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We study the temporal growth and spatial propagation of quantum correlations in a two-
dimensional bilayer realising a spin-1/2 quantum XXZ model with couplings mediated by long-range
and anisotropic dipolar interactions. Starting with an initial state consisting of spins with opposite
magnetization in each of the layers, we predict the emergence of a momentum-dependent dynamic
instability in the spin structure factor that results, at short times, in the creation of pairs of excita-
tions at exponentially fast rates. The created pairs present a characteristic momentum distribution
that can be tuned by controlling the dipolar orientation, the layer separation or the dipolar cou-
plings. The predicted behavior remains observable at very low filling fractions, making it accessible
in state-of-the-art experiments with Rydberg atoms, magnetic atoms, and polar molecule arrays.

Anisotropic dipolar interactions controllable via elec-
tromagnetic fields offer unique opportunities for the im-
plementation of iconic models of quantum magnetism
relevant for fundamental science and for the develop-
ment of novel quantum technologies. In recent years,
great progress has been made on the implementation of
dipole-induced spin exchange interactions in fully con-
trollable quantum systems of polar molecules [1–3], mag-
netic atoms [4] and Rydberg atoms [5, 6]. However, most
of the investigations so far have been targeted to the sin-
gle excitation regime [7] or to the case of multiple ex-
citations characterized via collective observables [8–17].
Nevertheless, recent experimental developments on quan-
tum gas microscopes [18, 19] and optical tweezers [20–24]
that allow for the spatial-resolved control of correlations
at the single particle level are opening a window to ex-
plore rich and intriguing quantum phenomena enabled
by dipolar spin models.

In this work, we study the temporal and spatial growth
of correlations during the many-body dynamics of an ar-
ray of spin-1/2 frozen dipoles confined in two separated
two-dimensional layers (see Fig. 1(a)). This system, im-
plementable for example using optical lattices or tweezer
arrays, realises a quantum XXZ spin model with dipolar
couplings. By preparing the two layers in opposite spin
states, as in recent experiments on polar molecules [15],
one creates a dynamically unstable state from which cor-
related pairs of spin excitations develop and grow at an
exponential rate, at least at short times. These corre-
lated pairs manifest in the spin structure factor, which
develops intriguing momentum patterns controllable by
both the separation of the layers, and the magnitude and
orientation of the dipole moments.

The build up of spin correlations can be explained us-
ing a Bogoliubov analysis, which uncovers a dynamical
instability in specific tunable momentum modes. We val-
idate the Bogoliubov predictions of the pair creation pat-

FIG. 1. System. (a) Bilayer of dipoles confined in 2D planes
with dipole moments aligned at an angle Θ0 to the out-of-
plane direction. When the layers are prepared in an initial
state with opposite magnetization, dipolar inter-layer interac-
tions create pairs of excitations in the layers in specific quasi-
momentum modes. (b) Occupation of the most unstable mode
Nk∗ as a function of time t for different dipole orientations Θ0

(legend) at fixed aZ/a = 2. Shown are spin dynamics from
DTWA (solid lines), and the prediction from Bogoliubov the-
ory (dashed lines). Shaded regions indicate the regimes of
dynamics (for Θ0 = 3π/8), where we find exponential growth
as predicted by Bogoliubov (I), saturation and slow-down of
growth (II), and eventual decay and thermalisation (III). Re-
sults for a 33× 33 bilayer at unit filling.

terns by numerical simulations of the full spin dynamics,
and show that pattern formation remains robust even for
very low lattice fillings, making it observable in state of
the art experiments, without requiring unit-filling.

The predicted instabilities and exponential prolifera-
tion of correlated pairs of excitations between spatially
separated layers, which emulate the phenomenon of pair
creation from vacuum fluctuations, open unique oppor-
tunities for quantum simulation, and for fundamental
tests of quantum mechanics including EPR steering [25–
28]. Pair creation itself is an ubiquitous phenomenon
in physics, relevant in a broad range of contexts includ-
ing parametric amplification and two-mode squeezing in
quantum optics [29], the Schwinger effect in high energy
physics [30–32], the emission of Unruh thermal radiation
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in curved space time [33, 34], and in holography given
that the thermofield double state generated during pair
production is dual to a traversable wormhole [35, 36] in
quantum gravity, and a resource for quantum teleporta-
tion [37–39].

Previous studies of pair creation processes in spinor
condensates induced by contact interactions [40–43] were
dominated by single (resonant) momentum modes (or
trap states in confined condensates [44]) determined by
the quadratic Zeeman shift, while proposals of pair pro-
duction in cavities induced by collective interactions [45]
require a set of laser tones to generate non-trivial pat-
terns, and are sensitive to cavity loss [46]. In contrast,
the pair creation observed in this work allows for the gen-
eration of highly tunable, and intriguing distributions of
excitations naturally emerging from anisotropic dipolar
couplings [1–4, 8–11, 13, 47, 48].

Model: We consider an array of frozen dipoles with
two relevant internal levels (e.g. two rotational states
in the case of polar molecules) confined in two parallel
two-dimensional layers generated via optical lattices or
optical tweezers, separated by a tunable distance aZ . We
denote the upper layer as A and the lower one as B. As
shown in Fig. 1(a), both layers have square geometry
with a nearest-neighbour spacing a.

Electric and magnetic dipole-dipole interactions can
lead to both exchange of internal-state excitations, as
well as Ising interactions [7–13, 47, 49], which can be
tuned via external electromagnetic fields. For the case
of frozen particles, the dynamics is governed by the cel-
ebrated (long-range) spin-1/2 XXZ model:

ĤXXZ =
1

2

∑
σ=A,B

∑
i6=j

V σσij (ŝ+
iσ ŝ
−
jσ + ŝ−iσ ŝ

+
jσ + 2ηŝziσ ŝ

z
jσ)

+
∑
i,j

V ABij (ŝ+
iAŝ
−
jB + ŝ−iAŝ

+
jB + 2ηŝziAŝ

z
jB), (1)

where σ indexes the layers, η characterizes the relative
strength between Ising and exchange couplings, and i =
(ix, iy) stands for a two-dimensional coordinate in which
ix, iy run along the positions in a given two-dimensional
layer of size N = L× L. As is customary, the spin oper-
ators ŝαi = σ̂αi /2 are given in terms of the Pauli matrices
σ̂x,y,z that act on the spin at site i. We shall focus our
attention on dipole couplings of the form

V σσ
′

ij =
J

|rσi − rσ
′

j |3

(
1−

3[d · (rσi − rσ
′

j )]2

|rσi − rσ
′

j |2

)
, (2)

where d̂ = sin Θ0êx + cos Θ0êz is the orientation of the
dipoles, rσi is the position of a dipole in layer σ, and J is
the spin-exchange constant.

Motivated by recent experiments on polar molecules
in bilayers [15], we consider in the following the non-
equilibrium dynamics of this system starting from an ini-
tial state where all dipoles in layer A (B) are initially in

the spin up (down) state. We first analyse the spin ex-
citations in terms of a Bogoliubov treatment, and then
by simulating the quantum dynamics of the full dipolar
spin model using the discrete truncated Wigner approx-
imation (DTWA) [50, 51].

Bogoliubov Analysis: As in the standard spin wave
analysis, the spin dynamics can be described by mapping
the Hamiltonian (1) to a hard-core bosonic model using

the Holstein-Primakoff transformation ŝzA,i = 1/2− â†i âi,
ŝ+
A,i = âi, ŝ

−
A,i = â†i , and ŝzB,i = −1/2 + b̂†i b̂i, ŝ

+
B,i = b̂†i ,

ŝ−B,i = b̂i. The bosonic operators âi and b̂i character-
ize the spin excitations that appear on top of the pre-
pared initial state. Assuming a small population of spin
excitations, much smaller than the number of sites, the
Hamiltonian may be rewritten in quasi-momentum space

Ĥ =
∑
k

ε̃k(â†kâk + b̂†kb̂k) + Ωkâ
†
kb̂
†
−k + Ω∗kb̂−kâk, (3)

where âk = 1√
N

∑
ri
e−ik·ri âi and b̂k = 1√

N

∑
ri
e−ik·ri b̂i.

The momentum-dependent inter-layer coupling is
given by Ωk =

∑
j V

AB
0j e−ik·rj , whereas the intra-layer

band dispersion for spin excitations in each layer is
ε̃k = εk − η(ε0 − Ω0), with εk =

∑
j6=0 V

AA
0j e−ik·rj . Note

that the Ising term results in a momentum-independent
shift of the intra-layer band energy. The inter-layer cou-
pling drives the creation of correlated pairs of excitations
(one per layer) at an energy cost set by the intra-layer
term.

The Hamiltonian can be diagonalized by means of
a Bogoliubov transformation [52], which leads to the
eigenenergies ξk =

√
ε̃2
k − |Ωk|2. Crucially, |Ωkc | > |ε̃kc |

for certain quasi-momenta kc, resulting in imaginary
eigenenergies ξkc , i.e. a dynamical instability of the vac-
uum of spin excitations leading to the creation of cor-
related pairs. The instability manifests itself as an ex-
ponential growth in the population of the corresponding
mode, Nkc = (|Ωkc |/|ξkc |)2 sinh2 (|ξkc |t). These predic-
tions are shown as the dashed lines in Fig. 1(b), compared
to the full spin dynamics discussed below.

Note that if a3
Z � a3, the inter-layer coupling |Ωk|

is much smaller than the intra-layer bandwidth. As a
result, imaginary eigen-energies only occur for ε̃k ' 0.
This condition is modified by the shift induced by the
Ising term, which hence acts as an additional knob to tai-
lor the quasi-momentum distributions discussed below (a
similar control knob would be provided by a layer bias of
the form

∑
i(ŝ

z
A,i − ŝzB,i)). In the following, however, we

focus for simplicity in the case η = 0, i.e. in the absence
of Ising term (XY model), for which ε̃k = εk. For the
case of electric dipoles, this is achieved at zero electric
field. Figure 2(a) shows the pair coupling strength Ωk

in the Brillouin zone, overlaid with the resonant line for
which εk ' 0. Pairs are most effectively produced ex-
actly on resonance and for momenta where pair coupling
is strong. This is borne out in Fig. 2(b), which shows
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FIG. 2. Bogoliubov Analysis. (a) Pair coupling strength |Ωk|
as a colorplot, overlaid with the resonant surface ε(k) ' 0. (b)
Imaginary part of the Bogoliubov energy ξk. Both for a dipole
orientation Θ0 = 3π/8 and aZ/a = 2. (c) Growth rate of
the maximally unstable mode Γ = maxk Im[ξk] as a function
of the dipole orientation Θ0 at aZ/a = 2, 4 as indicated in
legend. All in units of J/~.

the growth rate of momentum modes, i.e. the imaginary
part of the Bogoliubov energy, which matches with the
overlap of the resonant surface and the region of strong
inter-layer coupling seen in Fig. 2(a). Bogoliubov the-
ory hence predicts the creation of pairs with a specific
quasi-momentum distribution.

Figure 2(c) shows the growth rate Γ of the most un-
stable mode, i.e. the maximum of the imaginary part of
the Bogoliubov energies, as a function of the dipole ori-
entation Θ0 for two different bilayer spacings aZ . At suf-
ficiently long times, the most unstable modes eventually
dominate pair creation, resulting in vastly different dy-
namical scales for the spin excitations for different dipole
orientations. Note that the growth rate is the lowest at
small Θ0 and maximal close to 3π/8. Since the overall
form of the growth rate does not qualitatively change for
a3
Z � a3, we focus on the case aZ/a = 2.

As shown in the quasi-momentum distributions, the
most unstable mode is not unique but rather degenerate
for a set of quasi-momentum modes, ηc, and hence the

system evolves into the state |ψ(t)〉 ' eΓt
∑

k∈ηc β
†
kβk |vac〉,

where |vac〉 is the vacuum of excitations, and βk are the
quasiparticle operators. Any linear combination of the
most unstable modes is equally unstable, and hence ex-
ponential growth magnifies quantum fluctuations result-
ing in the population of a shot-to-shot dependent linear
superposition of the modes. Thus, the population of a
given mode k ∈ ηc presents a super-Poissonian variance
(not shown). Moreover, excitations pairs are always cre-
ated with opposite momenta, and hence for a given shot,
the momentum distribution at momentum k in the layer
A equals that at momentum −k in layer B. This behav-
ior reflects the strongly entangled character of the state
generated during pair creation.

Full spin dynamics: We next turn to the full quan-
tum spin dynamics of the model obtained within the
DTWA [50, 51]. The momentum state population of ex-

citations in layer B maps to the structure factor which in
terms of spin-operators can be written as

N̂B
k =

1

N

∑
ij

eik·(ri−rj)b̂†i b̂j =
1

N

∑
ij

eik·(ri−rj)ŝ+
i ŝ
−
j (4)

and a similar expression holds for layer A. We de-
fine Nk = 〈N̂A

k 〉 = 〈N̂B
k 〉. This establishes a connec-

tion between the Bogoliubov predictions and the Fourier-
transform of the spin-spin correlations, which we can ob-
tain from the DTWA simulations of the spin dynamics.
We will focus exclusively on the momentum structure
here due to this correspondence (see [52] for the real-
space results).

Figure 1(b) shows the population Nk∗(t) of the most
unstable mode k∗ for different dipole orientations Θ0 ob-
tained from both DTWA simulations (solid lines) and the
Bogoliubov analysis (dashed lines) with no fitting param-
eters. Both results are in very good agreement in the
initial exponential growth regime (regime I), in which a
significant number of pairs are created before corrections
or further scattering terms become important. This is fol-
lowed in the full dynamics by a slow down and eventual
saturation to a maximal mode occupation (regime II), af-
ter which scattering between momentum modes starts to
deplete the maximally unstable mode (III). As expected
from the Bogoliubov analysis, we observe that the spa-
tial and temporal growth of correlations exhibit a strong
dependence on the dipole orientation.

We next turn to the time evolution of the full mo-
mentum distribution of the created pairs during the spin
dynamics of the model, obtained within DTWA for a rep-
resentative Θ0 = 3π/8 in Fig. 3(a), with an extended set
of figures provided in the SI [52]. At very short times off-
resonant non exponentially growing modes dominate the
structure (left panel), which then give way to the expo-
nentially growing unstable modes resulting in the distri-
bution expected from the Bogoliubov prediction (second
panel). As the most unstable modes reach saturation,
growth can still occur in these unstable modes but at
a lower growth rates. Naturally, higher-order terms ne-
glected within the Bogoliubov approximation will even-
tually result in scattering between different momentum
modes leading to prethermal behaviors followed up by
thermalisation. We see this expectation borne out in the
last two panels showing first an increase of population
in the slower growing unstable modes and then the mo-
mentum distribution becoming uniform in the late time
regime of the dynamics. We note that this subsequent
approach to equilibrium can itself host rich physics [53–
56]

Having observed the emergence of the predicted mo-
mentum instability in an appropriate time window for a
single dipole orientation, we next compare in Fig. 3(b)
the DTWA results to the Bogoliubov predictions for
different dipole orientations Θ0. Here, we choose an
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FIG. 3. Momentum structure of created pairs Nk. (a)
Time evolution of Nk(t) within DTWA showing the differ-
ent regimes of dynamics for Θ0 = 3π/8. Time in terms of t10,
where Npair(t10) = 0.1N . The left most panel shows the early
time regime before exponential growth has taken over. The
second panel shows the build up of the expected momentum
structure. The last two panels show the subsequent thermal-
isation as scattering between momentum modes occurs. (b)
Comparison of Bogoliubov prediction (top) and spin dynam-
ics from DTWA (bottom) for a range of Θ0, all at t10. Results
for a 33 × 33 bilayer with layer spacing aZ/a = 2 with open
boundary conditions at unit filling.

evolution time t such that the total number of pairs
Npair =

∑
kNk(t) = 0.1N , to allow time for the dynam-

ical instability to create pairs, while at the same time
keeping within the regime of validity of the Bogoliubov
analysis. In addition, this allows us to compare differ-
ent dipole orientations, which we have shown above to
have vastly different dynamical growth rates. We observe
good agreement for all dipole orientations indicating that
the pair production mechanism is still effective in the full
dipolar spin model. The good quantitative agreement be-
tween the Bogoliubov and the DTWA numerical results
shows that there is indeed a time regime for all considered
dipole orientations in which the momentum selective pair
instability generates a large number of excitations with
a characteristic momentum distribution without disrup-
tion from competing scattering processes.

This demonstrates the existence of highly-tunable set
of momentum-dependent instabilities in the full dipolar
spin dynamics. Changing the dipole orientation does not
only lead to different time scales for the spin dynamics,
but also allows for the tuning between different topolo-
gies of the unstable surface in momentum space: from
a simply-connected circular manifold at Θ0 = 0, to two
disconnected arcs above a critical Θ0.

Imperfect filling: Considering the feasibility to observe
these effects in an experimental setting, while tweezer
arrays offer the possibility to achieve unit filling [20–
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FIG. 4. Momentum occupation Nk of created pairs in pres-
ence of positional disorder/non-unit filling obtained within
DTWA. Results for a range of Θ0 and filling fraction f at
fixed aZ/a = 2 at times such that Npair(t) = 0.1fN . L = 33
with open boundary conditions.

23, 57–59], a major challenge in optical lattices, espe-
cially for polar molecules, is imposed by imperfect filling,
which results in positional disorder of the pinned dipoles.
While important developments in cooling and trapping
molecules have allowed the preparation of lattice arrays
with up to f = 0.25 [18, 60–62], which highlight the near-
future potential of achieving high filling fractions, they
also illustrate the need to understand which effects would
be observable at lower filling fractions in current setups.

To address this question, we consider bilayers in which
each lattice site has a fixed spatially uniform probabil-
ity f to be occupied or empty. We show the result-
ing momentum occupation Nk for different filling frac-
tions f (averaging over 10000 filling realizations) and
two dipole orientations Θ0 in Fig. 4. Also for the case
of imperfect filling our DTWA results are in very good
agreement with the Bogoliubov analysis (for more de-
tails see [52]). We observe that while the signal to noise
deteriorates as the lattice becomes more sparsely filled,
most importantly, the main qualitative phenomenology,
the emergence of a manifold of unstable exponentially
growing modes, does extend to a remarkably low filling
fraction regime, which makes the observation in experi-
mental platforms feasible.

Outlook: Dipolar systems confined in two-dimensional
bilayers host a rich non-equilibrium dynamics charac-
terized by the momentum-selective creation of pairs of
spin excitations. Making use of the wide tunability of
dipolar interactions, one can access different shapes and
topologies of the momentum distribution of the created
pairs. These distributions may be probed using spatially-
resolved measurements accessible in state-of-the-art plat-
forms in tweezers and quantum gas microscopes for a
range of atomic or molecular gases.

Our work opens various intriguing avenues. Although
pair creation is largely robust to positional disorder in
partially filled lattices, disorder may have more relevant
effects on the subsequent spin dynamics on the two-
dimensional bilayers, including unconventional localisa-
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tion and transport properties [63, 64], and a synchroni-
sation transition [65]. Moreover, magnetic atoms, Ryd-
berg atoms and polar molecules offer access to multiple
levels beyond the spin-1/2 system considered here, open-
ing further opportunities to introduce chirality in the in-
teractions, and potentially generate topological excita-
tions [66]. Finally, the long-time behaviour and eventual
thermalisation of the excitations, as well as the depen-
dence on filling fraction and dipolar orientation, remain
an open question. Since the initial pairing instability
creates a well-defined highly non-thermal occupation in
momentum space, the eventual approach to equilibrium
might reveal universal non-equilibrium scaling exponents
and self-similiarity, potentially even richer than previ-
ously studied cases [53–56], due to the correlated nature
of the created state.
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Supplementary Information

The supplementary information contains additional
details on the Bogoliubov analysis, the effect of boundary
conditions, the real space structure of the spin correla-
tions, and Bogoliubov as well as extended DTWA results
for the finite filling fraction behavior of the momentum
structure of correlations, and extended DTWA results for
the time-dependence.

Bogoliubov Analysis

In this section, we provide further details on the Bo-
goliubov analysis of the spin Hamiltonian. First, we focus
on the diagonalization procedure of a unit filling lattice,
then we proceed to discuss the case of lattices with fill-
ings smaller than one. For a perfectly filled lattice, we
may write the Hamiltonian in quasi-momentum space:

Ĥ =
∑
k

εk(â†kâk + b̂†kb̂k)+

∑
k

|
[
Ωk|e−iαk â†kb̂

†
−k + |Ωk|eiαk âkb̂−k

]
,

(S1)

where we have made explicit the complex nature of the
inter-layer coupling Ωk = |Ωk|e−iαk . In the presence
of an Ising term, we would simply substitute εk by ε̃k.
Before introducing the Bogoliubov transformation it is
convenient to decouple the above Hamiltonian into sym-
metric and antisymmetric collective quasi-momentum
modes. For this purpose, we define the following op-
erators

Ŝk =
1√
2

(e−iαk/2âk + eiαk/2b̂k)

Âk =
1√
2

(e−iαk/2 âk − eiαk b̂k).

(S2)

In terms of these new operators, the Hamiltonian can be
rewritten as Ĥ = ĤS + ĤA with

ĤS =
∑
k

εkŜ
†
kŜk +

|Ωk|
2

(Ŝ†kŜ
†
−k + ŜkŜ−k)

ĤA =
∑
k

εkÂ
†
kÂk −

|Ωk|
2

(Â†kÂ
†
−k + ÂkÂ−k).

(S3)

In the following, we discuss the diagonalization of ĤS ,
but that of ĤA is completely analogous. At this point,
we introduce the Bogoliubov transformation β̂k = ukŜk−
v∗kŜ

†
−k. The amplitudes uk and vk obey the Bogoliubov-

de Gennes equations:

ξkuk = εkuk + |Ωk|vk, (S4)

ξkvk = −|Ωk|uk − εkvk, (S5)

where the eigenenergies acquire the form ξk =√
ε2
k − |Ωk|2. In the case of real eigenvalues, the time

dependence of the Bogoliubov operators is β̂k(t) =

e−iξktβ̂k(0) and β̂†k(t) = eiξktβ̂†k(0). Inversion of the Bo-
goliubov transformation yields the following expression

Ŝk(t) = [e−iξkt cosh2 φk − eiξkt sinh2 φk]Ŝk(0)+

i sinh (2φk) sin(ξkt)Ŝ
†
k(0),

(S6)

with sinh2 2φk = |Ωk|2/ξ2
k. The vacuum expectation

value of the population of the symmetric mode k gives
〈0|Ŝ†k(t)Ŝk(t)|0〉 = sinh2 (2φk) sin2 (ξkt), the same ex-

pression fulfills 〈0|Â†k(t)Âk(t)|0〉. Then, the total pop-
ulation of the mode is simple

Nk = 〈Â†k(t)Âk(t) + Ŝ†k(t)Ŝk(t)〉/2
= [|Ωk| sin (ξkt)/ξk]2

(S7)

If ξk is imaginary, the Bogoliubov modes fulfill |uk|2 =
|vk|2 and therefore the modes are actually quadratures
of the form

X̂k =
1√

sinφk

[
e−iφk/2Ŝk − eiφk/2Ŝ†−k

]
P̂k =

1√
sinφk

[
eiφk/2Ŝk − e−iφk/2Ŝ†−k

]
,

(S8)

with tanφk = −εk/|ξk|. The first quadrature grows ex-
ponentially in time X̂k(t) = e|ξk|tX̂k(0), whereas P̂k(t) =
e−|ξk|tP̂k(0) decreases exponentially. By inverting the
definition of the quadratures one can find the time evo-
lution of the symmetric mode

Ŝk =
i√

2 sinφk
[(e−iφke|ξk|t − eiφke−|ξk|t)Ŝk(0)

− 2 sinh (|ξk|t)Ŝ†−k(0)]

(S9)

then it follows that 〈Ŝ†k(t)Ŝk(t)〉 = sinh2 (|ξk|t)/ sin2 φ2
k,

a similar expression fulfills 〈Â†k(t)Âk(t)〉. The total popu-
lation of the mode is simple Nk = [|Ωk| sinh (|ξk|t)/|ξk|]2.
Since sin (i|ξk|)/i|ξk| → − sinh (|ξk|)/|ξk|, one can safely
use the expression in Eq. (S7) to obtain the time depen-
dence of the density of excitations in each layer

n(t)a2 =

∫
BZ

d2k

(2π)2
|Ωk|2

[
sin |ξk|t
|ξk|

]
, (S10)

where the integration is over the first Brillouin zone.
The Bogoliubov treatment of the case of imperfect fill-

ing is more involved. We consider a lattice with L × L
sites with open boundary conditions, and a filling f < 1.
We create a given realization by randomly filling each
layer with a given number of dipoles, up to the desired
lattice filling. Due to positional disorder, it is suitable to
work with the Hamiltonian in space representation

Ĥ =
∑
i6=j

V AAij â†i âj +
∑
i6=j

V BBij b̂†i b̂j

+
∑
i,j

V ABij â†i b̂
†
j +

∑
i,j

V BAij b̂iâj.
(S11)
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We may again apply the Bogoliubov transformation,
β̂n =

∑
j unjâj +

∑
j′ vnj′ b̂j′ . By imposing that ξnβ̂n =

[β̂n, Ĥ], we obtain the Bogoliubov-de-Gennes equations

ξn

(
un
vn

)
=

(
V AA −V AB
V BA −V BB

)(
un
vn

)
, (S12)

where un = (un,i1 , un,i2 . . . un,iL×L)T and similarly for
vn. By solving the above eigenvalue problem, we ob-
tain the eigenmodes and their corresponding evolution
in time. Inverting the Bogoliubov transformation pro-
vides the time dependence of the lattice operators, and
Fourier transforming yields the quasi-momentum distri-
bution. Averaging over many random realizations of the
lattice filling, we obtain the distributions discussed be-
low.

Comparison of open and closed boundary conditions

0

k y
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)
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0
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FIG. S1. Effect of the boundary conditions in the Bogoliubov
analysis. We depict the quasi-momentum distribution of the
created pairs, Nk, comparing periodic (top) and open (bot-
tom) boundary conditions for a range of dipole orientations
Θ0, at times such that Npair(t) =

∑
kNk(t) = 0.1N . The

results were obtained for a 33× 33 bilayer with layer spacing
az/a = 2 at unit filling.

The above mentioned procedure in real space for f < 1
may be also employed for full filling, providing the time
evolution in the presence of open-boundary conditions,
rather than periodic boundary conditions, as implictly
assumed in the analysis in quasi-momentum space. We
consider the effects of boundary conditions on the mo-
mentum structure of the created pairs in finite systems
within the Bogoliubov analysis in Fig. S1. We see that
both periodic (top) and open boundaries (bottom) re-
sult in basically the same momentum structure across
all dipole orientations. This demonstrates that the pre-
dicted phenomena should be accessible within the limita-
tions on total particle numbers and lattice sizes available
in experimental platforms.
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FIG. S2. Correlations in momentum and real space. Top
panel spin-structure factor S+−

k (t) (see S14), corresponding to
momentum state population of pairs Nk(t), compared to the
real-space structure of spin-correlations |C+−

r (t)| (see S13).
Results for a 33× 33 bilayer with a layer spacing of aZ/a = 2
and open boundary conditions at time t such that Npair(t) =
N/10.

Comparison of momentum and real-space structure
of correlations

In this section we provide results for the correlation
structure in real space. While we mainly focus on the
momentum structure of the correlations, as they directly
map to the occupation of momentum modes and the Bo-
goliubov analysis, the real space correlations are what
would be directly observed in an experiment with access
to spatially resolved measurements.

Defining the spin-spin correlation function

C+−
ij =

〈
ŝ+
i ŝ
−
j

〉
(S13)

the spin-structure factor S
A(B),+−
k , which corresponds to

the momentum mode occupation in the low excitation
limit, is just

S
A(B),+−
k =

1

N

∑
ij∈A(B)

eik(ri−rj)C+−
ij (S14)

We compare these expressions directly in Fig. S2 for a
range of dipole orientations. The top panels shows the
spin-structure factor S+−

k , and the bottom panels show
the corresponding real-space correlation function C+−

r

at a distance r = ri − rj, both summed over the layers
A,B. To make the structure of real-space correlations
visible on top of the population growth, we only show
them for i 6= j, e.g. set C+−

ii = 0. These results high-
light the intricate real-space structure of the correlations
created during the pair-creation process. We note that
up to boundary effects, the density of excitations itself
is fully homogeneous throughout the dynamics, and the
structure emerges within the inter-site off-diagonal cor-
relations.
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FIG. S3. Extended DTWA results on time evolution. Momen-
tum state population of pairs Nk(t) within DTWA showing
the different regimes of dynamics for a range of dipole orienta-
tions Θ0 at times in terms of t10 at which Npair(t10) = 0.1N .
The left most panel shows the early time regime before expo-
nential growth has taken over. The second and third panel
show the build up of the expected momentum structure. The
central panel shows the fully built-up expected momentum
structure. The last three panels show the subsequent ther-
malisation as scattering between momentum modes occurs.
Results for a 33× 33 bilayer with a layer spacing of aZ/a = 2
and open boundary conditions.

Extended results on time-dependence

We provide extended results for the time-dependence
of the momentum structure of the created pairs obtained
within DTWA in Fig. S3. This provides both the full
range of dipole orientations (in contrast to the single
case of Θ0 = 3π/8 in the main text), as well as addi-
tional times during the build-up of correlations, as well
as during the late time thermalisation state. The qual-
itative picture remains the same for all dipole orienta-
tions, in that at very early times, the dynamics of sta-
ble modes can dominate over the exponentially growing
unstable modes, which establish the expected momen-
tum structure at intermediate times, before scattering
between modes leads to thermalisation and a homoge-
neous background at late times.

Results at finite filling

Figure S4 shows the quasi-momentum distribution of
the created pairs for an imperfect filling within the
Bogoliubov analysis, following the procedure discussed
above. These results should be compared with the re-
sults shown in Fig. 4(b) of the main text, as well as with
the results covering an expanded set of dipole orienta-
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FIG. S4. Bogoliubov results at finite filling. Momentum state
population Nk for a range of Θ0 and filling fraction f at times
such that Npair(t) = 0.1fN . Results for a 33×33 bilayer with
a layer spacing of aZ/a = 2 and open boundary conditions.
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FIG. S5. Extended DTWA results at finite filling. Momentum
structure of created pairs Nk(t) at times t such that the total
number of pairs Npair(t) = 0.1fN . Results for a range of Θ0

and filling fraction f for a 33×33 bilayer with a layer spacing
of aZ/a = 2 and open boundary conditions

tions in Fig. S5. The DTWA results are averaged over
10000 realisations of the lattice occupations, whereas the
Bogoliubov results average over 200 realisations.

Across all dipole orientations and filling fractions we
observe again a very good agreement between the spin
dynamics obtained with the DTWA and the Bogoliubov
predictions. In particular, both show the shrinking of
the structures in momentum space as the filling fraction
is lowered. Intuitively, large momentum modes would be
expected to be more strongly affected by the introduction
of local disorder, whereas small momentum modes would
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be expected to be more resilient, which seems to be the
case here.

Importantly, the dynamics remains qualitatively unaf-
fected by the imperfect filling, being still characterized
by the exponential growth of characteristic patterns in

quasi-momentum space, that depend on the dipole ori-
entation. This robustness against imperfect filling is par-
ticularly relevant, since it makes feasible the observation
of the effect in current experimental platforms.
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