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Abstract: The promised future applications in solar energy harvest have been remarkably 

recognized. However, the hourly forecasting of normal solar irradiance (NSI) outputs is 

considered a problem due to the dynamic nature of meteorological information not only in 

a day but also across days. The thesis proposed three neural network models including a 

dense layer without a hidden layer (DNN_h0), a dense neural network with two hidden 

layers (DNN_h2), a dense neural network with two hidden layers associated with one 

intermediate metrological feature (air temperature: T) (DNN_h2T), and dense neural 

network with two hidden layers associated with 7 intermediate metrological features 

(DNN_h2F). These models would be used to forecast an hourly prediction of normal solar 

irradiance (NSI) across an entire day. As well as, we proposed two configurations to 

represent our datasets: FTC (sine-cosine) and 1H (one-hot) encodings. In addition, we used 

metrological features such as air temperature T and others to determine the effectiveness 

of a model’s performance in terms of mean absolute error (MAE). We conducted two 

groups of experiments: single-step and multi-step prediction models by using one real-

world dataset (NREL). As a result, the comparison is revealed that the (NSI) has an 

acceptable model performance in both FTC and 1H encodings for the multi-step models 

by using an intermediate metrological feature: air temperature T in the (DNN_h2T) model. 

Whereas the single-step model (DNN_h0) has shown slightly acceptance to find a well 

performance to predict the (NSI), while the (DNN_h2) model shows a significant (MAE) 

values in both encodings.
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CHAPTER I 

INTRODUCTION 

 

Forecasting is an important problem that spans many fields including energy, industry, 

government, economics, environmental sciences, and others [1]. A sequence of observations 

generates time series [2]. Nowadays, the promised future applications in solar energy harvesting 

have been remarkable recognized since the solar energy reaches the earth exceeds by far 

humankind’s needs. The basic concept of collecting solar power is relatively simple, as a 

concentrate energy from the sun’s rays to heat a receiver to high temperatures and inverted into 

electricity [3]. The prospective analysis of data related to solar energy can be exposed by 

considering real experimental data as a time-series taken from disciplines [4]. The primary 

objective of the time-series analysis is to develop mathematical models that provide plausible 

descriptions for sampling the datasets. A time series are taken one variable that is the time, while 

many algorithms can be used to achieve the predicted future results of the sensible.  Solar harvest 

has shown considerable interests in recent decades were unsteady due to massive inter-day and 

intra-day fluctuation, seasonal effects, dirt, and hardware aging [14] [15] [16]. The environment 

has a notable impact, e.g. shades of buildings and trees reduce the harvest considerably [8]. 

Numerous algorithms have been devised that adjust the task schedule of sensor nodes online to 

achieve energy-neutral harvesting operations, and save as much energy as possible to aim at 

maximizing the energy-neutral node consumption. The high harvesting rates are related to predict 

the future of a long-term predictions at least one day [17] [18] [19] [20].   
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Objectives of the thesis 

This work analyzes the time series of one meteorological dataset applied in solar energy harvest. 

The hourly predictions of solar irradiance are considered the main problem due to the dynamic 

nature of radiant energy and meteorological data across days [10]. The air temperature is also one 

of the weather dependents uncontrollable that conjoined to the existence of clouds and can be fed 

into the solar irradiance predictions [22]. The thesis is an evaluation study of hourly time series 

forecasting models to predict the direct normal solar irradiance (NSI) associate with an 

intermediate meteorological feature: the air temperature (T) by using three models categorized as 

artificial intelligence models (artificial neural networks), then used a comparative approach 

among the models in terms of their performances. The proposed models including one dense 

layer (i.e. without hidden layer), dense neural network (two dense hidden layers), and dense 

neural network (two dense hidden layers) associated with intermediate feature: air temperature 

(T). However, these models would use to make the predictions for one dataset over the 9 years of 

the time period 2011 through 2020. Fourier analysis (sine-cosine) and one-hot encodings are 

suggested to compare the effectiveness of these models performance. Thesis forecasting work 

experiments are divided into two groups:  

1. Single-step prediction models: one hour into the future considering the daytime hours for 

a single meteorological feature value such as (NSI). 

2. Multi-step prediction models: each model needs to train and predict a range of features 

values. Unlike a single-prediction, where only a single future point is predicted, a multi-

step forecasts a sequence of the intermediate meteorological features such as (T) to make 

the daytime hourly forecast and would be fed into the (NSI) prediction. 
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The results are discussed in terms of each model's performance. Comparing the performance 

among prediction models would be determining if our experiments would aid improve the 

prediction’s performance for the direct normal solar irradiance (NSI) values. Also, our work is an 

attempt to validating the assumption of using the both Fourier transformation and One-hot 

encodings on each model's performance that may impact forecasting results of the time series, 

and thus can be extending their usage in the literature.
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CHAPTER II 

 

REVIEW OF LITERATURE 

 

In 2010, Jun Lu et al. [5] and 2012, Hejase, H. A. N. & Assi, A. H. [6] published a study of two 

models independently, which have been adopted the system performance for energy harvesting to 

predict the mean daily global solar radiation. In 2012, Cammarano, A. et al. [7] and 2013, 

Renner, C. [8] published independently a novel energy prediction models, which was able to 

leverage past energy observations to provide accurate estimations of future energy availability, 

and proposed and evaluated two methods that combine local information of a node’s harvest 

pattern with global cloud cover forecasts. In 2015, Prema, V. & Rao, K. U. [9] and 2018, Sharma, 

A. & Kakkar, A. [10] they’ve independently proposed models for short-term prediction of solar 

irradiance from which solar power can be predicted, adding to, series of experimental evaluations 

presented in terms of forecast accuracy, correlation coefficient and root mean square error 

(RMSE). In 2019, Ismail Fawaz, H. et al. [11] have reviewed the deep Learning techniques and 

some applications on Time-Series analysis were used and resulted good, as well as, a novel model 

of boosting ensemble strategy to demand forecasting systems by implementing a novel decision 

integration model. As well as Kilimci, Z. H. et al. [12] published an improved demand forecasting 

model using a deep learning approach and a proposed decision Integration strategy for the supply 

chain.  

In 2019, Donghun Lee & Kwanho Kim [22] they suggested three PV power output prediction 

methods such as artificial neural network (ANN), deep neural network (DNN), and long and short 

term memory (LSTM) based models that are capable to understand the hidden relationships 
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between meteorological information and actual PV power outputs. Also, they proposed LSTM 

based model is designed to capture both hourly patterns in a day and seasonal patterns across 

days, and found out that the proposed ANN-based model fails to yield satisfactory results, and the 

proposed LSTM based model successfully better performs more than 50% compared to the 

conventional statistical models in terms of mean absolute error as shown in figure 2.1.  

 

Figure 2.1 shows the performance comparisons according to easy and hard seasons [22] 

Donghun Lee & Kwanho Kim's research has opened up an entire new gap in our understanding of 

neural networks used in predictions. Numerous efforts have been proposed in the literature. Thus, 

this knowledge remains limited in such fields. This work explores the unknown field and 

contributes to minimizing this gap. 

Although statistical time series forecasting methods are utilized in the literature, there are a 

limited number of studies that utilize deep artificial neural networks, however, the effect of using 

multivariate data on solar radiation forecasting using a deep learning approach which proposed a 

multivariate forecast model that uses a combination of different meteorological variables. In 

2020, Sorkun, M. C. et al. [33] proposed a multivariate forecast model that uses a combination of 
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different meteorological variables, such as temperature, humidity, and nebulosity by using 

recurrent neural network (RNN) variation, namely a long short-term memory (LSTM), which 

they observed that temperature and nebulosity are the most effective parameters for predicting 

future solar irradiance. As well as in 2020, Nair, V. et al. [34] have leveraging the Fast Fourier 

Transformation, reduces the image convolution costs involved in the Convolutional Neural 

Networks (CNNs) and thus reduces the overall computational costs, which proposed a model that 

identifies the object information from the images. In addition, the idea that neural networks learn 

similar features on the same input inspired in 2020, Tancik, M. et al. [35] to publish a study of 

using a Fourier feature mapping to transform the effective the neural tangent kernel NTK into a 

stationary kernel with a tunable bandwidth. They have suggested an approach for selecting 

problem-specific Fourier features who greatly improves the performance of multilayer perceptron 

MLPs for low-dimensional regression. In 2020, Chitsaz, K. et al. [37] published a study to 

accelerate of Convolutional Neural Network using FFT-based split convolutions. Also, Wolter, 

M. et al. [41] proposed to combine Fourier methods and recurrent neural network architectures, 

and used the short-time Fourier transform to efficiently process multiple samples at a time. 

As mentioned in the thesis objective, the thesis inspired part of the works in [22], and [34] by 

using the procedure of single-layer and multi-layer neural networks and evaluates proposed 

models such as linear, DNN1, and DNN2 to conduct experiments on the available meteorological 

features and predict both (NSI) and intermediate features (T). Unlike the [22] work, our dataset 

has hourly patterns of the meteorological features that were taken across daytimes only, ignoring 

the week or the day of the month. Also ignore the location of a specific region. Likewise, a 

simple Fourier feature mapping enables a multilayer perceptron (MLP) to learn high-frequency 
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functions in low-dimensional problem domains [35], we proposed the Fourier analysis and one-

hot encodings to conduct the time series predictions and determine the effectiveness of each 

model performance towards the NSI predictions [36]. It reduces the costs involved in neural 

networks and thus reduces the overall computational costs [37]. The thesis work provides a well 

performance comparison among the models to explore an inexplicit field of the literature. 
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CHAPTER III 

 

METHODOLOGY 

 

This chapter presents the method of preprocessing a chosen dataset and the method to build our 

artificial neural network models (i.e. models architecture) that are used to find the time series 

analysis forecasts. As mentioned in our thesis’s objective earlier, the thesis conducts two groups 

of experiments: single-step and multi-step prediction models to the normal solar irradiance (NSI) 

associated to the air temperature (T) of the next hour. By training three neural network models 

including a dense layer without hidden layer (DNN_h0), a dense neural network with two hidden 

layers (DNN_h2), a dense neural network with two hidden layers associated with one 

intermediate metrological feature (air temperature: T) (DNN_h2T), and dense neural network 

with two hidden layers associated with 7 intermediate metrological features (DNN_h2F) using a 

TensorFlow-Keras library (version 2.6.0). We proposed two encoding representations: FTC (sine-

cosine) and 1H (one-hot) for our dataset, the models' performance is conducted in terms of the 

mean absolute errors (MAE). 

3.1 Dataset  

The thesis is used one real-world dataset. The dataset is collected by the National Renewable 

Energy Laboratory (NREL): Solar Radiation Research Laboratory, which records samples per 

hour for an entire day. The dataset has been taken from Jan 1, 2011, through Jan 1, 2020. The 

NREL dataset contains 9 meteorological features including the avg direct normal solar irradiance 

(NSI) [kW-hr/m^2], avg air temperature (T) [deg C], avg atmospheric pressure (P) [mBar], avg 

wind speed (W) [m/s], avg peak wind speed (PW) [m/s], avg precipitation (Prep) [mm], and avg 

relative humidity (RH) [%], zenith angle (Z) [degrees], and azimuth angle (A) [degrees].  
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NREL Dataset Source: 

https://midcdmz.nrel.gov/apps/daily.pl?site=IRRSP&start=20070619&yr=2020&mo=9&dy=14 

To show the seasonality evolution of our meteorological features over the selected years, the 

evolution of the original dataset features is illustrated in appendix A. 

3.2 Dataset Configuration  

The 9 meteorological features in an original dataset is transformed into two different 

representations: FTC(sine-cosine) and 1H (one-hot) configurations. For the 1H encoding, we used 

the 24 bits for representing the hour of the day at the beginning of each year. Thus, the feature 

vectors used for hours, date and angles as follows: 

1. FTC configuration: the total size of our feature vectors is 15, where hours, date and 

angles are transformed to sine and cosine components. Whereas the 7 features (RH, W, 

PW, P, PR, NSI, and T) values are copied without modification. 

2. 1H configuration:  the total size of our feature vectors is 61, where angles are transformed 

to sine and cosine components. The hours, and date are represented into 24 for the hours 

of the day and 26 for the date. Whereas the 7 features (RH, W, PW, P, PR, NSI, and T) 

values are copied without modification. 

However, the deterministic feature values of hours, date and angles (i.e. the zenith and azimuth 

angles) would not need to be predicted as they can be calculated directly. The used codes are 

described in appendix B. 

3.3 Dataset Splitting  

Evaluating a model always boils down to splitting the available dataset into two sets: training, and 

validation [46]. We partitioned the data into three data sets as in the following: 

https://midcdmz.nrel.gov/apps/daily.pl?site=IRRSP&start=20070619&yr=2020&mo=9&dy=14
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Training dataset (2011 - 2017) (six-years), Validation dataset (2018) (one-year), and Testing 

dataset (2019) (one-year). 

The split of the data ensures dividing it into the windows of consecutive readings and transformed 

our data into samples of inputs of past observations and outputs of future observations. The six 

years training set is used to fit the learning model, the one-year validation set is used for tuning 

the model’s hyper-parameters, where to regularize the signs of overfitting/underfitting and 

calculating the loss function in terms of mean square error (MSE) to stop the learning process, 

whereas the one-year test set is used for evaluating the model’s performance (i.e. the 

generalization errors) in terms of mean absolute error (MAE).  

3.4 Dataset Cleansing and Normalization 

In order to eliminate the noise in the seasonality evolution of the original meteorological features 

inputs as shown in appendix A. We found that the original data have sensor readings of -99999, 

which only happened 5 times at 2:00 AM hour, and in the first two years. Since that values cannot 

be valid for the prediction process, it must be a signal for a missing measurement. Also, it will not 

affect our predictions between 8:00 AM through 6:00 PM.  However, without removing them will 

throw off the data pre-processing. We detected Outliers and replace them with linear interpolation 

of adjacent values. In addition, we used the options to toggle removing Outliers and to toggle 

among Min-Max scale, zero mean, and unit variance scaling. After replacing the missing 

measurement values, Outlier’s detection found a lot more outliers and most of them were adjacent 

so we cannot have applied linear interpolation and it just clips the outlier the sigma equals to 3 

value. Thus, the values are conducted to clean up the outliers of our dataset. So any distance value 

with an integer value greater than 3 are detected as outliers [29] [42] [45] [46] [47]. The details 

coding is described in the appendix C. 
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3.5 Sliding Window and Training Models 

We used a sliding input window over a sequential sequence for the 7 numerical input feature 

vectors. At a time, t, all of the feature vectors from time t-w to t are concatenated into an input 

vector for a model. A model then makes a prediction for time t+k. Our experiments have used a 

setting: w = 24, k = 1, where w is the width (number of time steps: hours) of the input window, k 

is the predicted value. Thus, our models predicted all of the components of the input vector at 

time t+k, except for desired prediction item. To wrap up, the final dimensions of feature vectors 

conducted are 15 feature vectors in FTC encoding and 61 feature vectors in 1H encoding. We 

used the validation set to evaluate the models in terms of mean square error (MSE) to tune our 

models. Once the models are ready for the peak time, we conducted a test them within a test set to 

calculate the models performance. We used 250 epochs, and 128 batch size in training the 

models. Thus, the amount of errors in the predicted outputs in terms of mean absolute error 

(MAE) which can be calculated during each epoch. As the epochs go by, the model learns and its 

loss error (MSE) on the training set naturally goes down, and so does its prediction error on the 

validation set. However, after the epoch is finished, the validation error stops decreasing and 

actually starts to go back up. This indicates that the model has started to overfit the training data, 

while the loss function between training and validation sets is calculated [29]. Also, we used 

Adam optimizer which reaches the lowest value to track the loss faster and determine how much 

the weights are needed to be adjusted toward minimizing (MAE) values for the entire training 

dataset [22] [45]. The (MAE) values and loss function results are illustrated on the next chapter. 

The codes are described in appendix D. 
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3.6 Neural Network Models 

Thesis models scripts, structures and summary are described in appendix E.   

3.6.1 Baseline model 

As mentioned previously for training our dataset, we built a simplest model by using the target 

value from time t to make prediction at time t+k ignoring earlier input values in the input window 

t-w to t-1. This model used to have a performance baseline as a point for comparison with the 

later models [45].  

3.6.2 Dense without hidden layer (DNN_h0) model 

We used a single dense layer forward fully connected neural network for the training dataset 

between inputs and outputs. The model is used all of the feature vectors in the input window, 

where there are no interactions between the predictions at each time-step and did not even place 

the most weight on the inputs to avoid one of the risks of random initialization. The set of our 

model as follows: 

 input layer = (k features * t time samples of input window) 

 output layer = (1 node), fully connect to input layer (used the sigmoid activation). 

3.6.3 DNN (Dense Neural Network) models 

We used stacks of 2 dense hidden layers forward fully connected neural network between the 

inputs and the outputs. Also, the model used 2 dropout layers between the first hidden layer and 

the second hidden layer, and between the second hidden layer and the output layer.  

Our single-step prediction model called DNN_h2 (dense neural network with 2 hidden layers) 

that is used a set as the following:  
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 input layer = (k features * t time samples of input window) 

 hidden layer 1 = (h1 nodes), fully connect to input layer (used ReLU activation) 

 dropout layer1 (hidden layer 1) 

 hidden layer 2 (h2 nodes), fully connect to dropout layer 1 (used ReLU activation) 

 dropout layer2 (hidden layer 2) 

 output layer (1 node), fully connect to dropout layer 2 (used Sigmoid activation) 

The DNN_h2 model is trained using a loss function between the single output node that could be 

used to predict the NSI of the next time step. In our multiple-step prediction model called 

DNN_h2T (dense neural network with 2 hidden layers within two features: T and NSI) that 

would be used for predicting the next time step the two features (T to NSI) concatenated by using 

a Concatenate layer, where used a set for feeding the NSI from T and as the following: 

 input layer = (k features * t time samples of input window) 

 hidden layer 1 = (h1 nodes), fully connect to input layer (used ReLU activation) 

 dropout layer1 (hidden layer 1) 

 hidden layer 2 (h2 nodes), fully connect to dropout layer 1 (used ReLU activation) 

 dropout layer2 (hidden layer 2) 

 output layer 1 (1 node = T), fully connect to dropout layer 2 (used Sigmoid activation) 

 Concatenate layer = fully connected to output layer 1 and dropout layer 2 

 output layer 2 (1 node = NSI), fully connect to concatenate layer (used sigmoid 

activation) 
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The DNN_h2T model is trained using a loss function between the single output 2 nodes to 

predicted both the T and NSI of the next time step. However, one more multiple-step prediction 

model called DNN_h2F (dense neural network with 2 hidden layers within 7 features: RH, W, 

PW, P, PR, T, and NSI) that would be used for predicting the next time step the 7 features (RH, 

W, PW, P, PR, T, to NSI) concatenated by using a Concatenate layer, and it is trained using a loss 

function between the single output of 7 nodes, where used a set as the following: 

 input layer = (k features * t time samples of input window) 

 hidden layer 1 = (h1 nodes), fully connect to input layer (used ReLU activation) 

 dropout layer1 (hidden layer 1) 

 hidden layer 2 (h2 nodes), fully connect to dropout layer 1 (used ReLU activation) 

 dropout layer2 (hidden layer 2) 

 output layer 1 (1 node = RH), fully connect to dropout layer 2 (used Sigmoid activation) 

 output layer 2 (1 node = W), fully connect to dropout layer 2 (used sigmoid activation) 

 output layer 3 (1 node = PW), fully connect to dropout layer 2 (used Sigmoid activation) 

 output layer 4 (1 node = P), fully connect to dropout layer 2 (used sigmoid activation) 

 output layer 5 (1 node = PR), fully connect to dropout layer 2 (used Sigmoid activation) 

 output layer 6 (1 node = T), fully connect to dropout layer 2 (used sigmoid activation) 

 concatenate layer = fully connected to dropout layer 2 and output layers 1, 2,3,4,5, and 6. 

 output layer 7 (1 node = NSI), fully connect to concatenate layer (used Sigmoid 

activation) 

 



 

15 
 

3.7 Experimentation 

As mentioned earlier in the thesis’s objective in chapter 1, the thesis has conducted two groups of 

experiments applied to a real-world dataset (NREL dataset) by leveraging the TensorFlow-Keras 

library (version 2.6.0). The first group of experiments is a single-step prediction model that would 

be forecasted the normal solar irradiance (NSI), by which including the models DNN_h0, and 

DNN_h2. These models are trained on a training set for a loss function on out of the next time 

step (i.e. one hour ahead). In the next step, the models are validated using a validation set, where 

an output node corresponds to our prediction’s model for the NSI. However, the deterministic 

feature values of time, date and angles are not need to be forecasted as they can be calculated 

directly as mentioned earlier. 

The second group of experiments is a multi-step prediction which are used models including 

DNN_h2T and DNN_h2F of the next step prediction (i.e. one hour ahead) that would be used to 

conducting the forecast of other intermediate features such as T. However, the DNN_h2T model 

is used to resulting the first output layer of prediction (T) to feed up our goal the (NSI), and the 

second output layer is used to resulting our desired (NSI) prediction (i.e. DNN_h2T have two 

output nodes). Likewise, the DNN_h2F is used to make a verification that it would perform about 

the same as our focused two features model (i.e. DNN_h2T). That is, the models are trained on a 

training set for a loss function between the predicted features and the desired outputs.   

The difference between the second group models and the previous ones is that the links are added 

in series by using a Concatenate layer from all of the hidden layers to the related output nodes; 

however, including an intermediate feature (T) to feeding and corresponding to the target output 

(NSI). The hidden layers (h1 and h2) are set the number of nodes as the following: hidden layer 1 

(h1) set to 128 nodes, and hidden layer 2 (h2) set to 32 nodes.  
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Also, we used two of the regularizations; however, the dropout layer within a rate value of (0.3) 

between the hidden layers (h1 and h2) and an output layer as mentioned in the DNN models 

(subsection 3.6.3), as well as assigning loss weights to take a value (0.5) for each output. Also L2 

regularizer is used with a factor’s default value (l =0.01) in both DNN_h2T and DNN_h2F 

models, that is, might be prevented our models from overfitting [48].  

Both experiments (single-step and multi-step predictions) are conducted for both FTC and 1H 

encodings. The performance of each model are calculated in terms of mean absolute error (MAE). 

A comparison of the performance of the first group prediction models and the second group 

prediction models would be determining if the training makes explicit forecasts of the other 

features, where maybe helped in the improvement of the prediction to the targeted (NSI) value. 

The models structures are described in appendix E. 

3.8 Models Performance 

The thesis used the mean absolute error (MAE) based on the difference between the predicted 

values and the true values for the total number of data points used. The MAE was obtained by 

standardized values using Equation (3.1) [38]: 

MAE =
∑ |Yi − Xi|

n
i=1

𝑛
 … … … … … … … … … … … … … … … . (3.1) 

   

Where 𝑛 is the total number of data points used in the testing, Yi are the predictions and Xi 

are the true values [39] [40]. 
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CHAPTER IV 
 

RESULTS 

 

The results for the single-step and multi-step prediction models including DNN_h0, DNN_h2, 

DNN_h2T, and DNN_h2F as mentioned earlier in subsections 3.6.2 and 3.6.3 are presented and 

discussed by illustrating their performance in terms of mean absolute error (MAE). Also, we 

presented the models' performances in both proposed representations: FTC and 1H encodings, as 

mentioned earlier in section 3.2. The baseline model performance (MAE) has resulted as a point 

for the comparison to other models, by which the training set is given a value of (0.1419) and the 

validation set is given a value of (0.1365). We conducted base experiment and several additional 

experiments (investigations) to tackle both underfitting and overfitting problems. 

4.1 Base experiment 

The trained single-step models (DNN_h0, and DNN_h2) are shown different values of 

performance to forecasting the (NSI) that would be considered in terms of the mean absolute 

error (MAE). As mentioned in the previous chapter and through our base experiment, we 

determined the required settings of the hyper-parameters set as number of epochs = 250, batch 

size = 128 and a dropout layer rate value of (0.3) [22]. On the next pages, figures 4.1 and 4.2 are 

presented the experimental results that illustrated the changes of the NSI-loss function and the 

NSI-MAE values of our DNN_h0 model in both FTC and 1H encodings during the training 

session, respectively. Since the training set is used to train the model, whereas the validation set is 

used to estimate and tune the parameters of the model. That is, decided when to stop training and 

set meta-parameters of the models. The loss function and the MAE values of training and 
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validation sets would be decreased as the number of epochs increased which have very 

convergent numbers (i.e. there is no big difference in values by taking its number as is during the 

training session). In which indicates that our simple DNN_h0 model successfully attempts to 

search for some well solutions against the given validation dataset by gaining errors less than the 

baseline model. However, figures 4.3 and 4.4 are illustrated the base experiment results of the 

DNN_h2 model in both encodings (FTC and 1H) respectively. The DNN_h2 model learning 

curves are shown a sign of underfitting in both encodings, except a slight difference in the loss 

function that tends to be alleviated the sign of underfitting in 1H encoding.  

However, the learning curves and the NSI mean absolute error of the most complex model: 

DNN_h2T are shown much better of results compared to our baseline model values. As well as 

the 7 features (RH, W, PW, P, PR, NSI, and T) model: DNN_h2F, which is used to verify the 

performance as the two feature (NSI and T) model (i.e. DNN_h2T), that would not improve over 

the T and NSI. Thus, the MAE values of both NSI and T are illustrated a comparatively sign of 

underfittings which is a sign of lower errors in validation in the FTC encoding, whereas a sign of 

searching to find a well fitted in the 1H encoding in the loss function and MAE values. Figures 

4.5, 4.6, 4.7 and 4.8 are illustrated the NSI learning curves of the DNN_h2T and DNN_h2F 

models in both encodings, respectively. Table (4.1) shows the MAE values of the base 

experiment. However, the DNN_h2, DNN_h2T models are still needed to be investigated for 

more experiments corresponding to the underfittings and overfittings problems, by which the 

underfitting means that the model has a poor relationship with the training set.  

We conducted additional experiments (i.e. investigations) later in this chapter to alleviate these 

major challenges.  
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Loss function                                                            MAE 

Figure 4.1 DNN_h0 model NSI-  loss function and MAE learning curves in FTC encoding. 

Loss function                                                                   MAE 

Figure 4.2 DNN_h0 model NSI - loss function and MAE learning curves in 1H encoding. 
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Loss function                                                            MAE 

Figure 4.3 DNN_h2 model NSI- loss function and MAE learning curves in FTC encoding. 

Loss function                                                            MAE 

Figure 4.4 DNN_h2 model NSI- loss function and MAE learning curves in 1H encoding. 
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Loss function                                                            MAE 

Figure 4.5 DNN_h2T model NSI- loss function and MAE learning curves in FTC encoding. 

Loss function                                                            MAE 

Figure 4.6 DNN_h2T model NSI- loss function and MAE learning curves in 1H encoding. 
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Loss function                                                            MAE 

Figure 4.7 DNN_h2F model NSI- loss function and MAE learning curves in FTC encoding. 

Loss function                                                            MAE 

Figure 4.8 DNN_h2F model NSI- loss function and MAE learning curves in 1H encoding. 
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Table 4.1 shows the MAE results of the base experiment. 

Models 

MAE 

base experiment 

FTC encoding 1H encoding 

 
Train Val Train Val 

Baseline NSI 0.1419 0.1365 0.1419 0.1365 

Single-step prediction: DNN_h0 and DNN_h2 models 
epochs = 250 , batch size = 128 , opt=Adam 

DNN_h0 NSI 0.1233 0.1240 0.1244 0.1286 

 DNN_h2 
h1 =128 ,h2  =32, Dropout (0.3) 

NSI 0.1230 0.1076 0.1186 0.1107 

Multi-step prediction: DNN_h2T and DNN_h2F models 
epochs = 250 , batch size = 128 , opt=Adam 

DNN_h2T 
NSI 0.1136 0.1074 0.1072 0.1123 

T 0.0373 0.0208 0.0389 0.0237 

DNN_h2F NSI 0.1251 0.1108 0.1216 0.1119 

 

4.2 Investigation experiments 

In order to tackle the underfitting and overfitting problems, we conducted several investigation 

experiments that may alleviate and reduce these problems in our DNN_h2 and DNN_h2T models.  

4.2.1 Change the Number of Epochs 

That is, increasing the number of epochs (i.e. training time) by 500, 1000, 2000 and 20000 may 

minimize the underfitting issues while maximizing the generalization ability of our models in 

terms of the loss function values using the mean square error (MSE) and the mean absolute error 

(MAE). Also, we used the same base experiment settings of which the batch size = 128, number 

of nodes of the hidden layers (h1 = 128, h2 = 32) and dropout layers’ rate value set to (0.3) in 



 

24 
 

both encodings. The DNN_h2 model MAE values are shown slightly a sign of overcome the 

underfitting in the NSI- loss function learning curves during the 500 epochs in 1H encoding and 

still suffering the underfitting in FTC encoding, whereas the NSI-loss function values are tending 

to be overfitted after the epoch 400. For the number of epochs 1000, the NSI-MAE values of 

DNN_h2 model are shown very convergent fitted learning curves associated with 1H encoding 

and has still suffered the underfittings within the FTC same as the number of epochs goes 500 

through 1000, whereas the NSI-loss function values have the same patterns as of 500 epochs in 

which tend to be overfitted after the epoch 400. 

However, the DNN_h2T model trained for more training time on 500, 2000, and 20000 epochs 

that is resulted and shown more stabled validation curves and decreased training curves. Thus, the 

NSI training error is decreased and the NSI validation error stays about the same values, in which 

this behavior may expect after starts fitting well at epochs 500 in the FTC. Whereas the increase 

the number of epochs to 20000 would expect a sing of overfittings. On the following pages, the 

single-step model: DNN_h2 the NSI- learning curves on number of epochs 500, and 1000 are 

shown in figures 4.9 and 4.10 for both encodings respectively. Whereas the multi-step model: 

DNN_h2T the NSI learning curves on number of epochs 500, 2000, and 20000 are illustrated in 

figures 4.11 ,4.12, and 4.13 in both encodings respectively. Table (4.2) shows the MAE results 

for both models on the given number of epochs (500, 1000, 2000, and 20000). 
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Figure 4.9 DNN_h2 model NSI- loss function and MAE learning curves: epochs =500 

 

Loss function-FTC                                                         MAE-FTC 

Loss function-1H                                                         MAE-1H 
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Figure 4.10 DNN_h2 model NSI - loss function and MAE learning curves: epochs =1000 

 

 

Loss function-FTC                                                         MAE-FTC 

Loss function-1H                                                         MAE-1H 
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Figure 4.11 DNN_h2T model NSI- loss function and MAE learning curves: epochs =500 

 

 

 

 

Loss function-FTC                                                         MAE-FTC 

Loss function-1H                                                         MAE-1H 
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Figure 4.12 DNN_h2T model NSI- loss function and MAE learning curves: epochs =2000 

 

 

 

 

Loss function-FTC                                                         MAE-FTC 
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Figure 4.13 DNN_h2T model NSI- loss function and MAE learning curves: epochs =20000 

 

 

 

Loss function-FTC                                                         MAE-FTC 

Loss function-1H                                                         MAE-1H 
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Table 4.2 shows the MAE results: the change of epochs for DNN_h2 and DNN_h2T. 

Models 

MAE 

FTC encoding 1H encoding 

 
Train Val Train Val 

Single-step prediction: DNN_h2 model 

DNN_h2 

epochs = 500 

NSI 0.1209 0.1062 0.1152 0.1098 

epochs = 1000 

NSI 0.1183 0.1041 0.1121 0.1107 

Multi-step prediction: DNN_h2T model 
epochs = 500  

DNN_h2T 
NSI 0.1113 0.1058 0.1017 0.1102 

T 0.0396 0.0162 0.0396 0.0189 

Multi-step prediction: DNN_h2T model 
epochs = 2000  

DNN_h2T 
NSI 0.1035 0.1098 0.0914 0.1169 

T 0.0391 0.0174 0.0397 0.0189 

Multi-step prediction: DNN_h2T model 
epochs = 20000  

DNN_h2T 
NSI 0.0857 0.1130 0.0754 0.1211 

T 0.0387 0.0176 0.0392 0.0188 
 

As seen previously, DNN_h2T model have decreased to a point of stability where the training and 

validation curves indicated a behavior of a much better fitted learning curves when the number of 

epochs increased by increasing the training time that validation loss is improved at about 

epoch 94, that is, the model would be expected overfitted on epochs 20000 trainings. If testing 

occurred at the minimum validation loss score, then epochs 500 would be chosen.  
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Whereas the other learning curves are still having a very narrow gap between the training and 

validation to indicated that a sign of underfitting may not exist, we would argue that our 

minimal investigations have attempted to improve and alleviate the underfitting problem. 

However, the loss functions of our models (DNN_h2 & DNN_h2T) are almost lower on the 

training set than the validation set which indicates a minimal sign of overfitting in the 1H 

encoding. We compared the minimum validation errors overall training with the previous 

initial experiments and investigations to the last minimum validation errors of our 

DNN_h2T model training on the 500 epochs to find out better results, in which obtained 

convergent values of the MAE values. However, since the DNN_h2T is the most 

complex model in our study, we can be argued that the trained models were not suffering 

or behaving of the underfitting. However, the activation functions are kept as mentioned 

earlier (subsection 3.6.3) during these investigations. 

4.2.2 Change the Number of Nodes 

We conducted more investigations to tackle the overfitting/underfitting problems which may 

reduce them accordingly. That is, changing the number of nodes in our models hidden layers are 

used as the base experiments end out. We would expect that as the number of nodes is increased, 

this may increase the capacity of the models and let the models to learn the training set better and 

vice versa. Likewise, we kept and used the base experiment number of epochs settings on epochs 

250, batch size set to 128, and set the dropout layer rate value to (0.3) [22].  
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The number of nodes are used as follows:  

a) Double the Nodes (i.e. hidden layer 1 set to 256, and hidden layer 2 set to 64). 

b) Half the Nodes (i.e. hidden layer 1 set to 64, and hidden layer 2 set to 16). 

On the following pages, we conducted double nodes experiments on the hidden layers (h1=256 

and h2=64) of the DNN_h2 and DNN_h2T models, where figures 4.14, and 4.15 are shown the 

NSI loss functions and the performance (MAE) NSI values in both encodings FTC and 1H 

respectively. For the DNN_h2 model, the NSI loss functions and MAE values are depicted that an 

overfitting occurs around epoch 50 in the 1H encoding, whereas the sign of overfitting takes place 

after epoch =200 in the loss function in FTC encoding and tends to be slightly fitted for the MAE 

values within the same FTC encoding where these are a sign of a well performance to the training 

set. That is, it would be illustrated the learning curves have no implicit overfitting and have no 

gap between training and validation performance results in the FTC encoding, whereas decreased 

in generalization errors. Unlike this, there is an overfitting does have the 1H encoding that 

indicates an overcapacity may be affected the learning rate in an acceptable value if the number 

of epochs increased and again this is a sign of a well performance to lowering the training errors. 

However, the most complex model (DNN_h2T model) is shown NSI loss functions that have the 

same overfitting issue in both encodings, but has a significant sign of a well-fitted trend of the 

MAE values in the FTC and a sign of overfitting in 1H.  
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Figure 4.14 DNN_h2 model NSI learning curves: batch=128, double of nodes. 

 

 

 

Loss function-FTC                                                         MAE-FTC 

Loss function-1H                                                         MAE-1H 
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Figure 4.15 DNN_h2T model NSI learning curves: batch=128, double of nodes. 

 

 

 

Loss function-FTC                                                         MAE-FTC 

Loss function-1H                                                         MAE-1H 
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However, we conducted the half nodes experiments for the hidden layers (h1=64 and h2=16) of 

both DNN_h2 and DNN_h2T models. Figure 4.16 is shown the learning curves of the DNN_h2 

model which depicted that MAE values are still suffering from the sign of underfitting behavior 

in both encodings, whereas the loss function in 1H encoding got an overfit around epoch 180.  

 

 

 

 

Loss function-FTC                                                         MAE-FTC 

Loss function-1H                                                         MAE-1H 

 

Figure 4.16 DNN_h2 model NSI loss function and MAE learning curves: batch=128, half of nodes. 
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Figure 4.17 is shown the DNN_h2T model results are illustrated approximately the loss function 

behaves much less values compared to our baseline values and convergent at epoch 240 in 1H 

encoding. Table (4.3) shows the MAE of the change number of nodes: double and half nodes. 

 

 

 

 

 

Loss function-FTC                                                         MAE-FTC 

Loss function-1H                                                         MAE-1H 

 

Figure 4.17 DNN_h2T model NSI loss function and MAE learning curves: batch=128 half of nodes. 
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Table (4.3) shows the MAE results for the change number of nodes: double and half nodes. 

 

We repeated the previous experiments (subsection 4.2.2) by changing the batch size to 512, and 

kept epochs = 250, and dropout layer rate value (0.3). Thus, on the following pages figures 4.18, 

and 4.19 are illustrated the DNN_h2 and DNN_h2T models learning curves are taken the double-

nodes respectively. Also, figures 4.20, and 4.21 are shown learning curves for the DNN_h2 and 

DNN_h2T models are taken the half-nodes (h1=64, and h2=16) respectively. The increasing of 

batch size for given models resulted a comparatively sign of well performance to lowering the 

training values with some behaviors towards preventing the overfittings in the NSI-loss function 

and NSI-MAE values, which may be reduced this problematic issue or decided to stop the 

training. 

 

 

Models 
 

MAE  

epochs = 250 , Dropout(0.3) ,  batch size= 128, opt=Adam 

Double nodes: h1 =256 ,h2  =64 Half nodes: h1  =64, h2  =16 

FTC encoding 1H encoding FTC encoding 1H encoding 

 Train Val Train Val Train Val Train Val 

DNN_h2 NSI 0.1091 0.1075 0.0976 0.1174 0.1183 0.1104 0.1129 0.1089 

DNN_h2T 
NSI 0.1088 0.1099 0.0973 0.1143 0.1204 0.1068 0.1169 0.1146 

T 0.0311 0.0195 0.0331 0.0179 0.0498 0.0221 0.0511 0.0220 

epochs = 250 , Dropout(0.3) ,  batch size= 512, opt=Adam 

 

Double nodes: h1 =256 ,h2  =64 Half nodes: h1  =64, h2  =16 

FTC encoding 1H encoding FTC encoding 1H encoding 

 Train Val Train Val Train Val Train Val 

DNN_h2 NSI 0.1089 0.1121 0.0947 0.1160 0.1175 0.1079 0.1123 0.1132 

DNN_h2T 
NSI 0.1101 0.1111 0.0991 0.1195 0.1227 0.1083 0.1184 0.1124 

T 0.0303 0.0166 0.0316 0.0184 0.0502 0.0210 0.0501 0.0236 
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Loss function-FTC                                                         MAE-FTC 

Loss function-1H                                                         MAE-1H 

 

Figure 4.18 DNN_h2 model NSI loss function and MAE learning curves: batch=512, double-nodes  
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Loss function-FTC                                                         MAE-FTC 

Loss function-1H                                                         MAE-1H 

 

Figure 4.19 DNN_h2T model NSI loss function and MAE learning curves: batch=512, double-nodes. 
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Loss function-FTC                                                         MAE-FTC 

Loss function-1H                                                         MAE-1H 

 

Figure 4.20 DNN_h2 model NSI loss function and MAE learning curves: batch=512, half-nodes. 
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Loss function-FTC                                                         MAE-FTC 

Loss function-1H                                                         MAE-1H 

 

Figure 4.21 DNN_h2T model NSI loss function and MAE learning curves: batch=512, half-nodes. 
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4.2.3 L2 regularization 

We conducted more investigation experiments to tackle the overfitting problem by improving the 

NSI-loss function, which we used L2 regularization for our outputs earlier. That is, added L2 

regularizer to the hidden layer 2 (h2) in both the DNN_h2 and DNN_h2T models used a default 

value (0.01) may behave more preventive against overfitting. We kept the settings of the previous 

experiment's values: dropout layer rate value (0.3), epochs=250 of both batch sizes 128 and 512. 

Whereas chose to use the double number of nodes option, which has a sign of highly overfitting 

values seen previously and had the highest capacity models (i.e. highest number of nodes). 

However, the results are continued to search for signs of a well-fitted learning curves of 

performance for predicting the NSI and may reach the benefit of using an intermediate 

metrological feature T in the DNN_h2T model.  

On the next pages, figures 4.22, 4.23, 4.24 and 4.25 are shown the DNN_h2 and DNN_h2T 

learning curves of both NSI- loss function and performance (MAE) using the double nodes 

(h1=256, and h2=64) with L2 regularizer of both batch sizes 128 and 512 in both FTC and 1H 

respectively. Table (4.4) shows the MAE results of the double nodes with L2 regularization. 
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Loss function-FTC                                                         MAE-FTC 

Loss function-1H                                                         MAE-1H 

 

Figure 4.22 DNN_h2 model NSI-loss function and MAE: batch= 128, double-nodes with L2 
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Loss function-FTC                                                         MAE-FTC 

Loss function-1H                                                         MAE-1H 

 

Figure 4.23 DNN_h2T model NSI-loss function and MAE: batch=128, double-nodes with L2 
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Loss function-FTC                                                         MAE-FTC 

Loss function-1H                                                         MAE-1H 

 

Figure 4.24 DNN_h2 model NSI-loss function and MAE: batch=512, double-nodes with L2 
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Loss function-FTC                                                         MAE-FTC 

Loss function-1H                                                         MAE-1H 

 

Figure 4.25 DNN_h2T model NSI-loss function and MAE: batch=512, double-nodes with L2  
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Table (4.4) shows the MAE results of the double nodes with L2 regularization. 

 

 

 

 

 

 

 

To summarize and compare all the MAE results of our experiments throughout training models 

(i.e. the base experiment MAE among other values), the tables are shown in appendix F, which 

are illustrated the values of each model and conducted investigation. 

 

 

 

 

 

Models 
 

MAE  

epochs = 250, Dropout (0.3), batch size= 128, opt=Adam 
Double nodes:   h1 =256 ,h2  =64 with L2 

FTC encoding 1H encoding 

 Train Val Train Val 

DNN_h2 NSI 0.1160 0.1126 0.1054 0.1144 

DNN_h2T 
NSI 0.1310 0.1239 0.1269 0.1226 

T 0.0393 0.0252 0.0387 0.0266 

epochs = 250, Dropout (0.3), batch size= 512, opt=Adam 
Double nodes:   h1 =256 ,h2  =64 with L2 

DNN_h2 NSI 0.1151 0.1106 0.1043 0.1189 

DNN_h2T 
NSI 0.1333 0.1310 0.1301 0.1280 

T 0.0423 0.0295 0.0415 0.0292 
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4.3 Final Evaluation 

We conducted the evaluation experiment from our saved models which have the NSI minimum 

validation errors in both encodings by which we used the test set (i.e. Testing dataset: one-year 

(2019), section 3.3) on a given training epoch that corresponding to the minimum scores of the 

NSI-validation errors per each model of the previous experiments to obtained the generalization 

errors. That is, a significant NSI lower error values in are showing signs of better-fitted 

performance to be generalized. However, the models DNN_h2, DNN_h2T and DNN_h2F have 

obtained comparatively a fitted to predict the (NSI) associated with/ without an intermediate 

metrological feature (T) or other metrological features. Table (4.5) is illustrated MAE evaluation 

values of our saved models used the test set on chosen epochs corresponding to the minimum 

validation scores. There are several ways to improve the optimally tuned this model in the future 

work. However, all given models have to have convergent MAE values which are indicated that 

the evaluation may need study more models like the CNN, and RNN for future work. The models 

are compared together through exploiting both FTC and 1H encodings are depicted a sign of 

well-fitted performance, where a significant representation to be recognized values within FTC 

against the 1H encodings.  

Table 4.5 shows the MAE evaluation test experiment from the saved models. 

Models 
  

MAE - Evaluation  
epoch 

FTC encoding 1H encoding 

DNN_h0 NSI 0.1315 0.1345 250 

DNN_h2 NSI 0.1131 0.1197 1000 

DNN_h2T 
NSI 0.1158 0.1236 

500 
T 0.0165 0.0200 

DNN_h2F 
NSI 0.1189 0.1204 

250 
T 0.0262 0.0295 
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CHAPTER V 
 

CONCLUSIONS 

 

The thesis work has contributed two groups of experiments: single-step and multi-step prediction 

models to predict the normal solar irradiance (NSI) associated with an intermediate 

meteorological feature such as (T) and may be other features like RH, W, PW, P, PR. This work 

utilized part of the [22] works, which considered a real-world timeseries dataset (NREL). We 

proposed two different time/date transformation encodings: FTC (sine-cosine) and 1H (one-hot) 

representations. 

The dense neural network models are included DNN_h0, DNN_h2, DNN_h2T and DNN_h2F are 

evaluated in terms of mean absolute error (MAE) and proposed to determine the effectiveness of 

the models generalization performance. As a result, the comparison shows that these models 

performance are revealed that the (NSI) has an acceptable model’s performance in both FTC and 

1H, where associated with an intermediate metrological feature such as (T). Whereas the single-

step model: DNN_h0 has got slightly acceptance to find well performance to prediction the 

(NSI). The proposed FTC encoding has reached out a sign of well-fitted and more stabilized 

expectations to get a sign of better performance. 

Further research in the significance of individual neural networks alongside using both encodings 

FTC and 1H representations might be used for convolutional neural networks (CNN) is necessary 

to complete the view of this study assumption and recommended for future studies.
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APPENDICES 

 

APPENDIX A 

Original Datasets 

 

 

An evolution of the meteorological features recorded overtime of the NREL dataset. 
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APPENDIX B 

Data Configuration 

 

We used the NumPy package as np (version 1.17.4) to calculate the 24 hours of the day 

per year by using the sine and cosine functions and one-hot encode. Likewise, the angles 

are converted by using sine and cosine functions. The code below describes the 

conversion used in the thesis work.  

def degreeToCosSin(d): 

    r = (d/180.0)*np.pi 

    return np.sin(r), np.cos(r) 

 

 

def dateToDayOfYear(strDate): 

    format='%m/%d/%Y' 

    date = datetime.datetime.strptime(strDate, format) 

    yearStart = date.replace(day=1,month=1) 

    dayOfYear = date.toordinal() - yearStart.toordinal() 

    return dayOfYear 

 

def dateToCosSin(strDate): 

    dayOfYear = dateToDayOfYear(strDate) 

    r = dayOfYear*2.0*np.pi /365.0  

    return np.sin(r),np.cos(r) 

 

def hourToCosSin(h): 

    r = (h/24.0) *2 * np.pi   # 0 to 1 range   

    hs = np.sin(r) 
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    hc = np.cos(r) 

    return hs,hc 

  

def sincostoHour(hs,hc): 

    if hs >= 0:  

       h = (12.0)* np.arctan2(hs,hc)/np.pi  

    else: 

        h = ((12.0)* np.arctan2(hs,hc)/np.pi) + 24 

    #return round(h) 

    return h 

     

def hourToOneHot(h): 

    # with h from 0 to 23, inclusuve 

    h = int(h) 

    oneHotHour = np.zeros((24),dtype=float) 

    oneHotHour[h] = 1.0 

    return oneHotHour 

 

def onehotToHour(h_oneHot): 

    for h in range(len(h_oneHot)): 

        if h_oneHot[h]>0: 

           return h 

    print("invalide One-Hot encoding") 

     

def dateToOneHot(strDate): 

    dayOfYear = dateToDayOfYear(strDate) 

    oneHotDate = np.zeros((26),dtype=float) 

    binSize = 365//26 # want integer division 

    binLoc = (dayOfYear // binSize)%26  # want integer division  

    oneHotDate[binLoc] = 1.0 

    return oneHotDate 
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APPENDIX C 

Data Cleansing and Normalization 

 

 

def modOutlier(data, stdScaler = None): 

    # modified to change in place 

    if stdScaler == None : 

        # create transform 

        s = StandardScaler(copy=True,with_mean=True,with_std=True) 

        z = s.fit_transform(data) 

    else: 

        # using existing transform 

        s = stdScaler 

        z = s.transform(data) 

    numRows = data.shape[0] 

    numCols = data.shape[1] 

    for i in range(numRows) : 

        for j in range (numCols) : 

            if abs(z[i,j]) > 3 :  

                if (i == 0 ) : 

                    if abs(z[i+1,j]) > 3 : 

                       print("Error A: adjacent outliers.  Can not linear interpolate") 

                       sys.exit(-1) 

                    data[i,j] = data[i+1,j] 

                elif i == numRows -1 : 

                    if abs(z[i-1,j]) > 3 : 

                       print("Error B: adjacent outliers.  Can not linear interpolate") 

                       sys.exit(-1) 

                    data[i,j] =data[i-1,j] 

                else:  

                    if  abs(z[i+1,j]) > 3  or abs(z[i-1,j]) > 3 : 

                       print("{}, {} : Error C: adjacent outliers.  Can not linear interpolate.  

Replacing with z=3 value".format(i,j)) 

                       #sys.exit(-1) 

                       #print("  before : data = ",data[i,j]) 

                       data[i,j] = s.mean_[j] + math.copysign(3,z[i,j]) * s.scale_[j]  

                       #print("   after : data = ",data[i,j]) 

                    else: 

                        data[i,j] = (data[i-1,j]+data[i+1,j])/2 

    return s 
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APPENDIX D 

Sliding window  

import datacfg  

odc = datacfg.NRELOriginalDataConfig 

ftcdc = datacfg.NREL_FV_FTC_Config 

oneHdc = datacfg.NREL_FV_1Hot_Config 

 

import ang 

 

def dayTime(fv, useFTC=True, epsilon=0.1): 

   if useFTC: 

      h = ang.sincostoHour(fv[ftcdc.HS_LOC],fv[ftcdc.HC_LOC]) 

   else: 

      h = 

ang.onehotToHour(fv[oneHdc.HOUR_START:oneHdc.HOUR_START+oneHdc.HOUR_SIZE]) 

   if h + epsilon >= 8 and h -epsilon  <= 18 :   

      flag  = True 

   else: 

      flag = False 

   return flag 

 

#def sliding_window(arr, windowsize,predLoc=0,useFTC=True,addTemp=False): 

# change to place all numeric as y, using all features except the hour and date 

def sliding_window(arr, windowsize,predLoc=0,useFTC=True): 

   if useFTC :  

      dc = ftcdc 

   else: 

      dc = oneHdc 

   ytags  = np.zeros((arr.shape[0],dc.MEASURE_SIZE))  # Temp, NSI prediction 

   xdata = np.zeros( (arr.shape[0], windowsize*arr.shape[1]) ) # input windows 

   xloc = 0 

   for row in range(windowsize, arr.shape[0]-predLoc) : 

      if dayTime(arr[row+predLoc],useFTC) : # predicted value is in our day time frame  

         xdata[xloc,:] = arr[row-windowsize:row].flatten() 

         ytags[xloc,:] = arr[row + 

predLoc,dc.MEASURE_START:dc.MEASURE_START+dc.MEASURE_SIZE] 

         xloc += 1 

   return xdata[:xloc,:],ytags[:xloc] 
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APPENDIX E 

def DNN_h0(numInput, numOutput): 
    input_layer = tf.keras.layers.Input(shape=(numInput,)) 
    output_layer = tf.keras.layers.Dense(1, activation='relu', name='NSI_Prediction')(input_layer) 
    model = tf.keras.Model(inputs=input_layer, outputs=output_layer) 
    return model 
def DNN_h2(numInput, numOutput): 
    input_layer = tf.keras.layers.Input(shape=(numInput,)) 
    h1 = tf.keras.layers.Dense(128, activation='relu')(input_layer) 
    dropout1 = tf.keras.layers.Dropout(0.3)(h1) 
    h2 = tf.keras.layers.Dense(32, activation='relu')(dropout1) 
    dropout2 = tf.keras.layers.Dropout(0.3)(h2) 
    output_layer = tf.keras.layers.Dense(1, activation='sigmoid', 
name='NSI_Prediction')(dropout2) 
    model = tf.keras.Model(inputs=input_layer, outputs=output_layer) 
    return model 
def DNN_h2T(numInput, numOutput): 
    input_layer = tf.keras.layers.Input(shape=(numInput,)) 
    h1 = tf.keras.layers.Dense(128, activation='relu')(input_layer) 
    dropout1 = tf.keras.layers.Dropout(0.3)(h1) 
    h2 = tf.keras.layers.Dense(32, activation='relu')(dropout1) 
    dropout2 = tf.keras.layers.Dropout(0.3)(h2) 
    Tout = tf.keras.layers.Dense(1, use_bias=True, activation='sigmoid', name='Tout', 
kernel_regularizer=tf.keras.regularizers.l2(0.01))(dropout2) 
    a = tf.keras.layers.Concatenate()([Tout, dropout2]) 
    NSIout = tf.keras.layers.Dense(1, use_bias=True, activation='sigmoid', name='NSIout', 
kernel_regularizer=tf.keras.regularizers.l2(0.01))(a) 
    model = tf.keras.Model(inputs=input_layer, outputs=[Tout, NSIout]) 
    return model 
def DNN_h2F(numInput, numOutput): 
    input_layer = tf.keras.layers.Input(shape=(numInput,)) 
    h1 = tf.keras.layers.Dense(128, activation='relu')(input_layer) 
    dropout1 = tf.keras.layers.Dropout(0.3)(h1) 
    h2 = tf.keras.layers.Dense(32, activation='relu')(dropout1) 
    dropout2 = tf.keras.layers.Dropout(0.3)(h2) 
    RHout = tf.keras.layers.Dense(1, use_bias=True, activation='sigmoid', name='RHout', 
kernel_regularizer=tf.keras.regularizers.l2(0.01))(dropout2) 
    Wout = tf.keras.layers.Dense(1, use_bias=True, activation='sigmoid', name='Wout', 
kernel_regularizer=tf.keras.regularizers.l2(0.01))(dropout2) 
    PWout = tf.keras.layers.Dense(1, use_bias=True, activation='sigmoid', name='PWout', 
kernel_regularizer=tf.keras.regularizers.l2(0.01))(dropout2) 
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    Pout = tf.keras.layers.Dense(1, use_bias=True, activation='sigmoid', name='Pout', 
kernel_regularizer=tf.keras.regularizers.l2(0.01))(dropout2) 
    PRout = tf.keras.layers.Dense(1, use_bias=True, activation='sigmoid', name='PRout', 
kernel_regularizer=tf.keras.regularizers.l2(0.01))(dropout2) 
    Tout = tf.keras.layers.Dense(1, use_bias=True, activation='sigmoid', name='Tout', 
kernel_regularizer=tf.keras.regularizers.l2(0.01))(dropout2) 
    a = tf.keras.layers.Concatenate()([RHout, Wout, PWout, Pout, PRout, Tout, dropout2]) 
    NSIout = tf.keras.layers.Dense(1, use_bias=True, activation='sigmoid', name='NSIout', 
kernel_regularizer=tf.keras.regularizers.l2(0.01))(a) 
    model = tf.keras.Model(inputs=input_layer, outputs=[RHout, Wout, PWout, Pout, PRout, 
Tout, NSIout]) 
    return model 
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Models Structures 

 

 

FTC encoding                                                   1H encoding 

DNN_h0 model structure  

FTC encoding                                                   1H encoding 

DNN_h2 model structure  
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FTC and 1H encodings                                                   

DNN_h2T model structure  
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APPENDIX F 

 

Table (1) shows the MAE results: base experiment and the change of epochs number. 

Models 

MAE 

base experiment 

FTC encoding 1H encoding 

 
Train Val Train Val 

Baseline NSI 0.1419 0.1365 0.1419 0.1365 

Single-step prediction: DNN_h0 and DNN_h2 models 
epochs = 250 , batch size = 128 , opt=Adam 

DNN_h0 NSI 0.1233 0.1240 0.1244 0.1286 

 DNN_h2 

h1 =128 ,h2  =32, Dropout (0.3) 

NSI 0.1230 0.1076 0.1186 0.1107 

epochs = 500 

NSI 0.1209 0.1062 0.1152 0.1098 

epochs = 1000 

NSI 0.1183 0.1041 0.1121 0.1107 

Multi-step prediction: DNN_h2T and DNN_h2F models 
epochs = 250 , batch size = 128 , opt=Adam 

DNN_h2T 
NSI 0.1136 0.1074 0.1072 0.1123 

T 0.0373 0.0208 0.0389 0.0237 

DNN_h2F NSI 0.1251 0.1108 0.1216 0.1119 

Multi-step prediction: DNN_h2T model 
epochs = 500 , batch size = 128 , opt=Adam 

DNN_h2T 
NSI 0.1113 0.1058 0.1017 0.1102 

T 0.0396 0.0162 0.0396 0.0189 

Multi-step prediction: DNN_h2T model 
epochs = 2000 , batch size = 128 , opt=Adam 

DNN_h2T 
NSI 0.1035 0.1098 0.0914 0.1169 

T 0.0391 0.0174 0.0397 0.0189 

Multi-step prediction: DNN_h2T model 
epochs = 20000 , batch size = 128 , opt=Adam 

DNN_h2T 
NSI 0.0857 0.1130 0.0754 0.1211 

T 0.0387 0.0176 0.0392 0.0188 
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Table (2) shows the MAE results for the change number of nodes: double and half nodes. 

 

Table (3) shows the MAE results of the double nodes with L2 regularization. 

 

 

 

 

 

 

 

 

 

 

Models 
 

MAE  

epochs = 250 , Dropout(0.3) ,  batch size= 128, opt=Adam 

Double nodes: h1 =256 ,h2  =64 Half nodes: h1  =64, h2  =16 

FTC encoding 1H encoding FTC encoding 1H encoding 

 Train Val Train Val Train Val Train Val 

DNN_h2 NSI 0.1091 0.1075 0.0976 0.1174 0.1183 0.1104 0.1129 0.1089 

DNN_h2T 
NSI 0.1088 0.1099 0.0973 0.1143 0.1204 0.1068 0.1169 0.1146 

T 0.0311 0.0195 0.0331 0.0179 0.0498 0.0221 0.0511 0.0220 

epochs = 250 , Dropout(0.3) ,  batch size= 512, opt=Adam 

 

Double nodes: h1 =256 ,h2  =64 Half nodes: h1  =64, h2  =16 

FTC encoding 1H encoding FTC encoding 1H encoding 

 Train Val Train Val Train Val Train Val 

DNN_h2 NSI 0.1089 0.1121 0.0947 0.1160 0.1175 0.1079 0.1123 0.1132 

DNN_h2T 
NSI 0.1101 0.1111 0.0991 0.1195 0.1227 0.1083 0.1184 0.1124 

T 0.0303 0.0166 0.0316 0.0184 0.0502 0.0210 0.0501 0.0236 

Models 
 

MAE  

epochs = 250, Dropout (0.3), batch size= 128, opt=Adam 
Double nodes:   h1 =256 ,h2  =64 with L2 

FTC encoding 1H encoding 

 Train Val Train Val 

DNN_h2 NSI 0.1160 0.1126 0.1054 0.1144 

DNN_h2
T 

NSI 0.1310 0.1239 0.1269 0.1226 

T 0.0393 0.0252 0.0387 0.0266 

epochs = 250, Dropout (0.3), batch size= 512, opt=Adam 
Double nodes:   h1 =256 ,h2  =64 with L2 

DNN_h2 NSI 0.1151 0.1106 0.1043 0.1189 

DNN_h2
T 

NSI 0.1333 0.1310 0.1301 0.1280 

T 0.0423 0.0295 0.0415 0.0292 
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