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Abstract: Ionic liquids are classes of salts that are often found in a liquid state composed

entirely of ions. They have gained widespread interest in the research community because of

several unique and desirable features, such as negligible vapor pressure, environmental

friendliness, and high thermal stability. They are currently studied for various industrial

applications as a replacement for conventional solvents. Among them, it has caught the interest

of the energy community as a potential electrolyte for battery applications. The current

electrolytes found in lithium-ion batteries are based on carbonate solvents known for their

excellent performance and low material cost. However, they are plagued with numerous safety

concerns as the solvent is highly volatile and prone to flammability during thermal runaway or

short circuit. Growing demand for lithium-ion batteries for technology such as electric vehicles

has mandated the need for safer and more sustainable batteries. This has made ionic liquids a

potential electrolyte candidate as they have impeccable thermal and chemical stability with

negligible vapor pressure, eliminating any concerns related to safety. However, the performance

of ILs is still far behind in matching the performance of current carbonate electrolytes. Finding

the appropriate ionic liquid candidate with high stability and performance can be challenging
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would be expensive and unfeasible. Running atomistic simulations to complement the
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CHAPTER 1

INTRODUCTION

1.1 Overview

The discovery and use of fossil fuels as a source of energy may have forever altered

the course of human civilization as we know it. Aside from providing energy for

all industrial processes and transportation, the use of fossil fuels has also had an

indirect impact on every aspect of modern life, including some notable ones such

as material synthesis for housing, clothing, and infrastructure development, fer-

tilizer manufacturing for food production, and drug development. This increase

in the quality of life has enabled humans to be more productive, healthier, and

live longer lives, resulting in tremendous economic and societal growth in a rela-

tively short period. The rapid advancement, however, has come at a cost to the

environment, as the burning of fossil fuels emits a massive amount of CO2 into

the atmosphere, causing a rise in global temperature. This could eventually cause

irreversible damage to our planet and living beings, with rapidly melting glaciers

flooding the coastline, intense heatwaves causing drought and famine, and climate

extremes destroying livelihoods worldwide.

As a result, a global effort is underway to mitigate this disaster by limiting green-

house gas emissions, which might require a complete shift in energy sources from

nonrenewable to renewable energy sources such as solar, wind, and geothermal.

However, changing the entire energy grid is not an easy task as renewable energies
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are intermittent energy sources that are only available at certain times during the

day. Harvesting these energy sources and storing the energy for later requires en-

ergy storage mediums such as batteries. Aside from the energy grid sector, there is

a rapidly growing demand for electric vehicles powered by battery technology. As

demand increases, the need for safer, more sustainable, high-energy-density bat-

teries to power devices ranging from portable electronics to electric vehicles grows.

However, meeting this demand would require significant improvements in current

battery components and electrolyte chemistry [1, 2].

The scope of this work is limited to electrolytes because, despite their excellent

performance, the currently used organic solvent electrolytes are plagued by safety

issues due to high volatility and flammability during thermal runaway or short-

circuit [3–5]. Several alternative candidates are being considered, including solid-

state electrolytes, polymer-based electrolytes, and ionic liquids, to improve safety

while matching the performance of current organic solvent electrolytes [6].

1.1.1 Ionic Liquids

Ionic liquids (ILs) are classes of salts composed entirely of ions with a melting point

below 100 ◦C. They have gained tremendous interest in the research community as

a replacement for conventional solvents because of features such as negligible vapor

pressure, which solves the issue of volatile organic contaminants (VOC) emission

during the solvent usage [7]. Many of the ILs also have very high thermal and

chemical stability, with some of them reaching a thermal decomposition tempera-

ture of 450 ◦C [8] which is an improvement over conventional solvents accompanied

by low thermal and chemical stability. The most significant advantage of ILs over

conventional solvents is the design flexibility, which allows the design of ILs with

desired properties based on the requirements of a given application. There are a

large number of cations and anions available that one can choose from based on

the application requirement, as seen in Figure 1.1 with estimates of up to 1014

different ILs [9].
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Figure 1.1: Commonly studied cations, anions and functional groups structure

drawn using OPSIN [10]. Rn indicates some of the commonly attached location

for functional groups on the cation. The tunability of the cations is derived by

changing the functional group attached to the cations.

The selection of the cation and anion is guided by considering their unique advan-

tages and challenges. For battery applications, properties such as low viscosity,

high ionic conductivity, and high electrochemical stability are a few of the most

important attributes considered before selecting an ionic liquid of interest. Among

all of the ILs, the most popular class is based on the imidazolium group, as ILs

derived from this moiety are often associated with very low viscosity, and high

ionic conductivity [11]. However, a major limitation of imidazolium cations is the

small electrochemical window (3.0 – 4.5 V) because of the presence of an acidic

proton at the C2 position (Figure 1.1) on the imidazolium ring that gets easily

reduced. Replacing the hydrogen at the C2 position with an alkyl group resolves

the low electrochemical stability issue [12], but any changes made to the C2 posi-

tion have shown to increase viscosity and lower ionic conductivity dramatically [13].
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The next closest relative to the imidazolium cations are the pyridinium-based

cations that are more sluggish, accompanied by high viscosity and low ionic conduc-

tivity compared to the imidazolium cations, which is why there is a limited amount

of studies done on exploring their application as electrolytes for battery applica-

tions [14–16]. For instance the ionic conductivity of 1-butyl-3-methylimidazolium

bis(trifluoromethylsulfonyl)imide is about 0.401 S/m at 298.15 K [17] compared

to 0.272 S/m for 1-butyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide at

the same temperature [16].

Beyond the aromatic cations, cyclic cations such as pyrrolidinium and piperidinium

cations have generated tremendous interest as they offer high biodegradability and

low toxicity [18, 19]. The pyrrolidinium cation also offers low viscosity and high

ionic conductivity, and, unlike imidazolium cations, they have a very high electro-

chemical window, with a majority of them reaching above 4.5 - 5.0 V [11]. Besides

faster dynamics, the pyrrolidinium cations also have very high stability toward

lithium metal, making them an ideal candidate for battery application as poten-

tial electrolytes [20,21].

Modifying the five-ring pyrrolidinium structure to a six-ring structure gives rise

to the piperidinium cations. Similar to pyridinium cations, piperidinium cations

have slower dynamics than pyrrolidinium cations because of the bulky nature of the

cation. For instance at 298.15 K the ionic conductivity of

1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide is reported to be

around 0.277 S/m [17] as compared to 0.139 S/m for 1-butyl-1-methylpiperidinium

bis(trifluoromethylsulfonyl)imide [22]. As such, there are relatively few studies that

have explored the possibility of piperidinium cations as electrolytes for battery ap-

plication [22–24].

Besides cyclic and aromatic cations, other central atom-based cations such as phos-

phonium, ammonium, and sulfonium are also extensively studied for various ap-

plications [25–27]. The ammonium-based cations have a very high electrochemical
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window compared to imidazolium but are also associated with very high viscos-

ity, and low ionic conductivity [28]. Similarly, phosphonium cations also exhibit

high electrochemical stability but have almost twice the ionic conductivity com-

pared to their ammonium counterpart [29]. For instance, the ionic conductivity

of tributyl(hexyl)ammonium bis(trifluoromethylsulfonyl)imide is reported to be

around 0.28 S/m at 298.15 compared to 0.43 S/m for tributyl(hexyl)phosphonium

bis(trifluoromethylsulfonyl)imide at the same temperature [30]. Molecular dy-

namic studies have alluded to this difference in transport properties between the

two cations primarily because of the disparity in electrostatic charge concentration

around the central atom [29,31].

The sulfonium cations have also generated tremendous interest in battery appli-

cations as they have very low viscosity and high ionic conductivity compared

to other central-based cations because of the presence of a small-sized central

atom [27,32,33]. Several studies have reported the ionic conductivity of sulfonium

to be greater than phosphonium and twice as high as ammonium cations [32, 33].

Furthermore, as compared to the phosphonium cation, the sulfonium cation is

found to perform better for energy storage applications [34].

Beyond the standard alkyl chain substitute on the cation, it is also possible

to add other functional groups (Figure 1.1) at various positions on the cation.

One of the commonly studied functional groups is the ether functional group,

known to enhance transport properties by lowering viscosity and increasing ionic

conductivity [35–39]. Neale et al. [37] conducted a comprehensive experimental

study on the thermophysical and transport properties of three cations (1-methyl-1-

butylpyrrolidinium, 1-methyl-1-butylpiperidinium, and 1-methyl-1-butylazepanium)

paired with bis(trifluoromethylsulfonyl)imide anion. The authors reported an in-

crease in ionic conductivity and a decrease in viscosity roughly by a factor of 1.50

with the replacement of the butyl chain (CH2CH2CH2CH3) with an ether group

(CH2CH2OCH3). However the trend is reversed as the ether group (CH2CH2OCH3)

is extended to (CH2CH2OCH2CH2OCH3). This is because of the presence of
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the long functional chain length that reduces the movement of the ions, slow-

ing down the dynamics. The dynamics get severely sluggish as both the methyl

and butyl groups are replaced with the ether group. Yoshi et al. [38] reported sim-

ilar trends with 1-methyl-1-propylpyrrolidinium-based cations with the addition of

ether group as a substitute for the alkyl chain paired with

bis(trifluoromethylsulfonyl)imide anion. The authors found the substitution of

propyl group (CH2CH2CH3) with (CH2OCH3) enhanced transport properties by

roughly a factor of 1.50.

Besides cations, the choice of anion also plays a crucial role in shaping the proper-

ties of an ionic liquid. Cyano-based anions such as dicyanamide and tetracyanob-

orate are some of the most popular anions that are often associated with faster

dynamics [40,41]. However, these cyano-based anions are easily susceptible to oxi-

dation, which is why they have very low electrochemical stability [11]. When com-

bined with a cation, fluoro-based anions such as bis(trifluoromethylsulfonyl)imide,

tetrafluoroborate, and hexafluorophosphate provide high electrochemical stability,

with the majority reaching electrochemical windows greater than 4.0 V [42, 43].

However, several studies have found the negative impact of fluoro and cyano-based

ILs on the environment as they are hard to degrade, tend to persist, and accumu-

late in the water sources for a more extended period [44, 45]. On the other hand,

organic anions such as acetate, lactate, saccharinate, and amino-based anions are

more desirable from an environmental perspective as they are readily biodegrad-

able with very low toxicity [46]. Compared to cyano and fluoro-based anions, these

anions have high viscosity, low ionic conductivity, and low electrochemical stabil-

ity [47,48].

In addition to pure ILs, several studies have demonstrated that combining cations

and anions to form binary IL mixtures can improve existing drawbacks such as high

viscosity and low ionic conductivity [49–51]. Kunze et al. [49] in an experimental

study found that the mixture of 1-butyl-3-methypyrrolidinium

bis(trifluoromethylsulfonyl)imide and 1-propyl-3-methypyrrolidinium
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bis(fluorosulfonyl)imide increased the ionic conductivity of the mixture by 103

at -40 °C when compared to the two pure ILs. The author noted that this en-

hancement was possible because mixing the two ILs prevented them from forming

crystals at such a low temperature, which reduces the conductivity to an almost

negligible value. Similarly, Evra et al. [50] reported an increase in ionic conduc-

tivity as a function of composition based on experimental measurement for the

mixture of 1-methyl-3-ethylimidazolium trifluoromethanesulfonate and 1-methyl-

3-ethylimidazolium bis(trifluoromethylsulfonyl) imide.

Such a deviation in properties for IL mixtures from ideality is dictated by the size

difference and the hydrogen bonding ability of the ions. Kapoor et al. [52] showed

that the difference in volume and hydrogen bonding accepting ability between

the anions played a driving force in determining whether a given mixture shows

non-ideal behavior. The authors conducted molecular dynamics simulations for

16 different binary anion mixtures and found that pure ILs with a molar volume

difference greater than 60 cm3/mol and a hydrogen bonding basicity difference

greater than 0.4 when mixed are presumed to show non-ideal behavior. Before

running an experiment or simulation, this rule of thumb could serve as a screening

tool to identify ionic liquid mixtures that show non-ideal behavior. Several other

binary anions common cation mixture studies have found similar results where the

difference in hydrogen bonding ability of the anions and the difference in anion size

induces competition between the anions that causes the system to show non-ideal

behavior. The strongly coordinating anions prefer to form hydrogen bonds with

the hydrogen located at the C2 position on the imidazolium cation, displacing the

less basic anion, inducing a non-ideal structural transition [53,54].

Besides mixing ILs with themselves, they are also compatible with conventional

solvents in the form of mixtures primarily aimed at reducing overall solvent cost

while having some of the desirable features of ILs [55].
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1.1.2 Application

Because of their several unique desirable features and flexibility, as described above,

ILs have gained wide-spread attention in the research community as a potential re-

placement for conventional solvents. Various pure ILs and mixtures are being stud-

ied for gas capture [56], catalysis [57], extraction agent for LLE separation [58–60],

cellulose dissolution [61] and energy storage application [62].

The energy community’s interest in ILs has multiplied over the years as the sector

moves toward the development of next-generation Li-ion batteries. Current bat-

tery technologies based on Li-ion batteries have made energy storage possible at

our convenience. It has helped pave the way for renewable energy to be considered

a potential energy source for reducing the consumption of nonrenewable energy

sources, which are the major contributors to greenhouse gas emissions. Meeting

the global supply of Li-ion batteries as the primary energy storage for everyday

devices, however, would be difficult as demand for safer, more sustainable, and

high-energy-density batteries for a variety of applications increases [63].

Developing such Li-ion batteries would require significant improvement in current

battery technology based on materials that are more sustainable along with im-

proving the stability and performance of major components such as electrodes,

separators, and electrolytes [64–66]. In this work, however, the focus is solely on

electrolytes as there are growing safety concerns with the current state-of-the-art

electrolytes based on organic carbonate solvents [67]. These organic carbonate sol-

vents are added along with Li salts to form an electrolyte that transports Li-ions

between the electrodes during the charging and discharging of the batteries. The

carbonate solvents have been a tremendous success in the Li-ion battery movement

as they are incredibly cheap and offer low viscosity and high ionic conductivity.

However, there are growing safety issues because of their highly volatile nature

and low stability that can easily catch fire during a short circuit or thermal run-

away [3–5, 68]. Safety concerns for current Li-ion battery electrolytes have grown
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even more as the demand soars for large-scale applications such as electric vehi-

cles [69].

Thus, a tremendous effort is underway to find the next generation of electrolytes

to solve the safety issue by offering high thermal, chemical stability and similar

performance to the organic carbonate solvents [70]. As discussed earlier, ILs have

excellent thermal and chemical ratings regarding stability and safety, solving some

of the concerns associated with conventional electrolytes. However, they are still

far from matching the performance of organic carbonate solvents as they have very

high viscosity and low ionic conductivity at room temperature compared to con-

ventional electrolytes [6].

Figure 1.2: Experimental ionic conductivity data at 298.15 K. LP30 here refers to

the conventional electrolyte used in Li-ion batteries [71,72].

Figure 1.2 depicts the experimental ionic conductivity of all the ILs at 298.15
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K obtained from NIST IL Thermo database [73, 74] and other literature sources

[36, 75–94]. Based on the figure, it is evident that the amount of ionic liquid data

for ionic conductivity is minuscule compared to the number of ILs that are possi-

ble. Secondly, it is also evident that the majority of the ILs have very low ionic

conductivity, as alluded to earlier.

The current commercial electrolytes based on organic carbonate LP30 (Ethylene

carbonate + Dimethyl carbonate + LiPF6) has an ionic conductivity of 1.26 S/m at

room temperature and electrochemical stability up to 4.5 V [71,72]. For ILs to have

similar performance, the ionic conductivity needs to be at least around 2.0 S/m

as the addition of Li-salts significantly increases the viscosity and decreases the

ionic conductivity by 30 - 40% based on the molar concentration of the salt [95,96].

That leaves us with only five ILs (Figure 1.2), of which one of them is 1-ethyl-

3-methylimidazolium thiocyanate ionic liquid with an ionic conductivity of 2.32

S/m but an electrochemical window of less than 3.0 V [97]. The second ionic

liquid is the primary ammonium ionic liquid (ethyl ammonium nitrate) with an

ionic conductivity of 2.69 S/m but with low electrochemical stability of 1.5 V [98].

The third one is 1-ethyl-3-methylimidazolium dicyanamide anion ionic liquid with

an ionic conductivity of 2.83 S/m that is known for its extremely fast dynamics

but with a very small electrochemical window of 3.2 V [99, 100]. The top two ILs

that cross the 4.0 S/m barrier are the same pyrrolidinium nitrate at two different

pressures with a low electrochemical window of 1.7 V [101,102]. Despite the high

ionic conductivity, these five ILs are not suitable for battery application as they

have very low electrochemical stability making them highly susceptible to oxidation

and reduction during their usage.

1.1.3 Current Limitation

For ILs to be considered as potential electrolyte candidates, some of the limita-

tions discussed above have to be resolved, such as the generation of more ionic

conductivity data to thoroughly explore the ionic conductivity property space to
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identify a potential list of ionic liquid candidates that also have high electrochem-

ical stability at the same time. To put that into perspective, in our preliminary

research phase, we explored about 4000 experimental data points, out of which we

found around only 350 data points at room temperature, as seen in Figure 1.2 with

barely five ILs reaching an ionic conductivity that are close in range compared to

the current commercial electrolytes.

Figure 1.3: Experimental ionic conduc-

tivity data based on cation type dis-

tribution. Data collected from NIST

IL thermo database and other literature

sources referenced above.

Moreover, as discussed above, most

top-performing ILs possess high ionic

conductivity but low electrochemi-

cal stability, making them undesir-

able from a commercial application

point of view. It is also evident

that there is a limited amount of

experimental ionic conductivity data

available to work with to explore

new ILs with high ionic conductiv-

ity and high electrochemical stabil-

ity.

Figure 1.3 depicts the distribution of

experimental ionic conductivity data

based on cation type. As previously

stated, the majority of experimental

ionic conductivity data for imidazolium cations are available, with very few data

points for pyrrolidinium-based cations, despite numerous studies reporting pyrro-

lidinium cations to be more stable and environmentally friendly than imidazolium

[103,104].

Generating more data for other cation types using experimental techniques would

be very expensive and time-consuming as there is a need for IL synthesis, which
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could involve numerous reaction steps. Similarly, using atomistic simulation to

generate a large amount of new data would be highly time-consuming and com-

putationally expensive. Furthermore, as discussed earlier, some of the drawbacks

of pure ILs are resolved by mixing ILs to form binary mixtures with non-ideal

behavior. However, very few studies have looked at measuring the ionic conduc-

tivity of binary mixtures to understand the trends and identify cations and anions

that could induce such behavior [51]. Conducting experiments on generating new

binary ionic liquid mixture data would be extremely time-consuming and costly,

as one now has to consider the composition dependency of the mixture.

1.1.4 Research Focus

This data scarcity challenge and the difficulty narrowing the chemical space pro-

vide a unique opportunity to use machine learning techniques to build a robust

and accurate model capable of generating large ionic conductivity data by learning

patterns within the available experimental data.

In addition, as mentioned earlier, the potential ILs are in the range of 1014 [9],

yet there are only a handful of cation types known over all these years. Besides

correlating properties, this work focuses on using deep learning ML methods to

help accelerate the discovery of new ionic liquid structures beyond the existing

ones to expand the potential pool of candidates with the desired property.

1.1.5 Research Scope

1. Develop a machine learning model based on existing data to predict ionic

conductivity and expand the ionic conductivity data space.

2. Explore the possibility of generating binary mixture data using a model de-

rived from pure ionic liquid data.

3. Understand and provide insights into molecular-level interactions and dy-

namics for a binary and reciprocal mixture using molecular dynamics.
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4. Expand the model for ionic conductivity beyond imidazolium to include

pyrrolidinium, sulfonium, and other widely studied ionic liquid cations.

5. Accelerated discovery of new cation types beyond the existing ones to expand

the potential list of candidates as electrolytes for battery applications.

6. Explore the possibility of building a machine learning model to predict den-

sity functional theory (DFT) properties such as HOMO/LUMO.

1.1.6 Dissertation Outline

Following the introductory chapter focused on the introduction of some of the

most widely studied ILs, their properties, advantages, and limitations compared

to conventional electrolytes for energy application, the rest of the dissertation is

outlined as follows:

Chapter 2 provides a brief overview of some of the work done using a compu-

tational prediction-based approach to correlate properties and expand the ionic

liquid space. This includes some of the most widely used prediction approaches,

from simple linear models to molecular dynamics simulation, deep learning meth-

ods, and density functional theory (DFT) approaches. The scope of the literature

review is focused on ionic conductivity and electrochemical stability of ILs, as those

are the two properties of interest for this work.

Chapter 3 walks through the background and methodology of the machine learning

approach, including the theory behind some of the widely used machine learning

algorithms. Next, a lengthy discussion on the machine learning pipeline includes

data gathering protocol, data formatting, feature generation, feature reduction,

and hyper-parameter tuning for model development. The chapter also focuses on

the theory behind molecular dynamic simulation and the derivation of some of the

properties that are often calculated from molecular dynamic simulations. Lastly,

the chapter ends with an overview of the concept behind calculating electrochem-

ical stability from DFT calculations.
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Chapter 4 discusses the development of a machine learning model for correlating

the ionic conductivity of imidazolium ILs. The paper expands the ionic conductiv-

ity of imidazolium at room temperature to 1102 unique ILs by combining all the

cations and anions present in the database. Lastly, the possibility of predicting

the ionic conductivity of binary mixtures using a model derived from pure ionic

liquid data is evaluated by comparing the prediction against all available exper-

imental mixture data. Analysis of the ionic conductivity mixture data reveals a

large number of systems to show enhancement or suppression in ionic conductivity

as a function of composition.

Chapter 5 employs molecular dynamic simulation to study the molecular level in-

teraction that drives such non-ideal behavior in mixtures, as seen in the previous

chapter. The paper focuses on binary cation mixtures (two cations and one an-

ion), binary anion mixtures (two anions and one cation), and reciprocal mixture

(two cations and two anions). Based on the analysis, the results indicate strong

preferential interactions between particular cation and anion, leading to significant

enhancement in the hydrogen bond dynamics for the mixtures.

Chapter 6 expands the machine learning model to cations beyond the imidazolium

ILs to cover nine different cation families. Instead of utilizing the neural network

model, which is considered a ’black box model’, this paper evaluates three different

machine learning approaches that offer more insights on the feature importance in

the model decision making. The paper also examines the possibility of using some

of these feature insights to build a simple classification model that aims to classify

cations into different ionic conductivity categories.

Chapter 7 explores the use of advanced deep learning methods to accelerate the

discovery of new cations to expand the potential list of candidates as electrolytes

for battery application. The paper discusses the methodology behind the gener-

ative algorithm to discover new cations and the post-processing steps involved in
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processing the data for duplication, structure validation, and stability tests. Some

of the cations discovered in this work occupy a new region of distinct space in

the cation chemical space, signifying the presence of a new cation family. Lastly,

the electrochemical stability of these cations is computed using density functional

theory (DFT) calculations.

Chapter 8 evaluates the possibility of developing a machine learning model to cor-

relate two important DFT properties. The hope is to build a robust model capable

of mimicking DFT prediction, eliminating the need to further use computationally

expensive DFT calculations for the rest of the chemical space.

Chapter 9 summarizes the findings of the work presented in the previous chapters

and potential future directions.
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CHAPTER 2

LITERATURE REVIEW

2.1 Overview

Several studies in the ionic liquid community have used a statistical prediction-

based approach to fill gaps in thermophysical data of ILs by correlating properties

using available experimental measurements. However, the majority of the work

has focused on density, viscosity, melting point, and gas solubility using various

predictive methods [105–108] with a limited amount of study done on ionic con-

ductivity and electrochemical window predictions. This section discusses each of

the commonly used predictive methods for correlating ionic conductivity and elec-

trochemical window of ILs.

2.1.1 QSPR Method

The Quantitative-Structure-Property-Relationship (QSPR) method is one of the

most basic and effective form of predictive models. It is a structure-property

mapping technique that connects chemical descriptors or features to the output in

a linear form. This is represented as follows:

ŷ = constant + x1feature1 + x2feature2 + xnfeaturen (2.1)
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where ŷ is the predicted data, x1, x2 and xn are the weight of the features for

feature1, feature2 and featuren. One of the major advantages of the QSPR

method over other predictive forms is the qualitative insight it can provide based

on the descriptor weights indicating the importance of each descriptor concerning

output. Several studies have attempted to use this prediction technique to corre-

late ionic conductivity of ILs [109–111].

Tochigi et al. [109] developed a linear quantitative structure-property relationship

(QSPR) to predict ionic conductivity for eight different cation families, and sixteen

different anions. The authors reported an overall R2 of 0.91 and a maximum error

of 4.191 for 139 data points. One of the significant advantages of the QSPR method

is the ability to infer insights on feature importance concerning the output. For

instance, the positive sign of coefficients indicates the positive influence on ionic

conductivity, such as temperature, which is known to accelerate dynamics as the

temperature is increased. For the anions, all of them have negative coefficients of

different magnitude, with the least for [BF4]
− and [CF3BF3]

− as cations paired

with these two anions have higher ionic conductivity than the rest.

Johansson et al. [110] found the molar volume of cation-anion calculated using the

ab inito method to have an excellent correlation with molar ionic conductivity.

However, this correlation is only limited to six pyrrolidinium ILs, and there is no

mention of whether this correlation would extend to other ILs. Eiden et al. [111]

demonstrated the use of Gibbs solvation energy, molecular radius, ion volume, and

symmetry number as input parameters to correlate the dielectric constant, viscos-

ity, and ionic conductivity of ILs. The authors’ rationale for using Gibbs solvation

energy was to consider the ion’s interaction with its nearby charged species that

could affect the macroscopic transport properties. The ionic conductivity model

showed a correlation coefficient R2 of 0.74 and RMSE of 0.25.

QSPR methods are often preferred for small data sets as they can generate qualita-

tive insights and identify the importance of each of the descriptors. However, these
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methods fail to capture complex non-linear trend structure-property relationships

resulting in low correlation accuracy.

2.1.2 Group Contribution Method

Another prevalent prediction technique is the group contribution (GC) method

which relies on the functional group as input descriptors instead of chemical de-

scriptors, as we saw earlier. Similar to QSPR with descriptors, the functional

groups can also provide valuable insights into the structure-property relationships.

y = constant +
∑
i

niWi (2.2)

where Wi is the weight of the group (i), ni is the number of instances a given

group is repeated throughout the molecule. Several studies have attempted to cor-

relate ionic conductivity of ILs using a GC-based approach [112–114]. Coutinho

et al. [112] used a three-parameter GC method equation to estimate the ionic con-

ductivity for pure ILs.

lnλ = lnAλ +
Bλ

(T − T0λ)
(2.3)

where λ is ionic conductivity, Aλ, Bλ and T0λ are parameters for the equation.

The two parameters (Aλ and Bλ) can be derived using GC approach as follows:

Aλ =
k∑

i=1

niaiλ (2.4)

Bλ =
k∑

i=1

nibiλ (2.5)
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where ni is the number of instances the group (i) is repeated, aiλ is the weight of

the group. The parameter T0λ is a temperature dependency parameter that takes

into account the relation between temperature and ionic conductivity derived dur-

ing model fitting. The database consists of five cation family groups, seven anion

groups, and one functional group. Overall the author reported an R2 of 0.997.

Similarly, Wooley et al. [113] applied a four-parameter GC-based approach to es-

timate the ionic conductivity of ILs.

ln
ϵ

R0ϵ

= Aϵ + Bϵ
100

T
+ Cϵ(

100

T
)2 (2.6)

where ϵ is ionic conductivity, R0ϵ an adjustable parameter, Aϵ, Bϵ and Cϵ are

parameters based on group contribution.

Aϵ =
k∑

i=1

niaiϵ (2.7)

Bϵ =
k∑

i=1

nibiϵ (2.8)

Cϵ =
k∑

i=1

niciϵ (2.9)

The GC database contained eight cation groups, 34 anion groups, and four func-

tional side groups derived from 1578 data points. The authors reported an average

absolute relative deviation (AARD %) of 6.83 for the test set and 3.30 for the

training set.

Gharagheizi et al. [114] employed a least-squares support vector machine GC

method to estimate ionic conductivity consisting of a dataset with 54 different
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unique ILs with an AARD of 3.3%. As one can imagine, the GC method is only

applicable as long as there are functional groups present in the database beyond

which it is not applicable.

2.1.3 Machine Learning Approach

However, with more experimental data and computational power, the focus has

shifted towards using machine learning methods to build complex structure-property

relationships to improve the model’s predictive capability.

Hezave et al. [115] deployed a neural network to predict electrical conductivity of

ternary mixture constituting of 1-butyl-3-methylimidazolium hexafluorophosphate

+ water + ethanol and 1-butyl-3-methylimidazolium hexafluorophosphate + wa-

ter + acetone. The model utilized temperature, molecular weight, and mixture

composition as input descriptors trained on 78 data points. The authors reported

a R2 of 0.99 for both the test and training sets. Similarly, Nordness et al. [116]

in a recent study, explored the use of support vector regression (SVR) to corre-

late the thermophysical properties of ILs that included density, viscosity, and ionic

conductivity based on descriptors calculated using conductor-like screening model

for real solvents (COSMO-RS). Using the SVR model, the authors trained 1305

data points to correlate ionic conductivity with a correlation coefficient R2 of 0.955

and AARD of 10.2%. Koi et al. [117] also utilized (COSMO-RS) descriptors in a

recent paper to develop an MLR and SVR model to correlate ionic conductivity

of imidazolium-based ILs. The authors used a data set of 239 data points that

consisted of 25 different ILs. The SVM method obtained higher accuracy with

a R2 of 0.990 than the MLR method with R2 of 0.855, indicating a non-linear

structure-property relationship that the MLR fails to consider.

Despite the high accuracy of all the regression models in correlating ionic conduc-

tivity, none of the papers explore the possibility of generating ionic conductivity

data using the cations and anions available in the model data set. This is impor-
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tant, as discussed in the introduction chapter (Figure 1.2), as there is a definite

need for more ILs with ionic conductivity greater than 2.0 S/m to match the per-

formance of conventional electrolytes. Besides generating pure ionic liquid data,

there is also a lack of study based on the literature review that has explored the

possibility of generating binary ionic liquid mixture ionic conductivity data using

machine learning techniques to examine any non-ideal behavior such as enhance-

ment in ionic conductivity as a function of mixture composition.

Recently, deep learning methods have gained tremendous popularity across all

domains with the availability of powerful computational resources to accelerate

material discovery. Beckner et al. [118] in their recent study, used QSPR based

deep neural network model to train models to predict heat capacity and density of

ILs. The cations present in the data set were broken down into functional groups

and used for genetic mutation of new cations. These mutated ILs were then passed

through the heat capacity and density model to filter ILs with the highest value.

Quantum mechanical (QM) calculations and molecular dynamics simulation anal-

ysis were performed on these mutated cations to validate the property prediction

and ensure the structures were stable and in the liquid state. Once identified as a

stable liquid, the heat capacity and density model were re-formulated by including

these high-performing ILs to exceed the existing data. The authors were able to

identify several high-performance novels ILs with high capacity and density data.

Beckner et al. in another paper utilized a generative-based model known as vari-

ational autoencoder (VAE) along with a QSPR-based model to generate and pre-

dict properties for new ILs. The authors employed a transfer learning approach

that initially learns the chemical space from an extensive list of organic molecule

SMILES followed by a smaller set of ionic liquid SMILES to generate new ionic

liquid structures with desired property range [119]. The central concept behind

VAE is to store information about the input data in a low-dimensional latent space

that serves as a medium to generate new data with the desired property. Besides

this work, there are no studies based on the literature review that have explored
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the use of generative machine learning algorithms such as VAE to generate new

cations and anions to expand the chemical space for ILs with desired properties.

2.1.4 Molecular Dynamics

Several studies have also utilized molecular dynamics (MD) simulation to predict

the thermophysical properties of ILs. Properties such as density and heat capacity

are relatively less intensive calculations and easier to predict with high accuracy.

However, calculating transport properties such as viscosity, self-diffusion, and ionic

conductivity has been challenging as it requires a long simulation time and is under-

predicted by a large magnitude.

Lee et al. [120] calculated the ionic conductivity of 1-n-butyl-3-methylimidazolium

paired with five fluoro-based anions. The authors calculated ionic conductivity

using the Nernst-Einstein equation with values twice as low in magnitude as the

experimental data. Reddy et al. [121] in a 2020 study conducted an MD simulation

on hydroxylammonium-based cations paired with lactate and formate anions. The

authors computed several thermophysical properties along with ionic conductiv-

ity. The Einstein equation for calculating ionic conductivity was found to deviate

significantly compared to experimental data.

The current non-polarizable forcefields used for IL MD simulation require charge

scaling to induce polarizability to improve transport properties. The charge scaling

is often scaled by a factor of ±0.8 for most studies computing transport proper-

ties [122]. However, even that is not enough in some cases as it requires further

scaling to match experimental data. Amir et al. [123] calculated the thermophys-

ical properties using a function of electrostatic charge scaling. The authors found

the charge scaling of ±0.65 to have an excellent agreement compared to property

prediction, including ionic conductivity.

Zeindlhofer et al. [124] calculated the ionic conductivity of 1-ethyl-3-methylimidazolium
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dicyanamide and tetrafluoroborate binary mixture as a function of composition us-

ing MD simulations. The authors employed a united atom model with a charge

scaling of ±0.78 to induce non-polarization. Using MD simulation, calculating

transport properties for ILs are often computationally expensive as a long sim-

ulation time is required to ensure the system is well equilibrated. The authors

simulated the system for about 380 ns. The paper reported an excellent agree-

ment in ionic conductivity value calculated using the Einstein equation compared

to experimental data.

Generating an extensive amount of ionic conductivity data using MD simulation

would not be feasible because of the high computational cost as the simulation

needs to run for an extended period. Instead, MD simulations can be used to

gather insights on molecular-level interactions for a few selected systems to ex-

plain the macroscopic level property.

2.1.5 Electrochemical Stability

Besides ionic conductivity, the electrochemical stability of an electrolyte is also

an essential property as it characterizes the electrochemical window (ECW) at

which the ionic liquid is neither susceptible to oxidation nor reduction. Several

experimental studies have looked at measuring ECW for several ILs using different

techniques [11]. Xue et al. [125] compiled an extensive list of experimental ECW

data for a large number of ILs with various cations and anions. The authors re-

ported the phosphonium cations followed by pyrrolidinium to be the most stable,

while imidazolium is at the bottom of the list as it gets easily reduced. How-

ever, relying on experimental techniques to measure ECW for every ionic liquid

can be tedious, time-consuming, and expensive as the potential can vary with the

type of cation, anion present, and length of the functional group attached to the

cation/anion. Thus several studies have explored the possibility of using compu-

tational techniques to calculate the ECW of ILs.
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The ECW calculations using computational techniques are performed using: (a)

Thermodynamic cycle (TDC) approach, (b) One-electron approach, and (c) High-

est occupied molecular orbital (HOMO)/ Lowest occupied molecular orbital (LUMO)

approach. Asha et al. [104] reported a maximum deviation of 26% in ECW

for pyrrolidinium ILs using the HOMO/LUMO approach compared to the TDC

method, which had a maximum deviation of 9.0%. Similarly, Kazemiabnavi et al.

[42] found a similar trend for the ECW of imidazolium ILs using the HOMO/LUMO

method with deviation up to 50% compared to 15% using the TDC approach.

Liang et al. [126] calculated the HOMO/LUMO of 42 cations and 42 anions that

were then combined to form 1764 unique ILs. The authors reported the cations

paired fluoro and borate-based anions to have high ECW as these anions do not

get oxidized easily. Similarly, Ilawe et al. [127] used the HOMO/LUMO approach

to calculate the electrochemical and radiation stability of the 42 cations and 42 an-

ions using various levels of DFT theory. The authors reported the HOMO/LUMO

calculation accuracy to vary based on the functional and basis set.

Panidian et al. [128] did an extensive study on calculating the ECW of ILs us-

ing various methodologies. The authors found the △ SCF Self Consistent Field

approach of calculating ECW in a vacuum to have a deviation of 48 - 54.1% com-

pared to the experiment data depending on the basis set. Changing the vacuum

environment to an SMD solvent (dichloroethane) and using the one-electron ap-

proach reduced the deviation to 2.4%. The one-electron addition calculates the

ECW using the reduction potential of the cations and the oxidation potential of the

anions. The reduction potential is the difference in Gibbs free energy between VC

and VC+e− . Similarly, the oxidation potential is the Gibbs free energy difference

of VA and VA−e− . However, no studies based on literature review have calculated

electrochemical window using the HOMO/LUMO approach in the presence of a

solvent rather than a vacuum to see if that reduces the deviation in electrochemical

window calculations compared to experimental measurement.
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To summarize, the work in this dissertation focuses on expanding the ionic con-

ductivity database using a machine learning approach to investigate the search for

high ionic conductivity ILs. Aside from the widely studied imidazolium cation,

the study also examines the possibility of correlating ionic conductivity for other

cation types with limited data to expand the list of potential candidates. Beyond

the known cation space, the latter part of the work aims to accelerate the discovery

of new cations with high electrochemical stability. The electrochemical stability is

calculated using the HOMO/LUMO approach, including solvent effects, to improve

ECW predictions. Lastly, this work also demonstrates the possibility of building

a machine learning model to correlate DFT properties such as HOMO/LUMO en-

ergies with high accuracy to reduce the computational cost and time in running

DFT calculations for the enormous ionic liquid space.
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CHAPTER 3

METHODOLOGY

3.1 Machine Learning

3.1.1 Multiple Linear Regression

Multiple linear regression (MLR) is a simple regression-based model that attempts

to model the relationship between input data and output predictor by fitting a best

fit line through the data. The model assumes the relationship between the depen-

dent and independent variables to be in a linear form, thus failing to take into

account any non-linear relationship between input and output. The equation for

MLR can be written as follows:

ŷ = b + a1x1 + a2x2..... + aixi (3.1)

where ŷ is the predicted data, b is the intercept, a1, a2 and ai are the coefficients

of the input data (x1, x2 and xi). Thus the objective function of the MLR model

can be written as:

J(b, ai) =
1

2n

n∑
i=1

(ŷi − yi)
2 (3.2)
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where (J) is the cost function that needs to be minimized, (n) in the total number

of data points, (yi) is the original data, and (ŷi) is the predicted data.

3.1.2 Cost Function

The cost function is often minimized using the gradient descent algorithm, widely

used across all machine learning algorithms to optimize the model parameters

[129,130]. This can be derived using an example as shown below. Let us consider

a two-parameter equation:

ŷ = mx + b (3.3)

The cost function would then be:

J(m, b) =
1

2n

n∑
i=1

(ŷi − yi)
2 (3.4)

Substituting equation 3.3 in equation 3.4 for ŷi:

J(m, b) =
1

2n

n∑
i=1

((mx + b) − yi)
2 (3.5)

Gradient descent algorithm initially starts with a random value of (m and b). The

parameters are then updated using the following equation:
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b = b− α
δ

δb
J(m, b) (3.6)

m = m− α
δ

δm
J(m, b) (3.7)

where α is known as the learning rate (LR) parameter. The α term determines

how much the parameters are scaled every time (m and b) are updated. A small α

parameter means the model converges extremely slowly as the descent is minimal

from one point to another. In contrast, a high α can lead to a big jump in the

descent, missing the global minimum. Thus, a balanced α parameter is key to the

success of converging the gradient descent algorithm to a global minimum. It is

worth noting that the weights of (m and b) in equations 3.6 and 3.7 are simulta-

neously updated.

Substituting equation 3.5 in equation 3.6,

b = b− α
δ

δb

1

2n

n∑
i=1

((mx + b) − yi)
2 (3.8)

Solving the partial differential equation:

b = b− α
1

n

n∑
i=1

((mx + b) − yi) (3.9)

Similarly, substituting equation 3.5 in equation 3.7,

m = m− α
δ

δm

1

2n

n∑
i=1

((mx + b) − yi)
2 (3.10)
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Solving the partial differential equation:

m = m− α
1

n

n∑
i=1

((mx + b) − yi) · x (3.11)

The objective of the gradient descent algorithm is to find the global minimum of

a given function. In this case, the updated (m and b) parameters are substituted

back into equation 3.5 to calculate the cost function. The algorithm stops once the

cost function reaches a given threshold or until it exceeds the number of iterations

specified.

3.1.3 Decision Tree

Decision tree (DT) is a supervised machine learning technique that uses a tree-

based approach to make a prediction. This technique is widely used for both

regression and classification problems. The model’s decision-making is based on

if-else conditions by splitting data based on input attributes [131].
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Figure 3.1: Schematic diagram of a decision tree model.

The top of each DT is called the node that begins with an attribute that asks a

yes/no question, as seen in Figure 3.1 (a). Each decision (yes/no) is followed by

tree branches that further split various attributes into (yes/no) conditions. The

branches get divided until they can no longer be divided, which becomes the final

node or leaf of the tree.

The gini index H(T ), is used to determine which attribute becomes the tree’s

node. The gini index term measures each attribute’s impurity concerning the out-

put value. A gini index of 0 means the data is easily separable into different classes.

H(T ) = 1 −
n∑

i=1

p2i (3.12)

Consider the example shown in Figure 3.1 (b) for a loan decision based on three

different attributes (car, house, age > 21). First, the gini index is calculated for

each feature to determine which one becomes the node for the tree. This is done

by separating the data for each of the attributes concerning the output (loan) as
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seen in Figure 3.1 table (c), (d), and (e).

For car attributes, there is one data point for someone with a car and loan ap-

proved. However, two of the data points had loans rejected despite having a car.

So the gini index for car attributes concerning loans is 0.44. Similarly, there is one

data point with a loan approved despite having no car, while three of the data

points have loans rejected for having no car. Thus, the gini index for having no

car becomes 0.37.

H(T ) = 1 − (
1

3
)2 − (

2

3
)2 = 0.44 (3.13)

H(T ) = 1 − (
1

4
)2 − (

3

4
)2 = 0.37 (3.14)

Thus, the weighted gini index for car attribute becomes:

H(T ) =
3

7
∗ 0.44 +

4

7
∗ 0.37 = 0.40 (3.15)

Similarly, for house attributes, there are two data points with house and loan ap-

proved, while two data points with house have loan rejected. There are zero data

points for loans being accepted with no house, while three of them have had loans

denied for having no house.

H(T ) = 1 − (
2

4
)2 − (

2

4
)2 = 0.50 (3.16)

H(T ) = 1 − (
0

3
)2 − (

3

3
)2 = 0 (3.17)
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Thus, the weighted gini index for house attribute becomes:

H(T ) =
4

7
∗ 0.50 +

3

7
∗ 0 = 0.28 (3.18)

Lastly, for age>21 attribute:

H(T ) = 1 − (
2

3
)2 − (

1

3
)2 = 0.44 (3.19)

H(T ) = 1 − (
0

4
)2 − (

4

4
)2 = 0 (3.20)

Thus, the weighted gini index for age>21 attribute becomes:

H(T ) =
3

7
∗ 0.44 +

4

7
∗ 0 = 0.19 (3.21)

Based on the weighted gini index, the attribute (age > 21) has the lowest gini

index, which means this attribute has the highest leverage for splitting the output

data. As seen in Figure 3.1 (f) the attribute (age > 21) becomes the node of the

tree. Splitting the attribute to yes/no, from the table, there are four data points

whose loan is denied (No) if their age is less than 21. Thus, one can see why this

attribute effectively splits the data by being at the top of the node. There are

three remaining data points on the right side that need to be separated. To decide

the next attribute for the decision node, the weighted gini index is calculated again

for the remaining data points.

For car attribute again:
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H(T ) = 1 − (
1

1
)2 − (

0

1
)2 = 0 (3.22)

H(T ) = 1 − (
1

2
)2 − (

1

2
)2 = 0.50 (3.23)

Thus, the weighted gini index for car attribute becomes:

H(T ) =
1

3
∗ 0 +

2

3
∗ 0.50 = 0.33 (3.24)

For house attribute:

H(T ) = 1 − (
2

2
)2 − (

0

2
)2 = 0 (3.25)

H(T ) = 1 − (
1

1
)2 − (

0

1
)2 = 0 (3.26)

Thus, the weighted gini index for house attribute becomes:

H(T ) =
2

2
∗ 0 +

1

1
∗ 0 = 0 (3.27)

Based on the weighted gini index, it is clear that the house attribute is best suited

to splitting the remaining tree as it has a weighted index of 0, meaning it can

separate all the remaining data. This is evident from Figure 3.1 (f) as two of the

data points with houses get the loan, while the one data point with no house does

not get the loan. As one can see, the DT method is pretty straightforward, which
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makes it easier to follow through and make predictions.

However, a common drawback of the DT model is that it is very prone to overfit-

ting as it often fails to generalize data beyond the training set. Furthermore, even

a slight change in the data can completely change the entire split, resulting in a

different tree with different outputs. Thus, the DT model is generally avoided for

a large set of data with multiple attributes.

3.1.4 Random Forest

Random forest (RF) is an ensemble-based supervised-based learning method that

improves upon some of the significant weaknesses of DT-based methods. Instead

of a single tree, RF consists of many individual trees that run in parallel. Initially,

each tree is constructed by randomly selecting a subset of bootstrapped data with

replacement. Next, the algorithm selects a random set of features from the boot-

strapped data, creating a unique tree. The central idea is to have an ensemble of

trees with different attributes to make predictions for a given dataset instead of a

single tree predicting the output, thus removing any biases.

Figure 3.2: Schematic diagram of a random forest model.
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The final output for a given dataset is obtained by majority-based voting for a

classification model, where the highest Yes/No becomes the final output, while

the prediction is the average of all the ensemble predictions for regression. The

RF model has been shown to drastically improve the robustness and accuracy of

the model as it is significantly less sensitive to the change in data and overfitting

compared to DT.

3.1.5 XGBoost

Extreme gradient boosting (XGBoost) is another ensemble-based supervised learn-

ing technique that uses gradient boosting to predict properties [132]. Similar to

the RF model, XGBoost contains an ensemble of unique decision trees that are

utilized to make a prediction. Unlike RF, however, these trees are built sequen-

tially, where the error made by the previous tree is added to the loss function of

the next tree and so on until the prediction error is within the desired threshold.

And this concept of boosting the prediction is at the heart of the XGBoost model.

For any given model, the objective function is to minimize the difference in pre-

diction and actual value, as shown below:

OBJ =
n∑
i

loss(yi, ŷ
t−1
i + ŷi) (3.28)

where ŷi is the predicted value. In XGBoost [132] however the loss function is

modified to add the error made by previous tree (ŷt−1
i ) as discussed above.

3.1.6 Support Vector Machine

Another supervised learning algorithm that is widely used for classification and

regression problems is the support vector machine (SVM). SVM uses the concept

of a hyper-plane, which is a line to separate the data into respective classes. For
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instance, in Figure 3.3 (a), the hyper-plane (H1, H2, H3) aims to separate the

two shapes into respective classes. As for which hyper-plane leads to the highest

accuracy in separating the two classes, it is determined by maximizing the distance

between points and the hyper-plane, also known as the maximum margin [133–138].

Figure 3.3: Hyperplane for separating the data points into respective classes for

support vector machine.

The equation to define the hyperplane can be written as:

y1 = ax1 + b (3.29)

or,

ax1 − y1 + b = 0 (3.30)

Let, w = (a, -1) and x = (x1, y1). The equation then can be written as:

wTx + b = 0 (3.31)
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Now, let us assume the class above the hyperplane is denoted by +1, and the

category below the hyperplane is indicated by -1, separated by two hyper-plane

margins (H1) and (H2) as seen from Figure 3.3 (b). The equation for the two

hyperplane margins can be written as:

wTx + b ≥ 1, for class = +1 (3.32)

wTx + b < −1, for class = −1 (3.33)

Thus, the objective function of the SVM would be to maximize the margin (M),

which can be written as: max (M) given yi(w
Tx + b) ≥ 1. The margin (M) here

refers to the distance between the two margin classes (m1 and m2). Maximizing

the margin (M) allows enough room between the two margin lines to separate the

data into classes with very few misclassifications easily. However, most real-world

data does not exhibit such linear separable patterns as there can be outliers mak-

ing it challenging to separate them into classes. In such a case, the above equation

cannot be satisfied. Thus, to consider real-world scenario cases with outliers lead-

ing to misclassification, an additional variable, ϵ is added to the equation:

yi(w
Tx + b) ≥ 1 − ϵ (3.34)

where if a data point is on the correct side of the margin, ϵ takes a value of 0,

leaving the equation unchanged. However, if the data point is between the hy-

perplane and the margin, then this is considered a margin violation. The value

of ϵ is taken to be between 0 and 1, serving as a penalty parameter if there is a

margin violation. Lastly, if the data is on the wrong side of the hyperplane, then

ϵ takes a value greater than 1, indicating misclassification. This can be visualized

in Figure 3.3 (c) for more clarity. This ϵ parameter is a hyper-parameter for the
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SVM that must be determined using a k-fold cross-validation parameter search.

The last important hyper-parameter that needs to be searched and tuned is the

’C’ parameter, the penalty parameter for margin violation. Thus, the objective

function of the SVM can be written as:

max(M) + C

N∑
i

ϵi (3.35)

Smaller value of ’C’ allows for higher tolerance for margin violation data points,

while a higher value of ’C’ adds severe punishment for margin violation. Thus, an

optimum value of ’C’ is required as a very high value of ’C’ can lead to overfitting

as the model may not be able to generalize beyond the training set. In contrast, a

lower value of ’C’ could lead to underfitting.

3.1.7 Neural Network

Neural network (NN) techniques are currently regarded as state-of-the-art ma-

chine learning algorithms, modeling complex functions with very high robustness

and accuracy. Because of their capability to identify and learn high-level abstract

patterns is now being used in day-to-day activities such as self-driving cars, facial

recognition, image classification, natural language processing, and more.

In general, NN consists of three essential layers: the input layer that receives the

information, the hidden layer that processes the input information and passes it to

the output layer, and finally, the output layer that gets the data from the hidden

layer and converts it to a meaningful output, as seen in Figure 3.4. The size of the

input and output layers is user-specified, while the hidden layer needs to be tuned

to get the best performance. Relatively simple hidden layer architecture can lead

to underfitting where its architecture limits the model’s ability to learn complex

functions. In contrast, highly complex model architecture can lead to severe over-

fitting, where the model fails to generalize predictions outside of the training set.
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Parameters such as the number of hidden layers, the number of neurons in the

hidden layer, learning rate, and the activation function are some of the essential

parameters that need to be tuned using hyperparameter tuning techniques such as

random search or grid search combinations to find the optimum hyper-parameters.

Figure 3.4: Schematic diagram of a neural network model.

Consider a neural network with three input features (x1, x2, x3) with a single hid-

den layer that consists of two neuron perceptron (z11 and z12) receiving the input

information as seen from Figure 3.4. Then the equation of the hidden layer can be

written as:
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z11 = w11x1 + w21x2 + w31x3 + b1 (3.36)

z12 = w12x1 + w22x2 + w32x3 + b2 (3.37)

where (wij) is the weights of the input features for neuron (z11), (z12) and (bi) is

the bias function for each of the neurons.

The passage from the hidden layer to the output layer is determined by a key NN

component known as the activation function. This function acts as a switch to

turn ”on” or ”off” a given neuron based on the input data. There are several kinds

of activation functions one can choose from based on the problem at hand. For

instance, the most straightforward activation function is the linear function that

converts the input data to a linear form. In such a case, the NN becomes a sim-

ple linear regression model. However, approximating non-linear relations requires

non-linear activation functions such as sigmoid, relu, and tanh, which are some of

the most popular ones.

The sigmoid activation function, widely used for classification problems, approx-

imates any given input information to an output in the range between [0, 1], as

shown in equation 3.38. Another commonly used activation function for regression

problems is the relu activation function that transforms the data with the function

max [0, z], converting any negative value to 0, effectively switching ”off” a given

neuron. The tanh activation function is widely used for handling negative output

with a mapping range of [-1, 1].

a11 =
1

1 + e−z
(3.38)

Passing the information from the hidden layer (z11), (z12) through the activation
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function:

a11 = g(z11) (3.39)

a12 = g(z12) (3.40)

The output from the activation node is multiplied by its weight, and a bias term

is added to the equation:

z21 = a11w13 + a12w23 + b3 (3.41)

Often, the output layer also has an activation function that aims at transferring

the output value in a given range.

a21 = g(z21) (3.42)

where (a21) refers to final predicted data (ŷ). Thus the cost function then becomes:

J =
1

2n

m∑
i=1

J(ŷi, yi) (3.43)

where (n) is the total number of data points, (yi) is the original data. Here the

objective function would be to minimize the cost function by updating all the

weights parameters accordingly using a backpropagation algorithm [139].
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3.1.8 Variational AutoEncoder

VAE is a generative-based machine learning model representing the information

mapping between input and output data using a probability distribution. It con-

sists of two deep neural networks: an encoder network that learns to encode the

input information in a compressed form on a low-dimensional latent space, learning

only the specific attributes of the input data, and a decoder network that learns

to decompress that latent space information back to reconstruct the original input

data, as shown in Figure 3.5 (c). The VAE can generate new data by sampling

the low dimensional latent space passing through the decoder.

Figure 3.5: Schematic diagram of a variational autoencoder model.

The mathematical representation of VAE starts with a variable (x) that represents

the input information. Assume there is a hidden variable (z) in the lower dimen-

sional space that contains the details about (x) that are required to reconstruct it

back to its original form (x̂). To infer the characteristics of latent space (z), given

the input observation using Bayes’ theorem [140]:

p(z|x) =
p(x|z)p(z)

p(x)
=

p(x, z)

p(x)
(3.44)
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The challenge, however, arises when calculating the probability distribution of x,

p(x) using the latent space information:

p(x) =

∫
p(x|z)p(z)dz (3.45)

where, p(z) and p(x|z) follows a standard Gaussian distribution. Maximizing p(x)

to reconstruct the information back to the output state with very high accuracy

can be challenging and tedious. As it needs to search over the entire latent space

(z). The workaround to this problem is by assuming p(z|x) to another traceable

distribution q(z|x), where (q) is a known Gaussian distribution with a mean of (g)

and standard deviation of (h).

qx(z) = N(g(x), h(x)) (3.46)

The parameters (g) and (h) becomes the output parameters for the encoder model

seen in Figure 3.5 (c) as it tries to find parameters for (q) that closely match the

distribution (p).

The loss between the two Gaussian distributions (p) and (q) is calculated using

Kullback-Leibler (KL) divergence [141] that quantifies the amount of information

loss that occurs using the approximated distribution (q).

KL(q(z|x)||p(z|x)) = −
∑

q(z|x)log
p(z|x)

q(z|x)
(3.47)
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Replacing p(z|x) using equation 3.44:

KL(q(z|x)||p(z|x)) = −
∑

q(z|x)log
p(x|z)p(z)

q(z|x)
+ log(p(x)) (3.48)

moving log(p(x)) to the left hand side:

log(p(x)) = KL(q(z|x)||p(z|x)) +
∑

q(z|x)log
p(x|z)p(z)

q(z|x)
(3.49)

where the second term is known as Evidence Lower Bound or (ELBO).

ELBO =
∑

q(z|x)log
p(x|z)p(z)

q(z|x)
(3.50)

Expanding the ELBO equation:

ELBO =
∑

q(z|x)log(p(x|z)) +
∑

q(z|x)log
p(z)

q(z|x)
(3.51)

The second term in equation 3.51 represents the KL divergence.

KL(q(z|x)||p(z)) = −
∑

q(z|x)log
q(z|x)

p(z)
(3.52)

Equation 3.51 then becomes,
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ELBO =
∑

q(z|x)log(p(x|z)) −KL(q(z|x)||p(z)) (3.53)

Or,

ELBO = Eq(z|x)[log(p(x|z))] −KL(q(z|x)||p(z)) (3.54)

where the first term is the expectation of how well (x) is reconstructed from the

latent space (z) using the distribution (p). The second term is a deterministic

function that minimizes the difference between the Gaussian distribution (q) and

the prior distribution (p).

The shape of the attribute (z), which represents some information about the input

variable (x), is determined based on the mean and the standard deviation from the

encoder. The decoder then samples the latent space distribution (z) to form the

distribution p(x̂|z) that is close to the distribution q(z|x) to construct the output

x̂ accurately.

To recap everything, we started with an input (x) which is inferred by a hidden

variable (z) that contains the necessary information to reconstruct the original

input (x̂). The mapping function from (x) to (z) is given by the known Gaussian

distribution (q), which matches another Gaussian distribution (p) that maps (z)

back to (x̂).

3.1.9 Principal Component Analysis

Principal component analysis (PCA) is a dimensionality reduction technique that

is extremely useful for compressing large feature spaces into smaller dimensions.

This technique often comes in handy when there is a need to reduce the features

to speed up the model building process or explore and visualize the large feature
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space.

The first step in PCA involves feature normalization to ensure all the features are

on the same scale to avoid any bias towards a given feature. This is usually done

by scaling the input data with the mean and standard deviation, converting the

scaled data to have a mean of zero. In the next step, a covariance matrix is cal-

culated between the feature itself and other features to quantify the variance using:

cov(X, Y ) =
1

n− 1

n∑
i

(Xi − x̄)(Yi − ȳ) (3.55)

where X and Y are the feature columns, Xi and Yi is the feature value at position

i, x̄ and ȳ is the mean value of the standardized column. The dimension of the

covariance matrix (A) is based on the number of features (f) present, which equals

f × f . Next, the eigenvector (v) and the eigenvalues (λ) of the covariance matrix

is calculated using the identity matrix relation (Av − λIv = 0).

After the calculation of eigenvalues (λ) and eigenvector (v), the values for (v) are

sorted based on the (λ) by descending order. The eigenvector (v) becomes the new

feature column regarded as the principal component. Finally, the original data is

transformed into the new principal component feature space:

X ′ = X · v (3.56)

where (X) is the original feature space data, (v) is the principal component vector.

The transformed data (X ′) dimension equals the number of principal component

vector dimensions.
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For instance, if the user specifies a three-dimensional feature space, after calculat-

ing eigenvalues (λ), it is sorted in descending order, and the respective first three

(v) are selected as the principal component vectors, transforming the data to a

three-dimensional feature space.

3.1.10 Data Processing

The NIST IL Thermo database, which maintains a collection of experimental data

for ILs [73, 74], provided the majority of the ionic conductivity data used in the

study to build machine learning models. The data is downloaded using a web

scraping script implemented in the python package [142]. The script for process-

ing the raw data and formatting is written using bash scripting with the python

programming language. Chemical features for the SMILE structure were gener-

ated using an open-source cheminformatics package called RDKit, which generates

196 chemical descriptors [143].

The input chemical features along with the output data were normalized and scaled

before any model development to avoid any kind of bias for a given feature during

model development. This was done using Min-Max Scaling [144] that scales the

features between [0, 1].

X̂ =
X −Xmin

Xmax −Xmin

(3.57)

3.1.11 Feature Reduction

Generating a large number of features for a given molecule can be quickly done

using available cheminformatics packages such as RDKit [143]. However, not all

the features might be necessary for model development. Having many features

does come at a cost, as it requires more computational time to train a large mul-

tidimensional model and can also cause the model to overfit as the model puts

more effort into learning some of the noise within the data. Arbitrarily removing
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features or descriptors without knowing how it affects the model’s ability can lead

to poor model performance. One of the easiest ways to reduce features is to employ

a feature correlation method. If feature A is highly correlated with feature B, then

one can drop either of the features as the other feature is sufficient to represent

the information.

Another popular technique to eliminate unnecessary features is through the use

of the least absolute shrinkage and selection operator (LASSO) method [145]. It

is a regularization technique often used to reduce overfitting by discarding fewer

important features. It does this by adding a penalty parameter, λ, to the mini-

mization function that determines the number of features to shrink. Larger values

of λ shrink some of the least essential feature coefficients to zero, reducing the

feature space, while λ = 0 leaves the objective function unchanged.

Obj =
n∑

i=1

(yi − ŷi)
2 + λ

p∑
j=1

wj (3.58)

where (wj) is the coefficient or weight of the feature (j). The penalty feature λ is

determined using 5-fold cross-validation (CV) by fitting a linear regression model.

3.1.12 Hyperparameter Tuning

The best-performing hyper-parameters for each ML model discussed above can

be found during the hyper-parameter search. This can be done through either

a grid search combination that combines all the possible hyper-parameters listed

to find the best optimum parameter or a random search by randomly selecting

hyper-parameters to find the best-performing ones. The former method is more

robust because it searches through all possible combinations; however, it has a

high computational cost. One can choose the search method depending on the

level of accuracy desired and the available computational resources. During the

hyper-parameter search, it is often necessary to perform five-fold cross-validation
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to assess the model performance by searching for the best parameters. In this

work, the entire hyperparameter search and tuning was done using algorithms im-

plemented in Scikit-Learn [144].

3.2 Molecular Dynamics

3.2.1 Molecular Dynamics Simulation

Molecular dynamics (MD) is a simulation technique that relies on classical newton

mechanics to propel atoms through time and space. Initially, the position (r) and

the velocity (v) are defined for the atom (i) with a mass (mi). To propagate the

particle (i), we need to know its acceleration (ai), which can be calculated from

the force (Fi) acting on the particle in all directions. The force can be calculated

from the potential energy (UTotal), which is solved analytically using the following

equation:

UTotal = UNon−Bonded + UStretching + UBending + UTorsion (3.59)

UNonBonded =
∑
i

∑
j

4ϵij

[(σij

rij

)12

−
(σij

rij

)6
]

+
∑
i

∑
j

qiqje
2

4πϵorij
(3.60)

UStretching =
∑
Bonds

Kr

2
(r − req))

2 (3.61)

UBending =
∑

Angles

Kθ

2
(θ − θeq)

2 (3.62)

UDihedral =
∑

Dihedral

V1

2
[1 + cos(ϕ)] +

V2

2
[1 − cos(2ϕ)] +

V3

2
[1 + cos(3ϕ)] (3.63)

The total potential energy (UTotal) takes into account bond stretching, bond bend-

ing, dihedral angle for the bonded interactions, electrostatics, and van der Waal’s

interaction for non-bonded interactions. The van der Waal’s interaction is ap-

proximated using Lennard Jones (LJ) parameters σij, ϵij, rij which represents the

49



distance at which the energy is zero, the well depth, and the distance between

atoms i and j. q is the partial atomic charge for electrostatic interactions. r, req,

θ, θeq are bond length, equilibrium bond length, bending angle, and equilibrium

bending angle. Kr, Kθ are force constants for stretching and bending. Vi denotes

the torsional parameters for dihedrals [146,147].

The equilibrium parameters, the charge of atom species, and LJ interactions are

known as forcefield (FF) parameters that are often derived from experiments or

quantum mechanical calculations by fitting to properties such as density or en-

thalpy of vaporization. There are several kinds of FF parameters one can choose

from, such as united atom FF, which lumps a group of atoms into a single unit,

making it computationally less expensive because of the fewer atoms that need to

be simulated. The other popular one is all-atom FFs, which treats each atom as

an interaction site, making it more computationally expensive but often required

to calculate properties such as x-ray structure factor.

The force acting on each particle can be then calculated as follows:

Fi = −dUi

dri
(3.64)

Once the force is known, one can use the newton law of motion to calculate the

position and velocity of the particle as follows:
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Fi

mi

=
d2ri
dt2

(3.65)

vi =
dri
dt

(3.66)

ai =
dvi
dt

(3.67)

As for calculating the position for the particle at time t + 1 time step given their

current position and previous position. This can be calculated using the Verlet

algorithm, which is one of the most widely used integration techniques [146, 147].

This can be derived using the central finite theorem for the second derivative.

y′′ =
yi+1 − 2yi + yi−1

△x2
(3.68)

xt+1 = 2xt − xt−1 + △t2
Fi

mi

(3.69)

To summarize the entire MD protocol:

1. First assign initial position and velocity

2. Compute the potential energy U

3. Calculate the force acting on each of the particles

4. Update the velocity and position of the particle using newton’s law of motion

5. Repeat step 2 until an equilibrium condition is met

6. Property calculation
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3.2.2 Self Diffusion Constant

Once the system reaches equilibrium, several essential properties can be calculated

using the equilibrated trajectory. One of them is the mean square displacement

(MSD) which measures the deviation of the particle from the initial position as a

function of time. The slope of MSD can be used to calculate the diffusion constant

of the molecules as follows:

D =
1

6
lim
t→∞

d

dt

〈
N∑
i=1

[r⃗i(t) − r⃗i(0)]2

〉
(3.70)

where, r⃗i(t) is the position of an ion at any given time,
〈

...
〉

is the average of the

ensemble, and D is the self-diffusion constant. To determine the linear region for

the fit, the MSD values are divided into blocks of time frame for the final NPT

production run. Over these blocks, the non-Gaussian parameter β(t) is calculated

to find the diffusive regime:

β(t) =
d ln

〈
∆r2(t)

〉
d ln(t)

. (3.71)

A linear regime is indicated as β(t) approaches a value of unity which is the

appropriate block for calculating diffusion coefficient.

3.2.3 Ionic Conductivity

Similarly, taking into account the charge of ions, one can calculate the ionic con-

ductivity of the system. The ionic conductivity of ILs can be calculated using two

different equations. The first method is called the Nernst-Einstein (NE) equation,

shown in the equation 3.72, which uses the self-diffusion constant (D) motion of

the ions calculated using the equation 3.71. N stands for the number of ion pairs in

the system, V stands for the system volume, T is the temperature of the system, kb
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stands for Boltzmann constant, q+, q− stands for the charge on cation and anion,

r⃗i(t) is the position of an ion at any given time and
〈

...
〉

is the average of the

ensemble. The assumption using NE is that the movement of ions is independent

of the presence of other ions, meaning the NE equation does not take into account

the correlated movement of ions.

σNE =
N

V kbT
(q2+D+ + q2−D−) (3.72)

The second method employs the Einstein method (equation 3.73) to calculate ionic

conductivity (σ) that includes an additional term to take into account the corre-

lated movement of ions on each other. These correlated ion movements do not

participate in ionic conductivity, leading to lower ionic conductivity calculated us-

ing the Einstein equation compared to the NE equation.

σ =
1

6kbV T
lim
t→∞

d

dt

〈
N∑
i=1

N∑
j=1

qiqj[r⃗i(t) − r⃗i(0)] · [r⃗j(t) − r⃗j(0)]

〉
(3.73)

The difference in the ratio ( σ
σNE

) is often known as ionicity, signifies the degree of

uncorrelated motion, where a ratio of 1 indicates highly uncorrelated movements

for systems often seen with high ionic conductivity, while a lower ratio close to 0

indicates highly correlated motion between the ion pairs.

3.2.4 Radial Distribution Function

MD simulation also offers the possibility of probing the structural level arrange-

ment of molecules with respect to each other as a distance function. One of the

most calculated quantities is the radial distribution function (RDF), which quan-

tifies the probability of finding a given molecule at a fixed distance to the reference

molecule. This is because the molecular arrangement might be different for local
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density at a closer distance than the bulk density. Thus, RDF calculates the ratio

of local density to bulk density.

g(r) =
ρ

ρbulk
=

V

N2

〈 ∑
i

∑
j ̸=i

δ(r − rij)
〉

(3.74)

when the local density is similar to the bulk density, the g(r) takes a value of 1.

3.2.5 Coordination Number

The RDF calculation can be further used to calculate the number of particles sur-

rounding the reference particle by computing the coordination number. This is

done by taking the integration of g(r) from a distance of zero to the first solvation

shell (r).

N = 4πρb

∫ r

0

g(r)r2dr (3.75)

3.2.6 Hydrogen Bonding

Besides calculating thermophysical and structural properties, one can also quan-

tify the interactions, such as hydrogen bond dynamics, from the trajectory of the

equilibrated system. In our work, we used the TRAVIS visualization package [148]

to calculate the hydrogen bond dynamics.

For hydrogen bonding interactions, it is often interesting to examine the length

of time the atoms stay hydrogen bonded together. This can provide insights into

whether there is any hydrogen bonding preferential interaction between particular

ion pairs. In the case of ILs, the hydrogen bonding lifetime was calculated between

cations and anions.
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This is calculated using the intermittent hydrogen bonding autocorrelation shown

as follows :

C(t) =
< h(0)h(t) >

< h(0) >
(3.76)

where h(t) takes a value of 1 if the hydrogen bond is persistent but assumes a

value of 0 when the hydrogen bond is broken. The cutoff angle between donor-

acceptor-hydrogen was set to 30◦, the cutoff distance between the acceptor-donor

was selected to the corresponding first solvation shell of the center of mass RDF

between the cation-anion, and the cutoff distance for the acceptor-hydrogen atom

was limited to the first solvation shell of the hydrogen bonding sites.

The hydrogen bonding lifetime (τlt) can be calculated from the autocorrelation

function as follows:

τlt =

∫ ∞

0

C(t)dt (3.77)

The integral is evaluated analytically by fitting a stretched exponential equation:

C(t) = a1e
−t/b1 + a2e

−t/b2 + a3e
−t/b3 (3.78)

where, a3 = 1 − a1 − a2 yielding

τlt = a1b1 + a2b2 + a3b3 (3.79)
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3.3 Electrochemical Stability

The electrochemical stability is an essential property for an electrolyte as it char-

acterizes the electrochemical window (ECW) at which it is neither susceptible to

oxidation nor reduction. The ECW calculations using computational techniques

are performed using: (a) Thermodynamic cycle (TDC) approach, (b) One electron

approach, and (c) Highest occupied molecular orbital (HOMO)/ Lowest occupied

molecular orbital (LUMO) approach. The TDC method involves the calculation

of the Gibbs Free Energy of reduction and oxidation potential for the cation and

anion. This method consists of a series of steps as one has to calculate the Gibbs

free energy of (Gcation and Gcation+e−) and (Ganion and Ganion−e−) in the gas phase

and solution phase. As such, the TDC approach is computationally expensive,

but at the same time, the ECW values are found to be in excellent agreement

with experimental measurements [42, 104]. In the TDC calculations for ILs, the

cathodic limit is equivalent to the reduction of a cation and the anodic limit to

the oxidation of an anion. Thus, the ECW is calculated by taking the difference

in (Eox - Ered).

The one electron approach is similar to TDC with the energy calculated for the

reduction of cation and the oxidation of anions. As such, the cathodic limit and

anodic limit is given by:

∆E(cathodic) = C − C+ (3.80)

∆E(anodic) = A− A− (3.81)

The vertical transition energy (E) here refers to sum of total energy and zero

potential energy calculated from DFT calculations. The ECW can be calculated

as follows with respect to Li/Li+ electrode:
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Cathodic potential = −∆Ecathodic

F
− 1.46 (3.82)

Anodic potential =
∆Eanodic

F
− 1.46 (3.83)

where F is the farday’s constant, the constant (-1.46) converts the potential to

Li/Li+ reference electrode [149–151]. The one electron approach has been found

to perform extremely well in the presence of a solvent rather than vacuum to cal-

culate electrochemical window [128].

Lastly, the HOMO/LUMO approach is based on the Koopman’s theorem [152]

that approximates the negative of the HOMO energy with ionization energy of

a molecule meaning the energy required to remove an electron, while the LUMO

energy with the electron affinity of a molecule. Thus the HOMO energy is equal

to the anodic limit, and the LUMO energy is equal to the cathodic limit. In con-

trast to TDC and one electron approach, the HOMO/LUMO approach is pretty

straightforward as one has to obtain the HOMO/LUMO energy readily provided

by DFT calculations.

VCL =
−ϵLUMO

e
(3.84)

VAL =
−ϵHOMO

e
(3.85)

ECW = VCL − VAL (3.86)

where e denotes the charge of an electron.

Panidian et al. [128] did an extensive study on calculating the ECW of ILs using

various methodologies. According to the authors, the △ SCF Self Consistent Field
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approach to calculating ECW in a vacuum had a deviation of 48–54.1% from ex-

perimental data, depending on the basis set. Changing the vacuum environment to

an SMD solvent (dichloroethane) environment and using the one-electron addition

approach reduced the deviation to 2.4% using the M06-L/6-311 + G(2d,p) basis

set.

Building upon the work of Panidian and co-workers [128] we used a similar SMD

approach with dichloroethane as the solvent, (M06-L) functional form, and (6-311

+ G (2d,p)) as the basis set. The calculations are performed using Gaussian 09

package [153].

Figure 3.6: Comparison of ECW between TDC [42], HOMO/LUMO approach

(this work), one electron approach (this work) and experimental data for various

imidazolium ILs.

We compared the one-electron addition approach to the HOMO/LUMO approach

for ECW compared to the TDC approach and experimental data. The data for

TDC and experimental data were taken from Kazemiabnavi et al. [42] paper for im-
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idazolium ILs. The comparison is shown in Figure 3.6 for all the three approaches

and compared to experimental data where available. The HOMO/LUMO approach

and one electron approach agree with the TDC method with RMSE of 0.88 V and

0.58 V, respectively.

Based on the RMSE error metrics, it is evident that the one-electron approach

is much more accurate than the HOMO/LUMO approach. Besides accuracy, an-

other limitation of the HOMO/LUMO approach is the lack of a way to determine

the electrochemical stability with reference to an electrode, as that is very im-

portant for gauging the electrolyte stability towards the electrode [154]. This is

taken into account in the one-electron approach with the addition of the constant

term. However, as mentioned earlier, the one-electron approach requires twice as

much calculation as the HOMO/LUMO approach, making it computationally ex-

pensive for many systems. Thus, to reduce the computational cost, we examined

the possibility of finding a correlation between the HOMO/LUMO approach and

one electron approach, as the latter has higher accuracy in predicting ECW. In

contrast, the former approach involves twice as few calculations. Thus, correlat-

ing these two approaches could allow calculating the ECW based on one-electron

approach using the HOMO/LUMO method with a minimal computational cost.

The correlation was done by calculating ECW using the HOMO/LUMO approach

and one electron approach for twenty-one ILs that were found to have ionic conduc-

tivity greater than 2.0 S/m using the generalized machine learning model discussed

further in chapter six. The ECW calculated using both approaches is shown in

Figure 3.7 with a very high correlation coefficient.
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Figure 3.7: Correlation of ECW between HOMO/LUMO and one electron

(Li/Li+) electrode approach.

60



CHAPTER 4

Developing Machine Learning Models for Ionic Conductivity of

Imidazolium-Based Ioonic Liquids

4.1 Abstract

In this study, we developed two machine learning models, support vector ma-

chine (SVM) and artificial neural network (ANN), to correlate ionic conductivity

of pure ILs based on the imidazolium cations using the data acquired from the

NIST ILThermo database. Both models were shown to successfully capture the

entire range of ionic conductivity spanning six orders of magnitude over a tem-

perature range of 275-475 K with relatively low statistical uncertainty. Due to

slightly better performance, ANN was used to predict the ionic conductivity for

1102 ILs formed from every possible combination of 29 cations and 38 anions con-

tained in the database. The procedure led to the generation of many ILs for which

the ionic conductivity was estimated to be greater than 1 S/m. The ionic liquid

dimethylimidazolium dicyanamide, not present in the original dataset, was iden-

tified to exhibit the ionic conductivity of 3.70 S/m, roughly 30% higher than the

highest conductivity reported for any ionic liquid at 298 K in the database. The

ANN model was also found to accurately predict the ionic conductivity for several

ionic liquid-ionic liquid mixtures, for which experimental data are available. En-

couraged by this result, we calculated ionic conductivity for all the possible binary

ionic liquid-ionic liquid mixtures based on the cations and anions in the dataset.

The model predictions revealed a large number of ionic liquid mixtures systems
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exhibiting nonideal behavior where a maximum or minimum in the ionic conduc-

tivity was observed as a function of composition, similar to trends seen in binary

ionic liquid mixture of water or conventional solvents with ILs.

4.2 Introduction

Room temperature ILs are a class of salts that are liquid at room temperature

consisting exclusively of ions. They are currently one of the most studied solvents

because of several unique properties such as negligible volatility, electrochemical

stability, low melting point, and high thermal and chemical stability [155]. Be-

cause of all of these desirable properties, ILs are investigated for various indus-

trial applications such as potential solvents to break minimum/maximum boiling

azeotropes [156–159], extracting agent in LLE separations [160–163], electrolytes

in electrochemical devices [11,164–166], and solvent for gas-capture [167–170]. De-

spite the various favorable attributes inherent in an ionic liquid, high viscosity and

low ionic conductivity of many ILs, especially at low temperatures, is a bottleneck

for the application of ILs as electrolytes in batteries [171].

A widely adopted approach to mitigate potential drawbacks for using ILs is to

tune the properties of an ionic liquid by altering functional group(s) attached

to the cation, changing the cationic core (e.g. from aromatic to cyclic), and/or

modifying the chemical composition of the anion. Developing new ILs this way

requires considerable chemical intuition, expertise in synthesis, and subsequent

measurements of properties. Given the breadth of the chemical space for cations

and anions, it is practically impossible to study every possible combination of the

cation and anion. The explosion in the chemical space is further exacerbated by

the increasing popularity of exploiting ionic liquid-ionic liquid mixtures for tailor-

ing properties of these solvents [51, 172, 173]. One estimate projects that there

are as many as one billion ionic liquid systems [174]. Although daunting from an

experimental or molecular simulation viewpoint, the vast chemical space of cations

and anions also offers a unique opportunity to leverage machine learning and data
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analytics-based techniques to search and design ILs with properties suited for a

given application.

Indeed, several studies over the years have used artificial neural network (ANN) to

model and predict ionic liquid properties such as density, [175] viscosity [176,177],

melting point [178], toxicity [179], solubility of gases, such as CO2 [180, 181]

and SO2 [182] in ILs, surface tension [183], investigating ionic liquid-solvent mix-

tures, [184–187], and prediction of rate constants in ionic liquid-organic mix-

tures [188]. Additional examples involving the application of ANN for various

properties for ILs can be found in a recent review article by Yusuf et al. [189]

Recently, Beckner and Pfaendtner have demonstrated that it is possible to com-

bine machine learning and genetic algorithm to develop new ILs with high thermal

conductivity [190]. Some advances have also occurred for correlating ionic con-

ductivity, an extremely useful property for selecting electrolytes in electrochemical

applications and the topic of the present chapter. Krossing et al. used the concept

of free volume and derived an empirical equation based on Cohen-Turnbull free

volume theory to correlate transport properties such as ionic conductivity and vis-

cosity for imidazolium based ILs that were in good agreement with experimental

data at high temperature range, while some deviations were noted in the low tem-

perature regime [191]. Passerini et al. found that the molar conductivity of pyrro-

lidinium based cations paired with sulfonylimide anions showed a high correlation

(R2 = 0.9942) with the sum of cation and anion volumes obtained from electronic

structure calculations [110]. The observation suggested that the molar ionic con-

ductivity decreased with an increase in the combined volume. However, no such

monotonicity existed for imidazolium-based ILs, which is the focus of the present

study. Beichel et al. used volume-based thermodynamics (VBT) approach to cor-

relate ionic conductivity of ILs based on parameters such as molecular volume and

surface area calculated using COnductor-like Screening MOdel (COSMO) [192].

The authors reported an overall root mean square error of 0.04-0.06 log(σ). Group

contribution (GC) methods have also been found useful for developing a correlation

between the ionic conductivity and various chemical features of ILs. For example,
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Gharagheizi et al. employed a least-squared support vector machine GC method to

estimate ionic conductivity consisting of a dataset with 54 different unique ILs with

an absolute average relative deviation (AARD) of 3.3% [114]. Tochigi et al. devel-

oped a polynomial-based quantitative structure-property relationship (QSPR) to

predict ionic conductivity for eight different cation families and sixteen different

anions [109]. The authors reported an overall R2 of 0.91 and standard deviation

of 0.12 S/m for 139 data points. Coutinho et al. used a three-parameter GC

method equation similar to Vogel-Tammann-Fulcher (VTF) for the estimation of

ionic conductivity for pure ILs [193]. Wooley et al. applied a four-parameter GC-

based approach to estimate ionic conductivity of ILs [113]. An attractive feature

of GC methods is that chemically intuitive groups are usually selected as inputs to

the model prior to optimizing model parameters. However, for billions of ILs with

vastly different chemical functionalities, identifying and enumerating all the rele-

vant groups can pose significant difficulties to eventual automated screening of ILs.

In this chapter, we explore a different approach rooted in the framework of machine

learning techniques such as artificial neural network and support vector machine

to correlate the ionic conductivity of pure ILs. We assess the performance of the

two models and examine if the model can be extended to predict ionic conduc-

tivity of all possible combinations of unique cations and anions in the database

and binary ionic liquid systems. As such the next section provides details on the

data collection and processing, model formulation, and model validation. In the

subsequent section, the models, trained with the ionic conductivity of pure ILs,

are compared. The model with better accuracy is identified and is extended to

predict the ionic conductivity for in silico ILs obtained by enumerating possible

combinations of cations and anions contained in the dataset. We will demonstrate

that such a procedure leads to the discovery of the ionic liquid with the highest

conductivity, which matches with the experimental data at 298 K. The predictive

capability of the model will be discussed in terms of the level of agreement for ionic

conductivity for several binary ionic liquid systems. The possibility of obtaining

enhancement in the ionic conductivity by formulating binary ionic liquid mixtures
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will be presented followed by a summary of findings and the direction for future

research.

4.3 Methodology

4.3.1 Data Collection and Processing

A total of 2895 ionic conductivity data for pure component imidazolium-based ILs

were downloaded from the online ILThermo database maintained by NIST [73,74]

using the pyILT2 [142] utility. Majority of the imidazolium-based experimental

data in the NIST ILThermo Database were measured using alternating current cell

with electrodes [194,195] while the rest were acquired using direct current cell with

electrodes [17, 196], capillary cell, electrochemical (EC) cell [197], impedanceme-

try [198,199] and conductivimeter [200]. The downloaded data were processed (see

below) and formatted with an in-house Python script. The datapoints contained

the ionic liquid name, temperature (K), pressure (kPa), reference from which the

data was extracted, and the uncertainty in the measurement. Approximately 89%

of the data represented ionic conductivity in the liquid state, while ∼10% of the

data for crystals, and a small fraction of the data with ionic conductivities for

metastable liquids were discarded from the training set.

The next step involved a careful examination of the dataset. First, we elimi-

nated any entries with missing values for the ionic conductivity or ”NaN” in the

dataset. To accomplish the removal of inconsistent data or typographical errors,

we graphed ionic conductivity data as a function of temperature to identify out-

liers in the dataset. Some of the ionic conductivities were extremely low, in the

range of 10−9 S/m belonging to ILs comprised of natural amino acids as the anions

combined with 1-ethyl-3-methylimidazolium [C2mim]+ cation at 298.0 K [48]. We

eliminated these points due to very low values of ionic conductivity and the fact

that the model derived from an artificial neural network (ANN, see below) could

not be extended to such small values. We also found that ionic conductivities

for the pure 1-n-hexyl-3-methylimidazolium [C6mim] bromide Br and 1-n-octyl-
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3-methylimidazolium [C8mim]Br were reported to be 144.1 S/m and 116.4 S/m,

respectively at 333.15 K [201]. These values are two orders of magnitude larger

than those for many imidazolium-based ILs. For example, ILs with shorter alkyl

chain length such as [C2mim]Br and 1-n-butyl-3-methylimidazolium [C4mim]Br

have been reported to possess ionic conductivities of 1.06 S/m at 335.6 K [195]

and 0.734 S/m at 373.1 K [13]. The visualization of the ionic conductivity as

a function of the alkyl chain length also showed that the ionic conductivity de-

creases with the increase in the alkyl chain. Thus, the inconsistency led us to

remove the seemingly high ionic conductivity datapoints. We pruned the dataset

further by identifying duplicate ionic liquid fields (same cation, anion, tempera-

ture, and pressure) and keeping only the entry with the lowest uncertainty in the

ionic conductivity measurements.

We further reduced the number of points for model development by visualizing

the data to obtain a clue into the appropriate ranges for the ionic conductivity,

temperature and pressure along with chemical identities of the ionic liquid in the

database. We observed that a large fraction of the measurements have been con-

ducted in the temperature range spanning 275-475 K (Figure A.1). Thus, we

removed all the data points outside this temperature range. As there were only

a limited number of points present at pressures other than 101 kPa, we decided

to restrict the model development by fixing the pressure at 101 kPa. The result-

ing dataset contained a total of 1323 data points with ionic conductivities over

six orders of magnitude from 4.1x10−5 S/m to 19.3 S/m as seen in supporting

information. To assess the variability in the chemical identities of the cations and

anions represented in the data set, we generated Figure 4.1 for every ionic liquid

for which more than five data points were present; the size of the marker in the

figure is proportional to the number of points reported for each of the ILs. It is

clear that a large fraction of the ionic conductivity measurements cover the cations

[C2mim]+ and [C4mim]+ paired with a broad variety of anions, while the remaining

cations, on an average, are combined with two to three distinct anions. Overall, we

found that the dataset contained 29 unique cations and 38 unique anions. There
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were a total of 111 ILs, approximately 10% of the ILs that could be formed by

combining cations and anions from the dataset.

Figure 4.1: The number of ILs for a given cation-anion combination with more

than five data points in the NIST ILThermo database is shown.

4.3.2 Feature Generation and Elimination

We translated the identities of the cations and anions to simplified molecular-

input line-entry system or SMILES format using an open-source online website

Open Parser for Systematic IUPAC Nomenclature OPSIN [10, 202]. One of the

anions in the dataset [tetrakis(isothiocyanto)cobaltate(2-)] could not be converted

to SMILES format, therefore we removed the anion and corresponding ILs from fur-

ther consideration. We used an open-source cheminformatics package RDKit [143]

to generate descriptor features for the input to the models. RDKit produced a total

of 196 descriptors for each of the cations and anions. A complete listing is avail-

able in the supporting information (Section 1.1). Prior to utilizing these features

in the model development, we examined the correlation among features to reduce

the dimensionality of the input and increase the speed of learning algorithms by
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calculating cross correlation coefficients for every feature with every other feature.

Comparing the correlation coefficients sequentially, we eliminated any feature that

showed either a positive or negative correlation coefficient of greater than 0.9 with

any of the previous features. This process brought the aggregate number of cation

and anion features down to 38 and 59, respectively, for a total of 99 chemical

features including temperature and pressure for a given ionic liquid. The final set

of features used below for the model development is included in the supporting

information (Sections 1.2 and 1.3).

4.3.3 Data Normalization

Data normalization is a standard technique in improving the model performance

and minimizing biases in a multivariate regression with feature values varying over

a wide range. For instance, the RDKit feature ‘hydrogen count’ would possess

a considerably smaller range of values for the cations and anions in comparison

to those for the ’molecular weight’ feature, which will likely influence the corre-

sponding weightage. On the output side, the ionic conductivity data varied over

six orders of magnitude as pointed out earlier. Therefore, we decided to use Min-

MaxScaler implemented in Scikit-learn [144] to normalize each input feature and

the output by the difference in the maximum and minimum values, which led to

any feature or output value to fall between 0 and 1. We preserved the scaling

employed during the model generation for later use in the prediction.

4.3.4 Model Development

In this work, we used a total of 1323 experimental data points with a focus on

cations exclusively from the imidazolium family to build machine learning model.

The training set consisted of 90% of the total data, while the remaining 10% of

the data was used as test case to evaluate the model’s performance. The model

was constructed using two of the most popular machine learning methods, support

vector machine for regression (SVR) and feed forward ANN (FFANN).
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Support vector machine (SVM) is a supervised machine learning framework used

for classification and regression problems [203–205]. The regression version of

SVM is called SVR with the central objective of finding the best fit line in the

hyperplane; the equation for the regressed line is derived by finding the maximum

number of points located within a given tolerance. Hyper-parameter tuning of

SVR parameters is extremely important to improve the model’s accuracy for re-

gression analysis. Similarly, FFANN is also a supervised learning technique with a

mapping function y = f(x; θ) where θ is the parameter set that the model learns

to provide the most optimal approximation of the function based on the input

feature vector x. The FFANN consists of three layers: an input layer, hidden layer

and the output layer. The input layer consisted of chemical features along with

the state points temperature T and pressure P.

Hyper parameters for both the models were tuned using GridSearchCV imple-

mented in Scikit-learn [144]. GridSearchCV exhaustively searches all the hyper-

parameter combination listed in the parameter search space to identify the best

performing hyper-parameters. The search space for both the models along with

the final hyper-parameters are provided in the supporting information (Sections

2.4 and 2.5). The GridSearchCV method is combined with 10 K-Fold cross valida-

tion to minimize any overfitting during the hyper-parameter search. The best per-

forming model architecture with the highest accuracy during this hyper-parameter

tuning process was selected as the final model with a further evaluation conducted

on the test case set aside earlier. The workflow for cross-validation and testing of

the model is depicted in Figure 4.2.
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Figure 4.2: Description of model development followed in this study.

4.4 Results and Discussion

4.4.1 Model Validity

In this work, we developed machine learning models to predict ionic conductivity of

imidazolium-based ILs using two different techniques. The best-performing model

produced the lowest statistical uncertainty and captured the trends in the data

such as the lowest ten and the top ten ionic conductivity measurements. During

the model development, we observed that the models based on MinMax scaling

as discussed earlier performed extremely well for predicting conductivity values in

the higher magnitude range, but the predictive capability greatly diminished in

the lower conductivity region. For instance, the experimental value of [C6mim]

tetrafluoroborate [BF4] is 6.7 x 10−4 S/m at 298 K; however, the predicted value

was 3.3 x 10−2 S/m - an error of two orders of magnitude. We noted this behavior

for many other ionic liquid systems with ionic conductivity values on the lower

end. The observation prompted us to convert the ionic conductivity values on

a logarithm scale (base 10) before applying the MinMax scaling, which led to

a dramatic improvement in the prediction of low ionic conductivity values. For

example, the ionic conductivity prediction for the ionic liquid [C6mim][BF4] was

7.2 x 10−4 S/m in comparison to experimental measurement of 6.7 x 10−4 S/m.
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Table 4.1: Comparison of the predictions results for FFANN and SVR for the

training set, test set and the entire dataset. MSE is the mean squared error, MAE

is the mean absolute error, RMSD is root mean square deviation and R2 is the

squared correlation between experiment and predicted data. log10 scale refers to

ionic conductivity scaled to log10.

Scale Metric Train Test Entire

SVR FFANN SVR FFANN SVR FFANN

log10 scale R2 0.995 0.993 0.976 0.991 0.993 0.994

MSE 0.002 0.003 0.012 0.004 0.003 0.003

MAE 0.014 0.036 0.038 0.044 0.017 0.037

RMSD 0.047 0.057 0.111 0.071 0.057 0.059

Table 4.1 details the statistical assessment of SVR and FFANN for the training

set, test dataset and the entire set. Both the models not only perform well for the

training set, but they also have very high R2 and low MSE, MAE and RMSD for

the test set.
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Figure 4.3: (a) Comparison of FFANN model predictions with the experimental

data on a log10 scale for the training set. A perfect prediction would fall on

the y = x dotted line; (b) comparison for the test set (c) Residual deviation on

the log-10 scale calculated as (σexperiment − σprediction) where σ refers to the ionic

conductivity for the training set; (d) Residual deviation for the test set.

Figure 4.3(a) demonstrates that the FFANN model is able to capture the training

data on the base-10 logarithmic scale spanning six orders of magnitude with a high

accuracy in the low conductivity range. Figures 4.3(c) and (d) show the residual

deviation calculated by taking the difference in experiment and predicted value vs

the experimental data. It is important to note that the residual deviation stays

within ±0.5 log unit for the training set and the test set over the entire range of

the experimental data.
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Figure 4.4: (a) Comparison of SVR model predictions with the experimental data

on a log-10 scale for the training set. A perfect prediction would fall on the y = x

dotted line; (b) comparison for the test set (c) Residual deviation on the log-10

scale calculated as (σexperiment − σprediction) where σ refers to the ionic conductivity

for the training set; (d) Residual deviation for the test set.

Similarly, Figure 4.4(a) depicts that the ionic conductivity correlation using the

SVR model for the training set and test set. In contrast to FFANN, SVR seems

to have more deviation from the y=x line for both sets at low ionic conductivity

values. This is also reflected on the residual deviation plot Figure 4.4(c) and (d)

where the maximum deviation reaches as high as ±0.6 log unit for the training

set. The normal scale ionic conductivity correlation using FFANN and SVR are

provided in the supporting information as seen in Figure A.8 and Figure A.9.
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The overall accuracy of both the model outputs is encouraging, especially when

considered in the context of the ionic conductivity calculated from molecular sim-

ulations. Transport properties such as ionic conductivity are quite challenging to

accurately predict from atomistic simulations requiring long simulation times and

optimization of force field parameters. The problem is further exacerbated for

sluggish ILs possessing extremely low ionic conductivity as probed here. In such

scenarios, the simulation results of ionic conductivity can differ by a factor up to

10 (by 1 unit on log 10-scale) from the corresponding experimental observations.

An added advantage of the proposed model is to provide guidance, at almost no

computational cost, on the ionic conductivity values for in silico generated pure

ILs and mixtures of binary ILs obtained from possible combinations of cations and

anions studied here. However, we admit that the machine learning model cannot

provide molecular-level insight that is inherent in molecular simulations. For the

discussion below, we focus on FFAAN as the accuracy of the model is slightly

better for the entire data set.

We also compared ionic conductivity data predicted using FFANN model against

a recently published Group Contribution (GC) method [113] in comparison with

experimental data. This was done for a total of 203 data points consisting only

the [Cn=(2,4,6,8)mim][NTf2] subset series at various temperatures. The statistical

uncertainty in predictions with the FFANN model and the GC model are simi-

lar compared to experimental data. The experiment data, GC predictions and

FFANN predictions can be found in the supporting information along with the

statistical uncertainty in predictions.

We also probed the accuracy with which the FFAAN model captured trends. For

this, we chose the data at 298 K as there were only a few systems for which the

data was available over the entire temperature window. In Figure A.10, we com-

pare the predictions of the FFANN model for the ten lowest ionic conductivity

values reported in the NIST ILThermo Database at 298 K. We observe that the

model accurately predicts the ordering of the ILs while the ionic conductivities are
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also in very good agreement. The plot also reveals that long alkyl chains or amino

acid-based anions tend to produce low conductivity ILs. Similarly, Figure A.11

represents a comparison between the FFANN model predictions and experimental

measurements for the ten largest conductivity values at 298 K. It is evident that

the predictive capability of the model is excellent. It is also important to highlight

that not only does the model capture the quantitative trend accurately, but it also

performs correctly in terms of taking into account the cation and anion properties

and behavior. For example, [BF4]
− when paired with a long alkyl chain cation

[C12mim]+ yields one of the lowest ionic conductivity ILs, while its combination

with [C2mim]+ generates an ionic liquid with five orders of magnitude higher ionic

conductivity than that for [C12mim][BF4]. We also point out that the change in

the identity of the anion can dramatically affect the ionic conductivity as exempli-

fied by 1-allyl-3-methylimidazolium [AMIm][Benzoate] and [AMIm][Formate], the

latter with the ionic conductivity four orders of magnitude higher than that for

the former; the model successfully predicts the trend.

4.4.2 Unique Ionic Liquid Combination

Next we generated all the combinations of 29 unique cations and 38 anions present

in the dataset, which resulted into 1102 pure ILs at 298 K for which we predicted

ionic conductivity at 298 K. We first tested the accuracy for such predictions using

FFANN and SVR model based on two test cases that were not part of the train-

ing set. The first system is [C2mim] bis(fluorosulfonyl)imide [FSI]. The database

contained [C4mim][FSI] as the only ionic liquid containing [FSI]−. The model

prediction for the ionic conductivity using FFANN was found to be 1.60 S/m for

[C2mim][FSI] at 298.15 K, in excellent agreement with the corresponding experi-

mental measurements of 1.61± 0.02 S/m compared to significantly under predicted

value of 0.189 S/m using SVR method [206]. The second system is represented by

the ionic liquid [C1mim][DCA], which was predicted to possess the highest ionic

conductivity of 3.70 S/m at 298 K using FFANN, which is roughly 30% higher

than the highest ionic conductivity of 2.83 S/m for [C2mim][DCA]. We found two

experimental papers confirming that the ionic conductivity of [C1mim][DCA] at
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298.0 K is around 3.60 S/m, [40, 207] once again in excellent agreement with the

value obtained from our FFAN model. The SVR model, however, suggested the

ionic conductivity to be 0.061 S/m for the same ionic liquid, a significant underpre-

diction. These observations point to the fact that the FFANN model is well suited

to estimate ionic conductivity for ILs as long as the constituent ions are present

in the training set and the features for the ions generated are also present in the

dataset. However that is not the case for SVR which seems to perform poorly

for ILs beyond the training set. It is also worth pointing out that we are able

to obtain the ionic conductivity for [C1mim][DCA] higher than the largest value

of 2.83 S/m at 298 K because the model was fitted using the ionic conductivity

data up to ∼19 S/m (see Figure A.8(a).) The applicability of FFANN and SVR

model to predict ionic liquid combination with either the cation or anion missing

from the training set is further illustrated for several test cases as shown in the

supporting information.

The high accuracy of the FFAAN to model the experimental ionic conductiv-

ity data prompted us to generate ionic liquid predictions as seen in Figure 4.5

along with the experimental ionic conductivity values at 298 K. It is clear that a

large fraction (87.3%) of the ILs exhibit ionic conductivity below 0.5 S/m. More

interestingly, the procedure yielded a number of ILs (approximately 8.3%) with

ionic conductivity between 0.5 S/m and 1.0 S/m while 47 ILs were predicted

to possess ionic conductivity greater than 1.0 S/m. As a comparison, the orig-

inal data contained a very few ILs crossing this threshold (five out of 73 data

points). Cyano-based anions such as dicyanamide [N(CN)2]
−, tricyanomethanide

[C(CN)3]
−, tetracyanoborate [B(CN)4]

−, and thiocyanate [SCN]− accounted for

the two thirds of the ILs with ionic conductivity greater than 1 S/m. As for the

cation, [C1mim]+, [C2mim]+, and [C3mim]+ were found in two thirds of the ILs

for which the ionic conductivity is greater than 1 S/m.
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Figure 4.5: (a) Ionic conductivity comparison between experiment (open circle in

red) and model prediction(green) using FFANN for all those data at 298 K. (b)

Unique ionic liquid predictions using FFANN for 1102 ionic liquid obtained by

combining 29 unique cations and 38 anions at 298 K. The ionic conductivity for

these ILs at 350 and 400 K appear in the supporting information (Figure A.15.)

One potential issue with the generation of ILs by combining cations and anions is

the lack of knowledge concerning whether such ILs would exist in the liquid state at

the temperature of interest. For example, Martino et al. reported that the physical

state of [C1mim][DCA] is a supercooled liquid at room temperature [208]. In lieu

of experiments, some clues into the physical state of these ILs can be gleaned from

conducting molecular simulations and analyzing the resulting radial distribution

functions as performed by Beckner and Pfaendtner [190]. We decided not to purse

such an approach as our primary motivation here is to identify pure ILs, and

binary ionic liquid mixtures bearing high ionic conductivity. In future studies,

we plan to perform molecular simulations to offer insights into the molecular-level

mechanism for high conductivity of the novel ILs suggested by our model. We

also hope that the promising ionic liquid candidates emerging from our work will
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enable the experimental community to focus its efforts in the discovery for high

ionic conductivity ILs.

4.4.3 Binary Ionic Liquid Mixtures

In this section, we evaluate the performance of the FFANN model in predicting

ionic conductivity of binary ionic liquid mixtures using transfer learning, where

the idea is to solve new tasks by transferring knowledge gained from a closely

related problem. In this work, the transfer learning takes the form of using pure-

component ionic conductivity data to develop a model to predict the ionic con-

ductivity data for binary ILs which the model has not encountered before. The

utility of the approach stems from the fact that there is a significant increase in

the number of binary ILs due not only to the combinatorics but also the fact that

the concentration of the constituent ILs is now an additional independent variable.

For example, if the number of unique cations is Nc and Na is the number of anions,

there are potentially Nc∗(Nc−1)/2∗Na binary ILs with common anion (Binary C

systems) and Nc∗Na∗(Na−1)/2 binary ILs sharing the identical cation (Binary A

systems); the number of ILs is further amplified by the number of practically real-

izable formulations. With 29 unique cations and 38 anions, we enumerated 15,428

Binary C and 20,387 Binary A systems. For each of these mixtures, we probed

19 intermediate concentrations spaced at an interval of 0.05 mole fraction between

the pure ILs leading to a total of ∼680,000 binary ILs.

For estimating the ionic conductivity of a given binary mixture, we combined the

input features of the constituent ionic liquid cations and anions on a mole frac-

tion basis. For example, for a Binary C system designated as [C1]x[C2]1−x[A], we

obtained the cation features as the mole fraction-weighted average of the features

for [C1] and [C2]. As this is an illustration for a common anion, we retained the

input features for the anion as derived in the model development. Analogously,

for Binary A systems represented as [C][A1]x[A2]1−x, we kept the cation features

while the anion features were derived by scaling the individual anion features by

respective mole fractions and adding the features thus calculated. To examine the
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overall accuracy of such an approach, we compared the model predictions with

experimental data reported for several binary ionic liquid mixtures in the NIST

database and literature [209–214].

4.4.4 Comparison of Experimental and FFANN-predicted Ionic Conductivity

of Binary ILs

Table 4.2 lists the thirteen binary ionic liquid mixtures for which experimental

data for ionic conductivity are available along with the number of data points and

temperature range. Also included in Table 4.2 are the FFANN predictions for

these systems and corresponding RMSD values. It is remarkable that the RMSD

is less than 0.1 S/m for many systems, implying the suitability of the model for

estimating the ionic conductivity for binary ionic liquid systems.

Figure 4.6: Comparison between experiment and FFANN model for

[C4mim]*[Azide]x1 + [C4mim]*[BF4]1−x1 at (a) 303.15 K, (b) 323.15 K and (c)

368.15 K. The dashed lines connecting the pure end points are only guide to

the eye. [C4mim]* stands for 1-butyl-2,3-dimethylimidazolium cation [209]. The

dashed line with ⋆ is obtained by a logarithmic combining rule for ionic conduc-

tivity lnσmix = x1 ∗ lnσ1 + (1 − x1) ∗ lnσ2, while the dashed line without symbol

indicates estimates with a linear combining rule.

Out of the thirteen systems examined in Table 4.2, the binary system comprised of

79



Table 4.2: Root mean-squared deviation of the prediction and experimental data

for binary ionic liquid mixtures. N.D stands for number of datapoints present in

the dataset. [C4mim]* stands for 1-butyl-2,3-dimethylimidazolium cation.

System N.D Temperature RMSD Reference

Range/K S/m

[C2mim][DCA] + [C2mim][BF4] 9 298.15 0.46 [210]

[C2mim][DCA] + [C2mim][SCN] 30 298.15-323.15 0.36 [211]

[C4mim][Cl] + [C4mim][CF3SO3] 5 298.0 0.05 [214]

[C4mim][MeSO4] + [C4mim][Me2PO4] 4 298.0 0.17 [214]

[C4mim][NTf2] + [C4mim][CF3SO3] 5 298.0 0.05 [214]

[C4mim][NTf2] + [C4mim][MeSO4] 5 298.0 0.10 [214]

[C4mim][NTf2] + [C4mim][Me2PO4] 6 298.0 0.21 [214]

[C4mim]*[Azide] + [C4mim]*[BF4] 70 303.15-368.15 0.08 [209]

[C8mim][Cl] + [C8mim][BF4] 42 303.0-333.0 0.02 [213]

[C6mim][Cl] + [C6mim][BF4] 42 303.0-333.0 0.06 [213]

[C4mim][NTf2] + [C4mim][Acetate] 32 283.15-333.15 0.13 [212]

[C6mim][Cl] + [C6mim][PF6] 35 303.0-333.0 0.07 [213]

[C2mim][BF4] + [C8mim][BF4] 30 280.0-300.0† 0.09

Overall 315 0.167

†Personal communication

[C4mim]*[Azide] and [C4mim]*[BF4] exhibits non-ideal behavior, where the ionic

conductivity achieves either a minimum or maximum at an intermediate mole frac-

tion. Figure 4.6 shows that the ionic liquid passes through a maximum at lower

temperatures (303 and 323 K), while a minimum is observed at higher tempera-

ture (368 K). The FFAAN model developed here seems to capture the trend with

a reasonable agreement with experimental data. Furthermore, the model is accu-

rate enough to identify the concentrations at which such extrema were measured

in the experiment [209]. Overall this indicates that the model is robust enough to

closely match both qualitative and quantitative trends; this is quite encouraging
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given that the data for these binary ionic liquid systems were not part of the model

development. We further tested the predictive capability of the model to repro-

duce such a non-ideal behavior reported by McFarlane et al. [50]. The authors

measured the molar conductivity for the binary ionic system of [C2mim][NTf2]

and [C2mim][CF3SO3] and found a maximum at an intermediate mole fraction.

Due to the lack of experimental data for molar volumes, a direct comparison was

not possible; however, our model outputs (Figure A.16) indeed confirmed that the

binary ionic liquid mixture would exhibit a maximum in ionic conductivity.

Encouraged by the success of the model in estimating ionic conductivity for several

binary mixtures, we proceeded to examine if there are binary ionic liquid mixtures

producing an extremum (either a maximum or minimum) in ionic conductivity as

the mole fractions of the constituent ILs are varied. We discovered that there were

a total of 5040 Binary C systems, which yielded a maximum in the ionic conduc-

tivity. On the other hand, a total of 3771 Binary A systems produced a maximum

in the ionic conductivity at 298 K. Normalizing these systems by the corresponding

number of possible binary ionic liquid systems, we calculated that approximately

32.6% of Binary C and 18.4% of Binary A systems could potentially be formed

to obtain ionic conductivity higher than those of the two pure ILs forming the

mixture. Two observations are worth pointing out: (a) binary ionic liquid systems

offer a viable pathway for increasing ionic conductivity; (b) the likelihood for ob-

taining a maximum in ionic conductivity is higher when two different cations are

mixed, particularly mixing cations with a large difference in the alkyl chain length.

In order to gain additional insight into the extent of enhancement in ionic con-

ductivity, we calculated the percentage enhancement (E) using eq. 4.1 where σmax

represents the maximum ionic conductivity for the mixture and σmax,pure refers to

the higher of the two pure ionic conductivities. Figure 4.7(a) and (b) present the

binary enhancement factor for Binary A and Binary C systems, respectively.

E =
σmax − σmax,pure

σmax,pure

∗ 100 (4.1)
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It is apparent that the percentage enhancement is large for the ionic liquid mixtures

systems with ionic conductivity values lower than 1 S/m and is partly attributable

to the low conductivity values of the pure ILs appearing in the denominator of

eq. 4.1. It is also interesting to observe that the Binary C systems display a

broader range of enhancement values in comparison to those found for Binary A

systems. The analysis suggests that there exists at least one ionic liquid mixture

for each of the unique cations and anions exhibiting an enhancement. We also

uncovered that the top three Binary A mixtures for which maximum enhance-

ment percentage was obtained contain [HSO4]
− and chloride as the anions. These

mixtures are (i) [C6mim][Cl]0.75[HSO4]0.25 with a maximum pure value of 0.0021

S/m and enhanced maximum value of 0.0177 S/m leading to an enhancement of

715.4%, (ii) [C8mim][Cl]0.75[HSO4]0.25 with a maximum pure value of 0.0010 S/m

and enhanced maximum value of 0.008 S/m with an enhancement of 675.4% and

(iii)[C3mim][Cl]0.55[HSO4]0.45 with a maximum pure value of 0.006 S/m and en-

hanced maximum value of 0.047 S/m with an enhancement of 582.4%. As for the

binary cation mixture seen in (b), 1-(1-cyanomethyl)-3-methylimidazolium0.6 3-

(2-(butylamino)-2-oxoethyl)-1-ethyl-1H-imidazolium0.4[PF6] has a maximum pure

value of 0.0196 S/m and the maximum value of 0.113 S/m leading to an increase

of 485.2%.
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Figure 4.7: Percentage enhancement and suppression in ionic conductivity for bi-

nary ionic liquid mixtures at 298 K. Binary A Max stands for a binary mixture

sharing a common cation showing maximum enhancement; Binary C Max stands

for a binary cation mixture displaying maximum enhancement; Binary A Min de-

notes a binary anion mixture exhibiting minimum suppression, and Binary C Min

represents a binary cation mixture producing minimum suppression.

Similarly, there were several binary ionic liquid systems which showed an opposite

behavior, i.e., there is at least one binary ionic liquid composition at which the

ionic conductivity is lower than those of the corresponding pure ILs. We uncovered

2305 Binary C and 4284 Binary A systems which showed a minimum in the ionic

conductivity as a function of the ionic liquid composition at 298 K. To quantify the

extent of lowering in the ionic conductivity, we calculated percentage suppression

(S) using eq. 4.2 in which σmin denotes the minimum in ionic conductivity and

σmax,pure refers to the maximum of the two pure ionic conductivities. We elected
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to measure the deviation from σmax,pure to emphasize the reduction in the

S =
σmin − σmax,pure

σmax,pure

∗ 100 (4.2)

ionic conductivity expected when an ionic liquid with lower conductivity is mixed

with the one possessing high conductivity. Inherent in the definition in eq. 4.2 is

the fact that the percentage lowering is capped at 100%. The extent of depression

in the ionic conductivity depicted in Figure 4.7 confirms the expectation. It is

noteworthy that the suppression in the ionic conductivity brought about by the

mixture of anions is restricted to ILs with ionic conductivity below 1 S/m, while the

depression in the ionic conductivity due to mixing of cations is predicted to cover

the entire range of ionic conductivities. Furthermore, we identified the number for a

given cation pair or anion responsible for elevating or depressing ionic conductivity

for binary mixtures. The analysis is presented in the form of various heat maps

(Figures A.17, A.18, A.19, and A.20). It is also interesting to note that the short

chain alkyl cations such as 1-methylimidazolium and 1,3-dimethylimidazolium are

promising cations for ionic conductivity enhancement when combined with other

cations as seen in Figure A.19.

4.5 Conclusion

In this chapter, we made use of the NIST ILThermo Database to derive a FFAAN

model and a SVR model for predicting ionic conductivity of pure imidazolium-

based ILs. The ionic conductivity values ranged over six orders of magnitude and

covered temperatures from 275 K to 475 K. The input features for the models were

obtained using RDKit. The overall accuracy was found to be nearly identical for

both the models. An examination of the predictions for the high ionic conductiv-

ity ILs suggested superior performance for FFAAN, which was then employed for

subsequent predictions.

Using 29 unique cations and 38 unique anions in the database, the ionic con-

ductivity for all the possible combinations (1102 in total) were predicted at 298 K.

The procedure led to the identification of the ionic liquid [C1mim][DCA] that is
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not present in the training set with an ionic conductivity of 3.70 S/m - 30% higher

than the highest ionic conductivity in the training set and the NIST ILThermo

Database at 298 K. The prediction was confirmed with the experimental data

available in the literature. A simple procedure for combining the features on a

mole fraction-weighted basis was devised to evaluate the predictive capability of

the model for ionic liquid-ionic liquid mixtures. The results obtained with the

approach showed that model was able to accurately capture the ionic conductivity

for several binary for which experimental data exist.

The present study suggests a large number of binary mixture with non-ideal be-

havior in terms of the ionic conductivity. We encourage the experimental and

molecular simulation communities to test the predictions. Confirmation of such

non-ideality will increase the confidence in such models, while any deviations of

the measured or computed properties from the predictions will enable a further

refinement of the model. In either case, it is expected that the concerted effort

between the experimental, molecular simulation, and machine learning approaches

will accelerate materials discovery in the ILs domain.
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CHAPTER 5

Revealing Hydrogen Bond Dynamics between Ion Pairs in Binary and

Reciprocal Ionic Liquid Mixtures

5.1 Abstract

Molecular dynamics simulations are performed to probe the molecular-level inter-

actions between various ionic pairs in the reciprocal mixture consisting of equimo-

lar amounts of the cations 1-ethyl-3-methylimidazolium [C2mim]+ and 1-n-hexyl-3-

methylimidazolium [C6mim]+ and dicyanamide [DCA]− and

bis(trifluoromethanesulfonyl)imide [NTf2]
− anions. Any enhancement or depletion

in these interactions is compared with those existing in equimolar binary mix-

tures [C2mim][C6mim][DCA], [C2mim][C6mim][NTf2], [C2mim][DCA][NTf2], and

[C6mim][DCA][NTf2] and pure ILs [C2mim][DCA], [C6mim][DCA], [C2mim][NTf2],

and [C6mim][NTf2]. The simulation results indicate that the [C2mim]+ cation

prefers to interact favorably with the strongly coordinating [DCA]− anion through

enhanced hydrogen-bonding interactions, while showing no preferential interest

towards the other anion in the reciprocal mixture. The average hydrogen bond

lifetimes between [C2mim]+ cation and [DCA]− anion increases by a factor of two

in the reciprocal mixture compared to that in the pure system. We find that the

hydrogen bond lifetimes in the various systems are directly correlated to the first

peak intensity in the center-of-mass radial distribution functions for corresponding

ion pairs and have a direct bearing on the self-diffusion coefficients of the ions.

Our results point to possibilities of tuning interactions between various species
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in reciprocal ionic liquid mixture by appropriately changing the cation and anion

combinations.

5.2 Introduction

For more than two decades now, ILs have gained widespread attraction because of

several unique attributes such as low melting points despite ionic in nature, ability

to exist as liquids at ambient conditions, low vapor pressures, and high thermal

and chemical stability. In addition to these desirable properties, the ever-increasing

attention paid to these ionic solvents is due to the fact that they offer the possibil-

ity of designing task-specific solvents with desired properties when an appropriate

cation is paired with a suitable anion. Given that there exist seemingly an endless

list of cations and a plethora of anions, it is no surprise that the chemical space

for ILs is vast. The search for an ideal ionic liquid with requisite properties can

be expanded further by considering mixtures of two or more ILs, which can poten-

tially aid, for example, in improving sluggish dynamics encountered for many ILs.

A large number of experimental and molecular simulation studies have extensively

examined the molecular level interactions and structural transitions in ILs mixtures

and their relationship to deviations in macroscopic properties [51, 173, 210, 215].

Kapoor and Shah, in a recent study, showed that the difference in molar volumes

of ILs and hydrogen bonding accepting ability between the anions played a driving

force in determining whether a given binary ionic liquid mixture with a common

cation would exhibit non-ideal behavior [52]. The authors conducted molecular

dynamics (MD) simulation for 16 different binary anion mixtures and concluded

that pure ILs with molar volume difference greater than 60 cm3/mol and hydrogen

bonding basicity difference greater than 0.4 when mixed would most likely yield

non-native structural transitions at microscopic level. Such guidelines could serve

to screen potential ionic liquid mixtures to identify non-ideal behavior. Several

other binary ionic liquid mixtures with two anions and a common cation have ob-

tained similar results where the difference in hydrogen bonding ability of the anions
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and the difference in anion size induces competition between the anions that causes

the system to show non-ideal behavior. In such systems, the strongly coordinating

anion prefers to occupy the locations proximal to the most acidic hydrogen in the

imidazolium cation, which in turn displaces the less basic anion. [53,54,216,217] .

As a consequence of the competition for the most acidic site in the imidazolium

cation, binary anion mixtures also display hydrogen bond dynamics that differs

from that in the pure ILs. For example, the MD study by Wang et al. reported an

enhancement in the hydrogen bond dynamics between 1-ethyl-3-methylimidazolium

[C2mim] with tetrafluoroborate [BF4] in the binary anion mixture containing [C2mim]+,

[BF4]
− and bis(trifluoromethanesulfonyl)imide [NTf2]

− [218]. At [C2mim][BF4]0.25[NTf2]0.75

mole fraction the lifetime of intermittent hydrogen bond dynamics between [C2mim][BF4]

increases two-fold to 117 ps as compared to 57 ps for the pure [C2mim][BF4] ionic

liquid. Interestingly the hydrogen bonding lifetime of [C2mim][NTf2] decreases

as more [BF4]
− anion is added to the mixture. Similarly, Gekhre et al. in an

MD study, examined the molecular level interaction and hydrogen bond dynamics

between 1-butyl-3-methylimidazolium [C4mim]+ and Cl− and trifluoromethanesul-

fonate [OTf]− [219]. The authors observed an increase in the lifetime of hydrogen

bond dynamics between [C4mim] and Cl as Cl− ion is added to the system, pre-

sumably due to the stronger hydrogen bonding ability of Cl− than that for [OTF]−

anion.

ILs comprised of two cations and a common anion is another way to modulate prop-

erties of the resulting ionic liquid mixtures, primarily driven by the difference in the

alkyl chain attached to the cations [220–222]. Shimizu et al. reported, from an MD

study, that the equimolar mixture of [C2mim]+ and 1-hexyl-3-methylimidazolium

[C6mim]+ with [NTf2]
− obeyed a nearly ideal mixing law with a small negative

excess molar volume [223]. In an experimental study, the Welton group found

that the sign of the excess molar volume switches from negative to positive as

the difference in the alkyl chain length between the imidazolium cation increases.

The observation was attributed to the mismatch between the alkyl chain length
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leading to a large number of voids in the mixture [224] as the longer alkyl chain is

unable to incorporate the shorter chain into its non-polar domain, disrupting the

continuous non-polar domain [225,226]. Cosby et al., in a combined experimental

MD simulation study, observed that the mesoscale morphologies in the mixtures of

[C2mim]+ and 1-octyl-3-methylimidazolium [C8mim]+ with [BF4]
− could be tuned,

which leads to an enhancement in the enhancement of static dielectric permittivity

of the liquid by as much as 100% at equimolar concentrations as a result of change

in the aggregation behavior of [C8mim]+ [227]. Such binary cation mixtures can

also produce interesting hydrogen bonding dynamics as noted by Wang and co-

workers in their MD study focusing on the mixtures of [C2mim]+ and [C4mim]+

cations with [BF4]
− [228]: the average lifetime for a hydrogen bond is greater for

[C4mim]+–[BF4]
− than that for [C2mim]+–[BF4]

−, which was reasoned to be par-

tially responsible for the slow rotation of the [C4mim]+ cation.

A yet-another approach to tailoring the physicochemical properties of ILs is through

reciprocal mixtures that contain at least two cations and two anions [214, 229].

These systems are interesting because they are usually formed by cations with

varying alkyl chain lengths and anions that differ in their hydrogen bonding abil-

ity. By carefully selecting these parameters, which affect the non-polar and hy-

drogen bonding interactions, it may be possible to induce ionic associations that

are not observable in neat or binary ionic liquid mixtures, leading to potentially

non-ideal behavior. However, very few studies have probed molecular-level inter-

actions in such mixtures. The experimental findings by Taige et al. indicate that

the viscosity and ionic conductivity follow a non-ideal behavior for some recip-

rocal mixtures [230]. Experiments by Bharmoia et al. also suggest that a pro-

nounced deviation from ideality is possible for various physicochemical properties

compared to other binary mixtures [231]. An MD examination of reciprocal mix-

tures of 1-benzyl-3-methylimidazolium [Zmim]+, [C4mim]+, [BF4]
−, and [NTf2]

−

revealed that the stronger hydrogen bonding ability anion [BF4]
− was seen to dis-

place [NTf2]
− from the coordination shell of both the cations [232].
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To the best of our knowledge, there exists no study in which hydrogen bond dynam-

ics of the reciprocal is systematically studied, especially when there is a mismatch

in the alkyl chain length in the cationic species combined with a considerable dif-

ference in the hydrogen bond accepting ability of the anions. In such systems, it

would be important to investigate how the presence of a cation capable of forming

a continuous non-polar domain perturbs the distribution of anions in coordination

shell of the cation with shorter alkyl chain, specifically the hydrogen bonding envi-

ronment and hydrogen bonding dynamics as they exert profound influence on the

physicochemical properties of ILs. The focus of this work, therefore, is to employ

an all-atom MD simulations to provide molecular-level insight into an equimolar

reciprocal mixture that is composed of [C2mim]+, [C6mim]+, dicyanamide [DCA]−

and [NTf2]
−. Following Kapoor and Shah, the cations and anions are selected as

they offer a significant difference in molar volumes and the hydrogen bonding abil-

ity. We systematically evaluate structure and dynamics in pure ILs, binary cation

mixtures, binary anion mixtures, and the reciprocal mixture system.

Figure 5.1: Chemical structures of the cations and anions used in this study.
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5.3 Methodology

5.3.1 Force Fields

The all-atom version of Optimized Potentials for Liquid simulations (OPLS-AA)

forcefield was used to model the ILs studied in this work. The forcefield for this

study was taken from the work of Lopes and Paduá [233–235]. The charge scaling

for electrostatic interactions was set to ±0.8 to improve transport properties as

demonstrated by other studies [236, 237]. We also conducted ±1.0 charge scaling

simulation to compare the difference in results for bulk density and radial distribu-

tion function. The results for ±1.0 charge scaling are provided in the supporting

information.

The OPLS-AA model treats each atom as an interaction site and the total potential

energy Utotal takes into account bond stretching UStretching, bond bending UBending,

dihedral angle UTorsion, Coulomb, and 12-6 Leonard Jones (LJ) terms for non-

bonded interactions UNon-Bonded. The functional form is shown below in Equations

1-5.

Utotal = UNon-Bonded + UStretching + UBending + UTorsion (5.1)

UNon-Bonded =
∑
i

∑
j

4ϵij

[(σij

rij

)12

−
(σij

rij

)6
]

+
∑
i

∑
j

qiqje
2

4πϵorij
(5.2)

UStretching =
∑
Bonds

Kr

2
(r − req))

2 (5.3)

UBending =
∑

Angles

Kθ

2
(θ − θeq)

2 (5.4)

UTorsion =
∑

Torsion

V1

2
[1 + cos(ϕ)] +

V2

2
[1 − cos(2ϕ)] +

V3

2
[1 + cos(3ϕ)] (5.5)

where LJ parameters σij and ϵij represent the energy and size parameters, rij

denotes the distance between atomic sites i and j, q is the partial atomic charge

for electrostatic interactions. r, req, θ, θeq are bond length, equilibrium bond

length, bending angle and equilibrium bending angle, respectively. Kr, Kθ are force

constant for stretching and bending, respectively; Vi is the torsional parameters
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for dihedrals. LJ potential between unlike pairs was calculated using the geometric

combining rule for σ and ϵ. The intramolecular non-bonded interactions between

atoms separated by three bonds was evaluated using a scaling factor of 0.5 for both

the LJ and electrostatic interactions.

5.4 Simulation Details

Molecular Dynamic (MD) simulations were performed for nine different systems at

323.0 K using Gromacs 2018 software package [238, 239] including four pure ionic

liquid systems [C2mim][DCA], [C2min][NTf2], [C6mim][DCA], [C6mim][NTf2], four

binary ionic liquid systems with equimolar compositions [C2mim][DCA]0.5[NTf2]0.5,

[C6mim][DCA]0.5[NTf2]0.5, [C2mim]0.5[C6mim]0.5[DCA], [C2mim]0.5[C6mim]0.5[NTf2],

and an equimolar reciprocal system [C2mim]0.5[C6mim]0.5[DCA]0.5[NTf2]0.5. A cu-

bic simulation box was employed for each of the ionic liquid systems. The length

of the simulation box for pure systems was estimated from experimental density

at 323 K, while the simulation box length for the binary mixtures was set assum-

ing ideal mixing behavior. Similarly, the initial volume for the reciprocal system

was calculated by considering the ideal mixing volume for the ILs [C2mim][DCA],

[C2mim][NTf2], [C6mim][DCA], and [C6mim][NTf2] with mole fractions of each of

the ILs set to 0.25. Packmol was used to prepare an initial configuration for all

the systems for 500 ion pairs [240] with periodic boundary conditions applied in

all directions.

The simulation protocol involved five steps: minimization, annealing, NV T equi-

libration, and NPT equilibration followed by two production runs in the NPT

ensemble. Each system was first minimized using the steepest-descent algorithm

for 10000 steps and subjected to a 1.5 ns annealing protocol. The temperature was

slowly increased to 323 K during the first stage of annealing followed by relaxation

of the system at 323 K. The temperature was further raised to 523 K to ensure

additional relaxation of the system before bringing the system down to 323 K. An

NV T equilibration for 10 ns was performed next, in which the temperature of the
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system was controlled at 323 K using a Berendsen thermostat with a time constant

of 0.4 ps. An NPT equilibration for 10 ns was carried out so that the density ap-

proached an equilibrium value; Berendsen thermostat and barostat were applied

during this stage with time constants of 0.4 ps and 0.2 ps, respectively. The first

NPT production run lasted 60 ns in which the Nosé-Hoover thermostat [241] and

Parrinello-Rahman barostat [242] were activated at a coupling constant of τ t =

0.4 ps and τp = 2.0 ps. Finally data collection and analysis were carried out on

the final 20 ns of the NPT production run. Results for each system were averaged

over three independent simulations with different starting initial coordinates to

estimate the uncertainty in property predictions.

During the course of the entire simulation protocol, the bonds involving hydrogen

atoms were constrained using the LINCS algorithm. Both LJ and electrostatic

interactions were truncated at 12 Å , while long-range electrostatic interactions

were handled using particle-mesh Ewald (PME) summation with a PME order of

4 and Fourier spacing of 0.1 nm. Long-range corrections were also applied for LJ

energy and pressure.

5.5 Results and discussion

5.5.1 Liquid Densities

The densities of all the nine different systems studied in this paper are shown in

Table 5.1 and visualized in Figure B.1. The simulated densities of the pure systems

with both charge scaling of ±1.0 and ±0.8 are compared with experimental data.

Density data for the ±1.0 charge scaling are provided in the supporting informa-

tion. The pure ionic liquid densities obtained with ±1.0 scaling are in excellent

agreement with experimental measurement as indicated by the average absolute

relative deviation (AARD) of 1.46%. In contrast, the AARD increases to 5.2% for

pure ionic liquid densities with ± 0.8 charge scaling [122,123,236]. The deviations

in densities are similar in magnitude to Goloviznina et al. study with ±0.8 scaling

using CL&P forcefields [236].
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Table 5.1: Detailed description of the system composition and equilibrium densities

at 323 K

System Ions Density

(g/cm3)

[C2mim]+ [C6mim]+ [DCA]− [NTf2]
− This work

[C2mim][DCA] 500 500 1.026±0.001

[C2mim][NTf2] 500 500 1.486±0.009

[C6mim][DCA] 500 500 0.974±0.001

[C6mim][NTf2] 500 500 1.332±0.008

[C2mim][C6mim][DCA] 250 250 500 0.996±0.001

[C2mim][C6mim][NTf2] 250 250 500 1.390±0.009

[C2mim][DCA][NTf2] 500 250 250 1.292±0.001

[C6mim][DCA][NTf2] 500 250 250 1.184±0.001

[C2mim][C6mim][DCA][NTf2] 250 250 250 250 1.231±0.001

5.5.2 Radial Distribution Function (RDF)

To understand the molecular-level structure between the ions in the reciprocal mix-

ture, we computed the center of mass (COM) radial distribution function (RDF)

plot for all the cation-anion interactions in the system as depicted in Figure 5.2(a).

It was observed that the characteristic of the first solvation shell as deduced from

the intensity of the first peak and the distance at which the peak is located varied

with the system. For example, the cation-anion correlations are strongest for the

[C2mim]–[DCA] as the intensity of the first peak in the RDF is highest amongst all

the RDFs. In contrast, the first peak height is nearly identical for [C6mim][DCA],

[C2mim][NTf2], and [C6mim][NTf2]. The observation points to a strong preferen-

tial interaction between the [C2mim]–[DCA]. This is also reflected by the greater

number of [DCA]− surrounding [C2mim]+ in the coordination number plot in Fig-

ure 5.2(b). This is most likely due to the easier access to the hydrogen bonding
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sites of [C2mim]+ by the stronger coordinating ability and smaller size of [DCA]− in

comparison to those for [NTf2]
−. The location of the first peak height is almost in-

variant at ∼5 Å for the cation-anion interactions in [C2mim][DCA], [C6mim][DCA],

and [C2mim][NTf2], while the bulky nature of both the ions in [C6mim][NTf2] leads

to the first peak height locating further by 0.5 Å. The anion size difference also

affects the location of the first minimum in the RDFs such that the first solvation

shell of [DCA]− around the cations is more contracted than that of [NTf2]
−. The

location of the first minimum remains unaffected for a given anion, which suggests

that the size of the first solvation shell is determined primarily by the interaction

of the imidazolium ring with the anion. The type of cation-anion pair also exert

subtle changes in the second solvation shell: the peak intensity is nearly identi-

cal for the pairs involving [C2mim]+ and is higher than those for pairs containing

[C6mim]+. Beyond the second shell, the RDFs are nearly identical in all respects.

Figure 5.2: Center of mass (COM) radial distribution plot of all the cation-anion

interactions in reciprocal mixture.

Next we determined the cation-anion COM radial distribution functions for [C2mim][DCA]

in various ionic liquid mixtures to examine whether the preferential interaction of

[DCA]− with [C2mim]+ is retained. Examination of these correlations in Fig-

ure 5.3 reveals that the first peak height follows the order [C2mim][DCA] <

[C2mim]0.5[C6mim]0.5[DCA] < [C2mim][DCA]0.5[NTf2]0.5 < [C2mim]0.5[C6mim]0.5[DCA]0.5[NTf2]0.5,
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which clearly shows that the [C2mim]–[DCA] interactions become stronger in bi-

nary and reciprocal mixtures. The minor increase in the peak height when [C6mim]

is added to [C2mim][DCA] is attributed to the formation of non-polar domains due

to the presence of [C6mim]+, which leads to the confinement of the anion in the

polar region and has an effect of pushing the anion closer to [C2mim]+. Shimizu et

al. reported a similar increase in first peak height in the RDF between the carbon

attached to Ha and oxygen atom in [NTf2]
− an equimolar mixture of [NTf2]

− an

ef [C2mim][NTf2] and [C6mim][NTf2] [223]. A more pronounced influence on the

first peak height is noted when a weakly coordinating anion [NTf2]
− is mixed with

[C2mim][DCA], which is consistent with several reports in literature that the an-

ion with stronger hydrogen bonding ability preferentially interacts with a cation in

ionic liquid mixtures containing a common cation and two anions. Lastly, the re-

ciprocal mixture shows the highest peak height compared to all the other systems

exhibiting a combined influence of the larger cation and a weakly coordinating

anion in driving the preferential interaction between [C2mim]+ and [DCA]−. The

trends seen for the reciprocal mixture are similar to a recent MD study by Sappidi

et al. [232] where the authors found that the [BF4]
− anion tend to show a strong

association for the two cations in the reciprocal mixture compared to [NTf2]
− anion.
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Figure 5.3: COM RDF plot for [C2mim]−−[DCA] interactions in pure and various

mixtures.

The origin of the preferential interaction between [C2mim]+ and [DCA]− in mix-

tures relative to the pure ionic liquid is examined further using the radial dis-

tribution functions around the hydrogen bonding sites in the imidazolium ring.

Figure 5.4(a) depicts the interactions between Ha position in the cation with the

Nc position in the [DCA]− anion as one of the dominant hydrogen bonding sites

(please refer to Figure 5.1 for the nomenclature). The magnitude of the first peak

intensity greater than 1 at short distances for all the systems indicate a presence of

hydrogen bonding interactions. The RDF’s exhibit split peaks in the first solvation

shell, suggesting that [DCA]− interacts with the hydrogen bonding site through

multiple conformations. It is interesting to note that the two peaks in the first

solvation shell for all the systems occur at around the same distance, while a clear

change in the peak heights is observed for pure and mixture systems. The neat

ionic liquid [C2mim][DCA] exhibits the lowest peak height, which is enhanced upon

the addition of the [C6mim]+ cation. The addition of [NTf2]
− induces a significant

increase in the first peak height. Such a behavior, brought about the difference
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in the hydrogen bonding ability of the two anions, is well documented in liter-

ature [52, 243]. Finally, the reciprocal mixture shows the largest increase in the

peak height amongst all the mixture systems, demonstrating the combined effect

of the difference in the hydrogen bonding ability of the anions and the formation

of non-polar domains due to the [C6mim]+ cation. The RDF’s for the Hw posi-

tion position in the cation and the [DCA]− anion are provided in Figure 5.4(b).

Although the first peak intensities are lower than those found for the Ha site, the

ranking of peak heights is similar to that obtained for the most acidic hydrogen

bonding site, which clearly shows that enhanced interactions of [C2mim]+ with

[DCA]− in ionic liquid mixture systems are due to an increased coordination of

[DCA]− at all the hydrogen bonding sites. Overall, these findings confirm that the

preferential interaction of the anion with stronger hydrogen bonding ability can

be dramatically enhanced by forming ionic liquid mixtures. As hydrogen bonding

interactions have been implicated in several physicochemical properties of ILs, it is

expected that ILs properties can be tuned through a subtle manipulation of these

interactions through various combinations of cations and anions in an ionic liquid

mixture.

Figure 5.4: RDF plots for site-site interaction in pure and various mixtures. (a)

Ha−−Nc site-site interactions between [C2mim]−−[DCA]. (b) Hw −−Nc site-site

interaction between [C2mim]−−[DCA].
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We also analyzed the hydrogen bonding interactions between the most negatively

charged oxygen atom in [NTf2]
− and the Ha and Hw sites in the [C2mim]+ cation.

The radial distributions functions for the Ha site are shown in Figure 5.5, which

reveal that the ordering of the first peak intensity for the various systems is de-

pendent on the type of the mixture under consideration. As seen for the hydrogen

bonding interaction of [DCA]− with Ha, there is a rise in the intensity when a

longer alkyl chain cation is added to the system. However, the ionic liquid mixture

in which [DCA]− is present, there is depression in the first peak intensity in the

RDF of Ha with O relative to that for the pure system. This is in direct contrast

to the behavior observed in the RDF of Ha with Nc of [DCA]−, confirming the

preferential interaction of [DCA]− with the hydrogen bonding site. The first peak

height is elevated when the reciprocal mixture is analyzed; however, the magnitude

is still smaller than that obtained in the pure system. The RDF’s between Hw and

O mirror the trends for the Ha and O RDF’s with a decrease in the first peak

height for respective systems.

Figure 5.5: RDF plots for site-site interaction in pure and various mixtures. (a)

Ha − −O site-site interactions between [C2mim]–[NTf2]. (b) Hw − −O site-site

interaction between [C2mim]–[NTf2].
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5.6 Hydrogen Bonding Lifetimes

To understand how this enhancement in interaction for the hydrogen bonding

sites affects the dynamics of the system, the lifetime of hydrogen bond dynamics

between the ion pairs for all the systems were calculated using the intermittent

hydrogen bonding autocorrelation function (Eq. 5.6) calculated over the first 1 ns

of the second NPT production run using TRAVIS [244]

C(t) =
< h(0)h(t) >

< h(0) >
(5.6)

where h(t) takes a value of 1 if the hydrogen bond is persistent, but assumes a

value of 0 when the hydrogen bond is broken. We defined the hydrogen bond

following the criteria laid out in the work by Kirchner et al. [237,245]. The cutoff

angle between donor-acceptor-hydrogen was set to 30◦, the cutoff distance between

the acceptor-donor was set at the distance corresponding to the first minimum in

the center of mass RDF between the cation-anion, and the cut-off distance for the

acceptor-hydrogen atom was limited to the first solvation shell of the hydrogen

bonding sites. Further details are provided in the supporting information (Fig-

ure B.9, B.10, B.11, B.12). The autocorrelation was calculated for the Ca–Ha-Nc

and Ca–Ha-O interactions, where Ca and Ha atom belongs to [C2mim]+/[C6mim]+

cation, Nc is the central nitrogen atom in [DCA]− anion and O is the oxygen atom

in the [NTf2]
− anion.

The average hydrogen bonding lifetime between a given pair of atoms was cal-

culated by integrating the hydrogen bonding autocorrelation function

τlt =

∫ ∞

0

C(t)dt (5.7)

This integral was evaluated analytically by fitting a stretched exponential equation

C(t) = a1e
−t/b1 + a2e

−t/b2 + a3e
−t/b3 (5.8)

where, a3 = 1 − a1 − a2 yielding

τlt = a1b1 + a2b2 + a3b3. (5.9)
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Table 5.2: Average lifetime τlt of hydrogen bonds. Ca2 and Ha2 atom are attached

to the [C2mim]+ cation, Ca6 and Ha6 atom are attached to the [C6mim]+ cation,

Nc is attached to the [DCA]− anion and O is attached to the [NTf2]
− anion.

System Ca2 −−Ha2 −−Nc Ca2 −−Ha2 −−O Ca6 −−Ha6 −−Nc Ca6 −−Ha6 −−O

[C2mim][DCA] 42.2±5.7

[C2mim][NTf2] 29.2±1.5

[C6mim][DCA] 88.7±6.1

[C6mim][NTf2] 50.1±6.4

[C2mim][C6mim][DCA] 57.6±10.2 66.9±0.3

[C2mim][C6mim][NTf2] 38.8±7.7 37.3±0.9

[C2mim][DCA][NTf2] 55.9±5.3 26.5±3.5

[C6mim][DCA][NTf2] 109.4±3.6 49.6±4.4

[C2mim][C6mim][DCA][NTf2] 73.9±11.9 34.6±4.9 95.1±16.8 37.9±2.5

The hydrogen bonding lifetime values obtained from the analysis are included

in Table 5.2. For the pure ILs, we observe an increase in the hydrogen bonding

lifetime as the alkyl chain in the imidazolium cation is elongated for a given anion,

attributable to the formation of the non-polar domain confining the movement of

the anion to the polar domain. The trend is in similar agreement with the work of

Kircher et al [245]. where the authors found the hydrogen bonding lifetime for the

same hydrogen bonding sites of [C4mim][NTf2] at 323.0 K using CL&P forcefields

to be 35.4 ps which is in between the lifetime of [C2mim][NTf2] and [C6mim][NTf2]

as seen from the table. Reddy et al. saw a similar trend in the hydrogen bonding

lifetime where it increased by a factor of 14 as the alkyl length of the primary am-

monium cation paired with formate anion increased from methyl chain to propyl

chain [246].

The increase in the lifetime for hydrogen bonding interaction is primarily dom-

inated by the identity of the anion. For instance. the ratio of the average lifetime

for [C6mim][DCA] is ∼ 2 times the lifetime of [C2mim][DCA], while the ratio drops

to ∼ 1.7 in going from [C2mim][NTf2] to [C6mim][NTf2]. The hydrogen bonding

lifetime ratio is also similar to the change in viscosity for a given ionic liquid series.

Experimental viscosity of [C2mim][DCA] [247] at 323.15 K is found to 8.51 cp com-
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pared to 18.72 cp for [C6mim][DCA] [248] which is roughly 2.20 times the increase

in viscosity as the alkyl chain length of the cation is increased. Similarly, the vis-

cosity of [C2mim][NTf2] [249] at 323.15 K which is 15.61 cp that only increases to

26.25 cp for [C6mim][NTf2] [250] which is roughly a factor of 1.68 almost identical

to the ratio of the hydrogen bonding lifetime for these systems. Our results are

consistent with the findings by Zhang and Maginn that the transport properties

such as self-diffusion coefficients and the ionic conductivity are inversely related to

the ion-pair correlation timescales [251]. For mixtures, we notice that the hydro-

gen bonding lifetimes increase in accordance to the increase in the height of the

RDF’s between Ha and Nc for [C2mim][DCA] and Ha and O for [C2mim][NTf2] as

illustrated in Figure 5.6.

Figure 5.6: Correlation between hydrogen bonding lifetime and RDF peak height

of the first solvation shell of hydrogen bonding sites. (a) [C2mim]−−[DCA]. (b)

[C2mim]−−[NTf2]. Binary A refers to [C2mim][DCA][NTf2] system, Binary C

refers to [C2mim][C6mim][DCA] or [C2mim][C6mim][NTf2] system and Recipro-

cal refers to [C2mim][C6mim][DCA][NTf2] system.
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5.6.1 Self Diffusion Constant

The self-diffusion constant of the ions was obtained by fitting the linear region of

the mean square displacement (MSD) using the following equation.

D =
1

6
lim
t→∞

d

dt

〈
N∑
i=1

[r⃗i(t) − r⃗i(0)]2

〉
(5.10)

where, r⃗i(t) is the position of an ion at any given time,
〈

...
〉

is the average of the

ensemble, and D is the self-diffusion constant. To determine the linear region for

the fit, the MSD values were divided into three blocks spanning 0-10 ns, 10-15 ns

and 15-20 ns for the final NPT production run. Over these blocks, we computed

the non-Gaussian parameter β(t):

β(t) =
d ln

〈
∆r2(t)

〉
d ln(t)

. (5.11)

A linear regime is indicated as β(t) approaches a value of unity, which, for most

systems occurred over the 10-15 ns block, as assessed from the slope of the log-log

plot MSD versus time (please refer to Figures B.13 - B.16) The reported values of

self-diffusion coefficients were calculated by tracking the MSD over this timeframe.

Table 5.3 summarizes the average self-diffusion constant of ions for pure, bi-

nary, and reciprocal mixtures at 323.0 K obtained from this study along with a

comparison of self-diffusion constant data obtained from MD simulation in litera-

ture and NMR diffusion experiements. The self-diffusion constant for the cation

and anion in pure [C2mim][DCA] show an interesting trend where the self-diffusion

coefficient of the anion is greater than that of the cation, a trend that is opposite

for many imidazolium-based ILs [252]. This is primarily because of the smaller size

and planar shape of the [DCA]− anion that allows it to easily diffuse through the

ionic network. Goloviznina et al. reported a similar trend for [C2mim][DCA] [236].

The authors emploiyed ±0.8 charge scaling as in this work, which results in a

considerable speeding up of the dynamics and an improvement in the self-diffusion

coefficients compared to ±1.0 scaling for the electrostatic interactions. The self-

diffusion coefficients for both the cation and anion in [C6mim][DCA] drop by a
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Table 5.3: Self Diffusion constant (D×10−7 cm2/sec) of ions for pure, binary and

reciprocal mixtures at 323 K.

System Self Diffusion constant

[C2mim]+ [C6mim]+ [DCA]− [NTf2]
−

[C2mim][DCA] 10.64±0.67[12.8]a 12.29±0.14[14.6]a

[C2mim][NTf2] 7.85±1.61[10.6]c 6.22±1.56[6.91]c

[C6mim][DCA] 3.75±0.32[8.4]b 4.92±0.30[9.6]b

[C6mim][NTf2] 4.48±1.20[4.64]c 3.90±0.93[4.31]c

[C2mim][C6mim][DCA] 7.84±0.54 5.38±0.02 7.72±0.41

[C2mim][C6mim][NTf2] 6.77±1.55 5.3±1.48 4.59±1.08

[C2mim][DCA][NTf2] 8.63±0.57 10.24±1.02 6.89±0.77

[C6mim][DCA][NTf2] 3.28±0.19 4.07±0.46 2.67±0.12

[C2mim][C6mim][DCA][NTf2] 6.14±0.60 4.83±0.29 6.37±0.55 4.10±0.15

aD data obtained using MD simulation at 303 K. [236]

bD data obtained using MD simulation at 333 K. [236]

cD VFT equation from Tokuda et al. [252]

factor of 2.4 compared to the self-diffusion coefficients of ions in [C2mim][DCA].

The reduction in the self-diffusion coefficient is similar to the ratio of the viscos-

ity of [C2mim][DCA] to that of [C6mim][DCA] and is in line with change in the

hydrogen bonding lifetimes for these ILs. Switching the anion from [DCA]− to

[NTf2]
− leads to a decrease in ionic self-diffusion coefficients despite the hydrogen

bonding lifetime being smaller than that for [C2mim][DCA], which suggests that

additional factors such as the bulkier size of the anion and a propensity for anion-π

interactions also contribute to determining dynamics in [C2mim][NTf2]. Consistent

with findings in the literature, results from our simulations indicate that the cation

diffuses faster than the anion in the pure ionic liquid systems containing [NTf2]
−

as the anion. Similar to the [DCA]− systems, substituting [C2mim]+ cation with

[C6mim]+ causes slowing down of the dynamics for both the ions. The calculated

self-diffusion coefficients for the ions in [C2mim][NTf2] and [C6mim][NTf2] agree

reasonably well with those computed from the parameters of the VFT equation

derived by Tokuda et al. [252] For binary and reciprocal mixtures, we see that

the species exhibiting higher self-diffusion coefficient slows down, while the self-
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diffusion coefficients of the slower moving ions either remains nearly identical or

increases with respect to their respective values for the pure ILs, e.g., the self-

diffusion coefficients of [C2mim]+ and [DCA]− are lower, while that of [C6mim]+

enhances in [C2mim][C6mim][DCA] mixture relative to those in pure systems. A

similar observation can be made for the [C2mim][DCA][NTf2] system. We also

calculated the overall diffusion coefficients for the pure, binary, and reciprocal

mixtures using the Eqs. 5.12–5.15 to quantify the dynamics:

D =
D+ + D−

2
(5.12)

D =
D+ + x ∗ (D1− + D2−)

2
(5.13)

D =
x ∗ (D1+ + D2+) + D−

2
(5.14)

D =
x ∗ (D1+ + D2+ + D1− + D2−)

2
(5.15)

The results for the overall diffusion constant of the system are displayed in Fig-

ure 5.7. As expected from the individual ions self-diffusion coefficients, [C2mim][DCA]

has the fastest dynamics compared to all the systems. This is again because of the

pairing between short alkyl chain cation and a smaller size anion that does not hin-

der the movement of ions leading to faster diffusion. Changing the [DCA]− anion

to bulkier [NTf2]
− however reduces the overall diffusion of the system significantly.

The effect of replacing the [C2mim]+ cation with [C6mim]+ has a more pronounced

effect on the overall dynamics of the ionic liquid. For the binary ionic liquid mix-

tures, the collective dynamics falls in between the dynamics of the constituent

ILs.
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Figure 5.7: Self Diffusion constant of all the systems calculated using equation

equation 5.12, 5.14, 5.13 and 5.15.

5.7 Conclusion

In this work, we performed MD simulations on various systems of pure ILs [C2mim][DCA],

[C6mim][DCA], [C2mim][NTf2], [C6mim][NTf2], and equimolar binary and recipro-

cal mixtures resulting from them. We characterized these systems in terms of the

ionic center-of-mass radial distribution functions (RDF), hydrogen bonding bond-

ing interactions and corresponding hydrogen bonding lifetimes, and self-diffusion

coefficients. We observed that the RDF between [DCA]− with [C2mim]+ displayed

the highest first peak intensity in the reciprocal mixture followed by that in the

binary anion mixture, binary cation mixture, and pure ionic liquid system, indi-

cating that the association of the [DCA]− with [C2mim]+ could be tuned through

the addition of a cation, anion, or both to [C2mim][DCA]. Further, evaluation of

the hydrogen bonding site-site RDF interaction exhibited a similar enhancement

in the first peak intensity, revealing the role of hydrogen bonding in preferential

interaction. The first peak intensity in the center-of-mass RDF of [C2mim]–[NTf2]

in the reciprocal mixture, however, was found to be less than that for the pure ionic
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liquid [C2mim][NTf2], providing additional evidence of the preferential interaction

of [C2mim]+ with the anion possessing higher hydrogen bonding ability.

We also demonstrated that the preference for [DCA]− to associate with [C2mim]+

translates into an increase in the hydrogen bonding lifetimes in binary and recip-

rocal mixtures. In fact, the hydrogen bonding lifetime in the reciprocal mixture is

almost twice that for the pure ionic liquid system. Although the hydrogen bond-

ing lifetime for [C2mim]–[NTf2] also increases when mixtures are considered, the

enhancement is non-monotonic. The hydrogen bonding lifetime for the [C2mim]–

[NTf2] interaction stayed relatively the same or reduced in the presence of [DCA]−

anion, suggesting that this preferential interaction only occurs for the short alkyl

chain cation and the strongly coordinating anion. The overall dynamics of the

various systems, as analyzed from the diffusion coefficients, revealed trends similar

to the hydrogen bonding lifetimes, with the exception of pure [C2mim][DCA] and

[C2mim][NTf2] systems, which was explained in terms of the ability of [NTf2]
− to

participate in additional modes of interaction with the cation.

Our study provides molecular-level details on the emergence of preferential ionic in-

teractions and their implications on the hydrogen bonding between ion pairs in the

binary and reciprocal mixtures, opening up possibilities for inducing non-idealities

in such systems. From a practical point of view, as hydrogen bonding interactions

are intimately connected to physicochemical properties of ILs, the present work

exemplifies a pathway for designing task-specific ionic liquid mixtures by combin-

ing cations with differing in the length of the alkyl chain length and/or anions

possessing widely different hydrogen bonding abilities.
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CHAPTER 6

A Generalized Machine Learning Model for Predicting Ionic Conductivity for

Ionic Liquids’

6.1 Abstract

Ionic Liquids (ILs) are currently being considered as potential electrolyte candi-

dates for next-generation batteries and energy storage devices due to their high

thermal and chemical stability. However, high viscosity and low conductivity at

lower temperatures have severely hampered their commercial applications. To

overcome these challenges, it is necessary to develop structure-property models for

ionic liquid transport properties to guide the ionic liquid design. This work expands

our previous effort in developing a machine learning model on imidazolium-based

ILs to now include ten different cation families, representing structural and chem-

ical diversity. The model dataset contains 2869 ionic conductivity values over a

temperature range of 238-472 K collected from the NIST ILThermo database and

literature values for 397 unique ILs. The database covers 214 unique cations and

68 unique anions. Three machine learning models, multiple linear regression, ran-

dom forest, and extreme gradient boosting, are applied to correlate the ionic liquid

conductivity data with cation and anion features. Shapely additive analysis is per-

formed to glean insights into cation and anion features with significant impact on

ionic conductivity. Finally, the extreme gradient boosting model is used to predict

ionic conductivity of ILs from all the possible combinations of unique cations and

anions to identify ILs crossing the ionic conductivity threshold of 2.0 S/m.
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6.2 Introduction

The asymmetric cationic structures and articulated nature of anion are responsi-

ble for charge delocalization and frustrated crystal packing for a large number of

ILs leading many to exist as liquid at ambient conditions. In contrast to conven-

tional solvents, ILs offer several unique and desirable properties such as negligible

vapor pressure, low melting point and nonflammability. These attributes are pri-

mary reasons ILs are studied extensively for various industrial applications such as

solvents in chemical separation/purification [157, 253], as catalysts [254, 255], use

in CO2 capture [256,257] and potential electrolytes for battery application [11,165].

The use of ILs for battery applications and energy storage medium is primarily

due to their high thermal [258] and chemical stability [259] to address tremendous

safety concern associated with the current state-of-the-art electrolytes found in Li-

ion batteries [260–262]. For example, current electrolytes powering Li-ion batteries

are carbonate-based electrolytes mixed with salts such as lithium hexafluorophos-

phate LiPF6, which are very volatile, flammable, and potentially hazardous during

thermal runaway reactions or short-circuit [263,264]. Kalhoff et al. [6] carried out

an extensive study on the performance and safety of electrolytes based on organic

carbonates (OC) and ILs among others. The authors noted the superiority of OC

electrolytes in terms of ionic conductivity; however, the performance of OC was

poor for electrochemical and thermal stability. Additionally, these solvents posed

safety concerns. On the other hand, ILs received a high rating for electrochemical

and thermal stability, and safety consideration, but only medium for ionic conduc-

tivity, and suffered from poor low-temperature performance. Thus, for ILs to be

considered potential electrolyte candidates, an improvement in low ionic conduc-

tivity performance at sub-ambient conditions is needed in the next-generation of

ILs.

As is common for almost all applications involving ILs, a systematic improve-

ment in the transport properties of ions can be accomplished by selecting an op-
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timal cation-anion combination using chemical intuition. The approach, however,

is likely to be slow and time consuming due to the staggering number of such

possible combinations [174] in the range of 1014. The presence of a myriad of

interactions such as electrostatic, hydrogen bonding, π-π stacking, anion-π, and

van der Waals further complicates choosing cation-anion pairing to deliver antic-

ipated property enhancement. For example, the attempt to alter the hydrogen

bonding interactions through alkyl substitution of the most acidic hydrogen site

in the imidazolium cation led to an increase in the viscosity of the resulting ionic

liquid - a counterintuitive result [13]. An experimental high throughput screening

approach may also not be feasible due to the requirement for ensuring the pu-

rity of the synthesized ILs. Similarly, molecular simulation-based techniques such

as molecular dynamics and Monte Carlo simulations can, in principle, accelerate

the search of ILs with desired properties; however, describing interactions between

ionic liquid components continues to be a nontrivial task. Given these challenges

and the availability of the ionic liquid property database - ILThermo - maintained

by NIST, machine learning-based methods are gaining attention as a pre-screening

tool to correlate ionic liquid properties with attributes that describe cations and

anions [105, 265–267]. Genetic mutation and generative-based models also allow

the accelerated discovery of ILs with properties within desired range [118,119].

In our previous proof-of-concept article, [267] we focused on modeling ionic conduc-

tivity using an artificial neural network and support vector regression models for

imidazolium-based ILs as these ILs are generally less viscous and possess high ionic

conductivity at room temperature - key properties for battery electrolytes [11]. Ad-

ditionally, a large amount of data is available for imidazolium-based ILs enabling

machine learning model development. One of the difficulties of using imidazolium-

based ILs is that the electrochemical stability of imidazolium cations is rather low

- less than 4.0 V (vs. Li/Li+) - which is not suitable for high voltage battery

application [268]. The primary reason for this behavior is the susceptibility of the

cation to reduction at the most acidic proton at the C2 position. Protecting this

position by substituting various functional groups improves the stability but leads
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to slower dynamics [13] in comparison to that for the parent ionic liquid. The

next closest relative to imidazolium cations are the pyridinium-based cations that

are more sluggish with high viscosity and low ionic conductivity, which is why

there is a limited amount of study done on exploring its application as electrolytes

for battery application [14–16]. Beyond the aromatic cations, cyclic cations such

as pyrrolidinium and piperidinium cations have generated tremendous interest as

they have a high biodegradability rate and low toxicity [18,19]. The pyrrolidinium

cation also offers low viscosity and high ionic conductivity, and unlike imidazolium

cations, are more electrochemically stable, with a majority of them exhibiting elec-

trochemical window reaching above 4.5 - 5.0 V [11]. Along with faster dynamics,

pyrrolidinium cations also have better stability towards lithium metal, making

them an ideal candidate for battery application as potential electrolytes [20,21].

Modifying the five-ring pyrrolidinium structure to a six-ring structure gives rise

to piperidinium cations. Similar to pyridinium cations, piperidinium cations have

slower dynamics than pyrrolidinium cations because of the bulky nature of the

cation. As such, there are relatively few studies that have explored the possibil-

ity of piperidinium cations as electrolytes for battery application [22–24]. Besides

cyclic and aromatic cations, other central atom-based cations such as tetralkylphos-

phonium, tetraalkylammonium, and trialkylsulfonium, are also extensively stud-

ied for various applications [25–27]. The ammonium-based cations are character-

ized by a high electrochemical window compared to imidazolium but suffer from

high viscosity and low ionic conductivity [28]. An alternative to nitrogen-based

cations is phosphonium-based cations that have similar properties as ammonium

ILs, with some of them outperforming ammonium cations [26,29]. The other com-

mon cation type is sulfonium-based ILs which have favorable properties compared

to phosphonium-based cations because of the small volume occupied by the core

sulfur atom leading to lower viscosity and high ionic conductivity [32–34]. In addi-

tion to the commonly studied cations, there are several other cation types such as

morpholinium [23,24,269], pyrazolium [270,271], oxazolidinium [272] which might

offer desirable properties for battery application but there is very limited informa-
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tion on the physicochemical properties of these ILs in the literature.

Given the availability of ionic conductivity data for ILs belonging to a large variety

of different cation types, it is conceivable to find an ionic liquid with high ionic

conductivity, if an accurate structure-property relationship is uncovered. With

this objective, the present article focuses on developing machine learning models

capable of predicting ionic conductivity covering various cation families and anions

with high accuracy. Additionally, important features contributing to the ionic con-

ductivity have been identified using shapely additive (SHAP) analysis technique.

The insight is used to develop a classification model to categorize cations that are

likely to yield ILs, with a given anion, into high/low ionic conductivity. Lastly,

ionic conductivity for all possible pairings of the cation and anion are predicted to

identify ILs possessing high ionic conductivity.

6.3 Methodology

6.3.1 Data collection and processing

In this study, we developed machine learning models trained on experimental ionic

conductivity data primarily obtained from NIST ILThermo Database [73,74]. We

supplemented the data extracted from the ILThermo database with data collected

from various sources found in literature [36,40,75–94,273]. This lead to a total of

4786 data points covering ten different cation types as seen in Figure C.1. Data

download, data cleaning, duplicate removal, and conversion of chemical struc-

tures to SMILES convention followed a similar approach outlined in our previous

study [267]. The state property filter was set between 95-110 kPa, eliminating

some of the very high-pressure data, while no restrictions were imposed on the

temperature. The temperatures and pressure were selected considering that ionic

liquid-based batteries would be operated over a wide range of temperatures and

close to atmospheric pressure. The final dataset contained 2869 data points, 397

unique ILs, 214 unique cations, and 68 unique anions ranging from 238 K to 472

K covering ionic conductivity from 10−5 S/m to 19.3 S/m, spanning six orders of
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magnitude.

Figure 6.1: Experimental ionic conductivity data distribution % by cation type for

the model development data set after data cleaning. The percentage for each of the

cation family is calculated using the number of data points collected in Table C.1.

The percentage distribution of the individual cation type in the model development

data set is depicted in Figure 6.1. As expected majority of the data belongs to

the imidazolium family as it is one of the widely studied cations. Additional 40%

of the data points are contributed by pyridinium, ammonium, pyrrolidinium, and

phosphonium cations. One concern with such skewed data distribution would

be the bias in prediction towards the imidazolium data set due to the relative

abundance of the ionic conductivity data for this cation family. In a later section,

we discuss our approach to systematically evaluate the model’s prediction by cation

type to evaluate such bias in prediction.
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6.3.2 Feature generation and processing

Features for the cations and anions are generated using open-source cheminfor-

matics RDKit package [143] that produced 196 unique features each for cation

and anion. Temperature and pressure were included as additional features which

led to a total count of features to 394. Some of the features, however, were not

essential for model development as they were assigned a value of zero for all the

cations and anions. Besides, a high-dimensional feature space could lead to over-

fitting of the data, resulting in a poor performance of the model for test data [274].

To avoid such issues, we first reduced the number of features by eliminating fea-

tures exhibiting high correlations. A further reduction in the dimensionality of

the feature space was achieved through the Least absolute shrinkage and selection

operator (LASSO) [176,275] algorithm. Lasso is a regularization technique that is

used to shrink the dimensionality of the feature space by adding a penalty param-

eter λ to the minimization function that denotes the amount of feature shrinkage

(eq. 6.1). Larger values of λ parameter lead to the coefficients of the features that

are of less importance to zero, thereby reducing the number of features necessary

for a model, while the minimization function is recovered for λ = 0.

Obj =
n∑

i=1

(yi −
∑
j

xijwj)
2 + λ

p∑
j=1

wj (6.1)

The hyperparameter λ was determined using 5-fold cross-validation (CV) technique

by fitting a linear regression model with a log λ in the range of [-6, 50]. Based on the

CV, the optimum value (log λ = −5) helped reduce the number of features to 51

cations, 47 anion features leading to a total of 100 features including temperature

and pressure.

6.3.3 Model Development

For the model development, the data set was split into 90% training set, while the

remaining 10% of the data was set aside as a test case. The input features and

the ionic liquid conductivity data were normalized to fall within the range of [0,1]

using MinMax scaling implemented in Scikit-learn [144]. The ionic conductivity
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values were represented on a log 10 scale before scaling as the values spanned

six orders of magnitude. Three different models (Figure 6.2) were developed to

correlate the ionic conductivity data: multiple linear regression (MLR), random

forest (RF), and extreme gradient boosting (XGBoost). The rationale for choosing

these models compared to the widely popular neural network was to offer insights

into the importance of individual features.

Figure 6.2: Workflow for developing machine learning models for correlating ionic

conductivity of ILs.

6.3.4 Multiple Linear Regression

Correlation of ionic conductivity is first attempted using the multiple linear re-

gression (MLR) model as it is the simplest form of regression method. In an MLR

model, the structure-property relationship is expressed as a linear combination of

features xi (eq. 6.2)

yp = b + w1x1 + w1x2.... + wnxp. (6.2)

where b is the bias in the model, and wi corresponds to the weight of feature

xi, which are determined by minimizing the least square error between the model

prediction and the labels. Note that the model contains p features.
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6.3.5 Random Forest

Random forest (RF) is a supervised machine learning method based on ensemble

learning technique similar to decision-tree (DT) method [144]. However, unlike the

DT method, for which outputs are generated using a single tree, RF methodology

consists of multiple decision trees, which are generated in parallel, in an effort to

reduce the possibility of overfitting and minimizing any bias towards feature se-

lection. A sample from the training set is drawn at random with replacement to

initiate a given tree. The final prediction is the ensemble average of the outputs pre-

dicted by individual trees. The number of trees or estimators and the depth of the

trees are hyper-parameters of the model, which were determined using randomized

cross-validation (RandomizedCV) [144]. In this approach, a random combination

of hyperparameters is evaluated using 5-fold CV. Figure C.2 provides the grids

used for the number of trees and estimators.

6.3.6 XGBoost

Extreme gradient boosting (XGBoost) is a decision tree-based ensemble method

similar to RF that uses a gradient boosting algorithm [276]. However, unlike RF,

where individual trees are formed in parallel, XGBoost consists of a series of trees

built iteratively. The model starts with weak learners that are intentionally added

to make a significant error which gets added to the loss function of the subsequent

tree using a gradient descent algorithm. The objective of the XGBoost function is

to minimize the loss as each tree is added until the accuracy no longer improves.

The hyperparameters for XGBoost are determined using RandomizedCV using 5-

fold CV [144]. The final set of hyperparameters for the XGBoost model is listed

in the supporting information (Figure C.3).

6.3.7 Cross Validation and Model Evaluation

In most cases, performance evaluation of a model on the test data is enough to as-

sess the ability of the model to generalize on out-of-bag samples. However, it is not

always guaranteed that the models will generalize, especially when there is an over-
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abundance of one or more types of data. For instance, in this study, approximately

half of the data is represented by the imidazolium family (Figure 6.1). Even with

a proper random shuffle of train and test split, most of the data in the training set

and test set could belong to the imidazolium cation, leading to high accuracy on the

training set and test set, which might not reflect the model’s inherent ability to gen-

eralize beyond the imidazolium-based ILs. Another challenge with the present data

is that there may be ILs for which there is data at multiple temperatures, while for

others, the ionic liquid conductivity is reported at only one temperature; the cation

1-ethyl-3-methylimidazolium or the anion bis(trifluoromethylsulfonyl)imide anion

are such examples as they are usually studied over a wide range of temperatures.

Despite the train/test split, most of the data could be for the same ionic liquid,

simply reflecting the ability of the model to scale ionic conductivity as a function

of temperature, not truly reflecting the underlying structure-property relationship.

For this work, we initially started with a 90:10 train/test split, where the test

set data was never exposed during the model development. Next, we employed

the shuffle-split technique by dividing the training set data into 90:10 for model

development and validation data, respectively, repeated 100 times. The extensive

sampling is expected to minimize any bias in the split for training and validation

data and is likely to provide uncertainty in the prediction based on the data split.

Performance metrics for the training and validation set were evaluated at each

instance. The model with the best performance on the validation set was selected

as the model for test set evaluation.

The predictive capability of the model was also determined for each of the cation

types to examine overfitting of the model towards a certain class of the cation type.

Finally, the performance of the model was evaluated on a separate external test

set consisting of 30 ILs gathered from a literature review [36,76,82,92,94,277–279].

The external test set contained unique ionic liquid combinations that are not

present in the model data set. Here, unique ionic liquid combination refers to

ILs with given cation and anion pairs that the model did not encounter during
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the training phase. However, these cations and anions were present in the dataset

paired with a different anion/cation. Furthermore, a few of the ILs in this test case

are novel cation family types that did not belong to any of the ten cation families

for which models were developed. As the chemical structures of the cations in

these ILs resemble those in the model dataset, such performance evaluation would

be informative to understand the extent to which these models can be generalized

to cations families beyond those studied here.

6.4 Results and Discussion

6.4.1 Model Performance Metrics

In this work, we evaluate the correlation of ionic conductivity for ten different

cation types, 214 unique cations, 68 unique anions with ionic conductivity data

over a temperature range of 238-472 K using linear and non-linear machine learn-

ing methods. The accuracy and robustness of these models are evaluated us-

ing three different performance metrics: correlation coefficient (R2), root-mean-

squared-error (RMSE) and mean absolute error (MAE). The average and stan-

dard deviation of the performance metrics for the 100 shuffle-split is reported in

Table 6.1. The model with the best performance on the validation becomes the

model of choice for test set evaluation.

Among the three models, MLR has the lowest accuracy in correlating ionic con-

ductivity compared to the other two models with low R2 and high RMSE/MAE

for training, validation, and test set. Increasing the complexity of the model that

takes into account non-linear behavior in the model drastically increases the model

performance as seen with the RF method, implying a non-linear correlation be-

tween features and ionic conductivity. A further improvement in the performance

metrics can be observed with the XGBoost model, as the model is designed to

iteratively learn and correct the errors incurred in the previous steps.

Correlations plots for MLR, RF, XGBoost are provided in the supporting infor-

mation (Figure C.4, C.5 and C.6). Based on the trends in the figures, it is readily
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Table 6.1: Average and standard deviation of the performance metrics for the

training and validation set using MLR, RF, XGBoost model. RMSE is the root

mean squared error, MAE is the mean absolute error, and R2 is the correlation

coefficient between experiment and predicted data. Shuffle-Split indicates random

data shuffle into 100 different training/validation splits. The model with the best

performance on the validation set during shuffle-split becomes the final choice of

model for test set evaluation. Note: The RMSE and MAE values are for ionic

conductivity in the log10 scale.

Shuffle-Split Best Performing

Model Data Set R2 RMSE MAE R2 RMSE MAE

MLR Training 0.877±0.002 0.260±0.003 0.173±0.002 0.873 0.265 0.175

Validation 0.867±0.023 0.268±0.029 0.180±0.011 0.914 0.213 0.159

Test – – – 0.853 0.322 0.204

RF Training 0.994±0.000 0.059±0.001 0.031±0.000 0.994 0.060 0.031

Validation 0.956±0.013 0.152±0.026 0.083±0.007 0.977 0.116 0.074

Test – – – 0.963 0.161 0.087

XGBoost Training 0.999±0.000 0.020±0.001 0.012±0.000 0.999 0.021 0.012

Validation 0.977±0.011 0.109±0.026 0.050±0.006 0.993 0.061 0.039

Test – – – 0.987 0.094 0.047

apparent that the non-linear models significantly outperform the MLR model, sim-

ilar to other studies that have examined correlation of ionic liquid properties using

linear and non-linear approaches [280,281].

We also examined the overall correlation coefficient (R2) for the XGBoost and

RF model for each of the cation families, the results of which are presented in

Figure 6.3. It can be observed that the performance of the XGBoost model is

somewhat independent of the type of the cation family, while the RF model is

more sensitive to the type of cation and the corresponding number of data points.
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For example, the R2 value drops to 0.55 for morpholinium cation, despite being

present in the training set, while the R2 predicted using the XGBoost method is

0.9. Similarly, the R2 value obtained with the RF model for oxazolidinium cations

drops below 0.90, whereas the XGBoost model again yields R2 values ∼0.9. For

all other cations types, the correlation coefficients are nearly perfect as deduced

from the XGBoost method, while those calculated from the RF model are lower,

which shows that the XGBoost model can be accurate even when the data is lim-

ited (Figure 6.1). Based on the performance metrics by cation type, the XGBoost

model is chosen as the choice of model for further prediction as it outperforms

the RF model for individual cation types, which is essential for unique ionic liquid

prediction discussed in the later section.

Figure 6.3: Correlation coefficient (R2) for RF (circles) and XGBoost (crosses)

models for the entire data set as a function of cation family. Size of the marker

indicates the relative proproprtion of data points present for the given cation type.

We further tested the predictive capability of the XGBoost model for the external

data, which were neither part of the training data or test data, consisting of 30 data

points collected from the literature. This data set included 27 unique ILs with a

temperature range between 293-323.15 K and ionic conductivity range of 0.06-1.68
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S/m. The XGBoost model obtained an R2 of 0.80, RMSE of 0.20 S/m, and MAE of

0.14 S/m for this external test set compared to experimental data. The entire pre-

diction on this external test case using XGBoost along with experimental data, the

source, along with schematics of the cations and anions are provided in Table C.2

(unique ionic liquid combinations), Table C.3 (cations structurally similar to those

on which the model was trained) and Table C.4 (substituted imidazolium-based

cations).

6.4.2 Model Interpretation

A significant advantage of ensemble-based models over ’black box’ models such as

neural network is the easy interpretability of the feature importance. This insight

can be valuable for developing design heuristics for the search and development

of new cations with high ionic conductivity. In this work, we employed the Shap-

ley additive explanations (SHAP) [282] method, which provides a reliable way to

explain the importance of features and the model decision making [283, 284]. As

shown in Figure 6.4, the SHAP analysis ranks the features in terms of their im-

portance, while the SHAP value indicates how varying a certain feature is likely to

affect the output, ionic conductivity in the present case. A negative SHAP value

suggests a lowering of conductivity, while a positive value implies an increase in

conductivity.

Figure 6.4 presents nine features deemed most important for ionic liquid predic-

tions. Out of these nine features, six features correspond to the cations, while

two features are linked to the anions. Temperature was identified as the most

dominant feature among these features. This is not surprising as the dynamics of

ILs are accelerated with an increase in temperature. The second most important

feature is the IPC descriptor for the cation that takes into account the information

content of the molecule, such as the number of atoms through a graph representa-

tion [285]. Based on the SHAP value, it is clear that a high value of IPC (denoted

by the red color) negatively impacts the output. As the IPC descriptor is related to

the content of the molecule, higher values of the feature delineates bulky cations,
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for example those containing long alkyl chains, slowing down the dynamics of the

system [286, 287]. Furthermore, Figure C.10 (a) also shows the relation between

the IPC descriptor of the cation and experimental ionic conductivity at 298.15

K, demonstrating the effect of the descriptor on the ionic conductivity; there is a

general trend of decreasing ionic conductivity with IPC as revealed by the SHAP

analysis. The next feature Chi0, that contributes to the ionic conductivity is also

related to cations, capturing the nature of molecular connectivity [288]. The influ-

ence of Chi0 is similar to that identified for IPC in that it is negatively correlated

to the ionic conductivity as confirmed in Figure C.10 (b). Besides these two de-

scriptors, four more cation descriptors show very high importance in the model

output based on SHAP value. These descriptors pertain to the topological con-

nectivity (Balabanj, BertzCT), electronegativity (MaxAbsEStateindex), and the

van der Waals surface area (VSA EState8) of the cations (Figures C.10 (c)-(f)).

Figure 6.4: SHAP feature importance for the training set data. Features ending

with ’ a ’ indicates features for anions.

As for the two anions descriptors seen from Figure 6.4, VSA EState2 a is the sum
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of the electrotopological state index of an atom with van der Waals surface area be-

tween 4.78 - 5.0 [143]. The electropological descriptor encodes both the electronic

and topological state of the anion [289]. The electronic state here refers to the

electron distribution of the atoms in a molecule. Next, MaxAbsPartialCharge a

descriptor stands for the maximum absolute partial charge of the molecule cal-

culated using the Gasteiger partial charge method based on electronegativity of

the atoms in the molecule [290]. In the experimental data set, the highest value

for this descriptor is for the halogen anions with a maximum partial charge of

1.0, followed by anions based on the phosphorous atom, oxygen-based anions, and

cyano-based anions. The descriptor relation to ionic conductivity can be explained

through the SHAP feature importance insight as the cyano group has the lowest

MaxAbsPartialCharge a, which results in higher ionic conductivity. In contrast,

the halogen, phosphorous, and oxygen-based anions have the highest MaxAbsPar-

tialCharge a reducing ionic conductivity. Relation between these descriptors and

ionic conductivity can be seen from Figure C.10 (g) and (h).

Based on the SHAP analysis, it is clear that some of the features have a very

high influence on the ionic conductivity compared to the rest. To examine how

important these features are with respect to ionic conductivity, we also attempted

to build a small-scale decision tree-based classification model to leverage insights

generated from the SHAP analysis. The primary objective here is to determine the

accuracy of such a model by using a few selected features as inputs for the model’s

development. Further details on the classification model development and results

can be found in the supporting information. The classification model is able to

classify ILs in the high/low ionic conductivity categories with 98% accuracy for the

training set, 92% for the test set, and 63% for the external test set. The accuracy

is very high considering that the model is built only with six descriptors.

6.4.3 Unique ILs

As the XGBoost model is rigorously cross-validated for the test case and an ex-

ternal test case, we proceeded to combine all the unique cations (214) and anions
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(68), significantly expanding the pool of ILs from mere 337 ILs to a staggering

14,552 unique ILs. Although impressive, it is important to note that not all the

ILs generated from the combination may exist in a liquid state at 298.15 K, necessi-

tating a separate model to estimate the melting point of these ILs. The XGBoost

predictions for 14,552 unique ILs and experimental measurement for 337 ILs at

298 K are provided in Figure 6.5 for different cation families. As can be observed

from the figure, the pyrrolidinium cation type has the highest experimental ionic

conductivity followed by imidazolium, ammonium, pyrazolium, and pyridinium.

The model predictions accurately capture this trend.

Figure 6.5: Categorical data of unique ILs based on cation family type at 298.15

K.

The current conventional electrolyte LP30 found in Li-ion batteries consists of 1 M

LiPF6 in 1:1 ethyl carbonate (EC) and dimethylcarbonate (DMC) mixture that is

known to have an ionic conductivity of 1.26 at 298.15 K [71,291]. Thus for ILs to be

considered as a potential electrolyte additive to replace LP30, the ionic conductiv-
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ity target should at least be close to 2.0 S/m as the addition of Li salts dramatically

reduces the ionic conductivity and increases viscosity by 30-50% [96, 278, 292]. In

our model development database, there are only five ILs with ionic conductivity

greater than 2.0 S/m, which is now expanded to 21 ILs using the unique ionic liquid

combination. This is possible as some of the cations for the ILs with experimental

data higher than 2.0 S/m when combined with other cyano-based anions present

in the data set lead to more ILs with high ionic conductivity. Breaking the unique

ionic liquid combination analysis by cation type, there are just two cations beyond

2.0 S/m present in the experimental data set for the pyrrolidinium cations. Using

the model, this region of space is now expanded to seven unique pyrrolidinium ILs.

Similarly, the number of ILs beyond 2.0 S/m has grown from four to nine ILs for

imidazolium cations. For the piperidinium experimentally, there is no data beyond

0.5 S/m at 298.15 K. That now has expanded to a large number of them crossing

the 1.0 S/m as the piperidinium cations are paired with some other anions, mainly

cyano based anions, as they can push ILs to have ionic conductivity. Based on the

cations and anion combinations resulting from available experimental data, our

analysis suggests that there are no high ionic conductivity ILs that can be formed

using oxazolidinium, phosphonium, or morpholinium cations.

6.5 Conclusion

In search of ILs with high ionic conductivity for battery application, we developed

three different machine learning models to correlate ionic conductivity of ten dif-

ferent cation types covering a temperature range of 238-472 K. It was found the

multiple linear regression model was least accurate, while the non-linear model

XGBoost performed the best. Although the accuracy of the model developed us-

ing RF methodology was similar to that for the XGBoost model, a degradation in

its predictive capability was noted for cation families that represented a very small

portion of the overall data set. On the other hand, the XGBoost model retained

its high accuracy across all the cation families.
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Feature importance based on SHAP analysis showed temperature, six cation fea-

tures, and two anions features to have the most influence on ionic conductivity

output. The insight gained from the SHAP analysis was used to develop a deci-

sion tree-based model containing only six cation features to classify ILs containing

[NTf2]
− anion into two categories: high ionic conductivity and low ionic conduc-

tivity. The model showed a high accuracy, successfully classifying 92% of the ILs

from the test set, demonstrating the usefulness of the SHAP analysis.

Lastly, all the unique cations and anions in the database were combined to dra-

matically expand the chemical space of ILs as demonstrated by the increase in the

number of ILs from 337 to 14,552 unique ILs. The model predictions hint at 21 ILs

possessing ionic conductivity greater than 2.0 S/m at 298.15 K. We envision that

the large database of ionic liquid conductivity predictions can serve as a roadmap

for future computational and experimental efforts in search for ILs with very high

ionic conductivity suitable for battery application as electrolytes.
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CHAPTER 7

Accelerated Discovery of Novel Ionic Liquid Cations using a Continuous Latent

Space Representation of Chemical Space

7.1 Abstract

Ionic liquids have generated tremendous interest in the research community over

the years due to several unique and desirable properties compared to conventional

solvents. However, its slow transport properties and high material costs have lim-

ited its commercial application development. Due to the vastness of the ionic

liquid chemical space, narrowing down the potential candidates using experiment

or atomistic simulation with faster dynamics, high stability, and low material cost

has proven difficult. Machine learning (ML) algorithms, on the other hand, could

serve as an alternative tool for accelerated material discovery with desirable prop-

erties. This paper employs a generative-based deep machine learning method to

discover new cations in the ionic liquid chemical space, thereby increasing the

number of potential cation candidates for battery applications. According to our

findings, some of the newly discovered cations belong to known cation families,

whereas most cyclic and aromatic cations occupy a new region of chemical space.

To assess their suitability as potential electrolytes, we calculated the electrochem-

ical stability of these cations using DFT calculations. A few newly discovered

cations have very high electrochemical stability, making them ideal for battery

applications.
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7.2 Introduction

Ionic liquids (ILs) are a class of salts composed entirely of ions and are often found

to be liquid at a temperature below 100 ◦C. They have gained widespread interest

because of their unique properties, such as negligible vapor pressure, low flamma-

bility, high thermal and chemical stability. Growing concerns over the toxicity

and emission of volatile organic contaminants have made ILs a potential candidate

for various industrial applications such as solvents for extraction [293, 294], CO2

capture [56, 295], catalysis [296, 297], electrolytes for battery application [11, 298].

In addition, it also offers the possibility of designing and tuning the properties

by combining the appropriate cation and anion combinations to form task-specific

ILs. There is a large list of available cations and anions to choose from that can

be further modified by changing the functional group and attachment position.

Among all the known cation types, imidazolium cations are one of the most widely

studied cations with desirable transport properties such as low viscosity and high

ionic conductivity, making them suitable as solvents for various industrial appli-

cations [299, 300]. However, the presence of the proton at the C2 position in the

imidazolium cation makes them easily susceptible to reduction with a small elec-

trochemical window [301]. Any modification to the C2 position by replacing the

proton with an alkyl chain reduces ionic conductivity and increases viscosity dra-

matically [13]. In addition, an increase in alkyl chain length attached to the side of

the cation also significantly slows down the dynamics of the ionic liquid, prompting

researchers to search for cations beyond the imidazolium family [302,303].

Alternatives such as quaternary ammonium-based ILs also appear extensively in

the literature due to their inexpensive nature, high electrochemical stability, and

less toxicity compared to imidazolium-based cations [304]. However, they have very

high viscosity and low ionic conductivity in comparison to their imidazolium coun-

terparts [305]. That has shifted the attention towards quaternary phosphonium

cations with similar thermal/electrochemical stability but twice as low viscosity
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as the quaternary ammonium cations [29, 31]. Similarly, sulfonium-based cations

are another central atom-based cation with low viscosity and relatively higher

ionic conductivity [27, 33]. However, they have a similar electrochemical window

to imidazolium-based cations and low thermal stability compared to other cation

types [125,301].

Recently, pyrrolidinium-based ILs have also emerged as the next choice of interest

because of favorable properties such as high electrochemical window, low viscosity,

and high ionic conductivity [20, 21, 306]. The modification of the five-membered

ring of the pyrrolidinium cation to the six-membered ring gives rise to the piperi-

dinium cations. They exist in liquid form for a wide temperature range, making

them suitable as solvents for various applications with low toxicity and high elec-

trochemical stability [307]. Pyridinium cations are another cation type that is

relatively less studied compared to the ones mentioned above, as they are more

viscous than their aromatic counterpart [308,309].

Despite the large variety of cation types, they either have favorable transport

properties but low electrochemical stability or the opposite [11]. For instance,

one of the most commonly studied ILs: 1-ethyl-methylimidazolium dicyanamide

has an ionic conductivity of 2.82 S/m at room temperature, but it has an elec-

trochemical window of less than 3.20 V [310]. Imidazolium cations paired with

bis(trifluoromethylsulfonyl) imide anions, on the other hand, have an electrochem-

ical window of 4.50 V [11,311], with a maximum ionic conductivity of 0.91 S/m at

room temperature [312]. Changing the imidazolium cation to pyrrolidinium cation

significantly increases the electrochemical window, with most of them reaching

above 4.50 V. However, the ionic conductivity of pyrrolidinium cations is relatively

lower compared to imidazolium ILs [301,313]. The other potential candidate is the

sulfonium cations that offer low viscosity and high ionic conductivity compared to

ammonium and phosphonium cations [33] and are found to be more suitable for

battery application compared to pyrrolidinium and phosphonium cations [27, 34].

However, beyond these three cation types, the other commonly studied cation
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types have very sluggish dynamics that are ideally not preferred for battery appli-

cation [33,314].

Thus, for ILs to be considered electrolytes for battery applications, there is a

definite need for more cations that could offer similar characteristics as the one

mentioned above, increasing the list of potential candidates. This might also re-

duce the overall material cost as more candidates are explored and available [315].

Expanding the candidate list by increasing the alkyl chain length attached to the

cation would not be a viable option as it slows the dynamics significantly [11]. An-

other route would be to mutate cations by adding functional groups such as ether

to the alkyl chain, which is known to reduce viscosity and increase ionic conduc-

tivity with relatively little impact on the electrochemical window [36,37]. Besides

that, the other option would be to discover an entirely new family of cations with

desired properties.

Using experimental techniques to find additional new cation families would be

challenging and time-consuming as there are estimates that the number of possi-

ble ILs could be in the range of billions [174]. Material search and design using

atomistic simulation in such a vast ionic liquid chemical space would be expensive

and unfeasible as well. Thus, this provides a unique opportunity to deploy ma-

chine learning tools to virtually explore the vast chemical space and accelerate the

discovery of new cations with possibly desirable properties.

Machine learning tools have already attracted tremendous interest in the ionic

liquid community, such as regressing properties and searching the ionic liquid

chemical space for top-performing ILs beyond the ones already known in the liter-

ature [105, 119, 267]. Traditional regression-based methods using neural networks

and support vector machines have become a go-to choice of method to regress data

and expand the property database for a given property [118, 176, 178, 181, 267].

However, these methods are limited only for regressing properties as the design of

new ILs can be challenging using traditional descriptor-based methods because of
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the difficulty of going from chemical descriptors back to SMILES.

Instead, deep learning methods such as a generative-based model that uses the

concept of transfer learning to generate new data by learning patterns from the

input data have been on the rise to design, discover, and predict properties of

novel materials [316–319]. Such methods offer accelerated material discovery by

representing chemical structure information in a continuous form of latent space

rather than a discrete form such as the traditional chemical descriptors. Another

advantage of the generative-based method over the traditional descriptor is that

the model decides the information and attributes it requires to represent the chem-

ical information accurately in a low-dimensional space, removing the painstaking

process of calculating descriptors and deciding the importance of each descriptor

for property prediction.

Bombarelli et al. developed a generative-based model using Variational AutoEn-

coder (VAE) to generate a low-dimension representation of the chemical informa-

tion combined with a regression-based model that takes this low-dimension data

of chemical structures as input and predicts properties. Thus, allowing the search

and discovery of materials with property prediction in the same instance [318].

Lim et al. [317] developed a conditional variational autoencoder model (CVAE), a

modification of the VAE model that takes desired properties and the SMILE struc-

ture as input data. The trained model serves as a medium for an inverse design

that outputs chemical structures with properties within that specified property

range. Beckner et al. [119] combined the VAE model with a QSPR-based model to

generate and predict properties for new ILs by using a transfer learning approach.

Initially, the model learns the chemical space from an extensive list of organic

molecule SMILES, followed by a smaller set of ionic liquid SMILES, to generate

new ionic liquid structures with the desired property range.

Based on a similar approach to discovering new materials using a generative-based

neural network, this work focuses on searching for new cation structures beyond the
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existing ones present in the literature to increase the chemical space for the search

and design of ILs with desirable properties for battery application. We employ a

Variational AutoEncoder (VAE) machine learning model trained on known cation

structures represented in the form of SMILES. The hypothesis is that, as these

known cations are represented in a continuous low-dimensional vector space, the

region of chemical space between known cations should be home to undiscovered

cations representing new cation family types with possibly desirable properties

suited for battery application.

In the next section, we elaborate on the concept of VAE, followed by data genera-

tion and representation for the model development. Next, the post-processing steps

for new cation data generated using VAE, such as SMILE validity and stability, are

discussed. As the interest is in evaluating cations for battery application, we also

describe the methodology involved in this study to calculate the electrochemical

window of the cations to examine their electrochemical stability towards battery

application. The results and discussion section describes the model validation,

data generation procedure, latent space arrangement, cation discovery, classifica-

tion of cations by family, and electrochemical stability of all the novel cation types.

7.3 Methodology

7.3.1 Variational AutoEncoder (VAE)

VAE is a generative-based machine learning model that represents the informa-

tion mapping between input and output data using a probability distribution. It

consists of two deep neural networks (encoder and decoder): an encoder network

learns to encode the input information in a compressed form in a low-dimensional

latent space, learning only the specific attributes of the input data. The decoder

network is trained to decompress that latent space information back to reconstruct

the original input data. Combining the encoder and decoder allows the compres-

sion of information from higher-dimensional space into a low-dimensional space
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that contains all the necessary information about the input data. The low di-

mensional latent space serves as a reservoir to generate new data, which is passed

through the decoder to reconstruct it back in the form of the original input.

Figure 7.1: Variational Autoencoder schematic representation. The encoder takes

in the input information and compresses it to low dimensional space on the latent

space (z). The decoder takes the compressed information from the latent space

and reconstructs it back to the form of the original input. The latent space is

represented in the form of a Gaussian distribution with a mean (µ) and variance

(σ). z1, z2..zn represents the attributes of the latent space with (n) dimensions.

7.3.2 Data Generation

The VAE model is trained on SMILES data based on various commonly studied

cation families, including imidazolium, ammonium, phosphonium, piperidinium,

pyridinium, sulfonium, and pyrrolidinium, with only alkyl functional groups at-

tached to them. The length of the alkyl group varies from 1 to 10, including

isomers. The individual percentage of each cation type is depicted in Figure 7.2

(a). Further details on the data generation are provided in the supporting infor-

mation.
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7.3.3 Model Development

The SMILES structures are converted to a one-hot encoding vector [320] format as

depicted in Figure 7.2 (b). The one-hot encoding approach represents the SMILES

string in ”1” and ”0” indicating whether a given character is present in the SMILE

structure. The SMILE string vocabulary is the collection of all the unique char-

acters present in the model dataset that form the column of the one-hot encoded

vector, which in our case is a total of 21 unique characters and a row length of

100. The rationale for choosing this particular row length of 100 is to avoid the

VAE model from generating extremely long alkyl isomer chain cations, which are

often accompanied by extremely sluggish transport properties [321]. Lastly, ev-

ery SMILE string is modified to have ’E’ at the terminal, indicating the end of

the string to make the conversion process back to SMILES from one-hot encoding

efficient as there is no need to translate bits beyond the ’E’ character [317, 322].

The one-hot encoding vector is a multidimensional (100,21) array reshaped to a

1D array of (1,2100) array size as the input layer for the VAE model.

In total, there are 18,141 SMILE data points, where 10% of the data is kept aside

as a test set, and the remaining data is divided into training and validation sets

(90:10) for model development and hyper-parameter tuning. Further details on

the hyper-parameter tuning for the final VAE architecture are also provided in the

supporting information.

7.3.4 Post Processing

New cation data generated from the VAE model is processed for SMILE validation,

duplicate check, and charge validation. The validity of the generated SMILES is

visualized using the OPSIN web application [10] and tested using the RDKit pack-

age [323]. The duplicate check involves two parts : (a) a comparison between the

newly generated SMILES and the training dataset to ensure that all the smiles

generated are unique, and (b) an internal duplicate check within the VAE gener-
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ated dataset to ensure none of the SMILES are repeated. Both tests employ the

Tanimoto similarity index score to check for duplicates implemented in the RD-

Kit package [323]. The SMILE string is also checked for the presence of a positive

charge to ensure no neutral organic molecules are present in the final generated set.

As there are no inbuilt valence rule heuristics in the VAE model, some of the

new SMILE structures generated by the model take the form of radical cations.

Instead of discarding such cations, we manually added hydrogen to such cations

where necessary to convert such cations into protic cations. Besides valence rules,

the VAE also has no inbuilt heuristics to determine whether a given cation struc-

ture exists in a stable form. In order to examine the stability of these generated

cations, we ran Quantum mechanical (QM) calculations on all of them for a sta-

bility test. The result and discussion section have information about the stability

test in detail. The three-dimensional coordinates of the cations for QM calcula-

tions are generated using the Openbabel package [324]. Lastly, we also attempted

to build a classification model based on Random Forest (RF) [144] to classify the

VAE generated cations using chemical descriptors generated through RDKit [323].

This eliminates the need to examine the novel cations and classify them manually.

More details about the classification model development are provided in the sup-

porting information.
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Figure 7.2: (a) % Representation of different cation type in the VAE model de-

velopment. (b) One hot encoding vector of a sample organic molecule with a

vocabulary size of 6 and length of 100. ’E’ denotes the end of SMILE string. (c)

Neural network representation of the encoder and decoder for the VAE model.

7.3.5 Electrochemical Window

As this work is focused on finding new cations suitable for battery applications,

we evaluated the electrochemical stability of the VAE generated cations by cal-

culating their electrochemical window (ECW). ECW is a critical property of an

electrolyte as it characterizes the range of potential over which it is stable against

oxidation and reduction. As the ionic liquid space expands, measuring ECW for

each ionic liquid using experimental techniques can be challenging and expensive.

Numerous studies have employed computational tools to calculate the ECW of

ILs. [42, 104, 126, 128, 325, 326] This is done by approximating the cathodic limit

(CL) with cation reduction and the anodic limit (AL) to the oxidation of anions.
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The two common ways to calculate ECW using computational tools are through

the thermodynamic cycle (TDC) approach and the highest occupied molecular

orbital (HOMO)/lowest occupied molecular orbital (LUMO) method. The TDC

method involves calculating the Gibbs free energy of oxidation and the reduc-

tion potential of the cations and anions. On the other hand, the HOMO/LUMO

method is based on Koopmann’s theory that approximates the electron affinity

with the LUMO energy and the ionization potential with the HOMO energy [152].

Thus, for ECW calculations, the LUMO energy is equal to the cathodic limit and

the HOMO energy to the anodic limit.

VCL =
−ϵLUMO

e
(7.1)

VAL =
−ϵHOMO

e
(7.2)

ECW = VCL − VAL (7.3)

Where e denotes the charge of an electron.

Panidian et al. [128] did an extensive study on calculating the ECW of ILs using

various methodologies. The △ SCF Self Consistent Field approach to calculating

ECW in vacuum had a deviation of 48–54.1% from experimental data, depending

on the basis set, according to the authors.Changing the vacuum environment to

an SMD solvent (dichloroethane) environment and using the one-electron addi-

tion approach reduced the deviation to 2.4% using M06-L/6-311 + G(2d,p) basis

set. The one-electron addition approach calculates the ECW using the reduction

potential of the cations and the oxidation potential of the anions. The reduction

potential is the difference in Gibbs free energy between VC and VC+e− . Similarly,

the oxidation potential is the Gibbs free energy difference of VA and VA−e− .

Building upon the work of Panidian and co-workers [128] we used a similar SMD

approach with dichloroethane as the solvent, (M06-L) functional form, and (6-311
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+ G (2d,p)) as the basis set. The calculations are performed using Gaussian 09

package [153]. However, instead of the one-electron addition approach, we use

the HOMO/LUMO approach using equation 7.1, 7.2 and 7.3 to calculate ECW.

Unfortunately, the authors do not provide ECW data to benchmark the calcula-

tions. Instead, we compare our HOMO/LUMO calculations to the work of Asha

et al. [104] for pyrrolidinium ILs and Kazemiabnavi et al. [42] for imidazolium ILs.

The result and discussion section elaborate more on the comparison.

7.4 Results and Discussion

7.4.1 Model Validation

Type Average reconstruction accuracy %

Training Set 97.67±1.45

Validation Set 95.95±1.65

Test Set 95.57±1.76

Table 7.1: Reconstruction accuracy % of the SMILE data using the VAE model for

different data set called upon 100 different instances. Reconstruction accuracy %

is calculated by taking the total SMILE generated by the VAE model that matches

the input SMILE to the total number of input SMILE.

Table 7.1 shows the reconstruction accuracy % of the training, validation, and test

set. As the VAE model is a probabilistic model, it is crucial to ensure that the

model reconstruction accuracy of the SMILE string stays relatively the same every

time the model gets called. Thus we reported the mean and standard deviation

of the three sets called 100 different times. Given that all of the data points are

unique SMILE strings with varying cation chain length and complexity in branch-

ing, the test set reconstruction accuracy is approximately 95.57±1.76%, indicating

that the VAE model is well equipped to construct and deconstruct information to

valid cation SMILES.
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Figure 7.3 depicts the projection of the training set latent space to a two-dimensional

axis using principal component analysis (PCA) labeled accordingly by the cation

type. Each subplot denotes the cation type location in the latent space. It is

evident from the subplots that the VAE self arranges the cations into individual

clusters by cation type despite having no information about the cation label. Beck-

ner et al. [119] reported similar self-arrangement trends for the latent space with

clusters of individual cations.

Figure 7.3: Projection of latent space into two dimensional axis using the first two

principal components. Each of the subplot indicates the region for each of the

cation type on the latent space.

The self-arrangement of the latent space is even more remarkable considering that

these cation clusters are not random arrangements but instead follow a pattern

based on similarity. For instance, the non-cyclic/aromatic cations (sulfonium,

ammonium, phosphonium) are arranged close to each other as they have a common

feature, i.e., a central-based atom. The location of ammonium cations is fascinating

as it serves the transition to cyclic/aromatic cations, starting with pyrrolidinium,

followed by piperidinium, pyridinium, and finally, the imidazolium cations that
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occupy the entire right side of the cluster. The supporting information (Figure D.5)

also depicts the third and fourth principal component analyses along with the first

and second components.

7.4.2 Data Generation

With the model validated on the test set, we focused our attention on discovering

new cation structures by sampling the latent space and passing it through the de-

coder to extract the output in the form of a one-hot encoding vector converted to

SMILES. Theoretically, it would be possible to sample every possible region in the

latent space and generate an enormous number of new cation structures ranging in

the millions. However, processing them might be challenging and prone to errors

during smile validation, duplicate removal, and family identification.

Based on the kernel density estimate of all the latent space attribute (Figure D.6),

we limited the latent space sampling to a µ = 0 and σ ranging from 0 to 1 with

an increment of 0.01. This was done for 300 data points at a time, leading to

30,000 sampling instances. Applying the post-processing steps discussed earlier

that included SMILE validation, duplicate removal, and neutral molecule removal

led to 756 valid unique SMILE structures.

7.4.3 Stability Test

Often, with a generative-based model such as VAE, it is challenging to provide

insights such as the stability of the generated SMILE structure, as the model has

no inbuilt heuristics to know whether a given chemical species could exist in a

stable form. In this section, we examined the number of cations that could exist

in a stable form by running a QM stability test.

The stability evaluation of the cation geometry and frequency optimization is done

using the HF/STO-3G theory implemented in the Gaussian 09 package [153]. The

stability criteria of the structures included threefold: (a) converged geometry and

frequency optimization, (b) no imaginary frequencies, (c) change in the bond dis-
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tance less than 10%. The last test ensured that all the cations preserved their

bond structure during geometry optimization.

Out of 756 SMILE structures, 425 passed the three stability test criteria. All the

failed systems had convergence issues. Examining some of the unstable structures

through visual inspection showed that some of these cations had unusual struc-

tures, such as two nitrogen atoms attached or nitrogen and phosphorus atoms next

to one another, which might have made the cation unstable.

7.4.4 Non-Aromatic/Non-Cyclic Cations

There were 323 cations out of 425 that belonged to the non-aromatic/non-cyclic

family. Figure 7.4 (a) shows the classification of these cation type using the clas-

sification model. The highest number of new cations belonged to the sulfonium

group, followed by phosphonium and ammonium, leaving only eleven cations as

”Unknown” types. Of the eleven ”Unknown” cations, six of them are primary am-

monium cations with a long branched alkyl chain length that are not present in the

VAE training set. Despite the model being trained entirely on aprotic cations, the

model generated numerous radical cations, as discussed earlier. Thus, we added

hydrogen atoms to the charged atom during the post-processing step to overcome

this shortcoming. Krenn et al. [327] in a recent study, implemented a new way

of representing molecules through a technique called self-referencing embedded

strings (SELFIES) that aims to solve some of the issues associated with the tradi-

tional SMILE structures.

Next, we examined the chemical space of the cations represented using a two-

dimensional PCA projection based on cation features generated using RDKit.

Figure 7.4 (b) shows the chemical space of known cation types used during classifi-

cation model development. This explains why the classification model can classify

each cation type with such high accuracy, as each cation family tends to have

its own unique chemical space. The alkylated imidazolium (1-alkyl-2-alkyl-3-alkyl

imidazolium) cation is the small region of the imidazolium cation separated from
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the big block of imidazolium. Although the VAE training data does not have 1-

alkyl-2-alkyl-3-alkyl imidazolium cations as they tend to induce sluggish transport

properties [13], this was added to the classification training data to ensure that

the model knows to identify them as imidazolium instead of labeling them as ”Un-

known” if the VAE generates them during sampling.

Figure 7.4 (c) shows the PCA projection of the new generated non-aromatic or

non-cyclic cations along with the existing cations used for the classification model

development. Notice the overlap around the ammonium cation region, as those

are the primary ammonium cations that the model misclassified as ”Unknown”

cation types. The remaining four cations are from the sulfonium and phospho-

nium families with nitrogen atoms on the alkyl chain length, which the model

classified as ”Unknown” as no such cations were present in the training set. Bates

and co-workers report the synthesis of such amine/amino-based cation structures

in the imidazolium alkyl chain specific for CO2 adsorption [256]. Zhang and co-

workers also demonstrated the possibility of synthesizing amino-based phospho-

nium cations paired with amino-based anions for CO2 adsorption that showed

promising results [328].
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Figure 7.4: (a) Bar chart of the cation type generated using the VAE model for

non-aromatic/non-cyclic based cations. (b) Two-dimensional PCA plot of the

known cation chemical space with their respective label generated using features

from RDKit. (c) A two-dimensional PCA plot of the new VAE generated non-

cyclic/non-aromatic cations on the cation space in addition to the classification

training data. The features for these cations are generated using RDKit. Here

”Unknown” refers to cations that do not belong to known cation families. (d)

Maximum Tanimoto Similarity index for the ”Unknown” cation type compared to

the rest of the known cation type.

We also examined the novelty of these cations by calculating the Tanimoto Sim-

ilarity index for each of the cations. This is done by calculating the index with

respect to all the known cations in the training set and taking the maximum of

each index, as we are interested in knowing the closest similarity obtained for the

new cations. Figure 7.4 (d) shows the violin plot distribution of the three known
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cation types and unknown types. For the sulfonium cations, the closest similarity

index varies from 0.99 to 0.25, with the most similar cations having a long alkyl

chain with a large number of branches along the way. However, the least similar

cations have double bonds on the alkyl chain attached to the sulfonium cation,

as such cations were not present in the VAE development. The model places the

double structure on the sulfonium cations by learning from the aromatic cations

that had the double structure present in them. Again, this shows the transfer

learning ability to generate new structures from known structures and functional

groups. We see similar trends for the phosphonium and ammonium cations where

the closest similarity cations are low branched cations, while the furthest similar

cations are alkyl chains with a double bond, as seen in Figure D.7.

Based on this finding, it is safe to say that the level of cation complexity generated

by the VAE model can increase exponentially with the addition of new functional

groups such as ether, hydroxyl, and carboxyl, as there are more ways to mutate

these functional groups.

7.4.5 Aromatic/Cyclic Cations

Similar to non-aromatic/non-cyclic cations, we evaluated the cation clustering for

aromatic/cyclic-based cations using the method discussed above. Figure 7.5 (a)

shows the bar plot of the frequency of each of the cation types, where around

76 out of 102 cations do not belong to the known family type, followed by the

piperidinium cation type, ammonium, and imidazolium. Compared to the PCA

plot between Figure 7.5 (b) and 7.5 (c), almost all the ”Unknown” cation fill up

the new region around ammonium, pyrrolidinium, and piperidinium cations.
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Figure 7.5: (a) Bar chart of the cation type generated using the VAE model

for aromatic/cyclic-based cations. (b) Two-dimensional PCA plot of the known

cation chemical space generated using features from RDKit with their respective

label. (c) A two-dimensional PCA plot of the new VAE generated cyclic/aromatic

cations on the cation space in addition to the classification training data. Here

”Unknown” refers to cations that do not belong to known cation families. (d)

Maximum Tanimoto Similarity index for the ”Unknown” cation type compared to

the rest of the known cation type

Figure 7.5 (d) depicts the Tanimoto similarity coefficient for the ”Unknown” la-

bel cations where some of the cations have a maximum Tanimoto similarity index

close to 0.20, which suggests a very minimal similarity with the known cation

type. To put that in context, one can imagine the two cation types, 1-methyl-

1-propylpyrrolidinium, and 1-methyl-1-propylpyridinium, which are very distinct

cations with varied physical structures and properties that have a Tanimoto simi-
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larity index of roughly about 0.22.

Figure D.8 shows some of the least similar cations with their respective similarity

index. The first cation on that list has a structure similar to the imidazolium

cation but with only one nitrogen atom present in it. The second seven-member

structure is the modification of the six-member piperidinium cation. The diversity

and uniqueness of these cation structures again highlight the vastness of the cation

chemical space and the number of new structures that are yet to be discovered with

possibly unique properties.

7.4.6 Electrochemical Window

To evaluate the applicability of these cations as electrolytes for battery appli-

cations, we calculated the (ECW) of the cyclic/aromatic ”Unknown” cations in

this section. Before calculating the ECW of them, we benchmarked our method

with a few different studies. Figure D.9 (a) compares the ECW calculated in

this work to the TDC approach for Li +/Li reference electrode electrochemi-

cal and experimental data [11, 42] The ECW of [Cn=2,3,4,5,6mim][NTf2] using the

HOMO/LUMO approach are in excellent agreement with the TDC method and

few experimental data. Similarly, the ECW of [Cn=2,4,6mim][BF4] shows similar

quantitative agreement as to the TDC method, with one of the experimental data,

sets closer to the HOMO/LUMO approach as compared to TDC. Lastly, for the

[Cn=2,4,6mim][PF6] series, the TDC method predicts the ECW to be close to 8.0

V, while the HOMO/LUMO method has values close to 6.5 V. The experimental

data for [C4mim][PF6] is found to be between the two computational methods.

Overall, the Average Absolute Relative Deviation (AARD) between our approach

and the TDC method is about 9.03%.

Similarly, Figure D.9 (b) compares the ECW of [Py14]+ cation paired with three

different anions. In all three of them, the HOMO/LUMO approach has AARD

of 10.0% compared to the TDC for Li+/Li reference electrode and 9.52% against

experimental data [22,104,301]. The benchmark data is provided in the supporting
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information.

With the ECW method in excellent agreement with TDC and experimental data,

we proceeded to compute the HOMO/LUMO of all the 74 cyclic/aromatic cations

labeled ”Unknown”in the earlier section. Out of the 76 cations we discovered earlier

using the VAE, two of the cations repeatedly failed to converge during geometry

optimization. As such, the two cations are discarded from the calculations, leav-

ing 74 cations. The ECW of these cations are calculated in combination with four

commonly studied anions (dicyanamide [DCA]−, bis(fluoromethylsulfonyl)imide

[NTf2]
−, bis(fluorosulfonyl)imide [FSI]− and tetrafluoroborate [BF4]

−) by simply

taking the difference in the anionHOMO energy and the cationLUMO energy using

equation 7.1, 7.2 and 7.3.

Figure 7.6: Electrochemical window values of all the ”Unknown” cyclic/aromatic

cations paired with (a) [DCA]−, (b) [NTf2]
−, (c) [FSI]− and (d) [BF4]

− anion.

Figure 7.6 (a) depicts the ECW of all the 74 cations paired with the [DCA]− anion.

As expected, the ECW paired with [DCA]− anion has a very low electrochemical

window, with most of it concentrated at around 3.0 V. This is because the [DCA]−
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anion easily gets oxidized as compared to other anions. Asha et al. [104] reported

the HOMO of the [DCA]− to be concentrated around the nitrogen atom, which

could explain why it gets oxidized easily. A few of the cations cross 4.0 V, with

the maximum ECW reaching a value of 4.75 V.

Next, Figure 7.6 (b) and (c) show the ECW distribution of the cations paired

with the [NTf2]
− and [FSI]− anion. The two anions are relatively more stable to

oxidation than the [DCA]− anion as studies have shown the HOMO to be located

on the oxygen atom of the anion that has higher electronegativity compared to the

nitrogen atom [11, 42, 104]. Majority of the cations now have ECW at around 4.0

V with a maximum reaching around 5.5 V. Lastly, Figure 7.6 (d) shows the ECW

of [BF4]
− anion with a majority of the ILs with ECW concentrated around the

5.5-6.0 V region. Kazemiabnavi et al. [42] reported similar trends for the [BF4]
−

anion as the authors alluded to the location of HOMO that is found only on the

fluorine atoms as it has very high electronegativity values, making it difficult to

oxidize.

7.4.7 Conclusion

In summary, we used a Variational Autoencoder (VAE) based machine learning

method to discover new cation structures from the known cation family. The

VAE latent space seems to self-arrange into clusters of cation families based on

chemical similarity despite having seen no such information about the cations.

Sampling the latent space generated 756 new unique cations, of which 425 formed

stable structures based on the QM stability test. These cations are classified

into respective families using a classification model. The model classified 76 new

aromatic/cyclic cations as ”Unknown” type. A two-dimensional PCA projection

of the cation chemical space revealed new regions of chemical space occupied by

the newly discovered cations labeled ”Unknown”. The Tanimoto similarity index

of the cations provided further confirmation of the novelty of the new cation family.

We also calculated the electrochemical window of these ”Unknown”aromatic/cyclic
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cations using the HOMO/LUMO approach to assess their electrochemical stability

for battery applications. The majority of the cations paired with [DCA]− had ECW

close to 3-3.5 V, the ones paired with [FSI]− and [NTf2]
− had an electrochemical

window greater than 4.0 V. In contrast, cations paired with [BF4]
− anion had the

highest electrochemical window, with some of them reaching 7.5 V. Future work

would be to add more functional groups to the VAE cation training set and increase

the sampling fold to generate more possible cation structures with mixed functional

groups that could potentially occupy new niches in the ionic liquid cation chemical

space, offering desirable properties.
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CHAPTER 8

Mapping the Frontier Orbital Energies of Imidazolium-Based Cations Using

Machine Learning

8.1 Abstract

This paper investigates the use of a machine learning model based on extreme

gradient boosting (XGBoost) to correlate frontier orbital energies calculated from

density functional theory (DFT). The system of interest is the imidazolium cation

with an alkyl chain length ranging from 1 to 10, including all possible isomers.

Enumerating the entire imidazolium isomer space yields 315,872 distinct cation

structures. Calculating frontier orbital energies for each would be computationally

very expensive and time-consuming using DFT. Instead we develop a machine

learning model to correlate these energies. Compared to DFT calculations, the

model can predict the external test set with MAE of less than 0.4 eV for HOMO

and 0.2 eV for LUMO energies. Aside from accurate energy prediction, the entire

energy calculation using the model for 317,382 cations is completed in about four

hours using a personal computer. This drastically reduces computation time for

the entire chemical space using DFT, which otherwise might have required more

than a million hours using high-performance computing.

8.2 Introduction

A tremendous amount of research has been devoted to finding the next genera-

tion of electrolytes found in Li-ion batteries to solve some of the safety concerns
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associated with organic carbonate-based electrolytes that are highly volatile and

flammable during thermal runaway or short-circuit [329, 330]. Several promising

alternative candidates, such as solid-state electrolytes, polymer-based electrolytes,

and ILs, are being considered because of their high thermal and chemical stabil-

ity [6, 331].

Among them, ILs are be considered a promising candidate as they offer several ex-

citing features, such as negligible vapor pressure, high thermal/chemical stability,

and design flexibility. Furthermore, there is an extensive list of cations, anions,

and functional groups that one can choose from to design task-specific applica-

tions for a given application [332, 333]. In addition to pure ILs, it is also possible

to form binary mixtures by mixing ILs to improve some of their weaknesses, such

as sluggish transport properties [51,334,335]. However, several essential electrolyte

properties, such as ionic conductivity and electrochemical stability, must be ad-

equately understood before using them for battery applications. In our earlier

work we were focused on developing model to generate high ionic conductivity

data using machine learning model applicable for large set of diverse cations and

anions [267, 336]. Thus, the focus of this work is geared towards electrochemical

stability of ILs.

Knowing the electrochemical stability of an electrolyte is critical for determining

the operating condition of the battery with minimum safety concerns. Electro-

chemical stability is quantified using an electrochemical window (EW), the oper-

ating range of voltage where a species does not undergo reduction or oxidation.

In the case of ILs, that would be the voltage range where the cation does not

undergo reduction and the anion is immune to oxidation. Experimentally, EW is

calculated using a linear sweep or cyclic voltammetry techniques with reference

to a working electrode [125]. However, the sheer volume of ILs that are possible

using the available cation-anion combination would make the experimental process

of measuring EW for each of them expensive and time-consuming, as the number

of ILs possible is estimated to be in the range of billions [174].
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Instead, several studies have employed the use of molecular dynamics (MD) com-

bined with DFT or direct DFT calculations to compute the electrochemical window

of ILs [42,104,126,337]. This involves the thermodynamic cycle approach that cal-

culates the Gibbs free energy of reduction and oxidation of cations/anions using

thermodynamic cycle. The other approach would be the calculation of the highest

occupied molecular orbital (HOMO) and lowest occupied molecular orbital orbitals

(LUMO). During ECW calculations, the LUMO energy is assumed as the cathodic

limit or cation reduction, while the HOMO energy is assumed as the anodic limit

or the oxidation of an anion [337].

Liang et al. [126] used DFT calculations to compute the HOMO/LUMO energies

of 42 cations and 42 anions combined to calculate the EW of 1764 ILs. The au-

thors found the fluoro-based anions to have the highest electrochemical stability

compared to other anions. Saeed et al. [42] calculated the EW of imidazolium-

based ILs with varying lengths and anions using the thermodynamic cycle and

HOMO/LUMO methods. The authors found the EW calculated using the HOMO

and LUMO method to have a considerable deviation compared to experimental

data, while the thermodynamic cycle method results were in excellent agreement

with experimental data. Ilawe et al. [127] in a computational study, showed that

the choice of DFT functional to calculate HOMO/LUMO greatly impacts the ac-

curacy of EW compared to experimental data.

Besides battery application, several other studies have shown the importance of

HOMO/LUMO as chemical descriptors to predict ionic liquid properties such

as toxicity, biodegradability, and solubility [338–340]. Numerous studies have

also investigated ILs as corrosion inhibitors for various metals by examining the

HOMO/LUMO parameters to determine the corrosion efficiency of the ionic liq-

uid for a given metal. Yousefi et al. [341] examined the corrosion efficiency of six

imidazolium ILs on mild steel in HCl solution using experimental and quantum

mechanical calculations. The authors found the linear equation and non-linear
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equation consisting of just the two parameters, HOMO and LUMO, as descrip-

tors, were sufficient to correlate inhibition efficiency accurately. Similarly, Tian

et al. [342] found that the HUMO/LUMO and other electrochemical descriptors

accurately correlated the corrosion inhibition efficiency of imidazolium hydrogen

sulfate ILs on copper.

The HOMO/LUMO energy itself can provide valuable insights into the stability

and hardness of a molecule. Based on Koopman’s theory, HOMO energy is ap-

proximately equal to the ionization potential energy that quantifies the energy

required to withdraw an electron from a molecule. On the other hand, LUMO

is approximately equal to electron affinity energy, the energy released when an

electron is added to the system. Several studies have found the change in alkyl

chain length to have minimal impact on the reduction potential of the imidazolium

cation as the LUMO is located on the imidazolium cation ring [42, 127, 343]. Any

changes to the imidazolium ring, such as the substitution of a functional group

at the (C2) position on the ring with other functional groups, have been found to

improve electrochemical stability [344].

Besides linear alkyl chain substitutes, various studies have also demonstrated the

usefulness of branched alkyl chains as cation attachments. Erdmenger et al. [345]

reported the branched alkyl chains imidazolium cations to have higher decompo-

sition temperature than linear alkyl chain imidazolium cations paired with two

different anions. Similarly, Corvo et al. [346] in an experimental study, reported

the branched alkyl chain imidazolium cations exhibited higher CO2 solubility as

compared to the linear alkyl chain imidazolium cations at high pressure. Besides

physical properties, branched alkyl chain imidazolium cations are also known to

have lower toxicity as compared to linear alkyl chain imidazolium cations [347,348].

Despite some of the unique advantages associated with branched alkyl chain imi-

dazolium cations over linear alkyl chain imidazolium cations, very little is known

about its energy gap and electrochemical stability that are some of the critical

properties required for electrolytes characterization for battery application.
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One potential reason why there are very few studies on the branch alkyl chain

functional group is the enormous number of cation enumerations possible with

varying lengths, attachment positions, and isomers. Performing experimental mea-

surements or computational calculations would be expensive and time-consuming,

even using high-performance computing. Furthermore, this becomes even more

challenging for long alkyl chains with multiple branching levels attached to both

sides of the cation, as the DFT calculations may run into a convergence issue.

Thus, this presents a unique opportunity to use machine learning methods to corre-

late frontier orbital energies of imidazolium cations from density functional theory

(DFT) calculations. This work attempts to build a machine learning model trained

on a small set of DFT cation data that is assumed to represent the imidazolium

isomer chemical space. The trained model is then utilized to map out the entire

space, thus reducing the computational cost of running expensive calculations for

a large set. The cation of interest for this study is the 1-alkyl-3-alkylimidazolium

([CnCmmim]+) cation, which is widely studied for various applications due to its

extremely low viscosity and high ionic conductivity property as compared to other

cation types [11].

The following section discusses the SMILE data generation procedure, DFT cal-

culations, and the machine learning methodology. We evaluate the model’s per-

formance on the test set based on three different error metrics following model

development. In addition to the test set, we compare the model’s prediction to

DFT calculations for an external test set (cations that are not related in alkyl chain

length to the training set cations) to further support the model’s predictive capa-

bility. Next, we employ the SHAP feature analysis technique to determine some

of the most influential features for the HOMO/LUMO energy model. Lastly, with

the model cross-validated, we map out the entire isomer space using the model.
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8.3 Methodology

8.3.1 Data generation

The cation of interest for this study is imidazolium cation with an alkyl functional

group attached to positions 1 and 3 (1-alkyl-3-alkylimidazolium [CnCmmim]+).

The alkyl chain is varied from 1 to 10 in length, with all possible isomers leading

to 317,382 unique imidazolium cations, as seen in Figure 8.1. For some of the long

alkyl chain cations, the number of possible isomers is in 5 log10 units, indicating

the vastness of the isomer chemical space. The enormous cation chemical space

makes it difficult and expensive to perform DFT calculations on all of them as

mentioned earlier.

Cations denoted by (*) in Figure 8.1 indicate the cation for which we performed

DFT calculations to compute its HOMO/LUMO energy for model development.

Starting with [Cn=1,10C1mim]+ as this would include all the possible isomers from

alkyl chain 1 to 10, thus ensuring the model has seen all the possible isomer vari-

ations. Next, we add [Cn=2,8C2mim]+ cations to the training database to take

into account the change in HOMO/LUMO energy as the alkyl chain on one side

of the cations gets extended from methyl to ethyl chain. Similarly, we added

[Cn=3,6C3mim]+, [Cn=4,6C4mim]+, [C5C5mim]+ and [C6C6mim]+. Adding these

cations would ensure that the model learns the HOMO/LUMO energy change as

the alkyl chain length varies on both sides of the cation and when both sides have

the same chain length. This leads to 1399 cation data points from these alkyl

combinations for model development.
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Figure 8.1: Number of isomers for [CnCmmim]+ cation in log10 scale. Cations

denoted by (*) indicates data used for model development. Cations denoted by (-)

and (+) indicate data used for external test set validation.

We also generated external test set data to evaluate the model’s generalization

ability compared to DFT calculations. Note that this data set is not part of the

training set. Cations denoted by the (-) symbol as seen in Figure 8.1 indicates four

of the cation sets on which we ran DFT calculations in their entirety and extracted

its HOMO/LUMO energy. This includes [C2C9mim]+ with 211 cation structures,

[C3C7mim]+ has 78 cations, [C5C6mim]+ has 136 cations and [C4C7mim]+ 155

cations lead to a total of 580 data points. For the remaining cation set, generat-

ing all the possible isomers for test set evaluation would be expensive and time-

consuming, so we generated HOMO/LUMO energy for 20 random data points

for each cation, as indicated by the (+) symbol. In total, the external test set

contained 940 unique cation structures.
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8.3.2 DFT calculations

The HOMO/LUMO energies are computed from DFT calculations based on m06

level theory and 6-311++g(d,p) basis set using Gaussian 09 package [349]. The

input files for the calculations are prepared using openbabel package along with

the generation of initial three-dimensional coordinates [324]. To ensure that the

system is optimized, we evaluated the convergence criteria for geometry optimiza-

tion along with making sure there are no imaginary frequencies for the system.

Figure 8.2: HOMO and LUMO energy distribution of cations present in the model

development data set calculated using DFT.

Figure 8.2 depicts the DFT-calculated distribution of HOMO/LUMO energy. The

HOMO energy is distributed between -12.5 and -10.5 eV, while almost all the

LUMO energy is concentrated between -5.0 and -4.0 eV. As mentioned earlier, this

is because the LUMO is primarily found on the ring of the imidazolium cations

which is not impacted by the change in alkyl chain length or branching.
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8.3.3 Machine learning

Features for the cations are generated with the open-source cheminformatics RD-

Kit package, which can generate 196 two-dimensional features [323]. The data is

divided into 90% training set and the remaining 10% as test data for model evalua-

tion. The training set data is further divided into 90% for model development and

10% for hyper-parameter evaluation refereed as validation data. The input and

output data are normalized and scaled using MinMax scaling [0-1] implemented

in Scikit-learn [144]. To reduce the number of features for the HOMO and LUMO

models, we employed the Least absolute shrinkage and selection operator (LASSO)

technique [144]. The best LASSO penalty parameter is determined using a 5-fold

cross-validation (CV) search. The algorithm reduces the number of features for

the HOMO model to 33 and 31 for the LUMO model.

For the model development, we employed the XGBoost ensemble-based method as

we found it to perform better than the random forest (RF) method in our previous

study [336]. Another reason for choosing an ensemble-based method over a ’black-

box’ model such as a neural network is to get further insights on the importance

of the feature for HOMO/LUMO energy prediction.

The hyper-parameters for the XGBoost model are determined using a randomized

grid search method with a 5-fold CV implemented in Scikit-learn [144]. This

includes the number of trees for the XGBoost model (n estimators), the maximum

depth of each tree (max depth), the learning rate of the gradient descent algorithm

(learning rate), the fraction of data used to build individual tree (subsample), the

fraction of features to choose from to build individual tree (colsample bytree) and

the fraction of features used to train individual node in a tree (colsample bylevel).

The entire hyper-parameter space and the final optimized parameters are shown

in Figure E.2 and E.3.
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8.4 Results and discussion

8.4.1 Model validation

The performance metrics for HOMO and LUMO energies predicted using the XG-

Boost model are shown in Table 8.1. The correlation coefficient (R2) stays above

0.90 for all three sets for both energies. The RMSE and MAE for both the HOMO

and LUMO models are less than 0.1 eV for all three sets, suggesting that it is

possible to correlate DFT properties with high accuracy using two-dimensional

descriptors. This is even more impressive because all the cation data points are

unique cation structures with varying alkyl chain lengths, branching differences,

and attachment positions. The correlation plots for both the HOMO/LUMO en-

ergy can be seen from Figure E.4 and E.5. The maximum relative deviation stays

below 3.0% for both of the models.

Property Data R2 RMSE (eV) MAE (eV)

HOMO Train 0.998 0.015 0.011

Validation 0.957 0.064 0.048

Test 0.914 0.081 0.061

LUMO Train 0.996 0.006 0.004

Validation 0.945 0.028 0.022

Test 0.906 0.037 0.026

Table 8.1: Performance metrics of the XGBoost Model for HOMO (eV) and LUMO

(eV) energies. (R2) is the correlation coefficient, (RMSE) is root mean squared

error and (MAE) is mean absolute error.

8.4.2 External test validation

Next, we evaluated the model’s performance on all the external test sets highlighted

by the (-) and (+) symbols seen in Figure 8.3 compared to DFT calculations. As

mentioned earlier, cations denoted by (-) indicate all the smile structures for that
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particular cation are utilized for evaluation, while (+) indicates the selection of 20

data points from the entire list of possible smile structures. The goal of the exter-

nal test is to evaluate the generalization ability beyond the model cation dataset

compared to DFT calculations.

Figure 8.3: Performance metrics for the external set using HOMO/LUMO energy

model. The cations listed here are not present in the model development data. The

size of the marker varies based on the amount of branched isomer data present for

the individual cation set.

Overall, the LUMO model has a much lower RMSE/MAE/AARD for all the cation

types than the HOMO model. One reason for this is that the LUMO energy is

primarily dominated by the cation ring, as there is very little change in energy

with the increase in alkyl chain length or branching [42]. However, HOMO energy

for shorter alkyl chain cations is also located on the imidazolium ring, which shifts

to the alkyl chain and branching as the length, and the complexity of the chain

increases [350].
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Compared to the test set as seen in Table 8.1, the MAE/RMSE for the external

test reaches a maximum of 0.4 eV for HOMO energies and 0.2 eV for LUMO

energies for the external test set, as seen from Figure 8.3 . The training/test

data contains cations of the same alkyl chain length and position, with the only

difference being the variation in isomer branching. That could explain why the

model has MAE/RSME lower than 0.1 eV for the test set. However, for this

external test set, none of the cations with this alkyl chain length and branching

attached to both sides are present in the model development, thus reflecting the

actual generalization ability. Nevertheless, MAE/RMSE less than 0.4 eV and

AARD less than 4% can still be considered very high accuracy compared to DFT

calculations, as this removes the computational need of generating data for the

rest of the cations.

8.4.3 Feature importance

A major advantage of the ensemble-based method over neural networks is the easy

interpretability of the model decision-making and the feature importance of the

output. In this work, we employ Shapely Additive Explanation (SHAP) [282] sim-

ilar to other studies [283,284,351] to gain insights on some of the most important

features influencing HOMO/LUMO energies. Figure 8.4 (a) depicts the SHAP

analysis of feature importance for the HOMO model. The first on the list is the

Balabanj feature, where a lower value of this feature (denoted by the blue color)

lowers the model output. The Balabanj feature is a topological descriptor that

considers the structural complexity [352]. As the training set consists of cations

with various alkyl chain lengths and levels of chain branching for the isomers, it

is understandable why the Balabanj feature is the most important as it takes into

account all of that structure complexity concerning HOMO energy.
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Figure 8.4: SHAP feature importance for (a) HOMO energy model and (b) LUMO

energy model.

The Min/MaxAbsPartialCharge descriptors are the absolute minimum and maxi-

mum of the partial charge calculated using the Gasteiger method based on the elec-

tronegativity of the atoms [290]. These descriptors consider the electron-donating

and withdrawing capability of a molecule directly related to HOMO/LUMO en-

ergies. The third important descriptor is the VSA EState1 descriptor, the elec-

trotopological state for the atoms with van der Waal’s surface area of less than

4.78 [289, 323]. Electrotopological descriptor considers the topological and the

electronic state of the molecules, where electronic state refers to electron distri-

bution on the molecule. The Chi1 and Chi3n descriptors take into account the

cations’ connectivity index. As there are various levels of branching for the iso-

mers attached to the cations, the influence of these two descriptors makes sense.

The FractionCSP3 descriptor considers the number of carbon atoms that are sp3

hybridized.

The BertzCT descriptor is a topological descriptor that relates to the complexity

of the molecule through graph theory [353]. The descriptor is the sum of two

quantities: the complexity of the atoms and the complexity of the connectivity.
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Thus, it makes sense why this descriptor is influential for the HOMO energy as

for isomers, the complexity of the atom term remains the same since they have

the same number and type of atoms. This leaves the second connectivity term to

consider the subtle difference between the two isomers for the effect of branching

concerning HOMO energy. Lastly, the IPC descriptor accounts for the information

content of molecules, such as the number of atoms, the bonds, and the branching

complexity [285]. The importance of this descriptor ties with the complexity of

the branching on the alkyl chain with HOMO energy.

As for the LUMO model seen from Figure 8.4 (b), the most important descriptor

is the MinAbsPartialCharge that calculates the minimum of the Gasteiger partial

charge based on the electronegativity of the atoms in the molecule. The following

three influential descriptors are based on van der Waal’s surface area (VSA), where

the PEOE VSA10 descriptor is the distribution of partial charge based on van

der Waal’s surface area for a partial charge between 0.10 and 0.15. SlogP VSA3

descriptor is the octanol-water partition coefficient for atoms with a specific van der

Waal’s surface area. It is unclear why this descriptor is one of the most influential

for LUMO energy. The remaining descriptors are similar to the HOMO model,

such as Balabanj, Min/Max Partial charge, and FractionCSP3.

8.4.4 Entire isomer chemical space mapping

As the external set is validated against DFT prediction with excellent accuracy,

we proceeded to calculate the HOMO and LUMO energies using the model for the

entire chemical space shown earlier in Figure 8.1. This includes 317,382 unique

imidazolium cations with an alkyl chain varying from 1 to 10 with all possible

isomers. Figure 8.5 (a) shows the energy gap calculated by taking the difference

in LUMO and HOMO energy for the training set using DFT calculations. The

cations are divided into three categories based on chain length. The energy gap for

1-methyl-3-alkylimidazolium [C1Cn>=2mim]+ cations vary the most, from 7.25 eV

to 5.50 eV. The lowest energy gap is for the long alkyl chain cations with HOMO

located at the tail of the alkyl chain. Several other studies have seen a similar

163



trend with the increase in alkyl chain length attached to the cation [343, 350].

The energy gap for the next cation category ([Cm>=2Cn>2mim]+) does not vary as

much as the previous category, while the third category ([Cm>=1Cm=>1mim]+ has

the least change in energy gap, indicating high stability compared to the other two

categories.

Figure 8.5: Energy gap of the entire [CnCmmim]+ cations using (a) DFT for the

1399 data set for model development and (b) XGBoost model for 317,382 cations.

The energy gap for the entire isomer space is mapped using the XGBoost model

for HOMO and LUMO energy by taking the difference in energies as depicted in

Figure 8.5 (b). The trends observed from the model are in excellent agreement

with DFT calculations. Calculating the entire energy gap for 317,382 cations using

a personal computer with an Intel (R) Core (TM) i7-10750H CPU 2.60GHz and 16

GB of RAM took approximately four hours. Performing the same HOMO/LUMO

calculations using DFT for a single cation takes about three to four hours, de-

pending on the alkyl chain length, using high-performance computing (HPC) with

Intel Xeon Gold 6130 CPUs using the 32-core specification. This drastically cuts

down the computation time required for the entire chemical space using DFT cal-

culations, which otherwise might have required more than a million hours using

HPC.
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8.5 Conclusion

This work attempts to build a machine learning model to correlate frontial orbital

energies for imidazolium-based cations with alkyl chains varying from 1 to 10,

including isomers. Enumerating the entire cation space leads to 317,382 unique

cations, for which running DFT calculations on each of them would be unfeasible

due to high computational cost. Instead, we utilize a machine learning approach

using the XGBoost method to correlate HOMO and LUMO energies for a small

sample set of cations assumed to represent the entire isomer space. The trained

model can accurately predict the energies for the external test set, which was not

part of the training data, with MAE of less than 0.4 eV for HOMO and 0.2 eV

for LUMO energy compared to DFT calculations. Besides accuracy, the model

can also map the entire HOMO/LUMO energy space for 317,382 cations within

four hours on a personal computer. As demonstrated in this study, the machine

learning method could be used in situations where DFT calculations are not easily

accessible or are too expensive to run on a large-scale system.
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CHAPTER 9

CONCLUSION

9.0.1 Conclusions

In conclusion, the work done in this dissertation utilizes a computational-based

approach toward the search and design of ionic liquids as electrolytes for battery

applications. The motivation for this work began with the background on ionic

liquids and the limited amount of data present for ionic liquids with high ionic

conductivity. In addition, the ones with high ionic conductivity, however, have

extremely low electrochemical stability, making them undesirable for battery ap-

plications.

The first part of the work attempts to build a machine learning model for expand-

ing ionic conductivity data for imidazolium ionic liquids, as it is one of the most

widely studied ionic liquids cations with low viscosity and high ionic conductivity.

The model of choice for this study is a feed-forward artificial neural network and

support vector machine, as they are well suited for large data and can capture

complex non-linear behavior. The ionic conductivity values of the imidazolium ex-

perimental data set ranged over six orders of magnitude and covered temperatures

from 275 K to 475 K. The neural network model performed slightly better than

the support vector machine on the test set and much better on the external test

for unique ionic liquid combination. Utilizing the available cations and anions in

the database, we combined them to form 1102 unique ionic liquids. The procedure
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led to the identification of the ionic liquid [C1mim][DCA] that is not present in

the training set with an ionic conductivity of 3.70 S/m, which is 30% higher than

the highest ionic conductivity in the training set and the NIST database. Fur-

thermore, combining cations and anions as a function of mole fraction leads to a

large number of binary mixtures. Comparison between experimental and model

mixture data showed excellent agreement with low root mean square deviation.

Several binary mixtures also showed non-ideal behavior, such as enhancement or

suppression in ionic conductivity as a function of mole fraction with values greater

or lower than the pure ionic liquid values.

The second part of the work is a molecular dynamics study to understand the

molecular-level interactions of ionic liquid mixtures to explain the macroscopic

non-ideal deviation in properties such as ionic conductivity. Radial distribution

function (RDF) analysis showed preferential interaction between the short alkyl

chain cation and strongly coordinating anion compared to the longer alkyl chain

cation and weakly coordinating anion present in this reciprocal mixture. This

preferential interaction is highest for the reciprocal mixture, followed by the bi-

nary anion, the binary cation mixture, and the pure system. Hydrogen bond

dynamic analysis follows a similar trend as the RDF peak height with the same

particular cation-anion exhibiting an extended hydrogen bond lifetime in the re-

ciprocal mixture.

As mentioned earlier, imidazolium ionic liquids are the most commonly studied

cations because of their low viscosity and high conductivity, but they have very

low electrochemical stability compared to other cations types. Thus, a tremendous

amount of research is being undertaken to find new cations with desirable proper-

ties. In the third part of the work, we expand the machine learning model to cover

ten available cation types, including imidazolium cations. For the model develop-

ment, we employed ensemble-based methods such as Random Forest (RF) and Ex-

treme Gradient Boosting (XGBoost) that are robust, less prone to overfitting, and

can provide insights into the model’s decision-making. The XGBoost model per-
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forms consistently better for all the cation types regardless of the amount of data

present, unlike the RF model, which is sensitive to the amount of data present for

individual cation types. The feature analysis technique showed six cation features,

two anion features, and temperature as the most influential features concerning

ionic conductivity.

The motivation behind the fourth part of the work began with the work done in

the previous chapter. Despite expanding the ionic conductivity data to 14,000+

ionic liquids, fewer than twenty-one ionic liquids have ionic conductivity compa-

rable to conventional organic electrolytes. This work utilizes a generative-based

machine learning model to accelerate the discovery of cations in search of ionic

liquids with desirable properties for battery application. The generative model is

based on a variational autoencoder (VAE) that compresses input information to

a low-dimensional latent space that serves as a reservoir to sample and generate

new data similar to the input data. The VAE model is trained on commonly

studied cation SMILE strings based on imidazolium, pyrrolidinium, piperidinium,

pyridinium, sulfonium, ammonium, and phosphonium cations. The cation data

generated from the VAE undergoes post-processing steps that involve duplicate

check, charge validation, and stability tests using QM calculations to ensure the

cations exhibit a stable structure. Sampling the latent space generated 756 new

unique cations, of which 425 formed stable structures based on the QM stabil-

ity test. These cations are classified into respective families using a classification

model. The model classified 76 new aromatic and cyclic cations as ”Unknown”

types. A two-dimensional principal component analysis projection of the cation

chemical space revealed new regions of chemical space occupied by the newly dis-

covered cations labeled ”Unknown”. The Tanimoto similarity index of the cations

provided further confirmation of the novelty of the new cation family. Electrochem-

ical window calculations for these ”Unknown” cations showed some of the cations

to exhibit very high electrochemical stability suitable for battery application.

Some of the cations, when paired with an anion such as tetrafluoroborate anion,
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exhibit an electrochemical window up to 7.0 V, which is exceptionally high con-

sidering the electrochemical window of most conventional ionic liquids that are

found in the range of 4.0 V [11]. Despite such a high electrochemical window most

of the commercially studied cathode materials are known to have degradation is-

sues at high voltage (> 4.5 V vs Li/Li+), reducing the life cycle capacity of the

electrode [354, 355]. Nevertheless, it is still desirable to have ionic liquids with

such a high electrochemical window as this dissertation aims to expand the list of

potential candidates with desirable electrolyte properties.

The final part of the work aims to develop a machine learning model to corre-

late DFT-derived properties such as highest occupied molecular orbital (HOMO)

and lowest occupied molecular orbital (LUMO) energy, which is extremely im-

portant to determine the stability of the molecule, toxicity, and biodegradability.

The motivation for this begins with the need to calculate the HOMO/LUMO en-

ergy of cations for electrochemical stability calculations. Running expensive DFT

calculations on each one would be extremely costly, time-consuming, and almost

unfeasible on a large scale. Thus, this last work aims to build a machine learning

model based on two-dimensional descriptors to correlate HOMO/LUMO energy.

The machine learning model can accurately predict the energies for the external

test set with an MAE of less than 0.4 eV for HOMO and 0.2 eV for LUMO energy

compared to DFT calculations.

9.0.2 Future Work

Besides generating new ionic conductivity data using a machine learning model,

it would also be desirable to validate and gain insights at a molecular level us-

ing molecular dynamics (MD). However, the current forcefields for ionic liquids

severely underpredict ionic conductivity, making it challenging to rely on data

generated from MD simulations. Developing forcefields to improve ionic conduc-

tivity prediction and expanding them to a large number of ionic liquids would help

expand the generation of new data and increase the ionic conductivity space in

search of potential candidates with a desirable range.
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The variational autoencoder (VAE) method in this study is limited to generat-

ing novel cations without any property prediction. However, several studies have

shown the possibility of combining a property predictor and a VAE model to si-

multaneously generate new data and property known as conditional variational

autoencoder. This could be useful to estimate the property range for the newly

discovered materials without additional calculation.

Several studies have shown that the accuracy of the electrochemical window cal-

culation using DFT depends on the choice of the theory and basis set [127, 128].

Thus, it would be desirable to have a machine learning model to predict energy

for multiple theories and basis sets as required for a given application with the

desired level of accuracy. However, this would require the development of models

trained on multiple theories and a basis set. Running DFT calculations on each

instance to generate a large amount of training data would not be feasible due to

the extremely high computational cost of running such a large set of calculations.

Using a transfer learning approach by retraining a base model with a small amount

of data for other theories and basis sets might help solve this issue.

For any machine learning model development, the first step includes data collec-

tion and processing. In the case of ionic liquids, NIST has maintained a repository

of experimental data for various properties that can be used to download exper-

imental data [356]. The entire downloading process can be automated with the

use of a publicly available tool (pyilt) [142]. However, besides the NIST IL thermo

database, there is no other major data repository of experimental data for ionic

liquids. In such a case, the data gathering procedure has to be done manually for

the property of interest through literature, making the protocol time-consuming

and prone to error. Thus it would be desirable to have a natural language process-

ing (NLP) script that scans over journals published online for experimental data

for a given property of interest, similar to the work done in other material science

domains [357,358].
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CHAPTER A

Appendix: Developing Machine Learning Models for Ionic Conductivity of

Imidazolium-Based Ionic Liquids

Performance Metrics

Average Absolute Relative Deviation

AARD% =
100

N

N∑
i=1

∣∣∣∣∣ypredi − yexpi

yexpi

∣∣∣∣∣ (A.1)

Root Mean Square Deviation

RMSD =

√∑N
i=1(y

pred
i − yexpi )2

N
(A.2)

Mean Absolute Error

MAE =

∑N
i=1 |y

pred
i − yexpi |
N

(A.3)

Mean Squared Error

MSE =

∑N
i=1(y

pred
i − yexpi )2

N
(A.4)

Relative Deviation

RD% =
(yexp − ypred)

yexp
∗ 100 (A.5)

Mean Absolute Percentage Error

MAPE =
100

N

∑N
i=1 |y

pred
i − yexpi |
yexp

(A.6)

Where:

N is the number of data points
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yexp is experimental data

ypred is predicted data using model

Temperature Distribution Profile

Figure A.1: Temperature distribution profile of all the experimental data points

used in the model development.

Experimental Ionic Conductivity Distribution Profile

Figure A.2: Ionic conductivity distribution profile of all the experimental data

points used in the model development.
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Figure A.3: Comparison between experimental data in normal scale and trans-

formed data using Min Max Scaler to scale the data between 0-1 before model

development.

174



Figure A.4: Comparison between experimental data in log10 scale and transformed

data using Min Max Scaler to scale the data between 0-1 before model development.
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Correlation HeatMap

Figure A.5: Heat map correlation of cation features with experimental ionic con-

ductivity data.
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Figure A.6: Heat map correlation of anion features with experimental ionic con-

ductivity data.
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FFANN Hyper-parameter Search Space

Number of nodes in the first hidden layer was set to the number of input features

: 99

Search Space:

Learning Rate = [0.001,0.002,0.003,0.004,0.005,0.006,0.1]

Neurons=[15,20,21,22,23,24,25]

epochs = [50,150,250,350,450,550]

batch size = [100,300,500,700]

Default Parameters:

loss=’mse’

metrics=[’mae’,’acc’,’mse’]

Final Hyper-parameter:

Learning Rate : 0.002

Number of Hidden layers : 2

Number of neurons in Hidden Layer1 : 99

Number of neurons in Hidden Layer2: 24
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Activation Function : relu

epochs : 450

batch size : 100
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SVR Hyper-parameter Search Space

Search Space:

estimator=SVR(kernel=’rbf’),

Search Space:

’C’: [0.1, 1,10,25,50,100,110,120,130,140,150,

160,170,180,190,200,250,350,500]

’epsilon’: [0.0001,0.0002,0.0003,0.0004,0.0005,

0.001,0.002,0.003,0.004,0.005]

’gamma’: [0.0001,0.0002,0.0003,0.0004,0.0005,

0.0006,0.0007,0.001, 0.005,0.006,0.007,0.008,

0.1,0.2,0.3,0.4,1, 3, 5]

Final Hyper-parameter:

’C’: 250

’epsilon’: 0.001

’gamma’: 3
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Final FFANN Topology

Figure A.7: FFANN model topology. Total number of data points in the training

set : 1190. Ratio of weight and bias to the total number of data points in the

training set : 10.35
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Test Train Partition

The random state of the test/train split is also known to affect the model perfor-

mance. Thus we looked at how the FFANN and SVR model’s true performance

varies with different random state. This was done by changing the random state

over 90 different points. The average and standard deviation of this evaluation is

reported below.

Table A.1: Comparison of the predictions results for FFANN and SVR for the

training set and test set by varying the parition of the test/train split. This was

done by changing the random state parameter in sklearn. MSE is the mean squared

error, MAE is the mean absolute error, RMSD is root mean square deviation

and R2 is the squared correlation between experiment and predicted data. log10

scale refers to ionic conductivity scaled to log10, while normal scale refers to ionic

conductivity data without any scaling in S/m.

Scale Metric Train Test

SVR FFANN SVR FFANN

log10 scale R2 0.995±0.001 0.991±0.004 0.982±0.012 0.974±0.024

MSE 0.002±0.001 0.005±0.002 0.009±0.007 0.014±0.014

MAE 0.015±0.001 0.050±0.015 0.029±0.007 0.062±0.017

RMSD 0.050±0.002 0.070±0.014 0.091±0.007 0.111±0.045

Normal scale R2 0.992±0.007 0.977±0.036 0.997±0.002 0.971±0.045

MSE 0.004±0.002 0.130±0.204 0.015±0.013 0.166±0.254

MAE 0.028±0.008 0.151±0.074 0.048±0.012 0.169±0.084

RMSD 0.068±0.004 0.321±0.166 0.118±0.043 0.357±0.197

182



FFANN final model validation

Figure A.8: (a) Comparison of SVR model predictions with the experimental data

on normal scale for the training set. A perfect prediction would fall on the y = x

dotted line; (b) comparison for the test set (c) Residual deviation on the normal

scale calculated as (σexperiment − σprediction) where σ refers to the ionic conductivity

for the training set; (d) Residual deviation for the test set.
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SVR final model validation

Figure A.9: (a) Comparison of SVR model predictions with the experimental data

on normal scale for the training set. A perfect prediction would fall on the y = x

dotted line; (b) comparison for the test set (c) Residual deviation on the normal

scale calculated as (σexperiment − σprediction) where σ refers to the ionic conductivity

for the training set; (d) Residual deviation for the test set.

184



Table A.2: Comparison of the predictions results for FFANN and SVR for the

training set, test set and the entire dataset. MSE is the mean squared error,

MAE is the mean absolute error, RMSD is root mean square deviation and R2 is

the squared correlation between experiment and predicted data. MAPE is mean

absolute percentage error in %.

Scale Metric Train Test Entire

SVR FFANN SVR FFANN SVR FFANN

Normal scale R2 0.999 0.995 0.997 0.995 0.999 0.996

MSE 0.003 0.021 0.023 0.024 0.005 0.022

MAE 0.027 0.079 0.059 0.086 0.031 0.081

RMSD 0.061 0.148 0.153 0.160 0.075 0.149

MAPE 3.58 8.50 9.03 10.01 4.14 8.65

Ionic Conductivity Comparison

Figure A.10: Comparison between experiment and model for ten ionic liquids at the

bottom of the ionic conductivity values at 298 K using FFANN model. [C4mim]*:

1-butyl-3-methyl-1H-imidazolium; [C3mim]*: 1-propyl-3-methyl-1H-imidazolium:

[C]*:3-(2-(butylamino)-2-oxoethyl)-1-ethyl-1H-imidazolium; [Amim] stands for 1-

allyl-3-methylimidazolium.
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Figure A.11: Comparison between experiment and model for top 10 ionic liquids

with the highest ionic conductivity at 298.0 K using FFANN model. [AMIm]

stands for 1-allyl-3-methylimidazolium.

Model Comparsion

Table A.3: Comparison with experimental data for the GC method and FFANN

model for the [Cn=(2,4,6,8)mim][NTf2] subset series at various temperatures. The

experimental data and GC data for this predictions were taken from the supporting

information of Chen et al. work [113].

Method R2 MAE RMSD MSE

GC 0.985 0.035 0.074 0.005

FFANN 0.986 0.053 0.072 0.005
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Alkyl Chain length Dependency

As a further demonstration of the predictive power of the proposed model, we pro-

vide additional alkyl chain length-dependent behavior of several ionic liquids for

which ionic conductivity data are available in the literature. Zhou et al. reported

several physiochemical properties including ionic conductivity for alkyltriflourobo-

rate and alkenyltrifluoroborate anions paired with the [C2mim]+ cation [359]; none

of the anions except the nonalkylated analogue [BF4]
− is present in the training

dataset. We calculated the ionic conductivity for these ionic liquids the two mod-

els model and compared the values with the experimental data (Figure A.12).

Remarkably, the ionic conductivity predictions are in reasonable agreement with

those reported from experiments with a MSE of 0.138 using FFAAN and 0.340

for SVR method. In addition, the model captures the trend of decreasing ionic

conductivity with the alkyl chain length, the trend reported for the effect of in-

creasing alkyl chain length in the cation on ionic conductivity. The comparison

provides a further evidence that the FFANN model is flexible enough to handle

combination of functional groups if they are present in the original dataset. It can

also be inferred that the tuning of the hyper-parameter has not led to over-fitting

of the training data.
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Table A.4: Comparison between experiment and model for ionic conductivity of

alkyl and alkenyltrifluoroborate anions paired with [C2mim]+ cation at 298.15 K

using FFANN model and SVR model. Experiment data were taken from ref [359].

No. Ionic Liquid T/K Exp(S/m) FFANN SVR

1 [C2mim][CH3BF3] 298.15 0.9 1.49 0.06

2 [C2mim][C2H5BF3] 298.15 0.63 1.19 0.06

3 [C2mim][C3H7BF3] 298.15 0.57 1.01 0.06

4 [C2mim][C4H9BF3] 298.15 0.32 0.24 0.06

5 [C2mim][C5H11BF3] 298.15 0.27 0.09 0.06

6 [C2mim][CH2CHBF3] 298.15 1.05 1.22 0.07

7 [C2mim][BF4] 298.15 1.36 1.58 1.54

Figure A.12: Comparison between experiment and model for ionic conductivity of

alkyl and alkenyltrifluoroborate anions paired with [C2mim]+ cation at 298.15 K

using FFANN model. Experiment data were taken from ref [359].

We carried out another test for the model by computing the ionic conductivity

for the homologous series of the alkylsulfate [CnSO4]
− (n = 1, 2, 4, 6, and 8) and

hydrogen sulfate [HSO4]
− anion paired with the [C2mim]+ cation at 298.15 and

323.15 K in order to compare the calculations to the experimental data reported

in the work of Garbal et al. [360]. Note that the anions [C4SO4]
− and [C6SO4]

−
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were not present in the training dataset and hence are test cases for the model. On

the other hand, ionic liquids [C2mim][HSO4] and [C2mim][C1SO4] are examples of

unique ionic liquid combinations. A comparison presented in Figure A.13 clearly

demonstrates that the model performs remarkably well in capturing the nonlinear

trend of an increase in the ionic conductivity in going from [HSO4]
− to methylsul-

fate [C1SO4]
− and a decrease in the ionic conductivity as the alkyl chain length

increases. We also observe that the model predictions are close to the experimental

data at both temperatures with MSE of 0.032 for FFANN and 0.037 for SVR.

Table A.5: Comparison between experimental data and model outputs for ionic

conductivity of hydrogen sulfate and alkylsulfates [CnSO4]
− anions (n = 1, 2, 4,

6, and 8) paired with [C2mim]+ cation at 298.15 K and 323.15 K using FFANN

model and SVR model. Experiment data were taken from ref [360].

No. Ionic Liquid T/K Exp(S/m) FFANN SVR

1 [C2mim][HSO4] 298.15 0.09 0.02 0.01

2 [C2mim][CH3SO4] 298.15 0.76 0.63 0.60

3 [C2mim][C2H5SO4] 298.15 0.38 0.40 0.38

4 [C2mim][C4H9SO4] 298.15 0.17 0.05 0.06

5 [C2mim][C6H13SO4] 298.35 0.08 0.05 0.06

6 [C2mim][C8H17SO4] 298.15 0.05 0.06 0.05

7 [C2mim][HSO4] 323.15 0.35 0.17 0.01

8 [C2mim][CH3SO4] 323.15 1.69 1.28 1.41

9 [C2mim][C2H5SO4] 323.15 1.01 0.99 1.03

10 [C2mim][C4H9SO4] 323.15 0.49 0.14 0.06

11 [C2mim][C8H17SO4] 323.15 0.15 0.17 0.16
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Figure A.13: Comparison between experimental data and model outputs for ionic

conductivity of hydrogen sulfate and alkylsulfates [CnSO4]
− anions (n = 1, 2, 4,

6, and 8) paired with [C2mim]+ cation at 298.15 K and 323.15 K using FFANN

model. Experiment data were taken from ref [360].

Next, we examined the model prediction capability for functionalized imidazolium

cations by substituting various functional groups at R1, R2, and R3 positions as

seen in Table A.6. The cations were paired with bis(trifluoromethanesulfonyl)imide

[NTf2]
− anion and compared with experimental data taken from the work of Kak-

ibe et al. [277]. As seen from the table the model does extremely well in predicting

ionic conductivity for IL1 to IL5 as indicated by the low relative deviation% using

FFANN compared to SVR. We believe that the behavior can be ascribed to the

fact that the training data set contained several cations in which the R2 position

was substituted with the methyl group. The model also captures the tendency

that the substitution of the -H at the R2 position by methyl moiety leads to a de-

crease in the ionic conductivity which is often seen with imidazolium-based ionic

liquids [13,361]. For the other substituted imidazolium-based, the percentage rela-

tive deviation increases significantly partly due to the fact that the model was not

exposed to the ether-based functional groups such methoxyethyl and ethoxyethyl.

Another reason could be related to the low ionic conductivity of these ionic liq-

uids - the range over which the model accuracy for the training data is somewhat

lower as compared to that for the higher ionic conductivity regime. This high-
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lights the limitation of the model in terms of accuracy for ionic liquids with func-

tional group substitution beyond the training set. Beckner et al. noted similar

results when the imidazolium-based models were used to predict the viscosity of

non-imidazolium based ionic liquids derived from phosphonium, pyridinium, and

pyrrolidnium classes, where the overall MSE on the validation set increased from

0.006±0.01 Pa s to 0.08±0.01 Pa s [176].

Lastly, in Figure A.14, we provide a plot of ionic conductivity as a function

of alkyl chain length in the 1-alkyl-3-methylimidazolium cations paired with 38

unique anions predicted using the FFANN model. Two key features are worth

highlighting: (a) the model correctly identified the trend of decreasing ionic con-

ductivity with an increase in the alkyl chain length; (b) the influence of the anion

on the ionic conductivity diminishes as the alkyl chain is elongated, which is most

likely related to the formation of non-polar domains in the imidazolium-based ionic

liquid beyond the hexyl chain length creating a confinement effect for the cation

and anion to freely diffuse [362].
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Figure A.14: Predicted ionic conductivity as a function of alkyl chain for the

[Cnmim] cation series for all the available anions at 298.0 K using FFANN model.

Predicted Ionic conductivity as a function of temperature

Figure A.15 shows the ionic conductivity for all the unique IL as a function of tem-

perature using FFANN model. It is clear from the three sub-plots that conductivity

increases as a function of temperature. However, the increase in conductivity is

not similar for all the ionic liquids at different temperatures. Some of the ionic

liquids that have very high conductivity at 298.0 and 350.0 K seems to fall off at

400.0 K indicating that the model does not scale the temperature linearly for all

ILs like VFT equation would do, instead it scales the conductivity based on what

cation and anion combination is present.
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Figure A.15: Predicted ionic conductivity for all the unique ionic liquid combina-

tion(1102) as a function of temperature using FFANN model. Note:The numbering

of ILs in x-axis is the same for all three sub-plots

Binary Liquid Mixture Enhancement

Figure A.16: Binary Mixture of [C2mim][NTf2]x1 + [C2mim][CF3SO3]1−x1 at 298.0

K.
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Binary ionic liquids heat map visualization

Figure A.17: Heat map of anions based on frequency of occurrence in binary anion

common cation causing maximum enhancement at 298.0 K.
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Figure A.18: Heat map of anions based on frequency of occurrence in binary anion

common cation causing negative suppression at 298.0 K.
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Figure A.19: Heat map of cations based on frequency of occurrence in binary

cation common anion causing maximum enhancement at 298.0 K.
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Figure A.20: Heat map of cations based on frequency of occurrence in binary

cation common anion causing negative suppression at 298.0 K.
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Table A.6: Comparison of ionic conductivity for [R1R2R3im][NTf2] ionic liquids

at 298.15 K between experiment and models. RD stands for Relative Deviation.

Experiment data taken from ref [277].

No. R1 R2 R3 Exp(S/m) FFANN(S/m) RD% SVR RD%

1 Methyl H Ethyl 0.96 0.96 -0.14 0.93 3.56

2 Methyl Methyl Ethyl 0.47 0.23 50.41 0.07 85.34

3 Methyl Methyl n-Propyl 0.36 0.20 44.75 0.08 78.41

4 Methyl Methyl n-Butyl 0.26 0.16 37.36 0.09 66.25

5 Methyl Methyl n-Pentyl 0.2 0.14 32.24 0.11 46.39

6 Methyl Methyl Allyl 0.52 0.10 81.17 0.06 88.51

7 Methyl Methyl Methoxyethyl 0.35 0.15 56.75 0.06 82.93

8 Methyl Methyl Ethoxyethyl 0.32 0.05 85.10 0.06 81.33

9 Allyl Methyl Ethyl 0.48 0.09 81.44 0.06 87.55

10 Allyl Methyl n-Propyl 0.4 0.07 83.05 0.06 85.07

11 Allyl Methyl n-Butyl 0.2 0.05 77.13 0.06 70.13

12 Allyl Methyl n-Pentyl 0.19 0.03 85.29 0.06 68.56

13 Allyl Methyl Allyl 0.44 0.19 57.85 0.06 86.42

14 Allyl Methyl Methoxyethyl 0.35 0.11 69.82 0.06 82.93

15 Allyl Methyl Ethoxyethyl 0.32 0.02 92.87 0.06 81.33
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CHAPTER B

Appendix: Revealing Hydrogen Bond Dynamics between Ion Pairs in Binary

and Reciprocal Ionic Liquid Mixtures

Potential Mean Force (PMF)

PMF = −kb · T · ln(g(r)) (B.1)

Liquid Densities

Table B.1: Comparison of liquid densities for pure ionic liquids against experimen-

tal data using two different charge scaling at 323 K.

System Density[±0.8] (g/cm3) Density[±1.0] (g/cm3) Experimental (g/cm3) Reference

[C2mim][DCA] 1.026±0.001 1.065 1.084 [211]

[C2mim][NTf2] 1.486±0.009 1.513 1.493 [363]

[C6mim][DCA] 0.874±0.0001 1.000 1.013 [364]

[C6mim][NTf2] 1.332±0.008 1.370 1.350 [365]
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Figure B.1: Liquid phase density of all the system studied in this paper at 323.0

K using ±0.8 charge scaling.
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Radial Distribution Function

Figure B.2: Center of mass (COM) radial distribution plot of the cation ring and

anion interactions in reciprocal mixture.

201



Figure B.3: Comparison of center of mass (COM) radial distribution plot of all

the cation-anion interactions in reciprocal mixtures between two charge scaling.

±1.0 charge scaling denoted by black color and ±0.8 charge scaling denoted by

red color.
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Figure B.4: COM RDF plot for [C2mim]–[NTf2] interactions in various system

containing [C2mim][NTf2].

Figure B.5: COM RDF plot for [C6mim]–[NTf2] interactions in various system

containing [C6mim][NTf2].
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Figure B.6: COM RDF plot for [C6mim]–[DCA] interactions in various system

containing [C6mim][DCA].

Spatial Distribution Function

Figure B.7 illustrates the spatial distribution function of anions around the [C2mim]+

cation for [C2mim][C6mim][DCA][NTf2] reciprocal mixture.
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Figure B.7: Spatial distribution function (SDF’s) of anions around the [C2mim]+

cation for [C2mim][C6mim][DCA][NTf2] reciprocal mixture. Red represents

[NTf2]
− anion, cyan represents [DCA]− anion. Isosurface density was set to 2.2

times the bulk density.

Hydrogen Bonding Auto Correlation

Figure B.8: Hydrogen bonding interaction sites for the cation and anion.
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Figure B.9: RDF of site-site interaction for hydrogen (Ha) - acceptor (Nc) and com

interaction between the cation and anion in [C2mim][DCA].
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Figure B.10: RDF of site-site interaction for hydrogen (Ha) - acceptor (O) and

com interaction between the cation and anion in [C2mim][NTf2].
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Figure B.11: RDF of site-site interaction for ydrogen (Ha) - acceptor (Nc) and com

interaction between the cation and anion in [C6mim][DCA].
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Figure B.12: RDF of site-site interaction for ydrogen (Ha) - acceptor (O) and com

interaction between the cation and anion in [C6mim][NTf2].

Table B.2: Cut-off distances (nm) used in the hydrogen bonding average lifetime

calculations. The hydrogen-acceptor cut-off was set to the first solvation denoted

by Ha-Nc/O. The distance for the donor-acceptor was limited to the first solvation

shell of the center of mass (cation)-center of mass (anion) denoted by Cation-

Anion.

System Ha-Nc/O Cation-Anion

[C2mim][DCA] 0.554 0.768

[C2mim][NTf2] 0.428 0.910

[C6mim][DCA] 0.559 0.800

[C6mim][NTf2] 0.408 0.920
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Mean Square Displacement

Figure B.13: Mean Square Displacement of [C2mim]+ cation and [DCA]− anion

for pure [C2mim][DCA] system.

Figure B.14: Mean Square Displacement of [C2mim]+ cation and [NTf2]
− anion

for pure [C2mim][NTf2] system.
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Figure B.15: Mean Square Displacement of [C6mim]+ cation and [DCA]− anion

for pure [C6mim][DCA] system.

Figure B.16: Mean Square Displacement of [C6mim]+ cation and [NTf2]
− anion

for pure [C6mim][NTf2] system.
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CHAPTER C

Appendix: A Generalized Machine Learning Model for Predicting Ionic

Conductivity for Ionic Liquids’

Equations

Mean Absolute Error

MAE =

∑N
i=1 |y

pred
i − yexpi |
N

(C.1)

Root Mean Squared Error

RMSE =

√∑N
i=1(y

pred
i − yexpi )2

N
(C.2)

Residual Deviation

RD = (yexp − ypred) (C.3)

Where:

N is the number of data points; yexp is experimental data, and ypred is predicted

data using model.

212



Cation Type

Figure C.1: Schematics of cation type used in this study for model development.

R1, R2, R3, and R4 refer to substituents in the cation. Images were drawn using

OPSIN package [10].
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Table C.1: A detailed breakdown of the number of experimental ionic conductivity

data for various cation type in the model development data set.

Cation type Data points

Imidazolium 1440

Pyridinium 493

Ammonium 280

Pyrrolidinium 273

Phosphonium 161

Sulfonium 74

Piperidinium 67

Morpholinium 61

Pyrazolium 11

Oxazolidinium 9

Total 2869

Hyperparameter Feature Space

Random Forest

Figure C.2: Hyper-parameter space for Random Forest model. ’max depth’ in-

dicates the maximum depth of a decision tree, while ’n estimators’ denotes the

number of decision trees generated for computing the average of the outputs to

yield a prediction.

Final hyper-parameter : max depth = 35, n estimators = 500
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XGBoost

Figure C.3: Hyper-parameter space for XGBoost model. ’max depth’ indicates

the maximum depth of an individual tree; ’learning rate’ refers to the step size

for the gradient descent method; ’subsample’ denotes the fraction of data chosen

at random to train an individual tree; ’colsample bytree’ controls the fraction of

features chosen at random to train an individual tree; ’colsample bylevel’ identifies

the fraction of features selected at random to train each node in a tree. Finally,

’n estimators’ is the total number of trees for computing the average of outputs to

yield a prediction.

Final hyper-parameters: n estimators = 900, max depth = 17, learning rate =

0.07, colsample bytree = 0.8, subsample = 0.4, colsample bylevel = 0.1
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Model Validation

Figure C.4: Comparison of model predictions with the experimental data on log10

scale for the training set (left pane), validation set (middle pane) and test set (right

pane) using Multiple Linear Regression model.
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Figure C.5: Comparison of model predictions with the experimental data on log10

scale for the training set (left pane), validation set (middle pane) and test set (right

pane) using Random Forest model.
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Figure C.6: Comparison of model predictions with the experimental data on log10

scale for the training set (left pane), validation set (middle pane) and test set (right

pane) using XGBoost model.
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External Test set

This section is focused on evaluating the model’s performance on the external test

case that consists of ionic liquids missing from the model development. Figure C.7

shows the comparison in prediction between the model and experimental data with

R2 of 0.80, RMSE of 0.20 S/m, and MAE of 0.14 S/m for the 30 data set on the

normal ionic conductivity scale.

Figure C.7: Comparison of experimental external data set and XGBoost model

prediction. The ionic conductivity values are reported in S/m.

219



Table C.2 depicts the unique ionic liquid combination evaluation. The first in

the list are the two oxazolidinium cation which is rarely studied with limited

data available in the literature. Out of eleven data points from this family col-

lected from literature, nine of them were included in the training set, while two

of the data points were added to this test case. The first cation 3-methyl-3-

methoxyethyloxazolidinium cation is not part of the training set, while the cation

3-methyl-3-methoxymethyloxazolidinium is present in the training data with other

anions but not with tetrafluoroborate [BF4]
− anion. Thus, this test case was added

to validate the model’s ability to predict ionic conductivity for cation families with

a very small fraction of representation in the training set as seen in Table C.2.

Table C.2: Comparison of ionic conductivity between experimental data (Exp)

and XGBoost predictions for unique ionic liquids for which either the cation or the

anion is a part of the training data set but not the combinations shown here. Value

inside the square bracket denotes the temperature at which the measurement was

taken.

No. Cation Structure Anion Structure Exp XGBoost Ref

1 0.09[298.15] 0.09 [94]

2 0.08[298.15] 0.16 [94]

3 0.37[298.15] 0.46 [94]
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4 0.06[298.15] 0.07 [94]

5 0.28[298.15] 0.31 [36]

6 0.27[298.15] 0.15 [36]

7 0.05[298.15] 0.15 [76]

8 0.24[298.15] 0.24 [82]

9 0.07[293.15] 0.02 [92]
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Table C.3 demonstrates the model’s ability to generalize prediction beyond the

cation training set. The list of the cations shown in the table are cations that

were not part of the model development. However, they are structurally similar to

some of the cations present in the model database. Cations (1) and (2) belong to

the azepanium family, similar to the piperidinium-based cation. The piperidinium

cation is a six-ring cyclic structure, while the azepanium cation is a seven-ring

cyclic structure.The remaining cations belong to the pyrrolinium cation family,

which are found to be more stable, with better transport properties than the com-

mon pyrrolidinium-based cations. [278] These cations have a minimal resemblance

to any cations present in the set besides pyrrolidinium cations which are still far

from similar to them. The pyrrolidinium cations present in the training set are

cyclic cations with no double bonds and oxygen functional groups attached. This

could be why the model’s quantitative prediction has a relatively significant devi-

ation compared to other test cases seen earlier. However, the qualitative trends

have close agreement compared to experimental data.

Table C.3: Comparison of ionic conductivity between experimental data (Exp) and

XGBoost predictions for cations that bear close resemblance to the cation types

investigated in this work. Value inside the square bracket denotes the temperature

at which the measurement was taken.

No. Cation Structure Anion Structure Exp XGBoost Ref

1 0.36[333.15] 0.54

[279]
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2 0.20[333.15] 0.25

[279]

3 1.30[298.15] 0.73

[278]

4 0.84[298.15] 0.58

[278]

5 1.02[298.15] 0.64

[278]

6 1.68[323.15] 1.29

[278]
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7 1.34[323.15] 1.01

[278]

8 1.63[323.15] 1.13

[278]

Table C.4 demonstrates the predictive capability of the model when the functional

groups are present at various positions in the imidazolium cation; the anion is rep-

resented by [NTf2]
−. One of the unique advantages of ionic liquids is the design

flexibility that allows a large number of possible cations with different functional

group attachments at various positions. Thus it is important to know whether a

given model can predict ionic conductivity correctly as the functional group loca-

tion is varied. This data set originally contained fifteen data points. Out of which,

one ether-functionalized cation and one allyl-functionalized cation were added to

the training set to ensure the model has seen such cations with functional groups

located at R3 position. The rest of the cations are separated as test cases to gauge

the model’s ability in predicting ionic conductivity.
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No. R1 R2 R3 Experiment(S/m) XGBoost

1 Methyl H Ethyl 0.96 0.88

2 Methyl Methyl Ethyl 0.47 0.25

3 Methyl Methyl n-Propyl 0.36 0.25

4 Methyl Methyl n-Butyl 0.26 0.14

5 Methyl Methyl n-Pentyl 0.20 0.14

6 Methyl Methyl Methoxyethyl 0.35 0.28

7 Methyl Methyl Ethoxyethyl 0.32 0.33

8 Allyl Methyl Ethyl 0.48 0.36

9 Allyl Methyl n-Propyl 0.40 0.34

10 Allyl Methyl n-Butyl 0.20 0.26

11 Allyl Methyl n-Pentyl 0.19 0.15

12 Allyl Methyl Allyl 0.44 0.31

13 Allyl Methyl Ethoxyethyl 0.32 0.28

Table C.4: Comparison of ionic conductivity at 298 K between experiment [277]

and XGBoost prediction for cations paired with bis(trifluoromethylsulfonyl)imide

[NTf2]
− anion.

225



Feature Importance

Figure C.8: Cation feature ln(Ipc) vs molecular weights of the cations for which

experimental data were included in the model development.
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Figure C.9: Cation feature Chi0 vs molecular weight of the cations for which

experimental data were used in the model development.
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Figure C.10: Ionic conductivity vs. cation and anion features deemed to impact

the ionic conductivity the most in the XGBoost model. The ionic conductivity

data are plotted for the experimental data at 298.15 K. Features ending with ’ a

’ indicates features for anions.
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Figure C.11: SHAP feature importance for the training set data. Features ending

with ’ a ’ indicates features for anions.
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External Set Classification

Based on the SHAP analysis, it is clear that some of the features have a very

high influence on the ionic conductivity compared to the rest. In this section,

we attempt to build a decision tree-based classification model to leverage insights

generated from the SHAP analysis. The primary objective here is to determine the

accuracy of such a model using a few selected features as inputs for the model de-

velopment. We selected experimental data at 298 K to construct the classification

model, as the number of ionic conductivity data (337 in total) at this temperature

is the highest. Furthermore, we only considered ionic liquids that contained the

bis(trifluoromethanesulfonyl)imide [NTf2]
−. In selecting this anion, we took into

consideration two points: (a) it is one of the most commonly studied anion and it

featured in 137 ionic liquids at the selected temperature; (b) a model based solely

on the cation descriptors would fail to capture the ionic conductivity changes if

the data set contained multiple anions. Although such a model may appear re-

strictive, it can actually provide a reference point. For example, if a novel cation

paired with [NTf2]
− anion is classified to have a ’high’ conductivity value, then it

is very likely that the cation when paired with anions with faster dynamics than

the bulky [NTf2]
− anion.

The boundary for separating the ionic conductivity between ’high’ and ’low’ is

set to the median value of experimental ionic conductivity, which is 0.265 S/m,

where any ionic liquids below median value fall under the ’low’ ionic conductivity

category. Although alternative values of the ionic conductivity can be assigned

to demarcate the two classes, the choice of the medial eliminates any bias in the

classification boundary as there is an equal number of cations for both categories.

The decision tree (DT) model is built using Scikit-learn [144] with 90% for the

data set aside for training the model and 10% left for test purposes. The features

for the model are the six cation features shown in the SHAP plot (Figure C.11).

The classification model achieves 98% accuracy for the training set and 92% for the

test set. The accuracy is very high considering that the model is built only with
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six descriptors and an artificial classification boundary. Furthermore, we evaluated

the performance of the classification model for a few ionic liquids in an external

data set with [NTf2]
− as the anion (Table C.5 and C.6). The model correctly

classified 63% of the ionic liquids with seven ionic liquids mislabeled out of 19

data points. Four of the mislabeled ionic liquids have ionic conductivity in the

0.20-0.27 S/m range close to the boundary separating the two categories. Thus,

this demonstrates the possibility of rapidly screening ionic liquids with a model

that is built using only six cation descriptors.
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Table C.5: Classification of external test case cations paired with [NTf2]
− at 298

K. Low refers to ionic conductivity less than 0.265 S/m.

No. Cation Structure Exp(S/m) Typeexp Typepred Ref

1 0.37 High Low [94]

2 0.06 Low Low [94]

3 0.28 High High [36]

4 0.27 High Low [36]

5 0.05 Low Low [76]

6 0.24 Low High [82]
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No. R1 R2 R3 Experiment(S/m) Typeexp Typepred

1 Methyl H Ethyl 0.96 High High

2 Methyl Methyl Ethyl 0.47 High High

3 Methyl Methyl n-Propyl 0.36 High High

4 Methyl Methyl n-Butyl 0.26 High High

5 Methyl Methyl n-Pentyl 0.20 Low High

6 Methyl Methyl Methoxyethyl 0.35 High Low

7 Methyl Methyl Ethoxyethyl 0.32 Low Low

8 Allyl Methyl Ethyl 0.48 High High

9 Allyl Methyl n-Propyl 0.40 High High

10 Allyl Methyl n-Butyl 0.20 Low High

11 Allyl Methyl n-Pentyl 0.19 Low Low

12 Allyl Methyl Allyl 0.44 High High

13 Allyl Methyl Ethoxyethyl 0.32 High Low

Table C.6: Classification of external test case cations paired with [NTf2]
− at 298

K. Low refers to ionic conductivity less than 0.265 S/m. Experiment data taken

from ref [277].
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Unique Ionic Liquids

Figure C.12: (a) Experimental data at 298.15 K. (b) Unique ionic liquid predictions

at 298.15 K using XGBoost model. LP30 here refers to the commonly used Li-

ion electrolyte with an high ionic conductivity of 1.26 S/m at 298.15 K [71, 291].

Addition of Li+ salts to ionic liquids is known to reduce ionic conductivity by

30-50% [278].
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Cation Anion Ionic Conductivity (S/m)

pyrrolidinium nitrate 5.07

1-ethyl-3-methylimidazolium cyanoborohydride 3.85

pyrrolidinium dicyanamide 3.49

1,3-dimethylimidazolium dicyanamide 3.44

1-ethyl-3-methylimidazolium dicyanoborohydride 3.13

1-ethyl-3-methylimidazolium dicyanamide 2.84

ethylammonium nitrate 2.75

1-methylimidazolium dicyanamide 2.42

1-ethyl-3-methylimidazolium thiocyanate 2.30

1-ethyl-3-methylimidazolium tricyanomethane 2.28

pyrrolidinium tricyanomethane 2.23

pyrrolidinium dicyanoborohydride 2.22

pyrrolidinium tricyanoborohydride 2.20

ethylammonium dicyanamide 2.18

pyrrolidinium thiocyanate 2.13

1-ethyl-2-methylpyrazolium cyanoborohydride 2.12

1-ethyl-3-methylimidazolium tricyanoborohydride 2.12

pyrrolidinium bis(fluorosulfonyl)imide 2.05

diethylmethylammonium dicyanamide 2.03

1-methylpyridinium dicyanamide 2.03

1,3-dimethylimidazolium dicyanoborohydride 2.02

Table C.7: Ionic Liquids with ionic conductivity greater than 2.0 S/m at 298.15 K

calculated using unique ionic liquid method based on XGBoost model.
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CHAPTER D

Appendix: Accelerated Discovery of Novel Ionic Liquid Cations using a

Continuous Latent Space Representation of Chemical Space

Data Generation

The VAE model is trained on SMILES data based on various commonly studied

cation families, including imidazolium, ammonium, phosphonium, piperidinium,

pyridinium, sulfonium, and sulfonium pyrrolidinium with an alkyl functional group

attached to them. The length of the alkyl group is varied from 1 to 10, including

isomers. Theoretically, it is possible to generate millions of such cation structures

by attaching all the possible isomers at various positions. However, in this work,

we are interested in finding the minimum cation data required to build a VAE

model that accurately reconstructs SMILES for the test data and generates new

SMILE strings.

Initially, we started with 10 different data set sizes: [2015, 4032, 6046, 8063, 10078,

12093, 14110, 16124, 18141, 20,151] that includes 1-alkyl-3-alkyl imidazolium,

1-alkyl-1-alkylpyrrolidinium, 1-alkyl-1-alkylpiperidinium, 1-alkyl pyridinium, ter-

tiary sulfonium, quaternary phosphonium, and quaternary ammonium cations.

The individual percentage of each cation seen in Figure D.1 (a) is kept the same

for all the ten data sets. The rationale for choosing the particular cation ratio

is to ensure that the ratio of non-nitrogen-based cation to nitrogen-based cation

stays around 50%. For each data set, 10% of the data set is kept aside as test data
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that remains untouched throughout the model development, while the remaining

data is divided into training and validation set (90:10) for model development and

hyper-parameter tuning.

Figure D.1: (a) % Representation of different cation type in the VAE model de-

velopment. (b) One hot encoding vector of a sample organic molecule with a

vocabulary size of 6 and length of 100. ’E’ denotes the end of SMILE string. (c)

Neural Network representation of the encoder and decoder for the VAE model.

VAE Architecture and Hyper parameters

The one-hot encoding vector is a multidimensional (100,21) array reshaped to a

1D array of (1,2100) array size as the input layer. For the VAE architecture, three

major hyper-parameters needed to be optimized : (a) the total number of training

data points, (b) the dimension of the latent space, and (c) the number of layers

and neurons for the encoder and decoder. (Note: total data points do not refer
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to it as all of them were used for hyper-parameter search, out of the total data

points, 10% of the data is not involved in any of the hyper-parameter searches,

while the remaining 90% of the data is further divided into training and validation

set). Rather than optimizing all these hyper-parameters at once, we systematically

evaluate them by first optimizing the number of data points and dimensions of the

latent space while keeping the number of layers and neurons fixed.

The VAE architecture is built following Keras tutorial on variational autoen-

coder [366]. Initially, the number of layers and neurons is fixed to 500 neurons

in the first and second layer for the encoder and decoder. Next, we perform a grid

search cross-validation to find the optimum number of dimensions for the latent

space [21, 42, 63, 84, 105, 126, 147, 168, 189] and the total data points required to

yield the highest validation set accuracy. Figure D.2 and D.3 show the variation

in reconstruction accuracy as the total number of data points dimensions of the

latent space is varied. Reconstruction accuracy % is calculated by taking the total

SMILE generated by the VAE model that matches the input SMILE to the total

number of input SMILE.
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Figure D.2: Heat map of the the reconstruction accuracy % for the validation set

during hyper-parameter search. X-axis indicates the latent space dimension. Y-

axis indicates the total number of data points out of which 10% is kept aside as test

data, the remaining 90% is further divided into training purposes and validation

(90:10). Red square denotes the highest validation set reconstruction accuracy %.
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Training Set

Figure D.3: Heat map of the reconstruction accuracy % for the training set during

the hyper-parameter search. The X-axis indicates the latent space dimension. Y-

axis indicates the total number of data points, of which 10% is kept aside as test

data. The remaining 90% is further divided into training purposes and validation

(90:10). Red squares denote the highest training set reconstruction accuracy %.

The highest reconstruction accuracy for the validation set peaks at 18,141 data

points and 126 latent dimension space chosen as the optimal parameters. With

the total data required for model development and latent space dimension fixed,

we optimized the number of layers and number of neurons for the encoder and

decoder. Based on the grid search combination, the validation set accuracy stayed

relatively the same after reaching 500 neurons on the first layer and 250 on the

second layer became the final architecture.

Figure D.1 (c) depicts the final optimized VAE architecture. The first hidden layer

has 500 neurons with a dropout regularization of 0.3 to avoid overfitting. The sec-

ond hidden layer has 250 neurons followed by a lambda layer of 126 neurons for µ
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and σ to form the latent space with 126 dimensions. The decoder is represented

exactly opposite of the encoder layer as it receives input from latent space and

passes it to two dense layers of 250 and 500. The output of the decoder is in

the shape of (1,2100), similar to input data. Finally, the one-hot encoded vector

output is reshaped to (100,21) and converted to the SMILE string. The VAE is

trained for 300 epochs with a batch size of 128 using the Adam optimizer as im-

plemented in the Keras package [367].

Classification Model

Besides generating new cations, it is also important to classify them by cation

family type to get a sense of the family lineage of these cations. Instead of man-

ually examining them individually and classifying them by cation family type, we

attempted to build a classification model that classifies cation into the respective

family. However, the issue would be to classify cations that do not belong to the

known cation groups and label them as ”Unknown”as the model has never seen the

structures for the label ”Unknown” type. Thus, to solve this issue, we developed a

classification model based on the cations SMILE data with the respective cation

type family label and neutral organic molecule label as ”Unknown”. This idea was

to train the model to classify anything besides the known cation family type as

”Unknown” indicating that these cations do not belong to the known cation type

and are new molecule structures. The neutral organic molecule database contained

9000 organic molecules from the ChemBL database [368].

Chemical descriptors generated using RDKit [323] became input features for the

classification model, normalized using MinMax Scaling [144]. Labels for the cations

are individual family names, while the organic molecules are labeled ”Unknown”.

The data is split into train/test split with a ratio of 90:10 to validate the model’s

accuracy. We employ Random Forest (RF) model implemented in Scikit-learn to

classify the molecules [144].
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Remarkably, the RF model with default parameters can classify all the cations and

molecules on the training set and the test set with 100% accuracy, suggesting that

these individual cation family types have a unique signature easily distinguishable

from one another. We later discuss this unique signature of individual cation type

with the visualization of the chemical features on a two-dimensional projection us-

ing Principal Component Analysis (PCA) that clearly shows the individual region

of chemical space for each cation family type.

Figure D.4: Confusion matrix prediction of the test set using the classification

model.
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Latent Space Representation

Figure D.5: Principal component analysis (PCA) of the latent space for the train-

ing data labeled by cation type.
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Figure D.6: Kernel Density Estimation (KDE) of each of the latent space attribute.
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Non-Aromatic/Non-Cyclic cations

Figure D.7: VAE generated ”Unknown” cation type as labeled by the classification

model. The numbers below the cation denote the maximum of Tanimoto similarity

index.
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Aromatic/Cyclic cations

Figure D.8: Top 10 least similar aromatic/cyclic cations from the ”Unknown”

cation family based on Tanimoto similarity index. The numbers below the cations

denote the maximum of Tanimoto similarity index.
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Electrochemical Window Calculation

Figure D.9: Benchmarking electrochemical window calculations using the method-

ology adopted in this work against (a) The work of Kazemiabnavi et al. [42] as

indicated by the red circle denoting thermodynamic cycle (TDC) approach cal-

culated against Li+/Li reference electrode. Experiment data are also added for

some of the ionic liquids. [11]. (b) Asha et al. [104] work using TDC approach also

calculated against Li+/Li reference electrode for pyrrolidinium ionic liquids and

experimental data. [22,301]

MD simulation

The MD simulation involved five steps: Minimization, Annealing, NV T Equilib-

rium, NPT Equilibrium, and NPT Production Run. The NPT Production run

lasted 60 ns, out of which the last 20 ns were used for analysis. Packmol was used

to prepare the simulation box of 250 ion pairs [369]. The simulation was performed

using the Gromacs package [370].
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Figure D.10: Cations and anion involved in MD simulation.

Besides having high electrochemical stability, it is also crucial for ionic liquids

to have faster dynamics as such specifications are essential for battery applica-

tion. This section evaluates the dynamics of a few of the selected ”Unknown”

cyclic/aromatic cations that had the lowest Tanimoto similarity index. The dy-

namics, along with structural analysis, are examined using MD simulation on four

of the cations shown in Figure D.10. Note that these four cations are the same as

the ones shown in Figure D.8 but with alkyl chains trimmed on all sides to avoid

sluggish dynamics during simulation.

The results of these cations are compared to 1-ethyl-3-methylimidazolum [C2mim]+

cation paired with dicyanamide [DCA]− anion as it has one of the fastest dynam-

ics compared to other ionic liquids [11]. Since there are no forcefields available for

the VAE generated cations, we obtained the forcefields from the work of Malde

et al. [371] using Automatic Force Field Topology Builder (ATB). Although there

are plenty of force field data for [C2mim]+ cation and [DCA]− anion available in

the literature, to be consistent, we used ATB for this system as well. The elec-

trostatic interaction was scaled to ±0.8 to induce polarizability. The supporting

information contains the entire MD simulation protocol and forcefield data. The
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simulation temperature is set at 323.15 K to enable faster dynamics and to ensure

the ionic liquids are in a liquid state. Out of the four VAE generated cations, one

of the cations repeatedly failed to equilibrate; thus, it is discarded from further

analysis.

Figure D.11 depicts the self-diffusion coefficient and center of mass (COM) radial

distribution function (RDF) of the four ionic liquids. The self-diffusion constant

is obtained by fitting 8-18 ns of the mean square displacement. Interestingly, the

imidazolium-based ionic liquid [C2mim][DCA] is still the fastest dynamics com-

pared to the rest, followed by the modified imidazolium cation without the second

nitrogen atom and the seven-member cation ring structure. The slowest cation is

the bulkier protic cation with a large cyclic structure that significantly slows down

the system’s dynamics. A peculiar trait of the dicyanamide-based ionic liquid is

that the anion has much faster dynamics than the cation, which is the opposite

for most anions [236].

Figure D.11: Self diffusion constant and center of mass radial distribution function

for four ionic liquids calculated using MD simulation at 323.15 K.
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We also examined the com rdf for the cation-anion, cation-cation and anion-anion

interaction as seen in Figure D.11 (a), (b) and (c). The cation-cation and cation-

anion rdf demonstrate a sharp peak for the first solvation shell and a gradual

decrease in peak height for the second solvation shell. However, the anion-anion

interaction has a broader first solvation shell with a small peak height. For the

cation-anion, the distance at which the first peak height occurs varies with the

size of the cation. The bulkier cation (2) and (3) are located the furthest com-

pared to cations (1) and (2) as these two cations have a relatively smaller size.

As for the cation-cation interaction, cation (4) has the highest peak height indi-

cating a possible aggregation of the cations because of the enormous ring structure.
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CHAPTER E

Appendix: Mapping the Frontier Orbital Energies of Imidazolium-Based

Cations

Cation Chemical Space

Table E.1: 1-alkyl-3-methyIimidazolium ([CmCnmim]+) branched isomer cation

chemical space for alkyl chain length from 1 to 10.

[CmCnmim]+ [CmCnmim]+

10 9 8 7 6 5 4 3 2 1

10 128778

9 106977 22366

8 45123 18779 4005

7 19773 8229 3471 780

6 8619 3587 1513 663 153

5 4056 1688 712 312 136 36

4 2028 844 356 156 68 32 10

3 1014 422 178 78 34 16 8 3

2 507 211 89 39 17 8 4 2 1

1 507 211 89 39 17 8 4 2 1 1
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Energy Gap

Figure E.1: Energy gap (eV) of [CnCmim]+ cations calculated using DFT.
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Hyperparameter Tuning

Figure E.2: XGBoost hyperparameter grid space for the HOMO model.

Final model parameter : n estimators=1400, max depth=3, learning rate=0.06,

colsample bytree=0.8, subsample=0.8, colsample bylevel=0.9
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Figure E.3: XGBoost hyperparameter grid space for the LUMO model.

Final model parameter : n estimators=600, max depth=5 ,learning rate=0.07,

colsample bytree=0.8, subsample=0.8, colsample bylevel=0.1
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Model Validation

Figure E.4: Predicted vs DFT calculations of HOMO energy for training, valida-

tion and test set. Residual deviation % is the difference in DFT and model divided

the DFT value.
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Figure E.5: Predicted vs DFT calculations of LUMO energy for training, validation

and test set. Residual deviation % is the difference in DFT and model divided the

DFT value.
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Fernando Gonçalves, José Esperança, Fabrice Mutelet, and João AP

Coutinho. Understanding the impact of the central atom on the ionic liq-

uid behavior: phosphonium vs ammonium cations. The Journal of chemical

physics, 140(6):064505, 2014.

[30] Jose A Vega, Junfeng Zhou, and Paul A Kohl. Electrochemical comparison

and deposition of lithium and potassium from phosphonium-and ammonium-

tfsi ionic liquids. Journal of The Electrochemical Society, 156(4):A253, 2009.

[31] Laura Katharina Scarbath-Evers, Patricia A Hunt, Barbara Kirchner, Dou-

glas R MacFarlane, and Stefan Zahn. Molecular features contributing to the

260



lower viscosity of phosphonium ionic liquids compared to their ammonium

analogues. Physical Chemistry Chemical Physics, 17(31):20205–20216, 2015.

[32] Chuan-Pei Lee, Jia-De Peng, D Velayutham, Jeffrey Chang, Ping-Wei Chen,

V Suryanarayanan, and Kuo-Chuan Ho. Trialkylsulfonium and tetraalky-

lammonium cations-based ionic liquid electrolytes for quasi-solid-state dye-

sensitized solar cells. Electrochimica Acta, 114:303–308, 2013.
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[175] Kamil Paduszyński. Extensive Databases and Group Contribution QSPRs

of Ionic Liquids Properties. 1. Density. Industrial & Engineering Chemistry

Research, 58(13):5322–5338, March 2019.

[176] Wesley Beckner, Coco M Mao, and Jim Pfaendtner. Statistical models are

able to predict ionic liquid viscosity across a wide range of chemical func-

tionalities and experimental conditions. Molecular Systems Design & Engi-

neering, 3(1):253–263, 2018.
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[183] Kamil Paduszyński and 2021. Extensive Databases and Group Contribution

QSPRs of Ionic Liquid Properties. 3: Surface Tension. Ind. Eng. Chem. Res.

[184] Dilek Yalcin, Tu C Le, Calum J Drummond, and Tamar L Greaves. Ma-

chine Learning Approaches for Further Developing the Understanding of the

Property Trends Observed in Protic Ionic Liquid Containing Solvents. The

Journal of Physical Chemistry B, 123(18):4085–4097, May 2019.

[185] Mohammad Hashemkhani, Reza Soleimani, Hossein Fazeli, Moonyong Lee,

Alireza Bahadori, and Mahsa Tavalaeian. Prediction of the binary surface

tension of mixtures containing ionic liquids using Support Vector Machine

algorithms. Journal of Molecular Liquids, 211(C):534–552, November 2015.

[186] Mohsen Hosseinzadeh and Abdolhossein Hemmati-Sarapardeh. Toward a

predictive model for estimating viscosity of ternary mixtures containing ionic

liquids. Journal of Molecular Liquids, 200(PB):340–348, December 2014.
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and Joao AP Coutinho. Thermophysical characterization of ionic liquids able

to dissolve biomass. Journal of Chemical & Engineering Data, 56(12):4813–

4822, 2011.
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Mart́ınez. Packmol: a package for building initial configurations for molecu-

lar dynamics simulations. Journal of computational chemistry, 30(13):2157–

2164, 2009.

[370] David Van Der Spoel, Erik Lindahl, Berk Hess, Gerrit Groenhof, Alan E

Mark, and Herman JC Berendsen. Gromacs: fast, flexible, and free. Journal

of computational chemistry, 26(16):1701–1718, 2005.

[371] Alpeshkumar K Malde, Le Zuo, Matthew Breeze, Martin Stroet, David

Poger, Pramod C Nair, Chris Oostenbrink, and Alan E Mark. An auto-

mated force field topology builder (atb) and repository: version 1.0. Journal

of chemical theory and computation, 7(12):4026–4037, 2011.

304



Vita

Pratik Dhakal

Candidate for the Degree of

Doctor of Philosophy

Dissertation: LEVERAGING ATOMISTIC SIMULATIONS AND MACHINE LEARN-

ING FOR THE DESIGN OF IONIC LIQUIDS AS ELECTROLYTES FOR BAT-

TERY APPLICATION

Major Field: CHEMICAL ENGINEERING

Biographical

Education:

� Doctor of Philosophy in Chemical Engineering, Oklahoma State University,

Stillwater, Oklahoma, USA, May 2022

� Master of Science in Chemical Engineering, Miami University, Oxford, Ohio,

USA, August 2018

� Bachelor of Science in Chemical Engineering, Shandong University of Science

and Technology, Qingdao, Shandong, China, August 2016


	INTRODUCTION
	Overview
	Ionic Liquids
	Application
	Current Limitation
	Research Focus
	Research Scope
	Dissertation Outline


	LITERATURE REVIEW
	Overview
	QSPR Method
	Group Contribution Method
	Machine Learning Approach
	Molecular Dynamics
	Electrochemical Stability


	METHODOLOGY
	Machine Learning
	Multiple Linear Regression
	Cost Function
	Decision Tree
	Random Forest
	XGBoost
	Support Vector Machine
	Neural Network
	Variational AutoEncoder
	Principal Component Analysis
	Data Processing
	Feature Reduction
	Hyperparameter Tuning

	Molecular Dynamics
	Molecular Dynamics Simulation
	Self Diffusion Constant
	Ionic Conductivity
	Radial Distribution Function
	Coordination Number
	Hydrogen Bonding

	Electrochemical Stability

	Developing Machine Learning Models for Ionic Conductivity of Imidazolium-Based Ionic Liquids
	Abstract
	Introduction
	Methodology
	Data Collection and Processing
	Feature Generation and Elimination
	Data Normalization
	Model Development

	Results and Discussion
	Model Validity
	Unique Ionic Liquid Combination
	Binary Ionic Liquid Mixtures
	Comparison of Experimental and FFANN-predicted Ionic Conductivity of Binary ILs

	Conclusion

	Revealing Hydrogen Bond Dynamics between Ion Pairs in Binary and Reciprocal Ionic Liquid Mixtures
	Abstract
	Introduction
	Methodology
	Force Fields

	Simulation Details
	Results and discussion
	Liquid Densities
	Radial Distribution Function (RDF)

	Hydrogen Bonding Lifetimes
	Self Diffusion Constant

	Conclusion

	A Generalized Machine Learning Model for Predicting Ionic Conductivity for Ionic Liquids'
	Abstract
	Introduction
	Methodology
	Data collection and processing
	Feature generation and processing
	Model Development
	Multiple Linear Regression
	Random Forest
	XGBoost
	Cross Validation and Model Evaluation

	Results and Discussion
	Model Performance Metrics
	Model Interpretation
	Unique ILs

	Conclusion

	Accelerated Discovery of Novel Ionic Liquid Cations using a Continuous Latent Space Representation of Chemical Space
	Abstract
	Introduction
	Methodology
	Variational AutoEncoder (VAE)
	Data Generation
	Model Development
	Post Processing
	Electrochemical Window

	Results and Discussion
	Model Validation
	Data Generation
	Stability Test
	Non-Aromatic/Non-Cyclic Cations
	Aromatic/Cyclic Cations
	Electrochemical Window
	Conclusion


	Mapping the Frontier Orbital Energies of Imidazolium-Based Cations Using Machine Learning
	Abstract
	Introduction
	Methodology
	Data generation
	DFT calculations
	Machine learning

	Results and discussion
	Model validation
	External test validation
	Feature importance
	Entire isomer chemical space mapping

	Conclusion

	CONCLUSION
	Conclusions
	Future Work


	Appendix Developing Machine Learning Models for Ionic Conductivity of Imidazolium-Based Ionic Liquids
	Appendix Revealing Hydrogen Bond Dynamics between Ion Pairs in Binary and Reciprocal Ionic Liquid Mixtures
	Appendix A Generalized Machine Learning Model for Predicting Ionic Conductivity for Ionic Liquids'
	Appendix Accelerated Discovery of Novel Ionic Liquid Cations using a Continuous Latent Space Representation of Chemical Space
	Appendix Mapping the Frontier Orbital Energies of Imidazolium-Based Cations
	Bibliography

