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Abstract: Agriculture is a labor-intensive industry that requires human interactions for 

even the most basic actions, such as spraying and weeding. Autonomous rovers can be 

used for many of these tasks. This research focuses on the use of depth sensors to detect 

the crop and navigate the field. Initial sensor testing was conducted to determine which 

sensor would be used on the final system. A 2D Laser Range Finder sensor (LiDAR) was 

chosen for its accuracy and its relatively small data sets. The LiDAR was configured to 

scan the crop in front of the rover. The rover corrections were determined by an on-board 

computer running an algorithm written in Python. The system used a PID loop to adjust 

motor speed and rover heading. Three different tunings were tested. The corrections were 

sent to a Cube Orange Auto Pilot that allowed an integration of GPS in future works. To 

validate the system, indoor tests were conducted using rows made from wood and 

windrows made of Windrow. The data from the LiDAR scans were compared to 

overhead images to determine the accuracy of the system. The system showed promising 

results as it maintained an accuracy of 15cm 95% of the time, and an accuracy of 5 cm 

roughly 80% of the time at 100% power (2 m/s). 
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CHAPTER I 
 

 

INTRODUCTION 

 

Agriculture is a labor-intensive industry that requires human interactions for even the most basic 

actions, such as spraying and weeding. Growers are facing a costly, long-term labor 

shortage. With the global population expected to rise from 7.7 billion to 9.7 billion in just over 30 

years, food demand is poised to rise significantly (Gossett, 2019). One way to lower these labor 

demands is the use of autonomous robots to complete simple repetitive tasks, such as moving 

produce from field to market or field operations such as spraying or weeding.  

Crop specialists and researchers test new varieties of plants and their resistance to disease and 

other factors that affect plant health and yield. These can be very tedious tasks. In recent years, 

the use of rovers has helped reduce the amount of labor needed to evaluate the plants; however, a 

human team is still needed to operate the rover in the field.  

There has been research conducted to make autonomous systems for crop evaluation however, 

most attempts have used platforms that do not fit typical row spacing and are focused more on the 

traditional object avoidance rather than in field navigation. Industry leaders have created systems 

that are fully autonomous and meet the size requirements, but they are expensive and hard to 

modify to fit agricultural research purposes. 

https://www.newamericaneconomy.org/news/ten-year-decline-u-s-farm-labor-cost-u-s-economy-3-1b-annually-crop-production-report-shows/
https://www.newamericaneconomy.org/news/ten-year-decline-u-s-farm-labor-cost-u-s-economy-3-1b-annually-crop-production-report-shows/
https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf
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Common issues with designing equipment for field applications include size, weight, and 

temperature ratings. When designing a system for working in a field, certain size requirements 

must be met. Row spacing is the biggest factor as the wheels and all other components must not 

interfere with the plants. Weight is also a concern as compaction can occur to the soil if improper 

weight distribution is used. Meanwhile, an appropriate weight distribution provides moving 

stability, and adequate traction. The newest issue to arise is the selection of electrical components 

and their proper installation. Agricultural equipment is used in a variety of conditions and are 

exposed to extreme weather such as intense heat. Finding components that can withstand heat, 

cold, humidity, and the dusty environment is a challenge that must be addressed. 

There are several products currently being used to solve the design challenges presented in 

agriculture. The promising solutions are an autonomous fleet-based rover from Fendt (Xaver), the 

Case IH full size autonomous tractor (Magnum), and the unmanned ground vehicles (UGV) 

produced by Clearpath Robotics (Husky). The Xaver solved several issues including compaction 

by using smaller rovers as a fleet-based system. It proved that autonomous systems could work 

and withstand the agricultural harsh conditions (Fendt, 2017). Magnum had proven larger 

machines could also successfully be controlled autonomously (Bedord, 2016). The Husky showed 

that small robotic platforms could be used to allow versatility and let users choose the purpose of 

their rovers (Maja et al., 2021). 
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OBJECTIVES 

 

The purpose of this project is to develop a system to autonomously navigate a field containing 

row crops. The system should be able to run while completing simple tasks such as field data 

collections. The development of the system will require a rover platform, a suite of software, and 

electronics. The specific objectives include: 

1. design and construct a rover platform; 

2. development of software to operate and control the rover autonomously; 

3. design and conduct a set of experiments to test the performance of the rover navigation 

system; and  

4. develop the methods to evaluate the performance of the rover.  

 

The research was conducted with the following steps:  

1. Sensor Selection 

2. Sensor Calibration 

3. Software Development and Testing 

4. System Testing 

5. System Validation 
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

2.1 Agricultural robotics and their current applications 

Given limited land, water, and labor resources, it is estimated that agricultural productivity must 

increase by 25% to provide for the expected rise in population, while simultaneously limiting the 

growing pressure that agriculture puts on the environment. Robotics and automation can play a 

significant role in society to meet its future agricultural production needs (Bergerman et al., 

2013). Agricultural robots, which are designed specifically for use in the agricultural industry, 

have become very popular for tasks such as weeding. 

In recent years, there has been a push for autonomous systems in agricultural research. Maja et al. 

(2021) used a prebuilt Husky platform from Clear Path Robotics, which was configured with 

Robot Operating System (ROS). The benefit of using the Husky platform was that the 

manufacturer has done years of testing making ROS work flawlessly and with ease for users. The 

Husky can also be purchased with several pre-configured and programmed sensors, such as Light 

Detection and Ranging (LiDAR). Whereas if a user is to develop the system on their own, it 

could take several years to achieve the desired tasks. Researchers at Kansas State University 

designed a rover that could navigate a single row of corn and then maneuver through the plants at 

the head rows to avoid damaging any plants (Schmitz, 2017). While the rover was small, it 

showed promise for further research to build on. The system used ultrasonic sensors for object 
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detection and using tracks rather than tires for driving. The rover could only run at a low speed of 

0.44 m/s (1mph). Research at the University of Illinois has led to the development of the 

TerraSentia robot, used for data collection for plant breeding (ACES, 2020). 

Work towards autonomy in agriculture is not limited to research purposes. Over the past 20 years, 

the leaders in agricultural machinery have been working on systems for autonomous navigation. 

Fendt (2017) has taken a fleet-based approach with their Xaver planter. It is claimed these robots 

do not use complex sensors. There has also been work done to automate full size machinery. The 

Case Magnum has shown full size concept tractors using LiDAR and onboard cameras for 

detecting objects and a GPS for navigation (Bedord, 2016). Kubota has also been working 

towards autonomous navigation, but with a mid-sized tractor (Coxworth, 2020). The fully electric 

tractor uses a similar system to the Magnum, but the cameras are also used to make navigation 

decisions. The Magnum will stop driving if a potential threat is detected and contact the farmer 

for assistance (Collie, 2016). 

John Deere has developed several conceptual tractors, including a compact electric tractor, and an 

autonomous sprayer. The sprayer system can even refill its tank without an operator to minimize 

exposure to chemicals (Deere, 2021). More Recently, Deere has released a fully autonomous 

version of their 8R series tractor and is planning to have actual farmers using this machine in the 

summer of 2022. 

While Caterpillar is not working with field crops, they have been developing autonomous systems 

for the past 30 years. Caterpillar has approached autonomous machines slightly differently, as 

they have created a system that is installed on machines typically driven by a human. Caterpillar’s 

system allows any machine to be autonomous, while being more cost effective. The new 

autonomous machines can communicate with other non-autonomous machines, adding safety to 

the workplace. Caterpillar utilizes a 3-dimensional (3D) LiDAR on their system to create a map 
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of the environment. If the system detects a potential obstacle in the path, the machine will stop 

and wait for the obstacle to leave the road. A GPS is used to keep the machine on the road. 

Caterpillar claims that their system is fully functional by driving more than 72.4 million 

kilometers and hauling 2.1 billion tons (Caterpillar, 2022). 

There are countless startup companies trying to get their feet in the door of agriculture 

autonomous navigation. The ROWBOT (Rowbot, MN, USA) is an in-row system capable of 

planting a cover crop between rows prior to harvest or applying fertilizers. ROWBOT uses a 

GPS, ultrasonic sensors, and a LiDAR (ROWBOT, 2022). NAIO is a French company that has 

created an autonomous robot that can remove weeds. The primary sensor used for navigation is 

an RTK-GPS, while a LiDAR is used for object detection (Technologies, 2020). 

2.2 Sensors for agricultural robot navigation 

With the ever-evolving world of technology, there is an abundance of sensors for navigation and 

obstacle detection available on the market. The most common sensors are ultrasonic, LiDAR and 

stereoscopic cameras. A few of these sensors have been mentioned in the previous section. More 

information on their uses and capabilities will be presented below. 

Ultrasonic sensors measure the distance between the sensor and the nearest object by sending 

ultrasound waves from a transmitter that then bounce off an object and received by the sensor. By 

using the speed of sound and the time between sending and receiving the signal, the distance can 

be calculated.  

Ultrasonic sensors are a widely used sensor for obstacle avoidance and detection. They can be 

used in a simple configuration that detects an object in viewing area, or they can be used in a 

more advanced way illustrated by William H.  Kusewich (2007). It was found that if the sensor is 

placed on a servo oscillating back and forth that a rough location can be found. Zhmud et al. 

(2018) shows that an HC-SR04 (SparkFun Electronics, CO, USA) is an appropriate sensor for 
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detecting objects in non-critical situations. However, they found the accuracy is affected by 

temperature, propagation path, and angle of incidence. They recommend using a laser range 

finder if a higher accuracy is needed.  

LiDAR is a sensor that uses a laser emitter and scanner on a rotating platform to create a scan of 

the environment. The emitter sends a pulsed light as the platform spins and the scanner receives 

the pulses bounced off the objects. Each pulse is sent at a known angle therefore the distance of 

the object can be found. The LiDAR uses the same principles of time of flight as the ultrasonic 

sensor, but the laser has a much smaller area of focus giving more precise results. LiDAR is one 

of the most common sensors used for robotics and navigation. The Husky platform can come with 

either the LMS-111(SICK, MN, USA) or the VLP-16 3D LiDAR (Velodyne, CA, USA). Clear 

Path also offers upgrades to several different LiDAR and GPS units (Husky-UGV). Weiss and 

Biber (2011) found that a 3D LiDAR sensor, 3D fx6 LiDAR (Nippon Signal, Japan), worked well 

for plant mapping, having a position accuracy of .03m. They state that 3D laser sensors are the 

most promising and reliable for ag robots to sense the environment. 

Meiser et al. (2014) created a system using a custom rover. The rover utilized an ArduPilot board 

for waypoint navigation. They proposed several sensors, Point Grey BumbleBee XB3 Stereo 

Vision, Point Grey GigE mono Camera (FLIR, OR, USA) with IR filter, and a TIM51 LiDAR 

(SICK, MN, USA), which is the same LiDAR used by Maja et al. (2021) 

Stereoscopic cameras are another popular option for navigation. Stereoscopic cameras use stereo 

vision, a method that uses triangulation to calculate the distance from the camera to an object. 

Two lenses are used on the camera and the distance between the two is known. By finding the 

distance of the object to each lens, a triangle is created, and the location of the object can be 

found.  
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One of the more popular options is the Intel RealSense D4xx series (Intel, CA, USA). The 

RealSense cameras are used on rovers such as Simple Autonomous Wheeled Robot (SAWR), 

which Intel recommends as a platform. The RealSense cameras are well documented and tested 

by the manufacturer. There have been numerous tests performed to find the limits of both the 

d415 and the d435 cameras. It has been found that both cameras are good options for an 

autonomous rover, but the d415 gives a higher resolution image than the d435 (Tadic et al., 

2019). The RealSense cameras are also customizable to help with exposure when being used 

outdoors (Anders Grunnet-Jepsen, 2020). Intel also offers the T265 camera which is a double fish 

eyed lens capable of simultaneous localization and mapping (SLAM). Bayer and Faigl (2019) 

found the T265 to be competitive with other sensors on the market, and to have a lower 

computational need. Alapetite et al. (2020) confirms that the T265 is a competitive camera, as 

well as that the ZED cameras from Stereo Labs (San Francisco, CA, USA) are another good 

option for navigation.  

There are plenty of sensors and configurations available, but some stand out more than others. 

Ultrasonic sensors are cheap and require little computational power, but they cannot detect an 

actual location. LiDAR can be obtained for a variety of prices depending on if a 2 dimensional 

(2D) or 3D sensor is needed. A 2D sensor offers a high-resolution scan that can offer plenty of 

useful data, is much cheaper than a 3D sensor, and requires less computational power. However, 

a 3D sensor can give much more data and provide a 3D image of the rover’s surroundings. A 

stereoscopic camera has the added benefit of using RGB in future applications, while being in the 

same price range as a LiDAR.  

The choice among sensors can also be made by evaluating the methods in which the data can be 

processed and used for controlling the rover. The 2D LiDAR data is much easier to process as the 

data is received in a single row, rather than a large array like the stereoscopic cameras. However, 
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the cameras data can be processed in more ways which can be seen in the agricultural robot 

control strategies section. 

2.3 Agricultural Robot Control Strategies 

There has been much discussion in academia about the best control strategies for autonomous and 

semi-autonomous robots and rovers in agriculture. Shalal et al. (2013) found that it depended on 

the system as SLAM was ideal for estimation and tracking. A Hough Transfer could also be used 

followed by k-means for segmentation which could be useful for detecting row crops. It was also 

found that while SLAM could be effective, it was not ideal for highly non-linear systems, 

therefore Extended Kalman Filter (EKF) should be used. Shalal et al. (2013) determined that a 

proportional integral derivative controller (PID) should not be used, but a Fuzzy Logic (FL) 

should. Zhang et al. (2019) confirmed both previous claims on a robot using a gyroscope as the 

sole sensor for rover location.  

Like the Hough transform used for image segmentation, Hugh, Saturation and Value (HSV) could 

be used (Kanagasingham et al., 2020). HSV combined with Inverse Perspective Mapping (IPM) 

removed the distortion in an image and created a plane for row detection. Linear regression was 

then used to find the line of best fit. This method was tested on a rover in rice fields with three 

ranges of weed density to determine its accuracy. The low weed density trials proved successful 

with an average deviation of 45.9 mm. The high weed density fields had a much larger deviation 

of 94 mm, but the robot still navigated the fields without damaging the plants.  

Line extraction from a point cloud is a similar method to those previously mentioned. Malavazi et 

al. (2018) proposed a new method based on the previous PEARL algorithm from Isack and 

Boykov (2012). The resultant RUBY algorithm was found to work well for LiDAR based 

navigation, but still had limitations. However, these limitations were primarily regarding the 

sensors used. They proposed that future works should use a 3D LiDAR. Even with the limitations 
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of the LiDAR, it was found when using simulated rows, that the new RUBY algorithm had a 

100% success rate with an average error of 1.15% while the previous PEARL algorithm had an 

80% success rate with an average error of 3.53%. Error was defined by total distance traveled 

regarding the perfect path. 

Iqbal et al. (2020) performed a study using a simulated robot equipped with a 2D LiDAR using 

ROS. The purpose of the rover was to navigate simulated cotton fields using the Gazebo 

simulation package. The system tested control strategies using the LiDAR in different 

configurations. While the LiDAR was 2-dimensional, multiple scans were used to create a point 

cloud. The point cloud was then down sampled and voxelated before being split into the left and 

right rows. Once the rows were separated, a radius outlier filter was applied and a RANSAC 

algorithm was used to create a line of best fit. The program then compared the angle of the two 

lines to create a path for the rover. The simulation proved to be successful with less than 1% drift 

from the ideal path.  

It has been found that LiDAR data could contain high amounts of noise causing variance in 

readings. One method of smoothing the data was the use of a Savitky-Golay filter. Singh et al. 

(2020) found that the Savitzky-Golay filter was a good light weight solution for smoothing 

LiDAR data collected by a drone.  

Along with the standard controls methods used by a standard robot, rovers being used in the field 

have interactions with various soils and ground materials that can affect steering controls. 

Research found that a canonical digital controller could help with variance in lateral position of a 

skid steer style rover (Fernandez Guzman et al., 2018). The results showed that the system never 

had an error of more than 2cm. However, they recommended adding heading and speed sensors 

to the same controller. 
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A further need for field-based robots includes path planning and waypoint generation. A system 

using an ArduPilot board can have a predefined mission loaded using Mission Planner (Moeller, 

2020). Mission Planner is an open-source ground control station that allows the user to change 

parameters, and to plan and start missions. Using an ArduPilot board, Moeller was able to guide a 

robot effectively to go to specific plants in a field to check for disease. If a fleet of rovers is to be 

used, an added level of complexity is added. Conesa-Muñoz et al. (2016) proposed a method for 

determining the optimal route of each rover. The algorithm focused primarily on sprayer 

applications and having the knowledge of where high weed populations were.  
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CHAPTER III 
 

 

MATERIALS AND METHODS 

 

3.1 Equipment Overview 

3.1.1 Range sensors 

Three types of sensors were evaluated to determine the best fit for the project. A Light Detection 

and Ranging (LiDAR) sensor, two stereoscopic cameras, and two types of ultrasonic sensors. 

Each of these sensors underwent initial testing to determine the best fit for the project. 

LiDAR 

The LiDAR used in this study was an RPLIDAR A1 (Slamtec, Shanghai, China). The LiDAR 

was used to detect the location of the rover with respect to the plant rows. Table 1. The major 

specifications for the RPLIDAR A1. 

Table 1. The major specifications for the RPLIDAR A1 

Distance .15 -6 m 

Distance Resolution .5 mm 

Angular Range 0-360 Degrees 

Angular Resolution 1 Degree 

Sample Duration .5 ms 

Sample Frequency 2000 Hz 

Scan Rate 1-5.5 Hz 
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The LiDAR communicated with an onboard computer via USB through a USB to Serial converter 

that came with the sensor. The format of the data can be seen Figure 1 (Slamtec, 2022). 

 

Figure 1 The data format of the LiDAR sensor (Slamtec, 2022). 

Stereoscopic Camera 

The stereoscopic cameras tested were the Intel RealSense D415 and D435. The RealSense Depth 

cameras (RealSense) performed with a principle like that of the LiDAR, but a depth image would 

represent multiple scans of the LiDAR. Using an image instead of a line also allowed for 

predictive corrections based on the angle of the rows relative to the rover. Using images for 

predictive navigation was similar to the work of Shalal et al. (2013)) and Kanagasingham et al. 

(2020), except depth was being used instead of a traditional RGB image. The parameters of both 

cameras can be seen in Table 2. 

Table 2 Major parameters in the specification of the Intel RealSense cameras. 

 D415 D435 

Min Depth (m) .3 .2 

Max Depth (m) 10 10 

Sampling Rate (frame/second) 6, 15, 30 6, 15, 30 

Shutter Rolling Global 

Max Resolution of depth image (pixels x pixels) 1280x720 1280x720 

Max Resolution of RGB image (pixels x pixels) 1920 x 1080 1920 x 1080 

Depth Field of View >70 >90 
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Ultrasonic Sensors 

Two ultrasonic sensors were tested, HC-SR04 (ElecFreaks, New Delhi, India) and a MaxBotix 

MB7380 (MaxBotix Inc, MN, USA). Ultrasonic sensors are a good choice as they are simple and 

low-cost sensors, especially for outdoor environment. They could be used to detect the distance 

from a row on either side of the rover. They could be installed facing the center row passing 

through the rover, as well as facing the rows on either side of the rover. The difference in each 

distance could then be compared. If one row was closer, then corrections on motor drive could be 

made. The specifications of both sensors can be seen in Table 3 and Table 4. 

Table 3 Major parameters in the specification of HC-SR04 Ultrasonic Sensors 

Parameter Value 

Working Voltage  DC 5 V 

Working Current  15 mA 

Working Frequency  40 Hz 

Max Range  4 m 

Min Range  2 cm 

Distance resolution .3 cm 

Measuring Angle  15 degrees 

Trigger Input Signal  10uS TTL pulse 

Echo Output Signal  Input TTL lever signal and the range in proportion 
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Table 4 Major parameters in the specification of MaxBotix Ultrasonic Sensors 

Parameter Value 

Voltage DC 3 – 5.5 V 

Frequency 10 Hz 

Max Range 10 m 

Min Range 20 cm  

Distance Resolution 5 mm 

Measuring Angle 20 degrees 

Output Signal RS232/TTL Serial, Analog  

 

3.1.2 Central Control Unit 

The system included an on-board computer for handling data collection and processing, as well as 

sending the motor corrections. Table 5 shows the comparison of the single-board computers that 

were considered. The needs of the system included low power consumption, with a GPU and 

USB 3.0 ports. The Jetson Nano was chosen as it met the needs of the system and was cost 

effective.  

Table 5 Comparison of potential on-board computers 

  

Raspberry 

Pi 4 

ODROID- 

XU4 

Jetson 

Xavier 

Jetson 

Nano 

Processor  1.5GHz 2GHz 1.4-1.9GHz 1.43GHz 

RAM 8 2 8 4 

USB 3.0 2 2 3 4 

Power 15 W 20W 15W 10W 

GPU none 6 cores 

384 core 

Volta with 

58 tensors 

128 core 

maxwell 

Price $100 $80 $400 $100 
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Jetson Nano  

The on-board computer being used is a Jetson Nano Developer Kit (NVIDIA, CA, USA). The 

Jetson Nano is a single board computer with an added graphics processing unit (GPU). The 

specifications can be seen in Table 6. 

Table 6 Specifications for Jetson Nano 

Jetson Nano 

Processor  1.43GHz Arm Cortex A57 

RAM 4 GB 1600MHz DDR4 

Power 10W 

GPU 128 core Maxwell GPU 921Mhz 

Price $100 

 

Mini-PC 

After problems were found with the Jetson Nano, a mini-PC was used as a replacement. The PC 

was running Ubuntu 20.04 and the specs can be seen in Table 7. 

Table 7 Mini-PC specifications 

Model Technovare PN-TPC2W7A 

CPU Intel G620 2.6GHz 

RAM 8GB DDR3 

Graphics Integrated 

Storage 500GB SSD 
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Cube Orange Autopilot 

A Cube Orange Auto Pilot (ProfiCNC, Australia) was also mounted on the rover. The Cube was 

used to communicate motor signals from the on-board computer to the motor driver. It could run 

GPS guided missions, manual RC control, and receive commands from the onboard computer to 

do sensor based autonomous driving. The specifications of the Cube can be seen in Table 8.  

Table 8 Cube Orange Specifications 

Cube Orange + ADS-B 

Processor 
32 Bit Arm Cortex M7 400Hz, 

1MB Ram, 2MB Flash 

Power 4.1-5.7V/ 2.5A 

Accelerometer/Gyroscope 

ICM 20649 30G/ ICM20948/ 

ICM20602 

Compass ICM20948 

Barometric Pressure Sensor MS5611 x2 

 

The Cube communicated through the Micro Air Vehicle Link (MAVLink) protocol. The on-

board computer sent the Cube commands through a USB to a Serial converter. The Cube could 

also be controlled over Telemetry using a 915MHz radio allowing the operator to monitor the 

system from a laptop or handheld device. 

3.1.3 System Evaluation Sensor Package 

To test the performance of the developed autonomous platform, a laboratory test setup was 

established. A single-point, laser range finder and a GoPro camera was used.  

TF Mini Range Finder Sensor 

A TF Mini range finder was used to collect the travel distance of the developed system during 

testing. The range finder was not part of the autonomous navigation, but for the system 

validation. The TF Mini is a single-point, time of flight (TOF) LiDAR sensor. It was able to 
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report distances from the start to the end of a test, which would help turn the 2D LiDAR scans 

into a 3D point cloud. Its specifications are listed in Table 9.  

Table 9 TF-Mini Range finder specifications 

Range .1m-12m 

Accuracy 5cm 

Resolution 5mm 

Ambient Light Immunity 70klux 

Frame Rate 1-1000Hz 

Light Source LED 

Central Wavelength 850nm 

Field of View (FOV) 3.6 degrees 

Supply Voltage 5V 

Average Current 110mA 

Peak Current 140mA 

Power 550mW 

Communication UART, I2C, I/O 

 

GoPro Camera 

A GoPro Hero 5 Black (GoPro Inc., CA, USA) was used to collect images of the rows during 

testing. The camera was set in linear mode to avoid distortion of the image. The Hero 5 has a 

maximum resolution of 4000×3000 and has Bluetooth capabilities so it can be controlled 

remotely.  

3.1.4. Rover Platform 

A rover platform was constructed which used two electric motors in a differential steering 

configuration. One motor was setup on each of the rear wheels and the front wheels were caster 

style wheels that were free to spin 360 degrees. The system also had a two 100-watt solar panels 

to help maintain the battery levels during use, and a GPS. The platform can be seen in Figure 2. 
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Figure 2 The Rover Platform 

The electronic controls were mounted inside a plastic case to help protect them from dust or other 

debris. The contents of the case included a 24 V solenoid, a 12 V solenoid, a Sabertooth motor 

driver, a solar panel power inverter, and a Jetson Nano single board computer. The electronic 

control box is shown in Figure 3. 

 

Figure 3 Electronic Control Box 

Motors 
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GPS Solar Panels 

Solar Inverter 

Motor Driver 
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The rover platform had an RC controller that allowed an operator to steer the rover through the 

field. The rover controller was a Spektrum DXE paired with an AR620 receiver. (Horizon Hobby, 

Champaign, IL). The receiver of the controller was connected to a Sabertooth 2x60 Amp motor 

driver (Dimension Engineering, Hudson, Ohio).  

3.2 Sensor Setup and Calibration 

3.2.1 LiDAR Calibration Setup 

Figure 4 shows a setup for the LiDAR calibration. Distance was measured from the sensor to a 

test stand with adjustable height. The test consisted of three repetitions at 3 heights (55cm, 70cm, 

and 80cm).  

 

Figure 4 LiDAR Calibration setup. 

LiDAR 

Test Stand 
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3.2.2 Range Finder Calibration Setup 

Because the range finder would scan at distances further than allowed by the test stand, the range 

finder was setup facing a large flat target at 140cm, 280cm, and 570cm. A measurement was 

recorded every 15 seconds over 15 minutes, and three trials were run. The setup can be seen in 

Figure 5. 

 

Figure 5 Range finder calibration setup. 

 

Range finder  

Background  
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3.2.3 Ultrasonic Calibration Setup 

The HC-SRO4 ultrasonic sensors were tested to determine their accuracy at the measurement of 

the location of an object using triangulation. Two sensors were used in this experiment. One was 

used in the traditional manner, while the second had the emitter covered. The sensors were setup 

seventy centimeters from each other and slowly rotated until a reading was found. The setup can 

be seen in Figure 6. 

 

Figure 6 Ultrasonic sensor triangulation setup. 

3.2.4 Stereo Camera Calibration Setup 

Two Intel RealSense cameras, D415 and D435, were tested in the same manner using their 

default settings. The cameras were attached to a beam facing a flat target and readings were taken 

at four heights (.5m, .7m, .9m, and 1.1m). The test was run three times for each height. Figure 7 

shows the setup.  

Ultrasonic Sensor 

Ultrasonic Sensors 

with covered Emitter 
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Figure 7 Test setup for the RealSense cameras 

3.2.5 Methods of data analysis for the calibrations 

The LiDAR and range finder data were analyzed using Excel. The average, standard deviation, 

and the maximum and minimum values were found for each distance test.  

The RealSense Camera data was also analyzed using Excel. The average, standard deviation, 

number of dropped pixels, and outliers were all found. The number of dropped pixels provided a 

clear picture of which camera performed better and stable under each condition.  

3.3 Systems Control Methods 

3.3.1 System Communication Protocol 

To communicate between the Cube and the on-board computer, Pymavlink was used. Pymavlink 

is a python implementation of MAVLink. The protocol for communication between the devices 

did not monitor messages and no checks were used to determine if messages were being 

acknowledged. To prevent any failures or safety concerns, the on-board computer would request 

the Cube to send heartbeat messages periodically to ensure it was still connected. If the heartbeat 

RealSense Cameras 
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was not found, the Jetson Nano would be able to kill power to the motors, through a relay, to 

prevent any accidents. The relay was controlled by a signal from the Jetson Nano, which closed 

the coil. Therefore, if the Jetson were to ever shutdown for any reason the relay would lose the 

signal and the coil would open. Figure 8 shows a flowchart of the control system.  

 

Figure 8 System Communication Flowchart 

3.3.2 Rover Control Methods 

Control Commands 

Several methods were available to send corrections to the Cube, but eventually the Manual 

Control command was chosen for its simplicity and its ability to work without GPS. The ability to 

work without GPS allowed the system to be used without premade missions, and without the 

need of plant maps or other GPS coordinates. Another benefit for Manual Control was that the 

system could have a GPS added when needed, and with minimal changes, the system would have 

the ability to perform GPS guided missions with the added functionality of the sensors to help 

guide the rover.  

Manual Control was a simple function included in the Pymavlink library. The purpose of Manual 

Control was to give the user a way to control the system output with a non-RC control. The 

available commands were pitch, roll, thrust, yaw, and two optional button inputs.  
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By using Manual Control, the use of special circuitry was eliminated and the ability to add a 

joystick or keyboard control in the future was much easier. Another option that was explored was 

RC Channels Override. The use of the override method was possible, but it would either require 

the loss of the RC controller, or special circuitry for signal mixing. The use of overrides was the 

initial choice, but it was found that the channels of the Cube with predefined outputs could not be 

controlled with this method. As a result, signal mixing was explored. The predefined channels for 

the left and right motors would still be connected to the RC Controller, and two undefined 

channels would be controlled by the on-board computer. The outputs from the Cube would then 

be sent to a non-inverting summing amplifier as seen in Figure 9. However, it was decided that 

Manual Control would be the better option as it lacked additional components that could fail. 

 

Figure 9 Non-Inverting Summing Amplifier Circuit 

Control Strategy 

The system started with a pre-arm check, where it verified all connected sensors, and the Cube 

was arm able. Once these checks were finished, the rover was Armed. “Armed” means the Cube 

could send signals to the motors. While “Disarmed” the Cube would ignore all motor related 

commands. Once Armed, the main loop began and would not stop unless an error was detected, 

such as a sensor disconnecting, a user input was received, or the LiDAR depth timeout was 

detected. 



26 

 

The rover controls were based on the LiDAR data received. The LiDAR was mounted at the 

center of the front frame of the rover at a height of 86 cm. The scan data were read through the 

RPLiDAR package provided with the LiDAR and stored in an array as scan angle and depth.  

Each scan data array was then run through a function which turned the scan array into useable 

data. The data was converted from angles in degrees in polar coordinates to ground location and 

height of scan in Cartesian coordinates. The converted data was then run through a Savitzky-

Golay filter to smooth the reading and help determine the center of the plant canopy. Once the 

center of the scan was found, it was returned from the function. 

The returned value from the previous step was then run through a PID loop. The PID loop 

determined the ideal rpm for each motor to either correct or maintain the current course. The PID 

loop returned the updated rpm values, which were stored in a MAVLink message and sent to the 

Cube. 

It was important to note that the previous steps were only implemented if the new value had a 

height reading greater than the threshold set by the user. For the testing performed, the height 

threshold was 70 cm. If the height was less than 70 cm, the speed command was set at 15% 

forward speed until a height value within the threshold was observed or the timeout value was 

received. The timeout was added as a safety protocol to ensure the rover would stop at the end of 

the rows. The timeout loop was added to ensure a bad reading did not stop the rover, but rather 

slowly moved it forward to ensure the rover was not in a spot with a potentially dead plant. The 

entire flow of the system control can be seen in Figure 10. 
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Figure 10 Systems Control Flowchart 

To validate the system, the LiDAR scans were recorded and saved. The range finder was also 

recording a measurement each time a LiDAR scan was saved, and these values were saved. At the 

end of the test runs, these values were saved to a “.npy” file using NumPy and  used in Chapter 

IV- Results and Analysis to help validate the system. 

The control strategy was chosen based on prior knowledge and from methods learned during 

literature review. From the simple field tests performed with the LiDAR, it was seen that the data 

was not being read as a smooth curve and would provide unnecessary corrections to the rover’s 
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path. A Savitzky-Golay filter was chosen for its easy implementation in Python and its proven 

success. Savitzky-Golay is a low pass filter that allows the smoothing of data. The filter works by 

fitting successive sets of adjacent data points with a low-degree polynomial by linear least 

squares. A raw LiDAR scan and a corrected scan can be seen in Figure 11. 

 

Figure 11 A raw Lidar scan pf peanut canopy (left) and the scan after smoothing (right) 

3.4 System Testing and Data Collection 

The goal of testing was to determine the performance of the LiDAR on detecting the rows, 

navigate along the row, and which PID values worked the best for the system.  

3.4.1 System Overview 

The final system consisted of the rover platform outfitted with the LiDAR sensor, a range finder, 

a Cube Orange Auto Pilot, and a mini-PC. The LiDAR was mounted at the front of the system at 

a height of 84cm (33in). The range finder was mounted at a height of 127cm (50in). The 

mounting of both sensors could be seen in Figure 12. 
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Figure 12 Mountings of a LiDAR sensor and a range finder sensor 

The Cube was packaged inside a plastic project box with the RC receiver. The box included a 

GPS mast on the top that was not used for this project. The Servo Output of the Cube were 

connected to the Saber tooth motor driver which was housed inside the rover’s main electronics 

box (The electronics box was the original mounting location of the Jetson Nano before it was 

replaced with the mini-PC). The Cube was then mounted on top of the rover 13cm from the 

center. The offset from the center was due to the previous GPS mount on the rover’s frame. 

Figure 13 shows the final mounting of the Cube. 

LiDAR  

Range Finder  
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Figure 13 Mounting of the Cube Orange 

 

3.4.2 Initial Tuning 

An initial tuning was done on the system to find a range of values that provided adequate control 

to the system. To begin tuning the PID controller, a Proportional (P) value was added to create 

oscillation. The rover used differential steering, so the oscillation resulted in a change in speed 

between the independent motors. Once the system was oscillating evenly, the P value was halved, 

and an Integral (I) value was added to smooth out the oscillation. After the oscillations smoothed 

out a Derivative (D) value was then added. A range of possible PID values was recorded to be 

used in further testing. 

3.4.3 Testing Setup  

The system was tested using the PID values found during the initial testing. To have a 

quantitative way to validate the system, simulated rows were used in the lab. An overhead image 

was taken from the simulated row with a GoPro Hero 5 Black configured in a linear mode. 

During the tests, the system saved the LiDAR data and a corresponding distance from the range 

Cube Orange  

Mini-PC  
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finder. It was ensured that the rover had the same starting position for each test by using markers 

on the floor where the tires were supposed to be located.  

Wood Rows 

To determine which values would provide the most accurate controls, lab tests were setup to 

simulate row crops. The first test was performed using wood to simulate rows. The system was 

started at 60% speed, then moved to 80%, and finally 100% with the selected PID values. The 

PID values were different for each of the speeds as the overall speed of the rover was important to 

the overall tuning of the system. The length of the rows was 700 cm long, and the width of the 

row was 17 cm. 

As mentioned before, overhead images were taken from the simulated row. The image for the 

wood row can be seen in Figure 14. The yellow lines represent the boundary of the tests. The 

boundaries were 700 cm long by 100 cm wide. The image was then cleaned using segmentation 

and masked. These steps were performed for later analysis of the trials. The final image can be 

seen in Figure 15. 

 

 

Figure 14 An overhead image of the simulated wood row. 
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Figure 15 Processed overhead image of the simulated wood row. 

 

Angled Approach 

Using the same setup as the wood test, the system was tested with an initial approach angle. An 

angle of 10 degrees was used to test how the system responded to a large error. The system was 

tested at 100% speed with the three PID values. After the testing, the same data processing 

methods were used. The starting position can be seen in Figure 16. 

 

 

Figure 16 Angled Approach setup 

10 degrees 
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Windrow  

To simulate a more realistic situation and still have quantitative data, a windrow was setup in the 

lab. The length of the row was 700 cm with an average width of 30 cm. The use the windrow 

allowed tests on a non-uniform pattern. As done in the previous tests, an overhead image was 

taken of the row, and the same data was collected during the tests. The overhead image and its 

corresponding segmented image can be seen in the Figure 17 and Figure 18.  

 

Figure 17 overhead image of Windrow test 

 

Figure 18 Processed overhead image of Windrow test 

3.4.4 Test Data Interpretation and Analysis 

System Evaluation Process 

After the tests were finished, the data was processed using the developed Python programs. Each 

test resulted in an overhead image and three NumPy (.npy extension) files. The NumPy files 

contained all the LiDAR data for the entire test, range finder distances for each LiDAR scan, and 

the angular error values used to determine the correction needed.  

The data analysis process was realized using four separate python programs. The code could be 

combined, but it was kept separate to ensure no errors occurred between steps.  
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The full LiDAR scans and the range finder data were read and turned into NumPy arrays. Each 

LiDAR scan was then paired with its corresponding distance reading. The LiDAR data consisted 

of a distance and a location (y, and z coordinates). As each LiDAR scan consisted of a different 

number of readings, the LiDAR scans were iterated through to get a range finder distance for 

each location giving x coordinates to the data. After the process, the data contained x, y, and z 

coordinates and was saved to an Excel sheet. The Excel sheet could then be examined to make 

sure there was no missing point cloud data such as dropped range finder reading. If any range 

finder readings were listed as “None”, they were turned to 0 which would remove that reading 

from the data in the next steps. 

As the data consisted of decimal values and not whole numbers, it could not be placed directly 

onto an image. To use the data with an image, it had to be interpolated. The point cloud data was 

turned into a 2D image using SciPy interpolation. The x and y coordinates were interpolated to 

estimate the rover’s location. The z values were used to create a greyscale colormap. The 

interpolation resulted in a 1080 ×143 image which was the same size as the overhead image. 

Afterward the image was filtered using a binary mask to turn the greyscale image into black and 

white. An example can be seen in Figure 19. 

 

 

Figure 19 Binary filter of a processed point cloud 

 

White represents edge of row from LiDAR scan 

Black represents ground 
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Once the image was binarized, it was used as a mask on the overhead image. A bitwise 

comparison was used as it returned an image that showed the full overhead image with the 

masked point cloud image on top. An example can be seen in Figure 20.  

 

 

Figure 20 Masked overhead image 

Finally, the masked image was analyzed, and the pixel location of an error were saved to an excel 

sheet. The error was found by iterating through every pixel of the image and determining if the 

color code was that of the error (yellow). Figure 21 shows a flowchart of the data analysis 

process. 

The final steps of the data analysis were all done in Excel. Using similar parameters by many 

industry leaders, the accuracy of the system to stay within 15cm, 5cm, and 3cm of the target was 

found (Deere, 2022). The image had a width of 143 pixels which represented 100cm giving a 

ground resolution of .699cm/pixel. Meaning that an error of four pixels was 3cm, seven pixels 

was 5cm, and twenty-one pixels was 15 cm. The large wood blocks were 18 pixels wide and 

centered at pixel 71, giving an outer boundary from 62 to 80. The data was then sorted using the 

COUNTIF function in excel to find how many points were outside each range. Knowing there 

was a maximum of 1080 points a percentage could be found for each range.  

Yellow represents edge of row from LiDAR scan Purple represents ground White represents row 

from image 
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Figure 21 Data Analysis Flowchart 

 



37 

 

CHAPTER IV 
 

 

Results and Analysis  

 

4.1 Sensors Results and Analysis 

4.1.1 LiDAR calibration data 

According to the calibration results, the LiDAR was able to acquire accurate readings in the 

tested range of 56 to 80cm. Most of the variance could be placed on the surface not being 

perfectly smooth. There were a few outliers included in the results, particularly a reading of 

92.9cm in the 70cm test. The averaged data for each test can be seen in the Table 10.  

Table 10 LiDAR Calibration Data 

  

Mounting Height to the Object 

55cm 70cm 80cm 

Max (cm) 57.78 92.91 82.40 

Min (cm) 55.28 69.96 78.68 

Avg (cm) 56.47 71.30 80.61 

SD (cm) 0.52 0.48 0.79 

 

4.1.2. TF Mini calibration data 

The TF Mini range finder was able to acquire accurate readings for all three distances. The 

readings at 140 and 280cm yielded very consistent results. The tests at 570 cm were also 

acceptable having a standard deviation of only 1.3cm. The results can be seen in Table 11. 

 



38 

 

Table 11 TF-Mini range finder calibration data. 

Distance to Object 

 140 cm 280 cm 570 cm 

Avg (cm) 140 281.09 569.76 

Max (cm) 140 282 574 

Min (cm) 139 280 567 

SD (cm) .39 0.51 1.32 

 

4.1.3. Ultrasonic Sensors 

The ultrasonic sensor testing did not return any usable data as the readings were inconsistent and 

rarely received. The poor readings are likely a result of the low quality of the ultrasonic sensors 

tested. The use of the sensors in this configuration, while intriguing, was not suitable for an 

application when consistent readings were critical.  

4.1.4 Stereoscopic Cameras 

The results showed that the D435 needed to be tuned to be used outside as the exposure was 

remarkably high during the outside tests. The comparisons between the two cameras can be seen 

in Table 12, Table 13, and Table 14. It was showed that the configurations should be optimized 

for each camera before a decision was made. 

Table 12 The results of the indoor test between the D415 and D435 Camera 

Control 

Camera Distance (m) SD (mm) % Zeroes % Outliers 

D415 

0.5 152.01 1.94 0 

0.7 10.90 0.003 0.03 

0.9 51.27 0.90 0.002 

1.1 20.55 0.16 0 

D435 

0.5 142.58 1.60 0 

0.7 109.69 1.50 0 

0.9 85.52 1.52 0 

1.1 59.36 1.51 0 
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Table 13 The results of the zero-light test between the D415 and D435 Camera 

Zero Light 

Camera Distance (m) SD (mm) % Zeroes % Outliers 

D415 

0.5 184.11 2.23 0 

0.7 96.24 1.89 0 

0.9 15.07 0.01 0 

1.1 141.26 1.56 0 

D435 

0.5 58.97 1.49 0 

0.7 84.88 1.50 0 

0.9 109.67 1.51 0 

1.1 141.26 1.56 0 

 

Table 14 The results of the full sun test between the D415 and D435 Camera 

Full Sun 

Camera 
Distance (m) SD (mm) % Zeroes % Outliers 

D415 

0.5 114.63 5.61 0 

0.7 77.19 1.29 0 

0.9 168.24 3.18 0.005 

1.1 188.96 2.95 0 

D435 

0.5 8448.85 85.37 4.45 

0.7 18300.24 84.38 8.54 

0.9 13898.80 37.00 1.69 

1.1 414.19 17.18 0 

 

4.2 Preliminary field tests results 

4.2.1 LiDAR tests 

As the LiDAR was a 360-degree scan, it resulted in data in Polar coordinates. A simple program 

was made to convert the scans into Cartesian coordinates for visualization purposes. The angle of 

the scan was also limited to eliminate data from outside the region of interest (ROI). With the 

new scan area defined, preliminary field tests were performed. The setup can be seen in Figure 

22. Figure 23 shows a LiDAR scan as a 2D plot, while Figure 24 shows a 3D plot of the data. The 

test was performed without any wheel encoders or GPS; therefore, the x direction (direction of 
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travel) could not be validated. From this test, it was decided that future testing should be done 

indoors, and the range finder was added to the system. 

 

 

Figure 22 The rover with the LiDAR mounted on the front. 

 

Slamtec RPLiDAR A1 
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Figure 23 A single LiDAR scan. 

 

Figure 24 A point cloud of the field after being scanned by the LiDAR. 

4.2.2 Autopilot tests  

The communication between the Cube and the Jetson Nano proved to be troublesome. It was 

found that the UART pins of the Jetson Nano had connection issues, and completely stopped 

working during initial testing. To solve the connection issue a USB to serial converter was used 

to connect the Cube to the Jetson Nano. The USB to Serial converter worked well for the initial 

testing, but then for unknown reasons it also failed. The Jetson Nano was then traded out for a 

mini-PC. The mini-PC worked well, but it did draw more power than the Jetson Nano. 

4.3 System Evaluation 

Table 15 and Table 16 show the PID values used in the system tests. These were determined 

through initial tuning of the system. Test 1, Test 2, and Test 3 will be used to reference the 

different PID values.  

Table 15 PID values of 60% Speed. 

Test 1 P = .15, I = .005, D = .001 

Test 2 P = .35, I = .005, D = .001 

Test 3 P = .25, I = .005, D = .001 

 

Table 16 PID Values for 100% Speed 

Test 1 P=.3, I=.005, D=.008 

Test 2 P=.3, I=.005, D=.005 

Test 3 P=.35, I=.005, D=.01 
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4.3.1 Tests on the wood row 

The use of wood to create rows worked very well. The ability to test various PID tunings without 

any changing parameters in the row greatly assisted with the tuning process. The first tests were 

conducted at 60% speed to make sure no issues occurred with the code. The ranges of the 

Proportional (P) values for the PID control were also spread out to better see how the tuning of 

the PID loop affected results. From Figure 25, the results show that the best results came from 

Test 2 followed closely by Test 3. Test1 was using the smallest P value and had a large amount of 

error, While Test 2 had the largest P value with the least amount of error. The values used in the 

plot can be seen in Table 17. 

 

Figure 25 Results of 60% Speed 

 

Table 17 Results of 60% Speed 

  Test 1 Test 2 Test 3 

MAX Error (cm) 4 2 9 

AVG Error (cm) 0.49 0.03 .50 

% In 15cm Range 100 100 100 

% In 5cm Range 85.71 100 99.63 

% In 3cm Range 79.60 99.97 99.60 

 

MAX

AVG

15cm5cm

3cm

Test 1 Test 2 Test 3
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Moving to the 100% speed trials it was decided to use slightly larger P values to compensate for 

the added speed. The Derivative (D) values were also increased. The results of the straight 

approach wood test can be seen in Figure 26 and Table 18. Test 2 had the best results staying in 

the 5cm range more often than the other tests and having a lower max and average error. 

 

Figure 26 Results of Wood Test at 100% Speed 

 

Table 18 Results of Wood Test at 100% Speed 

  Test 1 Test 2 Test 3 

MAX Error (cm) 12 6 8 

AVG Error (cm) 5.04 3.78 3.78 

% In 15cm Range 100 100 100 

% In 5cm Range 73.55 82.96 65.56 

% In 3cm Range 62.59 62.45 59.66 

 

 

 

MAX Error

AVG Error

15cm5cm

3cm

Test 1 Test 2 Test 3
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4.3.2 Test with the angled approach 

To further test the system an approach angle of 10 degrees was used. Figure 27 and Table 19 

show the results of the tests. Again Test 2 was the most reliable keeping inside the 5cm range 

99% of the time. Test 1 was still the worst setup having a maximum error of 15cm.  

 

Figure 27 Results of Angled Approach at 100% speed 

 

Table 19 Results of Angled Approach at 100% speed 

  Test 1 Test 2 Test 3 

MAX Error (cm) 15 7 9 

AVG Error (cm) 5.23 3.40 4.29 

% In 15cm Range 99.95 100.00 100.00 

% In 5cm Range 74.98 99.97 74.24 

% In 3cm Range 58.82 70.42 68.08 

 

 

MAX Error

AVG Error

15cm5cm

3cm

Test 1 Test 2 Test 3
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4.3.3 Tests on the windrow 

The last test used windrows created in the lab to simulate a plant canopy. Figure 28 and Table 20 

show the results of the tests. All the tests did well, but Test 3 did slightly better than Test 1. 

Looking at the data in Table 20, the results showed that the maximum error was larger than the 

other two tests.  

 

Figure 28 Results of Windrow test at 100% Speed 

 

Table 20 Results of Windrow test at 100% Speed 

  Test 1 Test 2 Test 3 

MAX Error (cm) 15 21 18 

AVG Error (cm) 6.59 10.54 8.53 

% In 15cm Range 97.01 87.87 99.26 

% In 5cm Range 84.85 75.65 86.60 

% In 3cm Range 82.78 72.75 86.27 

 

 

MAX Error

AVG Error

15cm5cm

3cm

Test 1 Test 2 Test 3
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4.3.4 Comparison of the system tests  

Figure 29 shows a comparison among the results from Test 1 using different targeted rows. Test 1 

had similar maximum errors with the Windrow tests having the highest accuracy at 3cm, but 

smallest accuracy at 15cm, meaning when it did have an error it was greater than the errors of the 

other two tests. 

 

Figure 29 Comparison of each Trials Test1 Values 

 

Figure 30 shows a comparison among the results from Test 2 using different targeted rows. The 

Windrow trials did significantly worse than the other two setups, having a maximum error of 21 

cm, meaning that it was nearly running over the row. The results are surprising since the other 

two setups were nearly perfect.  

MAX Error

AVG Error

15cm5cm

3cm

Wood Angled Hay
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Figure 30 Comparison of each Trials Test2 Values 

 

Figure 31 shows a comparison among the results from Test 3 using different targeted rows. The 

Windrow test had the largest error again, but it had the highest accuracy at 3cm. The wood and 

angled tests were nearly identical for this PID value. 

 

Figure 31 Comparison of each Trials Test3 Values 
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The average error of each PID test and the average error for each setup can be seen in Table 21. 

The Windrow test had roughly double the average error of the wood and angled tests. The error 

between each PID value was roughly the same, but Test 2 for the Windrow was nearly 20% larger 

than the next highest error. 

Table 21 Average Error for each test 

 Test1 Test2 Test3 Average 

Wood 5.04 3.78 3.78 4.20 

Angled 5.23 3.40 4.29 4.31 

Windrow 6.59 10.54 8.53 8.55 

Average 5.62 5.91 5.53  

 

4.4 System Safety 

Due to the Jetson Nano not being used the proposed safety interlocks were not accomplished. 

Without the GPIO pins of the Jetson, there was not a straightforward way to control the relays. 

The code was, however, setup to unarm the system if any of the sensors were ever disconnected.  
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CHAPTER V 
 

 

Conclusions 

 

5.1 Performance of system 

An autonomous rover was developed using off-the-shelf parts and tested in this study. The 

tests were conducted under lab conditions with simulated object rows. Data collection algorithms 

and data and image processing algorithms were developed for the rover controls and to evaluate 

the performance of the system.  

The use of the LiDAR over the cameras was determined by accuracy and processing power 

needed. The LiDAR worked well at detecting the rows but had connection issues. Due to several 

factors, such as inconsistent scan rates, or overheating, the laser could power off and require 

being reset to turn back on.  

The Cube worked as expected but was not necessarily needed after GPS was removed from 

the system. It was a good device to have for future development of the system. It was later found 

that the Jetson Nano would not communicate with the Cube due to a corruption on the boot drive. 

The Jetson Nano was re-flashed and is now operating as intended. The mini-PC proved to be 

sufficient as the datasets were relatively small.  

The data shows that the system could successfully navigate through rows on its own. The 

Windrow trials had larger maximum errors which could be accounted to the uneven shape of the 

canopy. There were several locations where the Windrow was much taller on one side than the 

other potentially resulting in over corrections. To correct these errors, the Savitzky-Golay filter 

could be fine-tuned. However, due to the LiDAR limitations, it could result in a scan not being 
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read or a system timeout. To correct the issue a LiDAR with constant scan angles is suggested. 

Even with these errors the system ran well and never interfered with the rows.  

5.2 Future Work 

There is still much work to be done to create a fully autonomous system. Future work 

includes head row turns as this system would only navigate through a single row at a time and 

still requires an operator for turning around. Another solution was to include a First Person View 

(FPV) camera and to transmit the feedback to a ground station. By adding the video stream, the 

operator could control the rover from a set location. 

The system could be programed using a faster language, such as C++, or could be moved to 

ROS. There was the need for added sensors to accomplish complete autonomy, and ROS could 

allow for simulation of the system. Without the addition of object detection, the rover could 

potentially cause damage to the crop or itself, or cause injury to a human. Potential sensors could 

be included such as the TF Mini range finders used in the validation process. These sensors had 

the ability to connect directly to the Cube autopilot. With this simple connection, the Cube would 

have the ability to Disarm the system if an object were detected within the set threshold.  

Additional work could also be done to find a different LiDAR solution. While the current 

LiDAR worked and was certainly cost affective, it also has several issues. The LiDAR tended to 

timeout causing the entire system to stop and wait for reconnection.  
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