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CHAPTER I
INTRODUCTION

The theory of shapes was first introduced by K. Borsuk in [2].
His approach was through the notion of fundamental classes as mappings
from one compactum into another. These fundamental classes are a
generalization of the usual notion of the homotopy classes of continuous
functions. His purpose in introducing this concept was to study the
global homotopy properties of compacta and to alleviate the local
difficulties that arise in the application of homotopy theory to
compacta.

In[10] and [11], S. Marde¥$ié and J. Segal gave an alternate
approach to the thecry of shapes. They used ANR-sequences, which are
special types of inverse systems, and maps of systems, which are
generalizations of the usual notion of maps of inverse systems. Their
approach generalized the theory to include compact Hausdorff spaces.

In this paper both approaches are used. Chapter II is devoted
to the notions used by Borsuk. In many cases these notions are
given in a more gemeral setting. In Chaper III the fundamental groups
defined by Borsuk in [2] are obtained through the ANR-system approach.
These groups may be useful in the study of pointed compact Hausdorff
spaces. They extend the usual hamotopy groups, but may give more
information in cases where local difficulties arise. For example,
it is known that the usual homotopy groups of the "Warsaw circle®
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2
are trivial. However, the first shape group is infinite cyclic.

In Chapter IV the notion of extensions of maps of systems is
given and their relation to the shape groups and shape retractions
given by Marde¥i¢ in [9], are discussed. Chapter V deals with
products in shape theory and some of the results of Borsuk are
extended to arbitrary products.

For convenience all spaces are assumed to be Hausdorff. Unless

otherwise stated, X, Xo, Y, Io, Z, Zo will denote compact spaces.
The reader is referred to [13] for pertinent definitions; e.ge., ANR,

homotopic maps.



CHAPTER II

SGME RESULTS RELATED TO SHAPE THEORY

1. Weak Homotopy Category. Let X, Xo, Y, Yy Z, Z0 denote compact
spaces such that XocXcM, IocYcN and ZochP. If two maps
£, g (x,Xo)-b(I,Io) are homotopic in each neighborhood (V,Vo) of

(Y,Y,) in N, then they will be said to be weakly homotopic in N, denoted
0

by f’-ﬁ-’ g-(compare {2] §2). It is clear that the relation of weak
homotopy in N is an equivalence relation. The equivalence class to

which a map f: (x,xo)q(!,ro) belongs is called the weak homotopy

class of £ in N and is denoted by [f]N.

Theorem l.1: If N is normal, P is an ANR and f, f': (x,xo)-’(z,ro)
and g, g't (r,zo)-»(z,zo) are maps such that f -'-"ﬁ f£' and g § g* then
gf ? gift. .

Proof: Let (W,Wo) be an open neighborhood of (Z,Zo) in P.
There is a homotopy G: (Y,IO)lI-v(W,WO) such that G(y,0) = g(y),
G(y,1) = g'(y) for all ye¢Y. Since WGP is an ANR there is a
neighborhood V. of Y in N and a map G': VX I9W such that G!(y,t) = G(y,t)
if y¢Y. Since G™l(Ny) is a neighborhood of YyxI in VxI there is a
neighborhood Vj of Yp in V such that Y X ICVyxI CG"l(WO). Then
G's (V,Vo)xI -(w,wo) is an extension of G. Since f% f! there is a
homotopy F: (x,xo)xx-s(v,vo) such that F(x,0) = £(x), F(x,1) = £'(x)
for all x€X. Let E: (x,xo)xI-t(w,wo) be given by E(x,t) = G'(F(x,t),t).
Then E(x,0) = G'(F(x,0),0) = G!(f(x),0) = gf(x) since f(x)e Y.
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Similarly, E(x,1) = g'f'(x). Thus gf % g'f'.
If M = N = P¢e ANR, Theorem 1.1l allows one to define a corposition

of weak homotopy classes in M as follows:

lely [£), = [afly

whenever the composition of the maps is defined. It is clear that the
weak homotopy class [I'X,XO]M with representative lx,xoz (X,XO)-)(X,Xo)s
the identity map, is an identity for this composition.

Theorem 1.2: If MEANR there is a category, called the weak

homotopy category of M, whose objects are pairs (X,Xo) of compact subsets

of ¥ and whose morphisms are weak homotopy classes in M.

A map f: (X,Xo)-ﬁ(Y,Yo) of pairs of compact subsets of M is said

to be a weak homotopy equivalence in M if there is a map g: (x,xo)-»(x,xo)

such that gf ﬁ lX,XO and tgﬁ II,Y + Two pairs of compact subsets of M
0

are said to be of the same weak homotopy type in M, (X,X,) ﬁ (1,Yy),

provided there is a weak homotopy equivalence in M, f: (X,XO)Q(I',YO).
It is clear that the relation f-"ﬁ on pairs of compact subsets of M is an
equivalence relation. The equivalence class with representative (x,xo)

is denoted by [X,IO]M and is referred to as the weak homotopy type of

(X,XO) in M.

If Xy = {xos or X, = @ one has the concepts of weak homotopy type

for pointed compact subsets of M and compact subsets of M, respectively.
A neighborhood of (x,xo) in M is a pair (V,xo)-such that V is a
neighborhood of X in M.

Theorem 1.3: Let (X,Xo) be a compact pair of subsets of M and
(Y,Yo) a compact pair of subsets of N. If f, gt (x,xo)-s(x,!o) are
maps such that £ ™ g then f ﬁ g
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Proof: Since £ ® g in (Y,YO) s £ &g in every neighborhood (V,Vo)
of (Y,Yo) in N.

Corollary l.h4: If (X,XO) and (Y,YO) are compact pairs of subsets

of MeANR then [X,XO] = [Y,YO] implies [X,I(o]M = [Y,!OlM where [x,xo]
denotes the usual homotopy class of (X,XO), see [13].
Proof: lLet f: (x,xo)+(r,xo) and g: (Y,Y )-»(x,xo) be maps such
~N
that gf ¥ lx,xo and fg & 1!’10. By Theorem 1.3, ef § 1y X, and
fg < lY so that f is a weak homotopy equivalence in M.
M ’YO

Corollary 1.5: Let (X,Xo) R (Y,Yo) be compact pairs in M€ ANR

and (X',X? ), (1 sY3) compact pairs in N¢ ANR such that (x,xo) (X',Xo)
and (Y,Y 0)-_—_(Y',Yo). Then [X,XOJM - [Y,YO]M implies that
[X',X(')l" = [Y',Y(')]N.

Proof: Let hlz (X,XO)-)(X',X(')) and h2= (Y,IO)-D(Y',Yé) be
homeomorphisms. Let f: (x,xo)-»(x,ro) and g3 (Y,IO)-O(X,XO) be maps
such that gf ¥ 1y, X, and fg § 1y, 1, Then h2fh1  (X',X4) »(Y',T4)
and hlgh2 : (I',x')->(x',xo) are maps such that

(nyfh; )y ehs™) = hyfeny* Boty,x B o Yy
and similarly
(h -1 -1 =}
18 ) (Byfhy ™) = hygthy” § e
This completes the proof.

2. Fundamental Sequences and Fundamental Classes. A fundamental

sequence (compare [4] p. 127) £ = {fk, (x,xo) ’(Y’YO)}M,N consists of a

sequence of maps fks M-N such that for every neighborhood (V ,VO) of

(Y,YO) in N there is a neighborhood (U,Uo) of (X,X,) in M and an index
.ko such that if k > ko then

fkl(u,uo) > fk+1|(u,uo) in (V,V)e
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If f= {fk,(x,xo),(ar,ro)zn,N and g = {g,, (Y,Yo),(z,zo){N,P are
fundamental sequences then g f = Sgki‘k, (X,XO) ,(Y,IO)}M’P is a
fundamental sequence, called the composition of the fundamental
sequences f and g5 [4] p. 128. A fundamental sequence f is said
to be generated by a map f: (X,xo)-b(Y,Yo) if fk(x) = £(x) for all
x€X. The identity fundamental sequence is generated by the identity

lX,XO and is denoted by lx,xo = ilk, (x,xo),(x,xo)}M’H. There is a
category whose objects are triplets (X,XO;M) where X and X, are compact
and xocxc M and whose morphisms are fundamental sequences.

Two fundamental sequences f = {fk’ (x,xo),(r,xo)}u,m and
g {gk,(x,xo),(x,xo)}u,n are said to be homotopic, f & g, if for
every neighborhood (V,Vo) of (Y,Io) in N there is a neighborhood

(UsUy) of (X,Xy) in M and an index k, such that if k > k then

fk\(u,uo) ® gk\(U,UO) in (V,¥).
It is clear that this is an equivalence relation. The equivalence
class to which a fundamental sequence f belongs is called the

fundamental class of £ and is denoted by [£].

By inspecting the proof of [2] Theorem 6., one has that if
fe ifk,(x,xo),(x,ro)}n’n and £ = {fl'c’ (X’XO)’(Y’YO)}M,N are homotopic
fundamental sequences and if g = fgk,(Y,Yo),(Z,ZO)fN’P and
g' = igl;,(Y,Io) ,(Z_.Zo)fN’P are homotopic fundamental sequences then
g £ and g'f' are homotopic fundamental sequences. Thus there is a
category, denoted by & s Wwhose objects are triplets (X,Xom) such
that X and xo are compact, xoc' Xc€ M and whose morhpisms are

fundamental classes of fundamental sequences.

A fundamental sequence f = {fk’ (X,XO),(Y ,Yo) }M,N is a fundamental
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equivalence if there is a fundamental sequence g = f gk,(x,xo),(x,xo)fN,M

such that g £ & }-x,xo and £ g & }Y,Yoa‘ In this case, (X,X,) and (Y,Y,)
are said to be fundamentally equivalent in M,N; denoted by

(x,xO) g (Y,Yo) in M,N. Two pairs of compact spaces (x,xo) and (Y,YO)

are of the same shape, sn(x,xo) = Sh(Y,IO), if there exist AR-sets

M and N and spaces XjCX'CM and T, €Y'c N such that (X,X)) & (X',X8),

(Y,YO) = (I'.,Y(')) and (X',Xc'))g (Y',Yc')) in M,N. The relation of

having the same shape is an equivalence relation and the equivalence

class to which (x,xo) belongs is called the shape of (X,X;), denoted

Sh(x,xo). This notion of shape is due to Borsuk [L4]. _
Theorem 2.1: If NEANR, M is normal and £ = {fk,(x,xc),(r,ro)fM,N,

g" igk,(x,xo) ’(Y’IO)fM,N are fundamental sequences satisfying

for each neighborhood (V,VO) of (Y,YO) in N there is an index kj

such that if k >k then £, l(x,xo) v g | (%) i (V,V,) then £ g.
Proof: Let (V,Vo) be an open neighborhood of (Y,Yo) in N.

Then there is a neighborhood (U,Uo) of (x,xo) in M and an index

klsuchthatiszk then

1
felwauy) ® il w,oy) 2 70
gk\(U,Uo)‘-‘-‘ g 1l(“'Uo) in (V,V,)
and

Let F: (x,xo)x1->(v,vo) be a homotopy such that F(x,0) = £y (x)
1
and F(x,1) = 8y (x) for all x€éX. Define F': (XXI)v (UXI)=V by
1

F(x,t) ifb(x,t.) €Xx1I
F'(x,t) = fkl(x) if (x,t)€ UnO.

8, (x) if (x,t)eUx1
1 ‘
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By standard arguments, F! is a map. Since V is an ANR and X is compact,

tnere is a neighborhood W of X in M such that WxICUxI and an

extension F: WX I -V of F'. Since X xIc 3"1(

there is a neighborhood Wy of X, in M such that W xIcf“l(vo).

Vo) and Xo is compact
0
Then F: (W,wo)xI -»(v,vo) is such that f‘(x,o) - £, (x), ﬁ(x,l) =g (x)
1 1
for all x¢W; that is,

N
F: A V,V.)e
fkl\ (W,¥,) gkl\ (W) 1 (Vo7)
Hence if k > kl then

%l onary) * ey [ ® 8| i) ¥ Bl 20 Vo)
Therefore, £ ¥ g,
This theorem also holds for fundamental sequences of compact: spaces
and of pointed compact spaces. As a corollary, one has a result

similar to [3] 1.1.

Corollary 2.2: If N€ANR, M is normal and two fundamental

sequences f and g satisfy the condition that fk(x) = gk(x) for
every point xéX and for k = 1, 2,..., then fxg,

Proof: If (V,Vo) is any neighborhood of (Y,Yo) in N then
there is an index k, such that if k > kq then fk(x,xo)c (V,VO)
and gk(x,xo)c (V,Vo). Since fk(x) - gk(x) for all x€X, the
hypothesis of Theorem 2.1 is satisfied so that fXg,

3. Extensions and Retractions. In this section, attention is

restricted to the absolute case. Let Xc X'cM and Yec N be compact.

A fundamental sequence f' = {fﬁ,X' ’Y}M,N is said to be an extension

of the fundamental sequence L= {fk’x’I}M,N if fl'((x) - fk(x) for all
k and x¢ X.
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Theorem 3.1: If XcX'c M.and Y< N wnere M is normal and N is an
AR-set then a fundamental sequence f = {fk’x’Y}M,N has an extension
iff there is a fundamental sequence f' = {fﬁ’x"ﬂM,N such that f > f'i
where i = {lH,X,X'fM,H.

Proof: If f' = {fl':’x"YgM,N is an extension of f then for all x€X,
fi(x) = £, (x). By Theorem 2.1, £ % f'i,

Conversely, assume f' is a fundamental sequence such that f x f'i.
Then f' is an extension of £'i. By inspecting the proof given in [12],
£=£'1 and £'1 having an extension implies that f has an extension.

A fundamental sequence p = {rk,x' ,)IZM ¥ is called an M-fundamental
- 9

retraction if rk(x) = x for all x€X. That is, r is an extension of
the identity fundamental sequence lx = {IM,X,XEM’M. If there is an
M~fundamental retraction from X' to X then X is called an M-fundamental

retract of X1,

Theorem 3.2: If XcYcCM, Y'cN with M, NeAR and if h: Y-Y! is a
homeomorphism then X is an M=-fundamental retract of Y iff X' = h(X) is an
N-fundamental retract of Y!'.

Proof: Letr = {rk’I’X}M,M be such that if x¢ X then rk(x) = X
Let £f: N9M be an extension of h":L and g: M-N an extension of h. Since
£(Y') = ¥ and g(X) = X', both £ = {£,X,¥fy \ and g = fg,X, Xy,  are
fundamental sequences. Consider the fundamental sequence
gr L= fen ¥,y oo If x€X' then grf(x) = hr il (x) = x since
h"l(x') = X. Thus g r f is an N-fundamental retraction from Y' to X'e

Corollary 3.3: If X<YcQ then X is a fundamental retract of Y

(in the sense of Borsuk [3]) iff X is a Q-fundamental retraction of Y.
In Section § of this chapter, attention is focused on the compact

metric case (i.e., when X can be embedded in Hilbert cube Q).
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. Fundamental Groups. Let X be a compact subset of M and Xy € X.

Let (S,a) denote the pointed n-dimensional sphere. An M-approximative

map of (S,a) toward (x,xo), ? = {Ek,(S,a)-_b(x,xo)fM is a fundamental
sequence E - {Fk’ (S,a),(x,xo)fS’M.

If ;,'L 2 (S,a)(¥,x,) are maps, their join, g*ilz (5,a) +(M,x,)
is defined as followse Let P, P' be n-dimensional balls on S such that
aES-l;, aes-f;' and ;'c S-l;. Let &,f: (S,a) xI-%(S,a) be homotopies
S\-lch that «(x,0) = B(x,0) = x for every point x ¢S and
& (S-P,1) = a = B(5-P',1). Define

s1) if S-l;'
(§#)) = ol arxes?
ne (x,1) if x € S-P.

Note, if [;], [1 le Tl'n(x,xo) where (X,x;)C (M,x,) then [?]*[7] - [f*ilj
is the group operation #* in Tl'n(x,xo). Let E:(X,xo) denote the set
of fundamental ciasses of M-approximative maps of (S,a) toward (X,xo).
By inspecting the proof given in [2] §1L, one can define a group

operation # in 1_T_§(x,x0) by setting

L] = [ o Goa) > ang)fy .

If H denotes Hilbert space then _‘n;g(x,xo) is the n-t-'E fundamental group
as defined by Borsuk in [2].

By inspecting the proof in [2] 15.1, one has the following theorem.

Theorem 4,13 If f = {fk, (x,xo),(Y,yo)}M,N is a fundamental
sequence then [f] induces a homomorphism [f 1 ﬂ_ﬁ(x,xo)-)ﬂ’_ﬁ(t,yo)
given by (L1 ([F]) = ({2, §,0(858) H(Lyhy)e

The follow;ng theorem is evident} see [2] 15.2.

Theorem 4.2: The homomorphism of the fundamental group Eﬁ(x,xo)

induced by the identity fundamental class [_1_.‘["x ] is the identity.
0
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The proof of the following theorem is clear, see [2] 15.3.

Theorem L4.3: If [f] is a fundamental class from (X,xo) to (Y,yo)
in M,N and (g] is a fundamental class from (Y,yo) to (Z,zo) in N,P
then the homomorphism of "l}g(}(,xo) into T i(z,zo) induced by the
composition (g]{f] is the composition of the homomorphisms induced
by these fundamental classes; i.e., ([gli£]), = (gl [l£],.

The following theorem is an analogue of [2] 15.l.

Theorem L.4: If one assigns to each fundamental class [_t:] from
(%,%,) to (T,y,) in M,N the induced homamorphism [£], from I (X,x;)
to y_ﬂ(Y,yo) then one gets a covariant functor Hn from the category
J‘ to the category of groups (abelian if n > 1).

As in [2] 15.5, one has the following corollary.

Corollary 4.5: If the fundamental class [g] from (I,yo) to (X,xo)

in N,M is a right inverse of the fundamental class [f] from (X,xo) to
(Y,yo) in M,N then the homomorphism { 5]*: lr_g(‘!,yo) -7 E(X,xo) induced
by {g] is a right inverse of the homomorphism [2]*: _T_T_ﬂ(x,xo) -)_7_)_’_2(!,3‘0)
induced by [£].

Corollary L.6: If f: M-N is a map, £(X)c Y and Vo = f(xo) then
there is an induced homomorphism £, : 4. ‘é(x,xo)-»g_g(r,yo) given by
2051 = [ff §,0(5,0) (T3 )}y b

- Proof: The map f: M9N induces a fundamental sequence
£ = {0 (x0), (Lo )y e

Corollary 4.7¢ If N is a deformation retract of M such that

Xy€ XCN then 1_!’_:1(1(, )zzr_ﬁ(x,xo).

*o
Proof: By hypothesis, i: N&,the inclusion map,is a homotopy
equivalence. By Corollary L.5 and Corollary 4.6, 1, ]_T_ﬂ(x,xo)-.g_’: (x,xo)

is an isomorphism.
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In particular, Corollary 4.7 implies that if H denotes Hilbert
space, Q denotes the Hilbert cube and x,€ X€Q then Trh(X,x,) is
iso_morphic'to ﬂ_ﬁ(x,xo).
Using Borsuk's method of proof of [2] 10.1, one has the following

theorem.

Theorem 4.8: If X¢M and X, is the component of X containing Xq
< s M

then Eﬁ(x,xo) is isomorphic to _’I_T_n(xo,xo).

Proof : Since Xoc X the identity map lm: M-M induces a homomorphism

M . . .
1,: T, Ir':(xo,xo)--)"lln(X,xo). Let [ E] be an M-approximative class with
representative ? - {Ek’ (S,a)rt(x,xo)}M. For every neighborhood (V,xo)
of (Xo,xo) in M there is a neighborhood (V,xo) of (x,xo) in M such that
the component of the set V containing XO lies in VO' Since ; is an
approximative map there is an index ky such that if k >k, then there
is a homotopy F: (5,a)% I#(V,x,) such that F(x,0) = ;k(x) and
F(x,1) = §k+1(x) for all xéS. Now SxI is connected and F(a,0) = Xq
so that F(SXI)¢ Voe Thus ;k £§k+1 in (Vo,xo). Hence
E' - {;k, (S,a.);-b(][o,xc))?M is an M-approximative map. By a similar
argument, it is easily seen tnat if ; and Z are homotopic M-approximative
maps of (S,a) toward (x,xo) then g' and 'L' are homotopic M-approximative
maps of (S,a) toward (Xo,xo). Thus by defining T([§]) = [;'] one
. M M . - -

has a function T lT_n(X,xo) -"n'n(xo,xo). It is clear that 2 is a

homomorphism since
Tk = tly] = [3*] = [g' e s
But T1, = d 1 =] iat
ti, I.Eg(xo!xo) and 1, ¥ .E:(x’xo) are immediate consequences
of the definitions of ¥ and l,. This completes the proof.
Theorem 4.9: If M, Né€AR and (x,xo) is homeomorphie to (Y,yo)

then E_ﬁ(x,xo) is #somorphie to Eﬂ(x,yo).
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Proof: Let h: (X,xo)-)(Y,yo) be a homeomorphism. Let hy: M-N
and h2: N-#M be extensions of h and h~t , respectively. If

31_" ihls(x)xo)Q(Y,yo)}n,N and _132 = ;hzs(YQYO)’(x!xo);N’M'then by
Corollary 2.2,

(npliiy ] = [,z ]

and

(i) = Liy,y
By Corollary 4.5, [hl]*: ‘_l_t'_g(x,xo)-)'_i_)'_ g(Y,yo) is an isomorphism.

A pointed compactum (I,yo) c (H,yo) is said to be approximately
n-connected [6] if for every neighborhood V of Y there is a neighborhood
VO of Y such that every map of (S%,a) into (Vgs¥g) is null-homotopic in
(V,yo). That is, the homomorphism j : T l,I(VO,:{O)--b’l’l'n(v,yo) induced
by the inclusion map j: (Vo,yo)-)(v,yo) is trivial. It is clear that
an approximately n-connected pointed compactum (Y,yo) has ‘a trivial
n® fundamental group (in H).

Theorem 4.10: Iet X be a compactum in H which is the union of
compacta Xl and X, such that X, X, and X, = X, A X, are connected and
non-void. Let xj€Xn; then if (X,,x5), (X,,%,) and (Xyx,) are
approximately l-connected so is (x,xo).

Proof: Let V be a neighborhood of X. There are neighborhoods
Vic V of xi (1 = 0, 1, 2) such that the homomorphisms ji* from
™ l(Vi,xo) into 1Tl(V,xO) induced by the inclusion maps
3y (Vi,xo) -)(V,xo) are trivial. Let W cvy (1 =1, 2) be open

i

patheconnected neighborhoods of X, (i =1, 2) such that Wy = Wyav,cV,

is path-connected. Let @,? Wy W = W, wil, (1 = 0, 1, 2) be the inclusion

maps. By van Kampen's Theorem, ‘n'l(w,xo) is generated by
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(wo)*(ﬂ'.l(woaxo)): (wl)*('wl(wlsxo)) and (wz)*(‘”'l(wz,xo))O let
i: (W,xo)c (Vsxg) be the inclusion map. Then i: Wl(w,xo)—’ﬂ'l(v,xo)
is trivial since each (jiwi)*z vl(wi,xo)-) ﬂ’l(v,xo) is trivial. Thus

(X,x,) is approximately l-connected.

5. Some Relations Between Weak Homotopy Type and Shape. The

following theorem gives a converse to [2] L.3.
Theorem 5.1t If N& ANR, M is normal and £, g: (X,_‘Xo)-*(Y,Yo)
generate fundamental sequences f = {fk’ (x,xo),(r,xo)}M’N and
g= {gk,(x,xo) ’(Y’YO)}M,N’ respectively, then f %‘g iff £ ¥g.
Proof: Assume that £ ¥ g. Then for every neighborhood (V,VO)
of (Y,IO) in N there is a neighborhood (U,Uo) of (x,xo) in M and an

index ko such that if k > ko then

felu,0,) % 8l w,u,) 12 TVo)-
Since (x,xo)c (U,Uo) and f = fkl(X,xo)’ g= gk‘ (X,Xo)’ one has that
®g in (V,V,). That is, £ g.
Conversely, assume that f 2'1; ge Then if (V,Vo) is any neighborhood

Applying Theorem 2.1, £ 2 g,

A subset X of E? is cellular in EP if there is a sequence {Qii

[} o
of n-cells such that Q,9Q:35Q,2Q,9¢¢e and X = ﬁ Q;. If there
1Y vl V2 T2 1 i
is an embedding j: X-»E® such that j(X) is cellular in EP then X
is said to be cell-like [7].
Theorem 5.2: If X&H is a finite dimensional compactum then X

is cell-like iff X has the weak homotopy type in H of a point.
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Proof: If XCH has the weak homotopy type of a point, then by
Theorem 5.1, Sh(X) is trivial (i.e., X has the fundamental homotopy
type of a point)s Lacher [8] has shown this implies X is cell-like.

Conversely, if X is cell-like, Sh(X) is trivial {8]. By
Corollary 1.5, we may assume that XcE? is cellular; i.e., there is a
sequence in} of n-cells such that Qlaal:f 02:52:..., and X = ?Qi'
Then X = XXOCE"X 0 CH is such that X = ﬁ (Qix Bi) where Bi is the
open ball in H centered at O with radius %],. and thus each Qix Bi is
an AR. Let [f] be a fundamental class from X to X and [g] a fundamental
class from Xy to X such that [gllf] = [-]:X] and [fllg] = [_];xol. Since
Xy is an ANR, we may choose a representative f = {fk’x’xOEH,H of (£]
that is generated by a map f: X-x, (2], 5.1, Letg= {gk,xo,x;H’H
be a representative of [5]. Since each Qix Bi is a neighborhood of
X in H, there is an increasing sequence of indices {ki} such that
gki(xo)c Q;%B;. Then g! = {gki’xo’x?H:H is a fundamerical sequence
homotopic to g [2], 3.ke Let x) EX and g: xy-X be given by g(xy) = x;.
If V is any neighborhood of X, there is an index i such that

Qix B;€ V. Then if j > i, 8. (xO)CQ. XB;« This implies that
J
g g, \x in V. Let 5 be a fundamental sequence generated by g.
By Theorem 2.1, 5 ® g'; and hence, 5 &g, Thus [Bl£] = [IX] and
[£)E] = [lxo]. But fg generates f § and gf generates g £ so by
Theorem 5.1, fg % 1, and gf S 1_ . Thus X has the weak homotopy
H X H X5
type in H of a point.

6. Fundamental Retracts. In the remainder of this chapter, only

compacta are considered. Thus, all spaces are assumed to be embedded
in Hilbert space H and all fundamental sequences are in H. The

subscripts H are therefore omitted.
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The following theorem may be found in [3], p. 210; however, the
following proof is somewhat shorter.
Theorem 6¢1: Let X, X' and Y' be compacta in H and let h: X'-pY!
be a homeomorphism. Then the set Y = h(X) is a fundamental retract of

Y! if X is a fundamental retract of X'.
Proof: Let hy: H-H be a map such that hi(x) = h(x) for every

point x €X', and let h2: H-H be a map such that hz(y) = h'l(y) for
every point y €Y', Then h = '}'hl,x,rfand b7l = fh,,v0,x are
fundamental sequencese. Assume that there is a fundamental retraction
re= irk,X' ,xf. Then h r _l_'l_'l = {hlrkh2 ST ,Y} is a fundamental sequence.
If y€¢Y then for k = 1, 2,..., hlrkh,z(y) = hrkh'l(y) = y since h(X) = Y.
Thus h r E’l is a fundamental retraction of Y' to Y.

Theorem 6.2: Let X, X' be two compacta in E® such that X< X'.

If X is a fundamental retract of X! then no component of the set ER-X
is contained in X'.

Proof: Since no unbounded component of EP-X can be contained in the
compactum X', we need consider only the bounded ones. Let p: H-E" be
a retraction and j: E®H the inclusion map. Assume that r S&k,X',Xz
is a fundamental retraction and that G is a bounded component of
E®-X such that G¢cX'. For each k, 8, = prk;]: En-)En is a map such
that s, (x) = x if x€X. By [7] p. 190, for each k, E}'csk(e). Let
q€ G; then p"'l(q) is a closed subset of H so that V = H-p'l(q) is a

neighborhood of X in H. Since r is a fundamental retraction, there

exists an index k, such that if k > k, then rk(X')CV. Then

8, (X') = p(r, (X)) €p(V).

But GEX' implies that
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s (6)cs (X)ep(V)
which is impossible since qu(v).

Corollary 6.3: If X is a fundamental retract of X', X&X'C ED,

then En-x cannot have more components than E.X'.

7. FAR and FANR-sets. A compactum XCH is said to be a

fundamental absolute retract (X€éFAR) if it is a fundamental retract

of every compactum X'c H containing X. Borsuk [3] 6.3, has shown
that FiAR-sets are the same as fundamental retracts of AR-sets lying in H.
Theorem 7.1: If XcE" is a FAR-set then E'-X has no bounded
components.
Proof: Since X cE® is compact, it is bounded. Let B® be any
n-cell such that XCB®. Since X €FAR, X is a fundamental retract of
B%. This together with Theorem 6.2 gives the desired result.

Corollary 7.2: If XGE® (n >1) is a FAR-set then X cannot

decompose EM,

A closed subset X, of a compactum XCH is said to be a fundamental

neighborhood retract of X if there is a closed neighborhood W of XO

such that Xo is a fundamental retract of the set WnX. If for every
compactum X' such that XCX'C H the compactum X is a fundamental

neighborhood retract of X', then X is said to be a fundamental absolute

neighborhood retract (FANR). Borsuk [3] 6.8, has shown that FANR-sets

are the same as fundamental retracts of ANR-sets lying in He.

The following theorem may be found in [3] 6.14. This proof is
somewhat shorter.

Theorem 7.3:¢ If Y is an ANR-set lying in H, then every fundamental

neighborhood retract of Y is an FANR-set.
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Proof : Since Y€ ANR, there is a neighborhood V of Y and a map
st H-H such that 8(V) = Y and s(y) = y for every point y€ Y. Iet
Yo be a fundamental neighborhood retract of Y, then there is a closed
neighborhood V0 of YO and a fundamental retraction £~: frk, Von Y ,Yoi.
Select a closed neighborhood Vlc V of Yo such that s(Vl)c int Von Y.
Let Y!' be a compactum such that Yoc Y'e H. Since s(VlnY')c VONY,

8 = {S,Vlf\Y',VO!\ Y} is a fundamental sequence. Then
rs= {rks ,Vln Y',Yos is a fundamental retraction, since if yé€ YOC Y,
rsy) = r(y) =y

The following theorem may be found in [3], 8.1. This proof is
somewhat shorter.

Theorem 7.4t If X is a FAR-set, then every set YC H homeomorphic
to X is also a FARe-set.

Proof: Let h: X-Y be a homeomorphism of X onto Y. Let f: H-H
and gt H-H be extensions of h and h"l, respectively. Consider a |
compactum Y'¢ H such that Y€Y'., Let X' = g(Y'). Then X¢X'CH
and X' is compact. Since X€& FAR there is a fundamental retraction
r= irk,](',x!. Since g(Y') = X', g" {g,Y',X'f is a fundamental
sequence. Also, f = {f,x,Yf is a fundamental sequence. Then

frgs= {frkg,Y',Yg is a fundamental retraction since if y€Y,
fr g(y) = hrkh'l(y) =y
The following theorem may be found in [3], 8.2. This proof is

somewhat shorter.

Theorem 7.5: If X is a FANR-set, then every set YC H homeomorphic
to X is also a FANR-set.

Proof: Let h: XY be a homeomorphism of X onto Y. Let f: H-»H
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and g: H-H be extensions of h and h'l, respectively. Let Y' be a
compactum such that YeY'e H. Let X' = g(Y'); then X' is compact and
X eX'c He Since X ¢FANR, there is a closed neighborhood M of X and a
fundamental retraction r= {rk,MAX',Xf. Set N = g'l(M); then N is a
closed neighborhood of Y and g= {g,NnY',Mn X'; is a fundamental
sequence since g(NAY')cMnX'. Also, £ = if,X,Y? is a fundamental

sequence. Thus f r g = {frkg,NnY',I? is a fundamental retraction

since if ye¢Y,

fr e(y) = hrkh'l(y) = y.

Using Borsuk's method of proof of [2], 10.1, one has the following.

Lenma 7.6: If X€X' and r = §r,,X',X} is a fundamental
retraction then if C is any. component of X and C' is the component
of X' containing C then { rk,C' ,C} is a fundamental retraction.

Esnof: For every neighborhood V of C there is a neighborhood
VO of X such *hat the component of the set V0 containing C lies in V.
Since r is a fundumental sequence, there is a neighborhood U, of X!

0
and an index k, such that if k >k, then

T Ny ‘ in Vae
k\Uo k+1 Uo 0

If U denotes the component of U0 containing C' then

rk\u ~ rkﬂ\u in V.

Since rk(x) = x for x €X we have shown that grk,C' ,Cf is a

fundamental retraction.

Corollary 7.7t Every component of a FANR-set is a FANR-set.

Proof: If Xé€FANR then there is a X! € ANR such that X is a

fundamental retract of X'« If C is a component of X and C' is the
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éomponent of X! containing C then by Lemma 7.6, C is a fundamental
retract of C'. But C'¢ ANR [1], 2.11, and hence, [3], 6.8, C€ FANR.

Lemma 7.8: If X is a fundamental retract of X' then X cannot
have more components than X!'.

Proof: Suppose Cl, 02 are components of X and r = {rk,X‘,Xi
and C

1 2
are not contained in the same component of X'. Suppose Clu CZCC

is a fundamental retraction. It suffices to»show that C

where C is a component of X'. By Lemma 7.6, {rk,c,clf and frk,C,sz
are fundamental retractions. ILet Uy (i =1, 2) be disjoint neighborhoods
of C, (1 = 1, 2). Then there is an index ko such that if k > kj

then rk(c) €U, and rk(C)C Uys a contradiction.

Corollary 7.9: If X€FAR then X is connected.

Proof: If X FAR then X is a fundamental retract of an AR-set.
But an AR-set is connected, so that X can have at most one component.

Corollary 7.10: Every FANR-set has only a finite number of

components.

Proof: If X€FANR then X is a fundamental retract of an ANR-set.
But an ANR-set has only a finite number of components [1], 2.7. Thus
X has only a finite number of components.

Lenma 7.11: If X5 X, Y are compacta such that X, 0 X, = @ and
iff = irk,xl,x} and g = fgk,xz ,Y} are fundamental seqﬁences then
there is a fundamental sequence h = {hk,xlu Xz ,Yf extending both
f and g.

2_12&1‘.: Since xl and x2 are disjoint compacta there are disjoint
closed neighborhoods U; (1 = 1, 2) of ) Y (i =1, 2). For each k, let
hﬁ: UloUz-bH be given by
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fk(x) if x€U,

by (x) =
gk(x) if xeU,.

Let hkz H-»H be any extension of hl'c’ k=1, 2,eaee If V is any
neighborhood of Y in H, there are an index ko and neighborhoods ifi
(i =1, 2) of Xi (i =1, 2) such that if k > k, there exist homotopies
Fi: Wy X IV (i =1, 2) such that Fl(x,O) = fk(x), Fl(x,l) = fk#l(x)
if X €W, and F,(x,0) = g, (x), Fz(x,l) = gk*l(x) if x€Wye Let
W= (Wlh Ul)u(wanz) and F: WXI-V be given by F(x,t) = Fi(x,t)
if (x;8) € AD;) KT, Then F: iy *hy |y in V and b = ThyX) v X0
is a fundamental sequence extending both f and g.

Lemma 7.12: If X, X, €FANR and X, A X,= @ then X = X,v X,€ FANR.

Proof: Suppose X' is a compactum such that X€X'. Let Ui
be disjoint closed neighborhoods of X, (i =1, 2). Since XeX!
and XieFANR, there are closed neighborhoods Wic Ui and fundamental
retractions g_i = irt,}{‘f\wi ,xi} (1 =1, 2). Since Xic X,
- {r;,]{'nwi,xi are also fundamental sequences. Since
(X nwl)n (X'n w2) = @ there is a fundamental sequence
rs= irk,X'n (wluwa),xf that is an extension of r, (i =1, 2).
If x€X then for some i, xéxi so that rk(x) = rt(x) = x.for all k.
That is, r is a fundamental retraction. Thus X €& FANR.

Theorem 7.13: A compactum X is a FANR-set iff X has a finite

number of components, each of which is a FANR-set.

Example: The Cantor set can be written as an intersection of
compact sets each of which is the union of a finite mumber of
disjoint closed intervals. However, it has an infinite number of

components and thus is an example of a compact set which is not a FANR-set



22
but is the intersection of a decreasing sequence of FANR-sets.

Theorem 7.13: If XCE® is a FANR-set then E"=X has only a

finite number of components.
Proof: Since X €FANR there is a compact ANR-set X' lying
in the closure of the convex hull ?( of X, hence also in En, such
that X is a fundamental retract of X' {31, pp. 66-67. But EP-X!
has only a finite number of components [7], 5.1, so by Corollary 6.3,

EP-X has only a finite number of components.



CHAPTER III

SHAPE GROUPS

l. Preliminary Definitions. Let (A be a category. An object

X of Q. is said to be a terminal object (universally attracting) if

whenever Y is an object of (. there is a unique ({ -morphism f: Y-»X.

An inverse system in @, X = {Xa.’paa"Az’ consists of a family
ixaz aé AS indexed by a directed set A and a family {paa': ac< a'}
of { -morphisms such that if a < a' then Pagr? X, PX, satisfies
(1) Pag * xas
(2) ifa<a'<a" thenp,, = PagtPgigne

An inverse limit X_ = }_13\ X of the inverse system X = {xa’paa' ,A}

is a terminal object in the following category inv(X). The objects

of inv(X) consist of pairs (X, ipa: aGA}) where X is an object in O

and pa: x-vxa are a,-morphisms such that if a < a' then P, ™ PgatPgte

An inv(X)-morphism £: (X, ip 9j)--)('r, {qag) consists of an {{ -morphism

f: XY such that if a€ A then P, = qaf. Inverse limits exist in

the category of topological spaces and in the category of groups.
IfX = ixa,paa,,A} and Y = {Yb’qbb' ,B} are inverse systems in a.,

a morphism of inverse systems £3 XY consists of an increasing

funetion £: B9A and a collection of ({ -morphisms £,¢ X (b)—be
such that if b < b' then fbp:r(b)f(b') = Qpifye If X, = }_g\_ls
and Y = }_i_m Y exist and £3 XY is a morphism of inverse systems

23
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then for each b€ B the composition fPr () LY, satisfies

if b < b' then

TePr(b) = fePe(o)e(v')Pe(bt) ™ YobrfbPr(nt)®

By the universal mapping property of Y, there is a unique & =morphism
foi XY, such that if b €B then qf, = £ps)e The Q -morphism
f, is said to be induced by f.

There is a category whose objects are inverse systems
X = ixa’paa"‘ﬁ} in (L and whose morphisms £: X-»Y are morphisms of
inverse systems. If f3 XY and g3 Y42 = iZ c’rcc"c? are morphisms
of inverse systems then the composition h = g f: X-»Z is given by:
h: C+A is the composition of f: B-®A and g: C-¥B; for each cé€C,

hc: xh(c)-)zc is the composition of fg(c)’ xfg(c) = xh(c)"Yg(c)

and g2 Y (o) PZe The identity _1_§= XX is given by 1: A-A and
1a: X a-sxa (identity morphisms). It is easily seen by the uniqueness
that if X, Y, and 2, = lim 2 exist then (gf), = g.fue

A (pointed) ANR-system (compare [9]) is an inverse system
X= {(xa’xa)’paa' ,A} in the category of pointed topological spaces
where A is closure-finite (each a€ A has only a finite number of
predecessors) and each X a is a compact ANR (for normal spaces).

A map of ANR-systems (compare[10]p. L42) £: XY = i(Yb’yb)’qbb"Bi

consists of an increasing function f£3: B-»A and a collection of maps
fb: (xf(b)’xf(b))"(xb’yb) such that if b < b' then

fbpf(b)f(b') ™ Qify e Two maps of systems f, g: X-¥Y are said
to be homotopic (compare{10] p. 43), written £ 2 g, provided for
every b €B there is an a €A, a > £(b), g(b) such that

fbpf(b)a.z gbpg(b)a' A map of systems f: X-Y is said to be a
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homotopy equivalence provided there is a map of systems g: Y-»X

such that g £ =1, and £ g2 1,. Two systems X and Y are of the

same homotopy type, X « Y, if there is a homotopy equivalence

f: X+Y¥. If X is a compact Hausdorff space, x,€X and (X,xo) = lim X

then the ANR-system X is said to be associated with (X,xo).

Marde3i¢ and Segall10] have shown that every pair (X,xo), where X is
a compact Hausdorff space and xoé' X, has an associated homotopy

class of ANR-systems, called the shape of (X,xo) and denoted Sh(X,xo),
such that if X is associated with (X,xo) then X€ Sh(x,xo). They show
in [11] that this definition of shape is equivalent to that given by
Borsuk. Similar definitions can be made for relative ANR-systems,
X= i(xa’XOa)’paa"A} » and sbsolute ANR-systems, X = {xa’paa' ,A}

(see [10]).

If X,€ XC M, an inclusion ANR-system in M associated with (X,xo)

is an AMR-system X = {(Xa,xo) ’iaa"A} associated with (x,xo) such that

(1) each X, is a neighborhood of X in M,

@ x= () x,
aél

(3) if a < a' then iaa': (xa,,xo)->(xa,xo) is an inclusion map.

If A = N (the set of natural numbers) then X is said to be an inclusion

ANR-sequence and is denoted X = {(Xk,xo) ’ikk'f' Marde¥ié has shown (9]

that by embedding a compact Hausdorff space X in a parallelotope I"n'
one can construct an inclusion ANR-system (sequence if f is countable ’

see[10]) in Ia' associated with (X,xo).

2. The Shape Groups. Let (L be a category. Two morphisms

f, g: XY of inverse systems in Q. are ~ -related (fag) if
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for each be B there is an index a€4A, a > f(b), g(b) such that
fbpf(b)a = BpPg(b)a’

Theorem 2.1:¢ The relation A is an ecuivalence relation.

Proof: The proof is as in Theorem 2 of [10].

Theorem 2.23 Let f, £': XY and g, g's Y42 be morphisms of
inverse systems. If f ~f! and g g! then g fnvg'f!.

Proof: See Theorem 3 of [10].

A morphism f: XY is a ~ -equivalence provided there is a

morphism g X"E (called the m -inverse of _i:) such that g { ~-]=X

and f g~ &Y' In this case, X and Y are said to be ~v -equiva.le;t
EwD.

Theorem 2.3: The relatione is an equivalence relation on
inverse systems in Q.

Proof: See Theorem L of {10}

Theorem 2.4z If £, g XY are ~ -related morphisms and X
and Y, both exist then f_ = g_.

Proof: By definition, f_: X_-»Y_ is the unique @ -morphism
satisfying for all b &B, Gt = fbpf(b)' Similarily, g, X Y,
is the unique @ -morphism satisfying for all b€ B, U8 = BpPg(b)*

Choose a > f(b), g(b) such that fbpf(b)a * 8Pg(b)a’ Now
pf(b) = pf(b)a.pa and pg(b) = pg(b)apa so that

QW= * BpPge(b) * gbpg(b')anpa. = fl:)pf(b)aupa = fbpf.‘(b)'
By the uniqueness, f_ = g_.

Corollary 2.5: If X~ Y and X_, Y, both exist then X, and Y,

are a-equivalent objects.

Proof: If _i:: _X_-O_Y_ and g3 Z-o_l;_ are such that g £ ~lx and
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f g~lY then g f, = (gf), = lxe and f,g, = (£f2)e = ]Tw.

If-§ - {(Xa,xa),paa,,ai is an ANR-system, let
ﬂ'n(_]g) = {'N’n(xa,xa), faa"A} denote the inverse system of groups
where ‘h’n(xa,xa) is the n-th homotopy group of (xa’xa.) and if a < a'
then f agt? ﬂ‘n(xa, sXy ) =»Tr, (X, ,x,) is the homomorphism induced by
Pagti ieees if [§1€ M (X, ,ox,,) then P[] = [p .5l

If £f: X-»Y is a map of systems, f induces a morphism of inverse
systems £ : wn(g)awn(x_r) where £, = f£: B-bA and
(fb)*z v n(xf(b) ,xf(b))-)'h'n(Yb,yb) is the homomorphism induced by f, .
This gives a covariant functor 1Tn between the category of ANR-systems
and the category of inverse systems of groups.

Theorem 2.6: If f, g: XY are homotopic maps of systems (f 2 g)
then the induced morphisms f,, g, 2 'n'n(g) -)’ﬂ'n(.I_) are a-related

(-1_‘* Ng*)o
Proof: For each bé B, choose a€A such that a > £(b), g(b) and

fbpf(b)a " EPg(b)a’ Then if [;]6 Wn(xa,xa),

Eo)e $e(0)al§ = [fuPe(n)a¥! = [erPg(n)af] = (8o)uLe(b)al§l:

Corollary 2.7: If X Y then W, (X) ~ IV (I).

Marde¥i¢ and Segal have shown in [9] that if X and Y are ANR-
systems associated with (x,xo) and (Y,yo), respectively, then a map
£ (x,xo)4(Y,yo) has an associated map of systems f: XY, If X
and X' are ANR-systems associated with (X,xo) then the map of systems
i: X-X' associated with the identity 1, _ : (X,xo)—)(x,x ) is a
homotopy equivalence. By Theorem 2.6 and Theorem 2.4 one has that
i lin 1Tn(§)->%i_m Trn(_i_l_') is an isomorphism. Suppose

fe (X,xo)-)(!,yo) is a map, X, X' are ANR-systems associated with
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(X,xo) and Y, Y' are ANR-systems associated with (Y,yo). Let
i: X-X' and j: I-»Y'! be the homotopy equivalences associated with
lx,xo and ly’yo, respectively. ILet f3 XY and f's X'-»Y' be the
maps of systems associated with f. It follows [9] that j £o f'i: XY,
By Theorem 2.6 and Theorem 2.4 one has that
jufw = £4iat 1im ¥ (K)Lin T, ().

If (X,xo) is a pointed compact Hausdorff space and X is any

ANR-system associated with (X,xo) then the n-th shape group of (X,xy)

is given by ’ﬂ'_n(x,xo) - }lm w,(X). If f: (X,xo)-)(Y,yo) then the
homomorphism £ _En(x,xo)-b_‘ll n(¥s¥o) is said to be induced by f.
It is easy to show that (lx,xo)‘” - llr.n(x’xo) and (fg), = £ 2o
Corollary 2.7 also shows that the n-th shape group is a shape
invariant. It is shown in Section 3 that this definition of _77_'n
extends that given by Borsuk in [2].

Theorem 2.8: There is a homomorphism p: Tt’n(X,xo)-b_"ln(x,xo)
such that for all a€A, (pa)* = §.p where (pa)*: Wn(x,xo)—)‘h'n(xa,xa)
is the homomorphism induced by Py (X,xo)-)(xa,x a.)‘

Proof: The collection of maps Pyt (X,xo) -)(xa,xa) induces
homomorphisms (pa)*z Wn(x,xo)-)‘lrn(xa,xa) such that if a < a!
then (pa)* - faa'(pa')*‘ By the universal mapping property of
_'l_\'n(x,xo) there is a unique homomorphism p: ﬁn(x,xo)-)_TIn(X,xo)
such that for all a€A, (pa)* = 93. .

Theorem 2.9: If X€ANR then ‘h'n(X,xo) z_T_T_n(X,xo).

Proof: Since X€ ANR there is a special ANR-system
X= i(x”‘o)’lx,xgs associated with (X,x,). Then
ﬂ'n(_lp - g"ﬂ’n(x,xo) ,l.n,n(x,xg)i has as inverse limit the group '"'n(X,xo).

Theorem 2.10:¢ If X is a compact Hausdorff space, Xq€ X and XO
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is the component of X containing x, then L(X,xo) = _T_T_n(xo,xo).

Proof: Assume XC Ia and X = {(xa,xo) 53 ,Ai is an inclusion

aa!'
ANR-system associated with (X,xo). For each a €A let Xao denote

the component of Xa containing Xg° Since a compact ANR is locally
contractible, it is locally path connected. It follows that each

Xao is a compact path connected ANR.

Clatmt Xy = {(Ky0%0)staarx

,A] 1s an inclusion ANR-systen
a'l

associated with (¥5,%,). It suffices to show that Xy = [ ) X,
a€l
Certainly Xo c n xao since XO a compact connected subset of I

agA
implies that if N is any neighborhood of XO there is a path connected

neighborhood U of X, such that UCN. Let x€ n X, 07%0°
a€él

xéx-xo so let Xl denote the component of X to which x belongs.

Then

There are disjoint open sets Uy, U; such that U, AX = X, (i = 0,1).
Since I'u is normal there are open sets V,, V, such that X ¢ VicviCUi
(i=0,1)s Since V = Vouvlu[In-(Vouvl)] is a neighborhood of

X in I"z there is an a € A such that xac V. Then Xa cVO and erl

0
a contradiction since V.NAV. = #. Thus X, = m X . and the claim
01 0 a €A 20
is proven.
By a well-known theorem, ﬂ'n(xa,xo) = Trn(x aO’xO) so that

Wn(z) = ‘“’n(go). It follows then that En(x,xo) = En(xo’xo)?
If Xq xlﬁx and @t I-»X is a path in X connecting X and Xy
then for each a €A, ®induces an isomorphism w2 Wn(xa,xo)-p‘lrn(xa,xl).
If a<a' theni, W, , = @, and it is not hard to show that
ﬂn(X,xo) 2T n(X,x_l). Thus we have the following theorem.
Theorem 2.11: If Xg and X, are in the same path component of
X then T (L,x)) x W (X,x)).

Questiont Is Theorem 11 valid if one replaces path component with
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component? Using Theorem 4.1 of {5], one can easily show the following

is true.

Theorem 2.12: If X is a movable compact metric space and if X

and x, are in the same component of X then T 2 (X,%0) z_l'ln(x,xl).

3. Equivalence of the inverse limit and Borsuk's definition of -En‘

Let X be a compact metric space and xoe X. Assume that X is embedded
in Q@ (Hilbert cube).

Theorem 3.1: If X = {(Xk,xo),ikk,} is an inclusion ANR-sequence
o . Q 3 =
in Q associated with (X,xo) then _q_n(x,xo)z lin 11'n(_1£) En(x,xo).

Proof: Let Zk: l&(x,xo) -)Tr'n(xk,xo) be given as follows. If
{ i Je Eg(x,xo) then since (Xk,xo) is a neighborhood of (X,xo) in Q
there is an index m, such that if m > m_ then ;m ~ ;mk in (X s%5)e
Define ﬂk[il = | gmklé‘rrn(xk,xo). If [E] = [E] then there is an m
such that if m > m; then ;m & ?m in (X, sxgh so that lk is a well-
defined function. If [;], ['l]el\‘_g(x,xo) and my is "large enough" then

ALEMAD = AL {§ 2 o (552) 2 (Lix) P
=[{& *p ]
;mo ’lmo
= [ imol*{ ’(mol
- 1k[§1*2k[11.
Thus each 'lk is a group homomorphism.

Note: If Zk[i] - lk[zj for all k then [i] = [Z]. Let (V,x,)
be a neighborhood of (X,xo) in Q. Choose k so that (Xk,xo)C(V,xo).
Then ak[ E ]= lk[Z] implies there is an m, such that if m >m,
then 7m = qm in (xk,XO)C(V’xO)O

We will now show that (lg(}(,xo), {Zk}) is a terminal object in
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the category inv(ﬂ’n(g)) s from which it will follow by uniqueness of
inverse limit that T_T_g(x,xo) n ﬂ_n(x,xo). Ta show (gr_g(x,xo),i;l k?s)
is in the category inv(® (g)) s one must show that if k < k' then
’lk = fkk' gt where Pz (X 0x)) 9% (X, s%,) is the
homomorphism induced by iy 3 (xk,,xo)—b(xk,xo). Choose My > M5 Mo
then A(§1 = [§5 1= PRy [;-1

It remains to show that (‘1r (X,xo) s {R }) is a terminal object;
i.e., if G is any group and Vk: G -)Trn(xk,xo) are group homomorphisms
such that if k < k' then U‘ = fkk' Tk., then there is a unique group
homomorphism @: G=>T Q(x,x ) such that o ilkcr for all k. The
uniqueness follows immediately from the above notee.

Existence: lLet g€G. Define 0¢(g) = [{§,,(5,a)» (X,x,){]
where ;kz (S,a)-)(Q,xo) satisfies ;ké d'k(g)é Tl'n(xk,xo). First,
f‘gk,(s,a)a(x,xo)} is an approximative map of (S,a) toward (X,xo).

If (U,xo) is any neighborhood of (X,xo) in Q choose k, such that

0
k >k, implies that (Xk,xo)c(U,xo). Then 0" (g)

Fi k41 Tica ()
so that ¥, & ¥, in (Xox))C(U,x ). Next, 0 is a well-defined
funetion for ifi - i;k,(s,a)-r(x,xoﬁ and 5_' = %;&,(S,a)q(x,xo)}
are such that ik’ E"k(g) for each k, then if (U,xo) is any
neighborhood of (X,xo) in Q choose ko such that if k > ko then

& 2 =y
(Xk,xo)c.(U,xo). Then ;k gk in (U,xo) and hence [3] [E ]
Also, 0" is a group homomorphism. Each U‘k is a homomorphism so
that T (g,e,) = Oy (g))* Oy (gy). Thus if §, € 0y(e)s 1, € T (e,)
then ?k* ’lk e(rk(gl)* G'k(gz) = k(gng)' That is,
Tgygy) = [ Ty Moo (5:8) 2 (Xyxp)f 1. But
g-(gl)-x- U’(gz) = [%gk*’lk,(s,a)-#(x,xo);] so that O is a group

homomorphism.
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Finally, 07, = 4,0 for each k. Since
AkO'(g) = [?mkle‘nn(xk,xo), it suffices to show ;mk N~ fk
in (Xk,xo). If k > m then by the definition of m, ;k ~ fmk

in (Xk,xo). If m > k then ¢k(g) - ﬂmko-mk(g) so that gmk ~ tk
in (Xk,xo). This completes the proof of the theorem.



CHAPTER IV

EXTENSIONS IN SHAPE THEORY

1. Shape Retracts. In [9], Marde¥i€ has defined the notion of

retraction in the ANR-system approach to shape, called a shape
retraction. He then uses this notion to define absolute shape
retracts (ASR) and absolute neighborhood shape retracts (ANSR).
In the campact metric case, these correspond to Borsuk's FAR and
FANR-sets, respectivelye

If X and Y are compact Hausdorff spaces and j: X-»Y is an

embedding then X is a shape retract of Y (compare [9], Definition 3)

if whenever X and Y are ANR-systems associated with X and Y, respectively,
there is a map of systems rs Y-»X that has as right homotopy inverse
the map of systems J 3 XY associated with the embedding j3 i.e.,
rj« 1y8 XX, The map of systems r: Y-4X is called a shape
retract;on. Using an analogous definition in the case of pointed
campact Hausdorff spaces, one has the following theorem.

Theorem :,1: If (x::o) is a shape retract of (I,yo) then
_‘\'!’_n(x,xo) is isomorphic to a factor of ‘I‘ln(r,yo), n>1.

Proof: Since r j= 1y, the homomorphism jut TV, (X,x,) +TY, (¥,¥,)
has as left inverse the ho;omorphism b En(I,yo)-blT_n(x,xo).
The result then follows from standard arguments in group theory.

A compact Hausdorff space X is an absolute shape retract (ASR)

33
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(compare [9 ], Definition L) if for every compaét Hausdorff space Y
and embedding j: XY, X is a shape retract of Y.
Theorem 1.2: A compact Hausdorff space X is an ASR iff there
is a compact AR, Y, and an embedding j$: XY such that X is a shape

retract of Y.

Proof: Let j: X*I'a be an embedding. Since X €ASR, X is a
shape retract of I'ae. AR.

Conversely, suppose Y €AR, j: XY is an embedding and r: Y=X
is a shape retraction where Y= ?Y,lrg is the special ANR-system
associated with Y. Suppose it X2 is an embedding. Cc;nsider
ji’lz 1(X) Y where i1: i(X)~»X is the homeomorphism determined
by is X+Z. Since Y€ AR, there is an extension f: Z-Y of ji"l
such that fi = j: X4Y. Let £: Z-Y be a map of systems associated

with f. Then

rfivryel

80 that r f: 39X is a shape retraction and X € ASR.

A compact Hausdorff space X is an absolute neighborhood shape

retract (ANSR), compare [9] Definition 5 , if for every compact
Hausdorff space Z and embedding j: X-»Z, there is a closed neighborhood
W of j(X) in Z such that X is a shape retract of W. Marde¥i€, [9]
Theorem 6, proves the following characterization of ANSR's.

Theorem 1.3: A compéct Hausdorff space X is an ANSR iff there
is a compact ANR, Y, and an embedding j: X Y such that X is a shape
retract of Y.

An embedding j: XM is said to have property uv" if for every

neighborhood U of j(X) in M there is a neighborhood V of j(X) in M,

v
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Vc U, such that V is contractible in U.

The following theorem is similiar to one proven by R. C. Lacher
[8] and indicates that ASR-sets may be thought of as a generalization
of cell-like spaces.

Theorem l.4: Let X be a compact Hausdorff space. Then the
following are equivalent:

(a) X is an ASR-set,
(b)~ Sh(X) is trivial,
(¢) some embedding X-vI'a has property UVQ,
(d) for any neighborhood retract of a parallelotope, N, any
embedding f: X-*N has property we.

Proof: Mardesic, [9] Theorem 3, proves (a)&>(b), while (d) = (c)
is immediate.

(b) 2(c): Assume Sh(X) is trivial and let j: X-'rI'Q be an
embeddinge Iet X = )‘Xa,i aa! ,Az be an inclusion ANR-system associated
with X. If U is a neighborhood of X in I'Y, let A' = feea: x_cut.
It is not hard to show that A' is cofinal in A so that Xt = {xa’iaa"A'z
is an inclusion ANR-system associated with X. Since Sh(X) is trivial,
there are maps of systems f: X'9p, g: p+X' such that f g & lB
and g £ L‘.‘lx, where p = sp,lpz is the special ANR-system associated
with the si;glet.on P. The map f: X'-»p consists of a map f: xa-»p
for some fixed a€A'. Since g f ‘-"-;x,, there is an a'g A?’,

a' > a such that iaa.' & gaﬁ That is, the inclusion map

aa'’
iaa" xa,-)xa is null homotopic. Let V = Xa" *hen V¢U and V is
contractible in Xa s hence in U. Therefore, j: X-bI'“ has property UV“.
(] @
(c) D(b): Assune X I"' has property UV . Let X = §xa,iaa,,a}

be an inclusion ANR-system associated with X. For each a €4, there is
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a neighborhood Ua of X such that the inclusion map ia: Ua—bxa is
homotopic to the constant map gt Ua-bxoe X. Let f: X-»p be given
by f: Xd-bp, where o €A is fixed. Let g: p-»X be given by gqt p-)xa
is the constant map ga(p) =xy€XcX . Then f g = _];B and g £ '-‘-’}l{

since for all a'€ A one can choose a" >¢, a' such that XncU,, and

faran ® °a‘lx an = Byllggne

Thus Sh(X) is trivial.

(c) D(d): Assume X¢ NCI'a. Let W be an open neighborhood of N

in I'o' and r: W=N a retraction. If U is any neighborhood of X in N
then r'l(U) is a neighborhood of X in I‘a. Since some embedding of X
into an AR has property UV’, it is not hard to show that all embeddings
of X into I'n' have property UV”. Thus there is a neighborhood V of X

& s Xeve r'l(U) , such that V is contractible in r"l(U). Let

inI
Ft V!Iér'l(U) be a homotopy such that F(x,0) = x, F(x,1) = xp€ X
for all xe€V. Let V' = Va N, a neighborhood of X in N. Then

rFlV'xI’ ViInI$U is a homotopy such that »F(x,0) = r(x) = x and
rF(x,1) = r(xo) = x, for x€V'. That is, V' is contractible in U

and the embedding X< N has property UV .

2. lxtensions of Maps of Systems. If X and X' are compact

Hausdorff spaces and j: X-*X' is an embedding then there is a map
of systems j§: X»X' associated with j, where X and X' are any
ANR-systems associated with X and X' respectively. If f: X-*Y is
a map of systems then £': X'-Y is said to be an extension of f
if £2f'j. The following theorem follows immediately from the

definitions.

Theorem 2.1: If j: X-X'! is an embedding then a shape retraction
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r: X'5X is an extension of the identity map }_x: XX, and conversely.

The following theorem relates extensions ;:t‘ maps of systems and
the shape groups, compare [3] Theorem 1l.6.

Theorem 2.2: If f': X'»Y is an extensicn of f: X-#Y then the
induced homomorphisms f_3 gn(x,xo)-»_’[r_n(x »Yq) and
£1s _’lIn(X',xé)-?En(Y,yo) satisfy the condition f_ = f!j_ where
Jot T, n(X,xo)éﬂn(X' ,xé) is the homomorphism induced by the embedding
j: (X,xo)-)(X',x(')).

Proof: Since £ f'j one has that £f_ = £1j..

As an immediate consequence, one has the following corollary,

compare (3] Theorem 1.7

Corollary 2.3: If f: X-»Y has an extension f£'t X'-Y then the
kernel of the homomorphism j: _'fln(x,xo)-ﬂl n(X',x(!)) induced by the
embedding j: (X,xo)->(X',x6) is contained in the kernel of the
homomorphism f_: :T_n(x,xo)-)_‘!_\'_n(Y,yo) induced by f.

The above results show that the extensions of maps of systems
enjoy many of the same properties as extensions of fundamental
classes. Indeed, it is now shown (Theorem 2.6) that these concepts
are equivalent in the compact metric case.

Lemma 2.h: If f, g: XY are maps of systems such that f & g
then f has an extension to X' iff g has an extension to X'.

Proof: Suppose j: X-»X' is an embedding and £': X'=Y is an

extension of g. Then £ ' is also an extension of g since
gufofl.
Theorem 2.5: Suppose Xe¢X'c I'a', YcI‘Q and X = %xa’iaa"ag’

Xt = ix;,i; oA'Fs T = §8,,3,,158] are inclusion ANR-systens
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associated with X, X' and Y, respectively. If f: X-»Y has an
extension f': X'-Y then there exists a g¢ X'-»Y such that

(1) ge~£* (and is therefore an extension of f),

(2) gb(x) = fb(x) for all b€B and x&Xe.
Conversely, if g: X'-»Y is a map of systems such that for all bé€B
and x€X, g, (x) = £ (x) then g is an extension of f.

Proof: Since f' is an extension of f one has that £ & f'j,

where j is chosen such that each j o’ Xj (x) -)X“ is an inclusion map.

That is, for each b€ B there is an ag 4, a > f(b), jf'(b) such that

foteo)a = Lol (o) tier (v)a

In other words,

f" ~f | : X_»Y, .
b Xa biX a 2 b
By Borsuk's Homotopy Extension Theorem, there is a 8y’ xi'"(b)-)yb such
that f ® g and gb(x) = fb(x) for all x€X . The map g: X'~
thus defined satisfies the required conditions.

Conversely, if gb(x) = fb(x) for all xe X, then since Y € ANR
there is a neighborhood U of X such that Uch(b)ﬂ Xé(b) and

foly ® 8y|ye Choose a €A such that X_cU and a > £(b), jg(b). Then

fole(b)a® Bdg(o) je(o)ad
that is, fxg Jj.
Theorer 2,6: Suppose X €X'€Q, Y€ Q and X, X', Y are inclusion
ANR-sequences associated with X, X', Y, respectively. If f: XY
is related to the fundamental sequence €= {‘gk,x,xz then there is
an extension £': X'=Y of f iff there i; an extension ;' of E.
Proof: If E' is an extension of E then f 22'3 w;ere 3‘._-= {ik,x,x'f

is the fundamental sequence generated by the inclusion map of X into X'.
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Let g': }_(_'-D_Y_ be the map of systems related to ". Then {111,
Lemma 6, ; g;'} implies f & f'j since j is rel;ted to i.

Conv-;rsezy, agsume without loss that f' is a regular map. Let
;' be a fundamental sequence related to £'. Then {11], Lemma 6,

_Es £'Jj implies § 2 g'i. By Therorem I.2.3, this implies that
g has an extensi—on. -
B Let us now return to a study of some of the relationships that
exist between shape retractions and extensions.

Theorem 2.7: If X is a shape retract of X' and f: X-#Y is a map
then f has an extension to X'.

Proof: Let r: X'-»X be a shape retraction. Then the composition
fr:X'2Y is easily seen to be an extension of f.

Mardedi€, [9] Corollary 1, proves the following theorem.

Theorem 2.8: If Y€ ASR and j: X-X' is an embedding then any
map of systems, f: XY, has an extension to X'

An analogous theorem holds for ANSR-sets.

Theorem 2.9: If Y is a compact ANR and j: X-»X' is an embedding
then every map of systems f: X-»Y has an extension f': W-»Y where W
is a closed neighborhood of j(X) in X'.

Proof: Assume that Y = {Y,l!} is the special ANR-system
associated with Y and j: X-%X! is the inclusion map. The map of
systems £2 XY consists of a map f: X —Y for some fixed aé€A.

Since Y€ ANR, there is a closed neighborhood W of X in X' and an
extension f': WY of fiaz X+Y. lLet W be an AkR-system associated
with W, and f': WY a map of systems associated with f'. That is,

f' consists of a map f"s W Y for some fixed we A' such that
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f"pl ¥ f': W¥Y. Choose a' >a, j(x), then

fp = fp

aa'pa' a

= 1)

2 f'plj

® Py )

= I"4Pj(w)aPar

By Lemma L of [10] there is an a" > a' such that

fPgn = fP

Thus £ & £'].

Corollary 2.10: If YEANSR and j: X-»X' is an embedding then

every map f: X-Y has an extension £': W-»Y where W is a closed
neighborhood of j(X) in X*.

Proof: Since Y €ANSR, there is an embedding i: Y-»Y' where
Y' € ANR and a shape retraction r: Y'Y, Consider i f: X-#¥'.
By Theorem 2.9, there is a closed neighborhood W of j(X) in X!
and an extension f': WoY' of i f5 i.e., ifaf'j. Thenp £': WY

is an extension of £ since

ferife

Ins

£'d.



CHAPTER V
PRODUCTS IN SHAPE THEORY

1. Introduction. In recent papers; e.g., [3], Borsuk has stated

some results in shape theory concerning products. In particular he
has proven the following. First, the shape of the product of two
(and hence finitely many) compacta depends only on the shape of

the factors. Secondly, he has proven that if X = 1~r Xk is the
product of a countable number of compacta then X ig ; %AR—set iff
each X, is a FAR-set. Finally, he has shown that if X = kfrl X,

is the product of a countable number of compacta then X is a FANR-set
iff each Xk is a FANR-set and all but finitely many are FAR-sets.

In this chapter these results are extended to arbitrary products
using the ANR-system approach. A result relating (direct) products

and shape groups is also obtained.

2. The Product of a Family of Inverse Systems. Let dL be an

index set. For each weﬂ s let X w, iXZ,p;"a, ,A“'§ be an inverse

system of topological spaces (a similar construction can be made

for groups, R-modules, etc.). Let Ie= {(F,U'): F is a finite
non-empty subset of L} and €': F — wlgaA“’

¢ (w) €4° for all wekp Order P by (F,¢) < (F',0') iff FCF' and

mx &

(F,0) © wef (w)*
F',U")= X(F',U')_DX(F,V) be the

is a function such that

0(w) < o¢'(w) for all wéF. For (F,&)el let X
If (F,@) < (F',') then let P(p ¢y
L1
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composition of the natural projection K: w

SRS AN S

1T -1
WeF ' ' (@) weF

w . w w

and the product map ﬂ'po..(m) W)’ ‘:lZF X ' (@) —9w72_'F Xa_ ()

It is not difficult to show that X = fXg PP (@, e F,e) " s e
- 2 s 2

inverse system. The inverse system X is called the product of the
family §X©: wedd.

Example: If each A® is a singleton, each X:= I, =1is the
unit interval and _)gw = {Iw,lwfwhere 1,8 Iy Iy is the identity

map then the above construction gives the usual representation of

I'Q' = "T I, as the inverse limit of iI Bin ,,F(sQ:)} where F(L4)

is the set of all non-empty finite subsets of k ordered by inclusion
!
and p_, 1% = ’l:l" Iw-iI“ s is the natural projection (see [10]).

H /T' a 7}‘ 3 w
Theorem 2.1: lim we‘ﬂl}—m X“.

‘ -

Proof: Let X = lim X“’. We show %X” is a terminal object

in the category inv(1Y 1(_"" ). For (F,0)e[? , let p(F,(r)= ’h’ax“—»x(F,o.)
we

be the composition oi the natural projection yL: m'leX“' -—PULIF xv

and the product map ‘h’p O'(w) '"' ) o It is not hard

ﬂF X?(w)'
to show that if (F,f) < (F',o") then p(F,o")(F',o-')p(F',r') = p(F’r).
Thus ( b'iz:ax“’ ,{p(F,o,)}) is in the category inv(Trx%).

It remains to show that w"eTJb X* is a terminal object. That is,
if Y is any space and f(F,f)z Y-»x(FJ) is a family of maps such that
if (F,0) < (F',9') then P(r,e) (F', 0 ) (P o) = £(7,0) then there is

a unique map f: Y - 17
oue map £1 X > T,

p(FsT)f -f(F,C')‘ If well and . aeA® 1let r,: Juf 449 be the

X“ such that for all (F,r)e [,

function G'a(a) = a. Then (§uf, c'a)e I* and

f:’ = f(i“’}’ - )? Y—»Xf: is a family of maps such that if a < a!
a

then ({w}, 0.) < (fol, @) so that p;’a,'f:’, = f;". By the

universal mapping property of X": there is a unique £¥. Y-UX“
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such that p‘:fw = f:' for all a€A” . ILet £: Y+ T x“ be the
- We

unique map thus defined. Then f satisiies Py U')f = f(r‘ )
H L

Furthermore, if g: Y —» 'El'la‘x“ is any map that satisfies
Q

W
p(F".)g f(F,G‘) then p(‘i“’f’ c.a)g f(€“§ ,c.a) fa. It follows
then that f = g,

Corollary 2.2: If X% = X% 4%, wedd, is a fanily of
ANR-systems where X® is associated with X“, then T}'bgt_“
associated with J‘E x* “

Proof: It suffices to note that it each A® is closure-finite
then so is M and that the product of a finite number of ANR's is
an ANR. |

Suppose X“’ fx ’paa"A }, m.ﬂ; in’qbb"Ba E,ZG-A-,
are inverse systems (or ANR-systems) and O: .A.-Nﬂ: is a one-to-one

function such that for each ¢k there is a map f 9(")

" : Xa (Z)QY

Recall, a map f consists of an increasing function

fa : B -> AG(A) together with a family of maps f" @(4) Y )
A b
f (b)
A
beB;L s such that if b <b' then q:t;,fb, = f:' (in the ANR-system

a
case, q.:b,f;', L fb). Define f: PY —ﬂ‘x by £(F,¢) = (Q(F),fo.)

where fg 6(F) » U‘aAw is given by f (6(d) = f"'(t'(l))é.l.e (A).
we

™ Xe( a) 80 define

Then Xf (7,s¥) = L xf P (w) a¢F ¢ a'(!l' R))

wes(F)
f(F,c'): xf(F,c)"’Y(F q) 35 the product map
é(R) :
X - W One then checks that if
o)’ ar A 2 oo
(F,&) < (F',q") then £(F,T) < £(F',q') and

UF,e)(F', e ) (F1,¢0) = £(F,¢) (in the ANR-system case,



Lk
q £, of )e Thus there is a map f: ') Xu—bﬂ’ Ya'.
(F,’)(F ',0") (i‘ ! .::") S"c) - (‘,ea - Ml—
If _Z_t = iZc,r:;,,C }, te’T’, is another family of inverse
systems and ¢: .O. T is a one~to-one function such that for all
wea there is a 5“’: _Z_é(“).;g_w then there is a "nmatural composition™
given by $@: A+T ana £2g® @), 2PORy 2 1 5o 1ept 1o
the reader to verify that the map determined by the composition
is the same as the composition of the respective determined maps.

There isa "natural identity", ©: .Q-».Q tne identity function

and each 1°: X*X*  the identity map. It is left to the

reader to verify that the identity 1: T( zw -t Tf }_w is determined
wedl wedd
by the natural identity.
We now restrict our attention to the ANR-system case when
vQ = A and © is the identity.
Theorem 2.3: If ;w, gw: _lgw-qzﬂ are families of maps of
systems such that £“ ~ g"’ for all u;ﬂc then f 9.'5; sz“_y‘l;rln‘_'x'_w.
4 ]
Proof: For each b&B¥ there is an ay € AY, ay > .f”(b), g“(v)

w « . .
such that f:p;:"(b) a, ~ gbp;"(b)a.b‘ Let t‘u: B“ A be an increasing
function such that ¥ (b) >a for all beBY. Ir (F,0)€ [y,
consider (F,¥)e FI where &: F =» (JA” is givenby T(w) = & @(@)).

wel w
First, (F,%) > £(F,0), g(F,¢). Since © is the identity,

£f(F,0) = (F,fr) where i".(w)‘ = fw(a'(w)). Then (F,T) > (F,fr) since
TW = Grw) > agy >1 @) = £y W),

Similarly, (F,0) > g(F,¢). Furthermore,

fw w o % w

TP W) T(7w) = & (w)Per(w)) T, W) implies

L(r,0)Pe(F,0)(F,2) T 8(F,0)Pe(F o) (F,2)°

Thus _f_ 2 ge
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Corollary 2.4: If Sh(X¥) = Sh(Y¥) for all wedl then
"y - .
sn(m:= .a.x“’) Sh( umx“ﬁ

Corollary 2.4 allows one to define the product of shapes

. @ = w
as follows: JI@ Sh(x“) sn(u’l;Ta X).

Corollary 2.5: If r®: Y¥, X% is a shape retraction for all
then r: EI W, ’T X“ is also a shape retraction

Proof: let z“’, X® be associated with Y%, X%, respectively,
and j“: ¥ YY the required embeddings. Let j: ’T x“ -> 'T Y«

eﬂ
be the embedding determined by the family {3 : wuﬂ.} It is

routine to verify that the map determined by the family f;_ : zw‘-&zw;
is associated with j. We have that r® % 1., where 1,: X“-»x“
is tle map associated with the:'identity. By the above theorem,

rj®l x%
wall ~
3. Products of ASR and ANSR-sets.

Theorem 3.1: If X = ¥ X* then X€ASR iff X“¢ ASR for

- wel
all weuot .

Proof: If X €ASR there is a Y € AR, an embedding j: XY
and a shape retraction r: Y-+X. Since each natural projection
Py ? X-x% isa retraction, the associated maps of systems
Pw? X-#X“ are shape retractions. It follows [9] that por: Y-+X%
is a shape retraction. By Theorem IV.1.2, each X“is an ASR.

Conversely, if X“ € ASR for all ueﬂ, then for each w eﬂ.
there is an AR-set Y’ such that _l_(_“’ is a shape retract of X_“.
Since the product of any family of AR-sets is an AR-set, we have

by Corollary 2.5 that X & ASR.
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Theorem 3.2: If X = wm X® then X€ANSR iff X* € ANSR for
all w and X“e ASR for all but a finite number of @ .
Proof: If X“€ ANSR for all @ and X%ASR for all but
finitely many W, say “'1’ Wogeees W, then for all w there
is an ANR-set Y* and a shape retraction _r_"’ $ I“’-» X @ such that
Y¥€eAR if wé W, (k=1, 2,..., n). Then a:l:;‘y“’ € ANR and

there is a shape retraction r: T.TQ' .!:w-a . X% so that
we

wekd
T x*“ e ANSR.
well

Conversely, if X€ ANSR then as in the proof of Theorem 3.1,

A a
each X’& ANSR. We may assume without loss that X“c T = = 1V I

A ~ I, Aeldo
and XCI = we"ln I ~. By Theorem IV.2.9, there is a closed

neighborhood W of X in I'h’ and a shape retraction r: W-X. There

is a finite subset of an- ’ {wl, wz,... ’ an and neighborhoods
: wji wji
Ujof X *inI (1 =1, 250005 n) such that
n
x= T 2% 1r U x M I"'“’cw.
wedd i=] w¥ w,
Let i: X-0W, j,, ¢ Xw-» I'A'“' denote the inclusion maps and let

Pew? x-x“’ be the natural projections. Choose inclusion maps

A
Jeot 1 “LW for wy w; (1 =1, 2400y n) and iy X“<»X such

that jl J,, =1 1, and p“iw = lxw. Thenr i & so that

for w/ wi (i = 1, 2,000’ n)’

Pplilwde® R riiyep i 2l

-

Hence pr j! : ;'A“..g“’ is a shape retraction for @ ¥ W

i
(i L 1, 2,..', n)c By Theorem IV.Z.l, Xw, w% wi (i = 1, 2,..0’ n),

is an ASR-set.
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L. Products and Shape Groups. 2n inspection of Theorem 2.1

shows that the proof does not involve the fact that each X% is
a topological space. It remains valid, for example, whenever
the objects are groups. This fact together with the fact that
the (usual) homotopy group of a product is the direct product
of the (usual) homotopy groups of its factors, [13] Exercise B.5
p. 119, gives the following theorem.
Theorem h.1: If (X,xg) = 'IL(X“’ ,x“") then
W, (%x) = TP (528,
Proof : For each w let X = {(X X ),paa,,A gbe an
ANR-system associated with (X °,xo ). Then
A d
T, xg) = (1 L, &% %))
=in T (T x¢)
in (T X
) 1(_11!1 n’nix(F’V)’p(F:o.) (Fr,q1)? F‘
w w
"dn {"Tn( T eyt e, 1,00 T

“ul A (Xr(u)’xr(w))’ " Gwee U

& &i’rn( a’xa.)’ faa"A'f
T Ln e, 02 04
= 'T ']" x® ,xo
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