent dynamics on L = 20 lattice sites
with (a) N = 4 and (b) N = 16 starting from random 32 and 8 different initial states, respectively (identical initial states for
different dmax). Changes in peak height are smaller than statistical or MPS truncation errors (not shown). Other parameters:
J/h = 153Hz, U/h = 434Hz, Γ = 0, V⊥/h = 40Hz. χ = 256 for N = 4 and χ = 1024 for N = 16.

where ψσ(~r) is the fermionic annihilation operator for a molecule in state σ at position ~r, and Γ3D is the free space
decay rate which we want to determine.

We can also calculate the time evolution of the population of |↑〉 from the master equation as

∂t〈n↑〉 =
Γ3D

2

〈∫
d3r
[
2ψ̂†↓(~r)ψ̂

†
↑(~r)n̂↑ψ̂↑(~r)ψ̂↓(~r)− n̂↑ψ̂

†
↓(~r)ψ̂

†
↑(~r)ψ̂↑(~r)ψ̂↓(~r)− ψ̂

†
↓(~r)ψ̂

†
↑(~r)ψ̂↑(~r)ψ̂↓(~r)n̂↑

]〉
. (A13)

To evaluate this integral, we use n̂↑ =
∫
d3r′ψ̂†↑(~r

′)ψ̂↑(~r
′). For ~r 6= ~r′, the terms in the integral cancel. For ~r = ~r′,

the first term vanishes due to ψ̂†↑(~r)
2 = 0. For the other terms, we use the fermionic identity ψ̂†(~r)ψ̂(~r)ψ̂†(~r)ψ̂(~r) =

ψ̂†(~r)ψ̂(~r). We are left with

∂t〈n↑〉 = −Γ3D

〈∫
d3r ψ̂†↓(~r)ψ̂↓(~r)ψ̂

†
↑(~r)ψ̂↑(~r)

〉
. (A14)

From matching Eqs. (A11) and (A14), we can easily extract

Γ3D =
−4π~ Im(asc)

m
. (A15)

By integrating Eq. (A14) over the Wannier functions, we can derive the decay rate

Γ =
−4π~ Im(asc)

m

∫
d3r |ψ(~r)|4 . (A16)

Finally, for strong decay rates, molecules obey the universal condition − Im(asc) = Re(asc), leading to Γ = Ucontact/~,
which is given in Tab. I.

Appendix B: Interaction Range

In Fig. S1, we show the effect of including beyond nearest neighbor terms in a system without losses averaged over
different initial states. We find that the main contribution is a re-scaling of time, whereas changes to the maximal
squeezing are smaller than simulation errors. We attribute this to two competing effects of the long-range tails on
squeezing. On the one hand, the connectivity is increased, which is generally expected to increase squeezing. On
the other hand, there is an effective increase in interaction strength by a factor

∑
j 1/j3 ≈ 1.2. As discussed in the

main text, increasing the interaction strength speeds up the dynamics, but reduces squeezing. The resulting effects
on squeezing approximately cancel each other, such that only the speed-up remains.
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FIG. S2. Convergence with bond dimension χ for the shallowest lattice with VX = VY = VZ = 3ER, for a filling fraction
f = 0.8. Only “worse” case is f = 1 for the same lattice depth. For χ = 2048, the squeezing is converged until t = 8ms.
Contrast and molecule number are converged for all cases shown.

(J/U)
f

0.1 0.2 0.4 0.6 0.8 1

1.5 1024 1024 1400 2048 2048 (X) 2048 (X)
0.3 1024 1024 1400 1400 1400 2048 (X)
0.15 1024 1024 1024 1400 1400 1400

< 10−3 1024 1024 1024 1024 1024 1024

TABLE II. Bond dimension χ used for different filling fractions f and lattice depths indicated by J/U (see Tab. I). Entries
marked by (X) are not conclusively converged until t = 10ms. This does not affect any results shown in the paper.

Appendix C: MPS Simulation

1. Infinite Time Evolving Block Decimation

In order to represent the full density matrix as an MPS directly in the thermodynamic limit, we use the translation
invariance of the state [69]. In particular, we write the density matrix as

ρ̂ =
∑
{in}

∑
{αn}

∏
n

Γ
[n]
in,αn,αn+1

λ[n]
αn

⊗
n

êin , (C1)

where the in run over the physical dimension, and the αn run over the virtual bond dimension and are truncated
such that 1 ≤ αn ≤ χ. The êin form a basis set of the local density matrices (i.e. 1 ≤ in ≤ 16 for four possible states
on each site), for which we here choose the generalized Gell-Mann matrices [84]. For a translation invariant state,
also the Γ and λ tensors are translation invariant, i.e. Γ[n] = Γ[n+2] and λ[n] = λ[n+2], and we only keep two Γ and
λ tensors. In principle, Γ and λ are translation invariant by one site, but during the time evolution this translation
invariance is intermittently broken and then restored, making all four tensors necessary.

To time evolve the state, we use an infinite time-evolving block decimation algorithm, i.e. a Trotter decomposition
of the Hamiltonian into two site gates. However, a naive implementation of this algorithm for density matrices would
destroy the orthogonality of the MPS. This is fixed by re-orthogonalizing the MPS after every gate application [69].
For all simulations except the spin model simulation, we use a fourth order Trotter decomposition [85]

(1)(1)T (1)(−2)T (1)(1)(1)(1)(1)T (1)(1)T (1)T (1)T (1)T (−2)(1)T (1)(1)T . (C2)

Here, the number in brackets indicates the length of the timestep, negative numbers for evolution backwards, and the
superscript T indicates that we apply the gates in transposed order. For the spin model simulation, we use a smaller
time step for which the second order trotterization (1)(1)T suffices.

2. Convergence

In order to ensure convergence of our simulation, we successively decrease the timestep ∆t and increase the bond
dimension until convergence is reached. In practice, we halve the timestep and increase the bond dimension in steps
of χ = 512, 750/800, 1024, 1400, 2048, until the curves overlap. For the time step, we have confirmed for all results
with f = 0.1 and for the shallowest lattice with f = 0.8 that a timestep ∆t = 1ms [time for a full Trotter sequence
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Eq. (C2)] is sufficient, independent of the system parameters. For the second order decomposition ∆t = 25µs is
needed. The procedure to determine the bond dimension is illustrated in Fig. S2 at fixed ∆t = 1ms in one of the
worst case scenarios. The bond dimension strongly depends on the system parameters. For Figs. 1, 2, and 4, the
bond dimensions used are shown in Tab. II. In Fig. 3, we find that χ = 4096 for the full Fermi-Hubbard simulation
and χ = 512 for the spin model are sufficient.

3. Computing Correlations

For fully coherent dynamics (results in Fig. 3), we compute squeezing by computing all correlations including up
to 80 neighbors in each direction and compute the squeezing from there. For the incoherent dynamics, we directly

compute the infinite correlations
∑
n>0〈Ô

(1)
0 Ô

(2)
n 〉, Ô(i) ∈ {ŝx, ŝy, ŝz} with an approach closely related to transfer

matrices. We can write
∑L
n>0 Ô

(2)
n as an L-site matrix product operator (MPO), that is in the form of Eq. (C1) with

λ[n] = 1 [70]. The Γ tensors are

Γ[1] =
(
Ô

(2)
1 1

)
, Γ[L] =

(
1

Ô
(2)
N

)
, Γ[n] =

(
1 0

Ô
(2)
n 1

)
, 1 < n < L,

where the matrix dimensions indicate the bond dimension, and the operators in the matrix elements are vectorized
to give the physical dimension.

In order to compute Tr
[
ρ̂Ô

(1)
0

∑L
n>0 Ô

(2)
n

]
, we contract their MPS/MPO representations along the physical dimen-

sion. The lattice sites with no operator acting on them are contracted with the identity. The contraction over the
indices 1 < n < L− 1 can be written as the [(L− 2)/2]th power of the matrix

Mαnβn

αn+2βn+2
=

∑
in,in+1

∑
αn+1

∑
βn+1

Γ
[n](ρ)
in,αn,αn+1

λ[n](ρ)
αn

Γ
[n+1](ρ)
in+1,αn+1,αn+2

λ[n+1](ρ)
αn+1

Γ
[n](O)
in,βn,βn+1

λ
[n](O)
βn

Γ
[n+1](O)
in+1,βn+1,βn+2

λ
[n+1](O)
βn+1

(C3)

where the superscript ρ or O indicate from which representation the operators were taken, and {αn, βn} is interpreted
as a combined left index, while {αn+2, βn+2} is interpreted as a combined right index. This power can be easily
computed by diagonalizing the matrix M . Using the diagonalized form, it is straightforward to take the limit L→∞.

The sites n < 0 and n > L are contracted with the vectorized identity matrix. This contraction can also be written
in the form of Eq. (C3), where the dimension of the βn indices is 1. Again, the infinite power of this matrix is easily
computed by diagonalizing it. We note that we only find eigenvalues ≤ 1 for the matrices, ensuring that the limit
L→∞ is well defined.

Appendix D: Spin Model Derivation

For unit filling f = 1 and no losses Γ = 0, the spin model can be derived by adiabatically eliminating all states
with one or more doubly occupied sites. Using the formalism of Ref. [86] with V̂ = −

∑
j,σ J(b̂†j,σ b̂j+1,σ + h.c.),

Ĥe = U
∑
j n̂j↑n̂j↓ and Ĥg = Ĥdip, it is straightforward to derive the given terms. Note that the ~sj~sj+1 term arises

due to fermionic statistics, which only allows molecules with opposite spin states to tunnel to the same site. A similar
term would also arise for bosons, however with opposite sign. In addition, a constant energy shift was dropped.

Appendix E: Molecule Number Decay

The molecule loss for the time traces analyzed in the main paper is shown in Fig. S3. In all cases, the molecule
number at peak squeezing is & 90% of the initially present molecules. In panel (a), for the deepest lattice with
J/U < 10−3 the molecules do not decay at all. For the other lattice depths, we find some losses, with the loss
rate being approximately independent of the lattice depth. In the other panels losses are slowest when contrast and
squeezing are largest (compare corresponding cases in the main paper). This demonstrates a combination of two effects
suppressing molecule decay. Especially for deep lattices, creating doubly occupied sites is energetically forbidden and
Zeno-suppressed. In addition, when the contrast is large, doubly occupied sites cannot be formed due to the Pauli
exclusion principle, thus preventing losses.
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FIG. S3. Molecule loss for the different cases discussed in the paper. (a) corresponds to Fig. 2(a/b); (b) corresponds to
Fig. 2(c/d); (c) corresponds to Fig. 4(a); (d) corresponds to Fig. 4(b).

FIG. S4. Evolution under dephasing of (a) squeezing, (b) contrast, and (c) molecule number for different spin coherence times
τdeph. Parameters: J/h = 153Hz, U/h = 434Hz, Γ = 2π × 512s−1, V⊥/h = 40Hz.

Appendix F: Dephasing

In Fig. S4, we consider the effect of dephasing on the system dynamics. Here, we model dephasing as white
noise on the two different spin states, described by Lindblad operators L̂j =

√
Γdephŝ

z
j . For spin coherence times of

τdeph = 1/Γdeph = 100ms, we find a significant reduction in squeezing. In contrast, for spin coherence times of 500ms,
squeezing is only slightly reduced, and for τdeph = 2s, changes induced by dephasing are barely visible. Since recent
experiments have reported interaction limited coherence times > 400ms, we can assume that the real coherence times
are even longer, such that additional dephasing does not need to affect the spin squeezing.
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