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Abstract:
Due to interannual and cross-location variability of forage production, ranchers often
encounter difficulties anticipating which management strategies should be used for
optimum pastureland management. While models for predicting forage production
are available to aid management decisions for some forage crops, there is limited
research for a yield model designed specifically for tall fescue (Festuca arundinacea
Schreb.). Therefore, our objective was to adapt an existing DSSAT-CSM-Perennial
forage model for predicting forage biomass of tall fescue in the southern Great Plains.
To evaluate model performance, there must first be a high level of data manipulation
and cleaning. In this thesis, a cohesive dataset combining biomass, weather, soil, and
management data is structured into DSSAT standard file format to be used in future
tall fescue crop modeling analysis. Model inputs are obtained from multiple sources,
weather data from the Oklahoma Mesonet and the University of Georgia Weather
Network and soil data from SSURGO. The model performance was inconsistent in
predicting seasonal differences in biomass production. The model is under-predicting
harvestable biomass for the agronomic site, Ardmore (AGR), with a mean bias of -376
kg ha−1, and it is over-predicting for the breeder sites with a mean bias of 664 kg ha−1.
The model was not able to adequately predict harvestable biomass of tall fescue for
either the breeder data [Willmott agreement index (D) of 0.61, a Nash-Sutcliffe model
efficiency (ME) of -1.06, root mean squared error (RMSE) of 2408] or the agronomic
data (D = 0.63, ME = 0.02, and RMSE = 5124). For the model to provide more
accurate predictions of harvestable biomass, further parameterization will be required
through calibration of parameters that control above- to below-ground partitioning,
response to temperature, and maximum leaf photosynthesis rate. Calibration will
require identifying and adapting parameters that negatively affect production which
will increase the model’s ability to predict forage biomass.
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CHAPTER I

GENERAL INTRODUCTION

1.1 Introduction

Tall fescue (Festuca arundinacea Schreb.) is a versatile and important cool-season

perennial grass in the United States, covering approximately 15 million ha [37 million

acres; Rogers and Locke (2013)] and serving many uses such as reducing runoff,

controlling water and wind erosion, and providing pasture and hay for livestock (Ball,

Lacefield, and Hoveland, 1991). In the southern Great Plains (SGP), cool-season

perennial forages are an essential early season complement to winter annual forage,

such as wheat (Reuter and Horn, 2002). Compared with other forages, cool-season

perennials offer a longer growing season and exceptional animal performance (Beck

et al., 2008).

Tall fescue is an ideal cool-season forage in the SGP because it can withstand the

extreme high temperatures and frequent drought of the summer months (Hopkins

and Bhamidimarri, 2009). Additionally, the SGP has a bimodal pattern of annual

precipitation, peaking in the spring and fall (Malinowski, Kigel, and Pinchak, 2009)

when tall fescue is at its peak production and highest quality. These rain events

during peak growth allow for tall fescue to be competitive against other forage species

(Schuster and De Leon Garcia, 1973). The use of a cool-season perennial grass, such

as tall fescue, is a viable option for many ranchers because they do not have to rely on

the inopportune timing of autumn precipitation as ranchers do to sow annual crops

like wheat (Silva, 2021). Tall fescue can replace and complement those annuals in

livestock pastures to improve the economic value of livestock production, decrease soil
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erosion, and reduce labor (Hopkins, Young, et al., 2011).

The ability to anticipate forage biomass is essential for ranchers who often use

flexible stocking densities to maximize productivity. Crop models, such as the Decision

Support System for Agrotechnology Transfer Cropping Systems Model [DSSAT-CSM;

Jones et al. (2003); Hoogenboom et al. (2019)], have potential to provide important

information on tall fescue production by integrating multiple sources of real-world

forcing data [e.g. soil, weather, management practices; Pedreira et al. (2011)]. Soil

data from the Soil Survey Geographical Database [SSURGO; Soil Survey Staff (2020)]

and daily weather inputs from the Oklahoma Mesonet (McPherson et al., 2007; Brock

et al., 1995) and University of Georgia Weather Network (Knox et al., 2020) could

assist in providing needed high-resolution estimates of tall fescue forage production in

the SGP. By feeding these inputs to a dynamic crop model, it theoretically has the

ability to predict the growth of a particular crop in a certain environment over time.

However, there has been limited research in modeling tall fescue forage production

(Kiniry et al., 2018). One constraint of research in this area has been the limited

availability of long-term tall fescue biomass data. In order to adequately evaluate a

model’s qualitative and quantitative accuracy, there must first be a high level of data

manipulation and cleaning on a well-characterized dataset.

The remainder of this thesis is organized into three chapters. Chapter 2 focuses

on documenting the process by which the tall fescue data were compiled, cleaned and

curated. This process resulted in a high-quality integrated biomass, management,

soil, and weather dataset in DSSAT standard file format that has the potential to be

used for crop simulation modeling of tall fescue. Using this curated dataset, chapter

3 documents the adaptation of an existing DSSAT-CSM-Perennial ryegrass model

for estimating harvestable biomass of tall fescue in the SGP. The performance of the

adapted model was also evaluated using the curated dataset from chapter 2. In the

final chapter of this thesis, we summarize the general findings across chapter 2 and

2



chapter 3 and discuss future directions for model development.
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CHAPTER II

DATA CURATION FOR MODELING TALL FESCUE BIOMASS

DYNAMICS WITH DSSAT-CSM

2.1 Introduction

In the southern Great Plains (SGP), cool-season perennial forages serve an essential

role as early season complements to winter annual forages, like wheat. To achieve

the optimal performance and nutritive value of ones pasture, it would be beneficial

to have a model that would predict harvestable biomass. However, there are limited

long-term cool-season perennial forage trials available, making it difficult to obtain

sufficient input data for a dynamic crop model. In order to adequately evaluate a

model’s qualitative and quantitative accuracy, there must first be a high level of

data manipulation and cleaning to compile a curated dataset. The objective of this

chapter is to produce a comprehensive documentation of the dataset for modeling tall

fescue harvestable biomass in the southern Great Plains. Therefore, we have created

a diverse dataset including biomass data obtained from the Noble Research Institute

paired with corresponding weather data from the Oklahoma Mesonet (Brock et al.,

1995; McPherson et al., 2007) and the University of Georgia Weather Network (Knox

et al., 2020), as well as soil data from the NRCS SSURGO database (Soil Survey Staff,

2020). Through this process, a high quality dataset of biomass, weather, soil, and

management data is then structured into a single condensed comprehensive dataset

that has been converted into DSSAT standard file format which has the potential to

be used for crop simulation modeling of tall fescue.
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Table 2.1: Summary data of locations included in the dataset including location,

latitude (Lat, decimal degrees), longitude (Long, decimal degrees), elevation (Elev,

m), maximum temperature (TMAX) in ◦C, minimum temperature(TMIN) in ◦C, and

seasonal cumulative rainfall (Rainfall, mm).

Site Lat Long Elev TMAX TMIN Rain

Ardmore 34.19 -97.09 266 23.8 11.7 879

Tifton 31.49 -83.53 118 26.8 15.6 785

Vashti 33.55 -98.04 330 25.4 11.2 421

Woodward 36.42 -99.42 625 23.7 9.8 410

2.1.1 Study Area

The condensed dataset consists of numerous locations and multiple data sources

(Figure 2.1). Weather data sources were the Oklahoma Mesonet (Brock et al., 1995;

McPherson et al., 2007) and the University of Georgia Weather Network (Knox et al.,

2020) and is described in the summary tables by location (Table 2.1) and season

(Table 2.2). Table 2.1 suggests that seasonal cumulative rainfall across all sites ranged

from 410 mm to 879 mm. Table 2.2 indicates that on a seasonal basis, Woodward,

OK had the least amount of cumulative seasonal rainfall and the lowest temperatures,

and Tifton, GA had the highest cumulative seasonal rainfall and highest temperatures.

The soil data for each site was obtained from the Soil Survey Geographical Database

[SSURGO; Soil Survey Staff (2020)]. Management practices vary across sites when

evaluating planting date, management, and utilization as seen in Table 2.4. The

breeder sites are more similar to one another in management strategies than when

compared to the agronomic site.
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Table 2.2: Summary of growing season weather across locations for the dataset

including location, season (YYYY), maximum temperature (TMAX) in ◦C, minimum

temperature(TMIN) in ◦C, and seasonal cumulative rainfall (Rainfall, mm).

Site Season TMAX TMIN Rain

Ardmore 2011-2012 25.2 12.7 844

Ardmore 2012-2013 23.8 11.1 719

Ardmore 2013-2014 22.5 10.1 747

Ardmore 2014-2015 21.9 11.0 1639

Ardmore 2015-2016 24.2 12.3 1444

Ardmore 2016-2017 24.7 12.5 701

Ardmore 2017-2018 23.6 11.3 900

Ardmore 2018-2019 22.3 11.4 1576

Ardmore 2019-2020 23.5 11.7 1096

Tifton 2011-2012 27.2 15.5 1043

Tifton 2012-2013 25.4 14.8 1836

Vashti 2011-2012 26.0 12.3 739

Vashti 2012-2013 24.5 10.3 560

Vashti 2013-2014 23.4 9.3 639

Woodward 2011-2012 23.7 10.1 595

Woodward 2012-2013 22.2 8.0 479

Woodward 2013-2014 21.2 7.5 507
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Figure 2.1: Map representing the four locations where biomass data was collected

including Ardmore, OK, Tifton, GA, Vashti, TX, and Woodward, OK., as well as the

surrounding states.

2.2 Noble Research Institute Tall Fescue Experiments

Tall fescue harvestable biomass samples were collected at five study sites across four

locations. The Ardmore location had two studies, an agronomic (AGR) study and a

breeder (BRD) trial. The Ardmore, OK (BRD) study from 2012-2014, was managed

by individuals outside of the headquarters and classified as a breeder trial for the Noble

Research Institute along with the remaining locations, Tifton, GA from 2012-2013,

Woodward, OK from 2012-2014, and Vashti, TX from 2012-2014. The agronomic

study, Ardmore, OK (AGR), conducted from 2015-2020, had three harvest frequencies

and six nitrogen treatments and was directed by researchers at the Noble Research

Institute headquarters in Ardmore, OK.

9



2.2.1 Agronomic Site

Ardmore, OK (AGR)

The Ardmore, OK (AGR) site (34.17° N, 97.17° W; elevation 266 m) was located on a

Heiden Clay (fine, montmorillonitic, thermic, Udic Chromusterts) and was planted

to the endophyte free tall fescue cultivar, ‘Flecha’, during the fall of 2013. The site

was managed as a cover crop until the establishment of the first field in the fall of

2015. The site was brush-hogged during August of 2014 when the tall fescue stand

was dormant to avoid negative impact on growth at the beginning of the experiment.

The biomass collected from brush-hogging was recycled to the agronomic site and not

removed. The brush hogging technique was chosen because it can to help release new

plant growth to potential grazing animals earlier in the growing season, and there

would have been minimal feed value if harvested as hay because the harvested material

consisted of the prior seasons dead growth. Prior to August 25th, 2015, the dormant

standing forage was harvested as hay when the stand was entering its third year after

planting, prior to establishing the plots for the experiment.

Harvest frequency varied across AGR with high to low frequency as well as across

seasons as shown in Table 2.3. As evidenced in Table 2.3, the AGR site had a complex

harvest frequency. The high harvest frequency was the most frequently harvested,

being sampled every four weeks in the fall and every two weeks in the spring from

2015 to 2018. Low harvest frequency was the least frequently harvested with one

harvest in December and again every six weeks in the spring from March until the end

of the growing season for 2015 to 2018 . This same trend holds true for 2018 to 2020

where harvest frequency decreases from high to low respectively. The experiment was

designed with multiple harvest frequencies to mimic different management practices

such as rotational grazing or cutting hay.

The agronomic site was planted in the fall of 2013 and was fertilized with P and K
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to soil sufficiency levels based on soil test results (Melich III for P) using 20.4 kg P

ha−1 (45 lb P acre−1) in P2O5 and 108.9 kg K ha−1 (240 lb K acre−1) in K20. The

plot was pre-planted with 22.68 kg N ha−1 (50 lb N acre−1) in the 2013 establishment

year and 22.68 kg N ha−1 (50 lb N acre−1) in the fall of 2014. Supplemental amounts

of 0-46-0 and 0-0-60 (N-P-K) were applied based on the soil test results from the

summer of 2014. No additional N above the 22.68 kg N ha−1 maintenance application

was supplied and all fertilizer rates were applied per acre.

The study started with five levels of nitrogen in the form of ammonium nitrate

(34-0-0, NPK) at the start of the experiment: 0, 56, 112, 168, and 224 kg N ha−1 each

applied as a split rate (half of the N application for that respective location applied

at separate times) in early September and again in late January to early February

to capture early season green-up and maximize growth potential. An additional N

level at 28 kg N ha−1 was also added starting in the fall of 2016 using the same

management. These six levels of nitrogen, 0, 28, 56, 112, 168, and 224 kg N ha−1 with

a split application were maintained until the fall of 2018. From the fall of 2018 through

2020, full rates of N were applied in ammonium nitrate at three different levels: 0,

28, and 112 kg N ha−1 applied once in September. Management intentions were to

stimulate maximum forage growth over time to create varying biomass production for

the forage model.

The experiments at the agronomic site in Ardmore (AGR) had an intricate orga-

nization. Figure 2.2 and Figure 2.3 illustrate the layout of the experiments across

seasons. The experiments were conducted in two main phases: 2015 to 2018 and 2018

to 2020. The first phase was initiated in the fall of 2015 with twenty 7.6 m by 4.6 m

(25ft x 15ft) plots arranged into five rows and four columns (Fig. 2.3). Each column

was treated as a block, within which, five N levels (0, 56, 112, 168, and 224 kg N ha−1)

were randomly assigned. Within each block, 7.6 m by 1.5 m (25ft x 5ft) subplots were

created by assigning the three different harvest frequencies in decreasing frequency

11



from high to low in the West to East direction (Fig. 2.3). For the latter two seasons of

phase one (2016-2018), a set of four 7.6 m by 4.6 m plots were added directly adjacent

to the North of the existing set of plots (Fig. 2.2). This addition resulted in a total

of 24 plots with six N levels (0, 28, 56, 112, 168, and 224 kg N ha−1) for the seasons

2016-2018.

In the 2018-2019 season, the second phase of experiments was established in an

area adjacent to but separate from the existing plots from phase one (Fig. 2.2). The

trial established in 2018-2019 had sixteen plots with four rows and four columns. In

this second phase, two N levels (28 and 112 kg ha−1) were combined with three harvest

frequencies to create six unique treatment levels. These unique treatment combinations

were then randomly assigned to the sixteen plots (Fig. 2.3). In 2019-2020, the trial

was moved back to the original area from the 2015-2016 season (Figure 2.2) and the

six treatment combinations were randomly assigned to 16 of the original 20 plots. Four

of the original 20 plots (represented by the white boxes in Figure 2.3) were excluded

from the study due to issues with pasture persistence and weedy encroachment.

At harvest, each plot was mowed to 2.5-cm stubble height and vegetation was

removed without grazing. To measure the average canopy height (cm) the harvestable

section was randomly measured with a meter stick and recorded as “CanopyAvgStick”.

Mowing was used to promote the new plant growth and to mimic a grazing scenario.

No exclosures were present at the site. All forage yield data was recorded on a dry

matter (DM) basis. Forage yield was measured as oven-dried clipped forage mass in

kg ha−1. Duplication exists as there were two samples taken per (sub)plot and labeled

with the same “PlotID”.
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Figure 2.2: Area diagram of the agronomic plots at Ardmore, OK (AGR) and which

season each field was host of the study.
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Figure 2.3: Plot layout of each field organized by season, harvest frequency, and

nitrogen level.
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Table 2.3: Harvest frequency table explained by season for each location, Ardmore,

OK, Tifton, GA, Vashti, TX, and Woodward, OK.

Experiment Season Frequency Fall Spring

Ardmore

(AGR)

2015-2018 High Every 4 weeks

October-December

Every 2 weeks

March-end of

season

Medium Every 4 weeks

November- Decem-

ber

Every 4 weeks

March-end of

season

Low Once in December Every 6 weeks

March-end of

season

Ardmore

(AGR)

2018-2020 High Every 4 weeks

October-December

Every 2 weeks

March-end of

season

Medium Every 8 weeks

November-

December

Every 4 weeks

March-end of

season

Low Once end of season

Ardmore

(BRD)

2012-2014 Once end of season

Tifton 2012-2013 Once end of season

Vashti 2012-2014 Once end of season

Woodward 2012-2014 Once end of season
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2.2.2 Breeder Sites

Ardmore, OK (BRD)

The Ardmore, OK (BRD) study (34.11° N, 97.05° W; elevation 240 m) was conducted

on a Windthorst fine sandy loam (fine, mixed, active, thermic Udic Paleustalf). There

were five cultivars of tall fescue including, Flecha-Nil, Chisholm, Texoma MaxQII,

Kentucky31, and Prosper. This site was established on October 4th, 2011 and was

harvested once in 2012 on March 13th, three times in the spring of 2013 on March

14th, May 20th, and June 24th, and once in 2014 on May 1st.

Tifton, GA

The Tifton, GA breeder site (31.49° N, 83.53° W; elevation 118 m; Tifton loamy sand

[fine-loamy, kaolinitic, thermic Plintic Kandiudult]) was composed of a variety of

summer-dormant cultivars, Bardiso, Chisholm, Flecha, Ky. 31 E+, MALMA, Prosper,

Royal Q100, Taita, and Texoma MaxQII. Tifton was seeded into a bermudagrass

sod on November 11th, 2003 and managed as a cover crop until the trial began on

November 2nd, 2011. Tifton was the only two season experiment having only harvested

biomass yield on April 2nd, 2012, and April 30th, 2013.

Woodward, OK

The Woodward, OK breeder site (36.25° N, 99.24° W; elevation 605 m; Carey silt

loam [fine- silty, mixed, super active, thermic Typic Argiustoll]) was established on

September 26th, 2011 to evaluate harvestable biomass only under dry-land conditions.

The study focused on the summer-dormant varieties, Flecha-Nil, Kentucky31, NFTF-

1700-Nil, Prosper, and Texoma MaxQII. Harvests occurred once a season from 2012

to 2014: May 1st, 2012, May 20th, 2013, and May 23rd, 2014.
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Vashti, TX

The Vashti, TX site (33.55 N, 98.04° W; elevation 330 m; Anocon loam [fine, mixed,

active, thermic Ultic Paleustalfs]) was established on October 21st, 2011. This site

was harvested once in 2012 on April 19th, and twice in 2013 on April 4th and July 1st,

and again on June 2nd, 2014.

Breeder Site Management

The breeder sites, Ardmore, OK (BRD), Tifton, GA, Vashti, TX, and Woodward,

OK had similar management practices. For the breeder sites, the experiments were

set up in 2011 using a randomized complete block design (Trammell et al., 2018).

With a small plot cone-drill (Hege Equipment), 17 kg ha−1 of seed were put into 7

rows of clean, tilled seedbeds. The Ardmore (BRD), Tifton, and Vashti locations

were set up in a 1.5 m by 6.1 m (5ft x 20ft) plot with four replications. Unlike the

other breeder sites, Woodward had five replications in a 1.5 by 7.6 m (5 by 25 ft) plot

(Trammell et al., 2018). For each of the breeder sites, there was a single application of

ammonium nitrate (N–P–K, 34–0–0) at the rate of 46 kg N ha−1 at the time of sowing

or early fall of each season. An application of 2,4-D (2, 4 D-dichlorophenoxyacetic

acid) low volatile ester was applied to the Ardmore (BRD) and Vashti sites at the rate

of 1.12 kg a.i. ha−1 to control broad leaf weeds in the spring following establishment.

Samples were collected using a sickle bar plot harvester at a height of approximately

7-cm (Trammell et al., 2018).

2.3 Data Aquisition and Quality Control

Data for each location was collected and captured using manual data entry into

a spreadsheet format. Names were generated for each column to correspond with

standard DSSAT input variables and were made uniform across all locations.

R version 4.1.2 (R Core Team, 2021) was used to analyze and clean all data. The
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Table 2.4: Summary data of the management information across each location in the

dataset including a four-digit location code (LLLL), residual stubble mass kg ha−1,

and planting date (MM-DD-YYYY)

Site Residual Planting Date

ARD2 760 09-15-2013

ARDB 1800 09-26-2011

TIFT 1800 11-02-2011

VASH 1800 09-26-2011

WOOD 1800 09-26-2011

R package tidyverse (Wickham et al., 2019) was used to perform data cleaning and

curation. As each variable of the database was brought in, a screening process was

performed to account for all duplication or spelling errors; these inconsistencies were

standardized and corrected to produce a harmonized dataset. Numerical variable

units were converted to standard International System of Units (SI). The text and

numerical modifications were performed using R code, to avoid introducing manual

typographical errors and to ensure reproducibility of the workflow.

The coordinates for Ardmore, Woodward, and Vashti were taken from Trammell

et al. (2018). Coordinates for the Tifton site were estimated using Google Maps

(https://www.google.com/maps). These coordinates were then used to extract the

SSURGO soil profile data and to match experimental sites with nearby weather

stations for extracting daily weather.

2.3.1 Weather Data

Weather data near each location were obtained from the Oklahoma Mesonet (Brock

et al., 1995; McPherson et al., 2007) and the University of Georgia Weather Net-
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work (Knox et al., 2020). The Oklahoma Mesonet is an automated network of 122

meteorological stations across the state that have been collecting data since 1994

(Brock et al., 1995; McPherson et al., 2007). Weather data are collected in 5-minute

intervals continuously by each station and are transmitted to a central facility to

be quality controlled, distributed, and archived (Shafer et al., 2000). Mesonet time

series (MTS) files with 5-min data were downloaded from the Oklahoma Mesonet

website, imported into R and summarized to produce daily values for near-surface

cumulative solar radiation (MJ m−2 d−1), rainfall (mm d−1), average relative humidity

(percent), 2 meter wind speed (km d−1), as well as maximum and minimum tempera-

ture (◦C). Daily weather data was obtained for each site, Ardmore (January 1st, 2011

to November 1st, 2020), Vashti (January 1st, 2011 to December 31st, 2014), Woodward

(January 1st, 2011 to November 1st, 2014), and Tifton (January 1st, 2011 to December

31st, 2013). For the Oklahoma and Texas sites, weather data were obtained from

the Oklahoma Mesonet (Brock et al., 1995; McPherson et al., 2007) at the following

stations: Ardmore (ARD2), Woodward (WOOD), and Waurika (WAUR). The WAUR

station was used for the Vashti, TX site even though it was located approximately 70

km (44 mi) from the site, because there was no other resource that provided reliable

and well documented weather data needed for the dynamic crop model. The Georgia

weather data was received from the University of Georgia Weather Network at the

Tifton (TIFT) site (Knox et al., 2020).

Weather station metadata for latitude (LAT), longitude (LONG), and elevation

(ELEV) were pulled for the Oklahoma and Texas sites using the okmesonet package

in R (Allred, Hovick, and Fuhlendorf, 2014). The reference height for air temperature

measurement (REFHT) was set to 1.5 m and the reference height for wind speed

(WNDHT) was set to 2 m. Atmospheric CO2 concentration (CO2) was set to a

null value of NA. Weather station metadata for Tifton were derived in a similar way

from multiple sources (Knox et al., 2020), except that WNDHT was set to 3 meters
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following Georgia Weather Network documentation (Knox et al., 2020).

To generate a DSSAT format weather files, long-term average temperature (TAV),

as well as the amplitude (AMP) of the long-term average annual temperature, were

calculated. The long-term average temperature was computed as the average of

TMAX and TMIN and then averaged over all dates of measurement. The temperature

amplitude was calculated first by summarizing the monthly average temperature of the

observation period. The lowest monthly average temperature was subtracted from the

highest monthly average temperature and divided by 2. Those values were combined

with other location-specific information including a location code (INSI), LAT, LONG,

ELEV, TAVG, AMP, REFHT, WNDHT, and CO2 that is required for the DSSAT-

formatted header information. Occasional gaps in daily weather records were filled

using linear interpolation across days for all variables except rainfall. Missing rainfall

data were assumed to be zero. The daily weather data and weather station metadata

for each site were combined to a DSSAT standard format weather file, as shown in

Table 2.5, and were written using the function write_wth from the DSSAT package

(Alderman, 2020; Alderman, 2021).

2.3.2 Soil Data

Soil names were provided in the tall fescue datasets corresponding with each location.

The soil names from each location were used to pull the soil profiles from the Soil

Survey Geographical Database (SSURGO) (Soil Survey Staff, 2020) for each location

through a custom utility function written for this purpose, pull_profile_by_name().

Initially, the function queries the SSURGO database using a function, SDA_query()

from the package soilDB, Version 2.5 (Beaudette, Skovlin, and Roecker, 2020) to

search the soil name provided. If multiple entries are returned, the function then

filters the provided map unit keys by constructing a query based on the location

coordinates and selects the map unit key of the nearest feature using the function

19



st_nearest_feature() of the sf package (Pebesma, 2018). The component- and

horizon-specific soil property data were then pulled from the identified map unit key.

These data were combined and used to make a DSSAT soil profile object.

The multiple methods by which soil input data were derived included using

SSURGO data directly and deriving approximate equivalent values. Soil albedo

(SALB) values were taken directly from SSURGO (albedodry_r). Soil organic carbon

(SLOC) was set to the SSURGO value for soil organic matter (om_r) divided by a

standard 1.724. Soil drainage (SLDR) was estimated based on the SSURGO value for

drainagecl_r, from “Excessively drained” soils being assigned a value of 0.85 to “Very

poorly drained” soils being assigned a value of 0.01. The Soil Conservation Service

runoff curve number for antecedent soil moisture condition II (SLRO) was set based

on the SSURGO values for hydrologic soil group (hydgrp) and slope (slope_r). The

depth to base of layer (SLB) was pulled from the corresponding SSURGO variable

(hzdepb_r). The soil coarse fraction (SLCF) was taken from the SSURGO variable

fragvol_r. When a value for fragvol_r was missing and the horizon name indicated

the presence of bedrock, SLCF was assumed to be 99. Otherwise, SLCF was assumed

to be 0. To calculate the soil root growth factor (SRGF), the SLCF was divided by

100 and subtracted from 1.

The SSURGO data for volumetric water content (VWC) at -0.33 bar (wthird-

bar_r) and -15 bar (wfifteenbar_r), bulk density (dbtenthbar_r, dbthirdbar_r, or

dbovendry_r), percent silt (silttotal_r), and percent clay (claytotal_r) were extracted

for each soil profile to generate estimates of the saturated conductivity. Saturated

hydraulic conductivity (SSKS) was converted from cm d−1 to cm h−1 to fit the units

required by the DSSAT variable definition. The soil lower limit (SLLL) was assumed

to be VWC at -15 bar (wfifteenbar_r, i.e. soil water at -1500 kPa or permanent wilting

point for the crop). Soil drained upper limit (SDUL) was assumed to be equal to

VWC at -0.33 bar (wthirdbar_r). Saturated value (SSAT) was set at 95 percent of
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the pore space. Pore space was calculated as 1− SBDM
2.65 , where SBDM is bulk density

in g cm−3 and particle density was assumed to be 2.65 g cm−3. Where available,

SBDM was set to dbtenthbar_r. If values for dbtenthbar_r were missing, values from

dbthirdbar_r were used. If both of these were missing values, dbovendry_r was used.

The values for soil mineralization factor (SLNF) and soil photosynthesis factor

(SLPF) were both assumed to be 1 and the soil evaporation limit (SLU1) was set to 6

mm. Parameters indicating method of extraction (SMHB, SMPX, and SMKE) were

set to nominal values of IB001. All other soil input data values were set as missing. A

full description of soil variables and units is provided in Table 2.6. Soil input data

were written to the DSSAT standard soil file format using the write_sol() function

from the DSSAT version 0.0.4 R package (Alderman, 2020; Alderman, 2021).

2.4 Data File Description

This chapter describes the process of compiling one comprehensive dataset in the form

of DSSAT standard format for observed biomass (FileT), management data (FileX),

weather data (.WTH), and soil data (.SOL) from a range of environments that will

permit further model development, parameterization and evaluation.

File names are specified as an eight-digit code that is unique to each location,

year and management combination followed by a three-digit file extension of either

U2X (FileX) or U2T (FileT). The FileX and FileT share the same eight-digit code

containing the corresponding definition of management (FileX) and observed data

(FileT). The FileT contains columns for treatment number (TRNO), date of collection

(DATE), and harvestable biomass kg ha−1 (FHWAH). The FHWAH column contains

data of harvested biomass which excludes a 7-cm residual stubble for breeder sites

and a 2.5-cm residual stubble for the agronomic site. Within the FileX, the treatment

number column, within the TREATMENTS section, corresponds to the TRNO column

of the FileT; the ID_SOIL column, in the FIELDS section, links the soil type in the
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soil data file, and the WSTA column, in the FIELDS section, links to the corresponding

weather file. The PDATE and HDATE columns provide the planting and harvest

dates, respectively, for the specific location, year and management combination.

The unique values of the eight-digit code were generated according to the following

pattern LLLLYYMM.XXX, where LLLL was the four-digit location code as shown in

Table 2.5, YY was the two-digit year at the end of the harvest season, and MM was

a two-digit management code), and XXX was a three-digit file extension indicating

the DSSAT standard file type. Within the two-digit management code, the first digit

indicates waterstress (0 for no water applied, I for irrigated), second digit is harvest

frequency (A for most frequently harvested, B for medium harvest frequency, C for

the least frequently harvested, 0 for breeder sites with a standard harvest frequency).

The DSSAT standard file format code consists of a two-digit crop identification code

(U2 for Unidentified crop; DSSAT does not currently have a code for tall fescue) and

a single digit file type code (X for FileX and T for FileT).

Weather data were stored in DSSAT-formatted weather files where each file

corresponds to a specific location, year, and management combination. Weather

files were named using the following pattern LLLLYYMM.WTH, where LLLL was

the four-digit location code, YY was the two-digit year at the beginning of start up

for that respective location, and MM (a two-digit management code denoting how

many years of weather data were collected), and WTH is the three-digit file extension

denoting a DSSAT-formatted weather file. Weather files can be read into R using the

write_wth() function of the DSSAT R package (Alderman, 2020; Alderman, 2021).

Variable descriptions for weather files are found in Table 2.5. Similarly, soil entries

are stored in a DSSAT-formatted soil file, using the extension SOL, which stores

whole-profile and layer-specific soil variables described in Table 2.6. Soils for each

location are referenced by the ID_SOIL. The soil data file can be read into R using the

read_sol() function from the DSSAT R package (Alderman, 2020; Alderman, 2021).
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Table 2.5: Name, definitions and units for weather variables reported in a standard

DSSAT formatted weather file (.WTH).

Name Description Units

AMP Temperature amplitude ◦C

CO2 Carbon dioxide concentration ppm

DATE Date of observation YYJJJ*

ELEV Elevation m

INSI Institute and site code code

LAT Latitude decimal degrees north

LONG Longitude decimal degrees east

RAIN Daily rainfall mm d−1

REFHT Reference height for weather measurements m

RHUM Relative humidity percent

SRAD Daily solar radiation MJ m−2 d−1

TAV Temperature average for whole year ◦C

TMAX Daily temperature maximum ◦C

TMIN Daily temperature minimum ◦C

WIND Daily wind speed km d−1

WNDHT Reference height for windspeed measurements m

* YYJJJ, two-digit year followed by three-digit Julian day of year.
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Table 2.6: Name, definitions and units for soil variables reported in a standard DSSAT

formatted soil file (.SOL).

Name Description Units

COUNTRY Country of soil profile location –

LAT Latitude decimal degrees north

LONG Longitude decimal degrees east

SADC Soil adhesion coefficient 0 to 1 scale

SALB Albedo fraction

SBDM Bulk density g cm−3

SCEC Cation exchange capacity cmol kg−1

SCOM Color Munsell hue

SCS FAMILY Soil Conservation Service soil family –

SDUL Upper limit cm3 cm−3

SITE Site name Site name

SLB Depth cm

SLCF Coarse fraction (>2 mm) percent

SLCL Clay (<0.002 mm) percent

SLDR Drainage rate fraction day−1

SLHB pH in buffer pH in buffer

SLHW pH in water pH in water

SLLL Lower limit cm3 cm−3

SLMH Master horizon Master horizon

SLNF Mineralization factor 0 to 1 scale

SLNI Total nitrogen percent

SLOC Organic carbon percent
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Table 2.6: Name, definitions and units for soil variables reported in a standard DSSAT

formatted soil file (.SOL). (continued)

Name Description Units

SLPF Photosynthesis factor 0 to 1 scale

SLRO Soil Conservation Service runoff

curve number

number

SLSI Silt (0.05 to 0.002 mm) percent

SLU1 Evaporation limit mm

SMHB pH in buffer determination method code

SMKE Potassium determination method code

SMPX Phosphorus determination code code

SRGF Root growth factor 0 to 1 scale

SSAT Upper limit cm3 cm−3

SSKS Saturated hydraulic conductivity cm h−1

2.5 Summary

There has been limited research in the area of tall fescue modeling. Because there

are few long-term tall fescue trials that provide adequate characterization needed for

modeling, we developed a comprehensive dataset that can be used for future modeling

of tall fescue. For this project, biomass data was provided by the Noble Research

Institute and included five experiments across four different locations, Ardmore, OK,

Tifton, GA, Vashti, TX, and Woodward, OK. This chapter provides an exhaustive

description of each site, and the management and sampling practices conducted at

each. The chapter also serves to explain the process by which weather and soil data

were obtained and manipulated. Soil names from each location were used to pull the
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soil data from the NRCS-SSURGO (Soil Survey Staff, 2020). Daily weather data

and weather station metadata were received from the Oklahoma Mesonet and the

University of Georgia Weather Network. These inputs were combined for four locations

and multiple growing seasons to compile a curated dataset. The dataset documented

here provides DSSAT standard format for observed biomass (FileT), management data

(FileX), weather data (.WTH), and soil data (.SOL) from a range of environments

that will permit further model development, parameterization and evaluation.
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CHAPTER III

ADAPTATION OF A DYNAMIC CROP MODEL FOR ESTIMATING

HARVESTABLE BIOMASS OF TALL FESCUE IN THE SOUTHERN

GREAT PLAINS

3.1 Abstract

Due to inter-annual and cross-location variability of forage, ranchers often encounter

difficulties anticipating which management strategies should be used for optimum

pastureland management. While models for predicting harvestable biomass are

available to aid management decisions for some forage crops, there is limited research

on yield models designed specifically for tall fescue. Therefore, our objective was to

develop a biomass production model for tall fescue by adapting an existing DSSAT-

CSM-Perennial forage model for ryegrass. Our model was developed using measured

biomass data from four locations: Ardmore, OK, Woodward, OK, Vashti, TX, and

Tifton, GA, weather data from the Oklahoma Mesonet and University of Georgia

Weather Network, and soil data from SSURGO. To better fit the growth pattern of

tall fescue, the primary adaptations of the existing perennial forage model included

changing parameters that control dormancy, position of storage tissue, and leaf-level

photosynthetic rate. Model performance was inconsistent in predicting seasonal

differences in biomass production. The model under-predicted harvestable biomass

for the agronomic site, Ardmore (AGR), with a mean bias of -376 kg ha−1, and

over-predicted for the breeder sites with a mean bias of 664 kg ha−1. The model was

not able to adequately predict harvestable biomass of tall fescue for either the breeder

data (Willmott agreement index (D) of 0.61, a Nash-Sutcliffe model efficiency (ME)
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of -1.06, root mean squared error (RMSE) of 2408.) or the agronomic data (D = 0.63,

ME = 0.02, and RMSE = 5124). For the model to provide more accurate predictions

of harvestable biomass, further adaptations of more parameters are needed, such as

those which control above- to below-ground partitioning, response to temperature, and

maximum leaf photosynthesis rate. Calibration will require identifying and adapting

parameters that negatively affect biomass which will increase the model’s ability to

predict harvestable biomass and provide managers with a way to decrease variability.

3.2 Introduction

Tall fescue (Festuca arundinacea Schreb.) is a versatile and important cool-season

perennial forage in the United States, covering approximately 15 million ha [37 million

acres; Rogers and Locke (2013)] and serving many uses such as reducing runoff,

controlling erosion, and providing pasture and hay for livestock (Ball, Lacefield, and

Hoveland, 1991). In the southern Great Plains (SGP), cool-season perennial forages

are an essential early season complement to winter annual forage, such as wheat

(Reuter and Horn, 2002). Compared with other forages, cool-season perennials offer

a decreased risk of stand establishment compared to annual forage crops, a longer

growing season, and exceptional animal performance (Beck et al., 2008).

Tall fescue is an ideal cool-season forage in the SGP because it can withstand the

extreme high temperatures and frequent drought of the summer months (Hopkins

and Bhamidimarri, 2009). Additionally, the SGP has a bimodal pattern of annual

precipitation, peaking in the spring and fall (Malinowski, Kigel, and Pinchak, 2009)

when tall fescue is at its highest quality. The use of a cool-season perennial grass, such

as tall fescue, is a viable option for many ranchers because they do not have to rely as

heavily on the inopportune timing of autumn precipitation for stand establishment

as ranchers do with the annual crop wheat (Silva, 2021). Tall fescue can replace and

complement those annuals in livestock pastures to improve the economic value of
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livestock production, decrease soil erosion, and reduce labor (Hopkins, Young, et al.,

2011).

The ability to anticipate forage biomass is essential for ranchers who often use

flexible stocking densities to maximize productivity. It is difficult for ranchers to

anticipate proper management strategies to optimally manage pastureland due to

inter-annual and cross-location variability of forage. Existing forage models have

proven to be a useful tool for understanding relationships between soil, weather, and

plant phenology, especially when studying among systems over time (Pedreira et al.,

2011). One such tool is the Decision Support System for Agrotechnology Transfer

Cropping Systems Model (DSSAT-CSM) perennial forage model (James W Jones

et al., 2003; Hoogenboom, Porter, Boote, et al., 2019; Hoogenboom, Porter, Shelia,

et al., 2022). This system has routines for crops including soybean (Glycine max L.),

peanut (Arachis hypogea L.), dry bean (Phaseolus vulgaris L.), faba bean (Vicia faba

L.), tomato (Lycopersicon esculentum Mill.), Pigeonpea (Cajanus cajan (L.) Millsp.),

guineagrass (Panicum maximum Jacq. cv. ‘Tanzânia’) and the pasture grasses,

marandu palisade grass (Brachiaria brizantha) and bermudagrass (Cynodon dactylon)

(Scholberg et al., 1997; Boote, J W Jones, et al., 1998; Boote, James W Jones, et al.,

1998; Boote, Mínguez, and Sau, 2002; Phillip D Alderman et al., 2015; Lara et al.,

2012; Pequeno et al., 2018). An important feature of dynamic crop models is that

they show carry-over effect in the simulated data. This ensures that management

practices of the past affect future predictions.

However, there is limited research on crop models for predicting tall fescue har-

vestable biomass (Kiniry et al., 2018). This suggests that upon calibration of this

model, it will help ranchers to predict biomass yield of their tall fescue pastures and

aid in calculating stocking rate, carrying capacity, and nutritive value of their land.

Therefore, the objective of this study was to adapt an existing DSSAT-CSM-

Perennial ryegrass model for predicting harvestable biomass of tall fescue in the SGP.
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We hypothesized that the adapted DSSAT-CSM-Perennial Forage Model can reliably

predict (D ≥ 0.9, ME ≥ 0.65, and nRMSE <0.25) harvestable biomass of tall fescue

for the SGP.

3.3 Methods

3.3.1 Study Area

The climate of the SGP is well suited for summer-dormant varieties of perennial

cool-season grasses including tall fescue because of its bimodal growth pattern and its

ability to withstand drought. The SGP climate (humid subtropical to cold semi-arid) is

indicative of summers with severe droughts and extreme temperatures. These climatic

factors often cause photo-period, heat, and water stresses (Hopkins and Bhamidimarri,

2009).

The data used for this study come from five field trial sites across four locations

(Table 3.1). Four of the five trial sites were breeder-run cultivar performance trials

conducted near the Noble Research Institute headquarters in Ardmore, OK from

2012-2014, in Tifton, GA from 2012-2013, in Woodward, OK from 2012-2014, and in

Vashti, TX from 2012-2014. A separate set of agronomic trials was also conducted at

NRI headquarters in Ardmore, OK from 2015-2020. [The breeder trial at Ardmore is

denoted as Ardmore (BRD) and the agronomic trial is denoted as Ardmore (AGR).]

The agronomic trials tested a range of harvest frequencies and nitrogen application

levels. For this study, data were limited to the only variety common to all trials,

Flecha or Flecha-Nil, an endophyte free variety of tall fescue. A detailed description of

sites and management are provided in chapter 2 and a summary of the management

and data collected are provided in the following section.
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3.3.2 Biomass Data

Agronomic Site at Ardmore

The Ardmore (AGR) site (34.17◦ N, 97.17◦ W; elevation 266 m) was located on a

Heiden Clay (fine, montmorillonitic, thermic, Udic Chromusterts) and was planted

to the endophyte free tall fescue cultivar, Flecha, during the fall of 2013. The site

was managed as a cover crop until the first harvest in 2015. Harvest frequency varied

across AGR (high, medium, low) as well as across seasons (Table 3.1).

Ardmore, OK (AGR) had a complex harvest frequency; the high harvest frequency

was the most frequently harvested, being sampled every four weeks in the fall and

every two weeks in the spring from 2015 to 2018. The low harvest frequency was

the least frequently harvested from 2015 to 2018 with one harvest in December and

every six weeks in the spring from March until the end of the growing season (Table

3.1). A similar trend holds true for 2018 to 2020; harvest frequency decreases from

high to low. The experiment was designed with multiple harvest frequencies to mimic

different management practices such rotational grazing or cutting hay. The plot was

mowed to 2.5-cm stubble height at each harvest date and vegetation was removed

without grazing. The plot was mowed in August of 2014 when the fescue was the

most dormant, and residue was recycled to that site and not removed. The dormant

standing forage was harvested before August 25th, 2015, prior to establishing the

plots as the stand was entering its third season after planting. The study was initiated

in the fall of 2015 with five levels of N applications: 0, 56, 112, 168, and 224 kg N

ha−1 as ammonium nitrate (34-0-0) each applied in a split rate application, half in

the fall and half in the spring. An additional treatment of 28 kg N ha−1 was added

to the experimental design in the fall of 2016 and was maintained until the fall of

2018. From 2018-2020, two N levels (28 and 112 kg N ha−1) were applied as a single

application of ammonium nitrate in the fall of each season. Management practices
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Table 3.1: Harvest frequency table explained by season for each location, Ardmore,

OK, Tifton, GA, Vashti, TX, and Woodward, OK.

Experiment Season Frequency Fall Spring

Ardmore

(AGR)

2015-2018 High Every 4 weeks

October-December

Every 2 weeks

March-end of

season

Medium Every 4 weeks

November- Decem-

ber

Every 4 weeks

March-end of

season

Low Once in December Every 6 weeks

March-end of

season

Ardmore

(AGR)

2018-2020 High Every 4 weeks

October-December

Every 2 weeks

March-end of

season

Medium Every 8 weeks

November-

December

Every 4 weeks

March-end of

season

Low Once end of season

Ardmore

(BRD)

2012-2014 Once end of season

Tifton 2012-2013 Once end of season

Vashti 2012-2014 Once end of season

Woodward 2012-2014 Once end of season
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were intended to stimulate differences in forage growth over time to create varying

biomass production for hyper-spectral sensor development.

Ardmore, OK (BRD)

The Ardmore, OK (BRD) site (34.11◦ N, 97.05◦ W; elevation 240 m), the soil type

was Windthorst fine sandy loam (fine, mixed, active, thermic Udic Paleustalf). There

were five cultivars of tall fescue including, the endophyte free Flechanil, in the 2012 to

2014 Ardmore (BRD) data. This site was managed as a yield trial harvested once in

2012, three times in the spring of 2013 from March to June, and once in the spring of

2014.

Woodward, OK

The Woodward, OK breeder site (36.25◦ N, 99.24◦ W; elevation 605 m; Carey silt

loam [fine- silty, mixed, super active, thermic Typic Argiustoll]) was a tall fescue

biomass yield study established on September 26th, 2011. The study focused on the

summer-dormant varieties, including Flechanil. Harvests occurred once at the end of

each season from 2012 to 2014.

Tifton, GA

The Tifton, GA breeder site (31.49◦ N, 83.53◦ W; elevation 118 m; Tifton loamy

sand [fine-loamy, kaolinitic, thermic Plintic Kandiudult]) was composed of a variety

of summer-dormant cultivars. The plots were seeded into a bermudagrass sod on

November 11th, 2003 and managed as a cover crop until the trial began on November 2nd,

2011. Plots were harvested on April 2nd, 2012, and April 30th, 2013, and harvestable

biomass yield was recorded.
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Vashti, TX

The Vashti, TX site (33.55◦ N, 98.04◦ W; elevation 330 m; Anocon loam [fine, mixed,

active, thermic Ultic Paleustalfs]), was a yield trial with the Noble Research Institute

and was harvested once in 2012 on April 19th, twice in 2013 on April 4th and July 1st,

and again on June 2nd, 2014.

Breeder Site Management

The breeder sites Ardmore, OK (BRD), Tifton, GA, Vashti, TX, and Woodward,

OK had similar management. For all experiments, the plots were set up in 2011 in a

randomized complete block design and were seeded using a Hege 500 plot drill at a

rate of 17 kg ha−1 of seed into 7 rows. For the Ardmore (BRD), Tifton, and Vashti

locations, there were 4 replications with 1.5 m by 6.1 m (5ft x 20ft) plots. Unlike the

other breeder sites, Woodward had five replications and measured 1.5 by 7.6 m [5

by 25 ft; Trammell et al. (2018)]. For each of the breeder sites, there was a single

application of ammonium nitrate (N–P–K, 34–0–0) at the rate of 46 kg N ha−1 at

the time of sowing or early fall of each season. At the Ardmore (BRD) and Vashti

sites, an application of 2,4-D (2, 4 D-dichlorophenoxyacetic acid) low volatile ester

was applied at the rate of 1.12 kg a.i. ha−1 to control broad leaf weeds in the spring

following establishment. Samples were collected using a sickle bar plot harvester at a

height of approximately 7-cm.

3.3.3 Weather Data and DSSAT Location Files

Weather data near each location were obtained from the Oklahoma Mesonet (Brock

et al., 1995; McPherson et al., 2007) and the University of Georgia Weather Network

(Knox et al., 2020). Required weather inputs for the DSSAT model included daily

maximum, minimum, and average, air temperatures, relative humidity, 2-meter wind

speed, precipitation, and solar radiation.
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DSSAT standard format weather files, as shown in Table 2.5, were written using the

function write_wth from the DSSAT package (Phillip D. Alderman, 2020; Phillip D.

Alderman, 2021).

Weather station metadata such as latitude, longitude, elevation, average daily

temperature, temperature amplitude, the reference height for air temperature measure-

ment, the reference height for wind speed, and average daily air CO2 were identified

for each site. Daily weather data and weather station metadata were formatted as

described in chapter 2 for DSSAT standard format weather files, and were written

using the function write_wth from the DSSAT package (Phillip D. Alderman, 2020;

Phillip D. Alderman, 2021).

3.3.4 Soil Data

Soil profile information at each site was obtained from the Soil Survey Geographical

Database [SSURGO; Soil Survey Staff (2020)] based on the soil type and latitude

and longitude of each location. This was then used to pull component- and horizon-

specific soil property data. Estimates of model specific variables were determined for

each location by using SSURGO reference values, deriving approximate equivalent

values. The write_sol() function from the DSSAT version 0.0.4 R package (Phillip D.

Alderman, 2020; Phillip D. Alderman, 2021) was used when writing soil input data to

the DSSAT standard soil file format.

3.3.5 DSSAT-CSM Perennial Forage Model

The model being adapted for this study was a version of the DSSAT-CSM Perennial

Forage Model parameterized for ryegrass [Lolium spp.; Oliveira et al. (2020)]. This

model was chosen because ryegrass is a C3 cool- season perennial grass similar to tall

fescue. Adaptations included setting several parameters to zero (RDRMG, RDRMM

and RCHDP) to disable the effect of day length on inducing dormancy and setting
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STRSRFL to 0 and STRLYR1 to 1 to position 100% of storage tissue in the first soil

layer rather than on the soil surface. The parameter controlling maximum leaf-level

photosynthetic rate (LFMAX) was also adjusted up to 1.41 based on results from

Kiniry et al. (2018).

Simulation controls were set up to match the field conditions for each experiment at

each different location. Simulations were initially set to mimic a rain-fed environment.

In our analysis of observed and modeled biomass, the rain-fed environment experienced

a vast amount of waterstress. Therefore, a set of counter-factual simulations were

setup to explore the effect of waterstress on plant growth within the agronomic site.

For these hypothetical simulations, automatic-irrigation was enabled when the top 10

cm of soil dropped below 90% available soil moisture.

3.3.6 Data Analysis

The relationship between measured and model estimated harvestable biomass yield

was assessed using four goodness of fit statistics: root mean square error (RMSE),

Willmott agreement index (d; Willmott, 1981), and Nash-Sutcliffe model efficiency

(ME; Nash and Sutcliffe, 1970), and Relative Root Mean Square Error (rRMSE).

The statistical metrics were calculated as follows:

i) Root Mean Square Error (RMSE):

RMSE =

√√√√ 1
N

N∑
n=1

(yn − ŷn)2 (3.3.1)

where, N = Total number of data points, yn is the nth observation (n=1,2,. . . N),

and ŷn is the predicted value for the nth observation. Models with smaller values of

RMSE are preferable.

ii) Willmott agreement index (d):
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d = 1−

N∑
n=1

(yn − ŷn)2

N∑
n=1

(|ŷn − ȳ|+ |yn − ȳ|)2
(3.3.2)

where, N , yn, and ŷn are as described above, and ȳ is the average of the observed

data points. This statistic ranges between 0 to 1 with values closer to 1 indicating

good model fit.

iii) Nash-Sutcliffe Efficiency (ME):

ME = 1−

N∑
n=1

(yn − ŷn)2

N∑
n=1

(yn − ȳ)2
(3.3.3)

where, N , yn, ŷn, and ȳ are as described above. The values of ME can range from

−∞ to 1 and values closer to 1 indicate a better-fitting model.

iv) Relative Root Mean Square Error (rRMSE):

rRMSE = RMSE

ȳ
(3.3.4)

where, RMSE and ȳ are as defined above. Models with smaller values of rRMSE

are preferable.

3.4 Results and Discusion

In evaluation of the model, it was determined that the simulated harvestable biomass

was not aligning adequately with the observed data. In an analysis of the agronomic

site over all seasons, harvest frequencies, and nitrogen levels comparing simulated

harvestable biomass to observed yield collected in the field at Ardmore (AGR), the

model was unable to adequately predict harvestable biomass of tall fescue with a

Willmott agreement index (D) of 0.63, a Nash-Sutcliffe model efficiency (ME) of 0.02,
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Figure 3.1: Modeled harvestable biomass (kg ha−1) over time for Ardmore, OK

(AGR) from 2015 – 2020 at a high harvest frequency, where the lines represent the

simulated data, the points are the observed data, and the colors denote the different

nitrogen levels.
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Figure 3.2: Modeled harvestable biomass (kg ha−1) over time for Ardmore, OK

(AGR) from 2015 – 2020 at a medium harvest frequency, where the lines represent the

simulated data, the points are the observed data, and the colors denote the different

nitrogen levels.
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Figure 3.3: Modeled harvestable biomass (kg ha−1) over time for Ardmore, OK

(AGR) from 2015 – 2020 at a low harvest frequency, where the lines represent the

simulated data, the points are the observed data, and the colors denote the different

nitrogen levels.

42



and a root mean squared error (RMSE) of 5124 (Fig. 3.1). Overall, harvestable

biomass was under-predicted with a mean bias of -376 kg ha−1.

Each of the time-series plots represent total harvested biomass at Ardmore (AGR)

from 2015-2020 at differing harvest frequencies, high (Figure 3.1), medium (Figure

3.2), and low (Figure 3.3). This represents the total harvestable biomass and does not

account for the 760 kg ha−1 of residual biomass that would remain. At each harvest

frequency, the figures depict that simulated biomass was strongly over-predicted in

the fall leading into the winter dormant season and was rather consistently under-

predicting harvestable biomass in the rest of the season. This trend was constant

across all seasons. There were some suspicious values in the observed data, namely

the outliers found in April of 2016. Another unusual feature of the dataset was the

harvest on July 22nd which is typically out of season for tall fescue. It is suspected

that high rainfall in May and June prevented the stand from going dormant.

Figure 3.4 supports the argument that the model was under-predicting biomass at

the agronomic site due to waterstress, as evidenced by those dates where there was

growth in the observed data when the model output suggests that soil moisture has

been exhausted. For example from February to April in 2016 and from March to May

in 2017, the points where the model was severely under predicting biomass, there was

a larger amount of waterstress. However, this cannot be the only issue because there

were also times like in December of 2017 when the observed biomass was much higher

than the simulated biomass, yet there was no presence of waterstress.

Unlike the agronomic site, the modeled harvestable biomass for the breeder sites,

Ardmore (BRD), Tifton, Vashti, and Woodward was over-predicted when compared

to the observed data collected at each location with a mean bias of 664 kg ha−1.

Figure 3.5 indicates that the model was unable to predict harvestable biomass at

the breeder sites: Ardmore (BRD), OK, Tifton, GA, Vashti, TX, and Woodward, OK

(D = 0.61, ME = -1.06, and RMSE = 2408). Woodward experienced the lowest biomass
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Figure 3.4: Modeled harvestable biomass (kg ha−1) over time for Ardmore, OK

(AGR) from 2015 – 2020 at a high harvest frequency with waterstress x 2000, where

the soild-lines represent the simulated data, the translucent- dotted-line is modeled

waterstress, the points are the observed data, and the colors denote the different

nitrogen levels.
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on average possibly due to low rainfall and harsh temperatures. These environmental

conditions did affect the observed values at the Woodward site, but the simulated

harvestable biomass experienced a freeze event which caused termination of the model

in January of 2014 resulting in the date with 0 kg ha−1 of modeled biomass.

When comparing the observed and simulated harvestable biomass, the Tifton, GA

site was relatively accurate in the first season, in 2012, but over-predicted in 2013,

contributing to the overall mean bias. From March to July, during the peak growing

season, 2013 experienced nearly twice as much rain as in 2012, with 576 mm from

March to July of 2012 and 1080 mm from March to July of 2013. It is possible the

soil properties at the Tifton site were different from the soil properties provided from

SSURGO. The model may be over-predicting biomass in 2013 because it does not

have site specific soil inputs which accurately predict the water holding capacity of

the soil.

The Vashti, TX site showed an over-prediction of simulated biomass. This over-

prediction could stem from non-site specific weather data. The weather station used for

Vashti, TX was the Waurika Mesonet station (WAUR). This was the closest publicly

available weather source that provided the information needed for the dynamic crop

model and it was approximately 70 km (44 mi) from the Vashti site.

There could be several explanations for why the model was poorly-predicting

biomass. In future analysis, evaluation should be conducted on the distribution of

biomass above- and below-ground. Excluding conditions where there was no above-

ground biomass, the model predicted above- to below-ground partitioning on average

to be between 1 and 2.5, across all sites, which is lower than expected. Typically

in grasses, approximately 80%–85% of plant biomass is partitioned to above-ground

organs, and 15% – 20% is allocated to roots (Irving, 2015).

One constraint of the data was that the model was simulating total above-ground

biomass; however, the dataset was only harvestable biomass. Assumptions were made
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about how much un-clipped biomass remained (residual stubble) and how much was

actually being harvested (harvestable biomass). After the sample was cut, the forage

mass kg ha−1 remaining under the cutting bar had to be determined using the clipping

height. A conversion from clipping height to forage mass in km ha−1 (Rayburn and

Lozier, 2003) was used to calculate the residual biomass at each the agronomic site and

the breeder sites. The residual amount calculated for Ardmore (AGR) data was 760

kg ha−1, and for the breeder sites, 1800 kg ha−1. In analysis, the calculated residual

amount was subtracted from the simulated biomass so that both the measured and

modeled values were estimating harvestable biomass. This action was performed to

mimic a pasture grazing or mowing scenario where residual is usually left standing

to cause quicker regrowth (Deléglise et al., 2015; Hannaway et al., 1999). The error

could be that the residual prediction was inaccurate, therefore causing an inconsistent

prediction in modeled biomass. These residual stubble mass variables were assumed to

be constant (i.e. not varying by season or management), which may not reflect reality.

It is likely that all of these factors could affect the residual stubble mass in the field.

Conversely, the calculated estimate for residual biomass could have been correct

and the model was not estimating the total biomass production properly, thus low

simulated biomass was produced due to under-estimation of the photosynthetic capacity

of the canopy. If this was the error, the maximum leaf photosynthesis rate (LFMAX)

parameter could be adjusted up from 1.41 (Kiniry et al., 2018) to a level that increases

overall productivity of the plant to fit the observed data.

Though adjustments may need to be made in the parameterization of the model,

there were also uncertainties in the inputs, specifically the soil data. We are confident

in the weather data provided due to the standardized protocols of the Oklahoma

Mesonet (McPherson et al., 2007; Brock et al., 1995) and the University of Georgia

Weather Network (Knox et al., 2020). We have less confidence in the soil data from

each site.
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Although we expect the general characteristics of soil data pulled from SSURGO

to be representative of the soil types at each location, it is possible that, in reality,

the site-specific soil properties deviated from the general properties captured by

SSURGO. If the actual soil water holding properties were substantially different from

the SSURGO data, it would help explain the presence of simulated waterstress even

when the observed data did not appear to indicate such a limitation on growth. For

instance, in Figure 3.4 there was still growth in the observed values, even when

the model was suggesting that soil moisture had been completely exhausted. This

indicated a soil moisture issue, because it is impossible to have plant growth without

adequate soil moisture. Nevertheless, the biomass data suggest that there was at least

enough soil moisture to have biomass because, in the clipped data, growth continued.

If the constraint were soil moisture, the assumption was, when a hypothetical

irrigation simulation was enabled in simulation controls to alleviate waterstress,

there would be a dramatic increase in productivity for those cases where there

was observed biomass growth even when the model under-predicted biomass due

to waterstress. However, Figure 3.6 indicates that even when a modeled irrigation

scenario is introduced, the model still under-predicts biomass compared to the observed

data.

Figure 3.6 represents the difference in a modeled waterstressed scenario and

a modeled auto-irrigated scenario with a nitrogen application of 112 kg ha−1 to

alleviate any nitrogen stress that may be present. It is evident, in Figure 3.6, that

waterstress is part of the issue; however, because the simulated harvestable biomass

under waterstressed conditions outperforms the irrigated harvestable biomass, there

are other contributing factors.

Whether in a simulated irrigated or waterstressed environment, the model was

accurate in simulating the separation in the different nitrogen treatments within the

model and what was observed in the field. Not only was the model correct in predicting
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Figure 3.6: Modeled harvestable biomass (kg ha−1) over time for Ardmore, OK

(AGR) from 2015 – 2020 at a high harvest frequency comparing model simulated

auto-irrigated and waterstressed scenarios at 112 kg ha−1 N, where the solid-line

represents the irrigated scenario, the dotted-line is the waterstressed scenario, and the

points are the measured values.
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the separation between treatments, but it was also correct separating them in the

same orders of magnitude between the levels (Fig. 3.7).
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Figure 3.7: Modeled harvestable biomass (kg ha−1) over time for Ardmore, OK (AGR)

from 2015-2020 at a high harvest frequency comparing model simulated auto-irrigated

and waterstressed scenarios at 3 levels of N: 0, 28, 112 kg N ha−1 where the line is the

simulated data, the points are the measured data, and color represents the nitrogen

level.

It is not clear why the simulated data did not align with the observed data; it

could be any of the explanations discussed: inaccurate residual biomass assumption,

LFMAX value, above- to below-ground partitioning, or incorrect input data leading to

a waterstress issue. The model shows an appropriate qualitative response to simulated

waterstress and nitrogen response, but the model may be incorrect in its prediction of

the intensity of waterstress present and, consequently, may be quantitatively inaccurate.
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For the model to provide more accurate predictions of harvestable biomass, further

adaptations of more parameters are needed, such as those which control above- to

below-ground partitioning, response to temperature (Insua et al., 2019), and maximum

leaf photosynthesis rate. Calibration of parameters and following through with this

analysis on a larger, more thoroughly documented dataset would likely result in

quantitative estimates which more accurately predict the harvestable biomass of tall

fescue in the southern Great Plains.

3.5 Conclusion

Tall fescue is an increasingly important grass for ranchers in the SGP for its variety of

uses on the land for livestock and wildlife, as well as for its environmental and economic

impact. Anticipating harvestable biomass of forage is important for ranchers trying to

sustain the longevity of their land and reach optimal productivity of their livestock.

We adapted an existing DSSAT-CSM-Perennial Forage Model for perennial ryegrass to

achieve statistical predictions and developed a model to predict harvestable biomass

of tall fescue. The current state of the model accurately simulates the separation

in differing nitrogen treatments when comparing modeled and observed yield and

separates the nitrogen levels at the correct levels of magnitude. However, the model

is not yet quantitatively accurate possibly due to lack of site-specific soil input data,

inaccurate assumptions about residual stubble mass or poor parameterization. The

model, in its current state, is not yet ready for ranchers. Further model development

work should focus on better parameterization and acquiring additional datasets that

are thoroughly documented.
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CHAPTER IV

GENERAL CONCLUSIONS

Tall fescue is an increasingly important grass for ranchers in the southern Great Plains

(SGP) for its variety of uses on the land for livestock and wildlife, as well as for its

environmental and economic impact. Anticipating harvestable biomass of forages is

important for ranchers trying to sustain the longevity of their land and reach optimal

productivity of their livestock. There has been little research in the area of tall fescue

modeling (Kiniry et al., 2018). The limited research is due in part to few long-term

forage trials with the ideal characterization needed for modeling.

In this thesis we adapted an existing DSSAT-CSM-Perennial ryegrass model for

estimating forage biomass of tall fescue in the southern Great Plains. The DSSAT-

CSM-Perennial forage model, a dynamic crop model, requires management, weather

and soil input data to predict plant growth. Model evaluation depends on the

availability of observed biomass data. For this project, focus was put on compiling one

comprehensive dataset in DSSAT standard file format for observed biomass (FileT),

management data (FileX), weather data (.WTH), and soil data (.SOL) from a range

of environments that will permit further model development, parameterization and

evaluation. Biomass data were compiled from five different experiments across four

different locations, Ardmore, OK, Tifton, GA, Vashti, TX, and Woodward, OK in

association with the Noble Research Institute. The Soil Survey Geographical Database

[SSURGO; Soil Survey Staff (2020)] was used as the data source for each site. Daily

weather data and weather station metadata were obtained from the Oklahoma Mesonet

(McPherson et al., 2007; Brock et al., 1995) and the University of Georgia Weather
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Network (Knox et al., 2020). The data for all locations and growing seasons were

merged to generate the curated dataset.

Using the adapted model with the combined dataset, we evaluated model perfor-

mance in terms of harvestable biomass. There were positive results when simulating

the effects of nitrogen treatments on harvestable biomass. Specifically, the model was

correct in predicting the magnitude of N response across treatment levels. However,

model performance was inconsistent in predicting seasonal differences in biomass

production. The model is under-predicting harvestable biomass for the agronomic site,

Ardmore (AGR), with a mean bias of -376 kg ha−1, and it is over-predicting for the

breeder sites with a mean bias of 664 kg ha−1. The model was not able to adequately

predict harvestable biomass of tall fescue for either the breeder data (D = 0.61, ME =

-1.06, and RMSE = 2408) or the agronomic data (D = 0.63, ME = 0.02, and RMSE

= 5124).

Though this model can not yet adequately predict tall fescue harvestable biomass,

the curated dataset described in Chapter 2 is necessary for analysis to be conducted

and parameter changes to be tested as described in Chapter 3. A large portion

of this project went into data collection and cleaning. There is potential for this

curated dataset to aid in calibration during future parameterization of the model. The

analysis in Chapter 3 would benefit from more site-specific information, especially

within the soil data. The model would also benefit from additional sites with more

comprehensive characterization of inputs. Future directions for this research would

be to achieve better parameterization through calibration of parameters that control

above- to below-ground partitioning, response to temperature, and maximum leaf

photosynthesis rate.
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