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Abstract: Birds are an imperiled taxon in North America and have experienced rapid and 
widespread decline in the most recent century. Here, we use both basic and applied 
approaches to better understand how bird communities function at regional and 
continental scales. Specifically, we used a half-century of continental-scale bird 
community data to quantify avian community variability across diverse biomes in North 
America, and compared the relative contributions of climate (both mean conditions and 
weather extremes) and species richness to avian community stability. Our results indicate 
that—despite disproportionately high attention to the diversity-stability concept in the 
literature—environmental conditions better explained community stability than the 
species richness of the community itself. Specifically, extreme heat and extremely low 
precipitation are associated with low community stability. Next, we investigated the 
spatial and temporal scaling relationships of a hypothesized mechanism of ecological 
stability, compensatory dynamics. Results indicate that community-level compensatory 
dynamics are generally rare, but also highly spatially scale-dependent (more prevalent at 
small scales). We also found strong evidence of synchronous bird species at large 
(decadal) temporal scales—that is, areas of long-term bird abundance declines of some 
species are less likely to experience concomitant abundance increases of other species. 
We also evaluated the response of northern bobwhite to drought conditions across two 
biomes. We found that bobwhite abundance significantly decreased in both biomes, but 
decline was more than twice as sharp in the Eastern Forest as it was the Great Plains. We 
also found that bobwhite declined with drought conditions in the Great Plains but had a 
positive association with drought in the Eastern Temperate Forest. Finally, we 
investigated the response of northern bobwhite to woody cover across two, proximal 
study areas and found markedly different resource selection patterns. Specifically, 
whether bobwhite selected for shrub cover and whether they strongly avoided trees, 
depended on the study site in focus. Additionally, the spatial scale of selection was nearly 
an order of magnitude different between the cover types. All four chapters highlight an 
important pattern: complexity appears to be the rule rather the exception in natural 
systems. 
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CHAPTER I 
 

 

WEATHER EXTREMES EXPLAIN AVIAN COMMUNITY VARIABILITY BETTER THAN 

SPECIES RICHNESS 

 

ABSTRACT 

Understanding a general relationship between biodiversity and ecological stability 

has become increasingly urgent as rapid species extinction is occurring and anticipated to 

continue. Though evidence of a positive diversity-stability relationship is accumulating, 

empirical results are inconsistent and effect sizes tend to be small. This raises questions 

about the relative contributions of biotic (i.e., species composition and their interactions) 

and abiotic (i.e., environmental conditions) drivers of community stability. Though 

theory predicts that environmental conditions at a particular site may be a stronger 

determinant of community stability than the diversity of the community itself, few studies 

have directly compared the relative importance of diversity and environmental factors 

regulating community stability. Here, we use a half-century of continental-scale bird 

community data to quantify avian community variability at 1,379 sites, across diverse 

biomes in North America and compare the relative contributions of climate (both mean  
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conditions as well as weather extremes) and species richness. Our results indicate that—

despite disproportionately high attention to the diversity-stability concept in the literature—

environmental conditions better explained community stability than the species richness of 

the community itself. Specifically, we found that extreme heat and extremely low 

precipitation are associated with low community stability. This provides large-scale, 

empirical support for the theoretical concept that environmental conditions play a larger role 

determining community stability than diversity in North American avian communities. 

Additionally, on a more applied level, our findings add to the growing list of diverse 

ecological responses to weather extremes. 

 

INRODUCTION 

The decades-long focus on identifying a general relationship between biodiversity 

and ecological stability has become increasingly urgent as rapid species extinction is 

occurring and anticipated to continue (Loreau et al., 2001; Dirzo et al., 2014). Research has 

explored the conceptual basis of the diversity-stability relationship (Loreau, 1998; Ives and 

Carpenter, 2007), tested empirical data (e.g., Tilman, Reich and Knops, 2006; Bezemer and 

Van Der Putten, 2007; Yang et al., 2012), and suggested mechanisms behind the observed 

patterns in diversity-stability relationships (e.g., Yachi and Loreau, 1999; Bezemer and Van 

Der Putten, 2007; Yang et al., 2012; Loreau and de Mazancourt, 2013). Though evidence of 

a positive diversity-stability relationship is accumulating (Tilman and Downing, 1994; 

Mccann, 2000; Cottingham, Brown and Lennon, 2001; Ives and Carpenter, 2007; Chen et al., 

2021), empirical results are inconsistent (Schmid and Pfisterer, 2002; Houlahan et al., 2018) 

and this pattern is not always straightforward. For example, the diversity-stability 
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relationship can change along environmental gradients such as latitude (Shurin et al., 2007), 

nutrient concentration (Li et al., 2018), or patch size (Dunstan and Johnson, 2006), and can 

simultaneously depend on multiple components of biodiversity, such as species richness, 

functional diversity, and phylogenetic diversity (Craven et al., 2018). Importantly, because 

effect sizes tend to be small (Houlahan et al., 2018, global quantitative review), it raises 

questions about the relative contributions of biotic (i.e., species composition and their 

interactions) and abiotic (i.e., environmental conditions) drivers of community stability. 

Theory predicts that environmental conditions at a particular site may be a stronger 

determinant of community stability than the diversity of the community itself (Loreau, 1998; 

Loreau and de Mazancourt, 2013); however, despite a broad and prolific focus on diversity-

stability relationships in the literature, few studies have directly compared the relative 

importance of diversity and environmental factors regulating community stability. Though 

there is some empirical evidence of abiotic factors outweighing the influence of diversity on 

community stability in experimentally manipulated plant communities (Zhang et al., 2018), 

the relative importance of diversity and environmental drivers in naturally variable 

communities (i.e., not experimentally manipulated) encompassing large (i.e., near-

continental) spatial extents is not well understood. Filling this knowledge gap has both 

applied and basic implications. At the theory level, the question of abiotic vs. biotic factors is 

central to the equilibrium vs. non-equilibrium debate. Under an equilibrium perspective (i.e., 

“the balance of nature” in which communities are self-regulating), species interactions (biotic 

factors) are considered the dominant force driving community dynamics. Under a non-

equilibrium paradigm, abiotic (i.e., external to the community) factors dynamically control 

the state of a system.  Understanding the relative contributions of abiotic vs. biotic factors in 
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regulating community dynamics may also contribute to conservation. If a management goals 

include long-term stability, understanding which forces best promote stability is an important 

first step.  

It is plausible that climatic factors influence community stability, especially for 

organisms that are especially sensitive to weather extremes or changes in long-term climatic 

conditions. For example, bird communities have experienced shifts (Princé and Zuckerberg, 

2015) or even complete collapse (e.g., Iknayan & Beissinger, 2018) as a result of climate 

change. Additionally, because weather extremes can cause distributional changes (Bateman 

et al., 2015; Cohen, Fink and Zuckerberg, 2021) and changes in local occupancy (Cady et al., 

2019), it is plausible that areas with more weather variability may also have 

disproportionately variable bird communities. In other words, a variable climatic 

environment may simply beget a variable community. As anthropogenic climate change 

continues (IPCC, 2014), honing our understanding of the varied ways climatic conditions 

shape and influence ecological communities will become increasingly important.  

Ecological stability is multi-dimensional and can include variability, resilience, 

resistance, invasibility, persistence, and compositional turnover (Pimm, 1984; Donohue et 

al., 2013). Here, were we focus on a straightforward metric commonly used in empirical 

studies, dynamic variability (the variation of community-level abundance over time), such 

that higher variability is related to reduced stability (e.g., Houlahan et al., 2018). Though this 

approach is not a comprehensive assessment of community stability (Arnoldi, Loreau and 

Haegeman, 2019), it is sufficient to meet our objectives because variability is can be directly 

related to other, resilience-based metrics (i.e., variability can be conceptualized as a system's 

response to continuous pulse disturbances; Arnoldi, Loreau and Haegeman, 2016), is 
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comparable across large scales (Wang and Loreau, 2014), and may immediately precede 

critical transitions (Carpenter and Brock, 2006; Guttal and Jayaprakash, 2009; Scheffer et al., 

2009; but see Hillebrand et al., 2020). The broad purpose of this study is to examine and 

compare potential abiotic and biotic drivers of community variability using a continental-

scale bird survey dataset that includes a half-century of systematically collected data. 

Specifically, we quantify avian community variability across diverse biomes in North 

America and compare the relative contributions of climate (both mean conditions and 

weather extremes) and species richness on community variability. 

 

METHODS 

Avian Data and Pre-Processing 

Ideal for monitoring long-term change, the North American Breeding Bird Survey (BBS) 

includes over 50 years of annually-surveyed avian community data collected at ~5,000 routes 

in North America (Sauer et al., 2017).  Point count data are collected along approximately 

41-km, roadside routes where a trained observer stops at 50 established locations and records 

all birds detected in a 3-minute time period. We used nearly the full spatial and temporal 

extent of the BBS. To better ensure data quality and reduce error, we removed species, route-

years, or entire routes based on the following a priori decisions. First, we removed all route-

years that did not meet the BBS quality standard (i.e., incomplete surveys or surveys that 

were completed during unfavorable weather or outside the breeding season window). 

Additionally, to reduce the novice effect (Kendall, Peterjohn and Sauer, 1996), all route-

years surveyed by observers during their first survey year were excluded. We omitted all bird 

species unlikely to be accurately and systematically detected in point counts such as raptors, 
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owls, vultures, waterbirds, seabirds, and shorebirds and aggregated subspecies up to the 

species level. 

BBS routes were sampled unevenly (i.e., most routes were not surveyed all 50 years, and 

many were only sampled once or twice). To ensure long-term data at all locations, we only 

included routes that were surveyed across a timespan of at least 26 years and sampled at least 

70% of those years (resulting in 19-year minimum years of data for each included route). 

Due to concerns that uneven sampling would cause species richness measurements to be 

incomparable across routes, we constructed a species accumulation curve at each route to 

determine the proportion of species detected by nineteenth survey year (the minimum 

number of years required for inclusion in our analysis).  Encouragingly, the mean number of 

species captured by the nineteenth survey year was 94.7% (SD=2.6%), indicating high 

confidence that species richness measurements were not meaningfully biased by uneven 

route sampling (Supplementary Figure 1.S1). To match the spatial extent of the climate data, 

we only included routes located in the contiguous United States. The final dataset included 

367 species surveyed at 1,379 routes between 1967 and 2018. 

 

Analysis 

 We calculated a site variability index at each BBS route location, which measures the 

observed abundance variability of a bird community across the entire length of its sampling 

(resulting in one index for each route; Houlahan et al., 2018). First, we fit a linear mixed 

model including variance (bird abundance variability of each species at each route over time) 

as a function of mean abundance (mean count of each species at each route) on the whole, 

pre-processed BBS dataset (Equation 1.1).  A random slope and intercept for species were 



7 
 

included in the model to allow each species to have a unique relationship between variance 

and abundance.  

 

Equation 1.1  log(variance) ~ log(mean abundance)+ log(mean abundance)|species 

 

Using the linear mixed model, we compiled the residuals for each species at each 

route. The residuals are a measure of how variable a species is at a particular route, relative 

to the expected variance given the model (the observed species variance minus the expected 

variance, given the mean abundance at each route). We then aggregated the residuals for each 

species at each route (each route has a number of residuals equal to the number of species at 

that route) and standardized by dividing by the total route-level species richness. This yields 

a route variability index where negative numbers indicate bird communities that are more 

stable than expected (given the abundance of each species) and positive numbers indicate 

highly variable communities. A benefit to using regression residuals rather than compiling 

each species’ raw variance is that residuals are based on least squares estimation and average 

to zero. Therefore, each species at each route has the opportunity to contribute negatively or 

positively to the community-wise variability estimate (or not influence it at all in the case of 

a zero residual). Alternatively, using a metric where variances are summed directly may 

create an inherent, positive relationship between species richness and community-wise 

variability (i.e., increasing the total number of species increases community variability 

simply by nature of adding positive numbers).  

We characterized climatic conditions at each route location using PRISM data from 

1967-2018. Variables were selected to capture precipitation and temperature (1) averages, (2) 
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within-year variability, and (3) extremes (Table 1.1). Additionally, we determined avian 

species richness (i.e., the count of total species detected within the temporal extent of the 

study) at each route location. Many studies testing the richness-stability concept have 

examined strictly linear relationships between species richness and stability (e.g., Houlahan 

et al., 2018; Mikkelson et al., 2011; Steiner, 2005; Valencia et al., 2020; Yang et al., 2012). 

A central assumption of this approach is that diversity influences stability similarly across all 

levels of diversity (i.e., both species poor and species rich communities). Because ecological 

dynamics can be complex and non-linear (Gunderson, 2000), we hypothesize that imposing a 

linear model is potentially oversimplifying the relationship between diversity and community 

stability and therefore included cubic and quadratic forms of species richness. 

For analysis, we set route variability index as the only response variable in a series of 

linear models.  Each model was structured with only one explanatory variable, though we 

also tested for quadratic and cubic relationships of species richness. A total of 10 models 

were ranked using Akaike information criterion (AIC; Table 1.1). Models with delta AIC less 

than 2.0 and 95% confidence intervals that did not overlap zero were considered competitive 

models.  Due to concerns of spatial autocorrelation (i.e., spatially non-independent 

sampling), we considered formally including a spatial component in the models (such as a 

random effect for biome or latitude + longitude). However, we opted against this approach 

because both competitive models had low residual spatial autocorrelation (global Moran’s I 

coefficients were 0.12 and 0.15, where 1.0 indicates perfect autocorrelation and zero is 

random arrangement). 
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RESULTS 

Bird community variability was spatially heterogeneous at a continental scale (Figure 

1.1) and was best explained by maximum temperature of the hottest month and minimum 

precipitation of the driest month (Table 1.2; Figure 1.2). Specifically, hot and dry conditions 

are associated with highly variable bird communities. Minimum precipitation and maximum 

temperature each explained approximately 5% of the variation in the data (adjusted R-

squared = 0.05). Considering that we used a single-variable model to explain variation across 

the entire spatial and temporal extent of the BBS, an R-squared of 5% is encouraging. For 

comparison, Houlahan et al. (2018), found an average R-squared of 0.005 when modeling 

species richness-stability relationships across 91 datasets.  

 

DISCUSSION 

The stability-diversity hypothesis is a traditional concept of ecology and improving 

our understanding of it has increased urgency as species extinction continues to accelerate 

(Dirzo et al., 2014).  However, empirical evidence of a universally positive diversity-stability 

relationship is inconsistent (Houlahan et al., 2018), indicating a high probability of 

additional, possibly more significant, factors regulating community stability.  Here, we use a 

half-century of subcontinental-scale community data to add context to the diversity-stability 

debate by investigating other plausible contributors. Our results indicate that—despite 

disproportionately high attention to the diversity-stability concept in the literature—

environmental conditions better explained community stability than the species richness of 

the community itself. Specifically, we found that extreme heat and extremely low 

precipitation are associated with low community stability. Our findings not only contribute to 
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our understanding of the diversity-stability concept, but also add to the growing list of 

diverse ecological responses to climate change. 

Community variability is an expected characteristic of ecological systems. 

Communities are never static over long time frames, and variability does not necessarily 

indicate a concerning lack of resilience or stability per se (Arnoldi, Loreau and Haegeman, 

2019; Roberts et al., 2019). However, in some cases severe abundance fluctuations can 

indicate more than a benign community characteristic, and may be a warning signal of an 

imminent conservation concern. For example, ecological theory predicts that the variability 

of a system may increase the probability of extinction (Pimm, Jones and Diamond, 1988; 

Lande, 1993, but see Schoener and Spiller, 1992), and may immediately precede abrupt 

regime shifts or critical transitions (Carpenter and Brock, 2006; Guttal and Jayaprakash, 

2009; Scheffer et al., 2009; but see Hillebrand et al., 2020). We speculate that our results 

(high community variability associated with hot, dry locations) are unlikely to be artifacts of 

expected baseline community variability because extreme heat and lack of precipitation are 

known to be physiologically difficult conditions for birds (Riddell et al., 2019), and have 

caused definitive avian community collapse in recent decades (Iknayan and Beissinger, 

2018).  As climate change increases temperature and precipitation extremes (IPCC, 2014) 

and contributes to biodiversity loss (Dirzo et al., 2014; Johnson et al., 2017), we anticipate a 

synergistic relationship between weather extremes, diversity, and community stability. That 

is, extreme heat and drought may act on community variability both directly (through the 

mechanisms described below), and indirectly through increasing diversity loss (which theory 

predicts will also increase community variability).  
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Multiple factors are likely contributing to the causal mechanism(s) between climatic 

extremes and community variability. If conditions are harsh enough to exceed a species’ 

physiological tolerance or influence its habitat resources, populations may temporarily 

experience increased mortality or decreased breeding success (and the opposite may occur 

when conditions are favorable). For example, northern bobwhite (Colinus virginianus), a 

broadly distributed North American quail species, notoriously experiences lower survival and 

reproduction during drought periods, resulting in boom-bust population fluctuations in the 

semi-arid portion of their range (Hernández et al., 2005). Highly mobile species can also 

chase favorable conditions by adapting through distributional changes (Bellard et al., 2012). 

This can include a disproportionate use of species range margins (Bateman et al., 2015), 

elevational range shifts (Tingley et al., 2012; McCain and Garfinkel, 2021), and species-

specific fluctuations in abundance distributions (Cohen, Fink and Zuckerberg, 2021). At the 

individual scale, heat waves and limited water availability may also prompt changes in bird 

behavior and daily activity (Wolf, 2000), potentially resulting in reduced species abundance 

detections (e.g., physiologically stressed birds may suppress their activity levels and be less 

likely to sing on their territories).  

As a variety of causes work in tandem, avian community variability may be reflecting 

the tendency of some populations to experience abundance swings in response to extreme 

weather, along with others undergoing distributional shifts and/or behavioral changes. 

Though there is ample evidence that extreme weather forces dynamic population changes, it 

is also plausible that variable communities (i.e., communities containing a large proportion of 

species able to move in response to unfavorable conditions) are simply better adapted to 

extreme weather and therefore more likely to persist when conditions are harsh. Our results 
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open the door to other important avenues of study. We focused entirely on aggregate 

community variability, where all species are considered in combination (Micheli et al., 

1999). However, future studies examining species tunover, shifts in community composition, 

and other facets of stability may provide additional context and possible insight into which 

areas of variabilty are “normal” fluctuations, and which are cause for concern. It is also 

worth emphasizing that the purpose of this study was not to identify all of the variables that 

predict community variability. Rather, our central objective was to evaluate whether 

community variability could be better explained by the community composition itself (i.e., 

species richness), or by abiotic environmental conditions. It is highly likely that other 

environmental conditions, such as land cover composition/change, or biome-specific global 

changes (i.e., woody plant encroachment in the south-central semi-arid Great Plains of North 

America; Archer et al., 2017) may also play an important role in community stability. 

Because many of these variables are likely to be correlated with temperature and 

precipitation metrics (e.g., biomes are largely delineated using climatic patterns), it is 

important to interpret our results in context. 

Our results have implications for the fields of community ecology, theoretical 

ecology, and conservation biology. We found large-scale, empirical support for the 

theoretical concept that environmental conditions play a larger role determining community 

stability than diversity in North American avian communities (Loreau, 1998; Loreau and de 

Mazancourt, 2013). Even more broadly than the diversity-stability concept, our results 

contribute to our understanding of the relative roles of abiotic and biotic factors governing 

community dynamics (Dunson and Travis, 1991). Additionally, on a practical level, this 

study highlights the importance of accounting for environmental factors when evaluating the 
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relationship between diversity and stability (Zhang et al., 2018). In other words, if abiotic 

conditions are a more impactful determinant of ecological stability than diversity, diversity-

stability signals might be difficult to detect if samples are taken across an environmental 

gradient. 
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TABLES 

 

Table 1.1 Model structure and variable descriptions for all linear models used in analysis. 

“Variability” refers to site variability index calculated at each route (i.e., the quantified 

variability of the bird community) and is the response variable for all models. All 

explanatory variables are calculated at each route location.  

Model Structure Explanatory Variable Description 

CLIMATE AVERAGES 

Variability ~ Mean Temperature 
Annual mean temperature (averaged across all 
years from 1967-2018) 

Variability ~ Mean Precipitation 
Annual total precipitation (averaged across all 
years from 1967-2018) 

CLIMATE EXTREMES 

Variability ~ Max Temperature 
Annual maximum temperature of the warmest 
month (averaged across all months from 1967-
2018) 

Variability ~ Min Temperature 
Annual minimum temperature of the coldest 
month (averaged across all years from 1967-
2018) 

Variability ~ Minimum Precipitation 
Minimum precipitation of the driest month 
(averaged across all years from 1967-2018) 

CLIMATE VARIABILITY 

Variability ~ Temperature Variability 
Variability of yearly mean temperature (standard 
deviation of yearly mean temperature 1967-
2018) 

Variability ~ Precipitation Variability 
Variability of yearly precipitation (standard 
deviation of total yearly precipitation 1967-
2018) 



15 
 

SPECIES RICHNESS 

Variability ~ Richness Species richness  

Variability ~ Richness + Richness2 Quadratic relationship between variability and 
species richness 

Variability ~ Richness + Richness2 + 
Richness3 

Cubic relationship between variability and 
species richness 
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Table 1.2 Bird community variability models ranked by AIC. All models were linear and 

had route variability index as the response variable. A positive relationship between 

variability and the explanatory variable (beta) indicates an increase in variability with 

increasing explanatory variable. Models in bold were considered competitive. 

Model (explanatory variable) ΔAIC Weight β 95% CI 

Minimum precipitation of driest month 0 0.56 -0.003 -0.004, -
0.002 

Maximum temperature of the hottest 
month 

0.4 0.44 +0.01 +0.01, +0.02 

Species richness + species richness2 + 
species richness3 

29.3 <0.001  

Species richness  33.0 <0.001 

Species richness + species richness2 34.3 <0.001 

Mean temperature 42.1 <0.001 

Total precipitation 50.6 <0.001 

Minimum temperature of the coldest 
month 

57.3 <0.001 

Null 70.4 <0.001 

Between-year precipitation variability 70.9 <0.001 

Between-year average temperature 
variability 

72.2 <0.001 
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FIGURES 

 

Figure 1.1 Interpolated and smoothed avian community variability of North American 

breeding bird communities.  
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Figure 1.2 The relationship between avian community variability and climatic extremes, as 

represented by the best performing models (with 95% confidence intervals) overlaid on the 

raw data.  
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Figure 1.S1 Species accumulation curves for each of 1379 routes included in analysis. The 

red line represents the minimum number of survey-years included in analysis.  
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CHAPTER II 
 

 

COMPENSATORY DYNAMICS ARE MOST PREVALENT AT  

SMALL SPATIAL SCALES 

 

ABSTRACT 

Compensatory dynamics are hypothesized to be a principal mechanism of 

community stability—as an environmental perturbation drives poorly-adapted species 

abundances down, they are replaced by better-adapted species, resulting in a roughly 

“zero-sum game” and apparent community stability. Despite long-standing ecological 

theory, empirical examples of negative species covariance are rare in ecological systems. 

Short term compensation may not adequately curtail long-term decline, yet relatively 

little is known about the influence of temporal scale on compensatory dynamics at large 

extents. Additionally, though there is some evidence that weak, negative species 

covariance may be spatially scale-dependent, a formal systematic scale analysis has not 

been done. Here, we used long-term, continental scale, bird community abundance data 

(the North American Breeding Bird Survey) to assess the influence of temporal and 

spatial scales on compensatory dynamics. We evaluated whether short-term (annual 
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scale) negative covariance is scale-dependent and compared empirical results to a 

simulated null model. Additionally, we held spatial scale constant and evaluated 

compensatory dynamics at a large (multi-decadal) temporal scale. Our results indicate 

that community-level compensatory dynamics are generally rare (less than 10% of 

communities display compensatory dynamics across most scales), but also highly 

spatially scale-dependent (more prevalent at small scales).  Though this scale-dependent 

pattern also weakly appears in the simulated community data, it is much more 

pronounced in the natural bird community data, plausibly indicating a biological signal in 

addition to a relatively small mathematical pattern in the data.  We also found strong 

evidence of synchronous bird species at large (decadal) temporal scales—that is, areas of 

long-term bird abundance declines of some species are less likely to experience 

concomitant abundance increases of other species. Our finding of an overall lack of 

compensatory dynamics at small and large temporal scales, as well as across nearly all 

spatial scales, may be indicative of widespread and consistent long-term abundance 

decline of many bird species without compensation. 

 

INRODUCTION 

Ecologists have been honing our understanding of ecological stability since the 

inception of the field of community ecology (Kéfi et al., 2019). The concept of stability 

has spanned basic and applied science, donned over 160 definitions, and is rooted in at 

least 70 conceptual frameworks (Grimm and Wissel, 1997); its study has even generated 

entire new domains of ecological research (e.g., the body of literature stemming from 

resilience theory; Holling, 1973). In recent decades, ecological stability is emerging as an 
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important topic in environmental conservation (Donohue et al., 2016) because the 

concept of stability is closely related to environmental change and an ecological system’s 

response (Kéfi et al., 2019). In the face of novel global change pressures associated with 

the Anthropocene (Crutzen, 2006), it is increasingly important to continue to develop our 

understanding of ecological stability and its underlying mechanisms.  

Compensatory dynamics are hypothesized to be a principal mechanism (or suite 

of mechanisms; Gonzalez and Loreau, 2009) of community stability (Holling, 1973; 

Patten, 1975). The concept is intuitive—as an environmental perturbation drives poorly-

adapted species abundances down, they are replaced by increasing abundances of better-

adapted species (Morgan Ernest and Brown, 2001; Ives and Cardinale, 2004; Gonzalez 

and Loreau, 2009), resulting in a roughly “zero-sum game” and apparent community 

stability. This pattern can be driven directly by environmental conditions (i.e., no species 

can be a top-performer under all conditions) or by species interactions (e.g., competition) 

(Gonzalez and Loreau, 2009). However, despite long-standing ecological theory, 

empirical examples of negative species covariance are rare in ecological systems 

(Houlahan et al., 2007; global quantitative review).  

Theory predicts that compensatory dynamics may act profoundly differently 

across multiple temporal scales of observation (Gonzalez and Loreau, 2009). Importantly, 

if we examine pairwise covariance at a single temporal scale we could possibly fail to 

detect patterns occurring at other temporal scales (Vasseur, Gaedke and McCann, 2005). 

Presumably, the lack of inferential power when evaluating one temporal scale may 

partially explain the relative lack of empirical data supporting compensatory dynamics in 

natural systems. For example, two species may consistently compensate at short 
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timescales, but when considered at larger temporal scales, the aggregate community 

composition may be unstable (Vasseur and Gaedke, 2007). This disparity can manifest as 

short-term oscillations coupled with sustained decline, plausibly caused by a variety of 

environmental pressures acting similarly on multiple species (Gonzalez and Loreau, 

2009). In other words, short term compensation may not adequately curtail long-term 

decline. For lakes and experimentally manipulated aquatic mesocosm studies (where 

most studies have taken place), there does not seem to be a clear, universal relationship 

between temporal scale and compensatory dynamics. For some taxa, compensatory 

dynamics may be detectible at small temporal scales, but absent at large scales (Vasseur 

and Gaedke, 2007) or the reverse—present at large scales but not detected at small scales 

(Keitt and Fischer, 2006). Little is known about the influence of temporal scale on 

compensatory dynamics at large (i.e., continental) extents, especially for terrestrial taxa, 

which are understudied in this context.  

Just as scale is a central feature of all observed ecological patterns (Wiens, 1989), 

there is some evidence that weak, negative species covariance may be spatially scale-

dependent (Houlahan et al., 2007).  However, to our knowledge a formal, systematic 

scale analysis has not been done and our understanding of whether compensatory 

dynamics may increase or decrease with increasing scale is not immediately obvious. On 

one hand, the spatial insurance hypothesis predicts that large scales may be more likely to 

display stability driven by compensatory dynamics (Loreau, Mouquet and Gonzalez, 

2003). Under this conceptual framework, large-scale meta-communities remain stable 

through dispersal-related compensation (Loreau, Mouquet and Gonzalez, 2003; Leibold 

and Norberg, 2004; Mougi and Kondoh, 2016). However, a global-scale review found 
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some support for the opposite pattern (i.e., generally decreasing compensatory dynamics 

with increasing spatial scale; Houlahan et al., 2007). Though the mechanism behind this 

pattern is not clear, it is possible that between-species interactions may disproportionally 

drive abundance at local scales (i.e., scales relevant to individual home ranges) and 

manifest as compensatory community trends, but environmental conditions may 

simultaneously act on many species in similar ways at large scales (e.g., widespread 

drought causing overall faunal abundance declines; Iknayan and Beissinger, 2018). 

Birds are an ideal study taxa to assess change across multiple temporal and spatial 

scales because they are highly mobile and respond quickly to changes in their 

environment. Additionally, it is plausible to expect compensatory patterns in bird 

communities because the two major classes of mechanisms, intrinsic (i.e., within-

community species interactions such as competition) and extrinsic (i.e., abiotic factors), 

both act on birds. Specifically, competition within bird communities is likely because we 

assess species on the same (or similar) trophic levels and because many species are 

territorial during breeding season, and compete for food and nesting habitat. Additionally, 

extrinsic environmental pressures such as habitat loss and direct mortality from 

anthropogenic sources, are influencing bird communities at broad and local scales, 

causing significant long-term loss in North America (Brennan and Kuvlesky, 2005; Loss, 

Will and Marra, 2015; Rosenberg et al., 2019).  Here, we leveraged a half-century of 

continental scale, bird community abundance data to assess the influence of temporal and 

spatial scales on compensatory dynamics. We evaluated whether short-term (annual 

scale) negative covariance is scale-dependent and compared empirical results to a 
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simulated null model. Additionally, we held spatial scale constant and evaluated 

compensatory dynamics at a large (multi-decadal) temporal scale. 

 

METHODS 

The North American Breeding bird survey is a nearly continental-scale dataset 

spanning multiple decades of bird abundance data (Pardieck et al., 2020). Point count 

data are collected annually during the breeding season (May, June, and July) along 

thousands of established, 41-km routes. At each route, a skilled observer stops at 800-

meter intervals and conducts a timed, three-minute point count of all birds detected 

within a 400-meter radius (resulting in 50 point counts along each route). We used nearly 

the entire spatial and temporal extent of the data, but for each objective we subset the 

data in such a way as to optimize each objective (explained in detail below). For all 

analyses, we began by applying standard BBS cleaning methods, which included 

removing (1) data that did not meet the BBS quality standards (i.e., surveys that were 

incomplete or completed under substandard weather conditions likely to make detection 

abnormally difficult), (2) data collected by observers in their first year (Kendall, 

Peterjohn and Sauer, 1996), (3) bird detections with uncertain species identification and 

species unlikely to be detected reliably by point count methodology (i.e., removed owls, 

raptors, vultures, waterfowl, ducks, and shorebirds) and (4) subspecies by reclassifying 

them into their respective species.  

 

Compensatory dynamics across spatial scales 
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For this objective, we prioritized keeping sample sizes equal across all scales to 

minimize bias and maximize confidence that inferences were a result of scale-

dependency. We limited analysis to routes surveyed after 1996 (when point-level data 

became available) so we could systematically adjust bird abundance data across spatial 

scale by combining point-level data. We aggregated each route’s bird abundance data 

into 50 spatial scales using the point-level count data (Jenkins, White and Hurlbert, 2018; 

e.g., the smallest scale included only the first point of bird count data for each species, the 

second smallest scale included the first and second point of bird count data summed by 

each species. . . and the largest scale included all 50 points of bird point count data 

summed by each species). To further reduce potential confounding factors, we limited 

analysis to routes surveyed between 21-23 years to minimize some routes with small 

yearly samples being compared to routes with many years sampled. The resulting dataset 

included a sample size of 733 routes for all scales and 395 species detected from 1997-

2019 (Figure 2.1). 

We used a derivation of the variance of the sum equation to generate a 

community-level covariance estimate for each route at each spatial scale. Specifically, 

this estimate describes the sum of all pairwise species covariances in abundance over 

time at each spatial scale, resulting in 50 covariance estimates per route. According to 

probability theory, the variance of the sum can be expressed as the sum of the species 

abundance variances in a community plus twice the sum of all pairwise covariances 

(Schluter, 1984). Algebraically solving for the sum of pairwise covariances yields a 

straightforward approach to test association (covariance) between species abundances at 
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the community level (equation 2.1, where n is the number of species in a community and 

x is a species-level abundance; Schluter, 1984; Houlahan et al., 2007). 

 

Equation 2.1   ∑ ∑ 𝜎𝜎2(𝑥𝑥𝑗𝑗 , 𝑥𝑥𝑖𝑖) =𝑛𝑛
𝑖𝑖<𝑗𝑗

𝑛𝑛
𝑖𝑖=1

𝜎𝜎2(∑ 𝑥𝑥𝑖𝑖)−𝑛𝑛
𝑖𝑖 ∑ 𝜎𝜎2(𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖
2

 

 

We also simulated point count data to provide a baseline for comparison, and to 

ensure that any scale-dependent trends were not an artifact of aggregation (i.e., to 

increase confidence that results were not somehow pre-determined by the process of 

increasing bird counts over large spatial scales). Using parameters estimated from the 

original data, we generated artificial point count data with a negative binomial 

distribution because the real data were over-dispersed. Specifically, we calculated the 

estimated species means counts for all 395 species in the dataset as well as their 

dispersion parameters (a measure of spread relative to the mean) to simulate count data 

for each species using a negative binomial distribution. We generated a total of 60 

simulated datasets, each of which approximated the real data in terms of sample size, 

number of species, and their associated mean/dispersion. Our goal was to keep 

simulations as true to reality as possible to allow us to evaluate what results would have 

been if bird species counts were entirely independent of each other but remained the same 

in all other respects. 

It is important to note that a mathematical constraint requires the overall 

probability of negative pairwise covariances to decrease as the number of species pairs 

increases (Brown et al., 2004). For example, if we assessed two species (one pair), they 

could show perfect negative covariance (Pearson correlation coefficient = -1) without 
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constraint. However, if we assessed three species in the same analysis, it is not possible 

for all three to perfectly negatively covary (i.e., if two species negatively covary, the third 

species must positively covary with one of the others; Brown et al., 2004). We were 

concerned that the positive semidefinite constraint could appear as scale-dependence 

because the species-area concept predicts an increase in number of species detected at 

large spatial scales, and therefore, more pairwise species covariances at large scales. To 

investigate, we re-ran the scale analysis on the bird community data, while keeping 

number of species even across scales (i.e., we only included species present at the first 

point at each route for all scales).   

 

Covariance of long-term common species loss and gain 

For this objective, we were interested in correlations between species’ consistent, 

multi-decadal trends. Specifically, our goal was to evaluate whether species in long-term 

decline are associated with species in long-term abundance increases. We therefore 

prioritized large sample sizes in order to confidently fit linear regressions to each species’ 

abundance over time at each route and, as such, constrained our analysis to focus on 

common and widespread species as a model guild. Specifically, we limited analysis to 

species found on at least 70 routes (widespread), with at least 30 detected individuals at 

each route over the temporal extent of the study (common). We held spatial scale 

constant at the route-level scale, (i.e., used bird survey data aggregated over all 50 stops) 

to maximize counts and therefore the number of usable route-species for analysis. We 

constrained analysis to routes with at least 30 years of sampling (including at least a 38 

year span with 80% survey years covered) to ensure a multi-decadal timescale at all 
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locations. BBS routes often have multiple observers over time, which can influence data 

quality (Sauer, Peterjohn and Link, 1994). To mitigate, we limited analysis to routes with 

five or fewer observers across the temporal extent of the study. The final, preprocessed 

dataset resulted in 627 routes across North America and included 129 common and 

widespread species. 

To quantify long-term trends in abundance, we constructed generalized linear 

models at each route location and for each species (32,589 models total). We selected a 

Poisson error distribution in favor of a negative binomial distribution to improve 

computation time and because Poisson models consistently fit the data (negative binomial 

models often did not). For each route, we aggregated positive and negative slopes 

separately (if a model was not statistically significant at alpha=0.05, beta was set to zero) 

and standardized by the total number of common/widespread species at the route. This 

resulted in two variables for each route: “defaunation” or the standardized sum of all 

negative slopes (long-term abundance decline) and “afaunation”, the standardized sum of 

all positive slopes (long-term abundance increase). Though we used a frequentist 

approach across many models, we do not anticipate Type I error (false positives) to be 

problematic for this application because, though we expect 5% spurious model results, 

they should be evenly distributed across the data and merely act as a source of random 

noise rather than systematic bias in any particular direction. To assess the relationship 

between afaunation and defaunation, we used a generalized linear model with a gamma 

error distribution (alpha=0.05). If compensatory dynamics are occurring at large temporal 

scales, defaunation and afaunation should be positively related (i.e., routes experiencing 
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common species abundance loss should also be experiencing common species abundance 

gains). All analyses were completed in R version 4.1.1 (R Core Team, 2021). 

 

RESULTS 

Compensatory dynamics across spatial scales 

The proportion of negative species abundance covariance was approximately 0.5 

at the smallest spatial scale, yet dropped rapidly to nearly zero at large spatial scales 

(Figure 2.2). The randomly simulated communities showed a similar trend of decreasing 

proportion negative covariance with increasing spatial scale, but a much weaker 

magnitude of effect. Due to concerns of bias arising from increasing species pairs at 

increasing spatial scales (due to the species area concept and positive semidefinite 

constraint; Brown et al., 2004), we held species richness constant across scales and ran 

the same analysis. Results were nearly identical to the original analysis, indicating that 

the positive semidefinite constraint has very weak influence on our results (Figure 2.S1). 

 

Covariance of long-term common species loss and gain 

 We found a significant, negative association between long-term bird community 

defaunation and afaunation (β=-43.0, p<0.001). That is, bird communities that were 

experiencing high rates of abundance loss in some species were less likely to experience 

concomitant increases in other species, suggesting minimal support for compensatory 

dynamics (Figure 2.3).  

 

 



31 
 

DISCUSSION 

We used decades of continental-scale bird community data to systematically 

investigate temporal and spatial scaling tendencies of compensatory dynamics in North 

American bird communities. Our results indicate that community-level compensatory 

dynamics are generally rare (less than 10% of communities display compensatory 

dynamics across most scales), but highly spatially scale-dependent (Figure 2.2).  That is, 

we are much more likely to observe evidence of between-species compensating 

abundance changes at small scales than we are at large scales. Though this pattern also 

weakly appears in the simulated community data, it is much more pronounced in the 

natural bird community data, plausibly indicating a biological signal in addition to a 

relatively small mathematical pattern in the data.  We also found strong evidence of 

synchronous bird species at large (decadal) temporal scales—that is, areas of long-term 

bird abundance declines of some species are less likely to experience concomitant 

abundance increases of other species. 

 The two major classes of mechanisms driving compensatory dynamics are 

intrinsic (factors relating to species interactions; sometimes referred to as “biotic 

factors”) and extrinsic (environmental factors outside the community; sometimes referred 

to as “abiotic factors”) (Gonzalez and Loreau, 2009). It is plausible that extrinsic 

environmental variables are a major driver behind the observed relative lack of 

compensatory dynamics at most spatial scales. Most bird taxa have been experiencing 

large-scale population loss during the past century as a result of anthropogenic global 

changes at a continental scale (Dirzo et al., 2014; Rosenberg et al., 2019), and this steady 

decline may be reflected by synchronous (and often downward) population trajectories 
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among species. However, because environmental changes can influence the nature of 

competition (e.g., synergistic effect of competition and environmental stress on 

population loss; Young et al., 2017; changing environmental conditions altering the 

relative competitive abilities of species; Napier, Mordecai and Heckman, 2016; or, 

changes in disturbance frequency and scale causing entire ecological regime shifts; 

Archer et al., 2017), it is plausible that anthropogenic global change related pressures 

may also be indirectly influencing species interactions. This complexity makes it difficult 

to isolate the central mechanisms driving compensatory dynamics (or lack of 

compensatory dynamics). Additionally, it is important to note that we assumed that 

species increases occur simultaneously with decreases (i.e., we did not investigate lagged 

effects). However, not only can species interactions exhibit lagged responses (e.g., the 

Lotka-Volterra model), environmental conditions can also influence different species at 

different times (e.g., drought-related cross-ecosystem trophic cascade in a pelagic 

seabird; Thomsen and Green, 2019). It is plausible that compensatory dynamics may be 

detected in more natural systems if multiple temporal windows and lag effects are 

investigated. This caveat opens the door to further research.  

The mechanism driving the observed, weak mathematical relationship between 

spatial scale and compensatory dynamics in our simulated communities is not 

immediately clear. We speculate that as species richness increases with scale (i.e., the 

species-area concept; Connor and McCoy, 1979), the positive semi-definite constraint 

increasingly limits negative covariance (Brown et al., 2004). In other words, as spatial 

scale increases, the number of species detected increases, as does the number of species 

pairs considered in a covariance matrix, which mathematically constrains the magnitude 
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of negative relationships. However, the effect of species richness appears small, as we 

found only a slightly dampened response when species richness was held constant 

(Figure 2.S1). Regardless of the exact mathematical relationship, importantly, we found 

evidence that negative covariance-scale relationships may arise solely by nature of their 

calculation, especially at small spatial scales. Whether these calculation-related effects 

should be considered biologically relevant or an artifact may be a matter of perspective, 

however, our results highlight the importance of using appropriate null models to better 

understand the sources of patterns in the data. And in our case, the simulated null models 

showed bird communities are much less likely to display negative covariance than would 

be expected given pure chance across nearly all scales.  

Our large temporal scale analysis indicated not only a lack of compensatory dynamics at 

large (decadal) temporal scales—importantly, we found that areas experiencing 

disproportionate bird declines of some species are significantly less likely to experience 

concomitant abundance increases of other species (Figure 2.3). In other words, where 

birds are declining long-term, they are not being replaced by other birds. This finding is 

not only theoretically interesting, but has immediate conservation implications.  Birds are 

an imperiled taxa in North America and have experienced rapid and widespread decline 

in the most recent century (Rosenberg et al., 2019). Bird populations have been 

influenced by direct and indirect sources of mortality, including land cover change (e.g., 

Brennan and Kuvlesky, Jr., 2005), climate change (e.g., Iknayan and Beissinger, 2018), 

predation by free-ranging cats (on the order of billions of birds lost annually in North 

America; Loss, Will and Marra, 2015), human-made structure collisions (hundreds of 

millions of birds lost annually in North America; Loss, Will and Marra, 2015), 
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overexploitation (e.g., Cannon, 1996), chemical contamination (e.g., Plaza and 

Lambertucci, 2019), and novel pressures due to invasive species (e.g., Whitworth, Carter 

and Gress, 2013). Our finding of an overall lack of compensatory dynamics at short and 

long temporal scales as well as across nearly all spatial scales may be indicative of 

concerning, widespread, and consistent long-term abundance decline of many bird 

species without compensation. 
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FIGURES 

 

Figure 2.1. Map of all routes used in compensatory dynamics across spatial scales 

analysis. 
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Figure 2.2 Proportion of North American bird communities with community-level 

negative covariance (indicating compensatory dynamics) across spatial scales and 

compared to randomly generated bird community data. Sample size is 733 communities 

(BBS routes) for all scales. 
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Figure 2.3 Relationship between long-term (30+ year) North American breeding bird 

abundance decreases (defaunation, or negative model slope) and increases (afaunation, or 

positive model slope) among common and widespread species at a 50ha spatial scale. 

Model fitted using a generalized linear model with a gamma error distribution with 95% 

confidence intervals (n=627 routes). 
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Figure 2.S1 Proportion of North American bird communities with community-level 

negative covariance (indicating compensatory dynamics) in (1) the original results, and 

(2) results when species richness is held constant (i.e., routes have the same number of 

species across all scales). 
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CHAPTER III 
 

 

NORTHERN BOBWHITE RESPONSE TO DROUGHT  

IS BIOME-DEPENDENT 

 

ABSTRACT 

Weather extremes are increasing in frequency and magnitude as a result of 

anthropogenic climate change, and can include protracted increases in severe and 

prolonged drought as well as anomalously heavy rainfall. Though many studies have 

evaluated wildlife responses to precipitation variability, less is known about possible 

biome-specific responses within a single species, especially a non-migratory species 

unlikely to disperse large distances in response to unfavorable conditions. Using a half-

century of systematically collected avian abundance data (the North American Breeding 

Bird Survey), we investigated biome-specific responses of Northern bobwhite (Colinus 

virginianus) to drought conditions at a sub-continental scale. Specifically, we (1) 

evaluated biome-specific, multi-decadal bobwhite abundance trends and (2) bobwhite 

response to drought (and anomalously wet) conditions in the central Great Plains and 

Eastern Hardwood Forest biomes of North America. We used generalized linear mixed  
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models to fit bobwhite abundance as a function of drought (12-month scale Standardized 

Precipitation Evapotranspiration Index) or year (to assess abundance over time) at 1,503 

survey locations in the Eastern Temperate Forest biome and 453 survey locations in the 

Great Plains biome.  Bobwhite abundance decreased in both biomes, but decline was 

more than twice as sharp in the Eastern Forest (β= -0.05, p< 0.0001) than it was the Great 

Plains (β= -0.018, p< 0.0001). We also found that bobwhite declined with drought 

conditions in the Great Plains (β=+0.065, p<0.0001) but had a positive association with 

drought in the Eastern Temperate Forest (β =-0.08, p<0.0001). Though the Great Plains 

bobwhite population is more stable than the Eastern Forest population, if drying trends 

continue in the Great Plains, our data suggest that the holdout populations in the arid west 

may become increasingly imperiled. Because we found evidence of a dynamic interaction 

between biome and the influence of weather extremes on a generalist species, our results 

emphasize the importance of understanding regional differences in species responses to 

landscape factors or environmental change for effective management. 

 

INTRODUCTION 

It is well-known that weather extremes are already increasing in frequency and 

magnitude, and this trend is projected to continue as anthropogenic climate change 

progresses (Coumou & Rahmstorf, 2012; IPCC, 2014). These extremes can include 

protracted increases in severe and prolonged drought as well as anomalously heavy 

rainfall (Armal et al., 2018; IPCC, 2014; Strzepek et al., 2010). Drought conditions can 

have varied and severe implications for avian populations and communities. For example, 

drought can cause changes in local occupancy (Cady et al., 2019), short-term dispersal 



41 
 

(Bateman et al., 2015), dynamic range shifts (Cohen et al., 2020), abundance changes 

(Gorzo et al., 2016; Selwood et al., 2015), and reductions in species richness (Albright et 

al., 2010). Perhaps most concerning, consistent and long-term decreases in precipitation 

have caused entire avian community collapse within the past century (Iknayan & 

Beissinger, 2018). In contrast, anomalously heavy rain can also influence bird 

communities by reducing reproductive success (Öberg et al., 2015; Schöll & Hille, 2020) 

and possibly directly causing mortality during migration (Diehl et al., 2014). As birds 

continue to face novel climatic pressures, as well as frequent, record-setting extremes, the 

need to hone our understanding of the complexities of their (often complex) responses to 

drought is becoming increasingly urgent.  

It is plausible to observe differential responses to variable precipitation across 

different landscapes because extreme drought is more likely to exceed an organism’s 

physiological tolerance in already dry biomes. This response may be reflected in unusual 

dispersal patterns during drought. For example, when dickcissel (Spiza americana) 

experience drought conditions, they disperse, causing an increase in abundance at their 

range margins and a decrease at their core (Bateman et al., 2015). In addition to different 

precipitation regimes, some biomes may be better suited to buffer extreme conditions 

than others. For example, in montane ecoregions of North America, some bird guilds 

have experienced increased abundance during drought conditions, presumably due at 

least in part to the dominate plant community being comprised mostly of evergreen trees, 

which are less immediately responsive to drought conditions than deciduous trees 

(Albright et al., 2010). Though many studies have evaluated wildlife responses to 

precipitation variability, less is known about possible biome-specific responses within a 
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single species, especially a non-migratory species unlikely to disperse large distances in 

response to unfavorable conditions. It is important to better understand the response of 

resident species, because, in some cases, results have suggested that residents tend to be 

more sensitive to short term extreme heat events (Cohen et al., 2020). Additionally, 

evaluating drought responses across biomes allows a level of nuance that has value for 

generating detailed management recommendations in the face of climate change, because 

species responses can be complex and site-specific (Cady et al., 2021; Shirk et al., 2014; 

Wan et al., 2017). 

Using a half-century of systematically collected avian abundance data, we 

investigate biome-specific responses of a single avian species to drought conditions at a 

sub-continental scale. Northern bobwhite (Colinus virginianus; hereafter, bobwhite), a 

common and widespread Galliform, is well-suited as a model species to investigate long-

term wildlife responses to drought because they are exceptionally well-studied (i.e., much 

is known about their life history requirements) and their extensive range spans diverse 

biomes. Additionally, understanding the dynamic responses to extreme conditions 

exhibited by generalist species such as bobwhite is increasingly important as 

communities are predicted to favor generalists as global changes continue (Davey et al., 

2012; Mckinney & Lockwood, 1999; Viol et al., 2012). Finally, bobwhite are known to 

be a drought-sensitive species (Hernández et al., 2005; Lusk et al., 2001) and are 

therefore appropriate to investigate precipitation response patterns. Here, we (1) evaluate 

biome-specific, multi-decadal bobwhite abundance trends and (2) bobwhite response to 

drought (and anomalously wet) conditions in the central Great Plains and Eastern 

Hardwood Forest biomes of North America. 
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METHODS 

The North American Breeding Bird Survey (BBS) is a continental-scale dataset of 

annually-collected bird community abundance data (Pardieck et al., 2020). Data are 

collected during breeding season (mostly in June), by skilled observers along thousands 

of 41km routes in North America. Every 800m, the observer stops and records all birds 

seen or heard within 400 meters for 3 minutes. To optimize confidence in analysis, we 

cleaned the data by (1) removing any surveys completed by observers in their first year 

(Kendall et al., 1996), (2) removing surveys that did not meet the United States 

Geological Survey quality control standards (e.g., surveys completed during weather 

conditions that limit detection ability or completed outside the optimal survey window), 

and (3) excluding routes without a bobwhite detection within the study period (to limit 

our analysis to routes within bobwhite’s range). We limited analysis to routes within the 

continental United States to match the spatial availability of the climate data we used. We 

delineated biomes using the United States Environmental Protection Agency Level 1 

ecoregion classification (coarsest scale; Figure 3.1) and included the Eastern Temperate 

Forest (hereafter, Temperate Forest) and Great Plains. We used data from 1,956 routes in 

North America (including 1,503 routes in the Temperate Forest biome and 453 routes in 

the Great Plains biome).   

We used the Standardized Precipitation Evapotranspiration Index (SPEI) to 

quantify drought (R package, “SPEI”; Beguería and Vicente-Serrano, 2017). SPEI is 

well-suited to our objectives because the index is calculated units of standard deviation 

from normal conditions at each location (BBS route, in this case), allowing for direct 
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comparison across biomes, and because it is highly flexible in terms of temporal scale 

(Vicente-Serrano et al., 2010). We used PRISM monthly weather variables from 1950-

2019 and the Hargreaves evapotranspiration equation to model drought under the SPEI 

framework (Beguería & Vicente-Serrano, 2017). Wildlife responses to drought can be 

temporally scale-dependent (Albright et al., 2010; Cady et al., 2019), and bobwhite are 

known to be responsive to 12-month scale drought, ending in April (i.e., drought 

calculated by compiling weather data from April and the 12 months preceding it; Cady et 

al., 2019). Therefore, we elected to use April-ending 12-month drought as the 

explanatory variable for analysis. 

We used generalized linear mixed models with a Poisson error distribution (to fit 

count data) and a random intercept grouped by BBS route to account for route-level 

differences in baseline bobwhite abundance (e.g., bobwhite abundance relative to habitat 

features other than precipitation). We assessed bobwhite abundance trends over time and 

bobwhite response to drought using separate models and used year or SPEI as an 

explanatory variable, respectively (Bates et al., 2015). Each biome was modeled 

separately (alpha=0.05) and 95% confidence intervals were bootstrapped (1,000 

iterations).   

 

RESULTS 

 Bobwhite were detected on 1,956 BBS routes in North America and had a 

median of 6 birds per route across the temporal and spatial extent of the study. Bobwhite 

abundance decreased in both biomes (Figure 3.2), but decline was more than twice as 

sharp in the Eastern Forest (β= -0.05, p< 0.0001) than it was the Great Plains (β= -0.018, 
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p< 0.0001). Specifically, both regions averaged approximately 17 birds per route in 1967, 

but by 2019, the Great Plains population declined to approximately 7 birds per route, 

while the Eastern Forest population dropped to approximately 1 bird per route.  

Both study regions experienced significant drought years as well as significant 

wet years throughout the study period (Figure 3.3). Specifically, SPEI ranged widely 

from a minimum of -2.9 and -2.7, to a maximum of +3.4 and +3.0 standard deviations 

from average precipitation/evapotranspiration in the Eastern Forest and Great Plains, 

respectively. Bobwhite declined with April-ending, annual-scale drought conditions in 

the Great Plains (β=+0.065, where a positive coefficient is indicative of a negative 

relationship between bobwhite abundance and drought conditions, p<0.0001) but had a 

positive association with drought in the Eastern Forest (β =-0.08, where a negative 

coefficient indicates a positive relationship between bobwhite abundance and drought 

conditions, p<0.0001) (Figure 3.4).  

 

DISCUSSION 

 As anthropogenic climate change continues to accelerate, weather extremes such 

as drought and anomalously heavy precipitation are becoming increasingly severe and 

frequent, adding urgency to developing our understanding of the ecological implications. 

Species responses can be complex (e.g., scale dependent, regional- and species-specific; 

Albright et al., 2010), and sometimes non-intuitive (e.g., multi-directional range shifts 

relative to global warming; VanDerWal et al., 2013).  Using multi-decadal, continental-

scale bird abundance data, we evaluated the response of a non-migratory, generalist bird 

species to variable drought conditions across two, diverse biomes in North America. Our 



46 
 

study demonstrated that, though bobwhite underwent a significant response to 

precipitation throughout its range, the direction of effect was biome-dependent. 

Specifically, bobwhite experienced decreased abundance during drought in the Great 

Plains, but increased during drought in the Eastern Forest. Our results also supported the 

well-documented widespread bobwhite decline, but we found that decline was more than 

two times sharper in the Eastern Forest than it was in the Great Plains.  

A general and widely recognized prediction of global change is the emergence of 

“winners and losers” (e.g., Somero, 2010; Wiegmann & Waller, 2006). The theoretical 

framework is intuitive—species that are better able to adapt to changing conditions will 

persist, while less-suited species will suffer declines or extirpation (Mckinney & 

Lockwood, 1999), ultimately resulting in geographic reduction in losers, and proliferation 

in winners (Baskin, 1998). This study adds complexity to the winners-losers paradigm—

our results suggest that a single species can be both a winner and loser to the same 

environmental pressure. In the case of bobwhite, the answer to the question “is a 

predicted increase in frequency and intensity of drought good, bad, or neutral?” is not as 

straightforward as it may appear.  

A species’ negative response to drought on one landscape and neutral relationship 

with drought on another is somewhat predictable given that different habitat features may 

mitigate/buffer against abundance declines in some biomes (e.g., woody cover providing 

refuge for bobwhite during thermal extremes; Carroll et al., 2015). However, opposing 

but significant directions of effect is less immediately intuitive. Though we did not 

directly test mechanisms, we speculate that abundance fluctuations likely reflect 

decreased reproduction or mortality because, as a resident species with mean dispersal 
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distances of approximately 1-5 km (Fies et al., 2002; Liberati & Gates, 2012), bobwhite 

are unlikely to disperse long distances to flee unfavorable, short-term weather conditions 

(i.e., the biome-drought interaction is unlikely to be a result of Great Plains individuals 

colonizing the Eastern Forest during drought periods). Additionally, we suspect 

differences in how drought influences vegetation in the Great Plains versus the Eastern 

Forest is likely to be an important factor driving the observed pattern. It has been 

suggested that bobwhite need a consistent level of vegetative biomass, but that different 

environmental conditions may facilitate that biomass in different regions (Guthery, 

1997). Under this assumption, in the arid Great Plains, where vegetation is relatively 

sparse, drought may decrease biomass below optimal levels for bobwhite. Alternatively, 

in the Eastern Forest, where vegetation is more robust, high precipitation may create an 

understory too dense for bobwhite to persist. Some support for this pattern has been 

observed on a smaller scale in southern Texas, where bobwhite density increased with 

early seral stage in highly productive sites (i.e., high biomass), however, a relationship 

between bobwhite and seral stage was not observed on unproductive sites (Spears et al., 

1993).  

The results presented here inform conservation in two key ways. First, and 

perhaps most straightforward, we found widespread, multi-decadal decline among 

bobwhite in North America, which is consistent with myriad research describing this 

trend (Brennan, 1991; Sauer et al., 2013; Williams et al., 2004), largely attributed to 

habitat loss and fragmentation (Hernández et al., 2013). Specifically, we found that the 

Eastern Forest bobwhite population is declining more than twice as fast as the Great 

Plains population (Figure 3.2). Our study contributes to the well-documented, east-to-
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west nature of bobwhite decline (i.e., severe decline in the east and milder, but still 

consistent, decline in the west). However, if drying trends continue in the Great Plains 

(Seager et al., 2018), our data suggest that the holdout populations in the arid west may 

become increasingly imperiled, supporting previous predicative models forecasting 

climate-change-driven bobwhite declines in western part of their range in 2050-2070 

(Tanner et al., 2017). Second, our findings underline the importance of understanding 

regional differences in species responses to landscape factors or environmental change 

(Cady et al., 2021; Shirk et al., 2014; Wan et al., 2017). Here, we found evidence of a 

dynamic interaction between biome and the influence of weather extremes on a generalist 

species, emphasizing the complexity of management in the face of climate change. 
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FIGURES 

 

 

Figure 3.1 Study regions and BBS routes used in analysis. 
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Figure 3.2 Change in northern bobwhite abundance (average count of birds per BBS 

route) from 1967 to 2019 within the Eastern Hardwood Forest and Great Plains biomes of 

North America. Trends were predicted using generalized linear mixed models (Poisson 

error distribution and route included as a random intercept) with 95% bootstrap 

confidence intervals (1000 iterations). 
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Figure 3.3 Average, annual-scale drought conditions during the study extent by biome. 

Average SPEI (black line) represents the mean route-level SPEI each year. Gray ribbons 

represent the minimum and maximum SPEI captured each year. 
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Figure 3.4 Relationship between northern bobwhite abundance (average count of birds 

per BBS route) and drought (standardized precipitation evapotranspiration index; 

“SPEI”) in the Eastern Hardwood Forest and Great Plains biomes of North America. 

Trends were predicted using generalized linear mixed models (Poisson error distribution 

and route included as a random intercept) with 95% bootstrap confidence intervals (1000 

iterations).  
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CHAPTER IV 
 

 

A GENERALIST BIRD EXHIBITS SITE-DEPENDENT 

RESOURCE SELECTION 

 

ABSTRACT 

Quantifying resource selection (an organism’s disproportionate use of available 

resources) is essential to infer habitat requirements of a species, develop management 

recommendations, predict species responses to changing conditions, and improve our 

understanding of the processes that underlie ecological patterns. Because study sites, 

even within the same region, can differ in both the amount and the arrangement of cover 

types, our objective was to determine whether proximal sites can yield markedly different 

resource selection results for a generalist bird, northern bobwhite (Colinus virginianus). 

We used five years of telemetry locations and newly developed land cover data at two, 

geographically distinct but relatively close sites in the south central semi-arid prairies of 

North America. We fit a series of generalized linear mixed models and used an 

information-theoretic model comparison approach to identify and compare resource 

selection patterns at each site. We determined that the importance of different cover types  
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to northern bobwhite is site-dependent on relatively similar and nearby sites.  

Specifically, whether bobwhite selected for shrub cover and whether they strongly 

avoided trees, depended on the study site in focus. Additionally, the spatial scale of 

selection was nearly an order of magnitude different between the cover types. Our study 

demonstrates that—even for one of the most intensively studied species in the world—we 

may oversimplify resource selection by using a single study site approach. Managing the 

tradeoffs between practical, generalized conclusions and precise but complex conclusions 

is one of the central challenges in applied ecology. However, we caution against setting 

recommendations for broad extents based on information gathered at small extents, even 

for a generalist species at adjacent sites. Before extrapolating information to areas beyond 

the data collected, managers should account for local differences in the availability, 

arrangement, and scaling of resources. 

 

INTRODUCTION 

Quantifying resource selection—an organism’s disproportionate use of available 

resources (D. H. Johnson, 1980)—is essential for applied ecologists to infer habitat 

requirements of a species. For example, an organism’s biological requirements can be 

altered by multiple processes such as thermal variability (e.g., Carroll et al., 2015), food 

availability (e.g., Gittleman and Harvey, 1982; Dupke et al., 2017), perceived predation 

risk (e.g., Lagos et al., 1995), and population density (e.g., Benson, Chamberlain and 

Leopold, 2006), among other factors, leading to spatial and temporal shifts in resource 

selection. Developing a comprehensive picture of a species’ resource requirements allows 

researchers to create management recommendations based on those needs. However, 
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because resource selection is typically quantified by comparing use vs. available 

resources, any conclusions drawn are highly conditional on the resources available to the 

study organism at the time and location of data collection (Beyer et al., 2010; Mysterud 

& Ims, 1998), and our ability to accurately describe them.  

Delineating resource availability is challenging and always somewhat subjective 

(Beyer et al., 2010), as decisions must be made regarding the scale of availability (e.g., 

deciding whether areas considered available to an organism are within or outside the 

individual’s home range) and which of these areas are actually accessible to the species. 

Notably, how a study defines availability can influence resource selection simply by 

nature of its derivation because the decision directly influences the denominator in a (% 

use)/(% availability) resource selection function (the class of model generally used to 

understand an organism or population’s resource selection patterns; Manly et al., 2007). 

This built-in arbitrariness of resource selection functions may lead to erroneous 

conclusions if availability is delineated inappropriately for the organism or research 

objective. An added challenge arises because landscapes are, by definition, spatially 

heterogeneous and patchy (Turner, 1989). Within a species’ distribution, the location of a 

study site (in this case, referring to the location of data collection within the context of a 

species’ range) can determine the amount, quality, and configuration of land cover types 

available to the organism. Studies explicitly examining the influence of site on resource 

selection results have largely found evidence of site-dependent selection trends (Mcnew 

et al., 2013; Shirk et al., 2014; Wan et al., 2017). However, less is known about the 

influence of close and relatively similar sites on the resource selection patterns of 

generalist species. 
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As the Anthropocene continues (Crutzen, 2006), ecologists anticipate a 

disproportionate representation of generalist species (i.e., species that are widespread and 

broadly adapted; Mckinney and Lockwood, 1999), a trend which has already been 

documented in some communities (e.g., Davey et al., 2012; Viol et al., 2012). As a result, 

it will become increasingly important for managers to understand the habitat needs of 

generalist species, which can be complex. For example, generalist species have shown 

differential resource selection patterns in response to variable habitat composition 

(Roever et al., 2012), food availability (Hansen et al., 2009), and weather conditions 

(Sunde et al., 2014). Here, we further investigate this pattern by determining whether 

generalist species may also exhibit functional responses at similar, nearby, study sites. 

We selected Northern bobwhite (Colinus virginianus, hereafter “bobwhite”, Figure 4.1), 

an intensively studied, generalist bird, as a model organism because we already have a 

strong understanding of their basic habitat requirements. We therefore can select 

variables already known to influence this species, in this case woody cover (Carroll et al., 

2015). Additionally, as a non-migratory species, we have added confidence that 

environmental variables occurring in regions other than our study areas will not influence 

the bird and confound results. 

It is now widely understood that spatial scale is inherently related to space use (D. 

H. Johnson, 1980; Mayor et al., 2009; Whittingham et al., 2005)—that is, selection 

decisions are not necessarily preserved across multiple spatial scales (Mayor et al., 2009). 

For precision, we note although the term “scale” can refer to spatial, temporal, or 

organizational grains (unit of resolution) or extents (study area boundary), we use it here 

as shorthand for spatial grain. In recent decades, there has been increased effort to 
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identify the “proper” scale of resource selection from a species-specific perspective 

(McGarigal et al., 2016). However, any identified scale of wildlife resource selection can 

plausibly be different between two landscapes, even if they are nearby—yet, little is 

known about the influence of proximal study site location on the scaling of resource 

selection.  

A challenge with developing a comprehensive, science-based approach to large-

scale resource selection, is that replicating large landscapes is logistically difficult, 

expensive, and time-intensive. Broadly, we aim to contribute to a more comprehensive 

model of wildlife resource selection by examining the selection patterns of a common 

and well-studied, generalist species. Specifically, we use two, nearby study sites (140 km 

apart, which is arguably close in the context of the species’ entire range) and five years of 

bobwhite movement data to determine whether proximal sites have the capacity to yield 

markedly different resource selection results for a generalist species. Additionally, 

because wildlife select different habitat types at different scales (Anderson et al., 2005; 

Beatty et al., 2014; Mayor et al., 2009), we investigate whether the scale(s) at which 

species select their habitat is divergent between sites. Finally, we compare the differences 

in potential habitat availability at randomly selected landscapes with actual quail resource 

selection patterns.  

 

METHODS 

Resource selection Analysis 

i. Study Sites 
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This study was conducted in the south-central semi-arid prairies of North 

America, on two Oklahoma wildlife management areas (“WMA”, Figure 4.2) managed 

by the Oklahoma Department of Wildlife Conservation, mostly for hunting and cattle 

grazing. Both WMAs are located on the western margin of the bobwhite’s range, and are 

approximately 140 km apart. A distance of 140km is arguably proximal within the 

context of the entire species’ continental range, which extends to the east coast of North 

America and includes diverse ecoregions (Figure 4.2)    Beaver River WMA (“Beaver 

River”, WGS 36.8293, -100.664) includes approximately 7,200 hectares of southwestern 

tablelands and high plains, dominated by sandsage-grassland and shortgrass prairie (Tyrl 

et al., 2008). Packsaddle WMA (“Packsaddle”, WGS 35.883, -99.6591) is 8,100 hectares 

of central Great Plains, where the dominant vegetation includes mixed grass prairie with 

shinnery-oak grassland (Tyrl et al., 2008).  

Vegetation composition and configuration differ between the two sites. 

Specifically, woody vegetation on Packsaddle is comprised mostly of shinnery oak 

(Quercus harvardii), but also includes sand sagebrush (Artemisia filifolia) and sandplum 

(Prunus angustifolia; DeMaso et al., 1997). Tall woody vegetation at Packsaddle is 

mostly hybrid sand shinnery/post oak (Quercus havardii x Quercus stellata) and 

occasionally cottonwood (Populus deltoides), hackberry (Celtis occidentalis), soapberry 

(Sapindus drummondii), and black locust (Robinia pseudoacacia; Rakowski et al., 2019). 

Whereas at Beaver River, woody cover is dominated by sand sagebrush (Artemisia 

filifolia) with occasional sandplum (Prunus angustifolia) in the uplands, along with salt 

cedar (Tamarix spp), hackberry (Celtis occidentalis), American elm (Ulmus americana), 

and sandplum (Prunus angustifolia) in the floodplains and river bottom (Atuo & 



59 
 

O’Connell, 2017). Packsaddle and Beaver River have both been subjected to oil and gas 

development, though well activity is more active and extensive at Packsaddle. 

Additionally, both sites are managed using cattle grazing and prescribed fire, but 

Packsaddle is burned much more frequently than Beaver River.  

 

ii. Bird Location Data 

Bobwhite movement data were collected from wild birds on both WMAs from 

2012-2016. Adult bobwhite were captured using walk-in funnel traps, fitted with a VHF 

radio-collar, and located using radio-telemetry approximately 4-7 times per week. 

Trapping effort was high; 2,399 trap locations were established at Packsaddle and 1,382 

were established at Beaver River. It is worth noting that trap effort was not uniform 

across the study sites (Appendix 1) and trapping intensity tended to be higher along 

roads. Though some bobwhite individuals were tracked year-round, to mitigate 

confounding factors (e.g., uneven seasonal sampling between sites) and improve 

inference confidence, we limited analysis to bird locations collected during the breeding 

season (April-September; e.g., Carroll et al., 2017). To increase sample independence, 

duplicated locations were removed by (1) including only one bird per covey and (2) 

including only one point at a nest location. If a bird location did not occur on a pixel with 

land cover data (i.e., not a rangeland pixel and not associated with Rangeland Analysis 

Platform data), it was not included in analysis. During the 5-year study period, 35,499 

locations were recorded from 1,725 birds across both sites and used in analysis (21,172 

locations from 968 birds on Packsaddle, and 14,327 locations from 757 birds on Beaver 

River). Each telemetry fix (bird GPS location) was considered a “presence” to be 



60 
 

compared with “pseudo-absences” (described in more detail in the statistical analysis 

section). A more comprehensive description of the dataset and field methods is detailed 

in Davis et al., (2017). 

 

iii. Environmental Variables 

Our research objectives require high-resolution, continuous environmental data and 

the Rangeland Analysis Platform (Jones et al., 2018) is well-suited to meet these needs. 

The raster dataset contains annual-scale, continuous percent land cover data for multiple 

plant functional groups at approximately 30m resolution, and is freely available online 

(https://rangelands.app/). The percent cover data were generated by compiling field-

collected data from approximately 60,000 field plots along with over 200 layers of 

gridded surface data, and a random forest model to predict functional cover types across 

the western half of the United States (Jones et al., 2018). The predictive accuracy of the 

Rangeland Analysis Platform (Cover Version 1.0) included 6.9% mean absolute error for 

the shrub layer and 4.7% for the tree layer. Because our objectives are to identify broad 

selection trends at medium to large scales (0.81 to 1,739 hectares), and because we are 

not investigating thresholds or change over time, we are confident that the Rangeland 

Analysis Platform is appropriate for our purposes. Because it is well-known that woody 

cover is important for bobwhite (e.g., Carroll et al., 2015), we included both shrub cover 

and tree cover functional groups in analysis. 

 

iv. Statistical Analysis 
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We excluded all non-rangeland pixels in the WMAs (e.g., standing water, 

agriculture, roads) because the Rangeland Analysis Platform algorithm is designed to best 

predict rangeland cover types. To simultaneously test bobwhite responses to shrub and 

tree cover at multiple scales, we systematically scaled up both cover classes (i.e., 

averaged pixel neighborhoods by moving windows). Moving windows sizes (of 30m-

resolution pixels) included 3x3, 9x9, 27x27, 81x81, 113x113, and 139x139. This resulted 

in 30m-resolution percent cover data that was aggregated to incorporate 0.81ha (90m x 

90m), 7.29ha (270m x 270m), 65.61ha (810m x 810m), 590ha (2.43km x 2.43km), 

1,149ha (3.39km x 3.39km), and 1,739ha (4.17km x 4.17km) of surrounding landscape 

context (i.e., the grain resolution remained 30m, but included average percent cover at 

various sized moving windows). In other words, the spatial resolution was preserved at 

30m at all spatial scales because we used a moving window rather than scaling up the 

raster to a lower resolution. We intentionally selected a wide range of scales, 

encompassing several orders of magnitude (less than one hectare up to 1,739 hectares), to 

allow bobwhite use to determine the appropriate scale of selection (using the telemetry 

data and model ranking, explained in more detail below). Percent cover data for all 

moving window sizes (each size to represent a spatial scale) and cover types were 

extracted to each bird location in each year (i.e. the telemetry year was matched with the 

year of the land cover data). For example, a bobwhite telemetry location collected in 

2012 would have 12 environmental variables associated with it, including 6 scales of 

shrub cover and 6 scales of tree cover.  

We generated random-point pseudo absences in each given year, and in equal 

proportion to presence data (i.e., one absence point per presence point) within each study 
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region (Packsaddle and Beaver River, including a 500m buffer around the WMA 

boundary to include birds that were tracked slightly outside the WMA boundary lines) to 

function as unused habitat in the models. In other words, 35,499 bobwhite presence 

locations—each paired with a randomly generated absence location—resulted in a dataset 

of 70,998 presence/pseudo-absence data points.  It is important to note that mitigating 

trap bias while delineating available, unused habitat is an inherent challenge in space 

use/resource selection analyses (Millspaugh & Marzluff, 2001). Because our objective 

was to investigate large-scale resource selection patterns at a population level 

(comparable to a second-order approach; Johnson, 1980), we defined “available” habitat 

as the entire buffered WMAs. At Beaver River and Packsaddle, the average long-distance 

movement of bobwhite (>1000m) was approximately 2,364m and 2,940m, respectively.  

Because 100.0% of Packsaddle and 99.5% of Beaver River was less than the average 

long-distance movement from a known bobwhite location, tagged birds could have 

reasonably dispersed almost anywhere on the buffered WMA. Therefore, trapping 

intensity and the number of birds tracked were high enough to justify using the entire 

study area as available habitat. 

All parameters were estimated and model comparison was conducted using R 

v3.6.2 (R Core Team, 2020). For both of the land cover classes (percent cover of trees 

and shrubs), we created a series of generalized linear mixed models, where bird 

location/absence was the binary response variable, modeled as a function of percent 

cover at each spatial scale (0.81ha, 7.29ha, 65.61ha, 590ha, 1,149ha, and 1,739ha) using 

a binomial error distribution and logit link function in R package “lme4” (Bates et al., 

2015). Year was included as a random slope in all models to adjust for variance 
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attributable to yearly differences in bobwhite habitat selection (e.g., birds more likely to 

use woody cover in hot years). To determine whether site influences scale of resource 

selection, Beaver River and Packsaddle were modeled separately. We assessed the 

models using two approaches in order to explore two different facets of resource 

selection. First, we assessed the overall most important woody cover type for bobwhite at 

each site using Akaike information criterion (AIC) (i.e., both cover types at all scales 

ranked in the same AIC), using R package “bbmle” (Bolker & R Development Core 

Team, 2020). Second, in order to determine the scale of bobwhite resource selection of 

each environmental variable, we ranked the models using AIC for each site and 

environmental variable (shrubs and trees at both sites, each ranked in separate AICs). For 

all models, 95% confidence intervals were estimated via bootstrapping using 1,000 

iterations in R package “lme4” (Bates et al., 2015). Models with delta AIC < 2.0 were 

considered competitive, unless a null model was also competitive or if bootstrapped 

confidence intervals overlapped zero.  

 

Randomly Selected Site Simulations 

 Within the South-central semi-arid prairies ecoregion in North America, and 

using the Rangeland Analysis Platform, we generated 100, randomly located, 10km x 

10km, landscapes for each of the three cover types (trees, shrubs, bare ground) and 

compared resource availability at each landscape to known bobwhite resource selection. 

We calculated the mean tree cover, shrub cover, and bare ground used by bobwhite on 

one site (Packsaddle WMA), and compared it to the percent cover available at each 

simulated landscape in order to determine whether the location of a site determines 
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whether tree cover availability is lower or higher than average use. We also examined the 

differences in scaling of each environmental variable across the randomly selected 

landscapes by varying the resolution of each landscape (systematically scaling up each 

landscape 100 times, while holding the extent at a constant 10km x 10km). The finest 

resolution was the original RAP data (30m resolution); the coarsest was 3,000m by 

3000m. At each resolution, we calculated the overall mean percent cover and the 

between-cell variance of each cover type. 

 

RESULTS 

Packsaddle had a higher mean density of tree cover than Beaver River, but the 

WMAs were comparable in terms of average shrub cover (Table 4.1). For both tree cover 

and shrub cover, measurements were highly correlated across spatial scales (Appendix 2). 

 

Wildlife Resource selection 

According to AIC model ranks, bobwhite resource selection varied by study site. 

That is, we found differences in both the relative importance of cover types across the 

two sites. The top-performing model for resource selection at Packsaddle WMA included 

a negative relationship with tree cover (β=-0.19), whereas the top model for Beaver River 

WMA indicated a positive association with shrub cover (β=+0.40, Table 4.2). Although 

bobwhite responded strongly and negatively to tree cover at Packsaddle (i.e., bobwhite 

habitat use was less likely in areas with high tree cover), we found no response to tree 

cover at Beaver River (Table 4.3, Figure 4.3). Conversely, though bobwhite responded 

strongly and positively to shrub cover at Beaver River, we found no bobwhite response to 
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shrub cover at Packsaddle (Table 4.3, Figure 4.3). There was considerable between-year 

variation in shrub selection at Beaver River and trees selection at Packsaddle WMA 

(Figure 4.4). The comparative direction and strength of effects were similar across all 

spatial scales, except selection against tree cover was similar between the two sites at 

small scales and selection for shrub cover was similar between sites at large spatial scales 

(Appendix 3). There was also variability among the scale of resource selection between 

environmental variables. Specifically, at Beaver River bobwhite perceived shrub cover at 

a considerably smaller spatial scale (65.61ha) than they perceived tree cover at 

Packsaddle (590ha).  

 

Randomly Selected Landscape Comparisons 

 Across 100, randomly sampled, 10km by 10km landscapes in the South-central 

Semi-arid Prairies, mean percent cover of each of 6 cover classes ranged widely, yet 

remained relatively constant across spatial scales (Appendix 4). Further, we found that, 

although the general trend was between-pixel variance decreasing with increasing scale, 

the magnitude (slope) varied across landscapes (Appendix 4), indicating substantial 

scaling differences across landscapes in the same ecoregion. Moreover, the location of a 

study area determines whether the average percent cover of both cover types available to 

the bird is within or outside of average bobwhite resource selection (Figure 4.5). 

 

DISCUSSION  

 Resource selection methods can be applied for many reasons, which include 

identifying management recommendations that promote optimal habitat (Chandler & 
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King, 2011; Suárez-Seoane et al., 2002), predicting species responses to changing 

conditions (e.g, Garcia et al., 2013), and ultimately improving our understanding of the 

processes that underlie ecological patterns (e.g., Fogarty et al., 2017). Therefore, it is 

important to understand the limitations of resource selection models to avoid drawing 

inappropriately generalized conclusions. Because resource selection studies are typically 

conducted at one study site, and because sites (even within the same region) can differ in 

the amount, arrangement, and scaling of cover types, we set out to determine whether site 

location substantially influences the results of a resource selection analysis for a 

generalist species. Our study demonstrates—even for one of the most intensively studied 

species in the world—we are may oversimplify resource selection by using a single study 

site approach. That is, we determined that the importance of different cover types to 

northern bobwhite is site-dependent, even for proximal study sites. 

Previous studies investigating bobwhite resource selection have revealed a range 

of results and found little evidence of a single “ideal landscape” for the species (Guthery, 

1999). For example, bobwhite can select for bare ground (Lusk et al., 2006) or avoid it 

(Duquette et al., 2019; Tanner et al., 2016). Similarly, we found there is no universally 

optimal percent cover of trees or shrubs on a landscape because results are dependent on 

the structure, availability, and arrangement of woody cover. Though the study sites are 

close to one another in the context of the bird’s entire range, there are marked differences 

in the site-level woody cover composition and management practices, which may be 

driving the differential responses in results. We found a strong selection for shrubs at 

Beaver River, but no response to tree cover at Packsaddle. The exact mechanism behind 

the site-dependent woody cover selection pattern remains speculative and could be 
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related to a number of differences between the two sites.  First, Packsaddle undergoes 

significantly more prescribed fire than Beaver River. Though fire has been shown to have 

little effect on bobwhite space use (Carroll, Davis, et al., 2017) or density (Ransom et al., 

2008), fire likely changes the vegetative functional groups perceived by the Rangeland 

Analysis Platform, which could partially confound the relationship between bobwhite and 

shrubs on Packsaddle. In other words, if a shrub-dominated area used by bobwhite is 

burned, the Rangeland Analysis Platform may show an increase in herbaceous cover and 

a concomitant decrease in shrub cover, yet bobwhite are likely to remain in the area 

(possibly resulting in the neutral relationship between bobwhite and shrubs that we found 

at Packsaddle). The relationship between bobwhite and shrub cover is more 

straightforward at Beaver River, where fire is rare, shrubs are more diverse, and bobwhite 

strongly select for them. This positive association between bobwhite and shrubs at 

Beaver River is unsurprising because shrubs are a critical bobwhite habitat component 

(Carroll et al., 2015; Wiseman & Lewis, 1981). Finally, we suspect the strong selection 

against trees at Packsaddle with no response at Beaver River, to be mostly a function of 

differences in overall tree cover between the two sites. Because bobwhite tend to have 

decreased survival in closed-canopy areas (Howell et al., 2021; Seckinger et al., 2008), it 

follows that birds may respond differently to trees at Packsaddle, where trees are more 

abundant, than they would at Beaver River, where trees are an anomaly on the landscape. 

Our results indicate there is no universally correct scale of resource selection for 

bobwhite. This is in alignment with an extensive body of literature underlining the 

importance of multi-scale resource selection (Bauder et al., 2018; Mayor et al., 2009; 

McGarigal et al., 2016; Timm et al., 2016). Specifically, we found evidence that the scale 
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at which bobwhite select their habitat depends on the habitat feature in focus. 

Specifically, bobwhite select for shrub cover at intermediate spatial scales (65.61ha) but 

they select against tree cover at larger spatial scales (590ha). The importance of 

considering scale before drawing conclusions from resource selection studies is well 

documented in the literature (Bowyer & Kie, 2006; Mayor et al., 2009; McGarigal et al., 

2016). For example, mule deer (Odocoileus hemionus) in California, USA were found to 

select (and avoid) different habitat components at different scales  (Kie et al., 2002), 

however, an unexpected scale—much larger than the deer’s home range—was found to 

be the most informative in predicting deer use and ultimately led to the conclusion that 

heterogeneity is important for deer conservation. Had management recommendations 

been developed based on any of the smaller scales, inferior habitat may have been 

promoted, leading to ineffective management strategies for the species.  

Though not a central objective of this study, an interesting finding was that 

correlated scales are not necessarily perceived equivalently by a species. In other words, 

even though the woody cover variables we investigated were correlated across spatial 

scales, there was still a preferred scale in terms of bobwhite resource selection for each 

cover type (i.e., only one competitive model in our set for both environmental variables). 

This was unexpected because perfectly correlated scales will always yield identical 

results, so it stands to reason highly correlated scales will yield highly similar results (i.e., 

many, or no, competitive models). According to Wiens, (1989), ecological phenomena 

occur along portions of the scale spectrum (spatial grain ranked from small to large), such 

that they are scale-independent within their scale domain (i.e., the portion of the scale 

spectrum where processes are similar enough that generalizations are appropriate). We 
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found bobwhite still showed affinities for some spatial scales over others, regardless of 

high correlations across habitat variable scales, suggesting that ecological domain 

boundaries may not be detected by the correlation between scaled environmental data. 

This finding contributes to a more comprehensive understanding of the role of spatial 

scale in resource selection studies, which is important because scale is the central factor 

that determines all observed patterns in ecology (Levin, 1992; Wiens, 1989).  

Our study suggests using a single study site approach to examine resource 

selection is unlikely to extrapolate perfectly across a species’ distribution—or even 

across similar sites. Beaver River and Packsaddle are located on the western periphery of 

northern bobwhite distribution and, although they have differences in habitat 

composition, both landscapes are in the same ecoregion with similar broad-scale habitat 

(prairie/grassland). Despite these similarities, we found considerable differences in 

bobwhite resource selection, highlighting the importance of using caution when using 

single-site studies to describe resource selection patterns across a species’ distribution. 

However, the difference in resource selection between sites is only one piece of the many 

sources of variation inherent in ecological systems. Differential selection responses can 

be found depending on the season (Beck et al., 2013), time of day (e.g., Richter et al., 

2020), scale of habitat feature (Mayor et al., 2009), and simply between unique 

individuals (e.g., Leclerc et al., 2016). One of the central challenges of ecology is 

managing the tradeoffs between drawing generalized conclusions and maintaining true 

complexities inherent in nature (A. F. Johnson & Lidström, 2018).  Balancing practical, 

generalized conclusions that are easy to implement with precision (more accurate 

conclusions, but complex and difficult to apply), has presented challenges across 
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ecological concepts including alien species invasions (A. F. Johnson & Lidström, 2018), 

defining species (e.g., Hey et al., 2003), and biological conservation in general (e.g., 

Lewison, Johnson and Verutes, 2018). While we acknowledge that it is expensive and 

inefficient to directly study every area we plan to manage, we caution against setting 

recommendations for broad extents based on information gathered at small extents. 

Before extrapolating information beyond the data collected, managers should account for 

local differences in the availability, arrangement, quality, and scaling of resources. 

Because large areas encompass higher variability (Fuhlendorf & Smeins, 1996; Wiens, 

1989), we recommend managing for large and variable tracts of land that are resilient 

towards uncertainty.  
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TABLES 

Table 4.1 Mean and standard deviation of percent 
land cover per 30m pixel on Packsaddle and Beaver 
River WMA from 2012-2016 

 Packsaddle Beaver River 

Tree Cover 9.7 ± 9.2% 3.3 ± 3.9 % 

Shrub Cover 10.4 ± 4.3% 9.7 ± 3.5% 
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Table 4.2 Northern bobwhite resource selection by site. Models with delta AIC < 2.0 
were considered competitive, unless a null model was also competitive or if 95% 
bootstrapped confidence intervals overlapped zero.  

 Cover 
Type 

Spatial 
Scale ΔAIC Weight β 95% CI 

Packsaddle WMA Tree 

Tree 

Tree 

Tree 

Tree 

Tree 

Shrub 

Shrub 

Shrub 

Shrub 

Shrub 

Shrub 

Null 

590ha  

1,149ha  

1,739ha 
65.61ha 
7.29ha 
0.81ha  

1,739ha 
1,149ha 
590ha 
0.81ha  

7.29ha  

65.61ha 
NA 

0.0 

307.4 

307.7 

851.1 

2074.4 

2766.8 

2949.3 

3086.9 

3306.0 

3451.1 

3465.8 

3489.2 

3538.2 

1 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

-0.19 

-0.20 

-0.21 

-0.13 

-0.07 

-0.04 

+0.12 

+0.10 

+0.05 

+0.03 

+0.01 

+0.01 

NA 

-0.31 -0.08 

-0.31, -0.08 

-0.32, -0.10 

-0.21, -0.05 

-0.12, -0.03 

-0.07, -0.02 

-0.06, +0.29 

-0.05, +0.25 

-0.04, +0.13 

+0.01, +0.05 

-0.00, +0.05 

-0.03, +0.05 

NA 



73 
 

Beaver River 
WMA 

Shrub 

Shrub 

Shrub 

Shrub 

Shrub 

Tree 

Shrub 

Tree 

Tree 

Tree 

Tree 

Tree 

Null 

65.61ha  

590ha 
7.29ha 
0.81ha  

1,149ha 
590ha  

1,739ha 
1,739ha 
1,149ha 
65.61ha 
7.29ha 
0.81ha 
NA 

0.0 

372.8 

556.1 

826.6 

908.3 

1309.1 

1354.5 

1444.0 

1457.7 

1698.2 

1999.2 

2143.6 

2324.8 

1 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

<0.001 

+0.40 

+0.45 

+0.28 

+0.21 

+0.42 

+0.01 

+0.38 

+0.12 

+0.06 

-0.02 

-0.03 

-0.01 

NA 

+0.05, +0.74 

+0.02, +0.86 

+0.06, +0.51 

+0.05, +0.38 

+0.01, +0.85 

-0.22, +0.25 

-0.03, +0.79 

-0.13, +0.38 

-0.18, +0.31 

-0.16, +0.12 

-0.10, +0.05 

-0.06, +0.04 

NA 
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Table 4.3. Spatial scale of bobwhite resource selection by environmental variable and 
study site. Models with delta AIC < 2.0 were considered competitive, unless a null 
model was also competitive or if 95% bootstrapped confidence intervals overlapped 
zero.  

 Spatial 
Scale ΔAIC Weight β 95% CI 

Packsaddle  
Tree Cover 590ha  

1,149ha  
1,739ha  
65.61ha  
7.29ha  
0.81ha  
Null 

0.0 
307.4 
307.7 
851.1 

2074.4 
2766.8 
3538.9 

1 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 

-0.19 
-0.20 
-0.21 
-0.13 
-0.07 
-0.04 

NA 

-0.31, -0.08 
-0.31, -0.08 
-0.32, -0.10 
-0.21, -0.05 
-0.12, -0.03 
-0.07, -0.02 

NA 
Shrub Cover 1,739ha  

1,149ha  
590ha  
0.81ha  
7.29ha  
65.61ha  
NULL 

0.0 
137.6 
356.7 
501.8 
516.5 
539.9 
589.6 

1 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 

+0.12 
+0.10 
+0.05 
+0.03 
+0.01 
+0.01 

NA 

-0.06, +0.29 
-0.05, +0.25 
-0.04, +0.13 
+0.01, +0.05 
-0.00, +0.05 
-0.03, +0.05 

NA 
Beaver River  

Tree Cover 590ha  
1,739ha  
1,149ha  
65.61ha  
7.29ha  
0.81ha  
NULL  

0.0 
134.9 
148.6 
389.1 
690.4 
834.4 

1015.7 

1 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 

+0.01 
+0.12 
+0.06 
-0.02 
-0.03 
-0.01 

NA 

-0.22, +0.25 
-0.13, +0.38 
-0.18, +0.31 
-0.16, +0.12 
-0.10, +0.05 
-0.06, +0.04 

NA 
Shrub Cover 65.61ha  

590ha  
7.29ha  
0.81ha  
1,149ha  
1,739ha  
NULL 

0.0 
372.8 
556.1 
826.6 
908.3 

1354.5 
2324.8 

1 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 
<0.001 

+0.40 
+0.45 
+0.28 
+0.21 
+0.42 
+0.38 

NA 

+0.05, +0.74 
+0.02, +0.86 
+0.06, +0.51 
+0.05, +0.38 
+0.01, +0.85 
-0.03, +0.79 

NA 
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FIGURES 

 

 

 

Figure 4.1 Northern bobwhite (Colinus virginianus). Photo credit: Todd Johnson, 

Oklahoma Cooperative Extension Service. 
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Figure 4.2 Beaver River and Packsaddle WMA in the south-central semi-arid prairies of 

North America. The purple polygon represents the northern bobwhite’s range and was 

compiled using the North American Breeding Bird Survey data from 1967-2018 (only 

includes bobwhite in the contiguous United States; Pardieck et al., 2020). 
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Figure 4.3 Probability of bobwhite resource selection at Packsaddle and Beaver River 

WMA as a function of (a) percent tree cover, and (b) percent shrub cover. The spatial 

scale used for each estimation was selected from the top performing model according to 

AIC. 
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Figure 4.4 Probability of bobwhite resource selection (by year and overall) as a function 

of (a) percent tree cover at Packsaddle WMA, and (b) percent shrub cover at Beaver 

River WMA. The spatial scale used for each estimation was selected from the top 

performing model according to AIC. This figure is to illustrate yearly variation (the 

spread of random effect groups)—all other inference in this paper refers to the global 

(averaged) model (blue). 
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Figure 4.5 Percent woody cover composition of 100 randomly selected, 10km x 10km 

landscapes in the South-central semi-arid prairies of North America compared with actual 

bobwhite resource selection. The red ribbon represents mean percent cover (±1 standard 

deviation) actually used by bobwhite on (a) Packsaddle (trees) or (b) Beaver River 

(shrubs). 
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APPENDICES 
 

 

 

 

Appendix 1. Distribution of bobwhite trapping effort at Packsaddle and Beaver River 
from 2012-2016. Points represent locations where traps were set, not necessarily where 
birds were caught. 
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Appendix 2. Pearson’s coefficients indicating correlations across spatial scales for three 

cover types. 

TREE COVER 
 7.29ha 65.61ha 590ha 1,149ha 1,739ha 
0.81ha 0.918 0.798 0.695 0.668 0.657 
7.29ha  0.912 0.799 0.768 0.754 
65.61ha   0.916 0.882 0.867 
590ha    0.988 0.976 
1,149ha     0.996 
SHRUB COVER 
 7.29ha 65.61ha 590ha 1,149ha 1,739ha 
0.81ha 0.934 0.845 0.762 0.741 0.726 
7.29ha  0.936 0.845 0.822 0.805 
65.61ha   0.936 0.910 0.893 
590ha    0.990 0.976 
1,149ha     0.995 
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Appendix 3. Probability of bobwhite habitat use at Packsaddle and Beaver River WMA 

as a function of percent tree cover and shrub cover—each across 6 spatial scales.  
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Appendix 4. Mean percent cover and between-cell variance of percent cover of 3 cover 
classes within randomly sampled landscapes across 100 spatial grains. Each blue line is a 
randomly sampled, 10km by 10km landscape in the South-central Semi-arid Prairies. 
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