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Abstract:

In this thesis, we will analyze degenerate principal series representations realized as smooth
induced representations for the indefinite orthogonal and unitary groups G = SO0(2p, 2q)
and H = U(p, q). We will induce from smooth characters of maximal-parabolic subgroups,
which will each depend on a continuous parameter and a discrete parameter. Each of the
principal series representations has an associated differential intertwining operator that can
be identified as the right action of an element of the universal enveloping algebra. These
operators correspond to the Euclidean and Heisenberg wave operators, respectively, and
because of the group-invariance of these operators, their kernels will be subrepresentations.

A key result in this thesis is to establish a connection between the kernels for Euclidean
and Heisenberg kernels. We will present a family of integral operators that provide a map
between the principal series in the two settings which acts as a projection map of K-finite
spaces. The most important feature of these integral operators, is that for the continuous
parameter p+q−2, they intertwine the action of the differential operators the principal series.
In particular, these integral operators take the kernels of the Euclidean wave operator in the
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CHAPTER I

INTRODUCTION

In studying irreducible admissible representations of a semisimple Lie group, one can
look for “small” representations inside degenerate principal series, which are representations
parabolically induced from maximal (or at least, not minimal) parabolic subgroups with
one dimensional induction data. A natural way to produce a subrepresentation in these
degenerate principal series is as the kernel of a sufficiently symmetric operator. A famous
example of this type of symmetry is the Laplace operator, which is invariant under rotation.

Degenerate principal series have different “pictures,” or equivalent characterizations,
which allow us to analyze the mathematical objects from different perspectives. The in-
duced picture views the degenerate principal series as a certain class of functions on a group
with some homogeneity condition. This gives a concrete sense of the degenerate principal
series and we will often use to make direct calculations.

Another setting to analyze the principal series is the compact picture, which realizes the
functions as those restricted to a maximal compact subgroup K. In this setting, we calculate
the K-finite space, which is a dense subspace of sums of irreducible (finite-dimensional)
representations of K called K-types.

There is also the non-compact picture, which reduces the principal series down to a
space of functions on a vector space or vector space-like structure, and in this setting we
can look for solutions to differential operators, which correspond to elements of the universal
enveloping algebra. Provided that the differential operators have sufficient symmetry, their
kernels will be subrepresentations of the principal series.

In this thesis, the degenerate principal series we will analyze will be smooth induced
representations for the indefinite orthogonal and unitary groups G = SO0(2p, 2q) and H =
U(p, q). We will induce from smooth characters of maximal-parabolic subgroups, which we
will be stabilizers of isotropic lines. Elements of these principal series will be smooth functions
on the group with a right translation property by the parabolic. Each of these induced
representations has an associated differential intertwining operator that can be identified as
the right action of an element of the universal enveloping algebra. These operators correspond
to the Euclidean and Heisenberg wave operators, respectively, and because of the group-
invariance of these operators, their kernels will be subrepresentations.

A key result in this thesis is to establish a connection between the kernels of the wave
operators. We will present a family of integral operators that provide a map between the
induced representations for G and H. These operators have two key features. The first
feature is that this map acts as a projection of their respective K-finite spaces. The second
feature of these operators, which is quite striking, is that they intertwine the action of the
differential operators for certain parameters of the induced representations. In particular,
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these integral operators take the kernel of the Euclidean wave operator in the orthogonal
setting to the kernel of the Heisenberg wave operator in the unitary setting.

Here is a summary of the thesis. In Chapter 2, we motivate and define two classical
isometry groups, SO(2n) and U(n). We present certain irreducible representations of these
groups, which will be spaces of homogeneous harmonic polynomials. We proceed to calculate
“embedding vectors” for these representations, which are used to identify the K-types of the
degenerate principal series and embed them inside the principal series.

In Chapter 3, we define the degenerate principal series in the induced picture for G and
H that we wish to analyze. We apply some theory (proved in the introductory section)
which allows us to connect the induced picture to the compact picture, and this allows us
to calculate their respective K-finite spaces. These K-finite spaces are calculated similarly
by Howe and Tan in [3], although they realize their degenerate principal series as smooth
functions on a light cone with a translation property, whereas ours are smooth functions on
the appropriate group.

In Chapter 4, we define a family of integral operators that, with a parity condition
satisfied, maps elements of the principal series for G to that in H. The integral transform
makes use of a canonical embedding H ↪→ G, but the map is not simply restriction from G
to H due to the non-inclusion of the corresponding parabolics. This map behaves well on
the K-finite spaces, and we will motivate this by showing explicitly how certain K-types can
be regarded as elements of the degenerate principal series for either G or H. Under these
conditions, we will make clear how these integral operators act as projection of the K-types.

Chapters 5-7 aim to show that the actions of the differential intertwining operators com-
mute with the integral operator. In particular, the integral operator takes the kernel of the
Euclidean wave operator to the kernel of the Heisenberg wave operator. The kernel of the
Euclidean wave operator for the orthogonal setting has been worked out by Binegar and
Zierau in [2], and so the main results of this thesis connect the two kernels and imply the
kernel in the unitary setting.

In Chapter 5, specifically, we will introduce the non-compact picture for the degenerate
principal series and the differential intertwining operators we wish to work with. Then we will
apply a well-known duality theorem which associates homomorphisms between generalized
Verma modules to differential intertwining operators between induced representations. The
application will show, for the parameter p+ q−2, exactly which induced representations the
differential intertwining operators operate between.

In Chapter 6, we will show how the integral transform from Chapter 3 H-intertwines the
actions of the differential intertwining operators for Schwartz functions in the non-compact
setting, which yields an H-commuting diagram between degenerate principal series. This
will require an inclusion map that essentially changes coordinates between the non-compact
settings for G and H. We will also require a change of coordinates for the differential
operators. The Schwartz condition will be used to ensure that all integrals converge in the
intertwining calculation.

The work in Chapter 7 extends this H-intertwining diagram to the entire degenerate
principal series. The bulk of this chapter culminates in showing existence of a function in
the compact setting with a certain property whose H-translates span a dense subspace of the
degenerate principal series. When this is complete, we will connect the compact and non-
compact settings by showing that this function, when regarded in the non-compact setting,
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has compact support, and in particular is a Schwartz function. This implies that the diagram
is H-intertwining for a function whose H-translates can estimate any other function, which
completes the desired extension. I will also calculate the kernel of the Heisenberg Laplacian
at the end of this chapter.
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CHAPTER II

EMBEDDING VECTORS OF HOMOGENEOUS HARMONIC
POLYNOMIALS

2.1 The Special Orthogonal Groups and the Unitary Groups

Let Rn be the space of column vectors

x =


x1
x2
...
xn

 , xj ∈ R,

endowed with the inner product

(x, x′)n = xt · x′, x, x′ ∈ Rn.

The group of invertible n×n matrices with real entries GL(n,R) acts on Rn by multiplication
on the left. The subgroup of isometries of Rn that fix the origin is called the orthogonal group
of degree n, denoted O(n). That is, O(n) is the subgroup of GL(n,R) such that

(gx, gx′)n = (x, x′)n, x, x′ ∈ Rn, g ∈ O(n).

Equivalently,
O(n) = {g ∈ GL(n,R) : gtg = In}.

The subgroup of O(n) whose elements have determinant 1 is called the special orthogonal
group of degree n, denoted SO(n). That is,

SO(n) = {g ∈ GL(n,R) : gtg = In, det g = 1}.

Similarly, we let Cn be the space of column vectors

z =


z1
z2
...
zn

 , zj ∈ C,

endowed with the Hermitian inner product

⟨z, z′⟩n = zt · z′, z, z′ ∈ Cn.
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The group of invertible n×n matrices with complex entries GL(n,C) acts on Cn by multipli-
cation on the left. The subgroup of isometries of Cn that fix the origin is called the unitary
group of degree n, denoted U(n). That is, U(n) is the subgroup of GL(n,C) such that

⟨gz, gz′⟩n = ⟨z, z′⟩n, z, z′ ∈ Cn, g ∈ U(n).

Equivalently,
U(n) = {g ∈ GL(n,C) : g∗g = I},

where g∗ = gt is the conjugate transpose of g. We can identify C with R2 by

x1 + x2i↔
(
x1
x2

)
, x1, x2 ∈ R,

and this gives us the entry-wise identification of Cn with (R2)n ∼= R2n. This also yields a
canonical embedding

GL(n,C) ↪→ GL(2n,R)

where entries are mapped via

(a+ bi) 7→
(
a −b
b a

)
, a, b ∈ R.

The calculations

(a1 + b1i)(a2 + b2i) = (a1a2 − b1b2) + (a1b2 + b1a2)i,(
a1 −b1
b1 a1

)(
a2 −b2
b2 a2

)
=

(
a1a2 − b1b2 −(a1b2 + b1a2)
a1b2 + b1a2 a1a2 − b1b2

)
shows that this embedding is a group homomorphism. Restriction to U(n) gives the embed-
ding

U(n) ↪→ SO(2n).

2.2 Homogeneous Harmonic Polynomials

Let Pm(Rn) be the space of homogeneous complex-valued polynomials of degree m in real
variables x1, x2, . . . , xn, homogeneous with degree m. A linear change of variables preserves
the degree of homogeneity of Pm(Rn), and so Pm(Rn) is a representation (Give brief defi-
nition of representation?) of SO(n), with action given by

Φm(g)(P )(x) = P (g−1x), g ∈ SO(n), P ∈ Pm(Rn), x ∈ Rn.

We note that the action on a product of polynomials will be the product of the actions:

Φm(g)(P ·Q)(x) = (P ·Q)(g−1x) = P (g−1x) ·Q(g−1x) = Φm(g)(P )(x) · Φm(g)(Q)(x).

It follows that the action of sums, products, powers, etc., are the sums, products, powers,
etc. of the actions.

We note for future reference the action of −In on this homogeneous space.
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Proposition 2.2.1 Let P ∈ Pm(Rn). Then, (−In).P (x) = (−1)mP (x).

Proof. For a monomial P (x) = xk11 x
k2
2 · · ·xknn with

∑n
j=1 kj = m, we have

(−In).P (x) = P (−x) = (−x1)k1(−x2)k2 · (−xn)kn = (−1)
∑n

j=1 kjP (x) = (−1)mP (x).

The Laplacian (or Laplace operator) on Pm(Rn) is

∆n =
n∑
j=1

∂2

∂x2j
,

which defines a linear map
∆n : Pm(Rn) → Pm−2(Rn)

in the obvious way. The kernel of this map is called the space of homogeneous harmonic
polynomials of degree m, denoted H m(Rn).

Similarly, let Pm(Cn) be the space of homogeneous complex-valued polynomials of total
degree m in variables z’s and z’s (z1, . . . , zn and conjugates z1, · · · , zn). Now let Pm1,m2(Cn)
be the space of bi-homogeneous complex-valued polynomials of degree m1 in z’s and degree
m2 in z’s. These spaces are representations of U(n) with action given by

Φm(g)(P )(z, z) = P
(
g−1z, g−1z

)
, g ∈ U(n), P ∈ Pm1,m2(Cn), z ∈ Cn.

Elements of Z
(
U(n)

)
are of the form

(
eiθIn

)
for some θ ∈ [0, 2π). For later reference, we

now provide the action of Z
(
U(n)

)
on Pm1,m2(Cn).

Proposition 2.2.2 Let g = (eiθIn) ∈ Z
(
U(n)

)
. Then

Φm(g).P = e−iθ(m1−m2)P, P ∈ Pm1,m2(Cn).

Proof. Amonomial in this space is of the form P (z, z) = zk11 z
k2
2 · · · zknn z

ℓ1
1 · · · zℓnn with

∑n
j=1 kj =

m1,
∑n

j=1 ℓj = m2. Notice that (eiθIn)
−1z = e−iθz. Therefore,

(eiθIp).P (z, z) = P
(
e−iθz, eiθz

)
= (e−iθz1)

k1(e−iθz2)
k2 · · · (e−iθzp)kp(eiθz1)ℓ1 · · · (eiθzp)ℓp

= e−iθ(
∑

j kj−
∑

j ℓj)(zk11 z
k2
2 · · · zkpp z

ℓ1
1 · · · zℓpp )

= e−iθ(m1−m2)P (z, z),

and by linear extension this completes the proof.

The Laplacian ∆n above may be written in complex coordinates as

∆n = 4
n∑
j=1

∂2

∂zj∂zj
,
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and this defines the linear map

∆n : Pm1,m2(Cn) → Pm1−1,m2−1(Cn)

given by
P 7→ ∆nP.

The kernel of this map is called the space of bi-homogeneous harmonic polynomials of degrees
m1 and m2, and is denoted H m1,m2(Cn).

2.3 Embedding Vector of H m(R2n)

In this thesis, we are particularly interested in the representations H m(R2n) (of SO(2n)),
and we shall require some additional facts about them. We will outline these facts, and if the
reader wishes for more detailed explanations, they may see [4, p.236 Example 2, p.270-271
Problems 9-14, p.339-340 Problem 2, and p.570 Theorem 9.16.].

There is a notion of a highest weight for a complex finite-dimensional irreducible repre-
sentation of a compact connected Lie group. The Theorem of the Highest Weight provides
a classification of these irreducible representations according to their highest weight. The
space H m(R2n) is an irreducible representation of SO(2n) with highest weight me1, and so
this theorem shows that any two different H m(Rn) are inequivalent (that is, not isomorphic
as representations).

The restriction to a subgroup of an irreducible representation is not generally irreducible.
Theorems that describe how a representation decomposes under this restriction are called
branching theorems. We are interested in the restriction of H m(R2n) from SO(2n) to
SO(2n− 1) under the identification

SO(2n− 1) ↪→ SO(2n), h 7→
(
1 0
0 h

)
.

(We will frequently make this identification without additional comment.) Murnaghan’s
Theorem (Knapp p.570 theorem 9.16) tells us that H m(R2n) is the only representation (up
to equivalence) in which the trivial representation occurs in this decomposition, and that it
occurs with multiplicity 1. This means that there is a nonzero vector in H m(R2n), unique
up to a scalar, which is fixed by SO(2n − 1) under this identification. There is a natural
candidate for this vector, and so now we proceed to calculate it explicitly.

Recall that SO(2n) is defined as the set of isometries of R2n which fix the origin. Under
the above embedding, we may regard SO(2n − 1) as the subgroup of isometries of the last
(2n−1)-coordinates in R2n. That is, SO(2n−1) can be regarded as the subgroup of SO(2n)
which preserves the inner product in the following way:

((
1 0
0 h

)(
0
x

)
,

(
1 0
0 h

)(
0
x′

))
2n

=

((
0
x

)
,

(
0
x′

))
2n

, x, x′ ∈ R2n−1, h ∈ SO(2n− 1).

In particular, for

r21 = x21 + x22 + · · ·+ x22n, r22 = x22 + x23 + · · ·+ x22n,
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we have that

r22 =

((
0
x

)
,

(
0
x

))
2n

x ∈ R2n−1

is preserved by SO(2n−1), and so r22 (regarded as a polynomial in R2n) is SO(2n−1)-fixed.
Notice that for P (x) = x1, we have((

1 0
0 h

)
.P

)
(x) = P

((
1 0
0 h

)−1

x

)
= P

((
1 0
0 h−1

)(
x1
x′

))
= P

((
x1

h−1x′

))
= x1,

and so SO(2n−1) fixes x1 (regarded as a polynomial in R2n). It follows that sums, products,
and powers of x1 and r22 are also SO(2n − 1)-fixed. In particular, for natural numbers α
and β, linear combinations of the polynomial xα1 (r

2
2)
β are SO(2n − 1)-fixed. we can choose

combinations of α and β so that the total degree of xα1 r
β
2 ism, and the right linear combination

of the polynomials in this form will give us the desired nonzero vector in H m(R2n)SO(2n−1).
First we state how the Laplacian acts on polynomials of this form.

Proposition 2.3.1 Let α, β ≥ 0. We have

∆2n

(
xα1 r

2β
2

)
= α(α− 1)xα−2

1 r2β2 + 4β(β + n− 3/2)xα1 r
2(β−1)
2 .

Now that we can take the Laplacian of polynomials of this form, we will find combinations
of α and β so that the polynomials have the right homogeneous property. We will show how
to choose coefficients so that the linear combination of these polynomials is harmonic. It
turns out that these coefficients will need to satisfy a recurrence relation, so we will state
the general form of the recurrence in the following lemma.

Lemma 2.3.1 The sequence (ak)
∞
k=0 given by

ak =
Πs
i=1(σi)k

Πr
j=1(ρj)k

satisfies the recurrence relation

ak+1 =
Πs
i=1(σi + k)

Πr
j=1(ρj + k)

ak

for all k ≥ 0.

We will use the notation (x)k = x(x+ 1)(x+ 2) . . . (x+ k − 1) for the “rising factorial”.
By convention, (x)0 = 1.

Let m be a positive integer, let ℓ = ⌊m/2⌋, let ε =

{
1,m odd

0,m even
, and let

Ak = 4k(−1/2 + ε+ k), Bk = 4(−ℓ+ k)(3/2− n− ℓ+ k).

8



Notice that

(2k + ε)(2k + ε− 1) = 4k2 + 4kε− 2k + ε2 − ε

= 4k2 + 4kε− 2k

= 4k(k + ε− 1/2) = Ak.

By Lemma 2.3.1, with ρ1 = 1, ρ2 = 1/2 + ε, σ1 = −ℓ, σ2 = 3/2− n− ℓ, we may define a
sequence (ak)

∞
k=0 given by

ak =
(−ℓ)k(3/2− n− ℓ)k

k!(1/2 + ε)k

which solves the recurrence

ak+1 =
Bk

Ak+1

ak =
(−ℓ+ k)(3/2− n− ℓ+ k)

(1 + k)(1/2 + ε+ k)
ak.

Let pk = x2k+ε1 r
2(ℓ−k)
2 and let ξm =

∑ℓ
k=0(−1)kakpk.

Theorem 2.3.1 ξm ∈ H m(R2n)SO(2n−1)\{0}.

Proof. We have

∆2n

ℓ∑
k=0

(−1)kakpk =
ℓ∑

k=0

(−1)kak∆2n

(
x2k+ε1 r

2(ℓ−k)
2

)
=

ℓ∑
k=0

(−1)kak(Akpk/x
2
1 +Bkpk/r

2
2) Prop 2.3.1: α = 2k + ε, β = ℓ− k

=
ℓ−1∑
k=0

(−1)k
(
akBkpk/r

2
2 − ak+1Ak+1pk+1/x

2
1

)
regrouping, A0Bℓ = 0

=
ℓ−1∑
k=0

(−1)k(akBk − ak+1Ak+1)pk/r
2
2, since pk/r

2
2 = pk+1/x

2
1

=
ℓ−1∑
k=0

(−1)k(0)pk/r
2
2 = 0, by the recurrence property of (ak).

For reasons we will see later, it will be useful to express ξm using Gegenbauer polynomials, by
way of first expressing it using hypergeometric functions, and then using Jacobi polynomials.
We define a hypergeometric function by the formal power series

2F1(a, b; c|z) =
∞∑
k=0

(a)k(b)k
(c)kk!

zk, z ∈ C.
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If c is not a non-positive integer and a is a negative integer, this is a polynomial, and we
have

ℓ∑
k=0

(−1)kakpk =
ℓ∑

k=0

(−1)k
(−ℓ)k(3/2− n− ℓ)k

(k)!(1/2 + ε)k
x2k+ε1 r

2(ℓ−k)
2

= xε1r
2ℓ
2

ℓ∑
k=0

(−1)k
(−ℓ)k(3/2− n− ℓ)k

(k)!(1/2 + ε)k
x2k1 r

−2k
2

= xε1r
2ℓ
2

ℓ∑
k=0

(−ℓ)k(3/2− n− ℓ)k
(k)!(1/2 + ε)k

(−x21/r22)k

= xε1r
2ℓ
2 2F1(−ℓ, 3/2− n− ℓ; 1/2 + ε

∣∣− x21/r
2
2).

Now we will further re-express ξm in a form which uses Gegenbauer polynomials, which are
special cases of Jacobi polynomials. A Jacobi polynomial of degree k is defined by

P
(α,β)
k (x) =

(α + 1)k
k!

2F1

(
−k, k + α + β + 1;α + 1

∣∣∣∣1− x

2

)
.

A Gegenbauer polynomial is defined as

Cλ
k (x) =

(2λ)k
(λ+ (1/2))k

P
(λ−(1/2),λ−(1/2))
k .

To complete this transformation, we will need two formulas, which we state in the following
lemma.

Lemma 2.3.2 1. [1, Pfaff’s Formula, p. 68, Theorem 2.2.5]

2F1

(
a, c− b; c

∣∣∣∣ x

x− 1

)
= (1− x)a2F1 (a, b; c|x) , c > b > 0.

2. [1, p. 128, Equation 3.1.12]

2F1(2a, 2b; a+ b+ 1/2
∣∣x+ 1

2
) =

Γ(a+ b+ 1/2)Γ(1/2)

Γ(a+ 1/2)Γ(b+ 1/2)
2F1(a, b; 1/2

∣∣x2)
− x

Γ(a+ b+ 1/2)Γ(−1/2)

Γ(a)Γ(b)
2F1(a+ 1/2, b+ 1/2; 3/2

∣∣x2).
The cases when m is odd and even are the same except for a couple lines in the following

calculation. We combine them into one, again writing ℓ = ⌊m/2⌋ and ε =

{
1,m odd

0,m even
.
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ξm = xε1r
2ℓ
2 2F1(−ℓ, 3/2− n− ℓ; 1/2 + ε

∣∣− x21/r
2
2)

= xε1r
2ℓ
2 2F1

(
−ℓ, 3/2− n− ℓ; 1/2 + ε

∣∣− x21
r21 − x21

)
= xε1r

2ℓ
2 2F1

(
−ℓ, 3/2− n− ℓ; 1/2 + ε

∣∣ x21/r
2
1

x21/r
2
1 − 1

)
= xε1r

2ℓ
2 (1− x21/r

2
1)

−ℓ
2F1(−ℓ, n+ ℓ− 1 + ε; 1/2 + ε

∣∣x21/r21)
(by Lemma 2.3.2 (1), a = −ℓ, b = −n− ℓ+ 3/2, c = 1/2 + ε, x = x21/r

2
1)

= xε1r
2ℓ
2 (r22/r

2
1)

−ℓ
2F1(−ℓ, n+ ℓ− 1 + ε; 1/2 + ε

∣∣x21/r21)
= xε1r

2ℓ
1 2F1(−ℓ, n+ ℓ− 1 + ε; 1/2 + ε

∣∣(−x1/r1)2)
=


Γ(−ℓ− 1

2
)Γ(n+ ℓ− 1

2
)

Γ(n− 1
2
)Γ(−1

2
)

x1r
2ℓ
1 (r1/x1)2F1

(
−2ℓ− 1, 2n+ 2ℓ− 1;n− 1

2

∣∣1− x1/r1
2

)
, ε = 1

Γ(−ℓ+ 1
2
)Γ(n+ ℓ− 1

2
)

Γ(n− 1
2
)Γ(1

2
)

r2ℓ1 2F1(−2ℓ, 2n+ 2ℓ− 2;n− 1

2

∣∣∣∣1− x1/r1
2

), ε = 0

(by Lemma 2.3.2 (2), a = −ℓ− 1/2, b = n+ ℓ− 1/2, x = −x1/r1,
note: dividing (−) by (−) is (+), and the 2nd term was nonzero here, 1st 0,

whereas for m even case the 1st was nonzero and the 2nd 0)

(by Lemma 2.3.2 (2), a = −ℓ, b = n+ ℓ− 1, x = −x1/r1, note Γ(a) = ∞, so 2nd term= 0)

=
Γ(−ℓ+ 1

2
− ε)Γ(n+ ℓ− 1

2
)

Γ(n− 1
2
)Γ(1

2
− ε)

r2ℓ+ε1 2F1

(
−2ℓ− ε, 2n+ 2ℓ− 2 + ε;n− 1

2

∣∣1− x1/r1
2

)
=

Γ(−ℓ+ 1
2
− ε)Γ(n+ ℓ− 1

2
)(2ℓ+ ε)!

Γ(n− 1
2
)Γ(1

2
− ε)(n− 1

2
)2ℓ+ε

r2ℓ+ε1 P
(n−3/2,n−3/2)
2ℓ+ε (x1/r1)

(definition of Jacobi polynomial with: a = −2ℓ− ε, b = 2n+ 2ℓ− 2 + ε, c = n− 1

2
;

k = 2ℓ+ ε, α = c− 1 = n− 3

2
)

β = b− k − α− 1 = 2n+ 2ℓ− 2 + ε− (2ℓ+ ε)− (n− 3

2
)− 1 = n− 3

2

=
Γ(−ℓ+ 1

2
− ε)Γ(λ+ ℓ+ 1

2
)(2ℓ+ ε)!

Γ(λ+ 1
2
)Γ(1

2
− ε)(λ+ 1

2
)2ℓ+ε

r2ℓ+ε1 P
(λ− 1

2
,λ− 1

2
)

2ℓ+ε (x1/r1) (sub λ = n− 1)

=
Γ(−ℓ+ 1

2
− ε)Γ(λ+ ℓ+ 1

2
)(2ℓ+ ε)!(λ+ 1

2
)2ℓ+ε

Γ(λ+ 1
2
)Γ(1

2
− ε)(λ+ 1

2
)2ℓ+ε(2λ)2ℓ+ε

r2ℓ+ε1 Cλ
2ℓ+ε(x1/r1)

(defn of Gegenbauer polynomials)

=
Γ(−ℓ+ 1

2
− ε)Γ(λ+ ℓ+ 1

2
)(2ℓ+ ε)!

Γ(λ+ 1
2
)Γ(1

2
− ε)(2λ)2ℓ+ε

r2ℓ+ε1 Cλ
2ℓ+ε(x1/r1) cancelling (λ+ 1/2)2ℓ+ε

=
Γ(−ℓ+ 1

2
− ε)(λ+ 1

2
)ℓ(2ℓ+ ε)!

Γ(1
2
− ε)(2λ)2ℓ+ε

r2ℓ+ε1 Cλ
2ℓ+ε(x1/r1)

Γ(z + ℓ)

Γ(z)
= (z)ℓ, z = λ+

1

2

=
(−1)ℓ(λ+ 1

2
)ℓ(2ℓ+ ε)!

(1
2
+ ε)ℓ(2λ)2ℓ+ε

r2ℓ+ε1 Cλ
2ℓ+ε(x1/r1)

Γ(z − ℓ)

Γ(z)
=

(−1)ℓ

(1− z)ℓ
, z =

1

2
− ε

=
(−4)ℓ(λ+ 1

2
)ℓℓ!

(2λ)2ℓ+ε
r2ℓ+ε1 Cλ

2ℓ+ε(x1/r1) since (2ℓ+ ε)! = 4ℓℓ!(
1

2
+ ε)ℓ,11



which completes the transformation of ξm using Gegenbauer polynomials.
We summarize the previous remarks with the following theorem.

Theorem 2.3.2 For a positive integer m, with λ = n−1, ℓ = ⌊m/2⌋ and ε =

{
1,m odd

0,m even
,

the polynomial

ξm =
(−4)ℓ(λ+ 1

2
)ℓℓ!

(2λ)2ℓ+ε
r2ℓ+ε1 Cλ

2ℓ+ε(x1/r1)

is a nonzero vector in H m(R2n)SO(2n−1).

2.4 Embedding Vectors for H m1,m2(Cn)

Recall that U(n) is defined as the set of isometries of Cn which fix the origin. There is a
natural embedding

U(n− 1) ↪→ U(n), h 7→
(
1 0
0 h

)
which regards U(n− 1) as the subgroup of isometries of the last (n− 1)-coordinates. That
is, U(n − 1) can be regarded as the subgroup of U(n) which preserves the Hermitian inner
product in the following way:〈(

1 0
0 h

)(
0
z

)
,

(
1 0
0 h

)(
0
z′

)〉
n

=

〈(
0
z

)
,

(
0
z′

)〉
n

, z, z′ ∈ Cn−1, h ∈ U(n− 1).

We will frequently make this identification without additional comment.
There is a branching theorem for U(n) by Weyl which is analogous to the one for SO(2n)

by Murnaghan from the last section. The space H m1,m2(Cn) is an irreducible representation
of U(n) with highest weight m2e1 − m1en, and Weyl’s theorem tells us that H m1,m2(Cn)
is the only representation (up to equivalence) in which the trivial representation occurs in
the decomposition by restricting to U(n − 1), and that it occurs with multiplicity 1. This
means that there is a nonzero vector, unique up to scalar, in H m1,m2(Cn) which is fixed
by U(n − 1) under this correspondence. As before in the SO(2n) case, there is a natural
candidate for this vector, which we denote as ξm1,m2 , and denote the U(n−1)-fixed subspace
as H m1,m2(Cn)U(n−1). We will now explicitly construct the vector ξm1,m2 .

Recall the action of U(n) on H m1,m2(Cn) given by (g.P )(z, z) = P (g−1z, g−1z). The
calculation((

1 0
0 h

)
.P

)((
z1
z

)
,

(
z1
z

))
= P

((
1 0
0 h−1

)(
z1
z

)
,

(
1 0

0 h
−1

)(
z1
z

))
= P

((
z1
h−1z

)
,

(
z1

h
−1
z1

))
shows that U(n − 1) fixes z1 and z1 regarded as polynomials. Write R2

2 = z2z2 + · · · znzn.
Observe that

R2
2 =

〈(
0
z

)
,

(
0
z

)〉
n

, z ∈ Cn−1

12



is preserved by U(n − 1), and so R2
2 (also regarded as a polynomial) is U(n − 1)-fixed.

It follows that sums, products, and powers of z1, z1, and R2
2 are also U(n − 1)-fixed. In

particular, for natural numbers α, β, κ, linear combinations of the polynomial zα1 z
β
1R

2κ
2 are

U(n− 1)-fixed. We can choose combinations of α, β, κ so that zα1 z
β
1R

2κ
2 has the right degree,

and the right linear combination of polynomials in this form will give us the desired nonzero
vector in H m1,m2(Cn)U(n−1). First we calculate the Laplacian of polynomials of this form in
the following proposition.

Proposition 2.4.1 Let α, β, κ ≥ 0. We have

∆
(
zα1 z

β
1 (R

2
2)
κ
)
= αβzα−1

1 zβ−1
1 (R2

2)
κ + zα1 z

β
1κ(κ+ n− 2)(R2

2)
κ−1.

Let m1 ≥ m2 and let

Ak = (m1 −m2 + k)k,Bk = (−m2 + k)(−m2 − n+ 2 + k).

By Lemma 2.3.1 with ρ1 = m1−m2+1, ρ2 = 1, σ1 = −m2, σ2 = −m2−n+2, we may define
a sequence (ak)

∞
k=0 given by

ak =
(−m2)k(−m2 − n+ 2)k

(m2 −m1 + 1)kk!
,

which solves the recurrence

ak+1 =
Bk

Ak+1

ak =
(−m2 + k)(−m2 − n+ 2 + k)

(m1 −m2 + k + 1)(k + 1)
ak.

Define pk = zm1−m2+k
1 zk1(R

2
2)
m2−k. Let ξm1,m2 =

m2∑
k=0

(−1)kakpk.

Theorem 2.4.1 ξm1,m2 ∈ H m1,m2(Cn)U(n−1)\{0}.
Proof. We have

∆ξm1,m2 =

m2∑
k=0

(−1)kak∆pk

=

m2∑
k=0

(−1)kak(Ak
pk
z1z1

+Bk
pk
R2

2

)

(Proposition 2.4.1, α = m1 −m2 + k, β = k, κ = m2 − k)

=

m2−1∑
k=0

(−1)k
(
akBkpk/R

2
2 − ak+1Ak+1pk+1/(z1z1)

)
(re-grouping, since A0 = 0, Bm2 = 0)

=

m2−1∑
k=0

(−1)k (akBk − ak+1Ak+1) pk/R
2
2 since pk/R

2
2 = pk+1/(z1z1)

=

m2−1∑
k=0

(−1)k(0)pk/R
2
2 = 0, by the recurrence property of (ak).

13



Expressing ξm1,m2 as a hypergeometric function, we have

ξm1,m2 =

m2∑
k=0

(−1)kakpk

= zm1−m2
1 (R2

2)
m2

m2∑
k=0

(−m2)k(−m2 − n+ 2)k
(m1 −m2 + 1)kk!

(−z1z1/R2
2)
k

= zm1−m2
1 (R2

2)
m2

2F1

(
−m2,−m2 − n+ 2;m1 −m2 + 1

∣∣∣∣− z1z2
R2

2

)
.

This completes the case when m1 ≥ m2. Complex conjugation gives a bijection from

Pm1,m2(Cn) → Pm2,m1(Cn).

Also, since the Laplacian is invariant under complex conjugation, we have

∆P (z, z) = ∆P (z, z).

It follows that ξm1,m2 ∈ H m2,m1(Cn)U(n−1)\{0}, which resolves the case when m2 > m1.
We have

H m(Cn) =
∑

m1+m2=m

H m1,m2(Cn),

where H m(Cn) hasm total powers of z’s and z’s. If we let ℓ = ⌊m/2⌋ as before, this becomes

H m(Cn) =
ℓ∑

d=0

(
H ℓ+d+ε,ℓ−d(Cn) + H ℓ−d,ℓ+d+ε(Cn)

)
,

with a redundancy when m is even for the term corresponding to d = 0. Write

ξm1,m2 =

{
ξmd , m1 ≥ m2

ξmd , m2 ≥ m1

.

The following theorem summarizes the above results with this notation.
(m1 = ℓ+ d+ ε,m2 = ℓ− d,m1 −m2 = 2d+ ε)

Theorem 2.4.2

ξmd = z2d+ε1 (R2
2)
ℓ−d

2F1

(
d− ℓ, d− ℓ− n+ 2; 2d+ ε+ 1

∣∣∣∣− z1z2
R2

2

)
,

ξmd = z2d+ε1 (R2
2)
ℓ−d

2F1

(
d− ℓ, d− ℓ− n+ 2; 2d+ ε+ 1

∣∣∣∣− z1z2
R2

2

)
.

It is known (because the laplacian in complex coordinates is a multiple of that in real
coordinates) that

H m(R2n) ∼= H m(Cn)
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under the isomorphism given by (xj, xj+1) ↔ zj = x2j−1 + x2ji for 1 ≤ j ≤ n. We will treat
this isomorphism as an equality. This implies that

ξm ∈
ℓ∑

d=0

(
H ℓ+d+ε,ℓ−d(Cn) + H ℓ−d,ℓ+d+ε(Cn)

)
.

In fact, ξm ∈ H m(R2n)SO(2n−1) is U(n− 1)-fixed as a result of the natural embeddings

U(n− 1) ↪→ SO(2n− 2) ↪→ SO(2n− 1).

Therefore,

ξm =
ℓ∑

d=0

γdξ
m
d +

ℓ∑
d=0

γd
′ξmd

for some constants γd, γd
′ ∈ C. It will turn out that γd = γd

′ for each d (due to symmetry of
certain terms). (ℓ = ⌊m/2⌋, λ = n− 1 and let α = 2ℓ+ ε)

Evaluation of SO(2p− 1)-fixed vector:

ξm(x = (cos θ, sin θ, 0, 0, . . . , 0))

=
(−4)ℓℓ!(λ+ 1

2
)ℓ

(2λ)α
rα1C

λ
α

(
cos(θ)/

√
cos2 θ + sin2 θ + 0 + · · ·+ 0

)
=

(−4)ℓℓ!(λ+ 1
2
)ℓ

(2λ)α
Cλ
α(cos θ)

=
(−4)ℓℓ!(λ+ 1

2
)ℓ

(2λ)α

α∑
k=0

(λ)k(λ)α−k
k!(α− k)!

cos((α− 2k)θ) [1, p. 302, eqn. (6.14.11)]

=
(−4)ℓℓ!(λ+ 1

2
)ℓ

(2λ)α

ℓ∑
k=0

(1 + δk,m
2
)
(λ)k(λ)α−k
k!(α− k)!

cos((α− 2k)θ)

=
ℓ∑

k=0

Ak cos((α− 2k)θ).

where

Ak =
(−4)ℓℓ!(λ+ 1

2
)ℓ(1 + δk,m

2
)(λ)k(λ)α−k

(2λ)αk!(α− k)!
.

We note that (visibly) Ak ̸= 0 for each k. Making the substitution k = ℓ− d, this becomes

ℓ∑
d=0

Aℓ−d cos((2d+ ε)θ).

Evaluation of U(n− 1)-fixed vector:

ξmd (cos θ + i sin θ, 0, . . . , 0) =(cos θ + i sin θ)2d+ε 2F1

(
d− ℓ, d− ℓ− n+ 2; 2d+ 1

∣∣∣∣− 1

)
=Bd(cos θ + i sin θ)2d+ε,
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where Bd ∈ R is the value of this hypergeometric series. Similarly,

ξmd (cos θ + i sin θ, 0, . . . , 0) = Bd(cos θ − i sin θ)2d+ε.

Write ηd = 2d+ ε. We thus have the equation

ℓ∑
d=0

Aℓ−d cos(ηdθ) =
ℓ∑

d=0

(γdBd(cos θ + i sin θ)ηd + γd
′Bd(cos θ − i sin θ)ηd) .

By De’Moivre’s formula, this is then

ℓ∑
d=0

Aℓ−d cos(ηdθ) =
ℓ∑

d=0

(γdBd(cos(ηdθ) + i sin(ηdθ)) + γd
′Bd(cos(ηdθ)− i sin(ηdθ)))

=
ℓ∑

d=0

Bd (γd(cos(ηdθ) + i sin(ηdθ)) + γd
′(cos(ηdθ)− i sin(ηdθ))) .

Linear independence of the cos(ηdθ) terms implies that Aℓ−d = Bd(γd + γd) ̸= 0 for each d.
Since every Aℓ−d ̸= 0, this forces Bd ̸= 0. Then, linear independence of the sin(ηdθ) terms
implies that Bd(γd − γ′d) = 0 for each d. Since every Bd ̸= 0, this forces γd = γd

′ for each d.
We thus have

ℓ∑
d=0

Aℓ−d cos(ηdθ) =
ℓ∑

d=0

2γdBd cos(ηdθ).

This implies that

γd =
Aℓ−d
2Bd

,

and in particular, each γd ̸= 0. We summarize as follows.

Theorem 2.4.3 The vector ξm ∈ H m(R2n)SO(2n−1) decomposes as a sum of ξmd , ξ
m
d ∈

H m1,m2(Cn)U(n−1). Explicitly, we have

ξm =
ℓ∑

d=0

γd
(
ξmd + ξmd

)
,

where

γd =
Aℓ−d
2Bd

̸= 0.

For the purposes of this thesis, it is enough to know that the constants γd are all nonzero.
However, I have a conjecture about what γd’s are, and I have verified for several different
parameters, and in the future I plan to prove this conjecture.
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CHAPTER III

K-TYPES FOR DEGENERATE PRINCIPAL SERIES REPRESENTATIONS
FOR SO(2p, 2q) AND U(p, q)

In this Chapter, we will introduce the main groups we will be concerned with, SO0(2p, 2q)
and U(p, q) and their maximal compact subgroups. We will also define some degenerate
principal series as smooth induced representations for each group, induced from characters of
a maximal parabolic subgroup. We will also determine their respectiveK-finite spaces, which
are countable sums irreducible representations for their corresponding maximal compact
subgroups.

3.1 Smooth Induced Representations

We begin this section with some general theory for induced representations that will be
helpful in both groups we intend to study. Let G be a closed Lie group and K and Q closed
subgroups with G = KQ, and λ : Q→ C× a smooth homomorphism of Q. The action of the
left-regular representation l of G on C∞(G) (endowed with the smooth topology) is given by

l(g)φ(x) = φ(g−1x).

The smooth induced representation of λ from Q to G is the space

indGQ(λ) = {φ ∈ C∞(G) : φ(xq) = λ(q)−1φ(x) for all x ∈ G, q ∈ Q},

the subrepresentation of functions with the given translation property for Q. The restriction
map φ 7→ φ|K gives a K-module isomorphism, as we will now see.

Proposition 3.1.1 If G is a closed Lie group, K and Q closed subgroups with G = KQ, and
λ : Q→ C× a smooth homomorphism of Q, then restriction φ 7→ φ|K gives a K-isomorphism
from

indGQ(λ) → indKK∩Q(λ|K∩Q).

Proof. It is immediate that this map is well-defined, since the space indKK∩Q(λ|K∩Q) in-

herits the translation property from indGQ(λ). It is also immediate that this map is a K-
homomorphism since restriction to K is linear and commutes with the action of K.

To see that this map is one-one, let φ, ψ ∈ indGQ(λ) and suppose that φ|K = ψ|K . For
k ∈ K, q ∈ Q, we have

φ(kq) = λ(q)−1φ(k) = λ(q)−1ψ(k) = ψ(kq).
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To see that this map is onto, let φ ∈ indKK∩Q(λ|K∩Q). For k ∈ K, q ∈ Q, it suffices to
check that φ̃(kq) := λ(q)−1φ(k) is well-defined. Since the factorization G = KQ is not
assumed to be unique, we check that for k1q1 = k2q2 that φ̃(k1q1) = φ̃(k2q2). Notice that
q2q

−1
1 = k−1

2 k1 ∈ K ∩Q, and so

φ̃(k1q1) = λ(q1)
−1φ(k1)

= λ(q1)
−1φ(k2q2q

−1
1 )

= λ(q1)
−1λ(q2q

−1
1 )−1φ(k2)

= λ(q2)
−1φ(k2)

= φ̃(k2q2).

Thus, φ̃ is well-defined, and φ̃|K = φ, which completes the proof.

If K is further assumed to be compact, a K-finite vector in indKK∩Q(λ|K∩Q) is a function
φ such that

dim(span{l(k)φ : k ∈ K}) <∞.

That is, the span of K-translates of φ is finite-dimensional. The span of all K-finite vectors
is called the K-finite space, and it is known that this space is dense in indKK∩Q(λ). It will
turn out that the K-finite vectors can be realized as certain matrix coefficients, which we
will define and explain now.

Let G,K,Q have the hypotheses above, and let σ be a finite-dimensional representation
of K. For v ∈ Eσ, ξ ∈ E∨

σ , a matrix coefficient of σ is any function on K of the form
φv,ξ(k) = ξ

(
σ(k−1)v

)
. It turns out that the K-finite vectors are matrix coefficients from

irreducible representations σ whose dual, when restricted to K ∩ Q, contains a copy of λ.
Let

Ě(K∩Q,λ−1)
σ = {ξ ∈ Ěσ : σ̌(q)ξ = λ(q)−1ξ for all q ∈ K ∩Q}.

Lemma 3.1.1 Let σ be an irreducible representation of K in indKK∩Q(λ|K∩Q). If ψ ∈ Eσ,

then ξ ∈ Ěσ given by ξ(ψ) = ψ(e) is a member of Ě
(K∩Q,λ−1)
σ . Furthermore, ψ = φψ,ξ (is a

matrix coefficient).

Proof. We have (
σ̌(q)ξ

)
(ψ) = ξ

(
σ(q−1)ψ

)
(action of σ̌)

=
(
σ(q−1)ψ)(e) (definition of ξ)

= ψ(q) (action of σ)

= λ(q)−1ψ(e)

= λ(q)−1ξ(ψ),

which completes the first claim. Furthermore,

ψ(k) =
(
σ(k−1)ψ

)
(e)

= ξ
(
σ(k−1)ψ

)
= φψ,ξ(k)

completes the second claim, and the proof.
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Proposition 3.1.2 If G is a closed Lie group, K a compact subgroup and Q a closed sub-
group, G = KQ, and λ : Q→ C× a smooth homomorphism of Q, then⊕

σ irr

Eσ ⊗ Ě(K∩Q,λ−1)
σ → indKK∩Q(λ|K∩Q)

satisfying
v ⊗ ξ 7→ φv,ξ(k),

where the sum is over the irreducible σ occuring in indKK∩Q(λ|K∩Q), is onto the K-finite space.

Proof. We first check that φv,ξ ∈ indKK∩Q(λ|K∩Q). If k ∈ K, q ∈ K ∩Q,

φv,ξ(kq) = ξ
(
σ(q−1k−1)v

)
= ξ
(
σ(q−1)σ(k−1)v

)
= (σ̌(q)ξ)

(
σ(k−1)v

)
(defn. of action of σ̌)

= λ(q)−1ξ
(
σ(k−1)v

)
= λ(q)−1φv,ξ(k).

To show that this map is onto the K-finite space, Let ψ be K-finite, and let E be the span
of translates of ψ. Since E is finite-dimensional by assumption, we may write E =

⊕n
i=1Eσi ,

where each Eσi is an irreducible representation of K. Thus we may write ψ =
∑n

i=1 ψi where

each ψi ∈ Eσi . Then ξi ∈ Ěσi as in Lemma 3.1.1 is a member of Ě
(K∩Q,λ−1)
σi , and ψi = φψi,ξi .

Therefore,
n∑
i=1

ψi ⊗ ξi 7→
n∑
i=1

φψi,ξi =
n∑
i=1

ψi = ψ.

This gives us an identification

K-finite vectors in indKK∩Q(λ|K∩Q) ↔ representations Eσ of K such that Ě(K∩Q,λ−1)
σ ̸= {0}.

The following lemma and proposition show that the latter condition is equivalent to repre-
sentations Eσ of K such that E

(K∩Q,λ)
σ ̸= {0}.

Lemma 3.1.2 Let K,C be groups with C < K, let λ be a representation of C, and let σ be
an irreducible (finite-dimensional) representation of K such that

σ|C ∼=
n⊕
j=1

ρj.

That is, σ restricted to C is the sum of irreducible representations ρj of C. Then,

dim(σ(C,λ)) = # of j’s such that ρj ∼= λ.

Additionally, ρj ∼= λ if and only if ρ̌j ∼= λ−1.
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Proof. First note that if T : ρj → λ is the isomorphism, then T (ρj(l)v) = λ(c)T (v) =
T (λ(c)v), and (since T is one-one) so ρj(c) = λ(c) for all c ∈ C. Thus,

dim(σ(C,λ)) ≥ # of j’s such that ρj ∼= λ.

For the converse, first suppose that for some 1 ≤ m ≤ n, we have

ρj

{
∼= λ, 1 ≤ j ≤ m

̸∼= λ, j > m
.

It suffices to check that

σ(C,λ) ⊂
m⊕
j=1

ρj.

Let v =
∑n

j=1 vj ∈ σ(C,λ) with each vj ∈ ρj. Applying σ(c) for c ∈ C to both sides of the
expression for v, we get

λ(c)v =
n∑
j=1

ρj(c)vj.

Linear independence of the vj forces λ(c)vj = ρj(c)vj for each j. By assumption, vj = 0 for
m+ 1 ≤ j ≤ n, and so v ∈

⊕m
j=1 ρj, which completes the proof for the first statement.

Suppose ρj ∼= λ and let c ∈ C, ξ ∈ ρ̌j. We have

ρ̌j(c)ξ = ρj(c
−1)ξ = λ(c−1)ξ = λ(c)−1ξ.

Conversely if ρ̌j ∼= λ−1, then ρ̌j(c)ξ = λ(c)−1ξ (same as the above argument for ρj ∼= λ). We
thus have

ρj(c)v = ρ̌j(c
−1)v =

(
λ(c−1)

)−1
v = λ(k)v.

Proposition 3.1.3 Let K,Q be groups, let σ be an irreducible representation of K and let
λ : Q→ C× be a character of Q (a 1-dimensional representation of Q). Then

dim(E(K∩Q,λ)
σ ) = dim(Ě(K∩Q,λ−1)

σ ).

Proof. By applying Lemma 3.1.2 where C = K ∩Q, we have

dimE(K∩Q,λ)
σ = # of j such that ρj ∼= λ

= # of j such that ρ̌j ∼= λ−1

= dim Ě(K∩Q,λ−1)
σ .

To summarize the results in this section, for a closed Lie group G, K a compact subgroup,
Q a closed subgroup, G = KQ, and λ : Q→ C× a smooth homomorphism of Q, The K-finite
space of indKK∩Q(λ|K∩Q) is spanned by matrix coefficients from irreducible representations σ

of K such that E
(K∩Q,λ)
σ ̸= {0}.
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3.2 Introducing the Group SO0(2p, 2q) and the K-Finite Decomposition of
some of its Induced Representations

Let Rp,q be the space of column vectors

x =

(
x1

x2

)
, x1 ∈ Rp, x2 ∈ Rq,

endowed with the indefinite inner product

(x, x′)p,q = (x1, x
′
1)p − (x2, x

′
2)q.

Matrix multiplication defines a left action of GL(p + q,R) on Rp,q, and the subgroup of
isometries of Rp,q that fix the origin is called the indefinite orthogonal group in degrees p and
q, denoted O(p, q). That is, O(p, q) is the subgroup of GL(p+ q,R) such that

(gx, gx′)p,q = (x, x′)p,q, x, x′ ∈ Rp,q, g ∈ O(p, q).

Equivalently,
O(p, q) = {g ∈ GL(p+ q,R) : gJgtJ = Ip+q},

where J = diag(Ip,−Iq). The subgroup of O(p, q) whose matrices have determinant 1 is
called the indefinite special orthogonal group, denoted SO(p, q). That is,

SO(p, q) = {g ∈ GL(p+ q,R) : gJgtJ = Ip+q, det g = 1},

where J = diag(Ip,−Iq). The maximal compact subgroup of SO(p, q) is S
(
O(p) × O(q)

)
(interpreted in the obvious way), which has two connected components: one where both
diagonal blocks have positive determinant, and one where both diagonal blocks have negative
determinant. By polar decomposition, SO(p, q) is not connected. We will be working with
the connected component of SO(p, q), denoted SO0(p, q), which has a maximal compact
subgroup SO(p)× SO(q) embedded in the obvious way. Let

G = SO0(p, q) and KG = SO(p)× SO(q).

An isotropic vector in Rp,q is a nonzero vector v such that (v, v)p,q = 0. Let

v1 =

(
e1

e1

)
,

where e1 is the first standard basis vector in its respective space. Let

QG = StabG(R · v1)

be the subgroup of G which takes v1 to a nonzero (real) scalar multiple of itself. That is, for
q ∈ QG, there is a λ ∈ R× such that qv1 = λ(q)v1. Let

λ : QG → R×, q 7→ λ(q).
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Proposition 3.2.1 G = KGQG.

Proof. We need to show that G ⊂ KGQG. Let g ∈ G. Then gv1 = x for some x = (x1, x2) ∈
Rp,q. Since (v1, v1)p,q = 0 and g is an isometry, we have (x, x)p,q = 0 so that |x1|p = |x2|q.
Since SO(p) and SO(q) act transitively on the level sets of Rp and Rq, respectively, we may
choose k1 ∈ SO(p) and k2 ∈ SO(q) such that

k1x1 = |x1|pe1,
k2x2 = |x2|qe1.

Let k = diag(k1, k2) ∈ K. We thus have

kgv1 = kx =

(
|x1|pe1
|x2|qe1

)
= |x1|pv1.

Therefore, kg ∈ QG, or g ∈ k−1QG ⊂ KGQG, as required.

We wish to work with induced representations induced from smooth characters (i.e.,
1-dimensional representations) of QG

λs,ε : QG → C×

of the form
λs,ε(q) = |λ(q)|sε,

where

|x|sε =

{
|x|s, ε = +

sgn(x)|x|s, ε = −,

and s ∈ C. For later reference, we will show that λs,ε(−I) = ε.

Lemma 3.2.1 We have λs,ε(−I) = ε.

Proof. Visibly we see that −I ∈ QG with λ(−I) = −1. We have

λs,ε(−I) = |λ(−I)|sε

=

{
|λ(−I)|s, ε = +

sgn(λ(q))|λ(−I)|s, ε = −

=

{
1s, ε = +

−1s, ε = −
= ε.

We are particularly concerned with the smooth induced representations of G from the char-
acters λs,ε of QG, which we define as

indGQG
(λs,ε) = {φ ∈ C∞(G) : φ(gq) = λs,ε(q)

−1φ(g) for g ∈ G, q ∈ QG}.
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Proposition 3.2.2

KG ∩QG = {diag(λ, k1, λ, k2) : k1 ∈ O(p− 1), k2 ∈ O(q − 1), λ = det k1 = det k2}.

If in addition p and q are both even, then every element of KG ∩QG can be factored as

(λIp+q)diag(1, k1, 1, k2), λ ∈ {±1}, (k1, k2) ∈ SO(p− 1)× SO(q − 1).

Proof. Let k = diag(k1, k2) for k1 ∈ SO(p), k2 ∈ SO(q). Then kv1 = λv1 for some λ ∈ R×.
Notice,

kv1 =

(
k1 0
0 k2

)(
e1

e1

)
=

(
k1e1
k2e1

)
=

(
(k1)col 1
(k2)col 1

)
= λ

(
e1

e1

)
.

This implies that (kj)col 1 =

(
λ
0

)
for j = 1, 2. By the same argument applied to the transpose

of kj, we have that (kj)row 1 =
(
λ 0

)
for j = 1, 2. Therefore, k1 =

(
λ 0
0 k′1

)
for some

k′1 ∈ O(p− 1), and since k1 ∈ SO(p), we have λ = det k′1. The same argument for k2 implies
that k′2 ∈ O(q − 1) with λ = det k′2. Therefore, k = diag(det k′1, k

′
1, det k

′
1, k

′
2) as claimed.

Conversely, any element of this form is visibly in KG ∩QG. This proves the first statement.
For the second statement, let (λ, k1, λ, k2) ∈ KG ∩ QG. If λ = 1, then this is just

(1, k1, 1, k2) and we are done. If λ = −1, then (since p − 1 is odd) we have det(λk1) =
λp−1 det(k1) = λ det(k1) = 1, and so (λk1) ∈ SO(p − 1). Similarly, (λk1) ∈ SO(q − 1) and
we have

(λ, k1, λ, k2) = (λI2p+2q)diag(1, λk1, 1, λk2),

as required.

This Thesis is concerned with the case when p and q are even, and so for the remainder
of this Chapter and Thesis, we will let

G = SO0(2p, 2q), KG = SO(2p)× SO(2q).

By Proposition 3.1.1, restriction φ 7→ φ|KG
gives a KG-isomorphism

indGQG
(λs,ε) → indKG

KG∩QG
(λs,ε|KG∩QG

).

The discussion in the first section shows that the KG-finite space is spanned by matrix

coefficients from irreducible representations σ of KG such that E
(KG∩QG,λs,ε)
σ ̸= {0}. These

are irreducible representations Eσ1 ⊗ Eσ2 of KG
∼= SO(2p)× SO(2q) with a nonzero vector

which transforms by λs,ε under KG ∩QG. According to Proposition 3.2.2, we may write

KG ∩QG = (KG ∩QG)0 ∪ (KG ∩QG)1,

where

(KG ∩QG)0 = {diag(1, k1, 1, k2) : (k1, k2) ∈ SO(2p− 1)× SO(2q − 1)},
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and

(KG ∩QG)1 = {(−I2p+2q)diag(1, k1, 1, k2) : (k1, k2) ∈ SO(2p− 1)× SO(2q − 1)}.

Visibly we see that λs,ε ≡ 1 (is identically 1) on (KG ∩ QG)0, and so σ1 ⊗ σ2 should have
a nonzero vector which is fixed on this subgroup. By the discussion in Chapter 1, σ1 ∼=
H m(R2p), and σ2 ∼= H n(R2q) for some m,n ≥ 0. Thus,

σ1 ⊗ σ2 ∼= H m(R2q)⊗ H n(R2q)

for some m,n ≥ 0.
Recall that by Proposition 2.2.1, (−Ip).P = (−1)mP for any P ∈ Pm(R2p). Thus,

(−I2p+2q).(P1 ⊗ P2) = (−1)m+nP1 ⊗ P2

for any P1⊗P2 ∈ H m(R2p)⊗H n(R2q). On the other hand, we showed in Lemma 3.2.1 that
λs,ε(−I2p+2q) = ε, and so the vector must transform by ε on (KG ∩QG)1.

Therefore, the KG types in the induced representation are those H m(R2p) ⊗ H n(R2q)
with (−1)m+n = ε.

Explicitly, the embedding of a KG-type

H m(R2p)⊗ H n(R2q) ↪→ indGQG
(λs,ε)

is given by matrix coefficients. For a simple tensor v1 ⊗ v2 ∈ H m(R2p) ⊗ H n(R2q) and
ξm, ξn the respective embedding vectors for these spaces discussed in Chapter 1, and k =
diag(k1, k2) ∈ KG, matrix coefficients from are φv1⊗v2,ξm⊗ξn ∈ C∞(KG) given by

φv1⊗v2,ξm⊗ξn(k) = ⟨k−1
1 .v1, ξ

m⟩⟨k−1
2 .v2, ξ

n⟩.

This embedding commutes with the action of KG. For k
′ = (k′1, k

′
2) ∈ KG, notice that

k′.φv1⊗v2,ξm⊗ξn(k) = φv1⊗v2,ξm⊗ξn
(
(k′)−1k

)
=
〈(

(k′1)
−1k1

)−1
.v1, ξ

m
〉〈(

(k′2)
−1k2

)−1
.v2, ξ

n
〉

=
〈
(k−1

1 k′1).v1, ξ
m
〉 〈

(k−1
2 k′2).v2, ξ

n
〉

=
〈
k−1
1 (k′1.v1), ξ

m
〉 〈
k−1
2 (k′2.v2), ξ

n
〉

= φ(k′1.v1)⊗(k′2.v2),ξ
m⊗ξn(k)

= φk′.(v1⊗v2),ξm⊗ξn(k).

By giving this function the translation property onQG, we can define φ̃v1⊗v2,ξm⊗ξn ∈ indGQG
(λs,ε)

by φ̃v1⊗v2,ξm⊗ξn(kq) = λs,ε(q)
−1φv1⊗v2(k). This means that we can regard each H m(R2n) ⊗

H n(R2n) as a subspace of the indGQG
(λs,ε). Copies of each KG-type embed as the same ma-

trix coefficient, up to positive scalar, and each KG-type occurs at most once in the principal
series. As a summary of this section, we have

indKG
KG∩QG

(λs,ε|KG∩QG
) ∼=

∑
m,n≥0

(−1)m+n=ε

H m(R2p)⊗ H n(R2q).
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3.3 Introducing the Group U(p, q) and the K-Finite Decomposition of some of
its Induced Representations

Let Cp,q be the space of column vectors

z =

(
z1

z2

)
, z1 ∈ Cp, z2 ∈ Cq,

endowed with the indefinite inner product

(z, z′)p,q = (z1, z
′
1)p − (z2, z

′
2)q.

Matrix multiplication defines a left action of GL(p + q,C) on Cp,q, and the subgroup of
isometries of Cp,q that fix the origin is called the indefinite unitary group in degrees p and q,
denoted U(p, q). That is, U(p, q) is the subgroup of GL(p+ q,C) such that

(gz, gz′)p,q = (z, z′)p,q, z, z′ ∈ Cp,q, g ∈ U(p, q).

The inverse of a matrix in U(p, q) is apparent from the equivalent characterization

U(p, q) = {g ∈ GL(p+ q,C) : gJg∗J = Ip+q},

where J = diag(Ip,−Iq). The group U(p, q) is connected, and the maximal compact subgroup
of U(p, q) is U(p)× U(q) (interpreted in the obvious way). In this Chapter and for the rest
of this Thesis, we denote

H = U(p, q), KH = U(p)× U(q).

An isotropic vector in Cp,q is a nonzero vector v such that (v, v)p,q = 0. We define two
such vectors:

v1 =

(
e1

e1

)
, v−1 =

(
e1

−e1

)
,

where e1 is the first standard basis vector in its respective space. We note that v1 here is
the same v1 from the previous section under the identification R2p,2q ∼= Cp,q.

Let
QH = StabH(C · v1)

be the subgroup of H which takes v1 to a nonzero (complex) scalar multiple of itself. That
is, for q ∈ QH , there is a χ(q) ∈ C× such that qv1 = χ(q)v1.

Proposition 3.3.1 H = KHQH .

Proof. This is essentially the same as Proposition 3.2.1.

Let χ : QH → C× be such that qv1 = χ(q)v1. We wish to work with induced representations
induced from characters (i.e., 1-dimensional representations) of QH

χs,a : QH → C×

25



of the form

χs,a(q) =

(
χ(q)

|χ(q)|

)a
|χ(q)|s,

where s ∈ C and a ∈ Z. Let

indHQH
(χs,a) = {f ∈ C∞(H) : f(hq) = χs,a(q)

−1f(h) for h ∈ H, q ∈ QH}

be the induced representation of χs,a from QH to H.

Proposition 3.3.2 KH ∩QH
∼= S1 × U(p− 1)× U(q − 1).

Proof. First we show that

KH ∩QH = {diag(χ, k′1, χ, k′2) : χ ∈ S1, k′1 ∈ U(p− 1), k′2 ∈ U(q − 1)}.

Let k = diag(k1, k2) for k1 ∈ U(p), k2 ∈ U(q) and let kv1 = χv1 for some χ ∈ C×. Notice
that

kv1 =

(
k1 0
0 k2

)(
e1

e1

)
=

(
k1e1
k2e1

)
=

(
(k1)col 1
(k2)col 1

)
= χ

(
e1

e1

)
.

This implies that (kj)col 1 =

(
χ
0

)
for j = 1, 2. By the same argument applied to the transpose

of kj, we have that (kj)row 1 =
(
χ 0

)
for j = 1, 2. Therefore, k1 =

(
χ 0
0 k′1

)
for some

k′1 ∈ U(p− 1), and since k1 ∈ U(p), we have |χ| = 1. The same argument for k2 implies that
k′2 ∈ U(q − 1). Therefore, k = diag(χ, k′1, χ, k

′
2) as claimed. Conversely, any element of this

form is visibly in KH ∩QH .
The map diag(χ, k′1, χ, k

′
2) 7→ (χ, k′1, k

′
2) visibly provides the claimed isomorphism.

By Proposition 3.1.1, restriction f 7→ f |KH
gives a KH-isomorphism

indHQH
(χs,a) →KH

indKH
KH∩QH

(χs,a|KH∩QH
).

The discussion in the first section shows that the KH-finite space is spanned by matrix

coefficients from irreducible representations σ of KH such that E
(KH∩QH ,χs,a)
σ ̸= {0}. These

are irreducible representations Eσ1 ⊗Eσ2 of KH
∼= U(p)×U(q) with a nonzero vector which

transforms by χs,a under restriction to KH ∩ QH . Under the isomorphism in Proposition
3.3.2, we visibly see that χ|{1}×U(p−1)×U(q−1) ≡ 1. It follows that σ1⊠σ2 must have a nonzero
vector which is fixed on this subgroup. By the discussion in Chapter 1,

σ1 ⊠ σ2 ∼= H m1,m2(Cp)⊗ H n1,n2(Cq)

for some m1,m2, n1, n2 ≥ 0.
The other part of KH ∩QH determines the other condition that the m1,m2, n1, n2 must

satisfy, which we will now show. First, recall that elements of Z
(
U(p)

)
are of the form

(eiθIp) for some θ ∈ [0, 2π). Similarly, elements of Z(H) are of the form (eiθIp+q). For later
reference, we state the action of Z(H) on a KH type H m1,m2(Cp)⊗ H n1,n2(Cq).
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Proposition 3.3.3 (eiθIp,q).v = e−iθ(m1−m2+n1−n2)v, v ∈ H m1,m2(Cp)⊗ H n1,n2(Cq).

Proof. Since the action on H m1,m2(Cp)⊗H n1,n2(Cq) is inherited from Pm1,m2(Cp)⊗Pn1,n2(Cq),
it suffices to prove the claim for a simple tensor P ⊗Q ∈ Pm1,m2(Cp)⊗ Pn1,n2(Cq).

Previously I have shown in [Proposition from Chapter 1] that

(eiθIp).P = e−iθ(m1−m2)P, P ∈ Pm1,m2(Cp).

Therefore,

(eiθIp+q).P ⊗Q = (eiθIp).P ⊗ (eiθIq).Q

=
(
e−iθ(m1−m2)P

)
⊗
(
e−iθ(n1−n2)Q

)
= e−iθ(m1−m2+n1−n2)P ⊗Q.

The claim follows by linearity.

By Proposition3.3.3, we have

(eiθIp+q).(P1 ⊗ P2) = e−iθ(m1−m2+n1−n2)P1 ⊗ P2

for any P1 ⊗ P2 ∈ H m1,m2(Cp)⊗ H n1,n2(Cq). On the other hand, χ(eiθIp+q) = eiθ, and so

χs,a(e
iθIp+q) =

(
eiθ

|eiθ|

)a
|eiθ|s = eiaθ.

Thus
e−iθ(m1−m2+n1−n2) = eiaθ, θ ∈ [0, 2π),

and so
m1 −m2 + n1 − n2 = −a.

In a very similar way that we can regard each H m(R2p)⊗H n(R2q) as a subspace of the
indGQG

(λs,ε), we can also regard each H m1,m2(Cp)⊗H n1,n2(Cq) as a subspace of indHQH
(χs,a)

(by first using matrix coefficients, and then giving it the translation property on QH). As
in the previous section, each KH-type will occur at most once in the decomposition of the
induced representation. To summarize the main results of this section,

indKH
KH∩QH

(χs,a|KH∩QH
) ∼=

∑
m1,m2,n1,n2≥0

m1−m2+n1−n2=−a

H m1,m2(Cp)⊗ H n1,n2(Cq).
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CHAPTER IV

A FAMILY OF INTEGRAL INTERTWINING OPERATORS

4.1 Motivating the Connection between Orthogonal and Unitary Settings

In the previous chapter, we realized the KG-finite space for indGQG
(λs,ε) as sums of spaces

H m(R2n)⊗H n(R2n) where (−1)m+n = ε, and we realized theKH-finite space for ind
H
QH

(χs,a)
as sums of spaces H m1,m2(Cp) ⊗ H n1,n2(Cq) where m1 − m2 + n1 − n2 = −a. I also
explained how these spaces embed inside their respective degenerate principal series via
matrix coefficients. In fact, by identifying R2p ∼= Cp and writing the Laplacian in complex
coordinates (see Chapter 1), we have

H m1,m2(Cp) ⊂ H m1+m2(Cp) ∼= H m1+m2(R2p).

It follows that

H m1,m2(Cp)⊗H n1,n2(Cq) ⊂ H m1+m2(Cp)⊗H n1+n2(Cq) ∼= H m1+m2(R2p)⊗H n1+n2(R2q),

and with his identification, we in fact have

H m(R2p)⊗ H n(R2q) =
∑

m1+m2=m
n1+n2=n

H m1,m2(Cp)⊗ H n1,n2(Cq).

This allows us to regard KH-types as subsets of KG-types in the case that (−1)a = ε.
Thus, for this case we may attempt to construct a map between these degenerate principal
series which projects KG-types in indGQG

(λs,ε) onto the KH-types in indHQH
(χs,a) (those KH-

types contained in the co-domain).

4.2 Defining Ta and showing some of its properties

Recall that in Chapter 1, we introduced the embedding U(n) ↪→ SO(2n) given entry-wise
by

(a+ bi) 7→
(
a −b
b a

)
.

The same entry-wise map gives an embedding H ↪→ G, which allows us to regard H as
a subgroup of G. This means that a function in the principal series indGQG

(λs,ε) can be re-

stricted to give a function on H. This function is unlikely to be in any particular indHQH
(χs,a),

especially since QH ̸⊂ QG (we note that KH ⊂ KG under this embedding). The subgroup
QH stabilizes a plane in R2p,2q, and QG stabilizes a line in that plane, but QH may rotate
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this line around in that plane. So in order to define this map, we will make use of the scalar
matrices in H, which for θ ∈ [0, 2π), we will write as

z(θ) = (eiθIH) ∈ Z(H).

Before defining the map, we note for future reference that z(θ) embeds in G as diagonal
blocks: (

cos θ − sin θ
sin θ cos θ

)
∈ SO(2),

and that z(θ) ∈ KH ⊂ KG. Now for the map!
For a ∈ Z such that (−1)a = ε, let

Ta : ind
G
QG

(λs,ε) → indHQH
(χs,a)

given by

Ta(φ)(h) =

∫ π/2

−π/2
φ
(
hz(θ)

)
eiaθdθ.

Assume for the moment that this map makes sense in terms of convergence of integrals and
that Ta(φ) is smooth. In order to see that Ta(φ) has the right translation property under
QH , first notice that the integrand is π-periodic in the variable θ:

φ
(
hz(θ + π)

)
eia(θ+π) = φ

(
hz(θ)z(π)

)
eiaθeiaπ

= λs,ε
(
z(π)

)−1
φ
(
hz(θ)

)
eiaθ(−1)a

= ε · φ
(
hz(θ)

)
eiaθ · ε

= φ
(
hz(θ)

)
eiaθ.

In order to prove the translation property, we need the following factorization lemma.

Lemma 4.2.1 Every q ∈ QH factors as q = γz(ψ) for some γ ∈ (QG)0 ∩ QH and z(ψ) ∈
Z(H).

Proof. We have qv1 = λeiψv1 for some λ > 0 and ψ ∈ [0, 2π). Notice that qz(−ψ)v1 = λv1,
and so q = qz(−ψ) · z(ψ) = γz(ψ) suffices.

Proposition 4.2.1 If φ ∈ indGQG
(λs,ε), then Ta(φ)(hq) = χs,a(q)

−1φ(h) for all h ∈ H, q ∈
QH .

Proof. By Lemma 4.2.1, we may choose γ ∈ (QG)0 ∩ QH and z(ψ) ∈ Z(H) such that
q = γz(ψ). Notice that λ(γ) = χ(γ) > 0 and so

χ(q)v1 = qv1

= γz(ψ)v1

= γeiψv1

= eiψχ(γ)v1.

We thus have
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Ta(φ)(hq) =

∫ π/2

−π/2
φ(hqz(θ))eiaθdθ

=

∫ π/2

−π/2
φ(hγz(ψ)z(θ))eiaθdθ

=

∫ π/2

−π/2
φ(hγz(ψ + θ))eiaθdθ

=

∫ ψ+π/2

ψ−π/2
φ(hγz(u))eia(u−ψ)du (subbing u = ψ + θ)

=

∫ π/2

−π/2
φ(hγz(u))eia(u−ψ)du (the integrand is π-invariant)

=

∫ π/2

−π/2
e−iaψφ(hz(u)γ)eiaudu

=

∫ π/2

−π/2
e−iaψλs,ε(γ)

−1φ(hz(u))eiaudu

=

∫ π/2

−π/2
e−iaψ|λ(γ)|−sε φ(hz(u))eiaudu

=

∫ π/2

−π/2
e−iaψλ(γ)−sφ(hz(u))eiaudu

=

∫ π/2

−π/2
e−iaψχ(γ)−sφ(hz(u))eiaudu

=

∫ π/2

−π/2
χs,a(q)

−1φ(hz(u))eiaudu

= χs,a(q)
−1Ta(φ)(h).

Ta is H-intertwining, since for h, x ∈ H we have

h.Ta(φ)(x) = Ta(φ)(h
−1x)

=

∫ π/2

−π/2
φ(h−1xz(θ))eiaθdθ

=

∫ π/2

−π/2
(h.φ)(xz(θ))eiaθdθ

= Ta(h.φ)(x).

The integral is proper since the φ(hz(θ)) is continuous on θ ∈ [0, 2π], so visibly the
integral converges for every h ∈ H. In order to show that Ta is well-defined, it remains to
show that if φ ∈ indGQG

(|λ|sε) is smooth, then Ta(φ) is smooth, which we now do.

Proposition 4.2.2 If φ ∈ C∞(G), then Taφ ∈ C∞(H).
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Proof. Let F (h) = φ(hz(θ))eiaθ. Let X, Y ∈ h ⊂ g, where g = Lie(G), h = Lie(H). Since
φ ∈ C∞(G), we have

FX(h) :=
d

dt

∣∣∣∣
t=0

F (exp(−tX)h) ∈ C∞(H).

Similarly,

FXY (h) :=
d

dt

∣∣∣∣
t=0

FX(exp(−tY )h) ∈ C∞(H),

and so on. Thus by Leibniz’s Rule, we are justified each time differentiating under the
integral of Ta. The derivative each time will be a continuous (differentiable) function, and so
the integral will exist, which proves the claim.

Now that we have shown that Ta makes sense and is well-defined, we now wish to show
that Ta projects onto the KH-types it contains. We have discussed how to use matrix
coefficients to regard H m(R2n)⊗ H n(R2n) as elements of indGQG

(λs,ε), and that the action
of KG commutes with this identification. We also mentioned that

H m(R2p)⊗ H n(R2q) =
∑

m1+m2=m
n1+n2=n

H m1,m2(Cp)⊗ H n1,n2(Cq),

and in fact Ta will project the spaces on the left-hand-side onto the spaces on the right-
hand-side (although we will not normalize the integral so that it is a literal projection map
in order to make future calculations slightly less cluttered), which we will now prove.

Proposition 4.2.3 For φ ∈ H m1,m2(Cp) ⊗ H n1,n2(Cq) (regarded in the domain as a sub-
space of indGQG

(λs,ε), and in the codomain as a subspace of indHQH
(χs,a)), we have

Ta(φ) =

{
πφ, m1 −m2 + n1 − n2 = −a,
0, otherwise.

Proof. Let φ ∈ H m1,m2(Cp)⊗ H n1,n2(Cq) ∈ indGQG
(λs,ε). For h ∈ H, we have

Ta(φ)(h) =

∫ π/2

−π/2
φ(hz(θ))eiaθdθ

=

∫ π/2

−π/2
φ(z(θ)h)eiaθdθ (since z(θ) ∈ Z(H))

=

∫ π/2

−π/2
(z(−θ).φ)(h)eiaθdθ

=

∫ π/2

−π/2
eiθ(m1−m2+n1−n2)φ(h)eiaθdθ (by Proposition 3.3.3)

=

∫ π/2

−π/2
φ(h)eiθ(a+(m1−m2+n1−n2))dθ

=

{
πφ(h), m1 −m2 + n1 − n2 = −a,
0, otherwise.
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This says exactly that Ta projects the KG-types in indGQG
(λs,ε) onto the KH-types con-

tained in indHQH
(χs,a), summarized with the following corollary.

Corollary 4.2.1 Suppose H m1,m2(R2p)⊗ H n1,n2(R2q) ⊂ indGQG
(λs,ε). Then

Ta
(
H m1,m2(R2p)⊗ H n1,n2(R2q)

)
=

{
H m1,m2(Cp)⊗ H n1,n2(Cq), m1 −m2 + n1 − n2 = −a
{0}, otherwise.

Now that we know how the map Ta behaves on its KG-types, we’ll show that, when
regarded coordinate-wise, it gives an isomorphism from the KG-types to the KH-types.

Proposition 4.2.4 The H-homomorphism

indGQG
(λs,ε) →

∑
a∈Z

(−1)a=ε

indHQH
(χs,a),

given by
φ 7→ (Ta(φ))a∈Z ,

is an isomorphism of K-finite spaces.

Proof. The convergence of the integral sufficiently justifies linearity of this map.
To see that this map is one-one, suppose (Ta(φ))a∈Z = 0. Since Ta is projection from

the KG-type-component onto the KH-type-component it contains, this means that every
KH-type-component is zero, and so every KG-type-component is zero, which implies that
φ = 0.

We will show that this map is onto on the level of K-types. First notice that if φ ∈
H m1,m2(Cp)⊗H n1,n2(Cq) ⊂ indHQH

(χs,a), then we may regard φ as a member of H m1+m2(R2p)⊗
H n1+n2(R2q) ⊂ indGQG

(λs,ε). By Proposition 4.2.3, Ta(φ) = πφ. Now if (φa)a∈Z ∈
∑

a∈Z ind
H
QH

(χs,a),
with φa = 0 for all but finitely-many a, and each φa has only finitely-many KH-types where
its component is nonzero. Then∑

a∈Z

φa 7→
(
Ta(φa)

)
a∈Z = (φa)a∈Z.
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CHAPTER V

DIFFERENTIAL INTERTWINING OPERATORS IN THE NON-COMPACT
PICTURE

5.1 Introducing the Non-compact Picture

In Chapter 3, we introduced degenerate principal series for G and H, and in Chapter 4 we
defined a family of integral operators

Ta : ind
G
QG

(λs,ε) → indHQH
(χs,a),

where a ∈ Z satisfies (−1)a = ε, between these degenerate principal series. We explained
how the operator Ta projects the KG-types of ind

G
QG

(λs,ε) onto the KH-types it contains.
In the next three chapters, we will introduce differential intertwining operators ∆ and

Ωa, the Euclidean and Heisenberg wave operators, respectively, that map between degenerate
principal series in their respective settings for certain parameters, and we will show that the
integral transform Ta H-intertwines the actions of the differential operators. The kernel for
∆ are known and worked out by Binegar and Zierau in [2], and so Ta connects the kernels
of both differential operators in the two different settings.

In this chapter, we will introduce the non-compact picture for the principal series and
introduce their respective differential intertwining operators ∆ and Ωa. We will show that
for s = p+ q − 2, the map

∆ : indGQG
(λs,ε) → indGQG

(λs+2,ε)

is well-defined and G-intertwining, and that

Ωa : ind
H
QH

(χs,a) → indHQH
(χs+2,a)

is well-defined and H-intertwining. To show this, we will use a well-known duality theorem
(see for example Kubo-Ørsted [5, Theorem 2.3]) which associatesQ-homomorphisms between
generalized Verma modules with differential intertwining operators between parabolically-
induced representations. Heuristically, these are second-order differential operators, which
is why the parameter s is being increased by 2 in both settings.

In essence, for a reductive Lie group G with parabolic subgroup Q (writing q = Lie(Q),
there is a Langlands decomposition Q = MAN. For certain parameters γ, σ, a character
(λγ,σ,Cγ,σ) ofQ, with basis 1γ,σ, has contragredient representation (λ̌γ,σ, Čγ,σ) ∼= (λ−γ,σ,C−γ,σ),
and we can define a generalized Verma module induced from λ̌γ,σ

Mq(−γ, σ) := U(g)⊗U(q) C−γ,σ,
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where the tensor over U(q) identifies elements

uX ⊗ 1−γ,σ ∼ u⊗−dλγ,σ(X)1−γ,σ, X ∈ q, u ∈ U(g).

The parabolic Q acts on Mq(−γ, σ) diagonally via the adjoint action Ad on U(g) and λ−γ,σ
on C−γ,σ.

We now state a reduced and slightly informal version of this duality theorem that applies
to the principal series we have constructed thus far – those induced from one-dimensional
representations (swapping places of parameters so that they match more closely to our
notation).

Theorem 5.1.1 (Duality Theorem) Let G be a reductive Lie group and Q a parabolic
subgroup of G with Lie algebra q, and characters (λγ,σ,Cγ,σ), (λν,η,Cν,η) of Q of certain
parameters γ, σ, ν, η. There exists a natural linear isomorphism

D : HomQ

(
C∨
ν,η,Mq(−γ, σ∨)

)
→ DiffG

(
indGQ(λγ,σ), ind

G
Q(λν,η)

)
.

For Φ ∈ HomQ

(
C∨
ν,η,Mq(−γ, σ∨)

)
with Φ(1−ν,η∨) = u⊗1−γ,σ∨ , where u ∈ U(g), the operator

D(Φ) ∈ DiffG
(
indGQ(λγ,σ), ind

G
Q(λν,η)

)
is given by the right action by u :

D(Φ)(φ) = R(u)(φ).

We will conclude the chapter by calculating the KH-finite kernel in indHQH
(χs,a) for the

Heisenberg wave operator. In these calculations, we will make use of a theorem by Kable in
[?], which allows us to calculate the kernel of the wave operator in terms of the kernel of an
element of U(kH), since both elements of U(h) get identified in the generalized Verma module.
The action of the element in U(kH) makes use of an explicit action of kH ∼= u(p) ⊕ u(q) on
the KH-types.

5.2 Duality Theorem Application in G-setting

Let g = Lie(G). The grading element

H0 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 ∈ g

provides a Lie algebra grading

g = g(−1)⊕ g(0)⊕ g(1).

We write qG = Lie(QG) = g(0) ⊕ g(1), nG := g(1), and n̄G := g(−1). Elements of nG are of
the form

X1(α, β) =


0 αT 0 βT

−α 0 α 0
0 αT 0 βT

β 0 −β 0

 ,

(
α

β

)
∈ R2p−1,2q−1,
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and elements of n̄G are of the form

X−1(α, β) =


0 −αT 0 βT

α 0 α 0
0 αT 0 −βT
β 0 β 0

 ,

(
α

β

)
∈ R2p−1,2q−1.

We write N̄G := exp(n̄G), and direct calculation shows that elements of N̄G are of the form

n̄G(α, β) =


1−R2/2 −αT −R2/2 βT

α I2p−1 α 0
R2/2 αT 1 +R2/2 −βT
β 0 β I2q−1

 ,

(
α

β

)
∈ R2p−1,2q−1, R2 = |α|2 − |β|2.

The group law on N̄G is given by

n̄G(α1, β1)n̄G(α2, β2) = n̄G(α1 + α2, β1 + β2),

and so N̄G has a vector space structure that is isomorphic to R2p−1,2q−1. The product N̄GQG

is dense in G, and thus restriction from G to N̄G is injective. It follows that, as vector
spaces, we can regard indGQG

(λs,ε) as C
∞(R2p−1,2q−1). This is the non-compact picture of the

degenerate principal series. The Euclidean wave operator on C∞(R2p−1,2q−1) is given by

∆ = ∆2p−1,2q−1 =

2p−1∑
j=1

∂2αj
−

2q−1∑
k=1

∂2βk .

A natural basis for n̄G consists of elements Xj := X−1(ej, 0) and Yk := X−1(0, ek), and this
gives us a correspondence between the action of ∆ on C∞(R2p−1,2q−1) and the action of

∆ :=

(
2p−1∑
j=1

X2
j −

2q−1∑
k=1

Y 2
k

)
∈ U(n̄G)

on indGQG
(λs,ε), where the action is given by right-translation

R(X)(φ)(g) =
d

dt
φ
(
g exp(tX)

)∣∣∣∣
t=0

, φ ∈ indGQG
(λs,ε), g ∈ G,X ∈ n̄G,

extended complex-linearly. Since G acts on the left, these two actions commute, and so we
say that ∆ is G-intertwining.

We now show that when s = p+ q− 2, the differential intertwining operator ∆ takes the
principal series to one where s has been increased by 2.

Proposition 5.2.1 For the parameter s = p+ q − 2, we have

∆ : indGQG
(λs,ε) → indGQG

(λs+2,ε).
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Proof. We will use the duality theorem above, and to do that, we need to show that the map

Φ : C−(s+2),ε →MqG(−s, ε),

given by
Φ(1−(s+2),ε) = ∆⊗ 1−s,ε,

is a QG-homomorphism.
There is a factorization QG =MGAGNG, where

MG
∼= SO(2p− 1, 2q − 1)× {±1}, AG = {exp(tH0) : t ∈ R}, NG = exp(nG),

and so we need to check that the actions of each factor commutes with the above embedding.
The action of MG is by ε in both places of the embedding. We will check the actions of

AG and NG in detail.
For the action of AG on ∆, we first notice that for X ∈ g(−1) we have

Ad
(
exp(tH0)

)
(X) = exp

(
ad(tH0)

)
(X)

=
∑
n

ad(tH0)
n

n!
(X)

=
∑
n

tn[H0, [. . . , [H0, X]] . . . ]

n!

=
∑
n

tn(−1)nX

n!
(since [H0, X] = −X by definition)

=
∑
n

(−t)n

n!
X

= e−tX.

Thus for X2 = X ⊗X ∈ U(n̄G), we have

Ad
(
exp(tH0)

)
(X2) = e−tX ⊗ e−tX = e−2tX2,

and it follows immediately that

Ad
(
exp(tH0)

)
(∆) = e−2t∆.

We next observe that as matrices, AG consists of matrices of the form

exp(tH0) =


cosh t 0 sinh t 0
0 I2p−1 0 0

sinh t 0 cosh t 0
0 0 0 I2q−1

 ,

and so we can visibly see that λ
(
exp(tH0)

)
= (sinh t+ cosh t) = et. It then follows that

exp(tH0).1−s,ε = λs,ε
(
exp(tH0)

)−1
1−s,ε

=
∣∣λ( exp(tH0)

)∣∣−s
ε
1−s,ε

= e−st1−s,ε.
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Similarly,
exp(tH0).1−(s+2),ε = e−(s+2)t1−(s+2),ε.

Finally, the calculation

Φ
(
exp(tH0).1−(s+2),ε

)
= Φ

(
e−(s+2)t1−(s+2),ε

)
= ∆⊗

(
e−(s+2)t1−s,ε

)
= e−2t∆⊗

(
e−st1−s,ε

)
= Ad

(
exp(tH0)

)
.∆⊗ λs,ε

(
exp(tH0)

)−1
1−s,ε

= exp(tH0).
(
∆⊗ 1−s,ε

)
= exp(tH0).Φ

(
1−(s+2),ε

)
.

shows that the action of AG commutes with Φ.
Now we check the action of NG commutes with Φ, which turns out to act trivially in both

places. We check this by showing that n̄G acts by zero in both places using the representative
X1(e1, 0). Visibly we can see that nGv1 = v1 for all nG ∈ NG and so X1v1 = 0 for all X1 ∈ nG
and dλs,ε(X) = 0. It thus remains to check that X1(e1, 0).∆ = 0, and this is where we will
need s = p+ q − 2.

Write

A = [X1(e1, 0), X−1(ej, 0)] ∈ g(0), B = [A,X−1(ej, 0)] ∈ g(−1).

We have

X1(e1, 0).
(
X−1(ej, 0)

2 ⊗ 1−s,ε
)

= X1(e1, 0)X−1(ej, 0)
2 ⊗ 1−s,ε

=

(
AX−1(ej, 0) +X−1(ej, 0)X1(ej, 0)X−1(ej, 0)

)
⊗ 1−s,ε

=

(
B +X−1(ej, 0)A+X−1(ej, 0)A

)
⊗ 1−s,ε

=

(
B − 2dλs,ε(A)X−1(ej, 0)

)
⊗ 1−s,ε.

Now we calculate this expression. Let Eij be the matrix with 1 in the i-th row, j-th column,
and zeroes elsewhere. Then

A = [X1(e1, 0), X−1(ej, 0)]

=


0 et1 0 0

−e1 0 e1 0
0 et1 0 0
0 0 0 0




0 −etj 0 0
ej 0 ej 0
0 etj 0 0
0 0 0 0

−


0 −etj 0 0
ej 0 ej 0
0 etj 0 0
0 0 0 0




0 et1 0 0
−e1 0 e1 0
0 et1 0 0
0 0 0 0



=


0 0 2et1ej 0
0 2(E1j − Ej1) 0 0

2et1ej 0 0 0
0 0 0 0


= 2(δ1jH0 + Aj),
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where Aj is the matrix with the (2,2)-block is the matrix E1j −Ej1 (note that A1 = 0). We
note that

dλs,ε(A) = 2δ1jdλs,ε(H0) + 2dλs,ε(Aj) = 2δ1js+ 0 = 2δ1js.

The calculation Ajej = (1 − δ1j)e1 determines [Aj, X−1(ej, 0)] = (1− δ1j)X−1(e1, 0) and we
have

B = [2(δ1jH0 + Aj), X−1(ej, 0)]

= 2δ1j[H0, X−1(ej, 0)] + 2[Aj, X−1(ej, 0)]

= −2δ1jX−1(ej, 0) + 2(1− δ1j)X−1(e1, 0).

We now have

X1(e1, 0).

(
2p−1∑
j=1

X−1(ej, 0)
2 ⊗ 1−s,ε

)

=

2p−1∑
j=1

(
− 2δ1jX−1(ej, 0) + 2(1− δ1j)X−1(e1, 0)− 4δ1jsX−1(ej, 0)

)
⊗ 1−s,ε

=
(
− 2X−1(e1, 0) + 2(2p− 2)X−1(e1, 0)− 4sX−1(e1, 0)

)
⊗ 1−s,ε

=
(
− 2 + 2(2p− 2)− 4s

)
X−1(e1, 0)⊗ 1−s,ε

= −2(1− 2p+ 2 + 2s)X−1(e1, 0)⊗ 1−s,ε

= −2(2s− 2p+ 3)X−1(e1, 0)⊗ 1−s,ε

For the q-part, first observe that

[X1(e1, 0), X−1(0, ek)]

=


0 et1 0 0

−e1 0 e1 0
0 et1 0 0
0 0 0 0




0 0 0 etk
0 0 0 0
0 0 0 −etk
ek 0 ek 0

−


0 0 0 etk
0 0 0 0
0 0 0 −etk
ek 0 ek 0




0 et1 0 0
−e1 0 e1 0
0 et1 0 0
0 0 0 0



=


0 0 0 0
0 0 0 −2E1k

0 0 0 0
0 −2Ek1 0 0



= −2


0 0 0 0
0 0 0 E1k

0 0 0 0
0 Ek1 0 0


:= −2Mk ∈ g(0).
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Next, observe that

[Mk, X−1(0, ek)]

=


0 0 0 0
0 0 0 E1k

0 0 0 0
0 Ek1 0 0




0 0 0 etk
0 0 0 0
0 0 0 −etk
ek 0 ek 0

−


0 0 0 etk
0 0 0 0
0 0 0 −etk
ek 0 ek 0



0 0 0 0
0 0 0 E1k

0 0 0 0
0 Ek1 0 0


= X−1(E1kek, 0) = X−1(e1, 0).

Recalling that dλs,ε(Mk) ⊂ dλs,ε
(
so(2p− 1, 2q − 1)

)
= {0}, we have

X1(e1, 0).X−1(0, ek)
2 ⊗ 1−s,ε

=
(
− 2MkX−1(0, ek) +X−1(0, ek)X1(e1, 0)X−1(0, ek)

)
⊗ 1−s,ε

= (−2X−1(e1, 0) + 0 +X−1(0, ek)Mk − 2X−1(0, ek)Mk)⊗ 1−s,ε

= −2X−1(e1, 0)⊗ 1−s,ε.

Thus,

X1(e1, 0).

2q−1∑
k=1

X−1(0, ek)
2 ⊗ 1−s,ε = −2(2q − 1)X−1(e1, 0)⊗ 1−s,ε.

Adding the p and q parts together, we finally arrive at,

X1(e1, 0).(∆⊗ 1−s,ε) =
(
− 2(2s− 2p+ 3) + 2(2q − 1)

)
X−1(e1, 0)⊗ 1−s,ε

= −2
(
2s− 2p+ 3− 2q + 1

)
X−1(e1, 0)⊗ 1−s,ε

= −2
(
2s− 2p− 2q + 4

)
X−1(e1, 0)⊗ 1−s,ε.

This is zero when

2s− 2p− 2q + 4 = 0

2s = 2p+ 2q − 4

s = p+ q − 2,

which completes the claim that the action of NG commutes with Φ, and thus so does all of
QG for the parameter s = p+ q − 2.

5.3 Duality Theorem Application in H-setting

Let h = Lie(H). The grading element

H0 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 ∈ h
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provides a Lie algebra grading

h = h(−2)⊕ h(−1)⊕ h(0)⊕ h(1)⊕ h(2).

We write qH = Lie(QH) = h(0)⊕ h(1)⊕ h(2), nH := h(1)⊕ h(2), and n̄H := h(−2)⊕ h(−1).
Elements of h(0) are matrices of the form

X0(b, t, A,B,C) =


bi 0 t 0
0 A 0 B
t 0 bi 0
0 Bt 0 C

 ,

where b ∈ R, t ∈ R and

(
A B
Bt C

)
∈ u(p − 1, q − 1). They are thus spanned by elements

H0, Z0 := diag(i, 0p−1, i, 0q−1), and elements of u(p− 1, q − 1).
For w ∈ Cp−1, u ∈ Cq−1, t ∈ R elements of nH are of the form

X1(w, u) =


0 w∗ 0 u∗

−w 0 w 0
0 w∗ 0 u∗

u 0 −u 0

 ∈ h(1), X2(t) =


ti 0 −ti 0
0 0 0 0
ti 0 −ti 0
0 0 0 0

 ∈ h(2),

and elements of n̄H are of the form

X−1(w, u) =


0 −w∗ 0 u∗

w 0 w 0
0 w∗ 0 −u∗
u 0 u 0

 ∈ h(−1), X−2(t) =


ti 0 ti 0
0 0 0 0
−ti 0 −ti 0
0 0 0 0

 ∈ h(−2).

We write N̄H := exp(n̄H), and direct calculation shows that elements of N̄H are of the form

n̄H(w, u, t) =


1− r2/2 + ti −w∗ −r2/2 + ti u∗

w Ip−1 w 0
r2/2− ti w∗ 1 + r2/2− ti −u∗

u 0 u Iq−1

 ,

where (
w

u

)
∈ Cp−1,q−1, t ∈ R, r2 = |w|2 − |u|2.

Analogous to the group law in the orthogonal setting, the group law on N̄H is given by

n̄H(w1, u1, t1)n̄H(w2, u2, t2) = n̄H
(
w1 + w2, u1 + u2, t1 + t2 −ℑ(w∗

1w2 − u∗1u1)
)
,

and so N̄H is isomorphic to the Heisenberg group Cp−1,q−1 ⋉ R under the obvious identifi-
cations. Similar to the above, N̄HQH is dense in H and we can identify (as vector spaces)
indHQH

(χs,a) with C
∞(Cp−1,q−1 ⋉R). We may parametrize N̄H in real coordinates via

wj = aj + ibj 1 ≤ j ≤ p− 1,

uk = ck + idk 1 ≤ k ≤ q − 1.
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In these coordinates, the Heisenberg wave operator on C∞(Cp−1,q−1 ⋉R) for a ∈ Z is

Ωa = Ω0 + 2ai∂t,

where
Ω0 = ∂2w − ∂2u,

and

∂2w =

p−1∑
j=1

∂wj
∂wj

=

p−1∑
j=1

(∂2aj + ∂2bj),

and ∂2u is similar. A natural basis for n̄H consists of elements

Rk := X−1(ek, 0), Sk := X−1(iek, 0), Tk := X−1(0, ek), Uk := X−1(0, iek), X−2 = X−2(1),

and this gives us a correspondence between the action of Ωa on C∞(Cp−1,q−1 ⋉ R) and the
action of

Ωa :=

p−1∑
j=1

(
R2
j + S2

j

)
−

q−1∑
k=1

(
T 2
k + U2

k

)
+ 2aiX−2 ∈ U(n̄H)

on indHQH
(χs,a), where the action is again right translation.

The operator Ωa is H-intertwining, and we now show that when s = p + q − 2, it takes
the principal series to one where s has been increased by 2.

Proposition 5.3.1 For the parameter s = p+ q − 2, we have

Ωa : ind
H
QH

(χs,a) → indHQH
(χs+2,a).

Proof. We again appeal to the duality theorem, and we need to show that the map

Φ : C−(s+2),a →MqH (−s, a),

given by
Φ(1−(s+2),a) = Ωa ⊗ 1−s,a,

is a QH-homomorphism.
There is a factorization QH =MHAHNH , where

MH
∼= U(p− 1, q − 1), AG = {exp(tH0), exp(rZ0) : t, r ∈ R}, NH = exp(nH),

and so we need to check that the actions of each factor commutes with the above embedding.
The action of MH is trivial in both places of the embedding.
For AH , a very similar calculation to that in the G-setting shows that the action of

elements exp(tH0) commute with the embedding. Write

gr = exp(rZ0) = diag(eri, Ip−1, e
ri, Iq−1).

One calculates that Ad(gr)
(
X−1(w, u)

)
= X−1(e

−irw, e−iru), and thus

Ad(gr)
(
X−1(w, u)

2
)
= X−1(e

−irw, e−iru)2.
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In particular, the action of gr on Ω0 is trivial since it rotates basis vectors by angle −r and
Ω0 (essentially, the generalized Laplacian) is rotation-invariant.

Furthermore, one calculates that Ad(gr)(X−2) = X−2, and it follows immediately that

gr.Ωλ = Ωλ.

Visibly we see that χ(gr) = eri, and that

χs,a(gr) =

(
χ(gr)

|χ(gr)|

)a
|χ(gr)|s = eari.

We thus have
gr.1−s,a = χs,a(gr)

−11−s,a = e−ari1−s,a.

Similarly, gr.1−(s+2),a = e−ari1−(s+2),a. These remarks show that for all r ∈ R we have

Φ(gr.1−(s+2),a) = gr.Φ(1−(s+2),a).

Now we will show that for s = p+ q − 2 and λ = a that NH acts trivially on

Ωλ =

p−1∑
k=1

(R2
k + S2

k)−
q−1∑
k=1

(T 2
k + U2

k ) + 2λiX−2 ∈ U(n̄H).

by showing that nH annihilates this element. We will frequently make use of the fact that
NH acts trivially on v1 and so dχs,a(nH) = 0. Write X1 := X1(e1, 0), and write

XRk
0 = [X1, Rk], X

Sk
0 = [X1, Sk], X

Tk
0 = [X1, Tk], X

Uk
0 = [X1, Uk],

and write

XRk
−1 = [XRk

0 , Rk], X
Sk
−1 = [XSk

0 , Sk], X
Tk
−1 = [XTk

0 , Tk], X
Uk
−1 = [XUk

0 , Uk].

We have

X1R
2
k ⊗ 1 = (XRk

0 Rk +RkX1Rk)⊗ 1−s,a

= (XRk
−1 + 2RkX

Rk
0 )⊗ 1−s,a

= (XRk
−1 − 2dχs,a(X

Rk
0 )Rk)⊗ 1−s,a,

and the computations for Sk, Tk, and Uk are similar. We now compute

XRk
0 = [X1(e1, 0), Rk]

= X0(e
t
1ek − etke1, e

t
1ek + etke1, 2(e1e

t
k − eke

t
1), 0, 0)

= X0(0, 2δ1,k, 2(E1k − Ek1), 0, 0),

XRk
−1 = [XRk

0 , Rk]

= [X0(0, 2δ1,k, 2(E1k − Ek1), 0, 0), X−1(ek, 0)]

= X−1((2(E1k − Ek1)− 2δ1,k)ek, 0)

= 2X−1(E1kek − Ek1ek − δ1,kek, 0)

= 2X−1(e1 − e1δ1k − δ1ke1, 0)

= 2X−1((1− 2δ1k)e1, 0)

= 2(1− 2δ1k)R1.
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Now we observe that XRk
0 ∈ 2δ1kH0 + u(p − 1, q − 1), and since dχs,a

(
u(p − 1, q − 1)

)
= 0,

we have
dχs,a(X

Rk
0 ) = 2δ1kdχs,a(H0) = 2δ1ks.

We thus have

X1

(
p−1∑
k=1

R2
k ⊗ 1−s,a

)
=

(
p−1∑
k=1

(XRk
−1 − 2dχs,a(X

Rk
0 )Rk)

)
⊗ 1−s,a

=

(
p−1∑
k=1

2(1− 2δ1k)R1 − 2(2δ1ks)Rk

)
⊗ 1−s,a

=
(
− 2R1 + 2(p− 2)R1 − 4sR1

)
⊗ 1−s,a

= 2(−1 + p− 2− 2s)R1 ⊗ 1−s,a

= 2(p− 2s− 3)R1 ⊗ 1−s,a.

A similar process shows that

X1

(
p−1∑
k=1

S2
k ⊗ 1−s,a

)
=
(
2(p+ 1)R1 + 4aiS1

)
⊗ 1−s,a,

X1

(
q−1∑
k=1

T 2
k ⊗ 1−s,a

)
= −2(q − 1)R1 ⊗ 1−s,a,

X1

(
q−1∑
k=1

U2
k ⊗ 1

)
= −2(q − 1)R1 ⊗ 1−s,a.

Furthermore, [X1, X−2] = −2S1. We thus have

X1.(Ωλ ⊗ 1−s,a) = X1.

(
p−1∑
k=1

(R2
k + S2

k)−
q−1∑
k=1

(T 2
k + U2

k ) + 2λiX−2

)
⊗ 1−s,a

= (2(p− 2s− 3 + p+ 1 + q − 1 + q − 1)R1 + 4aiS1 − 4λS1)⊗ 1−s,a

= (4(p+ q − 2− s)R1 + 4aiS1 − 4λS1)⊗ 1−s,a,

from which it follows immediately that n̄H .Ωλ ⊗ 1 = 0 when

s = p+ q − 2, λ = a.

That is, NG acts trivially on Ωa ⊗ 1−s,a for s = p+ q − 2 and all a ∈ Z.

5.4 K-finite solutions to Ωa in indGQG
(λs,ε)

In Kubo-Ørsted [5, See discussion leading up to Theorem 1.2], it is explained that (in their
notation) a differential operator

Du : ind
G
P (χtriv,λ) → indGP (χχ,ν)
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is of the form Du = R(u) for some u ∈ U(g), where R is the right translation action discussed
in the first section of this chapter. It is also explained that the K-finite solution space to Du

are those irreducible representations (δ, V ) of K such that

dδ (τ(u′)) v = 0

for all v ∈ V , where τ is complex conjugation with respect to the real Lie algebra g and u′

satisfies
u′ ⊗ 1−λ−ρ = u⊗ 1−λ−ρ

(is equal in the generalized Verma module).
With this in mind, we will use the decompositions

h = kH + qH = n̄H + qH

to find Ω′
a ∈ U(k) such that

Ω′
a ⊗ 1−s,a = Ωa ⊗ 1−s,a ∈ U(h)⊗qH C−s,a.

We will then make use of an explicit action of kH ∼= u(p)⊕u(q) on theKH-types H m1,m2(Cp)⊗
H n1,n2(Cq). to calculate exactly which KH-types are annihilated by Ω′

a, and this will be our
solution space to the Heisenberg wave operator.

For w ∈ Cp−1, u ∈ Cq−1, write

Z(w, u) =


0 −w∗ 0 0
w 0 0 0
0 0 0 −u∗
0 0 u 0

 ∈ U(kH),

and define

R′
k = Z(ek, 0)

S ′
k = Z(iek, 0)

T ′
k = Z(0, ek)

U ′
k = Z(0, iek).

We have

Rk = X1(ek, 0) + 2R′
k

Sk = X1(iek, 0) + 2S ′
k

Tk = X1(0, ek) + 2T ′
k

Uk = X1(0, iek) + 2U ′
k.

The bracket

[X1(w, u), Z(w, u)] =


0 0 w∗w + u∗u 0
0 0 0 −2wu∗

w∗w + u∗u 0 0 0
0 −2uw∗ 0 0
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shows that

H0 = [X1(ek, 0), Z(ek, 0)] = [X1(iek, 0), Z(iek, 0)] = [X1(0, ek), Z(0, ek)] = [X1(0, iek), Z(0, iek)].

We have

p−1∑
k=1

(R2
k + S2

k)⊗ 1−s,a =

p−1∑
k=1

(
(X1(ek, 0) + 2R′

k)
2 + (X1(iek, 0) + 2S ′

k)
2
)
⊗ 1−s,a

=

p−1∑
k=1

(
2X1(ek, 0)R

′
k + 4R′2

k + 2X1(iek, 0)S
′
k + 4S ′2

k

)
⊗ 1−s,a

=

p−1∑
k=1

(
2H0 + 4R′2

k + 2H0 + 4S ′2
k

)
⊗ 1−s,a

= 4

(
p−1∑
k=1

(
R′2
k S

′2
k

)
− (p− 1)s

)
⊗ 1−s,a

A similar calculation shows that

q−1∑
k=1

(T 2
k + U2

k )⊗ 1−s,a = 4

(
q−1∑
k=1

(
T ′2
k + U ′2

k

)
− (q − 1)s

)
⊗ 1−s,a.

Let X ′
−2 = diag(i, 0p−1,−i, 0q−1). We have X−2 = −X2 + 2X ′

−2 where X2 := X2(1), and so

2aiX−2 ⊗ 1−s,a = 4aiX ′
−2 ⊗ 1−s,a.

Combining these calculations, we have

Ωa ⊗ 1−s,a =

(
p−1∑
k=1

(R2
k + S2

k)−
q−1∑
k=1

(T 2
k + U2

k ) + 2aiX−2

)
⊗ 1−s,a

= 4

(
p−1∑
k=1

(R′2
k + S ′2

k )−
q−1∑
k=1

(T ′2
k + U ′2

k ) + aiX ′
−2 − ((p− 1)− (q − 1)) s

)
⊗ 1−s,a

= 4

(
p−1∑
k=1

(R′2
k + S ′2

k )−
q−1∑
k=1

(T ′2
k + U ′2

k ) + aiX ′
−2 − (p− q)s

)
⊗ 1−s,a.

We have now written the operator in a form that allows us to use the explicit action of
kH on the KH-types. It is enough to calculate the action on the embedding vectors of these
spaces. We will work in these harmonic spaces modulo the element r2 = z1z1 + · · · + zpzp,
and in this projected space the embedding vectors for H m1,m2(Cp) are zm1

1 zm2
1 .

Observe that R′
k = (A,B), where A =

(
0 −etk
ek 0

)
∈ u(p) and B =

(
0 −etk
ek 0

)
∈ u(q).

Recall that the action of u(p) on H m1,m2(Cp) is given by

A.f(z, z) =
d

dt
f

(
exp(−tA)z, exp(−tA)z

)∣∣∣∣
t=0

.
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exp(−tA) =
(

cos(t) − sin(t)etk
sin(t)ek Mk(t)

)
, whereMk(t) = diag(1, 1, . . . , cos(t), 1, . . . , 1) and where

cos(t) is in the k-th entry. For z ∈ Cp, the entries of

exp(−tA)z

in which t appears are (
exp(−tA)z

)
1
= cos(t)z1 − sin(t)zk+1,(

exp(−tA)z
)
k+1

= sin(t)z1 + cos(t)zk+1.

It follows that for f(z, z) ∈ H m1,m2(Cp), we have

d

dt
f

(
exp(−tA)z, exp(−tA)z

)∣∣∣∣
t=0

=

(
− zk+1∂1 + z1∂k+1 − zk+1∂1 + z1∂k+1

)
f(z, z).

We thus have

A2.zm1
1 zm2

1

=(−zk+1∂1 + z1∂k+1 − zk+1∂1 + z1∂k+1)
2zm1

1 zm2
1

=(zk+1∂1 − z1∂k+1 + zk+1∂1 − z1∂k+1)
2zm1

1 zm2
1

=(zk+1∂1 − z1∂k+1 + zk+1∂1 − z1∂k+1)(m1z
m1−1
1 zk+1z

m2
1 +m2z

m1
1 zm2−1

1 zk+1)

=m1(m1 − 1)zm1−2
1 z2k+1z

m2
1 +m1m2z

m1−1
1 zk+1z

m2−1
1 zk+1 −m1z

m1
1 zm2

1

+m1m2z
m1−1
1 zk+1z

m2−1
1 zk+1 +m2(m2 − 1)zm1

1 zm2−2
1 z2k+1 −m2z

m1
1 zm2

1 .

The action of B2 is similar. The action of (S ′
k)

2 is computed similarly, and adding these
actions yields several cancellations, so that(

(R′
k)

2 + (S ′
k)

2
)
.(zm1

1 zm2
1 ) = 4m1m2z

m1−1
1 zk+1z

m2−1
1 zk+1 − 2(m1 +m2)z

m1
1 zm2

1 .

Summing over k, and mindful that we are working in this projected space modulo r2 =
z1z1 + z2 + z2 + · · ·+ zpzp, we have

p−1∑
k=1

(R′2
k + S ′2

k ).(z
a
1z

b
1) =

p−1∑
k=1

(
4m1m2z

m1−1
1 zk+1z

m2−1
1 zk+1 − 2(m1 +m2)z

m1
1 zm2

1

)
= (−4m1m2 − 2(p− 1)(m1 +m2)) z

m1
1 zm2

1 .

The action of (T ′
k)

2 + (U ′
k)

2 is computed similarly.
Recall that X ′

−2 = (A,B) where A = diag(i, 0p−1), B = diag(−i, 0q−1). We have

A.(zm1
1 zm2

1 ) =
d

dt

(
exp(−it)z1

)m1
(
exp(it)z1

)m2

∣∣∣∣
t=0

=
d

dt
e−ti(m1−m2)zm1

1 zm2
1

∣∣∣∣
t=0

= −i(m1 −m2)z
m1
1 zm2

1 .
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Similarly, B.(wn1
1 w

n2
1 ) = i(n1 − n2)w

n1
1 w

n2
1 , and so

X−2.(z
m1
1 zm2

1 ⊗ wn1
1 w

n2
1 ) = −i(m1 −m2 − n1 + n2)(z

m1
1 zm2

1 ⊗ wn1
1 w

n2
1 ).

Recalling the notation τ for complex conjugation discussed at the beginning of the section,
writing ξ = ξm1,m2 ⊗ ξn1,n2 for the embedding vector, recalling that s = p + q − 2, a =
m1 −m2 + n1 − n2, and combining everything, we have

τ(Ω′
a).ξ = 4

(
p−1∑
k=1

(R′2
k + S ′2

k )−
q−1∑
k=1

(T ′2
k + U ′2

k )− aiX ′
−2 − (p− q)s

)
.ξ

= 4

[(
− 4m1m2 − 2(p− 1)(m1 +m2)− (−4n1n2 − 2(q − 1)(n1 + n2))

)
+ ai

(
− i(m1 −m2 + n1 − n2)

)
− (p− q)s

]
ξ

= −4(m1 +m2 − n1 − n2 + p− q)(m1 +m2 + n1 + n2 + p+ q − 2)ξ.

The second factor will always be positive for the cases we are considering (p ≥ 2, q ≥ 1), so
in particular will never be zero. As a result, the second factor will not contribute solutions.
Thus, the KH-finite solution space to Ωa in indHQH

(χs,a) is∑
m1,m2,n1,n2≥0,

m1+m2−n1−n2+p−q=0

H m1,m2(Cp)⊗ H n1,n2(Cq).

The polynomial parameterizing this solution space corresponds to the projection of a ladder
representation. In a plot (x, y) = (m,n), and with m = m1 +m2, n = n1 + n2, setting this
polynomial equal to zero, we have

m− n+ p− q = 0,

or
n = m+ (p− q),

which is a line through KG-types H m(R2p) ⊗ H n(R2q) with y-intercept (p − q) and slope
1. As as (g, KG)-module, this is a ladder representation, and will be the solution space to
the Euclidean wave operator ∆ in indGQG

(λs,ε). The map Ta projects these solutions onto the

KH-types contained in indHQH
(χs,a).
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CHAPTER VI

CONNECTING THE K-FINITE KERNELS OF ∆ AND Ωa THE INTEGRAL
INTERTWINING OPERATORS Ta

As mentioned in the previous chapter, we are aiming to show that Ta H-intertwines the
actions of the wave operators ∆ and Ωa for certain parameters of the respective degenerate
principal series. In particular, for s = p+ q − 2, the following diagram commutes:

indGQG
(λs,ε)

∆−−−→ indGQG
(λs+2,ε)

Ta

y yTa
indHQH

(χs,a)
Ωa−−−→ indHQH

(χs+2,a)

The first step is to show the commuting property for φ ∈ indGQG
(λs,ε) whose restriction

to N̄G is Schwartz, and this is the subject of the current chapter.

6.1 Changing Coordinates between G and H Settings

Recall that Ta restricted to N̄H is given by

Ta(φ)(n̄H) =

∫ π/2

−π/2
φ(n̄Hz(θ))e

iaθdθ.

Due to the fact that N̄GQG is dense in G, we can factor most elements n̄Hz(θ) ∈ N̄HZ(H)
as elements in N̄GQG, which allows us to make use of the translation property that φ has
on QG.

To determine what the change of coordinates map should be, first observe that if we are
able to make such a factorization n̄Hz(θ) = n̄GqG, then they must act on the isotropic vector
v1 in the same way. That is n̄Hz(θ)v1 = n̄GqGv1. We now provide the correct change of
coordinates map, and the following lemma shows that this map does satisfy a preliminary
identity. Let

ι : Cp−1,q−1 ⊕ R⊕ (−π/2, π/2) → R2p−1,2q−1,

given by
ι(w, u, t, θ) = (α, β),
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where (for later reference: λ = cos θ, τ = tan θ, ζ = 1 + τ 2 = sec2 θ)

α1 = t+
1

2
(1− r2)τ

α2j = aj − bjτ 1 ≤ j ≤ p− 1

α2j+1 = bj + ajτ 1 ≤ j ≤ p− 1

β1 = −t+ 1

2
(1 + r2)τ

β2k = ck − dkτ 1 ≤ k ≤ q − 1

β2k+1 = dk + ckτ 1 ≤ k ≤ q − 1.

Lemma 6.1.1 Let n̄H(w, u, t) ∈ NH and z(θ) ∈ Z(H) where θ ̸= π/2, 3π/2. Then

n̄H(w, u, t)z(θ)v1 = cos θ · n̄G
(
ι(w, u, t, θ)

)
v1.

Proof. First we calculate the left-hand-side. Let

v1 =

(
e1

e1

)
, v2 =

(
e2

e2

)
∈ R2p,2q,

where e1 and e2 are the first and second standard basis vectors, respectively, in their relative
spaces. Recall that under the embedding H ↪→ G given entry-wise by

a+ bi 7→
(
a −b
b a

)
,

we can identify z(θ) = (eiθIp+q) as a block-diagonal-matrix in G with 2-by-2 blocks(
cos θ − sin θ
sin θ cos θ

)
.

Therefore, z(θ)v1 = cos θv1+sin θv2. Now we will need the action of n̄H(w, u, t) on v1 and v2.
The relevant entries in this matrix will be columns 1, 2, p+1, and p+2. Under the embedding
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above, we have

n̄H(w, u, t)col 1,2 =



1− r2/2 −t
t 1− r2/2
a1 −b1
b1 a1
a2 −b2
b2 a2
...

...
ap−1 −bp−1

bp−1 ap−1

r2/2 t
−t r2/2
c1 −d1
d1 c1
...

...
cq−1 −dq−1

dq−1 cq−1



n̄H(w, u, t)col p+ 1, p+ 2 =



−r2/2 −t
t −r2/2
a1 −b1
b1 a1
a2 −b2
b2 a2
...

...
ap−1 −bp−1

bp−1 ap−1

1 + r2/2 t
−t 1 + r2/2
c1 −d1
d1 c1
...

...
cq−1 −dq−1

dq−1 cq−1



.

Observe that
n̄H(w, u, t)v1 = column 1 + column (p+ 1),

n̄H(w, u, t)v2 = column 2 + column (p+ 2).
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Let λ = cos θ for the rest of the proof. For the complete left-hand-side, we have

n̄H(w, u, t)z(θ)v1

=n̄H(w, u, t)
(
cos(θ)v1 + sin(θ)v2

)
=cos θ

(
n̄H(w, u, t)v1

)
+ sin θ

(
n̄H(w, u, t)v2

)

cos θ



1− r2

2t
2a1
2b1
...

2bp−1

1 + r2

−2t
2c1
2d1
...

2dq−1



+ sin θ



−2t
1− r2

−2b1
2a1
...

2ap−1

2t
1 + r2

−2d1
2c1
...

2cq−1



=



(1− r2) cos θ − 2t sin θ
2t cos θ + (1− r2) sin θ
2a1 cos θ − 2b1 sin θ
2b1 cos θ + 2a1 sin θ

...
2bp−1 cos θ + 2ap−1 sin θ
(1 + r2) cos θ + 2t sin θ
−2t cos θ + (1 + r2) sin θ

2c1 cos θ − 2d1 sin θ
2d1 cos θ + 2c1 sin θ

...
2dq−1 cos θ + 2cq−1 sin θ



= 2 cos θ



1
2
(1− r2)− tτ
t+ 1

2
(1− r2)τ

a1 − b1τ
b1 + a1τ

...
bp−1 + ap−1τ
1
2
(1 + r2) + tτ

−t+ 1
2
(1 + r2)τ

c1 − d1τ
d1 + c1τ

...
dq−1 + cq−1τ



= 2λ



1
2
(1− r2)− tτ

α1

α2

α3
...

α2p−1
1
2
(1 + r2) + tτ

β1
β2
β3
...

β2q−1



.

For the right-hand-side, let (α, β) = ι(w, u, t, θ). We have
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λ · n̄G(α, β)v1 = λ


1−R2/2 −αt −R2/2 βt

α I2p−1 α 0
R2/2 αt 1 +R2/2 −βt
β 0 β I2q−1



1
0
1
0



= λ


1−R2

2α
1 +R2

2β



= 2λ



1
2
(1−R2)
α1

α2

α3
...

α2p−1
1
2
(1 +R2)
β1
β2
β3
...

β2q−1



.

Now that we have computed both sides of the claimed relation, it remains to show that the
entries on both sides are equal. The entries αj and βj are all visibly equal according to the
coordinates given before the lemma. As for the first entry, pairing coordinates α2j, α2j+1,
and similarly for β2k, β2k+1, we see that

2p−1∑
j=2

α2
j −

2q−1∑
k=2

β2
k =

p−1∑
j=1

(1 + τ 2)(a2j + b2j)−
q−1∑
k=1

(1 + τ 2)(c2k + d2k) = (1 + τ 2)r2.

Now,

α2
1 =

(
t+

1

2
(1− r2)τ

)2

= t2 + tτ(1− r2) +
1

4
(1− r2)2τ 2,

β2
1 =

(
−t+ 1

2
(1 + r2)τ

)2

= t2 − tτ(1 + r2) +
1

4
(1 + r2)2τ 2,

and so we get the relation α2
1 − β2

1 = 2tτ + 1
4
τ 2(−4r2) = 2tτ − τ 2r. Therefore the first entry
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on the right-hand-side is

1

2
(1−R2) =

1

2

(
1−

2p−1∑
j=1

α2
j −

2q−1∑
k=1

β2
k

)

=
1

2

(
1− (α2

1 − β2
1)−

2p−1∑
j=2

α2
j −

2q−1∑
k=2

β2
k

)

=
1

2

(
1− (2tτ − τ 2r2)− (1 + τ 2)r2

)
=

1

2
(1− 2tτ − r2)

=
1

2
(1− r2)− tτ,

equal to the first entry of the left-hand-side. By the isometry property of G, the (p+1)-entries
are equal as well, which completes the proof.

We now present the full factorization.

Proposition 6.1.1 Let n̄H(w, u, t) ∈ N̄H and z(θ) ∈ Z(H) where θ ̸= π/2, 3π/2, and let
(α, β) = ι(w, u, t, θ). Then qG := n̄G(α, β)

−1n̄H(w, u, t)z(θ) is a member of QG which satisfies
λ(qG) = cos(θ). In particular,

n̄H(w, u, t)z(θ) = n̄G(α, β)qG.

Proof. Let q′G = diag(cos θ, sec θ, I2p−2, cos θ, sec θ, I2q−2) ∈ SO(2p) × SO(2q) ⊂ G. Visibly
we see that q′G ∈ QG with λ(qG) = cos θ. Thus,

n̄G(α, β)q
′
Gv1 = cos θ · n̄G(α, β)v1,

so by Lemma 6.1.1, we have

n̄H(w, u, t)z(θ)v1 = n̄G(α, β)q
′
Gv1.

In particular,
n̄G(α, β)

−1n̄H(w, u, t)z(θ)v1 = λ(q′G)v1,

which implies that n̄G(α, β)
−1n̄H(w, u, t)z(θ) ∈ QG with λ

(
n̄G(α, β)

−1n̄H(w, u, t)z(θ)
)
=

cos θ. Thus,

n̄H(w, u, t)z(θ) = n̄G(α, β)
(
n̄G(α, β)

−1n̄H(w, u, t)z(θ)
)
= n̄G(α, β)qG

completes the factorization.

With this factorization in mind, we can simplify the evaluation of Ta on N̄H by using the
translation property of φ ∈ indGQG

(λs,ε) on QG:

Ta(φ)
(
n̄H(w, u, t)

)
=

∫ π/2

−π/2
φ
(
n̄H(w, u, t)z(θ)

)
eiaθdθ

=

∫ π/2

−π/2
| cos(θ)|−sε φ

(
n̄G(ι(w, u, t, θ))

)
eiaθdθ.
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On this interval of integration, cos(θ) > 0, and so this is

Ta(φ)
(
n̄H(w, u, t)

)
=

∫ π/2

−π/2
cos(θ)−sφ

(
n̄G(ι(w, u, t, θ))

)
eiaθdθ.

6.2 Pullback of the Differential Operator ∆ through ι

Recall that our aim is to show that

Ta(∆ · φ) = Ωa · Ta(φ).

So in order to proceed, we need to compute the pullback of ∆ through ι. We first use
the formulas for ι to change the variables for the first-order partial derivatives, which will
eventually allow us to relate ∆ to Ωa. By the chain rule, the partial derivative with respect
to a1 in these formulas is

∂a1 =
∂α1

∂a1
∂α1 +

∂α2

∂a1
∂α2 + · · ·+ ∂β2q−1

∂a1
∂β2q−1

= −a1τ∂α1 + ∂α2 + τ∂α3 + a1τ∂β1 .

Similarly, we have

∂a1 = −a1τ∂α1 + ∂α2 + τ∂α3 + a1τ∂β1
∂b1 = −b1τ∂α1 − τ∂α2 + ∂α3 + b1τ∂β1
∂a2 = −a2τ∂α1 + ∂α4 + τ∂α5 + a2τ∂β1
∂b2 = −b2τ∂α1 − τ∂α4 + ∂α5 + b2τ∂β1
...

∂ap−1 = −ap−1τ∂α1 + ∂α2p−2 + τ∂α2p−1 + ap−1τ∂β1
∂bp−1 = −bp−1τ∂α1 − τ∂α2p−2 + ∂α2p−1 + bp−1τ∂β1
∂c1 = c1τ∂α1 − c1τ∂β1 + ∂β2 + τ∂β3
∂d1 = d1τ∂α1 − d1τ∂β1 − τ∂β2 + ∂β3
∂c2 = c2τ∂α1 − c2τ∂β1 + ∂β4 + τ∂β5
∂d2 = d2τ∂α1 − d2τ∂β1 − τ∂β4 + ∂β5
...

∂cq−1 = cq−1τ∂α1 − cq−1τ∂β1 + ∂β2q−2 + τ∂β2q−1

∂dq−1 = dq−1τ∂α1 − dq−1τ∂β1 − τ∂β2q−2 + ∂β2q−1

∂t = ∂α1 − ∂β1

∂τ =
1− r2

2
∂α1 +

p−1∑
j=1

(
−bj∂α2j

+ aj∂α2j+1

)
+

1 + r2

2
∂β1 +

q−1∑
j=1

(
−dj∂β2j + cj∂β2j+1

)
.

We can condense these formulas into one formula using matrices, and to do this we introduce

some more notation. Write ∂wj
=

(
∂aj
∂bj

)
, ∂uk =

(
∂ck
∂dk

)
and
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∂w =

 ∂w1

...
∂wp−1

 , ∂u =

 ∂u1
...

∂uq−1

 , ∂α =

 ∂α1

...
∂α2p−1

 , ∂β =

 ∂β1
...

∂β2q−1

. Write M(n) to be the

block diagonal matrix with n 2-by-2 blocks of the form

(
1 τ
−τ 1

)
.Write w to be the embed-

ding of w ∈ Cp−1 ↪→ R2p−2 described before, and write u ∈ Cq−1 ↪→ R2q−2 similarly. Write
iw (and iu) to be the embedding of iw ∈ Cp−1 ↪→ R2p−2, and write iu ∈ Cq−1 ↪→ R2q−2

similarly. As a summary of the chain rule and this discussion, we have
∂w
∂u
∂t
∂τ

 = A

(
∂α
∂β

)
,

where

A =


−τw M(p− 1) τw 0
τu 0 −τu M(q − 1)
1 0 −1 0

1−r2
2

(iw)T 1+r2

2
(iu)T

 .

(Note that A is a square matrix: w ∈ R2p−2, u ∈ R2q−2; t, τ ∈ R;α ∈ R2p−1, β ∈ R2q−1.)
This relates the derivatives in N̄HZ(H) (in w, u, t, θ) to those in N̄G (in α, b). Since we

want to express ∆ (in α, β) in terms of variables w, u, t, θ, we need to compute A−1. To that
end, we introduce more notation. To shorten calculations, I will call τ -conjugation, denoted
as an overline, that which takes the negative of terms with a factor of τ. With this in mind,
define constants

κj = −ajτ + bj, κj = ajτ + bj

ηj = −aj − bjτ, ηj = −aj + bjτ 1 ≤ j ≤ p− 1

µk = −ckτ + dk, µk = ckτ + dk

νk = −ck − dkτ, νk = −ck + dkτ 1 ≤ k ≤ q − 1

X = −1

2
r2(τ 2 − 1) +

1

2
(τ 2 + 1)

X = −1

2
r2(τ 2 − 1)− 1

2
(τ 2 + 1)

ζ = τ 2 + 1, (note: τ = sec2(θ) is defined and nozero for θ ̸= π/2, 3π/2.)

and define W ∈ R2p−2, U ∈ R2q−2, where

Wj =

(
κj
ηj

)
1 ≤ j ≤ p− 1

Uk =

(
µk
νk

)
1 ≤ k ≤ q − 1.
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(This is analogous to defining w and u from before.) Observe that X − X = ζ and
M(n)M(n)T = ζ. Also observe that (x+ y)2 − (x− y)2 = 4xy, and so

X2 −X
2
= 4

(
−1

2
r2(τ 2 − 1)

)(
1

2
(τ 2 + 1)

)
= −r2ζ(τ 2 − 1).

Let

B = ζ−1


W T UT X ζ

M(p− 1)T 0 τiW 0
W T UT X ζ
0 M(q − 1)T −τiU 0

 ,

where W ∈ R2p−2 (defined above) is now identified with

 κ1 + iη1
...

κp−1 + iηp−1

 ∈ Cp−1, and W is

component-wise τ -conjugation. Then U ∈ R2q−2 is similarly identified with µ1 + iν1
...

µq−1 + iνq−1

 ∈ Cq−1. It will turn out that B = A−1, and to assist with the calculation

that proves this, we present some identities.

Lemma 6.2.1 1.

−w(X −X) +M(p− 1)iW = 0, u(X −X)−M(q − 1)iU = 0.

2.

W T + (iw)TM(p− 1)T = 0, UT + (iw)TM(q − 1)T = 0,

3.

1− r2

2
X +

1 + r2

2
X + τ

(
(iw)T iW − (iu)T iU

)
= 0.

Put in other parts for other entries.

Proof. For (1), first observe that X −X = ζ. Grouping in coordinates of size 2, we have

ζwj −
(

1 τ
−τ 1

)
(iW )j = ζ

(
aj
bj

)
−
(

1 τ
−τ 1

)(
−ηj
κj

)
= ζ

(
aj
bj

)
−
(
−ηj + τκj
τηj + κj

)
= ζ

(
aj
bj

)
−
(

(aj − bjτ) + τ(ajτ + bj)
τ(−aj + bjτ) + (ajτ + bj)

)
= ζ

(
aj
bj

)
−
(
(τ 2 + 1)aj
(τ 2 + 1)bj

)
= 0.
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This proves the first identity, and the second identity is essentially the same equation times
-1.

For (2), again grouping in coordinates of size 2, we have

Wj +

(
1 τ
−τ 1

)
(iw)j =

(
κj
ηj

)
+

(
1 τ
−τ 1

)(
−bj
aj

)
=

(
−ajτ + bj
−aj − bjτ

)
+

(
−bj + τaj
τbj + aj

)
= 0.

The first identity follows from taking the transpose of this equation, and the second identity
is essentially the same.

For (3), we have

1− r2

2
X +

1 + r2

2
X + τ

(
(iw)T iW − (iu)T iU

)
=
1

2
(X +X)− 1

2
(X −X) + τ

(
p−1∑
j=1

(
− bj(−ηj) + ajκj

)
−

q−1∑
k=1

(
− dk(−νk) + ckµk

))

=− 1

2
r2(τ 2 − 1)− 1

2
r2(τ 2 + 1) + τ

(
p−1∑
j=1

(
bjηj + ajκj

)
−

q−1∑
k=1

(
dkνk + ckµk

))

=− r2τ 2 + τ

(
p−1∑
j=1

(
bjηj + ajκj

)
−

q−1∑
k=1

(
dkνk + ckµk

))

=− r2τ 2 + τ

(
p−1∑
j=1

(
bj(−aj + bjτ) + aj(ajτ + bj)

)
−

q−1∑
k=1

(
dk(−ck + dkτ) + ck(ckτ + dk)

))

=− r2τ 2 + τ

(
p−1∑
j=1

τ(a2j + b2j)−
q−1∑
k=1

τ(c2k + d2k)

)
=− r2τ 2 + τ(τr2) = 0.

Proposition 6.2.1 A−1 = B.

Proof. Since A is a square matrix, it suffices to check that B is a right inverse for A.

AB =


−τw M(p− 1) τw 0
τu 0 −τu M(q − 1)
1 0 −1 0

1−r2
2

(iw)T 1+r2

2
(iu)T

 ζ−1


W T UT X ζ

M(p− 1)T 0 τiW 0
W T UT X ζ
0 M(q − 1)T −τiU 0



= ζ−1


ζI2(p−1) 0 −τ

(
ζw −M(p− 1)iW

)
0

0 ζI2(q−1) τ
(
ζu−M(q − 1)iU

)
0

0 0 ζ 0

W T + (iw)TM(p− 1)T UT + (iw)TM(q − 1)T 1−r2
2
X + 1+r2

2
X + τ

(
(iw)T iW − (iu)T iU

)
ζ

 .
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Entries 1-3 and 2-3 are zero by Lemma 6.2.1 (1). Entries 4-1 and 4-2 are zero by Lemma
6.2.1 (2). Entry 4 − 3 is zero by Lemma 6.2.1 (3). Thus AB = I2p+2q−2, which completes
the proof.

We thus have (
∂α
∂β

)
= B


∂w
∂u
∂t
∂τ

 .

We now need to expand ∆ in these coordinates. Let J = diag(I2p−1,−I2q−1). Then,

∆ =

2p−1∑
j=1

∂2αj
−

2q−1∑
k=1

∂2βk

=

(
∂α
∂β

)T
J

(
∂α
∂β

)

=

B

∂w
∂u
∂t
∂τ



T

JB


∂w
∂u
∂t
∂τ

 .

Since the entries in B do not commute with these partial derivatives, we need a lemma to
help expand the term on the left.

Recall that derivations on an algebra have the property that

D(ab) = aD(b) +D(a)b.

Lemma 6.2.2 Let V be the algebra of smooth functions on Rn, with multiplication given
by φ · ψ. For φ ∈ V, define Lφ ∈ End(V ) by Lφ(ψ) = φ · ψ. Define Dj ∈ End(V ) by
Dj(ψ) =

∂
∂xj
ψ. Then,

Lφ ◦Dj = Dj ◦ Lφ − LDj(φ).

Proof.

(Lφ ◦Dj)(ψ) = Lφ
(
Dj(ψ)

)
= φ ·Dj(ψ)

= Dj(φ · ψ)−Dj(φ) · ψ (Dj is a derivation)

= (Dj ◦ Lφ)(ψ)− LDj(φ)(ψ)

= (Dj ◦ Lφ − LDj(φ))(ψ),

which completes the proof.

Proposition 6.2.2 If B is a matrix of functions and δ is a matrix of partial derivatives
(maybe specify that (B)ij = fij and δj = Dj are derivations), and · is the application of the
derivative, we have

(Bδ)T = δTBT − δT ·BT .
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Proof.

(Bδ)T =


f11 . . . f1n

...
. . .

...
fn1 . . . fnn


D1

...
Dn



T

=

f11D1 + · · ·+ f1nDn
...

fn1D1 + · · ·+ fnnDn


T

=
(
f11D1 + · · ·+ f1nDn . . . fn1D1 + · · ·+ fnnDn

)
.

δTBT =
(
D1 . . . Dn

)f11 . . . fn1
...

. . .
...

f1n . . . fnn


=
(
D1f11 + · · ·+Dnf1n . . . D1fn1 + · · ·+Dnfnn

)
.

δT ·BT =
(
D1 . . . Dn

)f11 . . . fn1
...

. . .
...

f1n . . . fnn


=
(
D1 · f11 + · · ·+Dn · f1n . . . D1 · fn1 + · · ·+Dn · fnn

)
.

By Lemma 6.2.2, fij(Dk · ψ) =
(
Dk · (fijψ)

)
− (Dk · fij)ψ, and the result is immediate.

(Note that in the lemma, · means function multiplication and D(f) is application of the
derivative. In the proposition, fg means function multiplication and · means application of
the derivative.)

We now have

∆ =

B

∂w
∂u
∂t
∂τ



T

JB


∂w
∂u
∂t
∂τ



=



∂w
∂u
∂t
∂τ


T

BT −


∂w
∂u
∂t
∂τ


T

·BT

 JB


∂w
∂u
∂t
∂τ

 (by Proposition 6.2.2)

=


∂w
∂u
∂t
∂τ


T

BTJB


∂w
∂u
∂t
∂τ

−



∂w
∂u
∂t
∂τ


T

·BT

 JB


∂w
∂u
∂t
∂τ



=
(
∂Tw ∂Tu ∂t ∂τ

)
BTJB


∂w
∂u
∂t
∂τ

−
((
∂Tw ∂Tu ∂t ∂τ

)
·BT

)
JB


∂w
∂u
∂t
∂τ

 .
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We will now expand this out, starting with first term. We state some of the calculations in
a lemma. Recall the components of the vectors

Wj =

(
κj
ηj

)
, (iW )j =

(
−ηj
κj

)
,
(
iW
)
j
=

(
−ηj
κj

)
, κj = −ajτ + bj, ηj = −aj − bjτ.

Lemma 6.2.3 1.

(X −X)W + τM(p− 1)iW = −ζ(iw),
(X −X)U + τM(q − 1)iU = −ζ(iu).

2.
X2 −X

2
+ τ 2(iW

T
iW − iU

T
iU) = ζr2.

Proof. For the first identity in (1), first observe that coordinate-wise we have(
1 τ
−τ 1

)(
iW
)
j
=

(
1 τ
−τ 1

)(
−ηj
κj

)
=

(
−ηj + τκj
τηj + κj

)
=

(
−(−aj + bjτ) + τ(ajτ + bj
τ(−aj + bjτ) + ajτ + bj

)
= ζ

(
aj
bj

)
= ζwj,

and so M(p− 1)iW = ζw. Again pairing coordinates together, we have

Wj + τwj =

(
κj + τaj
ηj + τbj

)
=

(
−ajτ + bj + τaj
−aj − bjτ + τbj

)
=

(
bj
−aj

)
= −(iw)j,

and so W + τw = −(iw). We thus have

(X −X)W + τM(p− 1)iW = ζW + ζτw = −ζ(iw).

The second identity is the same with U ’s and u’s.

For (2), visibly we see that
∣∣iW ∣∣2 = |W |2. Also notice that since

κ2j + η2j = (−ajτ + bj)
2 + (−aj − bjτ)

2 = ζ(a2j + b2j),

we have that |W |2 = ζ|w|2, and similarly |U |2 = ζ|u|2. Therefore,

X2 −X
2
+ τ 2

(∣∣iW ∣∣2 − ∣∣iU ∣∣2) = −r2ζ(τ 2 − 1) + τ 2
(
|W |2 − |U |2

)
= −r2ζ(τ 2 − 1) + τ 2

(
ζ|w|2 − ζ|u|2

)
= −r2ζ(τ 2 − 1) + τ 2ζr2

= r2ζ.
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We have
∂w
∂u
∂t
∂τ


T

BTJB


∂w
∂u
∂t
∂τ



=


∂w
∂u
∂t
∂τ


T

ζ−1


W T UT X ζ

M(p− 1)T 0 τiW 0
W T UT X ζ
0 M(q − 1)T −τiU 0


T

Jζ−1


W T UT X ζ

M(p− 1)T 0 τiW 0
W T UT X ζ
0 M(q − 1)T −τiU 0



∂w
∂u
∂t
∂τ



=ζ−2


∂w
∂u
∂t
∂τ


T 

W M(p− 1) W 0
U 0 U M(q − 1)

X τiW
T

X −τiUT

ζ 0 ζ 0

 J


W T UT X ζ

M(p− 1)T 0 τiW 0
W T UT X ζ
0 M(q − 1)T −τiU 0



∂w
∂u
∂t
∂τ



=ζ−2


∂w
∂u
∂t
∂τ


T 

W M(p− 1) W 0
U 0 U M(q − 1)

X τiW
T

X −τiUT

ζ 0 ζ 0




W T UT X ζ
M(p− 1)T 0 τiW 0

−W T −UT −X −ζ
0 −M(q − 1)T τiU 0



∂w
∂u
∂t
∂τ



=ζ−2


∂w
∂u
∂t
∂τ


T 

ζI2p−2 0 −ζ(iw) 0
0 −ζI2q−2 −ζ(iu) 0

−ζ(iw)T −ζ(iu)T ζr2 ζ2

0 0 ζ2 0



∂w
∂u
∂t
∂τ


Entries 1-3 and 2-3 is by Lemma 6.2.3 (1)

Entries 3-1 and 3-2 are their transposes,
Entry 3-3 is by Lemma 6.2.3 (2)



=ζ−1


∂w
∂u
∂t
∂τ


T 

I2p−2 0 −(iw) 0
0 −I2q−2 −(iu) 0

−(iw)T −(iu)T r2 ζ
0 0 ζ 0



∂w
∂u
∂t
∂τ



=ζ−1
(
∂Tw ∂Tu ∂t ∂τ

)
I2p−2 0 −(iw) 0
0 −I2q−2 −(iu) 0

−(iw)T −(iu)T r2 ζ
0 0 ζ 0



∂w
∂u
∂t
∂τ



=ζ−1
(
∂Tw ∂Tu ∂t ∂τ

)
∂w − (iw)∂t
−∂u − (iu)∂t

−(iw)T∂w − (iu)T∂u + r2∂t + ζ∂τ
ζ∂t

 .
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Continuing, we have

=ζ−1
(
∂Tw(∂w − (iw)∂t) + ∂Tu (−∂u − (iu)∂t) + ∂t(−(iw)T∂w − (iu)T∂u + r2∂t + ζ∂τ ) + ζ∂τ∂t

)
=ζ−1

(
∂2w − ∂2u −

(
∂Tw(iw) + ∂Tu (iu)

)
∂t − (iw)T∂w∂t − (iu)T∂u∂t + r2∂2t + ζ∂t∂τ + ζ∂τ∂t

)
=ζ−1

(
∂2w − ∂2u −

(
(iw)T∂w + (iu)T∂u

)
∂t − (iw)T∂w∂t − (iu)T∂u∂t + r2∂2t + ζ∂t∂τ + ζ∂τ∂t

)
=ζ−1

(
∂2w − ∂2u − 2

(
(iw)T∂w + (iu)T∂u

)
∂t + r2∂2t + 2ζ∂t∂τ

)
=ζ−1

(
∂2w − ∂2u − 2

(
p−1∑
j=1

(
−bj aj

)(∂aj
∂bj

)
+

q−1∑
k=1

(
−dk ck

)(∂ck
∂dk

))
∂t + r2∂2t + 2ζ∂t∂τ

)

=ζ−1

(
∂2w − ∂2u − 2

(
p−1∑
j=1

(−bj∂aj + aj∂bj) +

q−1∑
k=1

(−dk∂ck + ck∂dk)

)
∂t + r2∂2t + 2ζ∂t∂τ

)
=ζ−1Ω0 + 2∂t∂τ .

(Note that in the calculations below, since ζ has a τ and we’re taking derivatives with
respect to τ, we can’t factor it out as a constant, so we’ll write BT with the ζ−1 distributed
inside the matrix; This makes it easy to see why the ζ−1 doesn’t make the derivation calcu-
lation harder.) Now we expand the first term. Since there are no t’s in X,X, τiW,−τiU,
no w’s in M(p− 1), no u’s in M(q − 1), we have
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∂w
∂u
∂t
∂τ


T

·BT

 JB


∂w
∂u
∂t
∂τ



=
((
∂Tw ∂Tu ∂t ∂τ

)
·BT

)
JB


∂w
∂u
∂t
∂τ



=

(∂Tw ∂Tu ∂t ∂τ
)
·


ζ−1W ζ−1M(p− 1) ζ−1W 0
ζ−1U 0 ζ−1U ζ−1M(q − 1)

ζ−1X ζ−1τiW
T

ζ−1X −ζ−1τiU
T

1 0 1 0


 JB


∂w
∂u
∂t
∂τ



=
(
∂Tw · ζ−1W + ∂Tu · ζ−1U 02p−2 ∂Tw · ζ−1W + ∂Tu · ζ−1U 02q−2

)
JB


∂w
∂u
∂t
∂τ



=ζ−1
(
∂Tw ·W + ∂Tu · U 02p−2 ∂Tw ·W + ∂Tu · U 02q−2

)
JB


∂w
∂u
∂t
∂τ



=ζ−1
(
−τ(2p− 2)− τ(2q − 2) 02p−2 −τ(2p− 2)− τ(2q − 2) 02q−2

)
JB


∂w
∂u
∂t
∂τ



=− 2τζ−1(p+ q − 2)
(
1 02p−2 1 02q−2

)
JB


∂w
∂u
∂t
∂τ



=− 2τζ−1(p+ q − 2)
(
1 02p−2 −1 02q−2

)
ζ−1


W T UT X ζ

M(p− 1)T 0 τiW 0
W T UT X ζ
0 M(q − 1)T −τiU 0



∂w
∂u
∂t
∂τ



=− 2τζ−2(p+ q − 2)
(
1 02p−2 −1 02q−2

)
W T UT X ζ

M(p− 1)T 0 τiW 0
W T UT X ζ
0 M(q − 1)T −τiU 0



∂w
∂u
∂t
∂τ



= −2τζ−2(p+ q − 2)
(
W T −W T UT − UT X −X ζ − ζ

)
∂w
∂u
∂t
∂τ

 .
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Continuing, we have

= −2τζ−2(p+ q − 2)
(
02p−2 02q−2 ζ 0

)
∂w
∂u
∂t
∂τ


= −2τζ−2(p+ q − 2)ζ∂t

= −2ζ−1τ(p+ q − 2)∂t.

Subtracting the second term from the first, we have that the pullback for the Euclidean wave
operator under this change of coordinates is

∆ = ζ−1Ω0 + 2∂t∂τ + 2τζ−1(p+ q − 2)∂t

= ζ−1Ω0 + 2∂t∂τ + 2τζ−1γ∂t,

where γ = p + q − 2. We note that there is a slight abuse in notation due to the change of
variables, and so for φ(α, β) ∈ C∞(N̄G), this should be interpreted as

∆ · φ = (ζ−1Ω0 + 2∂t∂τ + 2τζ−1γ∂t) · (φ ◦ ι−1).

Recall the substitutions τ = tan θ, ζ = 1 + τ 2 = sec2 θ, so by the Chain Rule we have

∂θ =
∂τ

∂θ
· ∂τ = sec2 θ∂τ .

Re-subbing θ’s for τ ’s, we obtain

∆ = cos2(θ)Ω0 + 2 cos2(θ)∂θ∂t + 2γ sin(θ) cos(θ)∂t.

6.3 Showing that Ta ◦∆ = Ωa ◦ Ta for Schwartz Functions

Write S(X) for the Schwartz space of X. We will show that the diagram mentioned earlier
commutes for elements of indGQG

(λs,ε) whose restriction to N̄G is Schwartz. Before we do this,
we prove some preliminary lemmas.

Lemma 6.3.1 (Pre-IBP Lemma) Let φ(α, β) ∈ S(N̄G). Then (thinking of φ as a func-
tion of ι(w, u, t, θ))

lim
θ→±π

2
∓
cos(θ)−seiaθφ(α, β) = 0.

Proof. Notice that α1 + β1 = τ = tan θ, and so

lim
θ→±π

2
∓
(α1 + β1) = lim

θ→±π
2
∓
tan θ = ±∞.

Thus as θ → ±π
2
∓, either α1 or β1 goes to ±∞.

Since φ is a Schwartz function, ∂t · φ is also a Schwartz function. Thus we may choose a
constant M such that

|∂t · φ(α, β)| ≤M |α1 + β1|−s−1.
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Let π/6 < θ < π/2. We have∣∣cos(θ)−seiaθ∂t · φ∣∣ = ∣∣∣∣tan(θ)ssin(θ)s
∂t · φ

∣∣∣∣ ≤ ∣∣∣∣(α1 + β1)
s

(1/2)s
·M(α1 + β1)

−s−1

∣∣∣∣→θ→π
2
− 0.

The case θ → −π
2
+ is very similar, and this concludes the proof.

Lemma 6.3.2 (IBP Lemma)∫ π/2

−π/2
cos(θ)−seiaθ∂θ∂t ·(φ◦ι)dθ =

∫ π/2

−π/2

(
−s cos(θ)−s−1 sin(θ)eiaθ+ia cos(θ)−seiaθ

)
∂t ·(φ◦ι)dθ.

Proof. Let

u = cos(θ)−seiaθ dv = ∂θ∂t · φ
du = −s cos(θ)−s−1 sin(θ)eiaθ + ia cos(θ)−seiaθ v = ∂t · φ.

By Lemma 6.3.1, we have

cos(θ)−seiaθ∂t · φ
∣∣∣∣π/2
−π/2

= 0.

Integrating by parts then proves the claim.

We are ready for the main result of this chapter, which is to prove the commuting diagram
for Schwartz functions.

Theorem 6.3.1 Let s = p + q − 2. The following diagram commutes for φ ∈ indGQG
(λs,ε)

whose restriction to N̄G is a Schwartz function.

indGQG
(λs,ε)

∆−−−→ indGQG
(λs+2,ε)

Ta

y yTa
indHQH

(χs,a)
Ωa−−−→ indHQH

(χs+2,a)

In particular, if φ ∈ ker(∆), then Ta(φ) ∈ ker(Ωa).

Proof. We have

Ta(∆ · φ)
(
n̄H(w, u, t)

)
=

∫ π/2

−π/2
(∆ · φ)(n̄H(w, u, t)z(θ))eiaθdθ.

By Proposition 6.1.1, we may factor n̄H(w, u, t)z(θ) = n̄G(ι(w, u, t, θ))qG(θ) with λ(qG(θ)) =
cos(θ). In the calculations that follow, we will often abbreviate n̄G

(
ι(w, u, t, θ)

)
= n̄G and

qG(θ) = qG. Now by the duality theorem application in Proposition 5.2.1 and the translation
property of ∆ · φ ∈ indGQG

(λs+2,ε), this becomes∫ π/2

−π/2
(∆ · φ)(n̄GqG)eiaθdθ =

∫ π/2

−π/2
λs+2,ε(qG)

−1(∆ · φ)(n̄G)eiaθdθ

=

∫ π/2

−π/2
| cos(θ)|−(s+2)

ε (∆ · φ)(n̄G)eiaθdθ

=

∫ π/2

−π/2
cos(θ)−s−2(∆ · φ)(n̄G)eiaθdθ.
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Plugging in the pullback of ∆ through ι, we have∫ π/2

−π/2
cos(θ)−s−2

(
cos2(θ)Ω0 + 2 cos2(θ)∂θ∂t + 2γ sin(θ) cos(θ)∂t

)
· φ(n̄G)eiaθdθ

=

∫ π/2

−π/2

(
cos(θ)−seiaθΩ0 + 2 cos(θ)−seiaθ∂θ∂t + 2γ sin(θ) cos(θ)−s−1eiaθ∂t

)
· φ(n̄G)dθ.

Assuming that φ is a Schwartz function on N̄G, we are justified in integrating this middle
term by parts, and so by Lemma 6.3.2 this is∫ π/2

−π/2

(
cos(θ)−seiaθΩ0 + 2ia cos(θ)−seiaθ∂t − 2s cos(θ)−s−1 sin(θ)eiaθ∂t

+ 2γ sin(θ) cos(θ)−s−1eiaθ∂t
)
· φ(n̄G)dθ

=

∫ π/2

−π/2

(
cos(θ)−seiaθΩ0 + 2ia cos(θ)−seiaθ∂t−2(s− γ) cos(θ)−s−1 sin(θ)eiaθ∂t

)
· φ(n̄G)dθ.

Since s = γ = p+ q − 2 by assumption, this is∫ π/2

−π/2

(
cos(θ)−seiaθΩ0 + 2ia cos(θ)−seiaθ∂t

)
· φ(n̄G)dθ.

Now, we recall that Ωa = Ω0 + 2ia so we have∫ π/2

−π/2
cos(θ)−sΩa · φ(n̄G)eiaθdθ.

Now, the partials of this integrand are continuous and the operator Ωa is not a function of
theta, we are justified in bringing it outside the integral leaving us

Ωa ·
∫ π/2

−π/2
cos(θ)−sφ(n̄G)e

iaθdθ.

Finally, using the original translation property of φ, we have

Ωa ·
∫ π/2

−π/2
φ(n̄GqG)e

iaθdθ = Ωa ·
∫ π/2

−π/2
φ(n̄Hz(θ))e

iaθdθ

= Ωa · Ta(φ)(n̄H),

which completes the proof.
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CHAPTER VII

EXTENDING THE COMMUTING DIAGRAM TO THE ENTIRE
DEGENERATE PRINCIPAL SERIES

We showed in the previous chapter that for φ ∈ indGQG
(λs,ε) whose restriction to N̄G is

Schwartz, the map Ta H-intertwines the action of the differential intertwining operators ∆
and Ωa for the parameter s = p+q−2, and so for φ with this property, the following diagram
commutes.

indGQG
(λs,ε)

∆−−−→ indGQG
(λs+2,ε)

Ta

y yTa
indHQH

(χs,a)
Ωa−−−→ indHQH

(χs+2,a)

In this chapter we will show how this intertwining property extends to all elements of the
degenerate principal series. Let

CG = KG ∩QG,

EG = indKG
CG

(λs,ε|CG
),

VG = N̄GQG ∩KG.

We will prove existence of a function f ∈ indGQG
(λs,ε) that is Schwartz on N̄G (in fact has

compact support on N̄G), such that

indGQG
(λs,ε) = span(KH · f).

In particular, the span of H-translates of f is dense in indGQG
(λs,ε). The first part of this

chapter will explain the general theory of this density argument, which works in the compact
picture and requires the function to have a nonzero projection into each K-isotypic subspace.
We will impose the requirement that this function have compact support in a right CG-
saturated subset of VG, so that the extension of this function to the induced picture, and
then restricted to N̄G, will have compact support.

7.1 General Background on Isotypic Projection and Density Argument

First we will show that for a representation of a compact Lie group K, there is a projection
map onto the τ -isotypic subspace, and then we will explain how this fits into the density ar-
gument. Suppose τ and τ ′ are inequivalent irreducible unitary representations of a Lie group
K on finite-dimensional spaces V and V ′, respectively, and let the understood Hermitian
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inner products be denoted (·, ·). Then the Schur orthogonality relations (see Knapp, P.241
Corollary 4.10) are∫

K

(τ(x)u, v)(τ ′(x)u′, v′)dx = 0 for all u, v ∈ V and u′, v′ ∈ V ′,

∫
K

(τ(x)u1, v1)(τ(x)u2, v2)dx =
(u1, u2)(v1, v2)

dimV
for all u1, v1, u2, v2 ∈ V.

The latter relation can be expressed in terms of equivalent representations V and V ′, similar
to the relation above it. Let L : V ′ → V be an equivalence of representations. (Cite) There is
a c > 0 so that the corresponding inner products satisfy the relation (L(u), L(v)) = c · (u′, v′)
for all u, v ∈ V and all u′, v′ ∈ V ′. Let u1 ∈ U, v1 ∈ V and u′, v′ ∈ V satisfy L(u′) = u2 and
L(v′) = v2. Then by the latter relation, we have∫

K

(τ(x)u, v)(τ ′(x)u′, v′)dx =
1

c

∫
K

(τ(x)u, v)(L(τ ′(x)u′), L(v′))dx

=
1

c

∫
K

(τ(x)u, v)(τ(x)L(u′), L(v′))dx

=
1

c

∫
K

(τ(x)u, v)(τ(x)u2, v2)dx

=
1

c

(u, u2)(v, v2)

dimV

=
(u, L(u′))(v, L(v′))

c · dimV
.

We use these Schur orthogonality relations in the next proposition to prove an identity which
we will use to define the aforementioned τ -isotypic projection map.

Proposition 7.1.1 Suppose K is a compact Lie group, and let τ, τ ′ be irreducible represen-
tations of K. Define

dτ =
dim(Eτ )

Vol(K)
,

a positive real number. For any T ∈ End(Eτ ),∫
K

tr
(
τ(k−1)T

)
τ ′(k)dk =

{
(c · dτ )−1T ′, τ ∼= τ ′

0, τ ̸∼= τ ′,

where we use the isomorphism of τ with τ ′ to identify T with an operator T ′ ∈ End(Eτ ′),
and (·, ·)τ = c(·, ·)τ ′ for some c > 0.

Proof. Let {ej}nj=1 and {ej ′}nj=1 be orthonormal bases for Eτ and Eτ ′ , respectively, and
let L : Eτ ′ → Eτ be the equivalence of representations, in the case that it exists, such
that L(e′j) = ej for 1 ≤ j ≤ n. For k ∈ K, the matrix of τ(k) in this basis is given by
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τij(k) = (τ(k)ej, ei). Since
∫
K
tr
(
τ(k−1)T

)
τ ′(k)dk is an endomorphism of Eτ ′ , we integrate

entry-wise in this basis to get the result:(∫
K

tr
(
τ(k−1)T

)
τ ′(k)dk

)
ij

=

∫
K

tr
(
τ(k−1)T

)
τ ′ij(k)dk

=

∫
K

tr
(
τ(k−1)T

)(
τ ′(k)e′j, e

′
i

)
dk

=

∫
K

(
n∑
ℓ=1

(
τ(k−1)Teℓ, eℓ

)) (
τ ′(k)e′j, e

′
i

)
dk (defn. of trace)

=
n∑
ℓ=1

∫
K

(
τ(k−1)Teℓ, eℓ

)(
τ ′(k)e′j, e

′
i

)
dk

=
n∑
ℓ=1

∫
K

(
τ(k−1)Teℓ, eℓ

)(
e′i, τ

′(k)e′j
)
dk

=
n∑
ℓ=1

∫
K

(τ(k−1)Teℓ, eℓ)
(
τ ′(k−1)e′i, e

′
j

)
dk

=
n∑
ℓ=1

{
(Teℓ,L(e

′
i))(eℓ,L(e

′
j))

c·dim(V )
, τ ∼= τ ′

0, τ ̸∼= τ ′
(by Schur Orthogonality)

=

{
(Tej ,L(e

′
i))

c·dim(V )
, τ ∼= τ ′

0, τ ̸∼= τ ′
(eℓ, L(e

′
j)) = δℓ,j

=

{
T ′
ij

c·dim(V )
, τ ∼= τ ′

0, τ ̸∼= τ ′
, (Tij = T ′

ij when τ
∼= τ ′)

=

{
(c · dτ )−1T ′

ij, τ ∼= τ ′

0, τ ̸∼= τ ′

If π is a representation ofK which has multiplicity-free decomposition, then we can define
a projection map onto the isotypic subspaces, which is the subject of the next corollary.

Corollary 7.1.1 Let K be a compact Lie group, and let π is a representation of K which
has multiplicity-free decomposition. If τ is an irreducible representation of K, then the map

Pτ (v) = dτ

∫
K

tr
(
τ(k−1)

)
π(k)(v)dk

projects onto the τ -isotype in Eπ. In particular, suppose Eπ =
∑∞

j=1Ej, with τj the map
associated with each irreducible Ej. For v ∈ Eπ, write v =

∑∞
j=1 vj where vj ∈ Ej. If τ ∼= τj

for some j, then
Pτ (v) = c−1

j vj,

where (·, ·)τ = cj(·, ·)τj for cj > 0.
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Proof. We have

Pτ (v) = dτ

∫
K

tr
(
τ(k−1)

)
π(k)(v)dk

= dτ

∫
K

tr
(
τ(k−1)

)( ∞∑
j=1

τj(k)(vj)

)
dk

= dτ

∞∑
j=1

∫
K

tr
(
τ(k−1)

)
τj(k)(vj)dk.

By Proposition 7.1.1, since τ ∼= τj (and this is the only pair of equivalent representations
since the decomposition was assumed to be multiplicity-free), this is

Pτ (v) = dτ (cj · dτ )−1vj = c−1
j vj,

as claimed. (Pτ (v) = 0 if there is no equivalent representation to τ in this decomposition).

Now we are ready to show how the density argument from the beginning of the chap-
ter follows from projecting a function onto the isotypic subspaces that the representation
contains.

Proposition 7.1.2 Let K be a compact Lie group, and let π be a representation of K which
has multiplicity-free decomposition. If v ∈ Eπ such that Pτ (v) ̸= 0 for each irreducible τ that
occurs in the decomposition, then

Eπ = span(K · v).

Proof. The K-finite space of Eπ is dense in Eπ, so it suffices to check that each irreducible
Eτ is contained in span(K · v).

Observe that since k 7→ k · v is continuous, the integral defining Pτ (v) is the limit of
Riemann sums of the form

dτ

n∑
j=1

vol(Sj)χτ (k
−1
j )kj · v

where {Sj} is a partition of K and kj ∈ Sj. Thus, Pτ (v) lies in the closure of the span of

the orbit K · v. That is, Pτ (v) ∈ span(K · v). Since each Pτ (v) is nonzero by assumption, it
follows that

Eτ ⊂ span(K · v)

for every irreducible τ in this space. Therefore, span(K · v) contains the K-finite space,
which completes the proof.

7.2 Obtaining a Suitable Function via the Baire Category Theorem

We will now show that there is an f ∈ EG with compact support in a right CG-saturated
subset of VG such that

EG = span(KH · f).
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Lemma 7.2.1 Let π be an irreducible representation of KG such that E
(CG,λs,ε)
π ̸= {0} (i.e.,

a KG-type of indGQG
(λs,ε)). Let τ be an irreducible representation of KH that occurs in

resKG
KH

(π). Then there exists f ∈ EG, with compact right CG-saturated support contained in
VG such that Pτ (f) ̸= 0.

Proof. Let φ : KG → C be a smooth function. Define fφ : KG → C by

fφ(x) =

∫
CG

λs,ε(y)φ(xy)dy.

Observe that fφ ∈ EG, since for c ∈ CG, we have

fφ(xc) =

∫
CG

λs,ε(y)φ(xcy)dy

=

∫
CG

λs,ε(c
−1y)φ(xc(c−1y))dy, (subbing y 7→ c−1y)

= λs,ε(c
−1)

∫
CG

λs,ε(y)φ(xy)dy

= λs,ε(c)
−1fφ(x).

Notice that

Pπ(fφ)(x) = dπ

∫
KG

tr(π(k−1))lk(fφ)(x) dk

= dπ

∫
KG

tr(π(k−1))fφ(k
−1x) dk

= dπ

∫
KG

tr(π(k−1))

(∫
CG

λs,ε(y)φ(k
−1xy)dy

)
dk

= dπ

∫
KG

∫
CG

tr(π(k−1))λs,ε(y)φ(k
−1xy)dydk

= dπ

∫
KG

∫
CG

tr(π(uy−1x−1))λs,ε(y)φ(u)dydu (with u-sub, u = k−1xy)

= dπ

∫
CG

∫
KG

tr(π(uy−1x−1))λs,ε(y)φ(u)dudy (Fubini)

We may choose φ ∈ C∞(KG) to have compact support contained in VG very close to e and
total integral 1, so that fφ will have compact support in a right CG-saturated subset of VG.
Then Pπ(fφ) will be close to the function

Fπ(x) = dπ

∫
CG

tr(π(y−1x−1))λs,ε(y)dy.

Since Fπ is a limit of Pπ(fφ)’s in the complete space Eπ (finite-dimensional complex vector
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space), we have that Fπ ∈ Eπ. In fact, Fπ ∈ E
(CG,λs,ε)
π , since for c ∈ CG,

lc(Fπ)(x) = Fπ(c
−1x)

= dπ

∫
CG

tr(π(y−1(c−1x)−1))λs,ε(y)dy

= dπ

∫
CG

tr(π(y−1x−1c))λs,ε(y)dy

= dπ

∫
CG

tr(π(y−1)π(x−1)π(c))λs,ε(y)dy

= dπ

∫
CG

tr(π(c)π(y−1)π(x−1))λs,ε(y)dy

= dπ

∫
CG

tr(π(cy−1x−1))λs,ε(y)dy

= dπ

∫
CG

tr(π((yc−1)−1x−1))λs,ε(y)dy

= dπ

∫
CG

tr(π(y−1x−1))λs,ε(yc)dy (R-invariant Haar measure, subbing y 7→ yc)

= λs,ε(c)Fπ(x).

Thus, Pπ(fφ) ∈ Eπ is close to an element of E
(CG,λs,ε)
π under the above conditions on φ.

Notice that

Fπ(e) = dπ

∫
CG

tr
(
π(y−1)

)
λs,ε(y)dy

= dπtr

(∫
CG

π(y−1)λs,ε(y)dy

)
,

and so Fπ(e) is dπ times the trace of the map∫
CG

π(y−1)λs,ε(y)dy

on the space Eπ.

This map projects onto E
(CG,λs,ε)
π . We see that this map is into after∫

CG

π(y−1)λs,ε(y)dy =

∫
CG

π
(
(yc−1)−1

)
λs,ε(yc

−1)dy (subbing y 7→ yc−1)

=

∫
CG

π(cy−1)λs,ε(yc
−1)dy

=

∫
CG

π(c)π(y−1)λs,ε(y)λs,ε(c
−1)dy (multiplicative properties)

= λs,ε(c)
−1π(c)

∫
CG

π(y−1)λs,ε(y)dy,
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and multiplying both sides by λs,ε(c). To see that this map acts as the identity on E
(CG,λs,ε)
π ,

first suppose f ∈ E
(CG,λs,ε)
π . Recall that we are using the normalized Haar measure, and so

Vol(CG) = 1. We have(∫
CG

π(y−1)λs,ε(y)dy

)
(f) =

∫
CG

λs,ε(y)π(y
−1)(f)dy

=

∫
CG

λs,ε(y)λs,ε(y
−1)fdy

= Vol(CG)f = f.

The trace of a projection map is the dimension of the target space, and so

Fπ(e) = dπ dim(E(CG,λs,ε)
π ).

These remarks show that if E
(CG,λs,ε)
π ̸= {0}, then we can choose φ ∈ C∞(KG) such that

fφ ∈ EG has compact support in a right CG-saturated subset of VG, and Pπ(fφ) is close to
the nonzero function Fπ, and in particular, Pπ(f) is not identically zero.

In Chapter 2, we calculated the KG-types explicitly in terms of their highest weights,
and realized models of them as tensors of homogeneous polynomials

πm,n := H m(R2p)⊗ H n(R2q).

The (multiplicity-free) decomposition of πm,n by restricting to KH is a sum of

τm1,n1 := H m1,m−m1(Cp)⊗ H n1,n−n1(Cq)

given by

resKG
KH

(πm,n) ∼=
∑

0≤m1≤m
0≤n1≤n

τm1,n1 .

The embedding vectors for πm,n are Fπ = ξm⊗ ξn given in Chapter 1, and we also explained
in that chapter how each ξm decomposes as a linear combination of embedding vectors for
τm1,n1 , with each component nonzero.

Since we can choose φ so that Pπm,n(fφ) is close to Fπm,n , then Pτm1,n1 (Pπm,n(fφ) is close
to Fτm1,m2 , and so is nonzero, which completes the proof.

Let K be a compact Lie group, let {Xi}mi=1 be a basis of k = Lie(K), let U(k) be the
universal enveloping algebra of k, spanned by elements un = X1X2 · · ·Xn where each Xj ∈ k.
Let

∥f∥n = sup
un∈U(k)

∥un.f∥∞.

Let

d(f, g) =
∞∑
n=1

2−n
∥f − g∥n

1 + ∥f − g∥n
,

a translation-invariant metric on C∞(K) in the sense that d(f + h, g + h) = d(f, g) for
f, g, h ∈ C∞(K).
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The Baire Category Theorem implies that if a non-empty complete metric space is the
countable union of closed sets, then one of these closed sets has non-empty interior. We
will use this theorem to implicitly obtain a smooth section f ∈ indKG

CG
(λs,ε|CG

) such that
Pπ(f) ̸≡ 0 for all KH-types π in the decomposition.

By restriction from KG to KH , a KG-type breaks up as a sum of KH-types from multiple
degenerate principal series indHQH

(χs,a). A KG type corresponds to a box of KH-types and a

single indHQH
(χs,a) will correspond to a diagonal of KH-types in that box, and there will be

finitely many needed to get the whole box.
Let

E ′
G = {f ∈ EG : f has compact support in a right CG-saturated subset of VG}.

Theorem 7.2.1 (Baire Category Argument) There exists a smooth section f ∈ E ′
G

with compact support in a right CG-saturated subset of VG such that Pτ (f) ̸= 0 for each
irreducible τ that occurs in the decomposition of E ′

G under restriction to KH .

Proof. There are countably many KG-types (pairs (m,n) ∈ Z2
≥0), and since the restriction

of a KG-type to KH yields finitely many KH types (4-tuples (m1,m2, n1, n2) ∈ Z4
≥0 where

m1+m2 = m,n1+n2 = n), each multiplicity-free (because Ta is one-one), there are countably
many KH-types in E

′
G, say {τn}∞n=1. For each n, let

Xn = {f ∈ E ′
G : Pτn(f) = 0}.

Each Xn is closed, since Xn = P−1
τn ({0}). Each Xn is nonempty, since 0 ∈ Xn. Each Xn

is proper by Lemma 7.2.1. Each Xn has empty interior, since it is a proper subspace of
the topological vector space E ′

G. Due to these observations, we have by the Baire Category
Theorem that E ′

G ̸=
⋃∞
n=1Xn, which completes the proof.

7.3 The Correspondence between Right CG-Saturated Subsets of KG with
Subsets of N̄G

Lemma 7.3.1
N̄GQG = VGQG.

Proof. Recall that we defined VG = N̄GQG ∩KG. Let n̄G ∈ N̄G, qG ∈ QG. Since G = KGQG,
we may factor n̄GqG = kGq

′
G for some kG ∈ KG, q

′
G ∈ QG. But then kG = n̄GqG(q

′
G)

−1 ∈
N̄GQG, which shows containment. The reverse containment is obvious.

Proposition 7.3.1 The map φ : G/QG → Q given by φ(gQG) = [gv1] is a homeomorphism.
In particular,

G/QG
∼= KG/CG.

Proof. First we show that G/QG is compact. Let

f : KG/CG → G/QG

be given by
f(kCG) = kQG.
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Since for k1, k2 ∈ KG, k1CG = k2CG if and only if k1QG = k2QG, and so f is well defined and
one-one. The map ψ : KG → G/QG given by ψ(k) = kQG is the composition of the inclusion
KG → G with the quotient map G → G/QG, and so is continuous. Since ψ is constant on
kCG for all k ∈ KG, f is continuous (Munkres theorem 22.2, p.142, see following diagram).

KG

K/CG G/QG

ψ

f

Clearly f is onto, and so G/QG is the continuous image of KG/CG, and so is compact.
As P(R2p,2q) is Hausdorff, so is the topological subspace Q.
Observe that the map g 7→ gv1 is continuous (matrix multiplication), and the map

R2p,2q → P(R2p,2q) given by x 7→ [x] (where [x] is the line through x) is the quotient map, so
the composition

G→ R2p,2q → Q

given by
g 7→ gv1 7→ [gv1]

is continuous.
This map is constant on each coset, since for gq ∈ gQG, we have gq 7→ [gqv1] = [gv1].

Thus, the induced map φ : G/QG → Q given by φ(gQG) = [gv1] is continuous (again by
Theorem 22.2 in Munkres, p.142).

G

G/QG Qφ

A continuous bijection from a compact space to a Hausdorff space is a homeomorphism.
To complete the proof, it remains to show that φ is a bijection.

If [gv1] = [g′v1], then gv1 = λg′v1 for some λ ∈ R×. Thus, (g′)−1g ∈ QG, and so
gQG = g′QG, so that φ is one-one.

If [x] ∈ Q for x = (x1, x2) ∈ R2p,2q, we may assume that ∥x1∥2p = ∥x2∥2q = 1. Recall that
by Witt’s theorem, KG

∼= SO(2p)× SO(2q) acts transitively on the level sets of R2p ⊕ R2q.
Thus we may choose kv1 = x, so that φ(kQG) = [x]. This shows that φ is onto, and thus a
homeomorphism.

We showed first that KG/CG → G/QG is a continuous bijection, and now we know that
the latter space is Hausdorff, and so this map is a homeomorphism.

Proposition 7.3.2 The map ψ : N̄G → N̄GQG/QG given by ψ(n̄) = n̄QG is a homeomor-
phism. In particular, the map VG → N̄G given by k = n̄(k)q(k) 7→ n̄(k) is continuous.

Proof. Since QG acts continuously on G, the quotient map

p : G→ G/QG
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is open. Thus, the map
p|N̄G

: N̄G → N̄GQG/QG

is also open and continuous.
I will show that this map is a bijection. By Knapp’s Lie Groups: Beyond an Introduction,

7.83 (e), N̄G ∩QG = {e}. So

n̄GQG = n̄′
GQG =⇒ n̄G = n̄′

G,

which means this map is injective. The map is visibly onto, and so this is a homeomorphism.
The quotient map N̄GQG → N̄GQG/QG is continuous, therefore so is the composition

N̄GQG → N̄GQG/QG → N̄G.

The restriction of this map to VG is then continuous, which is the map

k = n̄(k)q(k) 7→ n̄(k).

Lemma 7.3.2 Let φ ∈ C∞(KG) with support in a compact subset F ⊂ VG. Then fφ has
support in a compact right CG-saturated subset of VG. Furthermore, the extension of fφ ∈ EG
to f̃φ ∈ indGQG

(λs,ε), restricted to N̄G, has compact support.

Proof. Since multiplication is continuous, FCG is compact. Since F ⊂ VG and since VG is
right CG-saturated, FCG ⊂ VGCG = VG. For x ∈ KG, we have

fφ(x) =

∫
CG

λs,ε(y)φ(xy)dy.

In the integrand, xy ∈ FCG if and only if x ∈ FCG, and so fφ will have suport in FCG,
which proves the first statement.

For the second statement, suppose that f ∈ EG has support in the compact right CG-
saturated subset F of VG. Let

F ′ = N̄G ∩ FQG.

I claim that the extension f̃ ∈ indGQG
(λs,ε), when restricted to N̄G, has support in F ′, and

that F ′ is a compact subset of N̄G. Firstly, I claim that N̄G is image of the sequence of
continuous maps

VG → VG/CG → N̄GQG/QG → N̄G

given by
v 7→ vCG 7→ vQG → n̄,

where v = n̄q for some n̄ ∈ N̄G and some q ∈ QG. The first map is a quotient map, and
the second two are the homeomorphisms from Propositions 7.3.1 and 7.3.2, respectively. It
is clear that under the first two maps in this sequence that F 7→ FCG = F 7→ FQG. I will
show that the last map takes FQG onto F ′.

(into) This direction follows immediately by the definition of F ′. Let n̄q ∈ F. Then
n̄ ∈ Fq−1 ⊂ FQG, and n̄qQG 7→ n̄ ∈ N̄G.
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(onto) Let n̄ ∈ F ′. Then n̄ ∈ Fq for some q ∈ QG, and so n̄q−1 ∈ F. Then n̄q−1QG ∈ FQG

and n̄q−1QG = n̄QG 7→ n̄ ∈ N̄G, which completes the claim.
Thus F ′ is the continuous image of the compact set F, and so is a compact subset of N̄G.
I claim that if f ∈ EG with supp(f) ⊂ F, then its extension f̃ ∈ indGQG

(λs,ε) restricted to
N̄G has compact support in F ′.

Let n̄ ∈ N̄G\F ′, and write n̄ = k(n̄)q(n̄) for k(n̄) ∈ KG, q(n̄) ∈ QG. Notice that k(n̄) /∈ F,
since that would imply n̄ ∈ FQG (but n̄ /∈ F ′). This implies that f(k(n̄)) = 0, and in
particular

f̃(n̄) = f̃(k(n̄)q(n̄))

= λs,ε
(
q(n̄)

)−1
f(k(n̄))

= 0,

which completes the claim that f̃ has compact support in N̄G.

Corollary 7.3.1 There exists a function f ∈ E ′
G, which when extended to indGQG

(λs,ε), is
Schwartz on N̄G, and

EG = span(KH · f).

Proof. By Theorem 7.2.1, there is a function f ∈ E ′
G with compact support in a right CG-

saturated subset of VG such that Pτ (f) ∈ span(KH · f) ∩Eτ is nonzero for every irreducible
τ that occurs in the decomposition of EG under restriction to KH . That is, span(KH · f)
contains every KH-type in the decomposition, and since the sum of KH-types is dense in
EG, we have

EG = span(KH · f).

By Lemma 7.3.2, the function extended function f̃ ∈ indGQG
(λs,ε), when restricted to N̄G,

has compact support, and this completes the proof.
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