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CHAPTER I

INTRODUCTION

Flash was invented in 1984 by Fujio Masuoka and Toshiba [4]. Since 1984, flash

has taken the memory and storage world by storm. Flash is a type of non-volatile

memory, which means it is capable or retaining the stored information when its power

supply is removed. The non-volatile nature is enabled by a floating gate transistor,

a transistor that is capable of storing electrons in an extra poly-silicon layer. NAND

flash is a type of flash memory that is typically used for data storage. NAND flash

greatly reduces the area and, therefore, the cost compared to NOR. Its compact

design and sequential access makes it an ideal technology for storage. NAND flash is

used in SSDs, flash drives, mobile devices, and anything else that requires compact

non-volatile memory.

From 2000 to 2016, the feature size of NAND flash has reduced by a factor of
√
2

every other year [5]. This roughly follows Moore’s Law, which states that the number

of transistors on an IC will double every two years [6]. However, this trend cannot

continue as fabrication costs and complexity continue to rise. The increased cost for

lithography eventually outweighs the benefit of extra capacity [7]. The performance

also begins to degrade when the feature size continues to decrease.

MLC (Multi Level Cell) flash [8] is a type of NAND flash that increases storage

capacity without adding to the number of cells. The voltage threshold of the cell is

controlled precisely to allow the storage of multiple bits per cell. MLC does not change

the structure of the floating gate transistor. 3D (Three-Dimensional) NAND flash [9]

is another popular technique used to improve storage capacity. In 3D NAND, the cells
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are stacked vertically as well as connected horizontally. Most 3D NAND architectures

are gate-stacked, meaning the gate layers are stacked and the current flows vertically.

The area cost increase is minimal, but its storage ability is enormously improved.

However, the fabrication of 3D NAND typically requires complicated process steps

and dedicated facilities. Consequently, the physical implementation of NAND flash

has been a lucrative research area. The level of area reduction and storage capacity

is impressive. Despite this, the improvement rates do not always continue to improve

[10].

Fortunately, there are other avenues for improvement. One such way is research

into reliability of NAND flash. There may be faulty bits within a flash array or

an MLC flash cell may read an incorrect value. Error correction is used to miti-

gate the possibility of poor storage reliability. Concatenating TCM (Trellis Coded

Modulation) with BCH code [11] has been used to provide better performance of

error correction codes. Temperature awareness and exploiting self-recovery [12] has

also been used to improve the reliability. Self-recovery is the de-trapping of a an

accidentally trapped charge.

Another element of concern for NAND flash is its endurance. The flash cell is

slightly damaged each time it is programmed or erased. Given enough operation

cycles, the cell becomes faulty, possibly ruining the entire flash array. Wear leveling

is a solution that improves the overall endurance NAND flash. The idea is to spread

the use of the flash cells among the entire flash device. Balancing page endurance [13]

helps with endurance by skipping or relieving the weakest pages during programming.

This technique can extend the lifetime up to 60%. Therefore, program error rate [14]

is used to optimize wear leveling algorithms. The error rate is used to measure the

wear of a block. Block data swapping also improves wear leveling efficiency.

These areas of research for NAND flash continue to grow. However, it can be diffi-

cult for academic researchers to produce innovations that rival with those in industry.
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A large reason for this discrepancy is access to resources. In order for a researcher

to develop a new wear-leveling algorithm, for example, they must have access to a

NAND flash array. This provides limitations to the research. Process Design Kits

(PDKs) sometimes provide NAND flash, but it will be a black-box device. That is,

due to Intellectual Property (IP) issues, the underlying layout is not provided to users

and instantiated at the time of fabrication. This leads to poor results for researchers

to customize the flash device. In industry, companies often have memory compilers

that allow them to test many different configurations. Currently, an academic re-

searcher would need to slowly design their own memory arrays physically. The design

process would be tedious and take valuable time away from their research, which is

counterproductive to their original goal. This gap between industry and academia

makes it difficult for academic researchers to stay up to date.

The goal of this thesis is to solve this issue by providing a NAND flash memory

compiler. OpenRAM [15] is an open-source memory compiler that provides a frame-

work to quickly design a SRAM memory array. OpenRAM generates, characterizes,

and verifies the SRAM memory array. The end result is a fabricable memory design.

The NAND flash compiler in this thesis is similar to OpenRAM, except with NAND

flash. The compiler is designed using the SkyWater Technology [16] 130nm PDK.

SkyWater Technology 130nm is an open-source PDK that was originally developed

by Cypress Semiconductor. SkyWater Technology and Google collaborated to make it

accessible to the public. This work discusses a flash cell that is designed using SONOS

flash technology, as opposed to the conventional floating gate transistor. Theoreti-

cally, a researcher can use the flash compiler to design a flash array of any given size.

The compiler also outputs a flash array that is DRC-free and fabricable. Therefore,

the NAND flash compiler enables academic researchers to focus on innovations rather

than the tedious design of a NAND flash memory.

3



1.1 Organization

The organization of this thesis is as follows: Chapter II discusses the details of flash

memory, including its structure and operation. The basics of floating gate, SONOS,

NAND vs NOR flash, and the structure is covered. Chapter III discusses this thesis’

implementation of a NAND flash memory compiler, from the physical design of the

flash cell, array, sense amplifier, and script to the fabrication of the array. Chapter IV

discusses the simulation and results of the array and peripherals. Finally, Chapter V

presents the conclusion to the work and any future research for this topic.
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CHAPTER II

BACKGROUND

Flash memory is a non-volatile memory that is commonly used due to its low cost and

compact nature. It is beneficial to use instead of DRAM since it does not require a

supply voltage to store information. NAND flash is used in Solid State Drives (SSD),

flash drives, and phones. Instead of SRAM, which typically uses six transistors, there

is only one floating gate per bit cell. Therefore, flash has the ability to be almost six

times larger in capacity.

2.1 Floating Gate Transistor

The floating gate transistor is the basic building block of flash memory. A floating

gate transistor has a similar structure to a n-type MOSFET. The difference is that a

floating gate transistor has an extra poly-silicon gate that is separated from the device

with a dielectric oxide, hence the name ”floating.” The additional gate is shown in

Figure 2.1b. The floating gate is able to store electrons, which in turn influence

the gate voltage threshold of the transistor. This allows the floating gate to control

whether current flows from source to drain during a read cycle.

In order to store electrons in the floating gate, the transistors must be pro-

grammed. There are two main methods for programming: Fowler-Nordheim (FN)

tunneling and Channel Hot Electron (CHE) injection [2]. Channel Hot Electron in-

jection is typically used by NOR Flash. In this method, the drain is set to a much

higher voltage than the source and the gate is turned on. This results in a high
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(a) NMOS (b) Floating Gate Transistor

Figure 2.1: Cross Section Comparison

current flow that allows the electrons to gain enough energy to get trapped into the

floating gate. CHE injection is also able to program very quickly.

Fowler-Nordheim tunneling is typically used by NAND Flash. A strong electric

field is created during Fowler-Nordheim tunneling. If the oxide between the substrate

and poly-silicon floating gate is thin enough, electrons will flow through the ”tunnel”

created. The following is a simplified Fowler-Nordheim current density equation [17].

J = [τ−2
F aϕ−1F 2] exp[−vF bϕ

3/2/F ] (2.1)

F is the field at the surface and is also called the ’barrier field’. a and b are constants

in the equation. τF and vF are correction factors that help with the simplification

of the Fowler-Nordheim equation. The local work function is represented by ϕ. In

order to examine the relationship between the electric field and the current density,

Equation 2.1 can be even further simplified.

J = αF 2 · exp[−β/F ] (2.2)

In Equation 2.2, α = τ−2
F aϕ−1 and β = vF bϕ

3/2. As the electric field gets stronger, the

current density increases at an exponential rate. Given this relationship, the choice of

voltage levels becomes important. The field must be strong enough for the electrons
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to move through the tunnel at a high enough rate. The stronger the field the faster

the program and erase time. However, Fowler-Norhdeim tunneling causes damage to

the cell every operation. Therefore, the field strength should be controlled to limit

the damage.

In FN tunneling, the control gate is set to a high voltage while the source and drain

are set low. The strong electric field created causes the electrons to move through

the oxide layer into the floating gate. Unfortunately, the programming is slower

than in Channel Hot Electron injection. FN tunneling uses little current though,

which enables programming multiple bits at a time. That is, programming a floating

gate causes the voltage threshold to increase. Figure 2.2 shows the Fowler-Nordheim

program operation and the effect on the voltage threshold.

Removing the electrons from the floating gate requires erasing. Erasing of a flash

cell is done using Fowler-Nordheim tunneling. Erasing using FN tunneling is the exact

opposite of programming using FN tunneling. The control gate is set to a low voltage

and the source and drain are set high. The negative electric field moves the electrons

from the floating gate through the oxide into the source. The voltage threshold of the

floating gate decreases with the removal of the electrons in the floating gate. Erasing

(a) Program (b) Floating Gate Voltage Threshold

Figure 2.2: Fowler-Nordheim Programming
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(a) Erase (b) Floating Gate Voltage Threshold

Figure 2.3: Fowler-Nordheim Erasing

with FN tunneling also requires little current, so the operation can be done to many

bits at a time. Figure 2.3 shows the Fowler-Nordheim erase operation and the effect

on the voltage threshold.

The state of the floating gate is determined during the reading stage. A sense

amplifier determines if there is current flowing between the source and the drain. 0V

is applied to the control gate. The source is pre-charged and the drain is set to 0V.

If there is current flowing between the drain and source, then the voltage threshold

of the floating gate must be negative. Consequently, the floating gate is erased and

the output becomes ’1’. If there is no current flow, the voltage threshold is positive

and the gate is programmed. A programmed cell has an output of ’0’.

2.2 SONOS

SONOS (Silicon-Oxide-Nitride-Oxide-Silicon) [18] is a flash memory technology that

is an alternative to conventional floating gate technology. SONOS is part of the

charge-trap memory family [19]. Charge-trapping memory is a flash memory that

uses a nitride layer instead of the extra poly-silicon layer of the floating gate. The

electrons are injected and ejected through a tunnel and stored in the nitride layer.
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(a) Read (b) Cell Current

Figure 2.4: Floating Gate Reading

The nitride layer is called the ”Charge-Trapping Layer”. A benefit of using charge-

trapping technology is that it is easier to manufacture and scale than floating gate

technology. Floating gate memory has issues with reducing the tunnel oxide thickness

and reducing operating voltages. Floating gate transistors also require more process

steps to isolate the floating gate. Additionally, in floating gate, charge can flow side

to side in the poly-silicon layer. The nitride layer of charge-trap doesn’t allow the

incidental flow of charge, so the reliability of a cell is improved in charge-trap memory.

The SkyWater Technology 130nm process uses SONOS that was originally de-

signed by Cypress Semiconductors. This technology was selected because of the easier

manufacturing provided by using charge-trap instead of conventional floating gate.

The structure of SONOS is the same as a NMOS transisotr with a ONO (oxide-nitride-

oxide) dielectric stack, as can be seen in Figure 2.5. This SONOS cell is programmed

and erased using Fowler-Nordheim tunneling, as described in the floating gate section.

Table 2.1 shows the voltages that must be applied to each input of the SONOS

cell. The voltages required for programming and erasing are relatively small when

compared to conventional floating gate operation, which can have inputs as high as

20V. During the read phase, the bitline is pre-charged to 1.8V. The control gate is

9



Figure 2.5: SONOS Cross Section

Operation Drain Gate Source Body

Erase +6.7V −3.8V +6.7V +6.7V

Program −3.8V +6.7V −3.8V −3.8V

Read pre 0V 0V 0V

Table 2.1: SONOS Voltage Table (Referenced from [1])

set to ground. If the cell is erased, the threshold is negative, therefore, current flows

between the source and drain. If the cell was programmed, the threshold is positive

and there is no current flow.

Figure 2.6 shows the endurance of SkyWater Technology’s SONOS cell. Every

time the cell goes through the Fowler-Nordheim tunneling operation, either program-

ming or erasing, the oxide in between the nitride layer and the substrate is damaged.

So after a specific number of operations, the integrity of the cell is compromised. How-

ever, there are 100K cycles guaranteed for each cell during its operation. The voltage

threshold remains constant throughout the testing. The cell in the programmed state

has a positive voltage threshold of about 1.6V and the erased has a negative voltage
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threshold of about −1.2V. To preserve the cells, algorithms have been developed to

ensure individual cells are not written and erased too often. Instead, it tries to spread

the storage across the entire array.

Figure 2.6: Endurance of SKY130 SONOS (Referenced from [1])

2.3 NAND vs NOR flash

NAND and NOR are the most basic types of flash memory. Both use the floating

gate transistor. NOR is designed such that the floating gate transistors are connected

in parallel to a bitline on their drain and a source line on their source. This design

enables fast random-access reads, since each bit is accessible.It also guarantees no

faulty bits, which is especially useful if executing code. For these reasons, NOR tends

to be used for code and data execution. A drawback of the NOR design is slower

program and erase speeds.

NAND flash is designed to have the floating gate transistors in series, which re-

duces the area per cell. This is the main reason that NAND flash has become so

popular. Less area per cell results in cheaper production. NAND flash can efficiently

store massive amounts of data. An obvious application can be seen in solid state
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drives. Since NAND uses FN tunneling, it can program many cells at a time, so

NAND has much faster program and erase speeds than NOR flash. Additionally,

NAND flash is read a page at a time, so the read time is acceptable as long as the

storage access is sequential. Figure 2.7 illustrates the difference between the archi-

tecture of NAND and NOR.

Figure 2.7: NOR and NAND Architecture

2.4 Array Structure

The structure of a NAND flash array is designed to be simple and compact. The

array is made up of cells, strings, pages, and blocks. The design of a NAND block is

shown in Figure 2.8, and Figure 2.9 shows how a NAND array is built out of blocks.

A NAND string is formed by NAND flash cells connected in series. A string

typically contains 32 or 64 cells. High voltage transistors, Source Select Line (SSL)
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and Ground Select Line (GSL), are added to either end of the string. These select lines

are enabled when there is an operation within the string. They are disabled otherwise

to protect the cells from overuse. The select lines must be capable of withstanding

higher voltages due to the voltage ranges required for flash. The bitline is connected

to the SSL transistor while the GSL transistor is connected to the source line. This

differs from NOR cells, which each are connected to the bitline and source line.

A NAND block is created by connecting NAND strings to each other via their

gates. Each word line goes through the entire block, connecting to the control gates

of the corresponding cells. The flash cells that share a word line are called a page.

This is illustrated in the horizontal red block in Figure 2.8. Unlike a NAND string,

a NAND page does not have a typical size. The page is also not broken up like a

string. The size of the page is the same as the number of bitlines of the flash array.

Figure 2.8: Structure of a NAND Block
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Flash blocks are placed adjacent to each other with the bitline and source line

contacts connecting. The blocks are mirrored over the contacts. A collection of

blocks forms a flash array. The number of blocks is determined by the desired size of

the flash array and the string size.

The structure of the NAND flash array has several advantages. The most obvious

is the reduced area due to connecting the flash cells in series. Another is the way

NAND flash is erased, programmed, and read. Erasing of NAND flash is done block

by block. Programming and reading is done page by page.

Figure 2.9: Structure of a NAND Array
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CHAPTER III

IMPLEMENTATION

3.1 Flash Cell

The most basic building block of flash memory is the floating gate transistor and the

single cell. The first step in this process is physical layout. The SKY130 process

has access to the SONOS technology, which is why this thesis uses SONOS instead

of the conventional floating gate. SONOS been used in SKY130 for a NOR Flash

implementation. The NOR SONOS 2T cross section is shown in Figure 3.1. In order

to design NAND flash, a new NAND flash cell was created. The cell is designed

within specifications from SKY130.

The new NAND flash cell uses the same layers but omits a NPASS gate. Moreover,

the area of the NAND cell is half of the area of the NOR cell. The width and length of

the gate are specified by the design manual: .45/.22. SKY130 requires the following

Figure 3.1: SONOS 2T. Referenced from [1]

15



Layer Name LPP Definition

diff 65:20 Active (diffusion) area (type opposite to the well/substrate underneath)

poly 66:20 Polysilicon

dnwell 64:18 Defines deep n-well regions

tunm 80:20 SONOS device tunnel implant

ldntm 11:44 N-tip implant on SONOS devices

nsdm 93:44 N+ source/drain implant

nwell 64:20 N-well regions

areaid.ce 81:2 Memory core for DRC purposes

Table 3.1: Layers needed for flash cell. Referenced from [1]

layers: diff, poly, dnwell, tunm, ldntm, nsdm, and no nwell. The presence of these

layers signifies to the fabrication that the SONOS layer is present. Table 3.1 lists

the layers and their definitions. There is also a memory mask, areaid.ce, that allows

tighter design rules for ease in fabrication. An image of four flash cells is shown in

Figure 3.2. Each intersection of the red ’poly’ and green ’diffusion’ is one NAND cell.

The spacing between bit cells has been minimized according to the design rules within

the memory mask. The total size of each single flash cell in this design is 0.72 µm x

0.43 µm. Thus, the area of a single flash cell is 0.3096µm2. The flash cell is made

with Virtuoso, a Cadence Design Software tool, and the physical layout output uses

the Graphic Design System (GDSII) format.

3.2 Flash Array

All figures in this section are screenshots from a flash array of size 8x8, with string

size of 4. The purpose of this array is to illustrate the structure of the array in a way

that is easy to see.

Since the structure of NAND flash is designed to be compact, turning a single

cell into an array is quite simple. The array is basically structured in columns of

16



Figure 3.2: Flash Cell 2x2

bitlines and rows of word lines. The basic building piece of this design is a flash cell.

Figure 3.2 shows four flash cells in a two-by-two structure. The two-by-two flash cells

are copied horizontally and vertically to create a block with the string size provided

by the user. The reasoning behind a two-by-two piece is to simplify copying the piece

across the array, while also providing the user the maximum amount of ability to

customize their design. Figure 3.3 shows the structure of the block. The block has

eight bitlines and four word lines. It also has select lines at the top and bottom of the

block. These are high voltage NMOS transistors. The pins for the word lines alternate

between the left and right sides of the blocks. This is the conventional design. The

alternative is the staggered row [2] design, which has the pins of the word lines all

on the same side. The alternating pins allows for the design to be as compact as

possible. The blocks are then stacked on each other to create the full array. The

array is shown in Figure 3.4. It can be seen that the blocks in the example array are

symmetrical along the source line.

3.3 Sense Amplifier

In order to get an output from the bitlines, sense amplifiers are designed to determine

the state of the flash cells. The sense amplifiers ’sense’ if there is current flow between

17



Figure 3.3: Flash Block

Figure 3.4: Flash Array
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the drain and source of the cell. This allows differential-style voltages to be applied

to a single-ended output. The two states are erased and programmed. This design

uses one sense amplifier for each bitline, as opposed to other designs with one sense

amplifier that reads two bitlines. This decision simplifies the sense amplifier and

allows the read stage to be completed in one cycle instead of two. Since there is one

sense amplifier for every bitline, the width of each sense amplifier needs to match

the width a flash cell. This is challenging because the size of the flash cell has been

minimized. In order to get around this, the sense amps are stacked on top of each

other. This can be seen in the layout of Figure 3.7. The layout is symmetric vertically,

showing the two sense amps. Stacking the sense amps enabled their width to be equal

to the width of two flash cells. The extracted SPICE file of the two sense amplifiers

is in Appendix A.

The sense amplifier is designed to be connected to each bitline. The bitline is

treated as an inout signal. There are three inputs: sen1, sen2, and out en. sen1

and sen2 are the control variables for the sense amplifier. These variables control all

the sense amplifiers in the flash array. The other input is out en, with connects the

result of the sense amplifier to the outputs. There are two outputs with each sense

amplifier, out even and out odd. These correspond to the bitlines. Figure 3.5 shows

the schematic of the sense amplifier.

Figure 3.6 shows the operation of the sense amplifier. The operation starts with

the pre-charging of the bitlines to 1.8V. The pre-charging of the bitlines is done

in the control logic and not in the sense amplifiers. Once the bitlines are at the

correct voltage, the input sen2 is set to VDD. Since the bitlines are set to VDD, the

transistors they are controlling are turned on, resulting in the drain of the transistor

controlled by sen2 to be GND. The latch will force the drain of sen1 to be set to

VDD. sen2 is then set to GND.

In the second stage, the bitlines are released from the pre-charge. The bitline will
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either discharge to GND or remain at VDD. Once the bitlines are stable, the input

sen1 is set to VDD. If the flash cell is in an erased state, the bitline is discharged.

Since the bitline is discharged, its transistor is turned off, resulting in no change within

the latch. If the flash cell is in the programmed state, the bitline would remain at

VDD. This would turn on the bitline’s transistor, resulting in sen1 ’s drain to be set

to GND, switching the latch. sen1 is then set to GND.

The final stage is set out en to VDD, enabling the output of the sense amplifiers.

The output of an erased state cell would be ’1’. The output of a programmed state

cell would be ’0’.

Figure 3.5: Sense Amplifier Schematic

The design of the sense amplifier is based off of the sense amplifier on page 274 of

[2]. However, it has been adapted to have two sense amplifiers in the design and only

have the reading function. The referenced sense amplifier is shown in Figure 3.8.
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Figure 3.6: Sense Amplifier Operation

3.4 Script

With the individual components of the design created, a script is designed to compile

the components into a functioning flash array. The script is written in Python and

uses GDS Mill by Michael Wieckowski [20]. GDS Mill is an open source software

that can read in and output binary GDSII files. It is capable of reading and placing

individual GDSII files, creating a top level GDSII file. This script makes use of GDS

Mill to shape the components into the array. The script is in Appendix B.

The components are categorized into three types: cells, ends, and middle. flash cell 2x2,

flash left 2, and flash right 2 are the cell type. They include the actual SONOS gates.

flash cell 2x2 is four SONOS gates organized in a 2x2 manner. The left and right com-

ponents include the pins of the word lines as well as the tap that surrounds the array.

The left and right components for each type have a similar role. The ends consist of

flash end 2, flash end left, and flash end right. These are placed at the top and bot-

tom of the array. There are also flash bot 2, flash bot left, and flash bot right. These

are at the bottom of the array and include the sense amplifiers connected to the ends.

Finally, there is the middle type: flash midSL 2, flash midSL left, flash midSL right,

flash midBL 2, flash midBL left, and flash midBL right. The middle type links the
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Figure 3.7: Sense Amplifier Layout
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Figure 3.8: Sense Amplifier used as reference. Adapted from Figure 6.78a in [2]

flash blocks together. The components with ’midSL’ connect the blocks that share

the source line. The components with ’midBL’ connect the blocks that have their

bitlines connected directly.

The script takes three inputs from the command line. First is the number of

columns or bitlines. This is also referred to as the page size. The user can make

the page any size. This allows for the user to create a flash array that includes error

correction bits. The second input is the number of rows or word lines. The final input

is block size or string size. With the way the script is designed, the string size must

be divisible by two. The number of rows should also be a multiple of Block Size X

2, due to the symmetric nature of the design. Figure 3.9 illustrates a 8x8 flash array

with the sub cells shown. The number of columns is eight, number of rows is eight,

and the block size is four. The result of the script is an array of the size specified.

The output is a GDSII file that can be fabricated.
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Figure 3.9: Flash Array Created by Script
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3.5 Fabrication

With the script designed, it is easy to create a flash array of any size. Simulation is

possible and will be discussed in the next section. However, the information gained

from simulation is limited. We rely completely on the models provided by SKY13O.

These models, although it would be beneficial to have a physically implemented array

that can be tested using a probe card. This would enable the testing of the flash array

to obtain accurate specifications for both the timing as well as the optimal operating

voltages of this newly-designed NAND flash array.

The 8x8 flash array has been sent to fabrication on the Efabless Open MPW

Shuttle Program [21]. This program is a collaboration of Google and Efabless to

provide opportunities for designers to fabricate their research without having to worry

about the cost associated. The costs are covered by Google as long as the design is

completely open source. This program also uses SKY130. Caravel [3] is a SoC used

for the Efabless Open MPW shuttle. It is shown in Figure 3.10. The flash array will

be placed within the ’User Project Wrapper’ block and connected to the rest of the

Caravel Harness Chip. Below are the detailed steps required for this process.

In order to create the caravel harness, Efabless requires users make a public git

repository that contains the user project wrapper. This repository can be found here:

[22]. A GDSII and LEF of the flash array are placed into the repository. Verilog files

are also required to connect the design to the wrapper. These files are referenced in

the appendix. The flash array will be treated like a macro. Only the pins are relevant,

the inside of the design is unknown to the project wrapper. The pins of the macro

are connected to the pins of the user project wrapper by OpenLane [23], a place and

route program that hardens the cells. When OpenLane is finished, the design is ready

to be placed into the caravel harness.

A pre-check is completed to ensure the design meets all requirements and is free
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of errors. Finally, the design was submitted for fabrication. Figure 3.11 shows the

submitted design. The successful submission of the design proves that the array

output is fabricable and DRC-free.

Figure 3.10: Caravel Harness [3]
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Figure 3.11: Caravel Harness Chip
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CHAPTER IV

RESULTS

Since the only results achievable for this thesis are reliant on the models provided by

SkyWater, simulation is the only way forward. The models used for simulation are

SPECTRE models. SPECTRE is a simulator designed by Cadence Design System.

It utilizes the SPICE engine found in all spice simulators and can use SPICE files to

run the simulation.

In SPICE, inputs can be controlled and set to a specific voltage. This is helpful for

simulating flash, for example, because flash requires a large range of voltages. How-

ever, after setting an input to a specified voltage, it is impossible to stop controlling

the input. In other words, SPICE can have inputs and outputs, but no inout. This

is no problem for the control gates and select gates of the flash array, but the bitlines

require inout pins to function. During the program and erase stages, the bitlines can

be controlled completely with no issues. The reading stage requires the bitlines to be

uncontrolled, allowing them to either discharge or remain unchanged. The obvious

solution is the tri-state buffer.

The buffer has two inputs: enable and in. When enable is ’1’, out is connected

to in, so the output equals the input. When enable is ’0’, the output is in a state of

high impedance. The input has no affect on the output. The issue with the tri-state

buffer is it only works with digital voltages, GND and VDD. Flash requires a greater

range of inputs. The solution is a modified tri-state buffer that can handle a large

range of inputs. This subcircuit can be seen in Figure 4.1. The SPICE file of this

can be found in Appendix C. The inputs and outputs are similar to that of a tri-state
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Figure 4.1: Modified Tri-State Buffer

buffer. hv and lv replace VDD and GND respectively. ctr is similar to enable and

in/out is the same as in the tri-state buffer. When ctr is equal to hv, out is equal

to in. When ctr is equal to lv, out is in a state of high impedance. Normal CMOS

transistors are replaced by n20vhv1 and p20vhv1, which can handle the higher range

of voltages. This comes at a cost of much greater area. Since the modified tri-state

buffer is used only in simulations, the increased area not important.

As mentioned before, simulation is limited by the models given in SKY130. Sky-

Water only includes SONOS models that are in the erased state or the programmed

state. Simulation of the reading phase is possible, but programming and erasing is

not. The names of the spice models are in Table 4.1.

A pseudo-simulation can be done to ensure the flash array is functional, however

it is not accurate. A floating gate simulation model is designed based off of Steven

Joseph Rapp’s simulation model [24]. A large resistor, capacitor and a couple current

sources are used to roughly approximate the programming and erasing of a floating
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Stage Programmed Erased

Beginning of Life sonos bol p sonos bol e

End of Life sonos eol p sonos eol e

Table 4.1: SONOS Spice Models (Referenced from [1])

gate transistor. The difference between an erased and programmed floating gate is

basically the threshold of the control gate. The threshold of a programmed gate

is positive, while an erased gate is negative. The new simulation model includes a

SONOS model in the programmed state attached to the extra circuitry. When the

voltages required for erasing are set, the erase current is turned on. This current raises

the voltage applied to the control gate of the SONOS model. That makes it easier

to overcome the gate threshold. This is equivalent to reducing the gate threshold.

The model now acts as a SONOS model in the erased state. The simulation can

be programmed back to the programmed state. This simulation model allows us to

ensure the correct voltages are being applied throughout the flash array. The new

SPICE model is in Appendix D.

Figure 4.2: FGMOS Model
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Figure 4.3: Erasing and Programming Simulation

4.1 Results

Figure 4.3 shows the simulation of the erasing and programming of the new SONOS

model. The simulation has four phases: erase, read, program, read. Each phase

is 10 µs long. In the first, 0 to 10 µs, the model is being erased. The bitline and

source line are set to 6.7V while the word line or gate is set to −3.8V. The models

threshold voltage is shifted to negative. In the second phase, the bitline is pre-charged

and then disconnected. The word line and source line are both set to 0V. Since the

model is erased, the bitline discharges to 0V. The model is programmed in the third

phase. The bitline and source line are set to −3.8V. The word line is set to 6.7V.

The model’s threshold voltage increases to positive. The forth phase is the final

reading. The inputs are set to the same as in phase two. This time, since the model

is programmed, the bitline remains at 1.8V. This simulation behaves as expected

and proves that the floating gate model is valid.

Figure 4.4 shows the simulation of the sense amplifier. The simulation is of the

reading stage of NAND flash. The operation of the sense amplifier can be seen in
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Figure 4.4: Sense Amplifier Simulation

Figure 3.6. The top section is a programmed flash cell. The middle section is an

erased flash cell. The bottom section is the controls of the sense amplifier. The red

lines indicate the bitlines and the yellow indicates the output. There are four phases:

0 to 5 ns, 5 to 10 ns, 10 to 15 ns, and 15 to 20 ns. In the first phase, the bitlines are

pre-charged and sen2 is turned on. In phase two, the bitlines are disconnected and

sen2 is turned off. The programmed bitline remains the same while the erased bitline

discharges to GND. During phase three, sen1 is turned on and the latch in the sense

amplifier is being prepared for the final output. sen1 is then turned off. In the final

phase, out en is turned on and the output is enabled. The programmed flash cell has

an output of ’0’ and the erase flash cell has an output of ’1’.

The last simulation is a simulation of the flash array. A 32x32 flash array with

string size of 16 is built and the SPICE file is extracted from the GDSII. This sim-

ulation is performed to ensure the flash array is working correctly. To start, all of
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Figure 4.5: Simulation of Flash Array

block 0 is erased. Then, page 1 of block 0 is programmed. The bitlines are alter-

nately programmed and program-inhibited. The even bits are programmed while the

odd bits are program-inhibited. Program-inhibited means that the cells are left in

the erased state. Finally, when the page is read, the output is 0xAAAAAAAA. The

simulation shows that erasing by block, programming by page, and reading by page

all function correctly. It also proves that blocks and pages that are not part of the

operation are left alone. Figure 4.5 shows the outputs of the simulation. The even

final outputs are ’0’ and the odd final outputs are ’1’. This results in a final 32-bit

output of 0xAAAAAAAA.

Table 4.2 shows the sizes of several flash arrays as well as a single flash cell and

sense amplifier. The NAND flash cell is half the size of a NOR flash cell. When

the size of the array is smaller, the sense amplifiers and outside of the array have an

impact on the area. But as the array grows, the sense amplifier becomes insignificant.
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Name Width (µm) Height (µm) Area (µm2)

NOR Flash Cell 0.72 0.86 0.62

NAND Flash Cell 0.72 0.43 0.31

Sense Amp x 2 1.44 17.48 25.17

Flash Array 8 x 8 (8B) 10.79 25.52 275.36

Flash Array 32 x 32 (128B) 28.07 35.84 1,006.03

Flash Array 256 x 256 (8MB) 189.35 141.82 26,853.62

Flash Array 1024 x 2048 (256MB) 742.31 1,002.54 744,195.47

Table 4.2: Layout Sizes
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CHAPTER V

CONCLUSION AND FUTURE RESEARCH

This thesis accomplishes several goals. First is to design a NAND flash cell using

SONOS technology from SKY130. Second is to create a compiler capable of taking

size inputs from the user and outputting a complete GDSII file of the corresponding

flash array. The final goal is to physically implement the design by fabricating the

flash array.

NOR flash using SKY130 has been implemented by a separate research group. In

order to implement NAND flash, a new NAND flash cell is created using the SONOS

technology. This cell is more compact and follows the design specifications required

by SKY130. Peripherals are also created to surround the cell and make a valid array.

The compiler is accomplished using a Python script. The user inputs the size of

the array, and the script creates a GDSII file of the flash array from the individual

parts that are hand drawn. The output is able to be fabricated and DRC-free.

Since the design is not yet physical, the testing and simulations done are limited.

A 8x8 flash array has been submitted to the Efabless MPW-5 shuttle to be fabricated.

It was submitted on March 15, 2022.

5.1 Future Research

Future work consists of three parts: receiving and testing the fabricated flash array,

making the compiler more customizable, and building the logic and peripherals around

the flash array that are required for fully functional NAND flash.
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According to Efabless, the fabricated flash array will be shipped on August 2,

2022. Once the flash array is received, testing can begin. Through Caravel, there is

access to each pin. Precise timing for the array and each cell can be found. Different

voltages can be tested to find the optimal combination.

The compiler can be improved to support multiple planes or different orientations.

More options available to academic researchers only helps with their research and

innovation.

The end goal of this project is to compile fully functional NAND flash. The output

should include the final GDSII, timing, and test benches. The user should be able to

run the script, then easily submit the design for fabrication. The final design will not

only include the flash array, but also all of the peripherals. These peripherals include

control logic, row decoder, column decoder, charge pumps, voltage regulators, and

high voltage switches. Eventually the design should have an input of the address and

operation.
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APPENDICES

APPENDIX A: FLASH SENSE AMPLIFER 2 SPICE FILE

* SPICE NETLIST
***************************************

.SUBCKT Dpar d0 d1

.ENDS
***************************************
.SUBCKT flash_senseamp2 gnd vdd sen2 out_en sen1 BL_even

BL_odd out_odd out_even
** N=17 EP=11 IP=0 FDC=17
M0 out_even out_en 11 gnd nshort L=0.15 W=0.42 m=1 r=2.8 a

=0.063 p=1.14 mult=1 $X=310 $Y= -13965 $D=9
M1 14 sen2 12 gnd nshort L=0.15 W=0.42 m=1 r=2.8 a=0.063 p

=1.14 mult=1 $X=355 $Y=-2220 $D=9
M2 17 sen1 11 gnd nshort L=0.15 W=0.42 m=1 r=2.8 a=0.063 p

=1.14 mult=1 $X=430 $Y= -12655 $D=9
M3 gnd 6 11 gnd nshort L=0.15 W=0.42 m=1 r=2.8 a=0.063 p

=1.14 mult=1 $X=430 $Y=-9865 $D=9
M4 gnd 7 12 gnd nshort L=0.15 W=0.42 m=1 r=2.8 a=0.063 p

=1.14 mult=1 $X=430 $Y=-5010 $D=9
M5 17 BL_even gnd gnd nshort L=0.15 W=0.84 m=1 r=5.6 a

=0.126 p=1.98 mult=1 $X=645 $Y= -11485 $D=9
M6 gnd BL_odd 14 gnd nshort L=0.15 W=0.84 m=1 r=5.6 a

=0.126 p=1.98 mult=1 $X=645 $Y=-3810 $D=9
M7 6 11 gnd gnd nshort L=0.15 W=0.42 m=1 r=2.8 a=0.063 p

=1.14 mult=1 $X=860 $Y=-9865 $D=9
M8 7 12 gnd gnd nshort L=0.15 W=0.42 m=1 r=2.8 a=0.063 p

=1.14 mult=1 $X=860 $Y=-5010 $D=9
M9 7 sen1 14 gnd nshort L=0.15 W=0.42 m=1 r=2.8 a=0.063 p

=1.14 mult=1 $X=860 $Y=-2220 $D=9
M10 6 sen2 17 gnd nshort L=0.15 W=0.42 m=1 r=2.8 a=0.063 p

=1.14 mult=1 $X=935 $Y= -12655 $D=9
M11 7 out_en out_odd gnd nshort L=0.15 W=0.42 m=1 r=2.8 a

=0.063 p=1.14 mult=1 $X=980 $Y=-910 $D=9
M12 vdd 6 11 vdd pshort L=0.15 W=0.84 m=1 r=5.6 a=0.126 p

=1.98 mult=1 $X=430 $Y=-8430 $D=79
M13 vdd 7 12 vdd pshort L=0.15 W=0.84 m=1 r=5.6 a=0.126 p

=1.98 mult=1 $X=430 $Y=-6880 $D=79
M14 6 11 vdd vdd pshort L=0.15 W=0.84 m=1 r=5.6 a=0.126 p

=1.98 mult=1 $X=860 $Y=-8430 $D=79
M15 7 12 vdd vdd pshort L=0.15 W=0.84 m=1 r=5.6 a=0.126 p

=1.98 mult=1 $X=860 $Y=-6880 $D=79
X16 gnd vdd Dpar a=3.96 p=8.38 m=1 $[nwdiode] $X=0 $Y
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=-8610 $D=185
*. CALIBRE WARNING OPEN Open circuit(s) detected by

extraction in this cell. See extraction report for
details.

.ENDS
***************************************
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APPENDIX B: NAND FLASH COMPILER SCRIPT

#!/usr/bin/env python
import sys
import gdsMill

input_path = "../../ virtuoso/gds/"
output_path = "../gds/"

if len(sys.argv) > 1:
numCols = int(sys.argv [1])

else:
numCols = 1024

if len(sys.argv) > 2:
numRows = int(sys.argv [2])

else:
numRows = 1024

if len(sys.argv) > 3:
blockSize = int(sys.argv [3])

else: blockSize = 32

out_name = "flash_array_" + str(numCols) + "x" + str(
numRows)

# Size of cells
SIDE_WIDTH = 2.515
MID_WIDTH = 1.44
END_HEIGHT = 2.96
CELL_HEIGHT = 0.86
MID_HEIGHT = 1.61

# Location of labels
BL_end_x = 2.875
BL_BL_x = .72
WL_x = 0.26

y_offset = 0

cellMidLayout = gdsMill.VlsiLayout ()
cellLeftLayout = gdsMill.VlsiLayout ()
cellRightLayout = gdsMill.VlsiLayout ()

endMidLayout = gdsMill.VlsiLayout ()
endLeftLayout = gdsMill.VlsiLayout ()
endRightLayout = gdsMill.VlsiLayout ()

botMidLayout = gdsMill.VlsiLayout ()
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botLeftLayout = gdsMill.VlsiLayout ()
botRightLayout = gdsMill.VlsiLayout ()

BLMidLayout = gdsMill.VlsiLayout ()
BLLeftLayout = gdsMill.VlsiLayout ()
BLRightLayout = gdsMill.VlsiLayout ()

SLMidLayout = gdsMill.VlsiLayout ()
SLLeftLayout = gdsMill.VlsiLayout ()
SLRightLayout = gdsMill.VlsiLayout ()

reader = gdsMill.Gds2reader(cellMidLayout)
reader.loadFromFile(input_path + "flash_cell_2x2.gds")
reader = gdsMill.Gds2reader(cellLeftLayout)
reader.loadFromFile(input_path + "flash_left_2.gds")
reader = gdsMill.Gds2reader(cellRightLayout)
reader.loadFromFile(input_path + "flash_right_2.gds")

reader = gdsMill.Gds2reader(endMidLayout)
reader.loadFromFile(input_path + "flash_end_2.gds")
reader = gdsMill.Gds2reader(endLeftLayout)
reader.loadFromFile(input_path + "flash_end_left.gds")
reader = gdsMill.Gds2reader(endRightLayout)
reader.loadFromFile(input_path + "flash_end_right.gds")

reader = gdsMill.Gds2reader(botMidLayout)
reader.loadFromFile(input_path + "flash_bot_2.gds")
reader = gdsMill.Gds2reader(botLeftLayout)
reader.loadFromFile(input_path + "flash_bot_left.gds")
reader = gdsMill.Gds2reader(botRightLayout)
reader.loadFromFile(input_path + "flash_bot_right.gds")

reader = gdsMill.Gds2reader(BLMidLayout)
reader.loadFromFile(input_path + "flash_midBL_2.gds")
reader = gdsMill.Gds2reader(BLLeftLayout)
reader.loadFromFile(input_path + "flash_midBL_left.gds")
reader = gdsMill.Gds2reader(BLRightLayout)
reader.loadFromFile(input_path + "flash_midBL_right.gds")

reader = gdsMill.Gds2reader(SLMidLayout)
reader.loadFromFile(input_path + "flash_midSL_2.gds")
reader = gdsMill.Gds2reader(SLLeftLayout)
reader.loadFromFile(input_path + "flash_midSL_left.gds")
reader = gdsMill.Gds2reader(SLRightLayout)
reader.loadFromFile(input_path + "flash_midSL_right.gds")

newLayout = gdsMill.VlsiLayout(name=out_name)

def placeTopRow(block):
x_offset = 0
global y_offset
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mirror = None
BL_y = 2.155
fnpass_y = 0.42

psub_x = 1.765
# psub_y = 1.645
psub_y = 9.325

newLayout.addInstance(endLeftLayout ,
offsetInMicrons =(x_offset ,

y_offset),
mirror = mirror)

newLayout.addBox(layerNumber =68,
dataType =20,
offsetInMicrons =( x_offset + psub_x ,

y_offset -psub_y),
width=.1,
height =.1,
center=True)

newLayout.addText(text = "VBPW",
layerNumber =68,
purposeNumber =16,
offsetInMicrons =( x_offset + psub_x ,

y_offset - psub_y))
x_offset += SIDE_WIDTH
for i in range(numCols /2):

newLayout.addInstance(endMidLayout ,
offsetInMicrons =(x_offset ,

y_offset),
mirror=mirror)

newLayout.addBox(layerNumber =68,
dataType =20,
offsetInMicrons =( x_offset +

BL_BL_x/2,y_offset - BL_y),
width = .1,
height =.1,
center=True)

newLayout.addText(text = "BL[" + str (2*i) + "]",
layerNumber =68,
purposeNumber =16,
offsetInMicrons =( x_offset +

BL_BL_x/2,y_offset - BL_y))
x_offset += MID_WIDTH
newLayout.addBox(layerNumber =68,

dataType =20,
offsetInMicrons =( x_offset -

BL_BL_x/2,y_offset - BL_y),
width = .1,
height =.1,
center=True)

newLayout.addText(text = "BL[" + str (2*i+1) + "]",
layerNumber =68,
purposeNumber =16,
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offsetInMicrons =(
x_offset - BL_BL_x/2,
y_offset - BL_y))

newLayout.addInstance(endRightLayout ,
offsetInMicrons= (x_offset ,

y_offset),
mirror = mirror)

y_offset -= END_HEIGHT
newLayout.addBox(layerNumber =67,

dataType =20,
offsetInMicrons =( x_offset + WL_x ,

y_offset + fnpass_y),
width = .1,
height =.1,
center=True)

newLayout.addText(text = "SSL[" + str(block) + "]",
layerNumber =67,
purposeNumber =16,
offsetInMicrons =( x_offset + WL_x ,

y_offset + fnpass_y))

def placeBotRow(block):
x_offset = 0
global y_offset

mirror = None
fnpass_y = 0.42
m1_x = 0.2
gnd1 = 7.202
gnd2 = 13.142
vddy = 10.18
sen1_1 = 4.37
sen1_2 = 15.995
sen2_1 = 4.00
sen2_2 = 16.365

out_enx = 0.2
out_eny = 17.32
out_evx = 0.6
out_evy = 16.835
out_oddx = 1.3
out_oddy = 17.35

newLayout.addInstance(botLeftLayout ,
offsetInMicrons =(x_offset ,

y_offset),
mirror = mirror)

x_offset += SIDE_WIDTH
for i in range(numCols /2):

### Label output pins
newLayout.addInstance(botMidLayout ,
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offsetInMicrons =(x_offset ,
y_offset),

mirror=mirror)
newLayout.addBox(layerNumber =69,

dataType =20,
offsetInMicrons =( x_offset +

out_enx ,y_offset - out_eny),
width = .1,
height =.1,
center=True)

newLayout.addText(text = "out_en[" + str(i) + "]",
layerNumber =69,
purposeNumber =16,
offsetInMicrons =( x_offset +

out_enx ,y_offset - out_eny))

newLayout.addBox(layerNumber =69,
dataType =20,
offsetInMicrons =( x_offset +

out_oddx ,y_offset - out_oddy),
width = .1,
height =.1,
center=True)

newLayout.addText(text = "out[" + str(2*i + 1) + "
]",

layerNumber =69,
purposeNumber =16,
offsetInMicrons =( x_offset +

out_oddx ,y_offset - out_oddy))

newLayout.addBox(layerNumber =67,
dataType =20,
offsetInMicrons =( x_offset +

out_evx ,y_offset - out_evy),
width = .1,
height =.1,
center=True)

newLayout.addText(text = "out[" + str(2*i) + "]",
layerNumber =67,
purposeNumber =16,
offsetInMicrons =( x_offset +

out_evx ,y_offset - out_evy))

x_offset += MID_WIDTH

newLayout.addInstance(botRightLayout ,
offsetInMicrons= (x_offset ,

y_offset),
mirror = mirror)

newLayout.addBox(layerNumber =67,
dataType =20,
offsetInMicrons =( x_offset + WL_x ,
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y_offset - fnpass_y),
width = .1,
height =.1,
center=True)

newLayout.addText(text = "SSL[" + str(block) + "]",
layerNumber =67,
purposeNumber =16,
offsetInMicrons =( x_offset + WL_x ,

y_offset - fnpass_y))

### Label power lines
newLayout.addBox(layerNumber =68,

dataType =20,
offsetInMicrons =( x_offset - m1_x ,

y_offset - gnd1),
width = .1,
height =.1,
center=True)

newLayout.addText(text = "GND",
layerNumber =68,
purposeNumber =16,
offsetInMicrons =( x_offset - m1_x ,

y_offset - gnd1))

newLayout.addBox(layerNumber =68,
dataType =20,
offsetInMicrons =( x_offset - m1_x ,

y_offset - vddy),
width = .1,
height =.1,
center=True)

newLayout.addText(text = "VDD",
layerNumber =68,
purposeNumber =16,
offsetInMicrons =( x_offset - m1_x ,

y_offset - vddy))

### Label sen control lines
newLayout.addBox(layerNumber =68,

dataType =20,
offsetInMicrons =( x_offset - m1_x ,

y_offset - sen1_1),
width = .1,
height =.1,
center=True)

newLayout.addText(text = "sen1",
layerNumber =68,
purposeNumber =16,
offsetInMicrons =( x_offset - m1_x ,

y_offset - sen1_1))
newLayout.addBox(layerNumber =68,

dataType =20,
offsetInMicrons =( x_offset - m1_x ,
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y_offset - sen2_1),
width = .1,
height =.1,
center=True)

newLayout.addText(text = "sen2",
layerNumber =68,
purposeNumber =16,
offsetInMicrons =( x_offset - m1_x ,

y_offset - sen2_1))

def placeBLRow(block):
x_offset = 0
global y_offset

fnpass_y = 0.47

newLayout.addInstance(BLLeftLayout ,
offsetInMicrons =(x_offset ,

y_offset))
x_offset += SIDE_WIDTH
for i in range(numCols /2):

newLayout.addInstance(BLMidLayout ,
offsetInMicrons =(x_offset ,

y_offset))
x_offset += MID_WIDTH

newLayout.addInstance(BLRightLayout ,
offsetInMicrons= (x_offset ,

y_offset))
newLayout.addBox(layerNumber =67,

dataType =20,
offsetInMicrons =( x_offset + WL_x ,

y_offset - fnpass_y),
width = .1,
height =.1,
center=True)

newLayout.addText(text = "SSL[" + str(block -1) + "]",
layerNumber =67,
purposeNumber =16,
offsetInMicrons =( x_offset + WL_x ,

y_offset - fnpass_y))
y_offset -= MID_HEIGHT
newLayout.addBox(layerNumber =67,

dataType =20,
offsetInMicrons =( x_offset + WL_x ,

y_offset + fnpass_y),
width = .1,
height =.1,
center=True)

newLayout.addText(text = "SSL[" + str(block) + "]",
layerNumber =67,
purposeNumber =16,
offsetInMicrons =( x_offset + WL_x ,
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y_offset + fnpass_y))

def placeSLRow(block):
x_offset = 0
global y_offset

fnpass_y = 0.47

newLayout.addInstance(SLLeftLayout ,
offsetInMicrons =(x_offset ,

y_offset))
x_offset += SIDE_WIDTH
newLayout.addBox(layerNumber =67,

dataType =20,
offsetInMicrons =( x_offset - WL_x ,

y_offset - fnpass_y),
width = .1,
height =.1,
center=True)

newLayout.addText(text = "GSL[" + str(block -1) + "]",
layerNumber =67,
purposeNumber =16,
offsetInMicrons =( x_offset - WL_x ,

y_offset - fnpass_y))
newLayout.addBox(layerNumber =67,

dataType =20,
offsetInMicrons =( x_offset - WL_x ,

y_offset + fnpass_y - MID_HEIGHT),
width =.1,
height =.1,
center=True)

newLayout.addText(text = "GSL[" + str(block) + "]",
layerNumber =67,
purposeNumber =16,
offsetInMicrons =( x_offset - WL_x ,

y_offset + fnpass_y - MID_HEIGHT)
)

for i in range(numCols /2):
newLayout.addInstance(SLMidLayout ,

offsetInMicrons =(x_offset ,
y_offset))

x_offset += MID_WIDTH

newLayout.addInstance(SLRightLayout ,
offsetInMicrons= (x_offset ,

y_offset))

newLayout.addBox(layerNumber =67,
dataType =20,
offsetInMicrons =( x_offset - BL_BL_x

/2,y_offset - MID_HEIGHT /2),
width =.1,
height =.1,
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center=True)
newLayout.addText(text = "SL",

layerNumber =67,
purposeNumber =16,
offsetInMicrons =( x_offset - BL_BL_x

/2,y_offset - MID_HEIGHT /2))

y_offset -= MID_HEIGHT

def placeCellRow(block ,row ,orientation):
x_offset = 0
global y_offset

if orientation:
mirror = None
WL0_y = -0.215
WL1_y = 0.215 - CELL_HEIGHT

else:
mirror = "x"
WL0_y = 0.215
WL1_y = CELL_HEIGHT - 0.215
y_offset -= CELL_HEIGHT
row = blockSize /2 - row - 1

newLayout.addInstance(cellLeftLayout ,
offsetInMicrons =(x_offset ,

y_offset),
mirror = mirror)

x_offset += SIDE_WIDTH
newLayout.addBox(layerNumber =67,

dataType =20,
offsetInMicrons =( x_offset - WL_x ,

y_offset + WL0_y),
width = .1,
height =.1,
center=True)

newLayout.addText(text = "WL" + str(block) + "[" + str
(2* row) + "]",

layerNumber =67,
purposeNumber =16,
offsetInMicrons =( x_offset - WL_x ,

y_offset + WL0_y))
for i in range(numCols /2):

newLayout.addInstance(cellMidLayout ,
offsetInMicrons =(x_offset ,

y_offset),
mirror=mirror)

x_offset += MID_WIDTH

newLayout.addInstance(cellRightLayout ,
offsetInMicrons= (x_offset ,
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y_offset),
mirror = mirror)

newLayout.addBox(layerNumber =67,
dataType =20,
offsetInMicrons =( x_offset + WL_x ,

y_offset + WL1_y),
width = .1,
height =.1,
center=True)

newLayout.addText(text = "WL" + str(block) + "[" + str
(2* row+1) + "]",

layerNumber =67,
purposeNumber =16,
offsetInMicrons =( x_offset + WL_x ,

y_offset + WL1_y))
if orientation:

y_offset -= CELL_HEIGHT

def placeCellBlock(block ,orientation ,size =(0,0)):
global y_offset
for row in range(size [1]/2):

placeCellRow(block ,row ,orientation)

for block in range(numRows/blockSize):
if (block % 2) == 0:

if block: #if block is not 0
placeBLRow(block)

else:
placeTopRow(block)

placeCellBlock(block ,True , size=(numCols ,blockSize
))

else:
placeSLRow(block)
placeCellBlock(block ,False , size=(numCols ,

blockSize))
placeBotRow(numRows/blockSize - 1)

writer = gdsMill.Gds2writer(newLayout)
writer.writeToFile(output_path + out_name + ".gds")
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APPENDIX C: MODIFIED TRI-STATE BUFFER SPICE FILE

* FILE: pass_trans.sp

.SUBCKT pass_trans in out ctr hv lv
M_1 out ctr_ in hv p20vhv1 W=’60’ L=’2’
M_2 out ctr in lv n20vhv1 W=’30’ L=’2’

M_3 ctr_ ctr hv hv p20vhv1 W=’60’ L=’2’
M_4 ctr_ ctr lv lv n20vhv1 W=’30’ L=’2’
.ENDS $ pass_trans
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APPENDIX D: MODIFIED SONOS MODEL

.global gnd

.param POS_PUMP = 6V

.param NEG_PUMP = -3V

.param MIN = -2V

.param MAX = 4V

.subckt FGMOS d g s b
Ginj float g CUR=’((abs(v(d,gnd)-NEG_PUMP) - (v(d,gnd)-

NEG_PUMP)) / (abs(v(d,gnd)-NEG_PUMP)+1e-9) * \
(abs(v(g,gnd)-POS_PUMP) + (v(g,gnd)-

POS_PUMP)) / (abs(v(g,gnd)-
POS_PUMP)+1e-9) * \

(abs(v(s,gnd)-NEG_PUMP) - (v(s,gnd)-
NEG_PUMP)) / (abs(v(s,gnd)-
NEG_PUMP)+1e-9) * \

(abs(v(float ,gnd)-MIN) + (v(float ,
gnd)-MIN)) / (abs(v(float ,gnd)-
MIN) +1e-9)) * 2e-3’

Gtun g float CUR=’((abs(v(d,gnd)-POS_PUMP) + (v(d,gnd)-
POS_PUMP)) / (abs(v(d,gnd)-POS_PUMP)+1e-9) * \

(abs(v(g,gnd)-NEG_PUMP) - (v(g,gnd)-
NEG_PUMP)) / (abs(v(g,gnd)-
NEG_PUMP)+1e-9) * \

(abs(v(s,gnd)-POS_PUMP) + (v(s,gnd)-
POS_PUMP)) / (abs(v(s,gnd)-
POS_PUMP)+1e-9) * \

(abs(v(float ,gnd)-MAX) - (v(float ,
gnd)-MAX)) / (abs(v(float ,gnd)-
MAX) +1e-9)) * 2e-3’

R1 float vr 1e14
C1 float g 1n ic=0V
Vinit vr g DC 0V
Mfg d float s b sonos_p w=0.35 l=0.15 m=1 r=2.8 a=0.063 p

=1.14 mult=1
.probe i(Ginj)
.probe i(Gtun)
.ends FGMOS
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