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List of Figures 

1.1 Schematic views of a supercell thunderstorm. Left: A top-down view of 

a mature supercell thunderstorm near the surface from Lemon and 

Doswell (1979). Both the RFGF and forward flank boundary are marked 

with frontal symbols and flow is denoted with arrows. Regions of 

updraft are finely stippled, while regions of downdraft are coarsely 

stippled. Right: A view looking west at a mature supercell with primary 

visual features labeled. Adapted from Grazulis (2001). 

 

 

 

 

 

11 

 

1.2 Schematic view of supercell airflow as the storm reaches maturity. The 

T marks the location of a tornado. Blue fronts mark the positions of the 

RFGF and forward flank convergence zone while blue arrows indicate 

flow. Air parcels labeled A, B, and C all possess streamwise vorticity 

that is ingested by the supercell updraft. From Rotunno et al. (2017) and 

adapted from Klemp (1987). 

 

 

 

 

 

 

12 

1.3 Visualization of the idealized evolution of RFD vortex rings into vortex 

arches. The view is from the south, looking north at a supercell 

thunderstorm. The vortex lines labeled 1 – 4 represent either a single 

vortex line evolving in time or 4 different vortex lines at different points 

in their evolution. An environmental vortex line is also shown coming 

from the inflow to help show the difference between mid-level and low-

level rotation. From Markowski et al. (2008). 
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1.4 Conceptual model for the occlusion of a tornado. The ‘T’ marks the 

position of the tornado. In the last panel of the figure, the ‘X’ marks the 

location of the decaying tornado, and the ‘M’ marks the location of the 

new mesocyclone. From Marquis et al. (2016). 
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1.5 Diagram containing a summary of the results in Adlerman and 

Droegemeier (2005) where supercell cycling behavior was modeled in 

environments with differing amounts of shear and curvature in the 

hodograph. The type of supercell cycling behavior is plotted versus 

hodograph shape (ordinate) and amount of shear (abscissa). 
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1.6 RaXPol reflectivity (dBZ) and velocity (m s-1) from the 4° elevation at 

a) 2326:38 and b) 2327:18 UTC on 24 May 2021 near Selden, Kansas. 

Range rings are spaced at 2.5 km intervals. An example of a RFD 

momentum surge is circled as it moves to the east, south of an ongoing 

tornado. The surge has a distinct velocity and reflectivity signature. 
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1.7 Conceptual model from Kurdzo et al. (2015) showing the ‘failed’ 

occlusion process for the Moore 2013 tornado. As surges on different 

trajectories move by the tornado at different times, the tornado track is 

affected. In this case, the pattern of RFD surges resulted in looping 

behavior. 
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1.8 Conceptual diagram of the effects of increasing swirl ratio on tornadic 

flow. As swirl ratio increases, an internal downdraft develops in 

response to an intensifying downward directed perturbation pressure 

gradient force. Upon reaching the ground, the downdraft splits the 

vortex into multiple cells. From Rotunno (2013). 
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1.9 RaXPol imagery at 2° of the El Reno 2013 tornado at 2327:54 UTC on 

31 May 2013. a) Reflectivity, b) Radial velocity, c) Spectrum Width, 

and d) Correlation Coefficient. Arrows point to secondary vortices 

within the parent tornado. From Bluestein et al. (2015). 

 

 

 

 

27 

1.10 RaXPol imagery at 2° of the El Reno 2013 tornado at 2332:19 UTC on 

31 May 2013. a) Reflectivity, b) Differential Reflectivity, c) Correlation 

Coefficient, and d) Radial Velocity. Arrows point to the cyclonic and 

anticyclonic tornadoes, labeled ‘C’ and ‘A’. The anticyclonic tornado 

formed along the trailing edge of the RFGF. From Bluestein et al. 

(2015). 
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1.11 RaXPol a) Reflectivity and b) Radial velocity at 1° elevation on 24 May 

2011 at 2057:17 UTC. Red lines denote the WRB, the black dashed 

circle marks the part of the WRB observed visually by the radar crew 

that collected the data, small black circles mark the positions of small 

vortices along the trailing part of the WRB, and red arrows show the 

convergence pattern around the WRB. From Houser et al. (2016). 
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1.12 Example of an DRC adapted from Rasmussen et al. (2006). In this 

example, a core of reflectivity develops and descends from the supercell 

overhang, contacting the ground near the location of the tornado. 
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1.13 Example of the SVC from Orf et al. (2017). A concentrated area of 

streamwise vorticity develops near the surface position of the forward 

flank convergence zone, highlighted with yellow vortex lines. 

 

 

 

35 

2.1 The RaXPol radar, photographed by the author outside of the Advanced 

Radar Research Center. 
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2.2 Example of cross sections at 2319:13 UTC at 4° elevation. The white 

line is the azimuthal cross section, connecting the velocity maxima 

marked with white diamonds. The black line is the radial wind cross 

section. Red arrows point out the different centers, with the white circle 

denoting the geometric center. 
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2.3 Example analysis of a panel from the D6 tornado video. The scale object 

(railroad grain silos) and tornado are annotated with the information 

required to calculate lengths at the tornado location. The desired 

parameters, condensation funnel width and distance of the tornado from 

the grain silos, are marked in orange. 
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3.1 a) 500 hPa height (black lines, dam), temperature (red lines, °C) and 

winds (barbs and fill, kt) valid at 1800 UTC, near the time of convection 

initiation. The low and weak shortwave are marked. b) 700 hPa height 

(black lines, dam), temperature (red and blue lines, °C), dewpoint (green 

lines and fill, °C), and wind (barbs, kt) valid at 1800 UTC. c) Surface 

based CAPE (red lines, J kg-1) and CIN (fill, J kg-1) valid at 1800 UTC. 

d) 0 – 6 km bulk shear (contours, kt) and storm motion (barbs, kt) valid 

at 1800 UTC. Adapted from the Storm Prediction Center (SPC) event 

archive. 

 

 

 

 

 

 

 

 

 

54 

3.2 Surface observations at 1800 UTC, near the time of initiation. The first 

radar echoes are denoted by a black arrow. The surface low and weak 

stationary fronts (dashed black lines) along with the remnant outflow 

boundary (double black line) are marked. Adapted from the SPC surface 

map archive. 
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3.3 KDDC (Dodge City, Kansas) sounding from 0000 UTC on 25 May. This 

was the nearest sounding in time and space to the Selden storm that was 

within the favorable storm environment. Taken from the SPC event 

archive. 

 

 

 

56 



xv 
 

3.4 a) Surface observations valid at 2100 UTC, 2 hours before the start time 

of the Selden tornado. The Selden storm is marked with a black arrow 

and the remnant outflow is denoted (double black line). b) Surface based 

CAPE (red lines, J kg-1) and CIN (fill, J kg-1) valid at 200 UTC. c) 0 – 3 

km storm relative helicity (lines, m2 s-2) and storm motion (barbs, kt) 

valid at 2300 UTC. Adapted from the SPC event archive and surface 

map archive. 
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3.5 RaXPol reflectivity and velocity during D3 showing a period in which 

the Selden storm underwent mergers with non-supercells approaching 

from the southwest (white arrows and numbers). The weak velocity 

couplet is marked in the first panel before it is disrupted by the collision 

of the first cell (black circles). Range ring spacing is 2.5 km. 
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3.6 RaXPol derived track of the Selden tornado at 4° elevation overlayed 

with the estimated damage swath based on the low correlation 

coefficient area associated with the tornado. Various pictures of the 

tornadoes are also included on the track. Photos courtesy of Howard 

Bluestein, Sam Emmerson, and Trey Greenwood. 
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3.7 Comparison of the RaxPol derived tracks at 4°, 8°, 12°, and 16°. The 4° 

and 16° elevation tracks are representative of lower and upper elevation 

scans, respectively. 
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3.8 RaXPol derived track (using objective geometric centers) for the 

cyclonic tornado at 4°. Track segments 1 – 8 are marked, identified by 

changes in tornado behavior. Red dots mark the locations for D6 and 

D7. 
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3.9 Timeline of track segments at all elevations. Different colors represent 

the various segments, with boxes of the same color representing 

segments with similar behavior. Segment 4 is also broken down into 

subsections to isolate the track loop, which is represented by the red 

boxes. 
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4.1 Track of the Selden tornado at the 4°(top) and 16° (bottom) elevation 

scans. Zoomed insets of the tracks prior to the D6 data gap are provided 

on the right, along with descriptions of the segment motion vectors. 
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4.2 Schematic showing the track for segments 1 and 2 at every 4° in 

elevation. The increasingly chaotic areas of track are circled in the 12° 

and 16° maps. Grids have 1 km spacing. 

 

 

 

69 

4.3 Interpolated plot of ΔVmax for the Selden tornado, measured from the 

wind maxima on either side of the vortex. The red box denotes the 

portion of the graph corresponding to track segments 1 and 2 while the 

red arrows highlight the nearly simultaneous or slight upward trend in 

vortex development and intensification during segments 1 and 2. 
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4.4 RaXPol imagery at the 4° elevation taken every 2 scans (40 s) during 

segment 1. In each radar panel, reflectivity is on the left and Doppler 

velocity on the right. Range ring spacing is 2.5 km. Black lines denote 

RFD surge fronts, which are also numbered. Black arrows also point to 

associated reflectivity appendages. Finally, red lines mark the 

approximate positions of the forward flank boundary and RFGF. 
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4.5 Timeseries at 4° of the ΔVmax for the Selden tornado. The portion of 

the series corresponding to segments 1 and 2 is boxed and a zoomed 

inset of the boxed portion is provided to the right of the figure with 

surge related bursts in ΔVmax circled.  Gridlines in the inset are spaced 

10 m s-1 apart. 
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4.6 RaXPol imagery at the 4° elevation taken every 3 scans (60 s) during 

segment 2. In each radar panel, reflectivity is on the left and Doppler 

velocity on the right. Range ring spacing is 2.5 km. Black lines denote 

RFD surge fronts, which are also numbered. Black arrows also point to 

associated reflectivity appendages. Finally, red lines mark the 

approximate positions of the forward flank boundary and RFGF. 
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4.7 Average cross section for the Selden tornado during segment 2 with 

error bars plotted. Error bars represent 1 standard deviation of the data. 
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4.8 Azimuthal Cross Sections through the Selden Tornado at 4° elevation 

for track segments 1 (top) and 2 (bottom). Pictures of the Selden tornado 

from each segment are also included. Photos courtesy of Trey 

Greenwood. 
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4.9 Picture of the Selden tornado at 2309:30 UTC, looking to the west 

southwest towards the town of Selden from the D6 RaXPol location. 
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The condensation funnel and debris cloud diameters were estimated with 

the use of the tall grain silos near the middle of the image. The edges of 

the debris cloud are marked. Photo courtesy of Trey Greenwood. 
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4.10 Comparison of the segment 2 cross section at 4° (top) and 16° (bottom). 

Example PPI maps of radial velocity are provided from the volume 

starting at 2309:43 UTC to further show the typical changes in the 

tornadic vortex with height. 
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4.11 Height comparison of all nine segment 1 cross sections. The 9 scan 

elevations are color coded in groups of three (lower group – blue, middle 

group – green, upper group – pink). Each group then has a solid profile, 

dashed profile, and dotted-dashed profile in increasing height. 
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4.12 

 

Radial wind cross sections through the Selden tornado at the 4° 

elevation for segment 1 (top) and segment 2 (bottom). 1-D divergence is 

also included. 
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4.13 Top panel contains a timeseries of the tornado condensation funnel 

width at 250 m ARL (dark green) and 500 m ARL (green) and TVS 

width at the 4° scan elevation (bright green). Bottom panel contains a 

timeseries of tornado ΔV (red) and vorticity (blue). 

 

 

 

 

90 

4.14 Comparison of the video estimated and radar derived tornado tracks 

during D6. The bottom panel contains a rotated map showing that the 

track discrepancies are likely due to a systematic azimuth bias in the 

radar data resulting from an incorrect GPS heading. A yellow star marks 

the location of the grain silos, and the gray line denotes the line of sight 

from the D6 deployment location to the grain silos. 
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4.15 Volumes enclosing reflectivity values greater than or equal to 55 dBZ. 

The domain is centered on the tornado in each panel, and the view is 

from the northeast. All distances are in meters (m). For clarity, the DRC 

is circled and denoted with an arrow. 
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4.16 Reconstructed cross sections through the tornado at the same 4 scans as 

in Figure 4.15. Reflectivity is on the left and Doppler velocity on the 

right. Black arrows point to the DRC, while white arrows indicate the 

potentially related velocity disruption. 
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5.1 Track of the Selden tornado at the 4°(top) and 16° (bottom) elevation 

scans. Zoomed insets of the tracks leading up to and during segment 3 

are provided on the right, along with descriptions of the segment motion 

vectors. 
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5.2 RaXPol imagery at the 16° elevation taken every 2 scans (40 s) during 

segment 3. In each radar panel, reflectivity is on the left and Doppler 

velocity on the right. Range ring spacing is 2.5 km.  Black lines denote 

RFD surge fronts, which are also numbered. Black arrows also point to 

associated reflectivity appendages. Finally, a red dotted line marks the 

approximate position of the RFD front aloft. 
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5.3 RaXPol imagery at the 4° elevation taken every 2 scans (40 s) during 

segment 3. In each radar panel, reflectivity is on the left and Doppler 

velocity on the right. Range ring spacing is 2.5 km. Black lines denote 

RFD surge fronts, which are also numbered. Black arrows also point to 

associated reflectivity appendages. Finally, red lines mark the 

approximate positions of the forward flank and RFGF. 
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5.4 Schematic showing how a pulse in occlusion downdraft outflow could 

generate RFD surges. The location of the tornado is marked by a T, the 

occlusion downdraft outflow by a blue circle, the RFD flow by a blue 

arrow, and enhanced areas of convergence, or RFD surges, by red lines. 
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5.5 Radar analysis during segment 3 at the 4° elevation depicting the 

multiple vortex transition for the Selden tornado. Doppler velocity is on 

the left and correlation coefficient on the right. Range ring spacing is 2.5 

km. Black arrows point to secondary vortex related features. 
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5.6 Video grabs of the Selden tornado at 2318:16 UTC (top) and 2318:26 

(bottom), taken looking to the west southwest into the town of Selden 

from the D6 location. A white arrow denotes the first visible secondary 

vortex in the bottom image. Video courtesy of Trey Greenwood. 
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5.7 Azimuthal Cross Sections through the Selden Tornado at 4° elevation 

for track segments 1 (top) and 2 (bottom). Pictures of the Selden tornado 

from each segment are also included. Photo courtesy of Trey 

Greenwood. 
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5.8 Radial wind cross section through the Selden tornado at the 4° elevation 

for segment 3 (top) and 1-D divergence (bottom). 
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5.9 Volumes enclosing reflectivity values greater than or equal to 45 dBz. 

The domain is centered on the tornado in each panel, and the view is 

from the northeast. All distances are in meters (m). For clarity, the DRC 

is circled and denoted with an arrow. The dotted arrow and circle denote 

that the DRC is reaching the ground and has passed through the bottom 

of the domain.  
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5.10 Reconstructed cross sections through the tornado at the same 4 scans as 

in Figure 5.9. Reflectivity is on the left and Doppler velocity on the 

right. Black arrows point to the DRC, while a white arrow indicates the 

potentially related low-level velocity increase. 
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5.11 Comparison of raw (top) and interpolated (bottom) reconstructed 

reflectivity and velocity RHIs from 2319:09 UTC at an azimuth angle of 

275°. 
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5.12 Reconstructed RHIs from 2319:09 UTC at azimuth 265°. The 

reconstructed velocity (top right), reconstructed reflectivity (bottom 

left), and calculated 1-dimensional horizontal vorticity (bottom right) are 

provided along with the corresponding 4° elevation PPI plot that shows 

where the RHI was reconstructed. Black circles denote the SVC feature. 

 

 

 

 

 

124 

5.13 Averaged reconstructed RHIs taken every 2° in azimuth for a 2 km arc 

along the forward flank boundary. The panels on the left show analysis 

for 2317:49 UTC, with averaged velocity (top) and averaged reflectivity 

(middle). The panels on the right show analysis for 2319:09 UTC, with 

averaged velocity (top) and averaged reflectivity (middle). Radar PPIs 

are provided on the bottom of the figure to show the wedge that is 

represented by the average RHIs. Black circles denote the approximate 

location of the strongest horizontal vorticity. 
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6.1 Track of the Selden tornado at the 4°(top) and 16° (bottom) elevation 

scans. Zoomed insets of the tracks leading up to and during D7 are 

provided, along with descriptions of the segment motion vectors. 

 

 

 

130 



xx 
 

6.2 Comparison of the first cyclonic track loop at 4° increments. The 

evolving area of the track which represents the track loop is circled in 

each diagram. Axes are measured from D7 RaXPol position (km). 
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6.3 Comparison of the second cyclonic track loop at 4° increments. The 

evolving area of the track which completes a transition to a track loop by 

the 16° level is circled in each diagram. Axes are measured from D7 

RaXPol position (km). 
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6.4 Tilt analysis for the Selden tornado, highlighting features associated 

with height dependent movement during D7. Analysis is done from the 

4° level to the 16° level. 
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6.5 RaXPol imagery at the 4° elevation taken every 2 scans (40 s) during 

segment 4. In each radar panel, reflectivity is on the left and Doppler 

velocity on the right. Range ring spacing is 2.5 km. Black lines denote 

RFD surge fronts, which are also numbered. Black arrows also point to 

associated reflectivity appendages. Red lines mark the approximate 

positions of the forward flank and RFGF. A black circle also marks the 

location of an anticyclonic vortex, which will be investigated in section 

6.4. 
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6.6 Conceptual model adapted from Kurdzo et al. (2015) to show the impact 

of surges at the 4° elevation during segment 4. During segment 4, RFD 

surge 1 from Figure 6.5 corresponds to the red surge while RFD surge 3 

matches to the blue surge. 
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6.7 RaXPol imagery at the 16° elevation taken every 2 scans (40 s) during 

segment 4. In each radar panel, reflectivity is on the left and Doppler 

velocity on the right. Range ring spacing is 2.5 km. Black lines denote 

RFD surge fronts, which are also numbered. Black arrows also point to 

associated reflectivity appendages. Red lines mark the approximate 

positions of the forward flank and RFGF. A black circle also marks the 

location of an anticyclonic vortex, which will be investigated in section 

6.4. 
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6.8 RaXPol imagery at the 4° elevation taken every 3 scans (60 s) during 

segments 5 and 6. In each radar panel, reflectivity is on the left and 

Doppler velocity on the right. Range ring spacing is 2.5 km. Black lines 

denote RFD surge fronts, which are also numbered. Black arrows also 
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point to associated reflectivity appendages. Finally, red lines mark the 

approximate positions of the forward flank and RFGF. 
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6.9 RaXPol imagery at the 4° elevation taken every 3 scans (60 s) during 

segments 6 and 7. In each radar panel, reflectivity is on the left, Doppler 

velocity is in the center, and correlation coefficient is on the right. Range 

ring spacing is 2.5 km. Black lines denote RFD surge fronts, which are 

also numbered. Black arrows also point to associated reflectivity 

appendages. Reded lines mark the approximate positions of the forward 

flank and RFGF. In the correlation coefficient images, the white circles 

denoted the correlation coefficient minima and white arrows indicate 

direction of movement. 
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6.10 RaXPol imagery at the 16° elevation taken every 3 scans (60 s) during 

segments 5 and 6. In each radar panel, reflectivity is on the left and 

Doppler velocity on the right. Range ring spacing is 2.5 km. Black lines 

denote RFD surge fronts, which are also numbered. Black arrows also 

point to associated reflectivity appendages. Finally, red lines mark the 

approximate positions of the forward flank and RFGF. 
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6.11 Radar analysis of RaXPol data at 4° elevation during the 2 minutes 

leading up to dissipation of the Selden tornado. Range ring spacing is 

2.5 km. The vortex signature is marked by a black circle. Once the 

vortex signature breaks down, a line marks the remnant enhanced shear 

zone. A black arrow also points to the WEH in the reflectivity field. 
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6.12 Azimuthal Cross Section through the Selden Tornado at 4° elevation for 

track segment 4. Photo courtesy of Howard Bluestein. 
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6.13 Photo of the tornado at 2327:22 UTC, mid-way through segment 4 at the 

end of the track loop. Photo is taken looking west from the D7 

deployment location; the tornado is approximately 6 km away. Photo 

courtesy of Howard Bluestein.  
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6.14 Azimuthal Cross Sections through the Selden Tornado at 4° elevation 

for track segment 4 subsections. The first subsection (top) represents the 

loop portion of segment 4, the second subsection (bottom) represents the 

rapid northeasterly movement after the track loop. 
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6.15 Radial wind cross section through the Selden tornado at the 4° elevation 

for segment 4 (top) and 1-D divergence (bottom). 
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6.16 Azimuthal Cross Sections through the Selden Tornado at 6° elevation 

for track segments 5 (top) and 6 (bottom). A picture of the Selden 

tornado from segment 5 is also included. Photo courtesy of Howard 

Bluestein 
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6.17 Radial wind cross sections through the Selden tornado at the 4° 

elevation for segment 5 (top) and segment 6 (bottom). 1-D divergence is 

also included. 
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6.18 Azimuthal Cross Sections through the Selden Tornado at 4° elevation 

for track segments 7 (top) and 8 (bottom). 
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6.19 Radial wind cross sections through the Selden tornado at the 4° 

elevation for segment 7 (top) and segment 8 (bottom). 1-D divergence is 

also included. 
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6.20 Radar analysis at 8° showing the ‘rogue’ anticyclonic vortex during 

early D7. Panels are taken every other scan, or 40 s apart. Range ring 

spacing is 2.5 km. The black circles denote the ‘rogue’ anticyclonic 

vortex, and its movement is tracked on the reflectivity field. 
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6.21 Reflectivity and velocity timeseries lasting about 2.5 minutes from 

2334:38 to 2336:58 UTC. Black arrows on the reflectivity plots denote 

the WRB, while black circles on the velocity field mark the pronounced 

convergence signature. Range ring spacing is 2.5 km. 
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7.1 Radar analysis at the 4° level during early D7 showing development of 

an incipient anticyclonic vortex on the southern flank of the RFD. Panels 

are every 2 scans (40 s) and range rings are spaced every 2.5 km. Red 

lines mark the positions of the RFGF and forward flank boundary. The 

instigating RFD surge is marked in black, and a black arrow denotes the 

surge core. Dotted black lines and arrows mark the dissipating surge. In 

the first panel, a black circle marks slightly enhanced anticyclonic 

vorticity likely due to RFD vortex ring tilting, while the black circle in 

the last panel denotes the incipient anticyclonic vortex. 
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7.2 Track of the Selden companion anticyclonic tornado at the 4°(top) and 

16° (bottom) elevation scans. Descriptions of the segment track vectors 

are provided to the right. 
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7.3 Comparison of the first anticyclonic tornado track segment at 4° 

increments. The segment 1 track is shorter with height reflecting longer 

development times aloft and is somewhat more erratic with height. Grid 

is at 1 km intervals. 
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7.4 Comparison of the right turn between segments 3 and 4 at 4° increments. 

The right turn is persistent with height and generally sharp, occurring in 

1 or 2 scans. Grid is at 1 km intervals. 
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7.5 RaXPol imagery at the 4° elevation taken every 2 scans (40 s) during 

segment 1. In each radar panel, reflectivity is on the left and Doppler 

velocity on the right. Range ring spacing is 1.0 km. Black circles denote 

the anticyclonic vortex. Red lines mark the approximate positions of 

RFGF near the vortex. 
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7.6 RaXPol imagery at the 4° elevation taken every 2 scans (40 s) during 

segment 2. In each radar panel, reflectivity is on the left and Doppler 

velocity on the right. Range ring spacing is 1.0 km. Black circles denote 

the anticyclonic vortex. Red lines mark the approximate positions of 

RFGF near the vortex. 
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7.7 

 

 

 

 

 

 

7.8 

Conceptual diagram comparing the anticyclonic tornado occlusion 

process to the more familiar cyclonic tornado occlusion process. Red 

lines represent the major near-tornado boundaries. A dotted area shaded 

light blue denotes the approximate location of the occlusion downdraft. 

Gray arrows show where momentum is surging because of the occlusion 

downdraft. There is a scale difference between the two diagrams. 

 

Radar analysis at the 4° scan elevation depicting a possible RFD surge 

brushing by the north side of the anticyclonic tornado. Black circles 

denote the area of enhanced momentum, while arrows indicate direction 

of movement. A dotted circle and arrow mark weakening of the possible 

surge in the last panel. 
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7.9 RaXPol imagery at the 4° elevation taken every 2 scans (40 s) during 

segments 3 and 4. In each radar panel, reflectivity is on the left and 
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Doppler velocity on the right. Range ring spacing is 1.0 km. Black 

circles denote the anticyclonic vortex. Red lines mark the approximate 

positions of RFGF near the vortex. 
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7.10 Azimuthal Cross Sections through the Selden anticyclonic Tornado at 4° 

elevation for track segments 1 (top) and 2 (bottom). 
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7.11 Picture of the anticyclonic vortex looking straight up as it passed 

overhead of the radar. The vortex is roughly in the center of the image, 

with a small funnel cloud or protrusion visible in the center of the 

vortex. Photo courtesy of Sam Emmerson. 
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7.12 Azimuthal Cross Sections through the Selden anticyclonic Tornado at 4° 

elevation for track segments 3 (top) and 4 (bottom). 
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Abstract 

 

On 24 May 2021, a supercell in Selden, KS produced tornadoes which were probed 

by RaXPol, the University of Oklahoma’s rapid-scan, mobile, X-band, polarimetric 

Doppler radar. According to the National Weather Service, the primary tornado was on the 

ground for 30 minutes and attained a maximum width of 850 yards as a multiple vortex 

tornado. Throughout this time, the tornado produced EF-1 damage in and around Selden. 

RaXPol was deployed twice on this tornado; RaXPol moved once as the tornado was 

approaching. During the first deployment, data from shortly after tornadogenesis to right 

after a transition to multiple vortex phase were collected. After rapidly redeploying to a 

safer location, data were then recorded from the end of the tornado’s multiple vortex phase 

through its dissipation. While the cyclonic tornado was ongoing during the second 

deployment, a strong anticyclonic vortex or marginal tornado at the southern end of the 

Rear Flank Gust Front (RFGF) passed directly over RaXPol. Along with a high-definition 

video taken of the cyclonic tornado from the first deployment location, the high-resolution 

data collected by RaXPol throughout the lifespan of both vortices provide a rare 

opportunity to correlate structural features of the cyclonic tornado, anticyclonic vortex, and 

cyclonically rotating parent supercell to changes in tornado movement and behavior. Using 

the data captured by RaXPol, a thorough analysis of the tornado pair and the parent 

supercell was completed and cross sections through both vortices were constructed through 

their respective Doppler velocity couplets roughly perpendicular to the radar beam. 
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Ultimately, the RaXPol data help to construct a detailed narrative of the Selden tornado 

pair. 

RaXPol observed several important phenomena concerning the Selden tornado 

pair. Numerous significant shifts in the track of the primary cyclonic tornado were 

identified, and the tornado as well as its parent low-level mesocyclone were observed to 

occlude with time leading up to the tornado’s dissipation. During analysis, various Rear 

Flank Downdraft momentum surges (RFD surges) were identified, and they were found to 

be of critical importance to the occlusion and track behavior of the Selden tornado. The 

transition of the Selden tornado into and out of a multiple vortex phase were also observed, 

and the initial transition of the tornado into its multiple vortex phase was found to be the 

result of a temporary inflow disruption associated with RFD surges. While the primary 

cyclonic tornado was ongoing, RaXPol observed two independent anticyclonic vortices 

with different behavior, including a ‘rogue’ anticyclonic vortex and the marginally tornadic 

anticyclonic member of the Selden tornado pair. The ‘rogue’ anticyclonic vortex appeared 

very near the Selden tornado for a brief time, and numerous ideas for its origin and nature 

are discussed. The marginally tornadic anticyclonic vortex was found to form when a 

potent RFD surge impinged on the southern end of the RFGF, and the vortex was observed 

to occlude in a similar manner as the primary Selden tornado leading up to its dissipation.  
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Chapter 1 

Introduction 

 

Tornadoes are perhaps the most enigmatic of meteorological events, displaying awe 

inspiring strength and power. Although tornadoes occur over a wide range of environments 

and in conjunction with storms of multiple scales, no subset of tornadoes has garnered as 

much attention as the supercell tornado. Often visually stunning, supercell tornadoes 

enrapture the imagination. However, it is the supercell tornado’s propensity for destruction 

that has likely resulted in the plethora of research focused on them. Nearly all violent 

tornadoes (rated EF2+) occur with supercells, highlighting the importance of the supercell 

despite only one-fifth to one-quarter of supercells being tornadic (Trapp et al. 2005; 

Markowski and Richardson 2009). Illustrative examples of the destruction wrought by 

tornadic supercells include such storms as the Joplin 2011 supercell or Mayfield 2021 

supercell. Although these events were devastating, they pale in comparison to a worst-case 

scenario. In their study of a hypothetical violent tornado occurring in Chicago, Wurman et 

al. (2007a) estimated that the tornado could kill thousands to tens of thousands of people 

and damage or destroy nearly 400,000 homes – a testament to the destruction a tornadic 

supercell can cause should it strike a major city.  

Yet, despite their power, supercell tornadoes are not a fully understood 

phenomenon. The tornadogenesis problem has received the most attention from 

researchers and is likely the best understood portion of the supercell tornado lifecycle. 
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However, our understanding of tornado behavior during mature and decay phases 

continues to be limited. For example, supercell tornadoes have been observed to make 

sudden turns, deviating significantly from their initial tracks. In 2007, a large and violent 

tornado in Kansas made a sudden left turn during its mature phase, making direct impact 

to the town of Greensburg (Tanamachi et al. 2012). In 2013, the largest tornado ever 

recorded, the El Reno tornado, made a significant left turn resulting in the deaths of several 

chasers and researchers who were caught off-guard by the odd tornado motion (Bluestein 

et al. 2015). Deviant track motion is a common phenomenon amongst supercell tornadoes 

that continues to surprise both scientists and operational forecasters. Nixon and Allen 

(2021) found 102 cases in which tornadoes displayed deviant leftward motion from 2005 

to 2019, and that in 25% of these cases the tornado travelled entirely out of the National 

Weather Service warning polygon. Witness to the lack of operational knowledge 

concerning tornado behavior post-genesis, the Nixon and Allen (2021) findings and 

potential for loss of life posed by the failure to anticipate deviant motion underscore the 

need to study tornadoes throughout their entire lifecycles.  

 

1.1: A Brief History of High-Resolution Radar Observations 

 Perhaps the most revolutionary tool for advancing tornado research has been the 

mobile Doppler radar. Prior to the use of radars that could be deployed in proximity to 

tornadic supercells, meteorologists were limited by use of the fixed site WSR-88D radar. 

Although the WSR-88D has a relatively small beamwidth of 1°, it is meant to cover a wide 

area of hundreds of kilometers in each direction (Doviak and Zrnic 1993). As distance from 

the radar continues to increase, the beam spread will render many smaller scale features 
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unresolvable. For example, at 100 km range, the beam is approximately 1750 meters wide. 

Furthermore, the height of the radar beam above the ground will continue to increase with 

distance from the radar due to the Earth’s curvature and atmospheric refraction, with a 0° 

elevation beam being roughly 500 meters above the ground at 100 km or over 2000 meters 

above the ground at 200 km (Doviak and Zrnic 1993). As a result, remote near-surface 

features are not observable from a WSR-88D. Finally, the WSR-88D can only rotate at 30° 

s-1 (Doviak and Zrnic 1993). This results in volume update times of 4 to 5 minutes on 

average. Because of these factors, it became necessary to deploy radars in the vicinity of 

supercells to observe tornadoes with appreciable resolution. 

 For the first time in 1987 and 1988, Bluestein and Unruh (1989) deployed a mobile 

radar on tornadic supercells in the Southern Plains. The radar used was a second-hand Los 

Alamos National Laboratory (LANL) bistatic, continuous wave, 3 cm (X-band) radar with 

a 5° beamwidth not originally designed for meteorological applications. To operate the 

radar, it was set on a stand and then pointed by hand at storms. Data were then received 

and recorded as audio signals. Despite the crudeness of this set up, approaching and 

receding velocities associated with supercell and tornado circulations were able to be 

detected. Following on the success of the proof of concept for the LANL radar, Bluestein 

et al. (1993) continued to deploy the system near tornadic supercells in the Southern Plains 

throughout 1990 and 1991. One tornado in Red Rock, Oklahoma, which was rated F-4, 

was observed with the LANL radar which detected F-5 wind speeds of 120 to 125 m s-1 

and strong winds all the way through the decay phase of the tornado. These winds were 

found to greatly exceed the ‘thermodynamic speed limit’, in which all parcel CAPE is 

converted to kinetic energy in cyclostrophic balance. In addition, several wind maxima 
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were observed on either side of the tornado, perhaps the first observations of what may 

have been secondary vortices in a multiple vortex tornado.  

 After initial experience with the LANL radar, it became clear that a higher-

resolution, computer-controlled radar system would be needed to continue advancing 

tornado observations. In response to this need, Bluestein et al. (1995) field tested the U-

Mass W-Band radar in 1993 and 1994. The U-Mass W-band radar was a van mounted 

pulsed Doppler radar that had a narrow beam width of 0.7° and was able to achieve 30-

meter range resolution, allowing for the identification of small-scale features in tornadic 

supercells and rapid deployments. Bluestein et al. (1995) were able to collect the highest 

resolution datasets of supercells available at the time, proving the practicality of using 

vehicle mounted radar systems to probe severe convection. 

Following on recent successes with mobile radar systems, Wurman et al. (1997) 

tested the first truck mounted mobile radar, the Doppler on Wheels (DOW), in 1995 during 

the Verification on the Origins of Rotation in Tornadoes Experiment (VORTEX). The 

DOW was a 3 cm wavelength (X-band), pencil-beam, pulsed Doppler radar which was 

able to collect a high-resolution dataset of the mature and decay phases of a violent tornado 

near Dimmitt, Texas. In their analysis of this data, Wurman and Gill (2000) were able to 

identify several small-scale features of tornadoes. A defined weak echo region was found 

inside the tornado, called the Weak Echo Hole (WEH), which was surrounded by 

concentric rings of high reflectivity. Evidence for a strong central downdraft in the tornado 

core with a magnitude of 30 m s-1 was also found. In another VORTEX dataset collected 

by an airborne radar (ELECTRA), Dowell and Bluestein (2002) described the cycling 

behavior of a supercell in McLean, Texas in which they identified a surging Rear Flank 
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Downdraft (RFD) as the primary cause for cycling. When the RFD surged ahead of the 

tornado, rearward storm relative flow sometimes increased near the tornado, causing it to 

move westward away from the parent updraft and dissipate. 

In 1999, a major outbreak of tornadoes occurred in Kansas and Oklahoma. One 

tornado, which tracked through Moore, Oklahoma, was a violent F-5. Both the U-Mass W-

band and DOW collected data on this supercell. Bluestein and Pazmany (2000), using U-

Mass data of an earlier tornado produced by the same supercell as the Moore tornado, noted 

spiral like bands of reflectivity around the tornado and identified small, wave-like 

perturbations in the edge of the tornado that were likely manifestations of secondary 

vortices. Using the DOW data of the Moore tornado, Burgess et al. (2002) found wind 

speeds near those reported from damage surveys. Later in the day, the DOW collected 

additional data of another violent tornado near Mulhall, Oklahoma. Wurman (2002) 

analyzed this data, finding the first concrete evidence of secondary vortices within a 

multiple vortex tornado. Secondary vortices were observed to possess total vorticity values 

of up to 8 s-1, which are the highest values ever measured in tornadoes. 

Throughout the early 2000’s, mobile radar observations continued to yield exciting 

results. In their analysis of tornadoes near Attica, Kansas, Bluestein et al. (2007b) found 

that the highest velocities associated with tornadoes occurred outside of the visible 

condensation funnel and that velocities changed most rapidly within 25 meters of the 

ground. Additionally, horizontal rolls were noted in proximity to the tornado and a band of 

reflectivity was found wrapping around the hook echo, both of which were likely the 

manifestation of one or more RFD surges. RFD surges are discrete areas of higher 

momentum within the RFD outflow, accompanied by enhanced vorticity and convergence, 
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that can influence the tornado throughout its lifecycle (Finley and Lee 2004; Finley and 

Lee 2008; Lee et al. 2012; Skinner et al. 2014). Similar patterns within the RFD region of 

tornadic supercells were being noted repeatedly in mobile radar observations. Wurman et 

al. (2010) identified several RFD surges in their analysis of a tornado occurring near 

Orleans, Nebraska. Surge positions were found to not be conducive to tornado 

maintenance, separating the tornado from buoyant inflow.  

In the mid 2000’s, new technology was being developed for mobile weather radars. 

The Mobile Weather Radar, 2005 X-Band, Phased Array (MWR-05XP) was built using a 

second-hand military phased array antenna grid. Although the technology had been used 

in military applications for decades (phased array radars have been in use in Air Force 

fighter aircraft since the 1960’s), the MWR-05XP marks the first time the technology was 

used for a mobile weather radar. Phased array antennas allow for the rapid collection of 

volumes without needing to mechanically move the antenna through electronic beam 

steering (Bluestein et al. 2010). Using this radar, French et al. (2014) found that tornadoes 

may not be entirely continuous with height and that dissipation occurred in an inside out 

manner following the tornado being displaced from the parent updraft by a momentum 

imbalance that may have been the result of RFD surges. 

In 2009-2010, the second VORTEX experiment was conducted to further 

understanding of tornadogenesis and the tornado lifecycle. Numerous mobile radar systems 

participated, resulting in the documentation of several tornado cases including the well-

studied Goshen County, Wyoming tornado. Kosiba et al. (2013) found that the Goshen 

tornado formed as a secondary RFD, or RFD surge, wrapped the low-level mesocyclone. 

Vorticity for the tornado came from both the Rear Flank Gust Front (RFGF) and forward 
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flank leading edge, and it was found that only modest vorticity generation at the RFGF was 

necessary for genesis. In another supercell in Dumas, Texas, Skinner et al. (2014) again 

found several RFD surges, noting that they are important for the evolution of the low-level 

mesocyclone. Tornadogenesis never occurred in the Dumas storm, likely the result of less 

buoyant air in RFD surges surrounding the low-level mesocyclone. Another feature, the 

Low Reflectivity Ribbon (LRR), was also observed repeatedly during VORTEX2 (e.g., 

Griffin et al. 2018 and Kosiba et al. 2013). The LRR is a narrow channel of low reflectivity 

that starts near the rear side of the supercell hook echo and heads into the storm, separating 

the Forward Flank Downdraft (FFD) from the RFD. It was also concluded that the LRR 

was likely a region of sparse, large hail (Griffin 2018). However, Kosiba et al. (2013) noted 

that inflow air for the tornado did not pass through the LRR and that the LRR did not affect 

tornado evolution.  

Around the same time as the VORTEX2 project, dual polarization became practical 

for use in mobile radars. Polarimetric variables allow radars to detect differences in the size 

and shape of scatterers since both horizontally and vertically polarized radiation is 

transmitted. Differential reflectivity (ZDR), or the difference between horizontal and 

vertical returns for reflectivity, can reveal the shape of scatterers in a volume since the 

particles will give higher returns in the channel that is more aligned with their larger 

dimension. Correlation coefficient (ρHV) can also be calculated between the horizontal and 

vertical returns, representing how homogeneous the scatterers are in a volume. One 

consistent feature that can be detected using these variables is the Tornadic Debris 

Signatures (TDS) first described by Zrnic and Ryzhkov (1999). The TDS is a region of low 

differential reflectivity (due to the lack of large, oblate drops and presence of debris) and 
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low correlation coefficient (due to the heterogeneity of the scatterers, which include rain 

drops, debris, and dirt). Bluestein et al. (2007a) later showed the validity of the idea that 

polarimetric radars could detect tornadoes remotely using the TDS. Additional polarimetric 

supercell signatures have also been defined. In their review of polarimetric data of 

supercells, Kumjian and Ryzhkov (2008) found several features, including ZDR arcs and 

ZDR and correlation coefficient mid-level rings and columns that resulted from precipitation 

size sorting at the leading edge of the forward flank and from updraft related melting layer 

perturbations respectively.  

In 2011, the Rapid-Scan, X-band, Polarimetric (RaXPol) radar became operational. 

For the first time, RaXPol combined polarimetric capability with the ability to scan at rates 

of up to 180° s-1 with a 1° beamwidth (Pazmany et al. 2013). More details of the RaXPol 

system will be given in Chapter 2. One of the first tornadoes observed by RaXPol in the 

spring of 2011 was the El Reno 2011 tornado. In their analysis of the data, Houser et al. 

(2015) observed tornadogenesis to proceed in a non-descending pattern, with rotation 

developing first at low levels. It was also found that tornado dissipation proceeded nearly 

simultaneously at all heights within a 30 second period, but that this was sensitive to the 

shear criteria used to define the tornado. RFD surges were also noted to contribute to both 

genesis and decay. RaXPol data have also been used to study polarimetric signatures. 

Snyder et al. (2013) identified that the LRR also had a well-defined ZDR depression in their 

review of supercell data.  

Perhaps the most analyzed case documented by RaXPol is the massive and violent 

El Reno 2013 tornado (Bluestein et al. 2015). In their analysis of data collected early in the 

El Reno tornado’s lifecycle, Bluestein et al. (2019) found that tornadogenesis proceeded 
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nearly simultaneously in an upward fashion. Bluestein et al. (2018) analyzed the tornado 

during its mature multiple vortex phase, finding that secondary vortices formed and 

dissipated in different areas of the tornado. Comprehensive damage surveys were also 

completed with the help of RaXPol data. Wakimoto et al. (2016) found a damage swath 

that could be associated with a secondary vortex for the first time. Radar data were also 

used to study the TDS (Wakimoto et al. 2015 and Wakimoto et al. 2016). Findings included 

that the WEH within the tornado is filled in by debris near the ground, a band of 

convergence within the tornado results from the centrifuging of large debris, a low 

correlation coefficient zone exists north of the tornado in the inflow where smaller debris 

and dust is being lofted, and a ridge of high ZDR wraps around the tornado to the south as 

large raindrops are advected around the hook echo. While RaXPol continues to collect 

valuable scientific data, phased array mobile radars with polarimetric capability are 

currently being developed as the next step in mobile radar technology. With their ability to 

complete large volumes in a rapid manner, these radars will likely advance our 

understanding of tornadic supercells in the coming years. 

  

1.2: Current Understanding of the Supercell Tornado Lifecycle 

 

1.2.1: From Clear Air to Supercell – Requisites for Tornadogenesis  

 The process of generating a tornado from a supercell can be visualized as a three-

step sequence, with rotation first developing at mid-levels and then low-levels before 

needing to be concentrated near the ground for a tornado to develop. Supercells initially 

acquire rotation from the tilting of horizontal vorticity associated with environmental wind 
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shear (Davies-Jones 1984). When a storm updraft initiates and begins ingesting air in an 

environment with vertical wind shear, it tilts the horizontal vorticity into the vertical and 

stretches it. As a result, a pair of counterrotating circulations develop straddling the updraft 

at mid-levels. If the hodograph veers (turns clockwise) with height, then the environmental 

horizontal vorticity vector has a component aligned with the storm relative wind at low-

levels and vorticity is streamwise. The storm updraft will become collocated with the 

cyclonic member of the circulation pair by advection of vorticity. The supercell updraft 

then begins to propagate right of the mean wind because of changing shear with height in 

the veering hodograph. Shear induces linear dynamic pressure forces when interacting with 

the supercell updraft, with high pressure occurring on the upshear side of the updraft and 

low pressure on the downshear side; because the hodograph veers with height, the shear 

vector is oriented with height such that high pressure is induced at low-levels and low 

pressure at upper-levels on the right flank of the updraft. As a result, there is an upward 

directed pressure gradient force on the right flank of the updraft that drives rightward 

propagation of the supercell (Klemp 1987). If the hodograph backs (turns counter-

clockwise) with height, vorticity is anti-streamwise and a left-moving supercell develops. 

If the hodograph is straight, vorticity is instead mostly crosswise (perpendicular to storm 

relative inflow), and the updraft does not become collocated with either member of the 

circulation pair. In this scenario, the nonlinear dynamic pressure minimum associated with 

both the vorticity maximum and minimum drive upward vertical motion on opposite flanks 

of the updraft, and storm splitting occurs; subsequent off hodograph motion then generates 

streamwise or anti-streamwise vorticity for right and left moving storms and the shear 

mechanism described above becomes dominant in supercell propagation (Klemp 1987).  
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Winds in the northern hemisphere tend to increase in magnitude and veer with 

height, favoring streamwise environmental vorticity and the resulting right-moving, 

cyclonic supercells (Davies-Jones 1984; Klemp 1987). Schematics of a mature right-

moving supercell are shown in Figure 1.1. A concentrated area of rotation, the 

mesocyclone, develops within the broader supercell updraft and two areas of downdraft 

develop on the front and rear flanks of the storm. The mesocyclone and tornado, if it 

develops, are located at the juncture of the forward flank precipitation area and rain-free 

cloud base at the RFGF where a wall cloud may become visible.  

 After the supercell acquires mid-level rotation, the incipient mesocyclone must 

strengthen, and rotation needs to develop at lower levels if a tornado is to occur. Numerical 

simulations of supercell thunderstorms have shown that this can be accomplished by the 

baroclinic generation of vorticity along the forward flank of the storm (Klemp and Rotunno 

Figure 1.1: Schematic views of a supercell thunderstorm. Left: A top-down view of a 

mature supercell thunderstorm near the surface from Lemon and Doswell (1979). 

Both the RFGF and forward flank boundary are marked with frontal symbols and 

flow is denoted with arrows. Regions of updraft are finely stippled, while regions of 

downdraft are coarsely stippled. Right: A view looking west at a mature supercell 

with primary visual features labeled. Adapted from Grazulis (2001). 
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1983; Rotunno and Klemp 1985). Colder, negatively buoyant air within the forward flank 

downdraft region creates a buoyancy gradient with the neutrally stable ambient air, 

resulting in horizontal vorticity generation. Figure 1.2 shows how vorticity generated along 

the forward flank is ingested into the supercell. Since storm relative winds in the vicinity 

of the forward flank are moving towards the updraft as part of the storm inflow, the 

vorticity vector and wind are parallel, and vorticity is streamwise. The tilting and 

subsequent stretching of this baroclinically produced vorticity can result in significant 

enhancement of low-level rotation (Markowski and Richardson 2009). In their studies, both 

Klemp and Rotunno (1983) and Rotunno and Klemp (1985) found that the low-level 

Figure 1.2: Schematic view of supercell airflow as the storm reaches maturity. The T 

marks the location of a tornado. Blue fronts mark the positions of the RFGF and 

forward flank convergence zone while blue arrows indicate flow. Air parcels labeled 

A, B, and C all possess streamwise vorticity that is ingested by the supercell updraft. 

From Rotunno et al. (2017) and adapted from Klemp (1987). 
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mesocyclone in supercells cannot develop until the forward flank becomes established and 

baroclinic vorticity generation begins.  

Finally, for a tornado to form, vorticity must be somehow concentrated near the 

surface so it can be tilted and stretched into an intense vortex. When there is insufficient 

pre-existing vertical vorticity near the ground, a downdraft is required in proximity to the 

storm updraft for tornadogenesis to occur (Markowski and Richardson 2009). The 

supercell RFD fills this role. The RFD forms as ingested dry mid-level air is cooled by 

precipitation processes and loading as it is advected around the rotating updraft (Brandes 

1981; Klemp et al. 1981). As the ingested air cools, it acquires negative buoyancy and 

descends, hitting the ground behind the storm updraft. The cool outflow continues to spread 

out and is advected cyclonically around the supercell updraft, forming a distinct boundary, 

the RFGF, where the RFD outflow meets with the ambient air. In addition to moving 

environmental vorticity closer to the surface and tilting it, Markowski et al. (2008) have 

shown that the baroclinically generated vortex lines associated with the RFD cold pool 

form vortex line arches as they are lifted at the RFGF by flanking line updrafts as shown 

in figure 1.3. These vortex arches create counterrotating vortices on either side of the RFD, 

enhancing the near-surface vorticity. One of these is the cyclonic tornado associated with 

the parent supercell, while the other is an anticyclonic vortex that has been observed to 

sometimes develop into an additional anticyclonic tornado (e.g., Bluestein et al. 2016). 

The process by which tornadoes develop is still not completely understood. At a 

fundamental level, tornadogenesis requires that there be some sort of low-level 

convergence, an updraft, and a low-level vorticity source (Markowski and Richardson 

2009). The RFGF and forward flank boundary provide near-surface vorticity and a zone of 
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enhanced surface convergence where the two boundaries meet. Finally, the supercell 

updraft, if it is in place overhead of the forward flank convergence zone and RFGF apex, 

satisfies the last requirement for tornadogenesis. However, tornadogenesis is a nuanced 

process and often proceeds non-monotonically (Kosiba et al. 2013; Wurman et al. 2007b). 

The supercell RFD exerts considerable influence over tornadogenesis and can vary 

significantly from storm to storm. Tornadic RFDs have been found to only have small 

negative potential temperature perturbations, being only slightly cooler than the storm 

inflow (Grzych et al. 2007 and Hirth et al. 2008). Markowski et al. (2002) discusses a 

‘goldilocks’ nature for RFD strength. An RFD that is too cold undercuts the supercell 

Figure 1.3: Visualization of the idealized evolution of RFD vortex rings into vortex 

arches. The view is from the south, looking north at a supercell thunderstorm. The 

vortex lines labeled 1 – 4 represent either a single vortex line evolving in time or 4 

different vortex lines at different points in their evolution. An environmental vortex 

line is also shown coming from the inflow to help show the difference between mid-

level and low-level rotation. From Markowski et al. (2008). 
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updraft, while one that is not cold enough fails to produce enough baroclinic vorticity. 

Kosiba et al. (2013) reinforce this idea, finding that only modest vorticity generation within 

the RFD was required for tornadogenesis in the Goshen County, Wyoming case.  

The broad scale characteristics of the supercell RFD are far from the only factor 

influencing tornadogenesis. Most supercells also display cyclic behavior to some degree, 

where the supercell updraft and relevant surface features propagate away from each other 

before tornadogenesis can take place, such as was described by Beck et al. (2006) when 

they analyzed a cyclic supercell in Kress, Texas. Storm mergers can also cause 

tornadogenesis by enhancing low-level convergence (Wurman et al. 2007b). Furthermore, 

numerous studies have documented tornadogenesis coincident with the development of 

RFD surges (e.g., Houser et al. 2015; Kosiba et al. 2013; Lee et al. 2012). Given these 

observations, it is tempting to conclude that RFD surges are a key ingredient for 

tornadogenesis, such as is suggested by Lee et al. (2012) in their analysis of RFD surges 

occurring throughout the lifecycle of the Bowdle, South Dakota tornado.  

 

1.2.2: Tornado Maintenance and Decay – Supercell Cycling Behavior 

 At a fundamental level, tornadoes will persist so long as there is significant near-

surface vorticity, near-surface convergence, and an overlying updraft. The ideal position 

relative to the parent supercell for the tornado to meet these requirements is at the apex of 

the RFGF and forward flank convergence zone underneath the supercell updraft (Dowell 

and Bluestein 2002). The supercell updraft provides some amount of near-surface 

convergence and allows for air to pass into and up through the tornado. Vertical vorticity 

is produced near the surface at the RFGF in the process of RFD vortex ring tilting, which 
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the tornado can ingest and stretch. The RFGF is also associated with a zone of significant 

near-surface convergence, which aids in transporting angular momentum inwards to the 

tornado. Horizontal near-surface vorticity is also generated along the forward flank, which 

the tornado tilts and stretches. However, numerous forces work against the tornado that 

prevent it from staying in this mature phase.  

Commonly, tornadic supercells undergo an ‘occlusion process’ that is summarized 

in Figure 1.4 in which the supercell RFD eventually occludes the tornado and low-level 

mesocyclone, severing them from warm inflow. The occlusion of supercells was first 

formally described in Adlerman and Droegemeier (1999). During early intensification of 

the supercell, the RFD will develop and spread outwards, driving forward the RFGF. This 

increases near surface convergence, which results in intensification of the tornado and is 

represented by the first panel in Figure 1.4. Dowell and Bluestein (2002) observed this 

behavior in their analysis of the 1995 McLean, Texas tornado, in which continued 

intensification of the tornado was observed to cause the RFGF to advance outwards, 

causing additional increases in near-surface convergence.  

Strengthening of the low-level mesocyclone continues, and the magnitude of 

vertical vorticity near the surface surpasses the strength of vorticity aloft in the mid-level 

mesocyclone. Because vorticity is associated with a nonlinear dynamic pressure drop, a 

downward directed pressure gradient force develops and drives a downdraft called the 

‘occlusion downdraft’, which is shown in the second panel of Figure 1.4 (Klemp and 

Rotunno 1983). The occlusion downdraft is near but not collocated with the surface 

vorticity maximum at the tornado; this offset may occur because of tilting of the 

mesocyclone with height, misalignment between the tornado and low-level mesocyclone, 
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or contributions to the downward directed pressure force associated with buoyancy 

(Bluestein 2013). As shown in the third and fourth panels of Figure 1.4, RFD surges and 

surging momentum within the RFD displace the RFGF; the occlusion downdraft, as well 

as other mechanisms, contribute to the surging momentum within the RFD. If surging 

momentum is strong enough, the RFGF becomes decoupled from the tornado and occlusion 

occurs; the tornado and low-level mesocyclone move westwards with respect to the parent 

supercell and become enveloped in downdraft air. The surrounding air may be too 

negatively buoyant to be lifted as it is ingested by the tornado and vorticity available to be 

Figure 1.4: Conceptual model for the occlusion of a tornado. The ‘T’ marks the 

position of the tornado. In the last panel of the figure, the ‘X’ marks the location of 

the decaying tornado, and the ‘M’ marks the location of the new mesocyclone. From 

Marquis et al. (2016). 
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tilted and stretched may be nearly non-existent, leading to decay (Dowell and Bluestein 

2002; Skinner et al. 2014; Wurman et al. 2010). While the RFGF continues to move 

forward with time and attempts to occlude the low-level mesocyclone in a process 

conceptually like the occlusion of synoptic lows, it is the occlusion downdraft that provides 

the impetus for occlusion (Adlerman and Droegemeier 1999).  

The pattern of occluding supercell behavior described above often occurs in 

repeated cycles as a new low-level mesocyclone then forms to the east of the occluding 

mesocyclone, which is shown at the ‘M’ in the fourth panel of Figure 1.4 (Adlerman and 

Droegemeier 2005). The new low-level mesocyclone forms underneath the updraft which 

has propagated along with the leading edge of the RFGF as it surged ahead of the tornado 

and low-level mesocyclone. The new low-level mesocyclone then often follows a similar 

lifecycle as the first mesocyclone. Adlerman and Droegemeier (2005) further explored the 

nature of cycling supercell behavior, finding two primary modes of cycling that include the 

occluding cyclic mesocyclogenesis described above and a non-occluding model.  

To further describe supercell cycling behavior, Adlerman and Droegemeier (2005) 

ran numerous model simulations in which supercells were subjected to environments with 

differing magnitudes of shear and hodograph curvature. Their results are summarized in 

Figure 1.5. According to Figure 1.5, occluding supercells tend to occur in environments 

which have low to moderate amounts of shear and have quarter to three-quarter circle 

hodographs. At both very low and high amounts of shear and in environments with an 

extreme amount of veering of the winds throughout the entire troposphere, supercells may 

attain a steady, non-cycling structure. The spectrum of supercell structure with increasing 

shear for quarter to three-quarter circle hodographs reveals an important aspect of 
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occluding behavior. Adlerman and Droegemeier (2005) explain that at very low shear, 

updraft rotation is so weak that a mature RFD and RFGF never develop, preventing 

occlusion. At the opposite end of the shear spectrum, very high environmental shear results 

in a very strong supercell mesocyclone with strong inflow which resists displacement of 

the RFGF from the low-level mesocyclone, thereby preventing occlusion. Furthermore, a 

strong mid-level mesocyclone also delays the formation of the occlusion downdraft since 

the tornado will need to intensify further for its vorticity to exceed the vorticity aloft; 

occlusion may not occur at all if the tornado becomes very intense and is able to drive large 

amounts of surface convergence that keep the RFGF coupled to the tornado and low level 

Figure 1.5: Diagram containing a summary of the results in Adlerman and 

Droegemeier (2005) where supercell cycling behavior was modeled in environments 

with differing amounts of shear and curvature in the hodograph. The type of supercell 

cycling behavior is plotted versus hodograph shape (ordinate) and amount of shear 

(abscissa). 
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mesocyclone even as the occlusion downdraft becomes established. For full circle 

hodographs, a steady non-cycling structure is obtained as precipitation falls into the inflow 

and updraft regions of the supercell, disrupting normal structure and occlusion cycles. 

Non-occluding mesocyclogenesis is poorly understood in comparison to the 

occluding model (Adlerman and Droegemeier 2005). For reasons that are not entirely clear, 

the supercell low-level mesocyclone and updraft propagate away from each other, with the 

low-level mesocyclone moving south along the RFGF and updraft along the forward flank. 

While the low-level mesocyclone remains coupled to the RFGF, it loses the support of the 

primary supercell updraft, and it starts to decay. A new low-level mesocyclone forms 

underneath the supercell updraft, which is to the north of the decaying, original 

mesocyclone. The physical processes controlling non-occluding cyclic mesocyclogenesis 

are not well understood, but the diagram in Figure 1.5 from Adlerman and Droegemeier 

(2005) may point to a governing mechanism. The dichotomy present in hodograph 

curvature between non-occluding and occluding supercells suggests that the dominant 

dynamic pressure forces controlling supercell propagation may be important in 

determining the cycling tendency of the supercell. In the non-occluding regime where 

hodographs are straight, supercell propagation is governed by nonlinear dynamic pressure 

forces and significant crosswise vorticity is being ingested into the updraft from the 

environment. As a result, the vorticity maximum within the updraft is advected towards 

the front (east) of the updraft as opposed to the right flank of the updraft in the curved 

hodograph case where significant streamwise vorticity is being ingested. It may be possible 

that the position of the vorticity maximum within the supercell updraft further forward in 

the straight hodograph case favors updraft propagation up the forward flank away from the 
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low-level mesocyclone in the non-occluding case. This is opposed to the occlusion case, 

where the updraft remains on the RFGF while the low-level mesocyclone becomes 

decoupled from the RFGF and moves away from the updraft. 

 

1.2.3: Selected Tornadic Supercell Signatures and Phenomena  

1.2.3.1: RFD Surges and Their Role Throughout Tornado Lifecycles 

 No other storm-scale feature exerts as much influence on a tornado through its 

lifecycle than the supercell RFD. Interest in the RFD culminated with project Analysis of 

the Near-Surface Wind and Environment along the Rear-flank of Supercells (ANSWERS) 

in 2003. During the ANSWERS campaign, mobile mesonets were deployed in the path of 

supercells with the intention of measuring the characteristics of supercell RFDs. In their 

analysis of data collected during project ANSWERS on the Basset, Nebraska supercell, 

Finley and Lee (2004) found at least 3 distinct areas of high momentum that moved through 

the RFD, or RFD surges. Although RFD surges have been sporadically noted in 

observations for decades and have gone by many different names such as outflow surges 

(Dowell and Bluestein 2002), embedded surge (Hirth et al. 2008), and secondary RFD gust 

front (Kosiba et al. 2013; Finley and Lee 2008; Marquis et al. 2012; Wurman et al. 2010) 

just to name a few, it appears that all of the different names actually refer to the same 

phenomenon (Skinner et al. 2014).   

 RFD surges are distinct regions or ‘surges’ of momentum within the RFD outflow, 

an example of which is shown in figure 1.6 (Lee and Finley, 2022). Since RFD surges 

constitute an area of enhanced momentum, there is an area of convergence at the front of 

the surge where significant vorticity can be generated (Finley and Lee 2004). Finley and 
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Lee (2008) later found that the vorticity and convergence values associated with RFD 

surges were on the order of 0.05 s-1 using mobile mesonet data. In both studies, 

tornadogenesis was coincident with the time of a surge passage, suggesting their 

importance for the formation of tornadoes. Further studies, such as Houser et al. (2015), 

Kosiba et al. (2013), and Lee et al. (2012), have observed tornadoes forming near the 

northern apex of RFD surges. In their study of the genesis of the Goshen County tornado, 

Markowski et al. (2012) implicated vorticity generated along RFD surges for the rapid 

Figure 1.6: RaXPol reflectivity (dBZ) and velocity (m s-1) from the 4° elevation at a) 

2326:38 and b) 2327:18 UTC on 24 May 2021 near Selden, Kansas. Range rings are 

spaced at 2.5 km intervals. An example of a RFD momentum surge is circled as it 

moves to the east, south of an ongoing tornado. The surge has a distinct velocity and 

reflectivity signature. 



23 
 

enhancement of low-level rotation within the pre-tornadic vortex. Marquis et al. (2012) 

also found that tornadoes could persist entirely wrapped in downdraft air because of the 

convergence associated with RFD surges. RFD surges also have a variety of 

thermodynamic characteristics. RFD surges are generally characterized by small potential 

temperature perturbations and are very potentially buoyant (Finley and Lee 2004; Lee et 

al., 2004). However, RFD surges have also been documented with widely varying potential 

temperatures, ranging from as warm as the storm inflow to significantly colder than the 

broader RFD. Lee et al. (2004) found that warmer surges coincided with tornadogenesis. 

Skinner et al. (2014) noted that tornado dissipation occurred coincident with a very cold 

surge. Strong RFD surges have also been noted to be associated with the occlusion 

downdraft, making them potentially important to the occlusion process (Skinner et al. 

2014). Despite the recent attention on RFD surges and their apparent importance, however, 

the reasons for surge formation are not yet entirely clear.  

The kinematics of surges also have a demonstrative effect on the tornado track 

during its lifecycle. While a tornado is ongoing, RFD surges can redistribute momentum 

around the tornado in such a way that the balance of bounding momentum around the 

tornado is changed. A change in the momentum balance around tornadoes was implicated 

by Dowell and Bluestein (2002) for the leftward turn of a tornado. Since then, further 

studies have provided more evidence that a specific distribution of RFD surge momentum 

can cause the tornado to change track heading or execute track loops. Lee and Finley (2022) 

found that the hard left turns of three major tornadoes occurred along with the passage of 

a strong RFD surge that changed the balance of momentum around the tornado. Kurdzo et 

al. (2015) saw a ‘failed occlusion’ take place as the 2013 Moore tornado ejected from a 
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track loop in an easterly direction instead of in a northerly one due to a specific arrangement 

of surges. The Kurdzo et al. (2015) conceptual model is given in Figure 1.7, showing how 

a combination of surges resulted in looping behavior. Kurdzo et al. (2015) and Wienhoff 

et al. (2020) have also shown that internal RFD surges are accompanied by debris ejections. 

Consequently, Wienhoff et (2020) found that the TDS grows most rapidly and reaches a 

maximum diameter when RFD surges pass through the tornado circulation. 

Houser et al. (2015), Lee and Finley (2022), and McKeown et al. (2020) have also 

shown that RFD surges are coincident with tornado dissipation. In their study of a violent 

tornado near Sulphur, OK, McKeown et al. (2020) provide a specific hypothesis, arguing 

that an RFD surge instigated tornado decay by launching the lower parts of the tornado 

eastward as it made impact, displacing the tornado from the mid-level updraft. In their 

numerical analysis. Marquis et al. (2012) found that surges can initiate occlusion by forcing 

Figure 1.7: Conceptual model from Kurdzo et al. (2015) showing the ‘failed’ 

occlusion process for the Moore 2013 tornado. As surges on different trajectories 

move by the tornado at different times, the tornado track is affected. In this case, the 

pattern of RFD surges resulted in looping behavior. 
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the RFGF to surge forward and decouple from the tornado as the surges merge with the 

RFGF and displace it; the tornado is then wrapped with RFD air and begins to dissipate.  

 

1.2.3.2: Multiple-Vortex Tornadoes 

 Odd, cycloidal scouring marks were first noted by Ted Fujita in his aerial 

assessments of tornadoes in the 1960’s. In their paper, Fujita et al. (1970) referred to these 

marks as suction spots. However, their true nature remained a mystery since no radar at the 

time possessed high enough resolution to resolve small scale features within a tornado. 

Instead, laboratory and numerical simulations were utilized to study the nature of large and 

intense vortices. In the 1980’s, Rotunno (1984) completed a comprehensive study of what 

he called a ‘three-dimensional axisymmetric vortex’. In this study, the vortex was observed 

to breakdown into a multiple celled structure when a central downdraft formed, separating 

the vortex into two cells with an updraft remaining around the edges. The central downdraft 

was forced by a downward directed pressure gradient which developed in response to the 

vortex and resultant nonlinear pressure deficit being most intense at lower heights. Finally, 

the flow was also found to be unstable to perturbations at the updraft and downdraft 

interface, which when disturbed, resulted in the growth of small secondary vortices. A 

summary for vortex transition, in which a central downdraft forms and splits the vortex 

into two cells, is given in Figure 1.8. Winds encountered on the outside edges of secondary 

vortices, once superimposed on the mean azimuthal flow, result in locally higher velocities.  

 Beginning in the late 1990’s and early 2000’s, the multiple vortex phenomenon was 

documented by radar in tornadoes for the first time. Early studies, such as Wurman and 

Gill (2000), noted the presence of multiple Doppler velocity maxima on both sides of 
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tornadoes. These multiple maxima were likely the manifestations of secondary vortices 

within a multiple vortex tornado. Wurman and Gill (2000) also found evidence of an 

internal downdraft with a magnitude of roughly 30 m s-1. Following these early radar 

observations, Wurman (2002) formally documented for the first time finescale mobile 

radar observations of a multiple vortex tornado. Numerous secondary vortices were 

identified, lasting for at least 40 s. While the wind fields associated with the secondary 

vortices was approximately 250 m wide on average, at least half of the total azimuthal shear 

across the secondary vortex was concentrated in a zone of just 50 m. As a result, the 

vorticity within the secondary vortices was measured at 4 to 8 s-1, the highest vorticity 

measurements ever made in tornadic circulations. An example of secondary vortices in 

radar data is given in Figure 1.9 below. 

 Since the seminal Wurman (2002) study, numerous cases of multiple vortex 

tornadoes have been recorded. Marquis et al. (2008) postulated that a tornado in Crowell, 

TX may have evolved into a multiple vortex tornado due to perturbations to the tornadic 

flow caused by strong outflow. Although it was not known at the time, the observation of 

strong, surging outflow within the RFD was likely an RFD surge. Lewellen et al. (2000) 

Figure 1.8: Conceptual diagram of the effects of increasing swirl ratio on tornadic 

flow. As swirl ratio increases, an internal downdraft develops in response to an 

intensifying downward directed perturbation pressure gradient force. Upon reaching 

the ground, the downdraft splits the vortex into multiple cells. From Rotunno (2013). 
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have shown that tornado structure is highly sensitive to the character of surface inflow, 

making it possible that changes brought about by RFD surges could instigate a multiple 

vortex transition. In their study of tornado and mesocyclone structure, Wurman and Kosiba 

(2013) found that multiple vortex tornadoes do not have a specific spatial scale associated 

with them. Some multiple vortex tornadoes were observed to be smaller than large single 

vortex tornadoes, while some secondary vortices were found to be larger than small single 

vortex tornadoes.  

 Perhaps the most studied case of a multiple vortex tornado is the extremely large 

and powerful El Reno tornado of 2013. Aside from being 2.6 miles wide at its greatest 

Figure 1.9: RaXPol imagery at 2° of the El Reno 2013 tornado at 2327:54 UTC on 31 

May 2013. a) Reflectivity, b) Radial velocity, c) Spectrum Width, and d) Correlation 

Coefficient. Arrows point to secondary vortices within the parent tornado. From 

Bluestein et al. (2015). 
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extent, this tornado is notable for its multiple vortex structure. Extensive damage surveys 

(Wakimoto et al. 2015 and Wakimoto et al. 2016) of the El Reno tornado have been 

completed, in which Wakimoto et al. (2016) were able to identify a damage swath and 

prove that it resulted from a secondary vortex for the first time. Bluestein et al. (2018) 

documents the tornado structure as seen from mobile radar. In this study, secondary 

vortices were found to form preferentially in areas of high azimuthal shear in the left-rear 

quadrant of the tornado. Secondary vortices were then tracked as they revolved around the 

parent circulation with an inward component of motion where they tended to dissipate in 

the front quadrants of the parent tornado. As the authors noted, the secondary vortices 

appeared to form from small wavelike oscillations in the parent tornado, reminiscent of 

‘Rossby waves in a vortex’. In their analysis of mobile radar data, Wurman et al. (2014) 

found maximum ground relative winds of 130 to 150 m s-1 in the El Reno tornado within 

the most intense secondary vortices, among the highest winds ever observed in tornadoes. 

An example of secondary vortices in the El Reno 2013 tornado is shown in Figure 1.9. 

 

1.2.3.3: Anticyclonic Vortices and Tornadoes in Cyclonic Supercells 

 Anticyclonic tornadoes have occasionally been observed in right-moving cyclonic 

supercells along the trailing flank of the RFGF, sometimes resulting in a tornado pair where 

both the cyclonic and anticyclonic tornadoes are visible at the same time (e.g., Bluestein et 

al. 2015; Fujita 1981; Finley and Lee 2008). While other anticyclonic tornadoes, such as 

satellite tornadoes and gust front tornadoes (e.g., Bluestein et al. 2003; Finley and Lee 

2004; 2008; Tanamachi et al. 2012; Tanamachi et al. 2013) have been observed, they are 

not the same type of anticyclonic tornadoes considered here. Anticyclonic members of 
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tornado pairs are generally found to be weaker than the cyclonic member, and the 

anticyclonic tornado often occurs later in the cyclonic tornado’s lifecycle. In their study of 

the violent El Reno 2013 storm, Bluestein et al. (2015) documented a strong anticyclonic 

tornado with roughly 75 m s-1 of shear across a diameter of 500 m which is shown in Figure 

1.10. The anticyclonic tornado was large and strong enough to develop its own debris 

signature as it curved to the right, away from the cyclonic tornado. This is perhaps the 

strongest companion anticyclonic tornado ever observed, with Wurman et al. (2014) noting 

that the anticyclonic tornado may have briefly displayed multiple vortex structure.  

 Companion anticyclonic tornadoes that form on the trailing edge of the RFGF have 

a different formation process than the primary cyclonic tornado. Before a cyclonic tornado 

Figure 1.10: RaXPol imagery at 2° of the El Reno 2013 tornado at 2332:19 UTC on 

31 May 2013. a) Reflectivity, b) Differential Reflectivity, c) Correlation Coefficient, 

and d) Radial Velocity. Arrows point to the cyclonic and anticyclonic tornadoes, 

labeled ‘C’ and ‘A’. The anticyclonic tornado formed along the trailing edge of the 

RFGF. From Bluestein et al. (2015). 
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can form, the low-level mesocyclone must intensify. The additional vorticity for this comes 

from baroclinic generation along the forward flank of the supercell (Markowski and 

Richardson 2009). However, a corresponding structure does not exist at the trailing edge 

of the RFGF where companion anticyclonic tornadoes commonly develop. In their study, 

Bluestein et al. (2016) provide two possible answers to this conundrum. The first possibility 

is that vortex arches associated with the supercell RFD provide vorticity for anticyclonic 

tornadoes. Once vortex lines are lifted into arches, they produce anticyclonic vertical 

vorticity on the right side of the RFD relative to storm motion (Markowski et al. 2008). 

Another possibility is that preexisting shear vorticity at the southern edge of the RFGF or 

at the southern end of an RFD surge is concentrated by flanking line updrafts. Indeed, 

Finley and Lee (2008) have observed an anticyclonic tornado to form near the southern 

end of an RFD surge. Bluestein et al. (2016) conclude that anticyclonic tornadoes likely 

form from both mechanisms, and that it is possible that both work in tandem to result in 

anticyclonic tornadogenesis.  

  

1.2.3.4: Weak Reflectivity Band (WRB) 

 The Weak Reflectivity Band (WRB) has only been described recently and is 

formally documented in one case. In their analysis of mobile radar data collected on the 

2011 El Reno tornado, Houser et al. (2016) observed a band of weak reflectivity returns 

collocated with adjacent bands of enhanced convergence and divergence which is shown 

in Figure 1.11. The leading edge of the feature was associated with an area of divergence 

while convergence was present to the rear of the feature, implying that a horizontal 

circulation was present. This horizontal circulation was also observed visually. A band of 
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inflow was apparent in radial velocity returns, bounded on both sides by outflow. Houser 

et al. (2016) postulated that the WRB formed within the descending branch of the 

horizontal circulation associated with the evident RFD surge. Three generation 

mechanisms were given for the horizontal circulation: 1) baroclinic generation with 

warmer air behind the RFD surge, 2) frictional generation behind the RFD surge with 

higher winds above the surface, and 3) tilting of near-tornado vertical vorticity into the 

horizontal. Unfortunately, the small sample size and data limitations made it difficult to 

make any definitive conclusions regarding WRB formation. 

Houser et al. (2016) observed the WRB in Figure 1.11 for approximately 3 minutes 

as it progressively wrapped around the tornado. Tornado intensification was observed 

during this time, leading Houser et al. (2016) to conclude that the WRB may have been at 

least partially responsible as the horizontal vorticity within the WRB circulation was being 

ingested and tilted by the tornado. However, it is also possible that the tornado was 

Figure 1.11: RaXPol a) Reflectivity and b) Radial velocity at 1° elevation on 24 May 

2011 at 2057:17 UTC. Red lines denote the WRB, the black dashed circle marks the 

part of the WRB observed visually by the radar crew that collected the data, small 

black circles mark the positions of small vortices along the trailing part of the WRB, 

and red arrows show the convergence pattern around the WRB. From Houser et al. 

(2016). 
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strengthening due to increasing inflow or other processes, and that the strengthening of the 

tornado amplified ambient horizontal vorticity through stretching, resulting in the WRB.   

 

1.2.3.5: Descending Reflectivity Core (DRC) 

 The Descending Reflectivity Core (DRC) was first defined by Rasmussen et al. 

(2006) as a core or ‘blob’ of high reflectivity roughly 1 – 2 km across that descends from 

the supercell overhang above the weak echo region of a supercell as shown in Figure 1.12. 

Upon impacting the ground, DRCs became associated with a distinct velocity signature. 

The velocity signature consisted of a region of greatly enhanced rear to front flow, 

convergence at the front of the signature, and counter rotating vortices on either side similar 

in form to an RFD surge. When these cores descend, they fall near developing tornadoes 

since the weak echo region, or inflow, of a supercell is located adjacent to the hook echo 

and developing low-level mesocyclone. As the enhanced vorticity and convergence 

associated with the DRC impacting the ground nears the low-level mesocyclone, it may 

result in its intensification. In their study, Rasmussen et al. (2006) found that the DRC 

signature was a recurring feature in supercells but that not all supercells produced DRCs.  

 Following the suggestion made by Rasmussen et al. (2006) that DRC’s may be 

connected to tornadogenesis, interest in DRCs increased. Byko et al. (2009), however, 

found that there was not a general relationship between the occurrence of DRCs and 

tornadogenesis, and that this could be explained by a difference in formation mechanisms 

for DRCs. Three different types of DRCs were identified. The first type of DRC formed 

due to mid-level flow stagnation in the supercell inflow. As air is ingested by the storm 

updraft, it stagnates, and precipitation falls out. The second type of DRC occurs when 
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precipitation caught in a developing flanking line updraft collects and then begins to fall 

towards the ground when the flanking line updraft merges with the primary supercell 

updraft. Finally, a third type of DRC forms as a core of precipitation gets caught in 

downward directed pressure gradient caused by rotation being strongest at low levels. Byko 

et al. (2009) were only able to identify intensifying low-level rotation with DRC type 1, 

showing why there was no general rule connecting DRCs to tornadogenesis. Observations 

continue to provide evidence that DRCs are connected to tornadogenesis. In their study of 

the genesis of the El Reno 2013 tornado, Bluestein et al. (2019) connected a surge in radial 

Figure 1.12: Example of an DRC adapted from Rasmussen et al. (2006). In this 

example, a core of reflectivity develops and descends from the supercell overhang, 

contacting the ground near the location of the tornado. 
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velocity near the developing tornado to a DRC. Intensification of the low-level 

mesocyclone was evident, suggesting that genesis may have been a result of the DRC. 

 

1.2.3.6: Streamwise Vorticity Current (SVC) 

More recently, the generation of streamwise vorticity along the forward flank has 

been observed in increasingly high-resolution simulations to be a concentrated ‘river’ of 

vorticity. In an extremely high resolution (30m grid spacing) simulation of a supercell, Orf 

et al. (2017) found that there was a concentrated, intense ‘tube’ of horizontal vorticity along 

the forward flank, dubbing it the ‘Streamwise Vorticity Current’ (SVC). The authors found 

that the feature was persistent and that it developed leading up to tornadogenesis and 

decayed coincident with tornado dissipation. An image of an SVC from the Orf et al. (2017) 

model is shown in Figure 1.13. 

Schueth et al. (2021) have documented the SVC in both numerical simulations and 

in mobile radar data.  In two real storms, a distinct SVC was found at and just behind the 

forward flank leading edge at the front of the forward flank cold pool around 500 m above 

the ground. Within a high-resolution simulation, Schueth et al. (2021) found that the SVC 

extended 1 – 10 km to the north and east along the forward flank leading edge upstream 

from the updraft. Magnitudes of horizontal vorticity within the simulated SVC were 0.08 

s-1, generated primarily by stretching of weak baroclinic vorticity in accelerating inflow. 

While these values are from simulation, Schueth et al. (2021) conclude that they may be 

representative of real SVCs. In contrast to the Orf et al. (2017) findings, Schueth et al. 

(2021) observed that the SVC was a transient feature occurring in the heads of breaking 

Kelvin-Helmholtz waves located at the front of the forward flank cold pool in both 
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simulation and in the analyzed storms. Conclusions regarding how SVCs impact a tornado 

are still uncertain because SVCs appear to be transient and air passing through SVCs may 

not be ingested by tornadoes; regardless, SVCs are certainly important for the health of the 

supercell and have a role to play in governing the strength of the supercell mesocyclone 

(Schueth et al. 2021). 

 

1.3: Overview 

 In May of 2021, a tornadic supercell in northwest Kansas was documented by 

RaXPol over the course of eight deployments. Near the town of Selden, this supercell 

Figure 1.13: Example of the SVC from Orf et al. (2017). A concentrated area of 

streamwise vorticity develops near the surface position of the forward flank 

convergence zone, highlighted with yellow vortex lines. 
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produced a large multiple vortex tornado and anticyclonic tornado pair after several failed 

attempts at tornadogenesis. RaXPol had two deployments during the lifecycle of the Selden 

tornado, documenting the primary cyclonic tornado from near the time of genesis through 

dissipation. The focus of this study is to closely analyze the RaXPol data of the Selden 

tornado pair for structural features of the vortex and any storm scale features that effect the 

behavior of the tornadoes throughout their lifecycles. Questions addressed by this study 

include: 1) What observable features, such as RFD surges, yield a change in tornado 

behavior? 2) How do the tornadoes appear in velocity cross sections (both azimuthal and 

radial) throughout their lifecycles, and how does tornado cross section appearance change 

with evolving behavior? 3) How do the features identified in radar scans, cross sections, 

and video correlate to each other? 4) How do cross sectional analyses and identified 

finescale features compare with previous findings? Ultimately, this study aims to enhance 

understanding of tornadic supercells and tornado behavior, presenting possible 

explanations for why the Selden tornadoes behaved as they did. Chapter 2 will describe 

RaXPol, the mobile radar used to collect the data for this study. Data procedures and 

methods, specifically those concerning the synthesis of cross sections, will be discussed. 

A synoptic overview for the Selden supercell will be given in Chapter 3. Chapters 4 – 7 

will cover the Selden tornado pair, presenting analysis of the cyclonic tornado and 

anticyclonic tornado. Finally, Chapter 8 will present discussion and conclusions of the most 

salient findings and recommend future work. 
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Chapter 2 

Data and Methods 

 

2.1: Instrumentation Overview: The RaXPol Mobile Radar 

 The Rapid, X-Band, Polarimetric (RaXPol) mobile Doppler radar is a rapid 

scanning radar that operates at a 3 cm wavelength housed and maintained at the University 

of Oklahoma’s Advanced Radar Research Center. RaXPol features a mechanically rotating 

2.4 m parabolic dish mounted on the bed of a medium-duty Chevrolet 5500 series truck 

(Figure 2.1; Pazmany et al. 2013). Becoming operational in 2011, RaXPol is a novel tool 

for the study of rapidly evolving storm and sub-storm scale processes owing to its 

polarimetric capability and fast scanning rates. Selected specifications for the RaXPol radar 

system are given in Table 2.1.  

 RaXPol features a heavy-duty pedestal which allows for scanning rates of up to 

180° s-1. While rotating at this speed in rapid scan mode, RaXPol has a dwell time of only 

5.6 ms at each radial, which is not long enough for samples to decorrelate and be considered 

independent. For a modest spectrum width of 1 m s-1, the decorrelation time for samples at 

X-band is 3.85 ms (Doviak and Zrnic 1993; Pazmany et al. 2013). As a result, only 1 to 2 

independent samples would be collected at each radial no matter how rapid the Pulse 

Repetition Frequency (PRF). Consequently, RaXPol is unable to obtain high quality 

moment estimations given a standard pulse strategy (Pazmany et al. 2013). To overcome 
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this hurdle, RaXPol employs a frequency hopping strategy in which 24 pulses are 

transmitted in 12 pulse pairs with each pulse pair shifted in frequency by at least the pulse 

width. Each pulse is transmitted 200 μs apart to give an averaging period of 4.8 ms when 

using a PRF of 5000 Hz. (Pazmany et al. 2013). Using this strategy, RaXPol can treat each 

pulse pair as an independent sample because each pulse pair is on a different frequency and 

retrieve at least 24 samples at each radial even at maximum scanning speed, allowing for 

higher quality moment estimations. Another benefit of frequency hopping is that second-

trip echoes are suppressed if the first sample in a pulse pair is used to estimate signal power 

(both horizontal and vertical channels, ZH and ZV) and correlation coefficient (ρHV) since 

each consecutive pulse pair is on a different frequency (Pazmany et al. 2013). 

 RaXPol has a 2.4 m dish, which at 3 cm wavelength results in a 3 dB beamwidth, 

or angular resolution, of 1°. However, in the frequency hopping strategy described above, 

Figure 2.1: The RaXPol radar, photographed by the author outside of the Advanced 

Radar Research Center. 
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the averaging window is 4.8 ms. As RaXPol rotates rapidly at 180° s-1, the radar will rotate 

nearly a whole degree in azimuth over the averaging period as samples from each pulse 

pair return. As result, the effective angular resolution of the radar is larger than 1° as beam 

smearing occurs. According to Pazmany et al. (2013) the effective resolution of RaXPol is 

1.4° to 1.5° as result of the temporal averaging when using high PRFs at maximum 

scanning speed. Fortunately, this beam smearing can be negated by operating RaXPol in 

strobed mode. In strobed mode, all the first pulses of each pulse pair are combined into a 

single first pulse while the second pulses of each pulse pair are combined into a single 

second pulse, resulting in the transmission of a large single pulse pair (Pazmany et al. 

2013). Consequently, the averaging time is reduced to the length of a single pulse pair, 

greatly reducing beam smearing. However, the blind range of the radar will increase since 

the radar is in transmit mode for 12 times longer to send the strobed pulse (Pazmany et al. 

2013). 

Center Operating Frequency 9.73 GHz ± 20 MHz 

Transmit Power 20 kW peak, 200 W avg 

Pulse Width 0.1 – 40 μs 

Pulse Repetition Time (PRT) Uniform or Staggered 

Antenna Diameter 2.4 m 

Antenna 3 dB Beamwidth 1° 

First Sidelobe 27 dB 

Pedestal Scan rate 
180° s-1 azimuth 

36° s-1 elevation 

Range Gate Spacing 7.5 – 75 m 

Table 2.1: Selected RaXPol specifications. 
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 RaXPol’s ability to scan at 180° s-1, ability to be rapidly deployed near storms in 1 

– 2 minutes, and 1° bandwidth make possible the collection of very high resolution spatial-

temporal data. A typical 10 elevation scan, such as a 0° to 18° volume incremented by 2°, 

can be completed in as little as 20 seconds. The polarimetric capability of RaXPol allows 

for the collection of three additional moments, differential reflectivity (ZDR), correlation 

coefficient (ρHV), and differential phase (ΦDP), yielding much more information that can be 

used to study storm and sub-storm scale features and processes. Examples include the TDS, 

which can be used to track tornadoes remotely; the ZDR arc, which can be used to infer 

supercell intensity; and precipitation size and shape, which can yield information about the 

microphysical processes within storms (e.g., Bluestein et al. 2007a; Kumjian and Ryzhkov 

2008; Ryzhkov et al. 2005; Wakimoto et al. 2016). Despite the incredible capabilities of 

RaXPol, there are a couple factors to be aware of when deploying. Like most mobile radars, 

the large dish on the back of the truck is heavy (~17000 lbs. total weight for RaXPol) and 

acts as a wind sail (Pazmany et al. 2013). As a result, RaXPol may not be able to keep up 

with storms or follow them onto unpaved roads. While scanning, caution must also be 

exercised to build in additional time for the radar to come back down from its top scan 

elevation to its lowest. Since RaXPol can only scan at 36° s-1 in elevation, if a buffer is not 

inserted into the scanning strategy, the surface level scan will be at an angle as the dish 

moves back down to 0°. Finally, RaXPol also suffers from significant attenuation in heavy 

precipitation because it operates at X-band. To account for this, attenuation correction 

techniques, such as those outlined in Snyder et al. (2010), need to be applied to the data 

depending on the type of analysis being considered.  
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2.2: Available Data and Data Control 

 

2.2.1: Data Collection 

 On 24 May 2021, RaXPol followed the supercell that would eventually produce the 

Selden tornado through northwestern Kansas as it moved northeasterly after briefly 

pursuing an initial target farther to the south in west-central Kansas. Throughout the 

afternoon and evening, the Selden storm attempted tornadogenesis several times until a 

tornado finally developed near the town of Selden, Kansas. RaXPol had eight total 

deployments on 24 May. Deployments 1 and 2 were on the separate, earlier storm while 

deployments 3 – 5 occurred before the Selden tornado and deployment 8 afterwards, 

capturing numerous attempts at cloud base lowering and several funnel clouds. 

Deployments 6 and 7 (hereafter D6 and D7) occurred during the Selden tornado. During 

D6 data were collected from near the time of tornadogenesis to right after the tornado 

transitioned to a multiple vortex tornado, from 2304:43 UTC (1804:43 CDT – local time) 

to 2320:42 UTC (1820:42 CDT). During D6, there was a brief ~3-minute gap in data 

collection (hereafter the D6 gap) lasting from 2313:41 UTC (1813:41 CDT) to 2316:29 

UTC (1816:29 CDT). During this gap, raw I/Q radar data were being collected, but failure 

to turn off frequency hopping by the radar operator at this time renders the data unusable. 

By the end of D6, it became necessary to redeploy RaXPol to a safer location further away 

from the approaching tornado. Consequently, there is a 6-minute gap in data collection. 

After arriving at the D7 location 5 km to the east of D6, RaXPol resumed data collection 

at 2326:34 UTC (1826:34 CDT), continuing through the Selden tornado’s dissipation until 

2343:14 UTC (1843:14 CDT). Deployment details are given in Table 2.2. 
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All data during the Selden tornado was collected in rapid scan mode using a 10-

elevation scanning strategy from 0° to 18° incremented by 2°. This resulted in update times 

of 20 seconds. While data were being collected, the radar PRF was 4000 Hz, resulting in a 

maximum unambiguous range of 37.5 km and maximum unambiguous velocity of 30.8 m 

s-1. Data resolution is 60 m in range and 1° in azimuth after oversampling the beam-

smeared data. Unfortunately, some of the data collected during D6 and D7 are unusable. 

The available 0° scans are rendered irrecoverable because the scan was taken as the dish 

moved back down from 18° elevation. While the travel time of the dish from 18° to 0° is 

only 0.5 s, or one quarter of the 0° scan, the tornado and supercell fell within the affected 

quadrant of the 0° scan and data around the tornado are taken at differing elevation angles. 

Significant low ground clutter also contaminated the data at the 2° elevation near the radar, 

causing scans to be irrecoverable at the very end of D6 as the tornado moved into the area 

of high ground clutter and noise. However, this only occurred for the last two scans at 2° 

in D6.  

Deployment and Location Times (UTC) Distance to Tornado 

D1 (13 km W of Leoti, KS) * 1900:09 – 1917:53 N/A 

D2 (18 km N of Leoti, KS) * 1941:41 – 1950:04 N/A 

D3 (11 km WSW of Rexford, KS) 2144:17 – 2205:48 N/A 

D4 (2.5 km WSW of Rexford, KS) 2226:08 – 2237:01 N/A 

D5 (2 km ENE of Rexford, KS) 2244:23 – 2250:55 N/A 

D6 (3 km ENE of Selden, KS) 2304:43 – 2320:42 11.2 decreasing to 3.3 km 

D7 (8 km E of Selden, KS; 5km east 

of D6) 

2326:34 – 2343:14 5.0 to 6.5 km 

D8 (16 km SE of Dresden, KS) 2354:45 – 0014:28 N/A 

Table 2.2: Details for all RaXPol deployments on 24 May 2021. Distances are 

measured from nearest town or village. Asterisk indicates deployments not on the 

Selden storm. 



43 
 

2.2.2: Data Quality Control 

 Data collected from weather radars often need to be corrected to remove low-

quality portions of the data. Both the characteristics of the radar and the environment being 

sampled influence data quality. A primary concern is the selection of radar pulse width and 

PRF, which must be chosen carefully to ensure proper sensitivity to the environment. 

Longer pulse widths allow better detection in clear air and selecting a PRF leads to the so 

called ‘Doppler Dilemma’, where a faster PRF results in a greater unambiguous velocity 

but smaller unambiguous range and vice versa (Doviak and Zrnic 1993). The Selden data 

were collected with a high PRF since RaXPol was very close to the tornado, resulting in 

less velocity folding and generally improving the quality of the radial velocity field by 

making it easier to unfold.  However, there are numerous factors that result in a decrease 

of quality in the Selden data. In the case of RaXPol, rapid rotation leads to beam smearing 

(Pazmany et al. 2013). In addition to being affected by beam smearing, mobile radars like 

RaXPol are susceptible to ground clutter since deployment locations are hardly ever 

perfect. Small hills and short trees combined with the radar being on the ground make it 

difficult to avoid ground clutter, so lower-level data is usually contaminated to some 

degree. Furthermore, some meteorological phenomena, such as highly turbulent motions 

and debris lofting in gust fronts or tornadoes also degrade the quality of radar data samples. 

When necessary, areas of poor data quality and artifacts were subjected to a data control 

process and edited as appropriate. 

 Data were manually edited using SOLO3, a software package provided by the 

National Center for Atmospheric Research (Oye et al. 1995). First, the data were copied 

and cleaned using SOLO3’s ‘despeckle’ command, which removes individual and very 
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small groups consisting of 2 to 3 isolated pixels from the field. After basic clean up, radial 

velocities were manually unfolded in and around the tornado. Since the Nyquist velocity 

was 30.8 m s-1 and the Selden tornado was relatively weak, data were only folded once 

around the tornado, making the unfolding process straightforward. After unfolding, 

tornado velocities were in good agreement with National Weather Service (NWS) damage 

surveys. Significant ground clutter was also present around RaXPol, especially at the 2° 

elevation. In previous studies (e.g., Snyder and Bluestein 2014), a signal quality index 

using spectrum width and Normalized Coherent Power (NCP) was used to remove data 

that had a poor signal to noise ratio. However, the NCP field was not available for the 

Selden data. Instead, ground clutter was subjectively determined to be contaminating pixels 

when high reflectivity values were paired with low velocity values, creating a discontinuity 

in the moment fields that was especially apparent in animations (Doviak and Zrnic 1993). 

When ground clutter was encountered, pixels were ignored and neighboring, 

uncontaminated pixels were used when necessary. Finally, attenuation was not an issue for 

the Selden case since the radar was observing the tornado from the east where there was 

no intervening precipitation; correction techniques like those described by Snyder et al. 

(2010) were not applied. 

 

2.3: Cross Section Synthesis and Averaging  

 

2.3.1: Constructing Cross Sections 

 In addition to a visual analysis of radar data and animations, cross sections were 

constructed for both the cyclonic and anticyclonic tornadoes at all available elevations. 
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Two cross sections were drawn across the tornadoes for each scan, one containing vortex 

azimuthal winds and the other radial winds. Notably, these cross sections were drawn 

without using the Ground Based Velocity Track Display (GBVTD) procedure. GBVTD is 

a method for retrieving the vortex flow field (tangential and radial winds) that takes 

advantage of radar observed Doppler velocities of vortices (Lee et al. 1999). GBVTD was 

developed for use in tropical cyclones but has also been adapted to tornadic vortices to 

elucidate details of tornado wind field structure (Bluestein et al. 2003; Kosiba and Wurman 

2010; Kosiba and Wurman 2013; Tanamachi et al. 2012). During analysis, data are used to 

construct sine and cosine functions that represent tangential and radial winds at different 

radii within the vortex. However, the set of resulting equations is underdetermined, and 

assumptions must be made to solve them (Lee et al. 1999). These assumptions, such as 

assuming vortex axial symmetry or assuming all non-axisymmetric vortex radial winds are 

0, have the effect of filtering out numerous aspects of vortices, giving a smooth solution 

that often washes out important vortex features. Furthermore, GBVTD strives to isolate 

tornado circulations from all other flow, aggressively suppressing winds around tornadoes 

that may be important to their structures. Nonetheless, GBVTD has aided in the study of 

several tornado features, including the multiple vortex structure of a tornado with the 

associated internal downdraft (Kosiba and Wurman 2010), shallow inflow confined to 

below 14 meters above the ground (Kosiba and Wurman 2013), and varying modes of 

tornado intensification (Tanamachi et al. 2012). 

 Despite its usefulness, the GBVTD technique can make critical errors handling 

tornadic vortices. First, the GBVTD analysis assumes the vortex is axisymmetric, which is 

certainly not the case for many tornadoes, especially multiple vortex tornadoes (Bluestein 
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et al. 2003). Translational movement has also been observed to create artifacts in the 

analysis (Tanamachi et al. 2012). Wakimoto et al. (2012) also noted that centrifuging of 

debris and hydrometeors within the tornado causes error in the GBVTD wind profiles. 

Furthermore, GBVTD suppresses winds outside of the idealized tornadic vortex, 

potentially altering or eliminating important details from the analysis. These factors call 

into question how useful GBVTD may be for studying small-scale tornadic structure. 

While previous GBVTD studies have produced cross sections that resemble Burgers-Rott 

vortices (Tanamachi et al. 2012), cross sections need to be constructed systematically using 

unaltered data to reveal how tornado structure appears without any filtering or assumptions. 

 As previously discussed, cross sections were drawn across both the cyclonic and 

anticyclonic tornadoes to capture both the vortex tangential and radial winds. An example 

of the two types of cross sections is shown in Figure 2.2. The white line in Figure 2.2 is an 

example of the tangential, or azimuthal, wind cross sections that were constructed by 

locating the velocity maxima on either side of the tornado. This needed to be accomplished 

manually, since locating the tornado associated wind maxima is not straightforward. 

Multiple maxima can often be present since the tornado is embedded within the larger scale 

mesocyclone (Bluestein 2013). Other features, such as an RFD surge or strong RFD can 

also create additional maxima. Furthermore, when the Selden tornado transitioned to a 

multiple vortex tornado, particular care had to be taken to accurately represent the parent 

vortex rather than any secondary vortices. A line was then drawn connecting the maxima, 

which extended beyond the radius of maximum wind to approximately twice the vortex 

size and the velocity values for all the pixels on the line were collected. The line connecting 

the two velocity maxima was not necessarily perpendicular to the radar beam or at a 
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constant radius owing to the positions of the velocity maxima, although it was often very 

close to these criteria. Since range did not change much along the cross sections and to 

simplify data collection, a constant radius was assumed for cross section construction.  

 The black line in Figure 2.2 represents an example of the radial wind cross sections, 

which were constructed by taking data along a radial, or constant azimuth, through the 

center of the vortex. However, data could not simply be taken along a radial using the 

middle point in between the velocity maxima on either side of the vortex. This ‘geometric 

center’ in between the velocity maxima did not necessarily match the zero Doppler velocity 

point inside the tornado due to vortex asymmetries; the two different definitions for the 

tornado center are highlighted in Figure 2.2. If the data for radial wind cross sections were 

not taken as close as possible to the point corresponding to zero Doppler velocity inside 

the tornado, then vortex azimuthal winds would contaminate the radial wind cross section. 

Especially during the Selden tornado’s multiple vortex phase, particular care had to be 

taken to redefine vortex centers by subtracting vortex motion and then locating the zero 

Figure 2.2: Example of cross sections at 2319:13 UTC at 4° elevation. The white line 

is the azimuthal cross section, connecting the velocity maxima marked with white 

diamonds. The black line is the radial wind cross section. Red arrows point out the 

different centers, with the white circle denoting the geometric center. 

Geometric Center 

Zero Doppler 

Velocity Center 
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Doppler velocity point. Data were then taken along the radial passing through the zero 

Doppler velocity point in a 3 km zone centered on the vortex. 

 

2.3.2: Averaging 

 The cross sections taken by themselves are inherently noisy owing to the nature of 

high-resolution data. To parse important features from the cross sections, they were first 

interpolated to a uniform grid and then averaged with each other in discrete groups. Instead 

of simply averaging cross sections with a set window of neighboring ones, cross sections 

were grouped by tornado track segments based on movement behavior. Therefore, each of 

the resulting average cross sections represent the vortex structure of the tornado during a 

segment of time containing distinct tornado behavior. Track segments were determined 

subjectively from the RaXPol derived track at all elevations (2° to 18°). To eliminate much 

of the noise in individual cross sections but also preserve important changes in the tornado 

through time, segments required that there be at least 3 scans to average (1 minute of data) 

and no more than 15 scans (5 minutes of data). Using these criteria, 8 to 9 different track 

segments were identified at each elevation for the cyclonic tornado, while 4 were identified 

at all elevations for the anticyclonic vortex. Details concerning the individual track 

segments will be discussed in the following chapters. After grouping into segments, the 

vortex velocity over each segment is subtracted to produce the final cross sections. 

 

2.4: Radar Analysis Procedures 

During this study, radar data were analyzed to locate tornado proximate boundaries 

and features. Locating tornado proximate boundaries, RFD surges, and other features was 
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done methodically to reduce the inherent subjectivity in locating the features in single-

Doppler data. First and most importantly, animations of RaXPol PPIs for both reflectivity 

and Doppler velocity fields were analyzed to locate storm scale features such as the RFGF, 

forward flank convergence zone, and RFD surges. While the high spatial and temporal 

resolution of the RaXPol data allows RFD surges to be easily tracked, caution must be 

taken since all data are from a single Doppler radar and the full 3-D wind field was not 

available. Despite this limitation, animations of the data with update times of 20 seconds 

have great value in locating RFD surges and other finescale features. While any particular 

boundary or RFD surge is often difficult to locate in a single scan, animations allow 

boundaries and features to be identified much more easily because of the time continuity 

offered in the animations.  

 Often, the first features to be located were the RFGF and forward flank convergence 

zone. These boundaries generate significant areas of radial convergence, which were easy 

to locate. In some cases, especially early, the forward flank boundary placement is 

ambiguous based on radial convergence alone. Because of this, it became necessary to rely 

on the forward flank reflectivity gradient as well. When only a broad convergence signature 

is identified, the forward flank reflectivity gradient is used to help locate the forward flank 

boundary.  

After locating tornado proximate boundaries, RFD surges were identified and 

located. Most information needed to identify surges came from close inspection of the 

reflectivity and velocity animations. To locate an RFD surge, an enhancement of velocities 

within the RFD was required, and this area of velocity enhancement needed to have time 

continuity. A transient area of enhanced velocities, appearing in only one scan, was not 
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identified as an RFD surge; movement or persistence of the enhanced velocities within the 

RFD was required to identify the enhanced velocities as a surge. The RFD surge front was 

then located at the area of strongest radial convergence. Secondary to this were any 

reflectivity appendages on the hook echo, which almost always accompanied RFD surges. 

The combination of both velocity and reflectivity features provided reasonably accurate 

placement of RFD surges, even as velocity signatures became more ambiguous. However, 

after initial analysis of radar animations, other factors were considered to ensure placement 

of RFD surges was as accurate as possible. Especially for surges traveling perpendicular 

to the radar such that no velocity signature was trackable, the correlation coefficient field 

was analyzed. Correlation coefficient often decreases at RFD surge fronts as debris collects 

in the convergence zone at the RFD surge front (Kurdzo et al. 2015). Therefore, if a 

correlation coefficient minimum was identified, had time continuity, and was collocated 

with a reflectivity appendage or feature, an RFD surge was identified. Finally, as a last 

resort, height continuity was used to locate surges. However, because the RFD is relatively 

shallow, the use of height continuity is somewhat limited. 

 

2.5: Video and Photo Analysis Procedures 

 One of the most valuable and unique aspects of this study is that a video of the 

tornado was taken during the entirety of D6 from the radar location. As such, the video 

provides a rare opportunity to compare and contrast visual evidence with radar data. Two 

primary types of analysis were conducted on the tornado video, condensation funnel width 

estimation and tornado track estimation. Figure 2.3 presents an example analysis of one of 

the tornado video frames and shows how both the funnel width and tornado track were 
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estimated from video. To approximate lengths on frames of the video, a known scale object 

is required. Fortunately, a grouping of tall railroad grain silos appear throughout the 

entirety of the video. Using a map resource such as Google Maps with satellite view, it was 

possible to pinpoint the precise location of the grain silos relative to the radar; the silos 

were roughly 3 km away from the D6 deployment site. Then, the height of the grain silos 

was needed. Because railroad grain silos are a common structure with relatively standard 

heights, a reasonably accurate silo height estimate was able to be determined from web 

sources. According to the University of Nebraska’s Agriculture Department website, 

railroad grain silos are commonly about 150 ft (or 45 m) tall. 

 Using the railroad grain silos as the scale object in the tornado video and the radar 

indicated positions of the tornado at the lowest available scan elevation, it was then possible 

Figure 2.3: Example analysis of a panel from the D6 tornado video. The scale object 

(railroad grain silos) and tornado are annotated with the information required to 

calculate lengths at the tornado location. The desired parameters, condensation funnel 

width and distance of the tornado from the grain silos, are marked in orange. 
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to estimate lengths at the tornado location. To obtain the estimations, a simple ratio of the 

distance to the tornado and distance to the grain silos was calculated to account for the 

different distances of the tornado and grain silos relative to the radar. After the ratio was 

calculated, the 45 m grain silo height was measured in the video frame, which was then 

used with the ratio of distances to find the desired lengths at the tornado location. The 

widths of the tornado’s condensation funnel were measured at both 250 m and 400 m above 

the ground, as was the distance of the center of the condensation funnel to the left or right 

of the grain silos. Using the grain silo relative position of the tornado, it was then possible 

to estimate the track of the tornado during D6. To do so, the recorded grain silo relative 

positions of the tornado were plotted by hand on a map relative to the line of sight between 

the D6 deployment site and the grain silos.  
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Chapter 3 

Selden Supercell and Tornado Overview 

 

3.1: Synoptic Environment 

 On 24 May 2021, a broad longwave trough was slowly ejecting to the northeast 

from the northern Rocky Mountains into the northern High Plains in Montana and southern 

Canada. By 1800 UTC, the trough axis was progged to extend from the upper-level low in 

Saskatchewan southwards towards southern California (Fig. 3.1a). Numerous shortwaves 

were progressing through the upper-level flow pattern, with a weak shortwave located over 

Wyoming and Colorado at 1800 UTC (Fig 3.1a), close to the initiation time of convection 

on the afternoon of the 24th. Ahead of the shortwave, a prominent 70 knot jet streak was 

rounding the eastern flank of the trough, centered over the Dakotas. Farther south in the 

entrance region of the jet streak, southwesterly 500 hPa winds of roughly 50 knots were 

oriented at a 45-degree angle to the spine of the Rockies; the upward motion present in the 

right entrance region of the jet combined with vertical stretching lee of the Rocky 

Mountains and height falls ahead of the advancing shortwave resulted in moderate 

cyclogenesis in east central Colorado. Slow propagation of the trough and distance from 

the primary synoptic forcing resulted in the surface low remaining broad and nearly 

stationary over the Colorado plains throughout the day.  



54 
 

Surface observations and boundaries are shown in Figure 3.2 at 1800 UTC. A 

stationary boundary predominately associated with a wind shift developed around the 

surface low oriented south to north near the Colorado and Kansas state line. An additional 

remnant outflow boundary from convection the night before was present running west to 

east from near the surface low into west central Kansas and was associated with a 

Figure 3.1: a) 500 hPa height (black lines, dam), temperature (red lines, °C) and winds 

(barbs and fill, kt) valid at 1800 UTC, near the time of convection initiation. The low 

and weak shortwave are marked. b) 700 hPa height (black lines, dam), temperature 

(red and blue lines, °C), dewpoint (green lines and fill, °C), and wind (barbs, kt) valid 

at 1800 UTC. c) Surface based CAPE (red lines, J kg-1) and CIN (fill, J kg-1) valid at 

1800 UTC. d) 0 – 6 km bulk shear (contours, kt) and storm motion (barbs, kt) valid at 

1800 UTC. Adapted from the Storm Prediction Center (SPC) event archive. 

a) b) 

c) d) 

L 
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significant wind shift boundary and temperature gradient. East of the stationary fronts and 

south of the outflow boundary, surface temperatures rose into the 70’s and dewpoints into 

the mid 60’s as southeasterly mass flux continued throughout the day along with solar 

heating. The nearest sounding from Dodge City at 0000 UTC (Fig. 3.3) sampled the moist 

boundary layer, which was overlain by a modest elevated mixed layer with steep mid-level 

lapse rates over 7 K/km. As a result, a corridor of CAPE exceeding 3000 J kg-1 was in place 

over southwestern Kansas as shown in Figure 3.1c. Convection initiation first occurred in 

this unstable airmass aided by the enhanced convergence at the intersection of the remnant 

outflow boundary and stationary frontal zone in a weakly capped environment at 1755 

UTC. As time progressed, the outflow boundary would continue to act as a focal point for 

convection initiation. 

 Despite the favorable thermodynamic environment, weak shear present in much of 

western Kansas was not supportive of supercells and tornadoes. Southwesterly 0 – 6 km 

Figure 3.2: Surface observations at 1800 UTC, near the time of initiation. The first 

radar echoes are denoted by a black arrow. The surface low and weak stationary 

fronts (dashed black lines) along with the remnant outflow boundary (double black 

line) are marked. Adapted from the SPC surface map archive. 

L 
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bulk shear of 30 to 40 knots was in place (Fig. 3.1d), which is not sufficient for strong 

updraft rotation. Additionally, 700 hPa winds were only 25 knots out of the southwest (Fig. 

3.1b), and weak synoptic forcing prevented the development of a strong low-level jet as 

the afternoon progressed. Consequently, only 50 to 100 m2 s-2 of 0 – 3 km storm relative 

helicity was present (Fig. 3.4c) throughout the day as shown by the near unidirectional and 

weak wind profile from Dodge City at 0000 UTC (Fig. 3.3). The result was a marginal 

supercell environment. However, there was a significant south to north gradient of 0 – 6 

km shear because of the jet streak, with bulk shear of 50 knots in place over northwestern 

Kansas (Fig. 3.1d). Initial storms occurred south of the conducive shear zone and low-level 

shear remained weak; any tornado potential would be conditional on if storms moved or 

initiated to the north and confined to storms interacting with the remnant outflow boundary 

where low-level convergence and vorticity were enhanced. 

 

Figure 3.3: KDDC (Dodge City, Kansas) sounding from 0000 UTC on 25 May. This 

was the nearest sounding in time and space to the Selden storm that was within the 

favorable storm environment. Taken from the SPC event archive. 
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3.2: Storm Evolution and the Selden Supercell 

 By 1800 UTC on 24 May, the airmass over southwestern Kansas was very unstable 

with surface-based CAPE of over 3000 J kg-1 and was only weakly capped because of solar 

heating (Fig. 3.1c). In the weakly capped unstable environment, any lifting would result in 

storm initiation. At 1755 UTC, the first radar echoes appeared in west central Kansas 

within the unstable airmass at the intersection between the remnant outflow boundary and 

stationary frontal zone where lifting was strongest. The first cell grew rapidly in response 

to the unstable environment with other cells quickly initiating along the outflow boundary. 

Because of the high instability, lack of a significant cap, and moderate shear, storms rapidly 

built into semi-discrete storms and storm clusters. By 2000 UTC, three discrete storm 

clusters were ongoing and beginning to interact, forming a broken line. Storms continued 

to stay semi-discrete, however, resulting in numerous hail reports and a few very brief 

tornadoes where semi-discrete marginal supercells were interacting with the remnant 

outflow boundary. As storms persisted, the remnant outflow boundary continued to move 

northward, initiating more storms as it did so. The surge of the remnant boundary to the 

north may have been instigated by thunderstorm outflow, but lack of substantiating data 

makes this far from certain. The evolution of surface features is shown in Figure 3.4a. 

The storm that would produce the Selden tornado first appeared on radar at 2015 

UTC along the remnant outflow boundary just to the east of the loose convective line. In 

the intervening time between the initial storms and the formation of the Selden storm, the 

remnant boundary had moved to the north, bringing unstable air into the higher shear zone 

in northwest Kansas (Fig. 3.4b). Consequently, the nascent Selden storm quickly evolved 

into a supercell as it moved northeasterly. As the Selden storm took on supercell structure 
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and turned right, its motion roughly paralleled the remnant outflow boundary and the storm 

started to interact with it, allowing the storm to overcome the poor low-level shear 

environment to achieve tornadogenesis (Fig. 3.4c). At 2115 UTC, the Selden storm 

produced its first brief tornado near Colby, Kansas. At least two additional tornadoes or 

Figure 3.4: a) Surface observations valid at 2100 UTC, 2 hours before the start time of 

the Selden tornado. The Selden storm is marked with a black arrow and the remnant 

outflow is denoted (double black line). b) Surface based CAPE (red lines, J kg-1) and 

CIN (fill, J kg-1) valid at 200 UTC. c) 0 – 3 km storm relative helicity (lines, m2 s-2) 

and storm motion (barbs, kt) valid at 2300 UTC. Adapted from the SPC event archive 

and surface map archive. 

a) 

b) c) 

L 
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funnel clouds occurred as the Selden storm continued northeasterly along the outflow 

boundary, with the final tornado report prior to the Selden tornado occurring at 2145 UTC.  

Shown in Figure 3.5, the Selden storm began undergoing mergers with approaching 

weaker cells to its southwest around 2140 UTC. At least two separate mergers occurred 

between 2140 and 2215 UTC, with the first merger shown on the left of Figure 3.5 and the 

second on the right. By the time of the 2145 UTC report, the first approaching cell and the 

Selden storm were colliding, and the structure of the Selden storm was disrupted while 

rotation within the mesocyclone weakened considerably. Mergers continued over at least 

the next half hour, during which the Selden storm became disorganized. By 2215 UTC, the 

Selden storm finished undergoing mergers but was very disorganized, taking almost 45 

Figure 3.5: RaXPol reflectivity and velocity during D3 showing a period in which the 

Selden storm underwent mergers with non-supercells approaching from the southwest 

(white arrows and numbers). Merger 1 is on the left, merger 2 is on the right. The 

weak velocity couplet is marked in the first panel before it is disrupted by the collision 

of the first cell (black circles). Range ring spacing is 2.5 km. 
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minutes to regain supercell structure as it restrengthened before producing the Selden 

tornado shortly after 2300 UTC. During the mergers, no tornadoes were reported. The final 

tornado report leading up to the first merger also occurred coincident with the initial 

collision between the Selden storm and the first approaching cell. This is like the findings 

of Wurman et al. (2007b), in which it was observed that mergers between a supercell and 

another non-supercell storm would cause a brief tornado as near surface convergence 

temporarily increased before the merger would disrupt the supercell’s structure and cause 

the tornado to decay. 

 Over a 45-minute period, the Selden storm slowly reorganized and strengthened as 

it remained in the vicinity of the remnant outflow boundary. In addition to the enhanced 

low-level shear and vorticity at the remnant outflow boundary, the winds in the low-level 

jet were increasing slightly as the evening progressed. At 2304 UTC, the storm underwent 

tornadogenesis again, this time producing the more significant Selden tornado. At the time 

of the Selden tornado, the parent supercell was at the peak of its strength while realizing 

the higher shear environment enhanced at low levels by the remnant outflow boundary and 

slightly strengthened low level jet. Consequently, the Selden tornado persisted for over 30 

minutes and reached EF-1 strength; it was not transient like prior activity. The tornado 

tracked into the town of Selden where one person was injured, and the tornado sustained a 

multiple vortex phase. After passing through Selden, the tornado reverted to a single-celled 

vortex as it turned left and occluded, completely dissipating by 2340 UTC. Further details 

of the Selden tornado lifecycle will be explored in Chapters 4 through 6. This would be the 

end of tornadic activity from the Selden storm. During the lifecycle of the Selden tornado, 

new convection initiated in front of the parent supercell. The new convection appears to 



61 
 

have formed along merging outflows from the broken line of storms that overtook the 

Selden supercell from the west and southwest. By the conclusion of the Selden tornado, a 

new line of storms was building along the merging outflows, blocking the Selden storm 

from unstable inflow. Consequently, the Selden storm began to weaken and completely 

dissipated by 0030 UTC behind the new convective line.  

 

3.3: Selden Tornado Overview 

 On the afternoon of 24 May 2021, a supercell was tracking northeasterly towards 

the town of Selden. As it rode along the remnant outflow boundary, the storm attempted 

tornadogenesis several times. However, the storm was disrupted when it started undergoing 

mergers, and the low-level mesocyclone diminished before any significant tornado was 

produced. After undergoing a reorganization period for over an hour, the storm regained 

supercell characteristics and the low-level mesocyclone redeveloped as it continued to 

track in vicinity of the low-level remnant outflow boundary towards the town of Selden. 

At or around 2304 UTC (1804 CDT), the supercell spawned a tornado 5 miles to the west 

southwest of Selden near US highway 83. The tornado tracked parallel to highway 83 into 

the town of Selden over the course of the next 20 minutes where it would damage numerous 

structures and injure 1. After passing through Selden, the tornado slowly occluded and 

turned to the left into its parent supercell. The tornado circulation completely dissipated 

around 2340 UTC (1840 CDT) about 2.5 miles to the northeast of Selden before crossing 

US Highway 83 as the road turns north on the east side of town. The RaXPol derived track 

of the 36-minute Selden tornado at the 4° elevation is shown below in Figure 3.6. 
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RaXPol was deployed twice just to the east of Selden where it collected data 

throughout the lifecycle of the Selden Tornado. In total, 32 minutes of data were collected, 

with almost 30 of those minutes containing a tornado circulation. Throughout the 

deployments, RaXPol observed the tornado to shift track several times while also capturing 

several interesting features. The RaXPol derived track from the 4° elevation is shown 

above in Figure 3.6, overlayed with the approximate damage swath estimated from the 

edges of the correlation coefficient minima associated with the tornado circulation. The 

map also includes the track of a companion anticyclonic vortex. Serendipitously, this 

vortex caught the radar crew by surprise and the radar was not moved, resulting in it passing 

right over the radar site. Consequently, the data provide a rare opportunity to take a very 

high-resolution look at a vortex. Various pictures of the tornado are included on the map 

in Figure 3.6, which display the wide variety of structures the tornado had during its life. 

Figure 3.6: RaXPol derived track of the Selden tornado at 4° elevation overlayed with 

the estimated damage swath based on the low correlation coefficient area associated 

with the tornado. Various pictures of the tornadoes are also included on the track. 

Photos courtesy of Howard Bluestein, Sam Emmerson, and Trey Greenwood. 
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Early in D6, the tornado did not have a consistent condensation funnel. Especially leading 

up to and during the D6 data gap, the tornado had no visible funnel. Pictures then reveal a 

transition to multiple vortex structure with a large funnel developing and then rapidly 

dissipating as secondary vortices become visible. During early D7, pictures show the rapid 

dissipation of the condensation funnel as the tornado begins to turn northward. Finally, a 

picture of the anticyclonic vortex taken looking straight up from the radar site reveals the 

intensity of the anticyclonic circulation as the clouds form a circular pattern around a 

central downward extension which may be a small funnel cloud.  

During its lifespan, the Selden tornado underwent several track shifts which are 

visible in Figure 3.6. During D6, the tornado followed the motion of the parent storm but 

then sustained several track shifts in D7. Early in D7, the tornado executed a cyclonic track 

loop and then accelerated out of it to the northeast. Suddenly, the tornado became nearly 

stationary for just over two minutes before starting to retrograde. After two minutes of 

retrograding movement, the tornado finally turns north and dissipates. However, the 

behavior of the tornado during D7 shows stark differences with height. Figure 3.7 shows 

the RaXPol tracks at 4° intervals of elevation angle. In upper elevation scans, the tornado 

instead continues to gradually curve northward out of the cyclonic track loop in early D7. 

Interestingly, the tornado then executes a second cyclonic track loop shortly after the first 

in upper elevation scans while the tornado becomes stationary and retrogrades in lower 

elevation scans. After exiting the second track loop, the tornado then turns north and 

dissipates as the behavior between upper and lower elevation scans once again becomes 

similar. Figure 3.7 also shows that the tornado was generally tilted towards the north for 

most of its life until dissipation, at which point tilt became easterly. 
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The marked differences in track behavior with time and height allow for the 

dividing of the track into several segments, which is then leveraged to perform cross section 

analysis of the tornado based on tornado movement behavior. An example of a divided 

track at the 4° elevation for the cyclonic tornado is provided below in Figure 3.8. While 

the details of each segment and how segments changed with height will be discussed in 

following chapters, eight distinct segments were identified. The first two segments contain 

the early development of the Selden cyclonic tornado, with the second segment having a 

slightly different track heading to the right of the heading in segment 1. Segment 3 was 

defined by the data in between the D6 data gap and the end of D6. Segment 4 runs from 

the start of D7 through a cyclonic track loop to a point when the tornado suddenly stops 

moving. Segment 5 contains this stationary behavior, while segment 6 marks a time when 

the tornado retrograded. Finally, segment 7 begins when the tornado makes a northward 

turn, and segment 8 marks a final left hook as the tornado fully dissipates. 

Figure 3.7: Comparison of the RaxPol derived tracks at 4°, 8°, 12°, and 16°. The 4° 

and 16° elevation tracks are representative of lower and upper elevation scans, 

respectively. 
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A summary of track segments at all scan elevations is presented in a timeline shown 

below in Figure 3.9. During D6, there are three segments at all elevations. For all scan 

elevations, the first two segments represent the development and intensification phases of 

the tornado. The next segment contains the data between the D6 data gap and the end of 

the deployment. Once D7 begins, the vortex begins to shift track and behavior diverges 

with height. The first segment in D7, segment 4, contains the first track loop and is broken 

down further to isolate the track loop which is highlighted in red on the timeline. After this, 

the track segments split into two groups based on elevation with a transition height that is 

somewhat like a hybrid of the two archetypes. At lower elevations, segment 5 represents a 

time when the tornado was stationary. Segment 6 is a retrograde phase while segments 7 

and 8 represent the northward turn and dissipation of the tornado. At the transition scan 

elevation of 8°, the vortex becomes quasi-stationary during segment 5 before retrograding. 

Then, a new distinct phase of eastward movement occurs during segment 7 and the tornado 

track begins to take on the shape of a secondary track loop. Segments 8 and 9 then contain 

Figure 3.8: RaXPol derived track (using objective geometric centers) for the cyclonic 

tornado at 4°. Track segments 1 – 8 are marked, identified by changes in tornado 

behavior. Red dots mark the locations for D6 and D7. 
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the tornado’s northward turn and dissipation. In higher elevation scans, the stationary phase 

disappears and becomes absorbed into segment 4. Consequently, the tornado moves 

directly into the retrograde phase in segment 5. Segment 6 then contains easterly 

movement, which together with segment 5 makes up the second track loop present in upper 

elevation scans. Finally, segments 7 and 8 represent the tornado’s dissipation. In general, 

the stationary phase of the tornado gradually vanishes with height while the retrograde 

phase takes on a smaller westward component at higher scan elevations. 

 

 

 

 

 

 

Figure 3.9: Timeline of track segments at all elevations. Different colors represent the 

various segments, with boxes of the same color representing segments with similar 

behavior. Segment 4 is also broken down into subsections to isolate the track loop, 

which is represented by the red boxes. 



67 
 

 

 

Chapter 4 

The Selden, Kansas Tornado During D6 – Before the Data Gap 

 

4.1: Track Behavior  

 Before the D6 data gap from 2304:45 to 2313:41 UTC, the Selden tornado closely 

matches the motion of the parent supercell while intensifying. There are two track segments 

prior to the data gap at all elevations. The segment 1 and 2 tracks from the 4° and 16° 

elevation are detailed in Figure 4.1 below. The estimated track vectors used here and 

throughout this study are accurate to within ±1 m s-1 for speed and ±5° for heading given 

that center positions of the tornado could only be determined to within 0.5° azimuth and to 

one-half of a range gate (30 m). For especially short segments where not much distance is 

covered by the tornado, the error in estimates grows but is still within acceptable limits.  

The first segment represents a time when the tornado was developing, lasting from 

the start of data collection at 2304 to approximately 2310 UTC. Motion during this time 

was markedly slow when compared to the motion of the parent storm, which was moving 

to the east northeast at in between 9.5 and 10 m s-1; the track vector at 4° elevation was 

roughly 7 m s-1 from 240° (WSW). This is a trend that becomes more pronounced at higher 

elevations. At the 16° elevation, the motion of the vortex was only 4.5 m s-1. An additional 

key difference between the track at 4° and 16° is that the track direction at the 16° elevation 

was from 260° as compared to 240° at the 4° elevation. Widely disparate tracks at different 
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heights above the surface and motion that does not match the parent supercell are indicative 

of a tornado that has yet to reach a stable mature position with regards to the supercell 

updraft and RFGF; the tornado fails to strengthen significantly as it continues to change 

position relative to the parent supercell (e.g., Dowell and Bluestein 2002).  

The nearly 20° contrast in track heading and notable 3 m s-1 difference in speed 

during segment 1 between the 4° and 16° elevations reflect a tornado still in early stages 

of development. At both the 4° and 16° elevations, the tornado track is unsteady. Instead 

of following a relatively straight line, the center of the tornado wobbles back and forth, 

giving the track a jagged appearance on a map. Some of the aberrations in the track are 

Figure 4.1: Track of the Selden tornado at the 4°(top) and 16° (bottom) elevation 

scans. Zoomed insets of the tracks prior to the D6 data gap are provided on the right, 

along with descriptions of the segment motion vectors. 
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certainly a function of angular resolution since the center position of the vortex can only 

be determined to within a half degree, but the numerous track deviations are far larger than 

can be expected from this alone. Furthermore, the distance travelled in every 20 second 

scan is variable, with the tornado sometimes barely moving at all. The unsteadiness of the 

track is a feature that becomes more apparent with height, evincing the greater deviations 

of the tornado track from the motion of the parent supercell in higher elevation scans. At 

the 16° elevation, the vortex was observed to move westwards twice, and there appeared 

to be no rhyme or reason to the pattern of vortex motion. Early in segment 1, the 16° track 

heads northeasterly before the vortex center meanders about. Then the vortex center shifts 

to the southeast. After repositioning to the southeast, the vortex center once again meanders 

about, remaining nearly stationary and moving backwards slightly as segment 1 ends. 

Furthermore, the trend of increasing track unsteadiness with height is not linear. Shown in 

Figure 4.2, the course of the tornado during segment 1 gradually becomes more unsteady 

with height from the 4° elevation to the 12° elevation, at which point the track suddenly 

becomes much more unsettled.  

The tendency for track deviations to grow more extreme with height testifies to a 

non-descending pattern of vertical development for the Selden tornado. Moderate 

unsteadiness of the tornado tracks below the 12° level, which is roughly 1800 m Above 

Radar Level (ARL) during segment 1, overlain by tracks of a highly volatile nature seem 

Figure 4.2: Schematic showing the track for segments 1 and 2 at every 4° in elevation. 

The increasingly chaotic areas of track are circled in the 12° and 16° maps. Grids 

have 1 km spacing. 
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to indicate that a coherent tornado circulation first appears at low levels before developing 

upward. Small differences between the appearance of the tracks below 12° are minimal 

and indicate near simultaneous development with height at low levels. This is like the 

findings of Houser et al. (2022), in which it was found that tornadoes developed in non-

descending patterns, either nearly simultaneously or upward from 0 to approximately 1.5 

to 2 km. The marked difference in the stability of the tracks between the 10° and 12° level, 

which are roughly 1800 m and 2100 m ARL respectively, is also of note. The presence of 

a dividing line near the 2 km level may reveal the top of the tornadic circulation, or at least, 

that the tornadic circulation does not attain significant depth until well into its lifecycle. It 

is possible that the Selden tornado struggles to attain significant vertical depth above 2 km 

due low shear in the synoptic environment (See Figure 3.1). Weaker shear results in a less 

intense supercell mesocyclone, which results in a weaker tornado and one that may not 

become very deep. 

If track steadiness is taken as a proxy for how well established the tornado is, as is 

implied here, then the tendency for the track to become slightly less stable with height and 

then chaotic above the 2 km level would support the notion that the tornado develops first 

nearer to the ground or nearly simultaneously at low-levels (non-descending pattern) and 

may not be very deep as in Houser et al. (2022). Further evidence from a plot of ΔVmax in 

Figure 4.3 is supportive of the idea that the vortex develops in a non-descending pattern as 

shear values increase nearly simultaneously across the depth of observations up to 2.5 km, 

above which velocities decrease to under the commonly accepted tornadic threshold of 40 

m s-1 of total shear across the vortex (Wurman and Kosiba 2013). The way in which 

tornadogenesis proceeds, whether upwards, downwards, or simultaneously, has been a 
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frequently asked question. In this case and in the Houser et al. (2022) case, tornadoes were 

found to build upwards or nearly simultaneously with height. While an in-depth analysis 

of the Selden tornado’s genesis is precluded by a lack of data during that time, perhaps the 

level of environmental shear in which the parent supercell is embedded plays a role in 

tornado development. Since the Selden supercell is in a low shear environment, upward or 

near simultaneous vertical development may be favored because the Selden supercell’s 

mid-level mesocyclone is relatively weak, and the tornado must rely to a greater degree on 

near-surface processes to drive intensification. Finally, the small area of higher shear 

centered just under 2.5 km early in segment 1 is likely a result of tracking velocity maxima 

associated with the supercell mesocyclone at low levels, not the tornadic circulation; it is 

not necessarily an indicator that the tornado developed first aloft.   

Figure 4.3: Interpolated plot of ΔVmax for the Selden tornado, measured from the wind 

maxima on either side of the vortex. The red box denotes the portion of the graph 

corresponding to track segments 1 and 2 while the red arrows highlight the nearly 

simultaneous or slight upward trend in vortex development and intensification during 

segments 1 and 2. 
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During segment 2, which lasted from 2310 to 2313 UTC, the track of the tornado 

becomes typical of the parent supercell motion as the tornado reaches a stable position 

under the supercell updraft at the apex of the supercell RFGF and forward flank 

convergence zone. Particularly at low levels, the motion of the supercell and tornado are 

nearly identical; the 4° track vector is 9 m s-1 from 260° (W). The change in track vector 

between segments 1 and 2 at the 4° level is evidence for a transition of the tornado to a 

‘mature’ position. During segment 1, the tornado is moving northwestwards with respect 

to the parent supercell. Then, in segment 2, the tornado turns right by almost 20° and its 

forward speed increases to over 9 m s-1, such that the motion of the tornado is nearly 

identical to that of the parent supercell. In their study, Dowell and Bluestein (2002) noted 

that their tornado began its lifecycle by being advected north or northwestwards up the 

RFGF towards the supercell updraft and the forward flank convergence zone as the 

supercell RFD intensified and matured. Once the tornado reached the northern apex of the 

RFGF underneath the supercell updraft, it was said to be in a mature position and rapid 

intensification took place. The Selden case shows a similar progression, with the tornado 

moving northwestwards with respect to the parent supercell during segment 1. Then the 

tornado reached a ‘mature’ position by the start of segment 2, at which point the tornado 

became coupled to the northern apex of the RFGF and the forward flank convergence zone; 

the tornado began moving along with the parent supercell and the pace of intensification 

increased (See Figure 4.3). The idea that the transition from segment 1 to segment 2 

represents the evolution of the tornado from a precarious development stage to a more 

stable mature phase will be revisited in the following sections. 
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The stark change in the 16° track from segment 1 to 2 also clearly shows that the 

behavior of the tornado changed significantly. Suddenly, at the start of segment 2, the 

tornado begins to move to the east at a steady pace and the track becomes remarkably stable 

as the tornado traces out a nearly straight line. The steadiness of the segment 2 track and 

closer match to storm motion are typical of a more established vortex that stands in 

juxtaposition to the chaotic track in segment 1. Yet, there is a significant difference in 

vortex forward speed during segment 2. However, this appears to simply be a result of the 

more chaotic and overall slower motion at 16° during segment 1. During segment 1, the 

vortex at 16° fell behind its near ground position. Following this in segment 2, the vortex 

at 16° slowly caught up to its near ground position. A tilt analysis of the vortex from 4° to 

16° is supportive of this finding. Throughout segments 1 and 2, the tilt off vertical 

decreased from over 40° to 15°. Given variability of ±5° in tilt due to errors in determining 

the tornado center, the large decrease in tilt is significant. While this is indicative of a 

vortex that is becoming more vertically aligned and coherent, caution must be exercised 

Because the tornado is moving directly towards the radar during D6; the decrease of tilt 

likely contains a component that is the result of decreasing sample depth, where the upper 

sample bound descends below a potential threshold height where the tornado bends and 

acquires significant tilt.  

 

4.2: Evolution of the Near-Vortex Wind Field and RFD on Radar 

 Shown in Figure 4.4, radar analysis during segment 1 reveals an interesting 

development sequence for the flow field near the tornado. At the start of the analysis, there 

is a zone of enhanced convergence running from southwest to northeast to the west of the 
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tornado, and a defined tight circulation has yet to develop although video taken of the 

Selden tornado confirms that a condensation funnel has already formed. In the first panel, 

the forward flank boundary has yet to wrap towards the low-level mesocyclone and is 

marked along the area of enhanced convergence behind the tornado location at the back of 

the receding velocities in the storm inflow. As time passes, the forward flank boundary 

eventually becomes linked to the tornadic circulation as the supercell becomes wrapped 

due to the action of the intensifying low-level mesocyclone. As has been suggested by Orf 

et al. (2017) and Scheuth et al. (2021), the linking of the forward flank convergence band 

to the tornado will make it possible for vorticity generated baroclinically in the supercell 

FFD to be ingested by the tornado or low-level mesocyclone. While a detailed examination 

Figure 4.4: RaXPol imagery at the 4° elevation taken every 2 scans (40 s) during 

segment 1. In each radar panel, reflectivity is on the left and Doppler velocity on the 

right. Range ring spacing is 2.5 km. Black lines denote RFD surge fronts, which are 

also numbered. Black arrows also point to associated reflectivity appendages. Finally, 

red lines mark the approximate positions of the forward flank boundary and RFGF. 
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of the possible presence of SVCs is presented in a later section, the tornado starts to 

strengthen once the forward flank boundary becomes established. A timeseries of ΔVmax 

shown in Figure 4.5 is supportive; the tornado’s rate of strengthening increases markedly 

at 2308 UTC shortly after the forward flank convergence zone becomes established at 2307 

UTC. The timing of forward flank establishment near the tornado and strengthening in 

Figure 4.5 also occur shortly before the rightward track shift between segments 1 and 2 at 

2310 UTC, providing more evidence that the tornado was slowly migrating towards a 

stable mature position relative to the parent supercell during segment 1. As the tornado 

moved northwest relative to the parent storm and neared a mature position, it became 

coupled to the forward flank convergence zone; shortly thereafter, the tornado turned right 

as it reached its mature position at the northern end of the RFGF. 

Of key interest in Figure 4.4 is the rapid evolution of the supercell RFD. By the 

start of D6, the RFD has already been established and is linked to the tornadic circulation. 

As described by Dowell and Bluestein (2002), the enhanced convergence at the RFGF 

likely played a role in tornadogenesis and is causing the tornado to intensify along with the 

Increases 

concurrent with 

forward flank 

linkage begin 

RFD 

Surges 

Forward 

Flank 

Linkage 

Figure 4.5: Timeseries at 4° of the ΔVmax for the Selden tornado. The portion of the 

series corresponding to segments 1 and 2 is boxed and a zoomed inset of the boxed 

portion is provided to the right of the figure with surge related bursts in ΔVmax circled.  

Gridlines in the inset are spaced 10 m s-1 apart. 
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vorticity being baroclinically produced and tilted into arches at the RFGF like those found 

by Markowski and Richardson (2008). While the RFD has been established by the start of 

the analysis, it is relatively weak. Despite the weak RFD, however, surges are still apparent. 

There are at least 4 small surges throughout the analysis, three of which move through the 

RFD towards the RFGF while being advected around the tornado circulation. As these 

surges pass near the tornado, it is likely that the enhanced convergence and vorticity at the 

northern apex of the surges is causing the tornado to intensify slightly or experience a pulse 

in strength (Finley and Lee 2008; Houser et al. 2015; Kosiba et al. 2013; Markowski 2012). 

A timeseries of the shear across the vortex at the 4° level shown in Figure 4.5 indicates that 

there were responses to the surges, with total shear undergoing pulsing behavior while the 

tornado generally strengthens. When surge 1 passed by the tornado, shear across the vortex 

increased by roughly 7 m s-1. However, since the tornado is also strengthening due to other 

processes such as the establishment of the forward flank boundary, it is unclear how much 

of the jump in shear is attributable to the surge. As surge 2 approaches and passes the 

tornado, shear jumps by 8 m s-1 in one scan. This is followed closely by surge 3, which 

causes a smaller shear response of roughly 4 m s-1 when it impacts the tornado. It should 

be noted, however, that most of these jumps represent relatively small changes in ΔV that 

are often transient, occurring in only one radar scan. Since the standard deviation of the 

velocity data is generally near ±10 m s-1 around the Radius of Maximum Wind (RMW) 

where ΔV is obtained, caution should be taken when investigating these changes in ΔV. 

More on the error of cross section estimations will be discussed in the following section. 

The RFD expands in coverage and becomes more intense by the end of segment 1. 

As documented by Dowell and Bluestein (2002), the stronger RFD enhances the vorticity 
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and convergence near the tornado, causing the tornado to steadily intensify. At the same 

time, the tornado has been migrating to a mature position within the supercell; during 

segment 1, the tornado has moved northwestward with respect to the parent supercell (See 

Figure 4.1). The movement of the tornado towards its mature position underneath the 

supercell updraft is also visible in Figure 4.4 as the hook echo and vortex signature shift 

northwards with respect to the forward flank precipitation region with time. Since the 

primary supercell updraft is located above the inflow region south of the forward flank, the 

tornado is moving closer to the updraft base with time. 

The strengthening of the RFD and the arrival of the tornado underneath the 

supercell updraft and position at the RFGF and forward flank convergence zone juncture 

all allow the tornado to intensify as is reflected in the ΔVmax timeseries in Figure 4.5. 

Continued strengthening of the tornado circulation will then in turn cause the RFGF to 

advance outwards, enhancing near surface convergence in the vicinity of the tornado, 

which causes the tornado to strengthen further. If the RFGF resists significant displacement 

from RFD surges or the occlusion downdraft that will develop as the near-ground vorticity 

continues to intensify, then the tornado can remain in a mature position. However, as soon 

as the tornado becomes decoupled from the RFGF, the tornado begins to decay and move 

away from its favorable position in enhanced convergence under the parent updraft as was 

found in the case studied by Dowell and Bluestein (2002) or simulations of Marquis et al. 

(2012; 2016). In other words, temporary positive feedback exists between the strength of 

the tornado and RFGF related convergence near the tornado. However, this situation does 

not persist forever since continued intensification of the tornado will eventually result in 

the formation of the occlusion downdraft, the outflow of which will displace the RFGF and 



78 
 

decouple it from the tornado and low-level mesocyclone; the temporary positive feedback 

is best contextualized as an important step in the advancement of the tornado lifecycle. 

The track of the tornado can also be affected by the configuration of enhanced 

momentum created by RFD surges (e.g., Kurdzo et al. 2015 and Lee and Finley 2022). 

While the surges are not yet intense enough to directly affect the track of the Selden 

tornado, the higher momentum within the surges helps to advance the RFGF forward as 

they reach and merge with it. Especially important is the action of the surges to potentially 

displace the RFGF from the low-level mesocyclone and tornado. Each successive surge is 

advected cyclonically by the tornado circulation to varying extents depending on surge 

trajectory where they can then merge with the RFGF near its northern end and potentially 

dislodge the RFGF and force it to move into the inflow channel. However, no such large 

displacements to the RFGF position occur during segment 1; the RFD surges are too weak 

and the pressure minimum at the center of the tornado too strong to allow for decoupling 

between the RFGF and tornado. Therefore, the RFGF continues outwards gradually with 

time as the low-level mesocyclone and tornado continue to intensify. However, continued 

intensification of the tornado will eventually result in the formation of the occlusion 

downdraft (Adlerman and Droegemeier 2005). Momentum within the RFD will surge in 

response to the occlusion downdraft’s outflow and the RFGF will likely become decoupled 

from the tornado since the environmental shear conditions are not high enough to generate 

a sufficiently strong supercell mesocyclone capable of achieving a steady, non-cycling 

structure (See Figure 3.1).   

A similar radar analysis produced during segment 2 is shown in Figure 4.6. During 

the analysis period, the RFGF continues to surge outward from the parent supercell and the 



79 
 

forward flank boundary and RFGF become joined at an apex point just behind the tornado. 

This marks a maturation of the supercell, and the tornado will thrive off of the greatly 

enhanced convergence at the apex as discussed by Dowell and Bluestein (2002). During 

segment 2, additional discrete surges appear and eventually merge with the RFGF. The 

first surge passed well south of the tornado and does not appear to have impacted the 

tornado. The second surge, however, initially builds to the southwest of the tornado and 

then passes through the southern half of the vortex on a northeasterly trajectory as 

velocities on the southern branch of the tornado circulation increase significantly. 

However, this higher area of velocities persist well after surge 2 passes; it is unclear what 

affect, if any, surge 2 had on the intensity of the vortex. Despite this, the greatly enhanced 

Figure 4.6: RaXPol imagery at the 4° elevation taken every 3 scans (60 s) during 

segment 2. In each radar panel, reflectivity is on the left and Doppler velocity on the 

right. Range ring spacing is 2.5 km. Black lines denote RFD surge fronts, which are 

also numbered. Black arrows also point to associated reflectivity appendages. Finally, 

red lines mark the approximate positions of the forward flank boundary and RFGF. 
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convergence at the norther apex of the surge can be expected to have at least contributed 

to the sudden uptick in vortex strength and ΔVmax shown in Figure 4.5 as the fourth noted 

shear increase (Finley and Lee 2008). After surge 2 moves through the tornadic circulation, 

it pivots around the vortex and starts to move northwesterly as it merges with the northern 

end of the RFGF. For the first time, an increase in easterly momentum is detectable north 

of the vortex as surging momentum intrudes north of the tornado and attempts to displace 

the RFGF from the tornado. However, the tornado and low-level mesocyclone are able to 

remain coupled to the RFGF during segment 2 and RFD surges fail to cause occlusion; the 

tornado continues to reside in a mature position where it steadily strengthens. 

 

4.3: Cross Section Analysis 

 The average cross sections presented here and in following chapters are an 

estimation of the average velocity profiles of the Selden tornado. The rapidly evolving 

nature of the tornado and scan-to-scan variability in radar measurements produce average 

cross sections with a substantial amount of variability. In Figure 4.7, an average cross 

section of the tornado from segment 2 with error bars representing one standard deviation 

is plotted to provide a visualization of the error within the cross sections. The error bars 

reveal that the standard deviation within the data can be large, with a magnitude of ±10 to 

±15 m s-1 within the tornado core and near the RMW. In some instances, the standard 

deviation can approach almost ±20 m s-1 within the tornado core. Outside of the tornado, 

the standard deviation of the data is generally within ±5 m s-1. The highest variability occurs 

within zones where it would be expected, namely, within the core of the tornado and near 

its edges where the cross section is sensitive to changes in vortex size and intensity. Error 
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within the cross sections is therefore greatest during segments when the vortex is 

undergoing rapid changes, such as near the start of the tornado’s lifecycle when it is 

growing and intensifying quickly. Given these error estimates, caution must be taken when 

interpreting the average cross sections since individual values of velocity possess a large 

spread within the tornado core and near the RMW. Additionally, transient changes in ΔVmax 

of the tornado less than 10 m s-1 should be treated carefully since ΔV is readily impacted 

by changes in the values for maximum velocity at the RMW. 

Presented in Figure 4.8 are the averaged azimuthal cross sections for track segments 

1 and 2 at the 4° elevation, which was chosen because it is the lowest elevation available 

which was not contaminated by significant ground clutter. During segments 1 and 2, the 

average height of the sampled cross sections was roughly 700 m and 570 m respectively, 

placing the cross sections well above the frictional inflow layer noted in Bluestein et al. 

(2004) or Wakimoto et al. (2011). Consequently, it is not possible to see near-surface 

convergence within 20 to 30 m of the ground. Because the cloud base near the tornado is 

Figure 4.7: Average cross section for the Selden tornado during segment 2 with error 

bars plotted. Error bars represent 1 standard deviation of the data. 
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approximately 600 m, the cross sections represent a point through the top of the visible 

condensation funnel. The azimuthal cross section for segment 1 contains a weakly tornadic 

vortex with ΔVmax of slightly less than 40 m s-1. The marginally tornadic shear is a clear 

indicator that the tornado is still developing, matching findings from the vortex track and 

radar analysis. Like previous studies in which cross sections have been retrieved, such as 

in Kosiba and Wurman (2010) and Tanamachi et al. (2007), the core of the vortex largely 

Figure 4.8: Azimuthal Cross Sections through the Selden Tornado at 4° elevation for 

track segments 1 (top) and 2 (bottom). Pictures of the Selden tornado from each 

segment are also included. Photos courtesy of Trey Greenwood. 
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obeys solid body rotation and the velocity maxima on either side of the vortex have similar 

magnitudes.  

An unanticipated finding in the cross sections is that the winds do not fall off 

exponentially outside of the RMW as would be expected in potential flow. Previous studies 

have consistently shown that azimuthal wind cross sections have potential flow outside the 

RMW (e.g., Tanamachi et al. 2007), but many of these cross sections were produced using 

the GBVTD technique. It is important to realize that in the GBVTD technique, the tornado 

is isolated from other flows such as the storm scale mesocyclone. Since GBVTD is not 

done in this study, the primary reason for the higher winds outside of the RMW is likely 

the superposition of the tornadic circulation on storm scale flows such as the mesocyclone. 

Another feature of the segment 1 cross section related to the superposition of the tornado 

on larger scale flows is the large width of the vortex when gauged by the RMW. Even 

though the vortex is still developing, the width is roughly 340 m and high winds cover a 

broad area. While the width of the vortex is large and winds outside of the RMW only 

slowly decrease radially outwards, they remain a true representation of the coverage of 

tornadic winds at the surface. Figure 4.9 provides a visual example, showing that the debris 

cloud is nearly 500 m in diameter, even during segment 1 while the tornado is still relatively 

weak. The 500 m diameter of the debris cloud is close to, but is slightly larger than, the 

tornado velocity signature on the radar and is nearly identical to the width of the damage 

swath estimated from the correlation coefficient (See Figure 3.6). Figure 4.9 clearly shows 

that dust and dirt is being scoured and lofted well outside the visible edge of the 

condensation funnel; the debris cloud, and thusly, the area of high winds near the surface, 

cover a diameter that is four to five times the width of the condensation funnel. The findings 
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that the tornado has a large diameter and persistently high velocities outside the RMW are 

consistent through this study, forcing consideration of important questions regarding how 

far out from the vortex center winds matter for the tornado circulation and where the 

tornado truly ends. 

 The structure of the segment 2 cross section is significantly different from that in 

segment 1. The shear across the tornado is now nearly 60 m s-1 and the width has grown to 

approximately 450 m. In segment 1, the total circulation at the RMW was approximately 

20000 m2 s-1, but by segment 2 the circulation has more than doubled to almost 45000 m2 

s-1. In the intervening time from segment 1 to segment 2, circulation was not conserved as 

both the averaged azimuthal wind and RMW increased; angular momentum is being 

ingested by the tornado from external sources including the RFGF. This is a clear indicator 

that the tornado is growing more intense.  

Figure 4.9: Picture of the Selden tornado at 2309:30 UTC, looking to the west 

southwest towards the town of Selden from the D6 RaXPol location. The 

condensation funnel and debris cloud diameters were estimated with the use of the tall 

grain silos near the middle of the image. The edges of the debris cloud are marked. 

Photo courtesy of Trey Greenwood. 
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Also of note is that the segment 2 cross section is now significantly off center, with 

the vortex being shifted nearly 50 m to the south. There are three primary factors that can 

force the profile to not be centered. First is that the vortex is significantly asymmetrical, 

but this is unlikely given that tornadoes are nearly axisymmetric except when in a multiple 

vortex phase (e.g., Tanamachi et al 2012). Second is that velocity correction was performed 

with an unrepresentative vortex velocity, which is possible since an average motion vector 

for the segment is used. Third is superposition of larger scale flows on the vortex, such as 

the RFD, which can bias the cross section towards the north or south. If the vortex motion 

is chosen differently, such that the tornado’s zero azimuthal velocity point occurs at a 

radius of 0 m, the new vortex velocity required would be only 0.5 m s-1 from the west 

southwest. This velocity does not match any other observations and is far too low. 

Regardless of how realistic the new vortex velocity is, it results in a severely unbalanced 

cross section where the winds on the RFD side of the tornado are several times those on 

the inflow side. If instead the vortex velocity is chosen to balance the velocity maxima on 

either side of the tornado, the vortex becomes even more off center. Because of these 

factors, it is likely that the vortex velocity subtracted in the original cross section is close 

to the true value and that the vortex may be slightly asymmetrical. However, radar analysis 

indicated that the RFD became intense during segment 2, which is reflected in the 

preference of the segment 2 cross section towards the RFD side of the tornado. The 

maximum on this side of the vortex is 33 m s-1, while it is only 27 m s-1 on the other side. 

Because the RFD is intense, it is more likely that the third primary cause of profile 

asymmetry, flow superposition, is causing the segment 2 cross section to be off-center as 

a strong RFD biases the velocity values towards the south. 
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 The segment 1 and 2 cross sections also change significantly with height. As with 

the track analysis, changes with height become most pronounced above the 2 km level. 

Figure 4.10 shows the segment 2 cross section from the 4° and 16° elevation. At the 16° 

height, the vortex still contains a solid body rotation core, but no longer has defined 

velocity maxima. Instead, the velocity values plateau heading radially outwards from the 

vortex center. In general, the vortex becomes less defined with height, especially above the 

2 km level because the mid-level supercell mesocyclone is overwhelming the velocity 

Figure 4.10: Comparison of the segment 2 cross section at 4° (top) and 16° (bottom). 

Example PPI maps of radial velocity are provided from the volume starting at 

2309:43 UTC to further show the typical changes in the tornadic vortex with height. 
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signatures related to the tornado. Since the background circulation is much stronger as the 

cross sections approach the mid-level mesocyclone, the vortex becomes much less defined, 

being marked only by a locally higher shear zone and sometimes a WEH.  

A comparison of all nine segment 1 cross sections over height yields additional 

details aside from a general decrease in definition. Shown in Figure 4.11 are overlays of 

all the segment 1 cross sections with height, color coded in batches of three with increasing 

height. Especially in segment 1, the vortex becomes much less defined with height, 

reflecting the finding that the vortex took longer to become established aloft and was not 

coherent in the entire 3 km vertical column in segment 1. In the segment 1 height 

comparison, the middle elevation scans from 8° to 12° (green profiles) are biased to the 

RFD side of the tornado, while the top three elevation scans (magenta profiles) are biased 

towards the inflow. This is a product of tornado proximate supercell structure; the RFD 

outflow is strongest near the surface (Grzych et al. 2007) and the inflow is moving up and 

Figure 4.11: Height comparison of all nine segment 1 cross sections. The 9 scan 

elevations are color coded in groups of three (lower group – blue, middle group – 

green, upper group – pink). Each group then has a solid profile, dashed profile, and 

dotted-dashed profile in increasing height. 
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into the supercell updraft. As cross section sample heights increase and then pass above 2 

km, they are increasingly capturing weaker RFD outflow and stronger supercell inflow. 

While the RFD dominates within the lower 2 km of the observation column, inflow winds 

are stronger above this as the supercell inflow ‘jet’ becomes increasingly sampled. Many 

of the trends seen in the segment 1 height comparison vanish in the segment 2 comparison 

(not shown). The profiles during segment 2 are remarkedly similar, which is likely a 

Figure 4.12: Radial wind cross sections through the Selden tornado at the 4° elevation 

for segment 1 (top) and segment 2 (bottom). 1-D divergence is also included. 
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function of the vortex becoming more coherent as it matures and because of decreasing 

sample heights, such that the upper bound of observation is still within the RFD outflow. 

 Shown in Figure 4.12 are the radial wind cross sections for segments 1 and 2, 

produced to capture the tornado radial winds by passing through the zero Doppler velocity 

point within the tornado. While the sample heights are far too great to capture radial inflow, 

the cross sections do contain well defined peaks of 1-dimensional divergence roughly 

centered on the tornado as would be expected due to centrifuging above the inflow layer. 

The same processes lead to the formation of the WEH (e.g., Bluestein et al. 2004 or 

Bluestein et al. 2007b), and the cross sections corroborate the existence of persistent 

divergence. The magnitude of the divergence is also high, with both cross sections having 

divergence on the order of 0.025 s-1. A sign change in the radial velocity, going from 

negative to positive outwards from the radar, is also commonly associated with the increase 

of radial velocity heading outwards from the radar in and near the tornado. This sign change 

does not always occur, as it is very sensitive to the vortex motion that was subtracted from 

the cross section. Overall, the profiles are slightly convergent over the domain sampled, 

indicating that the supercell mesocyclone and associated circulation are slowly 

strengthening which is supported by radar observations and expected since the tornado is 

also intensifying. 

 

4.4: Photogrammetric Analyses 

 Utilizing the video of the Selden tornado taken from the D6 deployment location, 

an analysis of the width of the condensation funnel and track of the tornado were 

completed. Figure 4.13 presents results of the condensation funnel analysis, showing a 
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timeseries of the funnel width and Tornado Velocity Signature (TVS) width along with 

timeseries of the ΔV and vorticity of the tornado. In the top panel of Figure 4.13, the width 

of the condensation funnel is much smaller than that of the TVS, reflecting the prior finding 

that the visible condensation funnel is much smaller than the debris cloud (See Figure 4.9). 

The width of the condensation funnel also increases with height, being smallest close to 

the ground.  

Figure 4.13: Top panel contains a timeseries of the tornado condensation funnel width 

at 250 m ARL (dark green) and 500 m ARL (green) and TVS width at the 4° scan 

elevation (bright green). Bottom panel contains a timeseries of tornado ΔV (red) and 

vorticity (blue). 
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The changes to condensation funnel width with time also reveal an important aspect 

of the Selden tornado. While the tornado ΔV is consistently growing more intense on radar, 

the condensation funnel of the tornado does not always appear. These times are annotated 

on Figure 4.13, with the first occurring from approximately 2313 to 2317 UTC and second 

from roughly 2319 UTC through the end of the analysis at 2320 UTC. Despite continued 

intensification, the tornado condensation funnel first disappears around 2313 UTC. The 

formation of the condensation funnel is dependent on both the environmental relative 

humidity and the strength of the dynamically driven low pressure minima at the center of 

the tornado. While no tornado proximate environmental data are available, the estimated 

vorticity timeseries in the bottom panel of Figure 4.13 provides a likely explanation for the 

disappearance of the condensation funnel since the dynamic pressure minimum at the 

tornado center is directly proportional to the square of vorticity (Klemp and Rotunno 1983). 

Leading up to when the funnel disappeared, the vorticity of the tornado increases steadily. 

Then, shortly before the condensation funnel begins retreating upwards in the video and 

disappears, the vorticity peaks and then decreases before becoming steady. As a result, the 

magnitude of the tornado’s central pressure minimum decreases from 2310 to 2312 UTC 

before stabilizing. Because of the higher central pressure, the tornado is unable to force the 

condensation of water from the air it is ingesting, and the funnel disappears. However, 

there are no direct pressure or moisture measurements to confirm this hypothesis. 

The reappearance of the tornado condensation funnel and then subsequent 

disappearance at the end of the analysis in Figure 4.13 are related to the transition of the 

Selden tornado to a multiple vortex structure, which is discussed in greater detail in Chapter 

5. However, Figure 4.13 still provides a likely explanation. According to Figure 4.13, both 
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tornado ΔV and vorticity are slightly increasing as segment 3 begins, causing a large 

condensation funnel to form. However, once the tornado undergoes transition to multiple 

vortex structure, the magnitude of vorticity once again decreases as the vortex broadens 

significantly without attendant increases in azimuthal flow speed. As a result, the central 

pressure within the tornado decreases and the condensation funnel disappears. 

Because the presence of the condensation funnel is tied intimately to the magnitude 

of vortex vorticity, the size of the condensation funnel should also be directly related to the 

magnitude of vorticity; the size of the funnel depends not just on the bulk shear across the 

vortex but also on how tight the gradient in velocities is within the vortex. Figure 4.13 

shows that for the periods in which the condensation funnel is present during segments 1 

and 2, the width of the funnel appears directly proportional to the magnitude of vorticity. 

As the Selden tornado gradually strengthens and vorticity increases, so too does the width 

of the condensation funnel. However, by 2313 UTC, the funnel disappears as the Selden 

tornado’s central pressure increases due to decreases in vorticity; the relationship between 

vorticity and condensation funnel width is not linear since the vorticity can sometimes 

decrease below a minimum threshold required to form a condensation funnel. If the 

vorticity decreases beyond this threshold, then the funnel will entirely disappear. The 

proportional relationship between condensation funnel width and vorticity does not hold 

during segment 3, likely as a result of changing tornado structure during its multiple vortex 

transition. While condensation funnel width and vorticity appear to be directly proportional 

to each other, there exists no simple relationship between condensation funnel width and 

ΔV. Since vorticity is a combined parameter that contains both the TVS width and ΔV, 

vortex vorticity and ΔV do not necessarily directly relate to each other; one can decrease 
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while the other increases (e.g., Kosiba et al. 2013). The bottom panel of Figure 4.13 reflects 

this, showing that vorticity and ΔV both increase at first. However, by 2310 UTC, vorticity 

begins decreasing and then remains constant while shear continues to increase.  

The relationship between the width of the TVS and tornado intensity, whether it is 

measured by shear across the vortex or by vorticity, is more complicated. Early in the 

analysis, the TVS width decreases rapidly before stabilizing around 2306 UTC while both 

vortex shear and vorticity increase. This likely reflects the early development of the Selden 

tornado as the pre-tornadic circulation finishes contracting and intensifies into a nascent 

tornado. Then, from 2306 to 2310 UTC, the TVS continues to slowly contract while both 

vorticity and shear across the vortex increase. At 2310 UTC, the TVS diameter begins to 

expand rapidly. When the TVS diameter rapidly expands, the azimuthal flow speed of the 

tornado only gradually continues to increase. As a result, the magnitude of vorticity 

decreases, and the condensation funnel evaporates. After 2313 UTC, the width of the TVS 

stabilizes before its diameter rapidly expands again during multiple vortex transition as 

vorticity decreases and shear across the vortex continues to slowly increase. The complex 

relationship displayed between the TVS, vorticity, and ΔV displayed in this case has also 

been documented in prior cases, such as Greenwood (2021). In their Putnam, OK case, 

plots of ΔV, TVS width, and vorticity revealed a complex relationship and showed that the 

TVS width was not directly proportional to either the vortex ΔV or vorticity. 

The track of the Selden tornado was also estimated using video analysis. The top 

panel of Figure 4.14 shows a comparison between the radar indicated track of the tornado 

at the 4° elevation and the video derived track of the tornado. The gray line shows the line 

of sight from the D6 deployment location to the railroad grain silos, which are marked by 
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a star. Using the line of sight, the track of the tornado was estimated from the distances of 

the tornado to the left or right of the silos obtained from analysis of the video and is plotted 

in orange. During the video, the Selden tornado was observed to shift slowly to the right 

on the north side of the grain silos from the start of the video to approximately 2310:40 

Figure 4.14: Comparison of the video estimated and radar derived tornado tracks 

during D6. The bottom panel contains a rotated map showing that the track 

discrepancies are likely due to a systematic azimuth bias in the radar data resulting 

from an incorrect GPS heading. A yellow star marks the location of the grain silos, 

and the gray line denotes the line of sight from the D6 deployment location to the 

grain silos. 
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UTC before starting to move abruptly to the left. At 2312:00 UTC, the tornado crossed 

behind the grain silos and continued moving to left to the south side of the grain silos. This 

continued until the Selden tornado reached its furthest point south of the grain silos at 

roughly 2315:00 UTC, at which point the tornado began to move rapidly rightwards in the 

video. The tornado then stopped moving right at about 2316:00 UTC when it was just to 

the south side of the grain silos; the tornado remained just to the south of the grain silos for 

the rest of the video. This movement is reflected on Figure 4.14 by how the video estimated 

track (orange line) shifts relative to the line of sight to the grain silos (gray line). The initial 

shift of the tornado towards the left correlates well with the track shift noted earlier between 

segments 1 and 2. The reversal of leftward movement to rightward occurs during the D6 

data gap, but the rapidity of the shift and temporary nature of the rightward motion suggests 

that RFD surges may have had an influence. While no radar data are available during the 

data gap, Chapter 5 presents some evidence that implicates RFD surges for the track shift.  

At first, the results in the top panel of Figure 4.14 seem to indicate a significant 

deviation between the radar and video derived tornado tracks. However, the video 

estimated tornado track is persistently to the north of the radar indicated track, suggesting 

a systematic error in the collection of radar data. Furthermore, the increasing displacement 

to the north of the video estimated track from the radar indicated track with increasing 

distance from the radar implies that there is an error in the recorded azimuths of each radar 

pixel. To check for this type of error, the radar track map was rotated about the D6 RaXPol 

location until the two tracks were the most aligned. The result is presented in the bottom 

panel of Figure 4.14, where it is revealed that a 6° azimuth correction for each radar pixel 

causes the two different tracks to become nearly perfectly aligned. Because of how well 
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the two tornado tracks align, it is likely that the displacement between the two tracks in the 

top panel of Figure 4.14 is an artifact of the bias and is not a representation of a meaningful 

physical characteristic of the tornado. This type of error is easily generated when an 

incorrect heading is given to the RaXPol system by the truck’s GPS. Because the GPS unit 

was having known problems during the 2021 and 2022 seasons, it is likely that the 

differences between the two tracks were the result of an incorrect GPS heading. However, 

since the 4° scan elevation derived track does not have a constant height ARL because of 

the decreasing distance of the tornado to the radar, it is still possible that some of the 

disagreement between the two tracks is due to vortex tilt. Another possibility is that there 

is a misalignment between the tornado below the cloud base and the tornado and low-level 

mesocyclone above the cloud base (e.g., Bluestein et al. 2019). 

Fortunately, the 6° azimuth bias in radar data does not impact the results of this 

study. While an azimuth bias does exist, it applies to all the data equally, such that the 

resulting tornado track is rotated by 6° about the radar from where its true position is. 

Calculated track headings are affected by this, but the tornado forward speeds and overall 

pattern of the track are not. As a result, all of the analyzed track shifts and features remain 

the same whether or not an azimuth bias exists in the radar data. However, one of the effects 

of the azimuth bias is that the absolute positions of the tornado derived from radar relative 

to other physical objects and places on a map, such as the town of Selden, are not entirely 

correct. Therefore, the most accurate tornado track relative to ground features is given by 

the tornado video estimated track in the top panel of Figure 4.14. Other analyses in this 

study, such as cross section and radar analyses, are entirely unaffected by the azimuth bias.  
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4.5: Descending Reflectivity Core 

 Leading up to the D6 data gap, at least one DRC was identified in the RaXPol 

dataset. Produced to visualize the area of descending reflectivity, Figure 4.15 contains 4 

volumes centered on the tornado created by enclosing the areas of reflectivity at or above 

55 dBZ. Starting at 2311:03, an area of high reflectivity begins to descend into the top of 

the domain at 2.7 km ARL to the east of the tornado. Over the course of the remaining 2 

minutes of D6 before the data gap, the high reflectivity core slowly descends towards the 

ground. At 2311:43, the blob of reflectivity has visibly descended into the domain; the 

volume at or above 55 dBZ has grown significantly and includes areas north of the tornado. 

By 2312:23, the upper part of the reflectivity core has passed into the domain as the lower 

portion starts contacting the ground. Finally, in the last scans of D6, the portion of the 

reflectivity core north of the tornado nears the ground. As first described by Rasmussen et 

al. (2006), a DRC often falls from the top of the vault from the supercell reflectivity 

overhang, which is overhead of the RFGF, forward flank boundary, and updraft interface 

where tornadoes are generally located. On the order of minutes, the DRC makes it to the 

ground near the tornado. The identified DRC fits the Rasmussen et al. (2006) definition 

closely as the reflectivity core falls through the lowest 3 km of the storm over the course 

of 2 to 3 minutes, contacting the ground just to the north and east of the tornado. 

 The impacts of DRCs on tornado formation and intensification have been the 

subject of several studies. Rasmussen et al. (2006) found a DRC coincident with 

tornadogenesis in a subset of supercells and noted that DRCs were associated with 

strengthening of the tornado. Unfortunately, in this case, it is not possible to ascertain with 

certainty what the effects of the identified DRC were on the Selden tornado. As the main 
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body of the reflectivity core nears the surface, the D6 data gap occurs, and no data are 

available over the next 2.5 minutes. However, reconstructed cross sections provided in 

Figure 4.16 offer some clues to the nature of the DRC. The cross sections run roughly south 

to north, cutting through the center of the tornado at the same scans as the volumes in 

Figure 4.15. On the reflectivity panels, the descending blob of high reflectivity centered 

500 to 600 m north of the tornado is seen falling from the top of the domain to roughly 800 

m ARL by the last scans before the D6 data gap. This matches closely to what was observed 

in Figure 4.15, with the portion of the reflectivity element north of the tornado falling 

through the domain at a slightly later time than the portion to the east. Meanwhile, the 

velocity field may respond to the DRC. By the second panel, the receding velocities on the 

Figure 4.15: Volumes enclosing reflectivity values greater than or equal to 55 dBZ. The 

domain is centered on the tornado in each panel, and the view is from the northeast. All 

distances are in meters (m). For clarity, the DRC is circled and denoted with an arrow. 
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north side of the tornadic circulation have become visibly displaced from the center of the 

vortex, coming out in a notch into the other side of the vortex. This notch of anomalously 

high positive Doppler velocities continues to fall through the tornado, roughly correlating 

with the position of the DRC. However, there may be many other factors creating this notch 

of velocities with the tornado, and its position is not very well correlated to that of the 

DRC. 

Figure 4.16: Reconstructed cross sections through the tornado at the same 4 scans as 

in Figure 4.15. Reflectivity is on the left and Doppler velocity on the right. Black 

arrows point to the DRC, while white arrows indicate the potentially related velocity 

disruption. 
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 Since the DRC contacts the ground during the D6 data gap, there is no near-surface 

velocity evidence to confirm that the DRC influenced the Selden tornado. However, 

determining the DRC type according to the categories in Byko et al. (2009) can help to 

further characterize the DRC. In their study, Byko et al. (2009) found that there were three 

categories of DRCs, with only one category being correlated with tornado formation and 

intensification. Type 1 DRCs were those of the nature described by Rasmussen et al. (2006) 

and are the DRCs that effect tornadoes. These DRCs formed from the supercell overhang 

were flow stagnation in the supercell inflow resulted in heavily precipitation loaded air 

beginning to fall; the DRC ultimately reached the surface near the tornado, often 

immediately to its north or east. Type 2 DRCs form as precipitation laden air within 

flanking line updrafts begins to descend when the parent flanking line updraft merges with 

the primary supercell updraft; these DRCs often contact the ground on the RFD side of the 

supercell updraft too far from tornadoes to have an impact on them. Finally, type 3 DRCs 

form when precipitation loaded air becomes caught in a downward directed pressure 

gradient that results when vorticity is most intense at low levels. These DRCs are more 

typical later in a tornado’s lifecycle (Byko et al. 2009). Based on the location of the DRC 

in the RaXPol data and timing relative to the tornado lifecycle, it is likely a type 1 DRC. 

Consequently, it is probable that the DRC will have a strengthening effect on the tornado 

when it reaches the surface as its outflow impinges on the tornado during the D6 data gap. 

While the vortex continues to strengthen in an average sense over the data gap, with ΔVmax 

increasing from 70 to 77 m s-1 at 4° elevation (See Figure 4.5), it is not possible to ascertain 

how much, if any, of this strengthening is attributable to the DRC. 
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Chapter 5 

The Selden, Kansas Tornado During D6 – After the Data Gap 

 

5.1: Track Behavior  

 After the D6 data gap, the motion of the Selden tornado is largely the same as it 

was before the gap. In between the data gap and the end of D6, a timespan of 3 minutes, 

there is one track segment and no significant changes in motion. The segment 3 track at 

the 4° and 16° elevations is shown in Figure 5.1. At the 4° level, which is now only 300 m 

ARL due to the increasing proximity of the tornado to the radar, the track vector is 9 m s-1 

from 250° (WSW). Nearly identical to the segment 2 motion, the segment 3 motion 

continues to largely match the track of the parent supercell. As observed by Dowell and 

Bluestein (2002) in their study, the tornado and the supercell are remaining in the same 

positions relative to each other and the tornado is locked into its mature location at the apex 

of the RFGF and forward flank boundary underneath the supercell updraft. Until the RFGF 

and the Selden tornado become decoupled, or the parent supercell weakens as the result of 

external forcing, the tornado will continue to strengthen or at least remain intense. 

However, it is noteworthy that the average movement of the tornado required over the data 

gap to reach the starting position of segment 3 is more southwesterly than the track before 

and after it, with the tornado moving from approximately 235°. This suggests that some 

force nudged the tornado more northerly before the start of segment 3 during the gap. 
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Furthermore, the very start of the segment 3 track has a slight southerly trend before the 

tornado resumes along a track heading from 240° following the parent supercell. 

The slight aberration in the Selden tornado track at 4° becomes much more 

pronounced at the 16° level, which is now approximately 1200 m ARL. Overall, the track 

vector remains similar in speed but not in direction at higher elevations, with the 16° track 

vector being roughly 10 m s-1 from 265° (W). The apparent northward shift of the tornado 

during the data gap leading into segment 3 is much greater at 16°, causing the tornado to 

move almost due easterly in an average sense over segment 3. Looking at the tracks in 

Figure 5.1, much of the track during segment 3 is nearly identical, with east northeasterly 

motion at approximately 9.5 m s-1 from roughly 240° after the tornado at higher elevation 

Figure 5.1: Track of the Selden tornado at the 4°(top) and 16° (bottom) elevation 

scans. Zoomed insets of the tracks leading up to and during segment 3 are provided on 

the right, along with descriptions of the segment motion vectors. 
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scans settles into a track following the parent supercell. When compared to the apparent 

northward nudging of the tornado at 4° during the data gap, the force that caused the 

northward movement was clearly much stronger at the 16° elevation. In fact, the data gap 

heading at 16° was southwesterly at 225°, which reflects more northward movement at this 

level than below. Southward movement at the start of segment 3 then follows the northward 

displacement in what appears to be an adjustment of the tornado back to its base state 

before interference of the track during the data gap. The changes in tilt of the vortex are 

also reflective of the Selden tornado undergoing and then recovering from a disturbance 

strongest in upper elevation scans. During the data gap, the tilt of the tornado from 4° to 

16° increased from roughly 20° off vertical to just over 30° despite decreasing sample 

depth. Then, the tilt of the tornado rapidly decreases to approximately 5° off vertical as the 

southward adjustment at higher heights results in the position of the tornado becoming 

uniform across all elevations. The potential causes of this track disturbance will be further 

explored in the radar analysis of the following section. 

 

5.2: Evolution of the Near-Vortex Wind Field and RFD on Radar 

 An analysis of radar PPI plots from segment 3 at the 16° elevation is provided in 

Figure 5.2 in which momentum surges were once again tracked by leveraging the high 

temporal and spatial resolution of the RaXPol data. During segment 3, the 16° level is 

roughly 1200 m ARL. Consequently, the RFD outflow is not as well defined, and the near 

vortex wind field is more of a circularly symmetric circulation rather than a bifurcated flow 

field between RFD outflow and inflow like at the surface. Because of this, the surges of 

momentum within the tornado proximate flow pivot around the tornado to a much greater 
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extent since there is no intervening RFGF for the surges to merge with aloft; while RFD 

surges often meet with and then merge with the RFGF at lower scan elevations, a similar 

feature to the RFGF does not exist aloft and the surges of momentum that are present 

continue to be advected around the circulation.  

Starting at the first scan in segment 3, two surges can be found. The first surge is 

north of the tornado and is moving west as it pivots around the vortex. Its progression can 

easily be tracked by following the reflectivity protrusion out of the northwest side of the 

hook echo, which by the last panel in the analysis is just a remnant of the decayed first 

surge. Compared to the first surge, the second surge is very potent. By the time data 

collection resumes after the data gap, a large area of enhanced momentum is already 

Figure 5.2: RaXPol imagery at the 16° elevation taken every 2 scans (40 s) during 

segment 3. In each radar panel, reflectivity is on the left and Doppler velocity on the 

right. Range ring spacing is 2.5 km.  Black lines denote RFD surge fronts, which are 

also numbered. Black arrows also point to associated reflectivity appendages. Finally, 

a red dotted line marks the approximate position of the RFD front aloft. 
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surging to the southeast of the tornado. Throughout the next four scans (80 s later), the 

burst of elevated momentum begins to pivot to the east as it curves around the tornado 

circulation. While doing so, the surge spreads out and its magnitude decreases somewhat. 

By 2318:05 UTC, the second surge starts merging with the weakly defined RFD front as 

some momentum begins impinging north of the tornado. In the last two analysis scans, the 

second surge continues to dissipate as easterly momentum intrudes north of the tornado. 

 The second surge in Figure 5.2 occurs coincident with the southward motion at the 

16° elevation noted in the track analysis. The strength of the surge is also key; the surge is 

one of the strongest identified in the data. Recent work by Kurdzo et al. (2015) and Lee 

and Finley (2022) have focused specifically on how RFD surges can alter vortex motion 

by transporting momentum. Kurdzo et al. (2015) investigated a track loop occurring during 

the lifecycle of the Moore 2013 tornado. They found that a specific arrangement of surges 

in time and space resulted in the execution of a cyclonic track loop. Specifically, a surge 

approached from the southwest and pivoted around the tornado, merging with the RFGF 

to the north and northeast of the tornado. Then, a second surge built and approached from 

the northwest of the tornado, pivoting around the vortex before ejecting to the east. As the 

first surge approached the tornado and passed by its eastern flank, the vortex was forced 

northward under the influence of enhanced southerly momentum on its eastern side. 

Remnant momentum from the first surge leaks north of the tornado, causing the tornado to 

track westward. Finally, the second surge passes to the west and then south of the tornado, 

forcing it to track to the south and then to the east under the influence of the pivoting 

momentum. Lee and Finley (2022) have documented similar behavior as it relates to 

persistent left turns in tornado tracks long before tornado decay. In three separate cases, 



106 
 

high momentum on the right flank of the tornado (relative to tornado motion) always 

preceded significant leftward turns. Surge momentum would be advected around the 

tornado and arrive on its left flank; as the enhanced momentum pivoted around the tornado 

from its right to left flank, surge momentum would be directed to the left with respect to 

tornado motion and a leftward track turn would occur.  

In Figure 5.2, the strong second surge passes near the tornado on its western flank 

and then pivots to the tornado’s south before its primary thrust of momentum spreads out 

to the east and merges with the RFD front. This pattern of momentum transfer is like the 

second portion of the looping schematic presented in Kurdzo et al. (2015); the result is a 

southward adjustment of the tornado before it resumes moving to the east northeast. The 

similarity of the observed surge and momentum configuration to the second half of the 

Kurdzo et al. (2015) track loop model makes it tempting to call the 16° southward track 

curve the exit from a track loop which only occurred in upper elevation scans, but owing 

to the data gap, it is impossible to see what the configuration of RFD surges was leading 

up to the start of segment 3. Video analysis also revealed a low-level track shift, revealing 

that the tornado track underwent changes near the ground as well as aloft leading up to 

segment 3 (See Figure 4.14). While the low-level track does not resemble a loop, its 

rapidity and short duration suggested that RFD surges may have been the cause; it appears 

likely that RFD surges were present and influencing the track of the tornado leading up to 

segment 3. Since RFD surges can appear in different vortex relative positions around the 

tornado at different heights due to vortex tilt and vertical surge structure, it is possible that 

RFD surges caused a track loop aloft and a brief, sharp track shift near the surface. 

However, a lack of radar data during the gap remains problematic and limits analysis. 
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The radar analysis for 4° provided in Figure 5.3 reveals similar evolution within the 

near-tornado flow as that for the 16° level. Notably, two surges are also present. At first, 

these features do not seem to correlate well with the surges aloft. However, the air within 

the RFD and RFD surges acts as a density current or large momentum surge depending on 

whether the RFD is fueled by cold, dense air or by its own momentum if air has warmed 

to or above the environmental temperature on descent (Lee et al. 2004). Both driving 

mechanisms result in surge fronts that generally tilt back with height since the descending 

parcels of air reach the ground and then spread out at the surface. Because RFD surge fronts 

tend to be tilted back with height, it does appear that the surges at both elevations are parts 

of the same features. The second surge at the 4° analysis has already pivoted to the east of 

Figure 5.3: RaXPol imagery at the 4° elevation taken every 2 scans (40 s) during 

segment 3. In each radar panel, reflectivity is on the left and Doppler velocity on the 

right. Range ring spacing is 2.5 km. Black lines denote RFD surge fronts, which are 

also numbered. Black arrows also point to associated reflectivity appendages. Finally, 

red lines mark the approximate positions of the forward flank and RFGF. 
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the tornado, and when traced backwards with height (backwards around the tornado 

circulation), is likely the same feature as surge 2 at 16°, which is south of the tornado. The 

same is true for surge 1 at 4° and 16°; if surge 1 is tilted back with height the position of 

the surge further to the east in the 16° data aligns with its position at 4°. Note that since the 

tornado is also tilted northeast with height at this time, the surge appears in similar vortex 

relative positions at both levels.  

Although the surges at the 4° level are likely the same features as the surges aloft, 

their contrasting positions and trajectories relative to the tornado and presence of surface 

boundaries result in important differences in the evolution of the near-tornado flow field. 

By the start of segment 3, the first surge is already almost entirely merged with the RFGF. 

Most importantly, this surge has been advected to the north of the tornado, and a localized 

pocket of high easterly momentum is poised to potentially displace the RFGF from the 

tornado. In the next 40 seconds, the momentum merges with and dislodges the RFGF, 

causing it to move back into the tornado inflow channel. The forward flank convergence 

zone and RFGF meet, and the inflow to the tornado is disrupted. Because its inflow is 

disrupted, the tornado has been wrapped to a greater extent in colder downdraft air that is 

less buoyant; the tornado will start to weaken if the inflow does not recover. However, the 

tornado is intense, and the pressure minimum located at its center is driving enough 

convergence as to recover the inflow and prevent decoupling from the RFGF; the inflow 

channel recovers within 1.5 minutes as gauged by the likely positions of the forward flank 

convergence boundary and RFGF in Figure 5.3. As the Selden tornado recovers from 

inflow disruption, the second surge in Figure 5.3 continues to be advected around the 

tornado. As it passes to the east of the tornado, its velocity signature becomes masked since 
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it is travelling perpendicular to the radar beam and the velocities cannot be measured due 

to the single-Doppler nature of the data. However, the velocity signature reappears as the 

surge impinges north of the tornado. By the end of the analysis, the second surge is once 

again threatening the tornado inflow and is poised to displace the RFGF. However, the end 

of data collection for D6 makes it impossible to know what effect the surge had on the 

tornado after this point.  

During D6, Figure 4.3 shows that the Selden tornado reaches its peak measured 

intensity. Moreover, the analysis in Figure 4.3 also reveals that the tornado is much stronger 

near the surface than aloft; shear across the tornado near the ground is close to 90 m s-1 

while it is only 70 m s-1 at the top of the domain near 1200 to 1300 m ARL. The tornado 

width is also close to 700 m at both the bottom and top of the domain. Vertical vorticity is 

therefore greatest near the surface, creating a downward directed pressure gradient force 

that drives the development of the occlusion downdraft. Adlerman and Droegemeier (1999) 

show that the occlusion downdraft forms within the RFD, generally on the southern flank 

of the tornado and that the occlusion downdraft is slowly advected around the low-level 

circulation with time. Numerous possible explanations have been given for why the 

occlusion downdraft is not collocated with the tornado, including tilt to the vorticity 

maximum with height, misalignment between the tornado and mesocyclone above it, and 

contributions from buoyancy (Bluestein 2013). While it is not possible to ascertain the 

degree to which buoyancy is contributing to the formation of the occlusion downdraft, the 

vorticity maximum does tilt significantly to the north with height (See Figure 4.5). The 

appearance of generally stronger, larger, and vertically coherent RFD surges is also 

suggestive of the development of the occlusion downdraft and helps to determine its 
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location. In their study, Skinner et al. (2014) noted that the manifestation of the occlusion 

downdraft at the surface would resemble RFD momentum surges, with areas of enhanced 

convergence appearing at its peripheries. Because the strong RFD surges are seen to appear 

to the south or southwest of the tornado and momentum generally increases on the 

tornado’s southern flank during segment 3 (See Figure 5.3), it is likely that the occlusion 

downdraft has become established within the RFD just to the south of the tornado. 

 While no specific physical mechanism was given for how the occlusion downdraft 

produces RFD surges in Skinner et al. (2014), Figure 5.4 attempts to provide a possible 

explanation. The occlusion downdraft, like the broader RFD, is sensitive to changes in the 

magnitude of its forcing mechanisms. If the vertical gradient of vorticity, and thusly, the 

dynamic pressure gradient, undergo any pulses in strength, then the occlusion downdraft 

would also undergo pulses. A burst in intensity of the occlusion downdraft generates an 

outflow surge, around which significant convergence is found. Figure 5.4 then shows that 

Figure 5.4: Schematic showing how a pulse in occlusion downdraft outflow could 

generate RFD surges. The location of the tornado is marked by a T, the occlusion 

downdraft outflow by a blue circle, the RFD flow by a blue arrow, and enhanced areas 

of convergence, or RFD surges, by red lines. 
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interaction with the background RFD flow creates two stronger zones of enhanced 

convergence around the outflow surge. One is situated in front of the occlusion downdraft 

where convergence is enhanced as the RFD flow forces that portion of the outflow 

boundary forward, and the second is located to the rear of the occlusion downdraft where 

opposing flow enhances convergence. As time passes, the two areas of enhanced 

convergence are advected by the RFD flow and present as momentum surges; the process 

then repeats if the occlusion downdraft experiences any further pulses in intensity. 

However, even though RFD surges likely result from the outflow of the occlusion 

downdraft near the surface (Skinner et al. 2014), it is still possible that the RFD surges 

appearing during segment 3 are driven by some other mechanism. Both Marquis et al. 

(2016) and Lee et al. (2012) documented the vital role surging RFD momentum and RFD 

surges play in causing occlusion; whether the RFD surges are directly generated by the 

occlusion downdraft or not, their appearance is an indication that the Selden tornado is 

nearing occlusion. 

 

5.3: Multiple Vortex Transition 

 At or around 2318:20 UTC, the Selden tornado sustains a multiple vortex transition. 

A radar analysis covering the period depicting this transition is shown in Figure 5.5. At the 

start of the analysis period, the velocity field portrays a tight, symmetric vortex. This 

remains the case for the next 40 seconds, with the tornado intensifying a bit. Then, at 

2318:33 UTC, the velocity field in and around the tornado begins to become irregular. 

Small areas of intense shear appear within the tornadic vortex and asymmetry develops. 

The intense pockets of shear have a magnitude sometimes over 40 m s-1 and a size on the 
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order of 10 to 100 m while the parent tornado in which the pockets are embedded has a 

ΔVmax of approximately 80 m s-1 and a width near 700 m. (See Figures 4.5, 5.7). 

Furthermore, the shear pockets appear to revolve about the parent vortex slower than the 

vortex azimuthal flow in radar animations, propagating into the flow. These characteristics 

closely resemble the definition of secondary vortices set forth by Wurman (2002); 

secondary vortices were found to be on the order of 50 m across and had a ΔVmax magnitude 

of approximately half of the parent vortex while moving about the parent tornado at a 

slower pace than the average azimuthal flow. Both the asymmetry and secondary vortices 

become more defined by the end of D6 as the multiple vortex transition completes. Finally, 

the tornadic vortex velocity signature expands greatly in size during the transition, another 

hallmark of multiple vortex tornadoes.  

Figure 5.5: Radar analysis during segment 3 at the 4° elevation depicting the multiple 

vortex transition for the Selden tornado. Doppler velocity is on the left and correlation 

coefficient on the right. Range ring spacing is 2.5 km. Black arrows point to 

secondary vortex related features. 
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Evidence from the ρHV field also confirms the presence of secondary vortices. At 

the start of the analysis, the ρHV field shows a circular minimum associated with the dust 

and debris in the tornado about 700 m across. In the following panels, the ρHV minimum 

becomes irregular as small discrete minima appear outside the primary minimum. These 

new minima are associated with the secondary vortices. As time goes forward, the area of 

low ρHV grows as dust and debris get increasingly lofted and disturbed by the new 

secondary vortices appearing around the edge of the parent tornado. By the end of the 

analysis, the ρHV minimum has grown significantly, to over 1200 m in diameter reflecting 

the new large size of the tornado.  

Photos taken from video of the Selden tornado provided in Figure 5.6 provide more 

detail on the timing and pace of multiple vortex transition. The first image, taken looking 

to the west southwest into the town of Selden at 2318:16 UTC, shows a large single celled 

tornado with a visible condensation funnel. Just 10 seconds later, a second image from the 

same vantage point shows an entirely different scenario. No longer is there a complete 

condensation funnel reaching the ground, and the area of lofted dust has notably increased. 

The first visible secondary vortex also appears in the second photo to the right (north) side 

of the tornado, marking the completion of multiple vortex transition. These photos display 

the rapidity of the transition, with the vortex taking only 10 seconds to go from a fully 

condensed funnel around a single celled vortex to the appearance of the first secondary 

vortex. In video, the vortex undergoes rapid changes, with the condensation funnel 

suddenly evaporating and appearing to spread out as the tornado’s internal downdraft 

reaches the ground and forces the vortex to breakdown. The photos also pinpoint the time 

of transition to approximately 2318:20 UTC. 
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In observations of a tornado in Crowell, Texas, Marquis et al. (2012) noted that the 

tornado’s multiple vortex transition may have been instigated by the presence of enhanced 

outflow that was associated with particularly cold air. Lewellen et al. (2000) also noted that 

a tornado could sustain a multiple vortex transition if outflow air wrapped around a tornado 

and blocked its warm inflow in a process called corner flow collapse. The time of the 

Selden tornado’s multiple vortex transition correlates very well with the greatest extent of 

Figure 5.6: Video grabs of the Selden tornado at 2318:16 UTC (top) and 2318:26 

(bottom), taken looking to the west southwest into the town of Selden from the D6 

location. A white arrow denotes the first visible secondary vortex in the bottom image. 

Video courtesy of Trey Greenwood. 
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inflow channel disruption visible at the 4° elevation at 2318:13 UTC in Figure 5.3. It is 

possible that the Selden tornado sustained its multiple vortex transition because its inflow 

was briefly disrupted. Multiple vortex tornadoes are generally associated with high swirl 

ratios, which can be interpreted simply as a ratio of azimuthal flow over radial flow 

(Rotunno 1984). While the tornado had access to buoyant inflow which could be easily 

lifted by the tornado updraft, radial inflow was high near the surface, resulting in a low 

swirl ratio. But once the tornado became enveloped in heavier, less buoyant downdraft air, 

the tornado could no longer force its ascent as easily and radial inflow decreased. As a 

result, the swirl ratio increased, and the internal downdraft was able to penetrate to the 

surface to cause multiple vortex transition. 

 After the tornado recovers its inflow, it does not transition back to single vortex. It 

appears that the primary cause was that the dynamic pressure minimum at the center of the 

tornado was weaker due to the multiple vortex transition. When transition occurred, the 

vortex broadened significantly while azimuthal flow speed did not increase, resulting in a 

significant decrease to the magnitude of the tornado’s central pressure drop. Consequently, 

even after inflow recovered, the pressure minimum could not drive enough near-surface 

convergence to restore the vortex inflow to the level it was previously, and the swirl ratio 

remained high.  

 

5.4: Cross Section Analysis 

 The tornado azimuthal wind cross section for segment 3 at 4° is provided in Figure 

5.7. Because the tornado has moved to within 4 km of RaXPol, the cross section now 

represents a height under 300 m ARL, well underneath the cloud base and potentially 
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within weak inflow, which may occur up to 600 m above the surface according to Kosiba 

and Wurman (2010). The segment 3 cross section also samples the tornado at peak 

intensity, with an average ΔVmax of 73 m s-1 during the period. Reflecting this, circulation 

has also greatly increased again, from nearly 45000 m2 s-1 to almost 80000 m2 s-1. Notably, 

the tornado has attained a very large width of approximately 700 m, and the profile has 

begun to take on some irregularity. There is a double relative maximum feature on the north 

side of the cross section, and the solid body core is slightly disrupted on the south side. 

Both irregularities and the large width are indicative of a multiple vortex tornado. The 

action of secondary vortices and breakdown of the tornado into multiple cells will cause 

the vortex core to deviate from solid body rotation since velocities will be enhanced on the 

outer edge of secondary vortices and lessened on their inner side. The presence of the 

double maximum on the north side of the profile is likely a reflection of the change in size 

of the tornado during transition; the tornado did not undergo transition until mid-way into 

segment 3, so the double maximum is capturing both the smaller and larger radius of the 

Figure 5.7: Azimuthal Cross Sections through the Selden Tornado at 4° elevation for 

track segments 1 (top) and 2 (bottom). Pictures of the Selden tornado from each 

segment are also included. Photo courtesy of Trey Greenwood. 
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tornado before and after transition. While the signature is not present on the south side of 

the tornado, the maximum on this side is broad, likely because of the same process. Finally, 

the winds outside the RMW are slow to decrease. Wurman and Gill (2000) noted that 

azimuthal winds decreased particularly slowly outside the RMW, especially when their 

tornado was in its multiple vortex phase; this appears to also be the case here. 

 The segment 3 cross section may also appear to document an asymmetrical tornado 

at first glance. However, if a slightly different vortex velocity is chosen such that the 

velocity maxima on either side are made more equal, then the profile becomes much closer 

to being centered on 0 m; a small change in vortex velocity subtracted to make the profile 

results in both a more symmetric vortex and a reasonable vortex speed given the motion of 

the parent supercell. Even though the tornado became quite asymmetrical on radar during 

its multiple vortex phase, the presence of analysis times in the segment 3 cross section from 

before the transition seem to be washing out any significant signal of asymmetry. Yet, if 

the segment 3 profiles from each elevation angle are compared with height (figure not 

shown), a clear chaotic trend emerges in the center positions of the tornado; vortex center 

positions cover a wide range of ±50 m from the profile center. The wide variety in center 

asymmetries is likely a reflection of the multiple vortex nature of the tornado later in 

segment 3 as the development of secondary vortices generate differing vortex asymmetries 

with height since secondary vortices have significant vertical tilt (Rotunno 1984). 

 Further evidence for a multiple vortex transition during segment 3 can be found in 

the pattern of standard deviation within the cross section. Error bars are exceptionally large 

within the vortex core region, with a magnitude of ±15 to ±20 m s-1. Large variability 

within the vortex core reflects the disruptions occurring because of secondary vortices, 
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which are orbiting the center of the tornado and producing wide ranges of velocity 

measurements at the radar from scan to scan. The standard deviation of the velocity values 

in the segment 3 cross section also reaches relative maxima near the RMW, again 

suggesting a wide range of measured values near the RMW in the individual scans that 

make up the average cross section, and thusly, a tornado that is changing size. 

 The vortex radial wind profile for segment 3 is shown in Figure 5.8. Near the center 

of the cross section in and around the tornado, there is now a very broad area of divergence 

that is over 800 m in diameter. Additionally, unlike previous radial wind profile divergence 

maxima, this area of divergence is weak and has no defined maximum near the middle of 

the cross section. Because the Selden tornado has undergone a multiple vortex transition, 

the tornado has become much wider, causing there to be a larger area of centrifuging. 

However, the magnitude of ΔVmax did not increase with the increased radius of the tornado, 

decreasing the magnitude of the centrifugal force within the tornado and decreasing overall 

divergence within the vortex. This finding supports the notion that the magnitude of the 

Figure 5.8: Radial wind cross section through the Selden tornado at the 4° elevation 

for segment 3 (top) and 1-D divergence (bottom). 
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dynamic pressure minimum within the tornado decreased significantly during the multiple 

vortex phase, and that it was unable to drive enough near surface convergence into the 

tornado even after the inflow channel disruption ended to spur transition of the tornado 

back to a single celled vortex. Another notable feature of the radial wind profile is the 

convergence on either side of the tornado, perhaps marking where inflow is slowing down 

as it turns upwards at the edges of the tornado. The convergence signatures could also be a 

result of inflow slowing as it encounters debris (Wakimoto et al. 2020). Finally, the profile 

is overall convergent, reflective of a strong and strengthening supercell mesocyclone. 

 

5.5: Descending Reflectivity Core 

 During segment 3, a second DRC was identified as depicted in Figure 5.9. Over a 

2-minute period beginning at the start of segment 3 at 2316:29 UTC, a large area of high 

reflectivity greater than 45 dBZ is observed to fall through the domain all the way to the 

ground. In the first analysis panel, the DRC is located at roughly 1000 m ARL and includes 

areas to the east and north of the tornado. The weak echo column of the tornado is also 

clearly visible in this volume. Over the next two analysis times, the DRC continues its 

descent, first to the east and then north of the tornado. Finally, by the last panel in the 

analysis at 2318:29 UTC, the DRC has passed entirely through the bottom of the domain 

very near the surface as it contacts the ground. The DRC is again falling on the east and 

north sides of the tornado as would be expected for a DRC coming off the overhang of the 

parent supercell. Since the DRC falls through the lowest 1 km of the storm in less than 2 

minutes and is likely descending from the supercell overhang, it closely matches the 

Rasmussen et al. (2006) definition and is likely a type 1 DRC (Byko et al. 2009). 
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 Since the identified DRC is likely type 1, it is close enough to the tornado that it 

may have an impact on the vortex wind field. Figure 5.10 contains south to north 

reconstructed cross sections through the tornado center at the same times as the volumes 

in Figure 5.9. The DRC is clearly visible in the reflectivity cross sections. In the first panel 

at 2316:29 UTC, the high reflectivity core is centered at 1 to 1.2 km ARL. In the second 

panel 40 seconds later, the DRC is now at 0.8 km ARL, and in the third panel, is roughly 

0.5 km ARL. By 2318:29, only the top of the DRC is visible, and the core of high 

reflectivity is below 0.2 km ARL. As compared to the first DRC from segment 2, this DRC 

is falling a bit farther from the tornado, located around 0.8 km north of its center. Nearly 

Figure 5.9: Volumes enclosing reflectivity values greater than or equal to 45 dBz. The 

domain is centered on the tornado in each panel, and the view is from the northeast. All 

distances are in meters (m). For clarity, the DRC is circled and denoted with an arrow. 

The dotted arrow and circle denote that the DRC is reaching the ground and has passed 

through the bottom of the domain. 
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double the tornado radius from the tornado center, this DRC is likely too far away from the 

tornado to have an effect before hitting the ground. The velocity cross sections reflect this, 

with no clear protrusions of the positive Doppler velocities following the DRC downwards. 

However, there does appear to be an increase in the velocities on the north side of the 

tornado in the last analysis panel at 2318:29, perhaps because of the enhanced convergence 

on the DRC outflow impinging the tornado from the north. 

Figure 5.10: Reconstructed cross sections through the tornado at the same 4 scans as 

in Figure 5.9. Reflectivity is on the left and Doppler velocity on the right. Black 

arrows point to the DRC, while a white arrow indicates the potentially related low-

level velocity increase. 
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 Interestingly, the DRC contacts the ground shortly after 2318 UTC. This is 

coincidental with peak inflow disruption (See Figure 5.3) and the Selden tornado’s multiple 

vortex transition (See Figures 5.5 and 5.6). While the DRC is relatively far from the vortex, 

perhaps it may have played a role in enhancing momentum north of the tornado along with 

the RFD surge present at the same time. If this were the case, the additional enhancement 

of momentum north of the tornado from the DRC may have increased the severity of the 

inflow disruption, causing the multiple vortex transition to take place. However, because 

of the presence of the high momentum within the RFD surge, it is not possible to find a 

distinct DRC outflow velocity signature within the RaXPol data. Furthermore, limitations 

of 1-dimensional Doppler velocity preclude the analysis of the divergence field and 

previously described issues with the 2° and 0° RaXPol data prevent investigation at the 

lowest levels where the DRC response would be largest. 

 

5.6: Streamwise Vorticity Current 

 During segment 3, the Selden tornado continues to strengthen and then reaches a 

plateau at a ΔVmax approaching 80 m s-1. While the tornado is certainly intensifying because 

of a favorable position within enhanced convergence and vorticity near the apex of the 

RFGF and forward flank boundary, part of this strengthening may be the consequence of 

an SVC. While current research has not yet answered the question as to whether air from 

an SVC is actually ingested by tornadoes, they certainly have direct impacts on the health 

of the parent supercell and mesocyclone (e.g., Schueth et al. 2021). To search for a potential 

SVC feature, RHI’s were reconstructed using RaXPol data from segment 3 since both the 

supercell and tornado reached their peak intensities during this time, radar data were very 
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high resolution due to storm proximity, and angles from the radar to the supercell forward 

flank were favorable for analysis. Figure 5.11 contains an example of the RHI’s in their 

raw form compared to those after interpolation to a grid. There are minimal differences 

between the two; interpolated RHIs will be used in lieu of raw forms for analysis. 

 Provided in Figure 5.11 is the best example of a potential SVC feature found in any 

of the reconstructed RHIs. The position of the RHI in Figure 5.12 is roughly 1 km upwind 

from the forward flank boundary and RFGF apex along the forward flank boundary. Within 

the velocity RHI on the top right of Figure 5.12, the negative inbound velocities within the 

forward flank outflow underlie the positive outbound velocities within the supercell inflow. 

Centered at a range of 4.9 km and a height of 0.5 km, a distinct velocity signature appears, 

with inbound and outbound radial velocities extending towards each other to form a 

relatively tight vertical gradient. The spike in vertical shear indicates the presence of a 

circulation, with outbound velocities over inbound ones giving the circulation a clockwise 

sense and vorticity oriented into the figure. Because the RHI was constructed upwind of  

Figure 5.11: Comparison of raw (top) and interpolated (bottom) reconstructed 

reflectivity and velocity RHIs from 2319:09 UTC at an azimuth angle of 275°. 
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the supercell mesocyclone along the forward flank region, the vorticity vector is pointing 

towards the mesocyclone.  

The tightest gradient in velocities in Figure 5.12 appears just above the forward 

flank outflow, putting the resultant horizontal vorticity generated by the circulation within 

the inflow region. Winds within the inflow region likely contain a component directed 

towards the supercell mesocyclone, creating streamwise horizontal vorticity. Owing to the 

single-Doppler nature of the data and position of the supercell relative to the radar, it is not 

possible to prove that a component of wind directed towards the supercell mesocyclone is 

present during segment 3. However, earlier scans from segments 1 and 2 from when the 

supercell was farther to the west and the inflow region was at a different angle from the 

radar do show a significant component of the wind within the inflow region directed 

towards the mesocyclone. The same component of wind directed towards the mesocyclone 

is inferred to exist during segment 3 as well, creating significant streamwise horizontal 

vorticity. The 1-dimensional vorticity associated with the velocity signature is 

approximately 0.15 s-1, as shown in the bottom right panel of Figure 5.12. Strong positive 

vorticity below the identified vorticity maxima is related to surface interaction. Finally, the 

SVC feature also lies within the entry to the supercell vault directly under the overhang. 

 The height ARL and location of the SVC feature agree closely with what was found 

in Schueth et al. (2021), which showed that SVCs were located right behind the surface 

position of the forward flank convergence boundary and were typically centered 0.5 km 

above the ground and generally occurred within 5 km along the forward flank boundary 

upwind from the RFGF and forward flank apex. However, the 1-dimensional horizontal 

vorticity calculation yields values that are close to double the horizontal vorticity 
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magnitude of 0.08 s-1 found by Orf et al. (2017) and Schueth et al. (2021). Much of the 

overestimate is likely a result of the crudeness of the 1-dimensional vorticity calculation, 

which is limited by use of the Doppler velocity. Nonetheless, the vorticity maxima 

collocated with a velocity signature is a good match for a potential SVC.  

When several reconstructed RHIs are taken spaced equidistant from each other 

along the forward flank boundary and averaged, the SVC feature vanishes and the RHIs 

simply reveal a velocity pattern that is expected from the density current at the edge of the 

forward flank cold pool. Figure 5.13 contains this type of analysis at two times, 2317:49 

and 2319:09 UTC. The first time is mid-way through segment 3, while the second is the 

last complete volume before D6 data collection ends. In both analyses, RHIs were 

reconstructed at 2° azimuth increments from the northern edge of the supercell hook echo 

near the forward flank and RFGF apex to a point roughly 2 km upwind along the forward 

flank boundary. At 2317:49 UTC, a broad area of enhanced horizontal vorticity is centered 

about 0.6 km ARL and has a magnitude of approximately 0.065 s-1. Similarly, a horizontal 

vorticity maximum appears at 2319:09 UTC, but its magnitude has increased to roughly 

0.08 s-1. While the increase in approximated horizontal vorticity indicates that the supercell 

may have been strengthening or developing through segment 3 or that an SVC had become 

established, the area of enhanced vorticity is broad and rather diffuse. In Schueth et al. 

(2021), SVCs were found to be transient features, appearing in the heads of breaking 

Kelvin-Helmholtz waves at the leading edge of the forward flank cold pool. Because of 

this, an SVC does not appear in the averaged RHIs. Instead, only the density current from 

the forward flank remains, with colder outflow moving towards the radar at the surface and 

supercell inflow moving away from the radar aloft; only broad horizontal vorticity exists 
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within the transition from forward flank outflow to the ambient inflow above it. While 

Figure 5.12 contains the best example of an SVC, Figure 5.13 reveals their transient nature, 

with the SVC velocity and vorticity signature disappearing in the average. 
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Chapter 6 

The Selden, Kansas Tornado During D7 

 

6.1: Track Behavior  

During D7, the track of the Selden Tornado becomes irregular and undergoes many 

significant shifts as seen in Figure 6.1. The many track deviations apparent from Figure 6.1 

are embedded within a larger scale pattern of movement typified by a gradual left turn 

towards the north, with the tornado eventually moving to the north-northeast shortly before 

dissipation in segment 7 at all scan elevations. In addition to making a gradual leftward 

turn, the tornado also slows down. During most of D6, the Selden tornado was moving 

along with its parent supercell at roughly 9.5 m s-1 from 240° (SW). In between D6 and D7 

the forward speed of the tornado averaged only slightly more than 6 m s-1 at the 4° 

elevation, which then continues to decrease in segment 4 to only about 4 m s-1. In both 

direction and forward speed, the track of the tornado no longer resembles that of the parent 

supercell after segment 4; the differing motions between the parent storm and tornado 

indicate a disconnect between the tornado and low-level supercell mesocyclone from the 

rest of the storm. The differential motion vectors between the tornado and parent supercell 

reflect a decoupling between the tornado and RFGF as occlusion takes place. Described by 

Dowell and Bluestein (2002) and Tanamachi et al. (2007), the occlusion of a tornado occurs 

as it becomes enveloped in downdraft air and buoyant inflow ceases, which results in decay 
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of the tornado. In addition, decoupling from the RFGF means that the tornado and low-

level mesocyclone are no longer ‘anchored’ to the parent supercell; in effect, there are no 

longer any near-surface features or boundaries to force movement of the tornado along 

with the parent supercell and the tornado falls behind (Adlerman and Droegemeier 1999). 

Since storm motion is east northeastward, the tornado and low-level mesocyclone move 

predominantly westward with respect to the parent supercell. Concurrently, the tornado 

track also trends leftwards with respect to the track of the parent supercell after occlusion. 

Persistent leftward motion of the tornado is likely a result of RFD surge influence; 

additional details will be addressed in the following radar analysis in section 6.2.  

Figure 6.1: Track of the Selden tornado at the 4°(top) and 16° (bottom) elevation 

scans. Zoomed insets of the tracks leading up to and during D7 are provided, along 

with descriptions of the segment motion vectors. 
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As the tornado becomes further separated from the RFGF and the supercell inflow 

channel, smaller scale forcings such as RFD surges have a greater effect on the tornado 

track, resulting in a sequence of unique movement patterns. At the 4° elevation, which 

during D7 remains at roughly 400 m ARL, the tornado track was separated into 5 segments 

based on numerous track shifts. Segment 4, the first of D7, contains generally northeasterly 

motion from roughly 225° (SW) at slightly greater than 4 m s-1. Notably, this track vector 

represents an average for a segment in which the tornado sustains a significant track 

deviation which can be seen in Figures 6.1 and 6.2. At the very start of D7, the tornado 

Figure 6.2: Comparison of the first cyclonic track loop at 4° increments. The evolving 

area of the track which represents the track loop is circled in each diagram. Axes are 

measured from D7 RaXPol position (km). 
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begins moving northwestward before moving back southeastward onto the previous track. 

A similar feature is seen in the 16° map in Figure 6.1 and throughout all scan elevations, a 

breakout of which is shown in Figure 6.2 at 4° elevation increments. At the 16° elevation, 

which is roughly 1700 m ARL during D7, the feature is clearly a track loop; the tornado 

enters the loop curving to the northwest, passes through the top of the loop moving to the 

south, then completes the loop and exits it heading back to the east before resuming a 

northeasterly track. Because of the motion of the parent supercell, which even after 

occlusion is still forcing the tornado to the east at a reduced speed, the track loop does not 

appear to be a loop at the 4° elevation; while the tornado is moving west at the top of the 

loop, it is doing so into the eastward component of motion forced by the parent storm such 

that the two motions sum to zero zonal movement. In the 12° and 16° track map, the 

cyclonic track loop is notably more pronounced. The tornado has a longer dwell time in 

the loop, resulting in a much slower average segment 4 motion at 16° of about 2 m s-1 from 

approximately 210° (SSW). The track loop of segment 4 and its similarity to the one 

analyzed by Kurdzo et al. (2015) will be a focus during radar and RFD surge analysis. 

Following the track loop at the 4° elevation, the Selden tornado’s forward speed 

rapidly increases. Because of this significant speed change, segment 4 is also subdivided 

into two sections. The first subsection at the 4° level contains the track loop while the 

second subsection is typified by the rapid northeasterly movement right after the loop. 

During the second subsection, the tornado moves forward at nearly 12 m s-1 from 235° 

(SW). While the track direction is typical of the parent supercell, the speed is not. For the 

brief duration of the subsection, the tornado moves faster than at any other observed portion 

of its lifecycle. A similar speed increase was observed by Lee and Finley (2022) associated 
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with RFD surges, albeit accompanying a leftward track turn. While the resulting motion 

from changes in bounding momentum brought on by RFD surges was different in the Lee 

and Finely (2022) cases, it is likely that the brief movement speed burst and rapidity of 

track changes during segment 4 are the result of RFD surges. More details will be examined 

during radar analysis.  

Meanwhile, at the 16° elevation, the tornado continues to execute the cyclonic track 

loop, which takes much longer to complete at higher elevations. The first segment 4 

subsection at 16° represents a brief period just before the track loop, which is slightly 

delayed with height. Then, the second subsection constitutes the track loop. At 16°, the 

track loop and second subsection last until 2331:30 UTC, which is well after the end of the 

loop at 4° (2328:38 UTC) and even segment 4 at 4° (2329:58 UTC). Because of the much 

longer dwell time in the track loop at 16°, the burst of rapid movement at the 4° level is 

happening while the tornado is still executing the track loop at 16°; the tilt of the tornado 

from 4° to 16° elevation increases to over 40° off vertical towards the north and then 

northwest during segment 4 (See Figure 6.4). As a result of continuing occlusion and 

perhaps due to rapidly increasing tilt of the vortex, it is at about 2330 UTC that the Selden 

tornado’s condensation funnel completely dissipates. Although the correlation coefficient 

minimum from debris lofting and the WEH associated with the tornadic vortex remain, the 

tornado itself is no longer readily visible to any observer due to the lack of any 

condensation funnel and decreasing amounts of lofted dirt and dust. 

 After rapid tornado motion during the latter part of segment 4 at the 4° level, the 

Selden tornado comes to an abrupt stop during segment 5. For a period of 2.5 minutes, the 

tornado barely moves. As with the track in segment 4, RFD surges and the momentum they 
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transport are likely playing a role in keeping the tornado stationary by causing the tornado 

to move westward at the same speed as the parent supercell’s eastward component of 

motion. Interestingly, segment 5 changes significantly with height. As height increases, the 

motion in segment 5 becomes less stationary, slowly appearing more like an extension of 

northeasterly movement during segment 4. By the 10° elevation, segment 5 is no longer 

distinct, and it merges into segment 4 (See timeline in Figure 3.8, map in Figure 6.1). 

Furthermore, the sharp changes in track seen at the end of segment 4 at the 4° elevation 

also disappear with height; the tornado no longer picks up so much speed after the track 

loop before coming to an abrupt stop. Consequently, the tracks at higher elevations during 

the first 4 to 5 minutes of D7 are closer to a gradual leftward turn and are less impacted by 

the action of RFD surges. Because RFD outflow is usually strongest near the surface, it 

would be expected that the tornado track would be dominantly governed by the occlusion 

process at higher elevations. As a result, the tornado moves at a more consistent pace 

westwards into the parent supercell and any track shifts are more subtle and smoother; a 

more thorough investigation will follow during radar analysis. 

 Especially at lower scan elevations, the Selden tornado unexpectedly begins 

retrograding after segment 5. At the 4° elevation, the tornado moves almost due west for a 

period of 3 minutes, tracking from 100° at roughly 3 m s-1. The transition from segments 5 

to 6 at the 4° scan level likely represents an amplification of the bounding momentum 

balance that led to the stationary motion in segment 5, causing the tornado to have a larger 

westward component of motion than the eastward component of motion forced by the 

parent supercell. Also, like the stationary movement of the preceding segment, the nature 

of the retrograding movement of segment 6 (from 2° to 8° scan elevation) and segment 5 
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(from 10° to 18° scan elevation due to loss of stationary phase) changes greatly with height. 

As height increases, the motion during the segment representing retrograding movement 

becomes less westward and starts to take on a northward component. By the 16° elevation 

at 1.7 km ARL, the motion during the retrograde phase is not actually westward any longer; 

the tornado’s track vector at the 16° level is north-northeasterly at almost 7 m s-1 from 190° 

(S). Once again, the changes in retrogression at higher elevations reflect the waning 

influence of the RFD outflow and growing dominance of the occlusion process with height. 

 After the tornado retrogrades, the track becomes increasingly disjointed with 

height. At the 4° elevation, the tornado takes an abrupt turn towards the north and forward 

speed increases markedly. The transition from segment 6 to segment 7 is sharp, with the 

track vector becoming 11 m s-1 from 200° (SSW); the track heading changes by more than 

100° and average forward speed more than triples. However, transition to a northward 

heading does not happen right away at the 16° level. As seen in Figure 6.1, there is an 

intervening secondary cyclonic track loop at the 16° elevation before the track takes on a 

north heading like it does below at the 4° level. At the 16° elevation, the tornado is on a 

due northward track during segment 5, which is the segment representing the retrograde 

phase at 16°. Suddenly, the tornado then stops and moves slightly to the west as it 

transitions back south at the start of segment 6. After moving south for 4 scans (80 s), the 

tornado then recovers back to the east before turning north during segment 7, where the 

motion of the tornado becomes very similar to that at the 4° level. If segments 5 and 6 at 

16° are combined, they constitute a feature that presents as another cyclonic track loop.  

The second track loop is not continuous with height like the first one. Provided in 

Figure 6.3 are zoomed in portions of the track showing the second track loop at 4° 
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increments from the 4° to 16° level. While there is no hint of a track loop at the bottom of 

the domain at 4° besides for the sudden turn to the north, the loop starts to appear higher 

up. At the 8° elevation, a short burst of southeasterly movement, which lasts for only 3 

scans (60 s), occurs in between the end of the retrograde phase and northward movement 

phase. The trend of increasing track loop resemblance continues at the 12° level, where the 

burst of eastward movement has become drawn out; segment 6 at the 12° elevation sees 

the tornado moving back east as far as it had to the west in the previous segment. Finally, 

by the 16° elevation, the loop becomes fully visible.  

Figure 6.3: Comparison of the second cyclonic track loop at 4° increments. The 

evolving area of the track which completes a transition to a track loop by the 16° level 

is circled in each diagram. Axes are measured from D7 RaXPol position (km). 
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Further indications for the height dependent motions during D7 can be found in tilt 

analysis presented in Figure 6.4, which is accurate to within 5° for tilt magnitude and to 

within 5° for tilt azimuth when tilt is sufficiently large. The upper panel of Figure 6.4 

displays the tilt in degrees off vertical from the 4° to 16° scan elevation while the lower 

panel shows the direction of the vortex tilt with height from the 4° to 16° scans. During the 

second track loop at 16°, the tilt of the tornado first spiked to over 40° off vertical and tilt 

Figure 6.4: Tilt analysis for the Selden tornado, highlighting features associated with 

height dependent movement during D7. Analysis is done from the 4° level to the 16° 

level. 
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became almost due north as the tornado tracked slowly westward at low-levels and 

northward aloft. Then, the tilt decreased to about 20° off vertical and the tilt took on an 

easterly component during the latter half of the second track loop as the tornado at 16° 

moved south and then back east over the lower-level track. Once the tornado at 16° crossed 

over the track at 4°, tilt increased again towards 30° off vertical. The widely variable vortex 

motions around the second track loop are likely the result of differing RFD surge and 

momentum configurations around the tornado with height, which will be investigated 

further in radar analysis. 

 After the second track loop, the tornado track becomes uniform with height as the 

tornado picks up speed at all scan elevations on a north-northeasterly track during segment 

7 (segment 8 at 8° due to appearance of second track loop, see Figure 3.8). The track vector 

at 16° during segment 7 is 205° (SSW) at nearly 9 m s-1, which matches closely to the track 

vector at 4° of 200° at 11 m s-1. Notably, the forward speed at lower levels is still greater 

than that aloft. Consequently, the northward component of the tornado tilt completely 

vanishes, and the tornado becomes tilted towards the southeast by the end of the segment 

at over 30° off vertical (see Figure 6.4). The track during segment 7 is also remarkably 

smooth and stable compared to previous segments in D7; the track continues in nearly a 

straight line with no major perturbations. This stability likely reflects waning influence of 

RFD surges as the RFD and proximate tornado wind field decay due to deepening 

occlusion. The transition will be seen more clearly in radar analysis in the following 

section, but as the tornado continues occluding along with the low-level mesocyclone, the 

RFD begins to rapidly weaken in segment 7 and RFD surges cease to be generated. Finally, 

segment 8 represents the complete occlusion and dissipation of the tornadic vortex. A final 
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left hook appears in the track, with the vortex moving westward again as it migrates into 

active downdraft regions within the parent supercell and dissipates in short order. 

 

6.2: Evolution of the Near-Vortex Wind Field and RFD on Radar 

 

6.2.1: Evolution in Early D7 – First Cyclonic Track Loop 

 A radar analysis at the 4° elevation (400 m ARL) covering segment 4 from 2326 to 

2330 UTC is presented in Figure 6.5. In the first analysis time at 2326:38 UTC, two 

ongoing RFD surges are apparent. The leading surge is quite potent and is already wrapping 

around the tornado to its east and north; notably, very high easterly momentum is 

impinging north of the tornado with this surge. The strength and extent of surging 

momentum is reflective of a strong occlusion downdraft (Skinner et al. 2014). By analysis 

time 4 at 2328:38 UTC, surge 1 merges with the RFGF, displacing it from the tornado 

circulation. By the following analysis time, the RFGF breaks away from the tornado and 

the inflow channel on the western flank of the hook echo becomes cut off from the tornado. 

The tornado is unable to drive enough surface convergence to keep persistent surging 

momentum from displacing the RFGF; the RFGF and tornado become decoupled. Figure 

6.5 indicates that occlusion occurs at a time close to 23:29 UTC, when the low reflectivity 

channel representing the inflow fills. An occluded portion of the RFGF still extends back 

to the tornado, as evident from the significant zone of radial convergence on the tornado’s 

western flank. However, the occluded extension of the RFGF is not forced forward 

(eastwards) by the RFD outflow like the un-occluded leading portion of the RFGF and the 

tornado motion slows; the tornado begins to lag the parent storm. Furthermore, warm 
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inflow is no longer reaching the tornado and is instead being forced up and over the 

occlusion, which is located at the triple point indicated by a red dot in Figure 6.5; the 

tornado begins to gradually weaken.  

Both Lee et al. (2012) and Marquis et al. (2016) showed that RFD surges advance 

the tornado lifecycle, noting that a surging RFD eventually caused the near tornado air to 

become dominated by less buoyant downdraft air (See Figure 1.4). Similar evolution is 

seen in Figure 6.5, in which RFD surges cause the Selden tornado to become occluded. In 

their case, Skinner et al. (2014) tied the appearance of strong RFD surges near the low-

level mesocyclone to the occlusion downdraft; Figure 5.4 shows how the occlusion 

Figure 6.5: RaXPol imagery at the 4° elevation taken every 2 scans (40 s) during 

segment 4. In each radar panel, reflectivity is on the left and Doppler velocity on the 

right. Range ring spacing is 2.5 km. Black lines denote RFD surge fronts, which are 

also numbered. Black arrows also point to associated reflectivity appendages. Red 

lines mark the approximate positions of the forward flank and RFGF. A black circle 

also marks the location of an anticyclonic vortex, which will be investigated in section 

6.4. 
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downdraft could generate RFD surges through pulsing behavior. These surges then go on 

to cause occlusion by displacing the RFGF from the tornado and surrounding the tornado 

in downdraft air. 

As shown in the ΔVmax analysis of Figure 4.3, the tornado was much stronger near 

the ground than aloft during segments 3 and 4. In segment 3, the shear across the tornado 

was often close to 90 m s-1 near ground level, decreasing to under 70 m s-1 at the top of the 

domain near 1300 m ARL. A similar trend continues into early segment 4 leading up to 

occlusion, where the shear across the tornado is near 80 m s-1 close to the surface and is 

approximately 60 m s-1 at 2 km ARL. In both segments, the vortex had similar widths at 

both the bottom and top of the domain, causing vorticity to be greatest near the surface. As 

a result, the occlusion downdraft was found to form during Segment 3, and it is likely still 

present during segment 4. By the middle of segment 4, the occlusion downdraft has become 

established enough to create significant surging momentum within the RFD near the 

surface, especially on the eastern and northern flanks of the tornado. In analysis of segment 

3, it was found that the occlusion downdraft was likely south of the tornado; the shift of 

surging momentum during segment 4 to the eastern and northern flanks of the tornado is 

expected given that the occlusion downdraft slowly wraps around the tornado circulation 

with time (Adlerman and Droegemeier 1999). Due to the surging momentum, the RFGF is 

displaced and breaks away from the tornado. Ultimately, the RFGF and tornado become 

decoupled as the RFGF displacement grows, and occlusion occurs.  

 Occlusion of the tornado has profound consequences for its movement. First, as 

explained in the track analysis section, decoupling from the RFGF means that the tornado 

no longer moves with the RFGF as RFD outflow pushes it forward. As a result, the 
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tornado’s forward movement slows, and the tornado moves rearwards (westwards) into the 

parent supercell. In addition to westward storm relative motion, the Selden tornado also 

tracks persistently leftwards of the parent supercell. Leftward motion of the tornado is 

likely a result of RFD surges, which continue to be generated after occlusion takes place. 

The tornado becomes decoupled from the RFGF at the onset of occlusion, isolating the 

tornado and low-level mesocyclone from the mechanism that was responsible for its 

movement along with the parent supercell. Consequently, the tornado becomes very 

susceptible to the influence of RFD surges, and the tornado is readily advected by the RFD 

surges in the direction of their movement. RFD surges typically follow a trajectory around 

the tornado circulation from their origin near the southern flank of the tornado towards the 

northern flank of the tornado. While this occurs, RFD surges continually spread out into 

the RFD and begin merging with the RFGF. Only a portion of the original surge momentum 

reaches the northern flank of the tornado and very little, if any, momentum is ever 

transported to the western flank of the tornado where it would be directed from the north. 

The result is that enhanced momentum occurring both to the south and north of the tornado 

counteract each other to varying degrees depending on the RFD surge trajectory, while 

enhanced southerly momentum east of the tornado is rarely compensated for by significant 

northerly momentum on the tornado’s western flank. In response, the tornado tends to 

move north with respect to the parent supercell after occlusion occurs. Such a pattern of 

momentum and tornado movement is seen throughout D7 in the radar analyses that follow.  

 Leading up to occlusion in segment 4, potent RFD surges are likely present because 

of the occlusion downdraft. These powerful surges alter the tornado track even before 

occlusion occurs near 23:29 UTC. Then, after occlusion has occurred, even weak RFD 
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surges begin to exert considerable influence on the tornado track. As previously discussed 

regarding a possible track loop during early segment 3 and found by Kurdzo et al. (2015) 

and Lee and Finley (2022) in their studies, the specific arrangement of RFD surges and 

associated momentum around the tornado in space and time can cause the tornado to 

significantly change track or execute track loops. In Figure 6.5, RFD surge 1 is placing 

westerly momentum south of the tornado and southerly momentum east of the tornado as 

it pivots the circulation coincident with the start of the first track loop. During their analysis 

of the Moore 2013 tornado track loop, Kurdzo et al. (2015) also found a strong RFD surge 

moving north on the east flank of the tornado at the start of a track loop. As surge 1 moves 

north on the tornado’s eastern flank, it promotes a northward shift in the tornado track. 

Then, as a portion of surge 1 is advected to the northern flank of the tornado, enhanced 

easterly momentum encourages westward movement of the tornado. However, the storm’s 

eastward component of motion and tornado’s westward motion counteract each other, 

resulting in near zero zonal movement. The momentum distribution of surge 1 and its 

impacts match closely to the start of the Kurdzo et al. (2015) conceptual model, which is 

adapted in Figure 6.6. Surge 1 in Figure 6.5 corresponds to the red surge in the model.  

 Following the first RFD surge, a second surge passes well south of the tornado. It 

is a potent surge; however, owing to its greater distance from the tornado, it has minimal 

direct impacts. Later, as surge 2 continues to spread outwards, some of the surge 2 

momentum impinges north of the tornado, somewhat maintaining the high easterly 

momentum in place from surge 1. Right behind surge 2, momentum once again builds just 

to the west of the tornado, becoming apparent in the second analysis panel in Figure 6.5 at 

2327:18 UTC. Surge 3 passes directly through the southern portion of the tornado 
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circulation while maintaining its initial easterly trajectory. While the surge is passing the 

tornado, the velocities on the south side of the vortex flare as the RFD surge momentum 

temporarily superimposes with it. Surge 3 is slow to move possibly because the air within 

it has a smaller negative temperature perturbation than other surges or because it is entirely 

momentum driven and the RFD surge is actually warmer than the surrounding 

environment. As a result, RFD surge 3 resides south of the tornado for almost 2 minutes 

before finally ejecting east of the tornado while pivoting towards the northeast. When RFD 

surge 3 was to the southwest of the tornado, it instigated southwestward movement of the 

tornado; once the surge settled to the south of the tornado, high westerly momentum south 

of the tornado spurred eastward motion. RFD surge 3 fills the role of the second surge 

highlighted in blue in the adapted Kurdzo et al. (2015) model in Figure 6.6. 

The residence time of surge 3 south of the vortex also means that the influence of 

elevated momentum right near the tornado’s southern flank lasts well after the loop is 

finished. During the latter part of segment 4, the tornado exits the track loop and then 

accelerates rapidly to the east as the momentum from surge 3 continues to carry the vortex. 

Eventually this movement comes to a sudden stop as the remnants of surge 3 pivot around 

the tornado and momentum instead starts to accumulate north of the tornado in the last 

Figure 6.6: Conceptual model adapted from Kurdzo et al. (2015) to show the impact 

of surges at the 4° elevation during segment 4. During segment 4, RFD surge 1 from 

Figure 6.5 corresponds to the red surge while RFD surge 3 matches to the blue surge. 
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analysis panel of Figure 6.5. Because the tornado is now occluded and decoupled from the 

RFGF and since no other surges arrive to replace westerly momentum south of the tornado, 

the tornado immediately transitions from rapid eastward motion to a stationary phase. As 

surge 3 was advected around the circulation to its northern flank, easterly momentum 

increased north of the tornado, and without compensating increases to westerly momentum 

south of the tornado, the tornado came to a stop.  

Figure 6.7 presents a similar radar analysis at the 16° elevation during the first 

cyclonic track loop. Overall, less surges are evident at the 16° level, but three relatively 

powerful surges do appear even at 1600 m ARL during segment 4. All three RFD surges 

Figure 6.7: RaXPol imagery at the 16° elevation taken every 2 scans (40 s) during 

segment 4. In each radar panel, reflectivity is on the left and Doppler velocity on the 

right. Range ring spacing is 2.5 km. Black lines denote RFD surge fronts, which are 

also numbered. Black arrows also point to associated reflectivity appendages. Red 

lines mark the approximate positions of the forward flank and RFGF. A black circle 

also marks the location of an anticyclonic vortex, which will be investigated in section 

6.4. 

 



146 
 

present in the analysis at the 16° elevation appear to be extensions of the RFD surges 

present at the 4° level since they appear in similar positions. Because the RFD outflow and 

RFD surges are near-surface features and become less potent further from the ground, 

many weaker RFD surges present at the ground do not extend vertically all the way to 1600 

m ARL. However, the two strong surges that do appear in the first panel of Figure 6.7 

appear to be extensions of exceptionally intense surges at the 4° elevation, revealing that 

only the strongest RFD surges have sufficiently large vertical extent to reach over 1.5 km 

ARL. Many of the surges that will be noted in the following 4° elevation radar analyses do 

not appear at the 16° level; as a result, the tornado sustains fewer short-lived, sharp track 

shifts and the tornado track is overall smoother and impacted by a relatively smaller 

number of strong RFD surges. 

 While fewer RFD surges appear at the 16° elevation, the few surges that do have 

sufficient vertical extent to reach 1600 m ARL result in the execution of a track loop. In 

the first radar panel of Figure 6.7, surge 1 is pivoting around the tornado on its eastern 

flank. Shortly thereafter, surge 1 makes it to the north side of the tornado where it causes 

momentum to build. The influence of RFD surge 1 is to move the tornado to the north and 

then west. While this is occurring, the second surge in the diagram passes to the south of 

the tornado, proceeding, like surge 1, to pivot the tornado. However, the primary thrust of 

RFD surge 2 is likely too far from the tornado to stimulate eastward movement; indeed, 

the tornado does not move east at this time but rather is continuing to move north and curve 

towards the west as it enters the track loop under the influence of RFD surge 1. Throughout 

the second (2327:30 UTC), third (2328:10 UTC), and fourth (2328:50 UTC) analysis times, 

surge 1 is advected all the way to the west side of the tornadic vortex, placing northerly 
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momentum on the tornado’s western flank. Consequently, the tornado moves west and then 

south. This is confirmed by the 16° track map in Figure 6.1; the tornado is moving through 

the westward and southward portions of the loop during 2327 to 2328 UTC. By the fifth 

radar panel at 2329:30 UTC, a third momentum surge builds and transports enhanced 

westerly momentum to the southern flank of the tornado, causing a burst of eastward 

movement out of the track loop. Finally, surge 3 continues its northeasterly trajectory to 

the tornado’s eastern flank, causing the tornado to resume on a north northeasterly heading. 

Because of differences in tornado position and lack of a defined RFGF, the configuration 

of momentum created by RFD surges is different at 16°; however, the result is the same as 

the tornado executes a clearly defined track loop. 

 

6.2.2: Evolution in Mid D7 – Retrogression and Second Cyclonic Track Loop 

 Radar analysis at the 4° elevation covering the stationary and retrograding phases 

(segments 5 and 6) of the tornado at the 4° level is presented in Figure 6.8. The first panel 

picks up where Figure 6.5 ended, showing the two surges from the end of that analysis and 

a new third RFD surge that is building to the southwest of the tornado. All three RFD 

surges continue to be advected around the tornado as they spread out into the RFD and 

merge into the RFGF. Varying degrees of momentum from each surge manage to reach the 

north side of the tornado. Although none of the surges are particularly strong, they 

continuously supply enhanced easterly momentum north of the tornado. Throughout the 

first half of Figure 6.8 until 2332:58 UTC, new RFD surges continuously build southwest 

of the tornado and pass to its south as they are advected about the tornado circulation, 

continuing to balance some of the higher easterly momentum north of the tornado. While 
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this is occurring, the eastward component of motion being forced by the parent supercell 

and westward component of motion being forced by the RFD surge configuration are such 

that the tornado remains stationary. However, by the last two panels of the analysis in 

Figure 6.8, no new RFD surges are visible south of the tornado. While there may be surges 

ongoing, they are moving perpendicular to the radar beam. Consequently, the tornado is 

left without significant westerly momentum on its southern flank; the bounding momentum 

balance around the tornado is now completely dominated by high easterly momentum on 

the northern flank of the vortex, and the tornado tracks westwards to a greater extent than 

before. As a result, the tornado tracks west and its occlusion deepens rapidly as the triple 

point between the RFGF, forward flank convergence zone, and occluded portion of the 

Figure 6.8: RaXPol imagery at the 4° elevation taken every 3 scans (60 s) during 

segments 5 and 6. In each radar panel, reflectivity is on the left and Doppler velocity 

on the right. Range ring spacing is 2.5 km. Black lines denote RFD surge fronts, 

which are also numbered. Black arrows also point to associated reflectivity 

appendages. Finally, red lines mark the approximate positions of the forward flank 

and RFGF. 
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RFGF recedes from the tornado with time in Figure 6.8; the tornado becomes more deeply 

enveloped in outflow air and weakening continues.  

In the last two panels of Figure 6.8, a new reflectivity appendage appears but does 

not seem to be associated with an RFD surge upon initial inspection of the data. However, 

the trajectory of the reflectivity appendage is almost perfectly perpendicular to the radar 

beam, meaning that any surge accompanying it would be invisible in the single-Doppler 

velocity field. In their analysis of the Moore 2013 tornado, Kurdzo et al. (2015) used 

minima in the correlation coefficient field to track surges; RFD surges passing near the 

tornado can disrupt and pick up debris from the tornadic circulation. Figure 6.9 presents a 

correlation coefficient analysis starting shortly after 2334 UTC. Although the Selden 

tornado is not lofting much debris and is relatively weak, two distinct minima in correlation 

coefficient appear in the analysis. The first moves due north in the first two panels of the 

analysis along with the reflectivity appendage noted in Figure 6.8 at 2334 to 2335 UTC, 

confirming the existence of another RFD surge. Because the first surge in Figure 6.9 is 

moving due north on a consistent south to north trajectory, the surge was never visible in 

the velocity field as it was moving perpendicular to the radar beam. Shortly after RFD 

surge 1 moves by on the eastern flank of the tornado, another RFD surge appears south of 

the tornado at 2335:18 UTC. Surge 2 quickly pivots around the tornado as it builds in 

strength, and momentum is transported to the tornado’s eastern flank. As surge 2 departs, 

the RFD flow noticeably weakens as the tornado and supercell low-level mesocyclone near 

the end of the occlusion process; no further RFD surges were identified. 

 At 2335 UTC, the tornado undergoes a sharp turn towards the north at the 4° 

elevation. In Figure 6.9 it is seen that there are two surges coincident with the turn. RFD   
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surge 1 is weakening and has transported high momentum to the eastern and northern 

flanks of the tornado. At the same time, RFD surge 2 is gathering south of the tornado and 

quickly pivots around the southeastern flank of the tornado. As time progresses, RFD surge 

2 becomes intense and moves to the northeast, transporting high southerly momentum to 

the eastern flank of the tornado. The configuration of momentum created by the 2 surges 

causes the tornado to make its sharp turn at the 4° elevation. Surge 1 has transported 

easterly momentum north of the tornado, contributing to the tornado’s retrogression. 

Coincident with the turn, RFD surge 2 in Figure 6.9 is building south of the tornado where 

it slows the tornado’s westward propagation and reverses it all together because westerly 

momentum is being enhanced on the southern flank of the tornado. Then, surge 2 is 

advected to the southeastern and eastern flank of the tornado, where the magnitude of 

enhanced momentum instigates the Selden tornado’s new north northeastward track. 

Notably, a similar RFD surge pattern is not observed at the 16° level, where no 

RFD surges were identified during this time. As a result, the 16° track does not contain a 

stationary or retrograde phase or undergo any sharp changes in motion. However, as the 

tornado makes a sharp northward turn at the 4° elevation, RFD surges once again become 

evident at the 16° level and the tornado executes a second cyclonic track loop aloft. 

Produced to show the disparate RFD surge distribution at the 16° elevation, Figure 6.10 

shows that there are two distinct RFD surges in very different vortex relative locations from 

those at 4°. Despite this, both surges still appear to be extensions of those at the 4° elevation 

since RFD surges generally lean back with height; the differing positions of the surges at 

the 16° elevation are likely a result of vortex tilt. RFD surge 2 in both Figures 6.9 and 6.10 

also clearly shows the evolution of a developing RFD surge. The surge first appears as a 
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compact area of enhanced momentum at the 16° level just to the west of the tornado 

sometime during 2334 UTC as an area of locally enhanced downdraft descends through 

the RFD. The locally enhanced portion of the downdraft continues to descend reaching the 

4° scan elevation around 2335 UTC where the enhanced downdraft spreads out as it nears 

the surface. Upon reaching the surface, the surge is advected by the RFD flow and tornado 

circulation. While the area of enhanced downdraft that caused the RFD surge could have 

been driven by any number of physical mechanisms, such as a brief increase in evaporation 

of falling precipitation, RFD surge 2 in Figures 6.9 and 6.10 provides an exhibit of the 

formation of RFD surges from pockets of locally enhanced downdraft within the RFD as 

they descend and reach the surface. 

Figure 6.10: RaXPol imagery at the 16° elevation taken every 3 scans (60 s) during 

segments 5 and 6. In each radar panel, reflectivity is on the left and Doppler velocity 

on the right. Range ring spacing is 2.5 km. Black lines denote RFD surge fronts, 

which are also numbered. Black arrows also point to associated reflectivity 

appendages. Finally, red lines mark the approximate positions of the forward flank 

and RFGF. 
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The pattern of momentum created by RFD surges at the 16° elevation also explains 

the tornado’s looping behavior. The first surge in Figure 6.10 is on a northward trajectory 

and spreads out over the next several scans to the north and east of the tornado. In the first 

panel at 2334:50 UTC, momentum is already building to the west of the tornado, and a 

second surge rapidly gathers. Surge 2 grows and moves south over the next minute, before 

pivoting around the tornadic circulation. From 2336:50 to 2338:50 UTC, surge 2 moves 

east on the tornado’s southern flank, after which the surge dissipates as it spreads out east 

of the tornado. Surge 1 transports elevated southerly momentum to the east of the tornado, 

likely helping to maintain the northward track of the tornado at 16° in the lead up to the 

loop. Then, surge 2 significantly alters the bounding momentum around the tornado. A 

concentrated area of enhanced northerly momentum appears west of the tornado as surge 

2 gathers and begins moving south, causing the tornado to jump southward in the absence 

of compensating southerly momentum east of the tornado. As RFD surge 2 pivots to the 

south of the tornado, the track vector reorients from southward to eastward, finishing the 

loop portion of the track at 16°. Finally, as surge 2 moves around to the east of the tornado 

and weakens, remnant southerly momentum in the absence of any new RFD surges causes 

the tornado to start tracking to the north northeast. The configuration of surges in Figure 

6.10 is very similar to the adapted Kurdzo et al. (2015) model in Figure 6.6. While the 

trajectories are slightly different, two independent RFD surges appear one after the other, 

with the second surge appearing roughly 90° clockwise from the other around the tornado. 

The occurrence of two track loops with similar configurations of RFD surges reveals an 

identifiable pattern that can be used to anticipate tornado track loops. If a second RFD 
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surge appears roughly 90° clockwise from a leading surge around a tornado, then a track 

loop becomes likely, especially if the two surges occur in isolation from other RFD surges. 

 

6.2.3: Evolution in Late D7 – Tornado Dissipation 

 By segment 7 at all elevations, the Selden tornado is beginning to succumb to 

occlusion. Near the end of analysis at 4° in Figure 6.9 and at 16° in Figure 6.10, the tornado 

is clearly weakening. Furthermore, the flow field around the tornado circulation is also 

decaying. There is a marked difference in strength of the RFD outflow from the second to 

the last analysis times in both Figures 6.9 and 6.10; when the last RFD surge passes the 

vortex and ejects to the east or northeast, the higher momentum within the RFD goes with 

it. The reflectivity field is also telling, as the supercell hook echo is no longer a hook 

appendage on the storm but rather has been absorbed into the southwestern terminus of the 

supercell as the hook echo has slowly moved to the west with respect to the storm.  

During segment 4 in early D7, the tornado became occluded. The ramifications of 

this were two-fold. First, the tornado motion was altered significantly. Decoupling from 

the RFGF resulted in westward storm relative motion. The tornado also deviated 

significantly leftwards in response to RFD surges, which began exerting considerable 

influence on the tornado track after occlusion occurred and the RFGF became decoupled 

from the tornado. As was shown throughout D7 radar analysis, strong RFD surges were 

generated by the occlusion downdraft and possibly other mechanisms leading up to and 

after occlusion. Surges tended to move from the southern to the northern flank of the 

tornado as they were advected cyclonically around the circulation. As a result, surges 

repeatedly transported enhanced southerly momentum to the eastern flank of the tornado 
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and no significant compensating northerly momentum occurred near the tornado to 

counteract it, generating leftward movement. In this case, RFD surges are seen to play a 

crucial role in causing occlusion, and therefore, a crucial role in advancing the tornado 

lifecycle as documented by Lee et al. (2012) and Marquis et al. (2016). As in Skinner et al. 

(2014), the strong RFD surges and overall surge in RFD momentum around the tornado 

leading up to occlusion were likely the result of the outflow of the occlusion downdraft. 

 The second impact of occlusion was that relatively buoyant air was no longer 

feeding directly into the tornado. As outflow air completely enveloped the tornado at the 

end of segment 4 near 2330 UTC, the tornado began to weaken steadily as it struggled to 

lift less buoyant air. The weakening trend brought on by the tornado’s occlusion from 

inflow is visible throughout the analysis in Figure 6.8, where ΔVmax for the tornado 

continuously decreases. Throughout the tornado lifecycle, the air around the tornado was 

slowly becoming more dominated by outflow air as the RFGF was displaced from the 

tornado and occlusion occurred; the conceptual model presented by Marquis et al. (2016) 

in Figure 1.4 summarizes the occlusion process that gradually occurred during the Selden 

tornado’s lifecycle. However, the tornado continues to persist well after being surrounded 

by outflow. Numerous spikes in ΔVmax are also apparent (See Figure 4.5) throughout mid 

and late D7. As has been described by Finley and Lee (2004; 2008) and Lee et al. (2004), 

RFD surges are associated with significant enhanced convergence and vorticity. The 

numerous RFD surges that are observed in the Selden case are likely helping to sustain the 

vortex despite its occlusion. Marquis et al. (2012) observed this in their model, finding that 

tornadoes could persist even while surrounded entirely in outflow on bands of enhanced 

convergence associated with RFD surges. While RFD surges can aid tornadoes in this way, 
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they are an impetus for the occlusion process and their sum effect is to cause the tornado 

to decay. 

 A radar analysis for the dissipation phase of the tornado during late segment 7 and 

segment 8 is shown in Figure 6.11. Although the Selden tornado has persisted for a period 

of almost 10 minutes since its inflow channel had been occluded at the end of segment 4, 

the occlusion process has progressed so far that the flow field around the tornado is starting 

to decay. Matching closely to the last panel in the Marquis et al. (2016) conceptual model, 

the tornado and low-level mesocyclone have become very deeply occluded away from the 

RFGF and forward flank boundary apex, and the remnant extension of the RFGF extending 

back to the tornado has dissipated. This marks a completion of the occlusion process and 

Figure 6.11: Radar analysis of RaXPol data at 4° elevation during the 2 minutes 

leading up to dissipation of the Selden tornado. Range ring spacing is 2.5 km. The 

vortex signature is marked by a black circle. Once the vortex signature breaks down, a 

line marks the remnant enhanced shear zone. A black arrow also points to the WEH in 

the reflectivity field. 
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rapid decay will ensue (e.g., French et al. 2014; Marquis et al. 2012). Furthermore, the 

tornado and low-level mesocyclone have moved very far back into the parent supercell, no 

longer protruding as a hook echo. Consequently, the tornado and low-level mesocyclone 

have migrated into active downdraft areas within the parent supercell, causing the near 

vortex flow field to weaken rapidly. As shown in Figure 6.11, dissipation occurs acutely 

once the tornado migrates into the supercell downdraft; the tornado velocity signature 

breaks down into a shear zone in about 1.5 minutes and the WEH entirely collapses in 

about 1 minute, marking the completion of one cycle of occluding mesocyclogenesis.  

 

6.3: Cross Section Analysis  

 

6.3.1: Analysis During Segment 4 and Transition Back to Single Vortex 

 Figure 6.12 presents the average azimuthal cross section at the 4° elevation from 

segment 4; the 4° level is at approximately 420 m ARL and the cross-section accounts for 

a little over three minutes of time. The cross section in Figure 6.12 contains a very wide 

tornadic vortex nearing 800 m in diameter, or about one half mile. Although the width is 

large, it is in good agreement with NWS estimates based on damage indicators in the town 

of Selden. Much unlike cross sections presented in Tanamachi et al. (2007), the velocity 

maxima in Figure 6.12 are not well defined; velocities do not trail off quickly outside the 

RMW and the velocity maxima are just barely greater than the surrounding winds. 

Moreover, the tornado core region deviates significantly from solid body rotation during 

segment 4. Especially on the north side of the vortex, the rate of increase in winds outwards 

from the center is slow in the first 150 m before the rate approaches the expected solid 
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body rotation rate of increase. Another defining characteristic of the segment 4 profile is 

how off center the tornado is; the tornado’s zero velocity center is observed to be about 75 

meters south of the geometric center. The off-center shift of the profile does not appear to 

be the result of erroneous vortex velocity subtraction or biasing from superposition of 

strong flow on the vortex since the magnitude of both velocity maxima on either side of 

the tornado are nearly the same. Therefore, the tornado is significantly asymmetrical during 

segment 4. Considering the vortex asymmetry, its large size, and disruption to its core 

region, the tornado appears to still be in a multiple vortex phase where secondary vortices 

are causing flow irregularities to be captured in the average profile.   

 A photo taken of the tornado at 2327:22 UTC shown in Figure 6.13 strengthens the 

case for the Selden tornado remaining a multiple vortex tornado into D7. In the picture, a 

very large area of scoured dust and debris reveals a large tornadic flow field at the ground. 

Three different extensions of cloud down towards the ground may also evidence the 

existence of multiple cells within the tornado; each individual funnel or cloud extension 

Figure 6.12: Azimuthal Cross Section through the Selden Tornado at 4° elevation for 

track segment 4. Photo courtesy of Howard Bluestein. 
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possibly marks the location of a secondary vortex where locally intense vorticity is 

dynamically lowering the pressure enough to draw cloud down from the cloud base or 

cause a condensation funnel to form (Wurman 2002). The funnel on the left of the tornado 

is particularly defined and is highly tilted outward from the vortex center, marking the 

location of a particularly strong secondary vortex. The other two notable cloud extensions 

to the right may be inflow extensions rather than funnels. However, the overall appearance 

of the photo correlates well with prior visual observations of multiple vortex tornadoes; 

multiple cloud or funnel fragments reach down from the cloud base tilted inwards towards 

the center of the tornado that is apparent from the thickest area of lofted debris and dust 

(e.g., Bluestein et al. 2018). The secondary vortices noted in the photo in Figure 6.13 are 

visible for the first two radar scans at the 4° level before the vortex takes on a more 

symmetrical appearance (2326:38 and 2326:58 UTC scans, see first panel in Figure 6.5).  

A breakdown of the segment 4 azimuthal cross section at the 4° scan elevation into 

the two segment 4 subsections in Figure 6.14 further support the notion that the Selden 

Figure 6.13: Photo of the tornado at 2327:22 UTC, mid-way through segment 4 at the 

end of the track loop. Photo is taken looking west from the D7 deployment location; 

the tornado is approximately 6 km away. Photo courtesy of Howard Bluestein. 
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tornado remained a multiple vortex tornado into early D7 before resuming a single vortex 

structure. The first subsection profile in the top panel of Figure 6.14 appears largely like 

the total segment 4 profile; in the first subsection the tornado remains wide, the core region 

is still disrupted, and the tornado is still very asymmetrical. However, the second 

subsection profile representing the time right after the track loop is quite different. The 

tornado has contracted significantly, and it is less than 500 m wide. The velocity maxima 

on either side of the profile have also become better defined, the core region flow is 

beginning to recover towards solid body rotation, and asymmetry is decreasing when 

compared to the first subsection profile. Remarkably, despite the rapid increase in vortex 

motion, the profile remains balanced, lending more evidence for a noteworthy change in 

tornado behavior and structure. The great decrease in width of the tornado and increasing 

regularity of the profile such that it resembles more closely those in Tanamachi et al. (2007) 

are characteristic of a transition of the Selden tornado back to a single vortex structure. 

Figure 6.14: Azimuthal Cross Sections through the Selden Tornado at 4° elevation for 

track segment 4 subsections. The first subsection (top) represents the loop portion of 

segment 4, the second subsection (bottom) represents the rapid northeasterly 

movement after the track loop. 



161 
 

Further indications that the tornado sustained a major change back to a single vortex 

structure during segment 4 can be found in the pattern of standard deviation within the 

segment 4 average azimuthal cross section (Figure not shown). The variability in 

measurements throughout the segment 4 cross section is high; the standard deviation is 

equal to or greater than ±10 m s-1 across the entire profile. The greatest amount of 

variability occurs near the RMW, indicating that the tornado is rapidly changing size. 

Smaller, but still large, standard deviations within the vortex interior also reveal a changing 

core structure. As the tornado undergoes transition to a single celled vortex, the tornado 

shrinks and secondary vortices disappear, which manifests as large standard deviation 

values throughout the azimuthal cross section, particularly near the RMW and within the 

vortex core. 

The reasons for the tornado’s transition back to single celled vortex structure 

remain unclear. During segment 4, the tornado occludes (See Figure 6.5), which results in 

outflow air enveloping the vortex. The less buoyant air around the tornado hinders radial 

inflow since the air cannot be lifted as easily in the tornado updraft and the swirl ratio 

continues to increase (Rotunno 1984). As suggested by Marquis et al. (2008), perhaps an 

RFD momentum surge instigated the transition to single vortex. The enhanced convergence 

and vorticity along surges, particularly at their northern ends near the tornado, certainly 

can increase radial inflow and decrease the swirl ratio (Finley and Lee 2004; 2008). 

However, this burst of inflow would only be temporary and the swirl ratio would once 

again increase, nudging the tornado back towards multiple vortex structure. Another way 

to force the swirl ratio down is to decrease the average azimuthal winds around the tornado. 

There is evidence for a weakening tornado; the velocities around the vortex do decrease 
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starting in late segment 4 (See Figure 6.5) and ΔVmax begins decreasing (See Figure 4.5). 

Because of the weakening trend, it appears more likely that azimuthal winds decreasing at 

a higher rate than inflow were the primary factor in transition to single vortex, especially 

considering the increasingly unfavorable thermodynamic character of the air surrounding 

the tornado. However, this does not preclude a contribution from RFD surges; the strong 

surge passing by the tornado in late segment 4 which instigated the tornado’s rapid increase 

in speed towards the northeast (surge 3 in Figure 6.5) could have caused tornado radial 

inflow to briefly increase, ultimately instigating the transition.  

Figure 6.15 contains the corresponding radial wind cross section of the tornado 

during segment 4 at the 4° elevation. Reflective of the multiple vortex nature of the tornado 

during the first half of segment 4, there is a large area of divergence about 900 m wide 

centered on the tornado. However, there is now also a defined peak in the center of the 

broad area of divergence; the divergence spike has a magnitude approaching 0.5 s-1 and 

has a 400 m spatial extent. This spike is likely a result of the tornado transitioning back to 

Figure 6.15: Radial wind cross section through the Selden tornado at the 4° elevation 

for segment 4 (top) and 1-D divergence (bottom). 
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single vortex about halfway through the averaging period for the profile. As with previous 

radial wind profiles, the radial winds increase rapidly from inbound negative velocities to 

outbound positive velocities heading outwards from the radar within the tornado 

circulation. The overall character of the radial wind profile is slightly convergent tending 

towards neutral when compared to earlier profiles; the more neutral divergence contained 

within the whole profile reflects a low-level supercell mesocyclone that has reached peak 

intensity and is no longer strengthening, which agrees with radar analysis that showed 

occlusion occurring during segment 4. 

 

6.3.2: Analysis During Mid D7  

 The azimuthal cross sections through the Selden tornado during segments 5 and 6 

at the 6° elevation, which is approximately 600 m ARL during segments 5 and 6, are shown 

in Figure 6.16. The 6° elevation profiles were used in lieu of the 4° profiles because the 6° 

cross sections contained a higher quality vortex that was better defined; the higher elevation 

was within weaker RFD outflow winds, allowing for the tornado to appear within the cross 

section since weaker ambient winds were being superimposed on the tornadic circulation. 

Despite selecting a higher elevation for the segment 5 and 6 profiles, the wind maxima on 

either side of the profiles are still poorly defined. In particular, the segment 5 cross section 

shows winds south of the tornado continuing to increase outside the RMW. The trend for 

azimuthal cross sections to contain plateauing or even increasing winds outside the RMW 

reflects a weakening tornado embedded within the supercell mesocyclone circulation; as 

the tornado continues to weaken; its wind field becomes harder to distinguish from that of 

the mesocyclone since the tornado circulation was not isolated from other scales of flow 
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using GBVTD analysis as in Tanamachi et al. (2007). Indeed, the tornado is weakening as 

it continues to occlude, and the picture of the tornado in the top right of the segment 5 

profile mirrors this. At the end of segment 4, the Selden tornado loses its condensation 

funnel and the area surrounding the tornado location appears outflow dominated, which is 

supported by radar analysis (See Figure 6.8).  

Figure 6.16: Azimuthal Cross Sections through the Selden Tornado at 6° elevation for 

track segments 5 (top) and 6 (bottom). A picture of the Selden tornado from segment 

5 is also included. Photo courtesy of Howard Bluestein. 
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 Although the tornado becomes more difficult to detect in cross section analysis due 

to superposition of the supercell mesocyclone and RFD onto a weakening tornado flow 

field, the segment 5 and 6 profiles do reveal key details about the tornado. In the segment 

5 cross section in Figure 6.16, the width of the vortex has reached a diameter of 

approximately 450 m as it continues to contract in its transition from multiple to single 

vortex at the end of segment 4. The width of the vortex then stabilizes, with the tornado 

circulation diameter remaining largely unchanged in the segment 6 profile. The core region 

of the tornado has also returned to solid body rotation, reflecting the complete transition of 

the Selden tornado’s structure back to single vortex. Finally, the tornado is nearly 

symmetrical in both profiles, with any indicated asymmetry well within the margin of error 

of profile construction and vortex velocity subtraction. 

 The radial wind profiles for segments 5 and 6 at the 4° level shown in Figure 6.17 

also reflect the ongoing occlusion of the tornado and low-level mesocyclone. Both radial 

wind profiles are overall divergent, indicating that the low-level supercell mesocyclone is 

starting to weaken. Moreover, the inflow convergence signature still present behind the 

tornado in both profiles has a smaller magnitude than it did before in segments 3 and 4. 

Another noteworthy signature appears within the divergence profiles. A broad area of 

enhanced divergence occurs in both profiles just to the inside of the tornado’s position; the 

signature is consistent with descriptions of an occlusion downdraft. Klemp and Rotunno 

(1983) found that the occlusion downdraft commonly forms near the tornado, and a distinct 

outflow divergence signature can now be seen within the RFD outflow, possibly as the 

occlusion downdraft has been advected around the tornado circulation to its eastern flank. 
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However, the lack of dual Doppler synthesis makes it impossible to ascertain with certainty 

that an occlusion downdraft is present. 

  

6.3.3: Analysis During Late D7  

 Figure 6.18 contains the azimuthal cross sections at the 4° elevation during 

segments 7 and 8. During late D7, the Selden tornado is continuing to weaken as occlusion 

continues; the tornado begins to decay more quickly throughout segment 7 and then 

Figure 6.17: Radial wind cross sections through the Selden tornado at the 4° elevation 

for segment 5 (top) and segment 6 (bottom). 1-D divergence is also included. 
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dissipates entirely at the end of segment 8 as the pace of decay increases markedly. In 

segment 7, the tornado is a similar width as before, remaining about 450 m wide. Despite 

the tornado’s deepening occlusion, the tornado also maintains a ΔVmax near 50 m s-1, which 

has continued to gradually decrease since segment 4. The persistence of the tornado 

throughout segment 7 reflects observations from radar analysis, which showed that the 

tornado continued to maintain significant strength for over 10 minutes after initial 

occlusion; RFD surges were found to potentially enable this trend because of the enhanced 

Figure 6.18: Azimuthal Cross Sections through the Selden Tornado at 4° elevation for 

track segments 7 (top) and 8 (bottom).  



168 
 

convergence and vorticity associated with the surges (Finley and Lee 2004; 2008). The 

segment 7 profile is also balanced, with nearly the same magnitude of velocities on both 

sides of the tornado. Notably, the tornado made a sharp left turn just before segment 7 and 

picked up a large amount of speed. Yet, the drastically different vortex motion vector used 

to produce the segment 7 profile did not result in an asymmetrical cross section, indicating 

that the new track vector is representative of a change in the tornado’s behavior. 

 The decay of the tornadic vortex becomes readily apparent in the segment 8 cross 

section. By segment 8, the velocity maxima on both sides of the vortex are slightly less 

than 20 m s-1, which is below the 40 m s-1 tornadic shear threshold (French et al. 2014; 

Houser et al. 2015; Wurman and Kosiba 2013). Furthermore, the winds everywhere outside 

the RMW have also decreased as the RFD outflow has begun to collapse with the migration 

of the low-level mesocyclone into downdraft regions (See Figures 6.9 and 6.11). The size 

of the tornado wind field has also contracted significantly to roughly 300 m; however, the 

size is likely exaggerated due to superposition of the supercell mesocyclone circulation 

onto the tornado circulation.  

Despite the seemingly large diameter of the tornado during segment 8, the width of 

the tornado still matches closely to the correlation coefficient derived track width in Figure 

3.6, suggesting that the tornado wind field is still extensive. The large width of the vortex 

circulation and lingering substantial debris cloud may be the result of the tornado decay 

mode. Tanamachi et al. (2007) discussed two ways in which tornado decay can proceed. 

First is that dissipation occurs as both the vortex radius and azimuthal winds decrease while 

a second mode of decay occurred when the vortex radius increased while azimuthal winds 

decreased. The 300 m diameter of the wind field and large size of the remnant debris cloud 
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are likely an indicator of a mode 2 decay and are not a signal for an intense vortex; large 

amounts of dirt and dust are briefly suspended as the RMW briefly increases during final 

dissipation.  

 Figure 6.19 shows the corresponding radial wind profiles for segments 7 and 8. 

Overall, both radial wind profiles are divergent, reflecting the decay of the supercell low-

level mesocyclone as it occludes. Notably, the possible occlusion downdraft signature is 

still present, albeit weaker, with broad enhanced divergence still residing in between the 

Figure 6.19: Radial wind cross sections through the Selden tornado at the 4° elevation 

for segment 7 (top) and segment 8 (bottom). 1-D divergence is also included. 
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tornado and the radar. Although the tornado is weak in segment 8, the divergence spike 

around the tornado has nearly the same magnitude as those from several minutes earlier in 

segments 5 and 6. The segment 8 tornado proximate divergence may be an indicator of the 

tornado’s final dissipation. The high magnitude of divergence centered on the tornado is 

reflective of a mode 2 decay (Tanamachi et al. 2007); when the Selden tornado dissipates, 

the vortex spreads out as the circulation loosens and vorticity decreases. As a result of this 

mode 2 decay, the vortex width remains large all the way to the end of the tornado’s life 

and debris continues to be lofted even as the tornado dissipates entirely. 

 

6.4: ‘Rogue’ Anticyclonic Vortex 

 At the start of D7, an unusually strong anticyclonic vortex is observed near the 

primary Selden tornado. Figure 6.20 presents observations of this vortex at the 8° elevation 

where it was the most defined. The anticyclonic vortex appears to orbit the primary 

tornado, moving from its eastern to northern flank over the course of nearly 3 minutes 

before dissipating to the northwest of the primary tornado. Throughout the duration of its 

lifespan, the anticyclonic vortex remained roughly 1.5 km from the center of the primary 

tornado while orbiting around it at a speed slightly greater than 20 m s-1, which roughly 

matches the magnitude of the ambient flow immediately surrounding the ‘rogue’ vortex. 

Notably, the anticyclonic vortex was intense enough to have its own WEH, which can be 

tracked in the reflectivity field from the first scan in D7 at 2326:42 UTC through at least 

the fifth scan at 2328:02 UTC. The maximum ΔV of the anticyclonic vortex is nearly 45 m 

s-1, qualifying it as a tornadic vortex, however only briefly. As the anticyclonic vortex 

begins to move to the northwest of the primary tornado, it dissipates rapidly as it is ingested 
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in the cyclonically rotating supercell updraft (See Figure 6.5). The position, track, and short 

lifespan of this anticyclonic vortex do not match what would be expected from a typical 

companion anticyclonic tornado, which occurs on the southern flank of the RFD away from 

the primary tornado and can persist along with the primary tornado for much of its total 

lifecycle (Bluestein et al. 2016; Wurman and Kosiba 2013). Instead, the early D7 

anticyclonic vortex is a ‘rogue’ vortex; its pattern of behavior does not resemble common 

models of anticyclonic tornadoes in cyclonic supercells. 

 Numerous types of anticyclonic vortices have been observed in cyclonically 

rotating supercells. Aside from companion anticyclonic tornadoes, Wurman and Kosiba 

(2013) briefly discuss the occurrence of both cyclonic and anticyclonic satellite tornadoes. 

These smaller but still potent vortices tend to accompany intense supercells and orbit the 

Figure 6.20: Radar analysis at 8° showing the ‘rogue’ anticyclonic vortex during early 

D7. Panels are taken every other scan, or 40 s apart. Range ring spacing is 2.5 km. The 

black circles denote the ‘rogue’ anticyclonic vortex, and its movement is tracked on 

the reflectivity field. 
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primary tornado during short lifespans. One case highlighted by Wurman and Kosiba 

(2013) showcases a cyclonic satellite tornado orbiting a primary tornado near Chickasha, 

Oklahoma on 3 May 1999; the satellite had a ΔV of 45 m s-1 and remained about 1 km 

from the primary tornado as it orbited around the eastern flank of the parent tornado. 

Tanamachi et al. (2012) also observed several satellite tornadoes around the Greensburg, 

Kansas tornado, 2 of which were anticyclonic. The satellites were very brief, often only 

remaining on the ground for 1 to 2 minutes with a pathlength of about 1 km; throughout 

their brief lifespans, satellites were found to systemically orbit about the eastern flank of 

the Greensburg tornado towards the north, only occurring on the flank of the primary 

tornado facing away from the rest of the parent storm. Furthermore, these satellites were 

found within 5 km of the center of the Greensburg tornado. Both the Wurman and Kosiba 

(2013) and Tanamachi et al. (2012) observations fit remarkedly well to the ‘rogue’ 

anticyclonic vortex observed near the Selden tornado; the ‘rogue’ vortex orbits about the 

eastern and northern flanks of the primary tornado before dissipating, it is short lived, and 

it orbits at a range of roughly 1.5 km at about the same speed as the flow immediately 

surrounding it.  

Greenwood (2021) also documents an anticyclonic vortex with similar behavior to 

the one investigated here in their Amber-Bridge Creek case, although the anticyclonic 

vortex was found to be much farther from the primary cyclonic tornado at a range of 9 km 

and may have been associated with a shear zone located at the interface between the 

forward flank convergence zone and inflow channel. While the behavior of the vortex is 

like what is found with the ‘rogue’ vortex in the Selden case, its distance from the primary 

cyclonic tornado and deviation from an orbit around the primary cyclonic tornado 
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differentiate it from the Selden ‘rogue’ vortex. A lack of data during the genesis of the 

‘rogue’ anticyclonic vortex precludes determining what feature may have been responsible 

for its formation, but it appears that the Selden ‘rogue’ anticyclonic vortex is different from 

the one identified in Greenwood (2021) and that it fits more with the observations of the 

satellite vortices in Wurman and Kosiba (2013) and Tanamachi et al. (2012). 

The ostensible anticyclonic vortex in early D7 is likely an anticyclonic satellite of 

the Selden tornado. However, the lack of data from before the start of D7 remains 

problematic. It is unknown where the early D7 anticyclonic vortex came from or where it 

underwent genesis. It is possible that the anticyclonic vortex was generated at the southern 

flank of the RFGF as is the case for typical anticyclonic tornadoes (Bluestein et al. 2016). 

Then, for an unknown reason, the vortex was not anchored in position and was advected 

around the RFGF in the supercell inflow, where it would appear to orbit the primary Selden 

tornado as it neared the supercell updraft. However, the origin of satellite tornadoes is not 

well understood, so this possibility does not necessarily preclude the early D7 ‘rogue’ 

vortex from being a satellite tornado (Wurman and Kosiba 2013). Another limiting factor 

in analysis is that the ‘rogue’ anticyclonic vortex did not produce any visible cloud 

lowering or funnels, so there is no visual evidence to draw on to further analyze the ‘rogue’ 

vortex. 

 

6.5: Weak Reflectivity Band 

 Late in D7, from approximately 2334:30 to 2336:58, a weak reflectivity channel 

feature was observed on the eastern flank of the Selden tornado. Figure 6.21 provides a 

scan-by-scan radar analysis of the band of weak reflectivity at the 4° elevation. Starting at 
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2334:38 UTC, a notch of lower reflectivity begins to form in the wake of an RFD surge 

induced reflectivity appendage. Just 20 seconds later, the trough of reflectivity has 

developed into a small channel and is collocated with a distinct convergence signature in 

the velocity field. The reflectivity trough continues to grow longer over the next three 

scans, reaching its greatest extent by 2335:58 UTC; the band is roughly 5 km from south 

to north and is only 150 to 200 m wide. During a brief two-scan, 40 second window, a 

coincident increase in the ΔVmax of the tornado occurs as marked in Figure 6.21 (See also 

Figure 4.5). Over the next few scans, the reflectivity trough begins to fill as another RFD 

Figure 6.21: Reflectivity and velocity timeseries lasting about 2.5 minutes from 

2334:38 to 2336:58 UTC. Black arrows on the reflectivity plots denote the WRB, 

while black circles on the velocity field mark the pronounced convergence signature. 

Range ring spacing is 2.5 km. 
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surge related reflectivity appendage emerges from the hook echo, but it remains associated 

with a pronounced convergence signature in the velocity field. Throughout its 2.5-minute 

lifespan, the reflectivity feature remained in place on the eastern flank of the tornado 

circulation, not moving much to the east or west as lower reflectivity developed from south 

to north slowly wrapping the vortex. This band of weak reflectivity appears to resemble 

the WRB feature first documented in Houser et al. (2016), which was observed to be a long 

and narrow reflectivity trough curving around the tornado circulation lasting for a period 

of roughly 3 minutes. To the best of the author’s knowledge, the Selden case is only the 

second recording of a WRB feature. 

 In Houser et al. (2016), a horizontal circulation is responsible for the formation of 

the WRB, with the weak reflectivity being the result of the circulation’s descending branch. 

The horizontal circulation was inferred from adjacent bands of divergence and convergence 

in the near surface Doppler velocity field; a leading band of divergence is followed by a 

narrow zone of convergence. The rising branch of the circulation occurred overhead of the 

convergence and descending branch over the divergence, which is where the WRB 

appeared. The velocity signature associated with the Selden WRB is remarkedly similar. 

Especially in later analysis times from 2336:18 to 2336:58 UTC, there is a sharp, narrow 

band of convergence situated just to the west of a broader area of enhanced divergence.  

Houser et al. (2016) gave three potential explanations for the formation of the 

divergence and convergence bands and associated horizontal circulation; however, none of 

these seem to be the case here. While it is impossible to rule out the Houser et al. (2016) 

hypotheses due to the lack of thermodynamic data, the Selden WRB appears to be a 

coincidental feature that formed due to the specific arrangement of two RFD surges. In 
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initial analysis, it was noted that the WRB appeared to form because of the positioning of 

two RFD surges, with a trailing surge following immediately in the wake of a leading RFD 

surge; the RFD surge associated reflectivity appendages formed a narrow gap in between 

the two surges with relatively low reflectivity. Behind the initial RFD surge, there is a zone 

of enhanced divergence as momentum progressively decreases, which was then followed 

closely by a second surge, where divergence suddenly changed to convergence at the 

second RFD surge front. Since the RFD surges stayed near each other as they continued to 

pivot around the tornado, the bands of divergence and convergence persisted near each 

other for a few minutes, allowing for a horizontal circulation to form. As the horizontal 

circulation became established, it enhanced the gap in reflectivity between the two RFD 

surges in its descending branch, resulting in the WRB.  While a DRC related surface 

outflow could reasonably create the divergence and convergence signature, no descending 

area of reflectivity was found; the appearance of the new reflectivity feature at the start of 

the analysis is not a DRC nearing the surface but rather an RFD surge generated reflectivity 

appendage. Considering these observations, it appears that WRBs may form whenever two 

RFD surges occur in rapid succession and then follow similar trajectories with both surges 

staying close to each other for an extended period, allowing for a horizontal circulation to 

form in between the two RFD surges. 

 While the WRB feature was present, Houser et al. (2016) noted that the tornado 

increased in intensity slightly. Houser et al. (2016) noted that this may be a consequence 

of the WRB horizontal circulation; the circulation sense is such that the horizontal vorticity 

is streamwise since flow passes through the WRB as it wraps in towards the tornado. 

However, Houser et al. (2016) was not able to conclusively tie the tornado intensity 
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increase to the horizontal circulation since other factors affecting tornado intensity could 

not be ruled out. A similar strengthening trend in the tornado velocities are noted during 

the Selden WRB. The WRB forms from south to north as the tornado circulation flow 

enters from the south and exits to the north; any horizontal vorticity would be streamwise 

and could reasonably be expected to cause a temporary increase in tornado ΔV. 

Furthermore, the Selden WRB occurs during the decay stage of the tornado where 

occlusion is causing the tornado to generally lessen in intensity. This is unlike the Houser 

et al. (2016) WRB, which occurred during the mature phase of the tornado where multiple 

other factors may have caused tornado intensification. Considering these observations, the 

Selden WRB appears to be responsible for the brief intensification given that the tornado 

should continue to weaken due to its occlusion. However, due to differences in time of 

development relative to the tornado’s lifecycle and disparities in apparent formation 

mechanisms, it remains possible that the Selden WRB and Houser et al. (2016) WRB are 

in fact different features although their appearance and result are similar. Further cases of 

the WRB need to be documented to formally define the feature. 
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Chapter 7 

The Companion Anticyclonic Tornado  

 

7.1: Vortex Genesis 

 Early in D7 at roughly 2329 UTC, another anticyclonic vortex appears throughout 

all levels of radar data on the trailing flank of the RFGF. Unlike the ‘rogue’ anticyclonic 

vortex, this vortex appears far to the southeast of the cyclonic tornado and remains on the 

southern side of the RFD as it tracks northeasterly; the anticyclonic vortex fits the 

definition of an anticyclonic companion tornado as described in Bluestein et al. (2016). 

Companion anticyclonic tornadoes occur rarely in cyclonically rotating supercells. While 

the actual frequency is unknown, these tornadoes often catch storm chasers and NWS 

forecasters by surprise, which is a testament to their rarity. Of tornadic cyclonic supercells, 

perhaps only a few percent ever generate companion anticyclonic tornadoes. When they 

do occur, companion anticyclonic tornadoes often are ongoing at the same time as the 

primary cyclonic tornado but tend to occur later in the primary tornado’s lifecycle.  

Companion anticyclonic tornadoes also generally track to the right of the motion of the 

cyclonic tornado as they remain on the opposite side of the RFD, resulting in tornado tracks 

that slowly diverge from each other. While strong anticyclonic companion tornadoes have 

occasionally been reported, such as the EF2 anticyclonic tornado that accompanied the El 

Reno 2013 tornado (Bluestein et al. 2015), companion anticyclonic tornadoes are generally 
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weak EF0 tornadoes. The Selden companion anticyclonic tornado fits these observations; 

it was concurrent with the cyclonic tornado and occurred in the latter portions of the 

cyclonic tornado’s lifecycle, was only marginally tornadic at its peak strength, and tracked 

to the east northeast as it remained on the south side of the RFD. 

 Owing to their occurrence on the south side of the RFD, genesis of companion 

anticyclonic tornadoes has been attributed, at least partially, to RFD vortex ring tilting 

(Markowski and Richardson 2009; Bluestein et al. 2016). When idealized RFD vortex rings 

are tilted vertically by flanking line updrafts at the RFGF, a vortex couplet is created. 

Cyclonic vertical vorticity is generated on the north side of the RFD and has been 

implicated as a primary source of vorticity for cyclonic tornadogenesis (e.g., Markowski 

and Richardson 2009). On the southern side of the RFD, anticyclonic vertical vorticity is 

generated. Just as the cyclonic member of the vortex ring couplet supplies vertical vorticity 

for cyclonic tornadogenesis, the anticyclonic member of the couplet may be crucial for the 

occurrence of companion anticyclonic tornadoes. Once anticyclonic vertical vorticity is 

present, it can be concentrated and stretched to an extent by flanking line updrafts occurring 

along the RFGF, resulting in the formation of a weakly tornadic anticyclonic vortex 

(Bluestein et al. 2016).  

However, Bluestein et al. (2016) offer an alternative hypothesis for the formation 

of companion anticyclonic tornadoes. RFD momentum surges have been noted to generate 

significant vorticity and shear at their northern and southern ends, which has been observed 

coincident with tornadogenesis and is likely an important factor in tornado formation 

(Finley and Lee 2008; Lee et al. 2012; Skinner et al. 2014). Cyclonic tornadoes have been 

frequently observed at the northern apex of RFD surges; however, anticyclonic tornadoes 
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have also been documented more rarely at the southern ends of RFD surges (Finley and 

Lee 2008). When an RFD surge impinges on the southern flank of the RFGF, the enhanced 

anticyclonic shear and vorticity at its southern end can be concentrated by flanking line 

updrafts and tornadogenesis can occur (Bluestein et al. 2016). Due to limited observations 

of companion anticyclonic tornadoes, it remains unknown what hypothesis for companion 

anticyclonic tornado formation better represents reality or if both processes work in tandem 

to result in tornadogenesis (Bluestein et al. 2016). 

 A radar series of the formation of the Selden companion anticyclonic tornado is 

shown in Figure 7.1. In the first panel at 2326:38 UTC, a particularly strong RFD surge is 

moving eastward through the middle of the RFD. It is farther from the cyclonic tornado 

than many of the surges documented earlier and is also very potent. As a result, the surge 

continues its eastward trajectory instead of wrapping around the cyclonic tornado and 

impinges the southern flank of the RFGF. Between the first and the second analysis time 

at about 2327 UTC, the southern end of the RFD surge begins encroaching on the RFGF 

on the southern flank of the RFD. When this occurs, the RFGF appears to kink in response 

to the anticyclonic vorticity present on the southern apex of the strong RFD surge as 

outbound Doppler velocities start to appear and intensify at the interface between the RFGF 

and RFD surge. The kink in the RFGF continues to become more defined as the RFD surge 

slowly passes and then dissipates. By the last analysis time at 2329:58 UTC, an incipient 

anticyclonic vortex is evident where the RFD surge had first impinged on the RFGF. Figure 

7.1 indicates that the Selden anticyclonic vortex formed in a process resembling the second 

hypothesis in Bluestein et al. (2016); a strong RFD surge with attendant enhanced 

anticyclonic vorticity on its southern apex impinged on the RFGF. Flanking line updrafts 
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then concentrated the anticyclonic vorticity and stretched it resulting in vortex genesis 

roughly 3 minutes after the RFD surge initially reached the RFGF.  

 While Figure 7.1 clearly shows that an RFD surge was involved in anticyclonic 

tornadogenesis, it is unknown to what extent RFD vortex ring tilting contributed to vortex 

formation. It is apparent that weak ambient anticyclonic shear vorticity is present at the 

southern flank of the RFD, with very weak outbound Doppler velocities or weaker inbound 

Doppler velocities lying adjacent to stronger inbound Doppler velocities within the RFD. 

Some of the ambient anticyclonic shear vorticity exists simply because of the differing 

directions of the wind within the RFD and the ambient environment, but it is possible that 

Figure 7.1: Radar analysis at the 4° level during early D7 showing development of an 

incipient anticyclonic vortex on the southern flank of the RFD. Panels are every 2 

scans (40 s) and range rings are spaced every 2.5 km. Red lines mark the positions of 

the RFGF and forward flank boundary. The instigating RFD surge is marked in black, 

and a black arrow denotes the surge core. Dotted black lines and arrows mark the 

dissipating surge. In the first panel, a black circle marks slightly enhanced 

anticyclonic vorticity likely due to RFD vortex ring tilting, while the black circle in 

the last panel denotes the incipient anticyclonic vortex. 
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RFD vortex ring tilting is contributing to the vorticity as well.  It is difficult to discern from 

the Doppler velocity field alone, but a small area of enhanced anticyclonic vorticity appears 

to be present along the southern flank of the RFD before the RFD surge impinges on the 

RFGF. This area of enhanced anticyclonic vorticity is marked in the first panel of Figure 

7.1 and appears opposite to the cyclonic tornado, placing it in the expected position for 

RFD vortex ring tilting if the cyclonic member of the vortex ring couplet is taken to be 

located at the cyclonic tornado. However, this area of weak anticyclonic vorticity does not 

appear sufficient for flanking line updrafts to concentrate it into a discrete vortex since the 

amount of vorticity stayed nearly constant and a vortex was not generated until the RFD 

surge impinged on the RFGF; it appears that the RFD surge instigated the formation of the 

anticyclonic tornado by contributing additional anticyclonic vorticity that could then be 

concentrated and stretched along with the RFD vortex ring vorticity into a coherent vortex.  

In the Selden case, it appears that both processes described in Bluestein et al. (2016) 

are occurring in tandem; although, the RFD surge is ultimately responsible for genesis. 

Weak anticyclonic vorticity is present along the southern flank of the RFGF from RFD 

vortex ring tilting; however, alone, it is not enough. Additional vorticity is required, which 

is supplied by a strong RFD surge. While vortex ring tilting provides the foundation for 

anticyclonic tornado formation by creating a zone of weak anticyclonic vorticity, the 

vorticity is rarely strong enough for anticyclonic tornadogenesis without additional 

contributions especially given the lack of a strong, persistent updraft to concentrate the 

vorticity. The additional vorticity comes from a strong RFD surge on a trajectory that 

enables the surge to thrust towards the southern flank of the RFGF, where the surge 

anticyclonic vorticity combines with the weak anticyclonic vorticity already present from 
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RFD vortex ring tilting to instigate tornadogenesis. Since RFD surges occur over a wide 

spectrum of intensity and trajectories, strong surges may only rarely be able to reach the 

southern flank of the RFGF; the requirement for a strong RFD surge on a particular 

trajectory is a possible explanation for why anticyclonic tornadoes occur only seldomly in 

cyclonic supercells. Furthermore, the Selden companion anticyclonic tornado occurred late 

in the cyclonic tornado’s lifecycle, like many other documented cases (Bluestein et al. 

2016). It is possible that an RFD surge capable of instigating anticyclonic tornadogenesis 

can only occur once the occlusion downdraft associated with the cyclonic tornado becomes 

established and begins enhancing momentum within the RFD. While there are no data to 

definitively connect the cyclonic tornado’s occlusion downdraft to the RFD surge that 

caused the genesis of the anticyclonic tornado, it would be a possible explanation for why 

most companion anticyclonic tornadoes occur late in the lifecycle of primary cyclonic 

tornadoes since the occlusion downdraft does not form until the cyclonic tornado is 

maturing and reaching peak intensity.  More stringent analysis of additional cases, 

preferably using dual-Doppler datasets, is needed to bolster these findings. 

  

7.2: Track Behavior 

 The track of the anticyclonic tornado is remarkedly similar throughout its entire 

lifecycle; the tornado maintains a consistent east northeasterly heading, only gradually 

turning to the right with respect to supercell motion to a near due easterly heading at the 

end of D7 during dissipation. Figure 7.2 contains the track of the anticyclonic tornado and 

the track segments that were used for further analysis at the 4° scan elevation. A data gap 

is indicated on the map when the anticyclonic tornado passed directly overhead of the radar 
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at roughly 2338 UTC. The vortex went unnoticed by the radar crew until it was nearly 

directly overhead, and the radar was enveloped in swirling, airborne chunks of vegetation; 

data were unreliable as the vortex passed into the radar’s near field owing to ground clutter. 

The brief gap in data roughly bisects the tornado lifespan, providing at least two separate 

track segments for analysis. The anticyclonic tornado track was split further into four 

segments with two segments occurring before and after the vortex passed overhead based 

on subtle track changes and consideration for dividing the track to get a better 

representation of the vortex and its structural changes in cross section averaging. Segments 

1 and 2 are differentiated by the consistency of the vortex track, with the track in segment 

1 being more erratic than that in segment 2; a slight right turn also accompanies the segment 

change. Segments 3 and 4 are separated by another slight right turn. 

Figure 7.2: Track of the Selden companion anticyclonic tornado at the 4°(top) and 16° 

(bottom) elevation scans. Descriptions of the segment track vectors are provided to 

the right. 
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 Like the track behavior of the cyclonic tornado early in its lifespan, the segment 1 

track for the anticyclonic tornado is somewhat erratic. The identifiable center of the vortex 

tends to jump around from scan to scan and the track appears less stable. Although the 

proximity of the radar to the vortex limits observations in the vertical, the track of the 

anticyclonic vortex appears to become more inconsistent with height. Figure 7.3 reflects 

these observations; the track at 4° (240 m ARL) is relatively smooth compared to the track 

at 8° (490 m ARL) and especially at 12° (740 m ARL) where the track meanders around 

Figure 7.3: Comparison of the first anticyclonic tornado track segment at 4° 

increments. The segment 1 track is shorter with height reflecting longer development 

times aloft and is somewhat more erratic with height. Grid is at 1 km intervals. 

 



186 
 

for three to four scans. However, at the 16° level (1000 m ARL) the trend is reversed, as 

the track becomes more consistent again. Regardless, the tendency is for the track to 

become more erratic with height, reflecting that the vortex is likely forming from the 

bottom up as suggested by Houser et al. (2015). Because the anticyclonic vortex appears 

to have been instigated by an RFD surge, which supplies vorticity near the surface, 

development first near the surface makes physical sense. Furthermore, the anticyclonic 

vortex is trackable earlier in lower elevation scans than at higher elevation ones, lending 

more evidence for a bottom-up development. As shown in Figure 7.3, the 4° elevation start 

time is 2329:18 UTC, at 8° it is 2329:22 UTC, at 12° it is 2330:06 UTC, and at 16° it is 

2330:30 UTC. The anticyclonic vortex is first identified in the 16° elevation velocity field 

three scans later than at 4°, taking more than a minute after appearing at 240 m ARL to 

appear at 1000 m ARL. The difference in time of development grows when considering 

the top and bottom scan elevations in the data; the gap grows to 2 minutes with the vortex 

appearing at the 2° level at 2328:36 UTC and taking until 2330:32 to appear at 18°.  

Finally, the track of the tornado takes a slight right turn at the end of segment 1 that 

has the same magnitude with height but is sharper at higher elevations (see Figure 7.3). At 

4°, the track shifts from approximately 8 m s-1 from 230° (SW) to roughly 7 m s-1 from 

250° (WSW); while the forward speed barely changes, the track direction changes by 

almost 20°. Meanwhile, the track at 16° goes from 7 m s-1 from 230° (SW) to 7 m s-1 from 

250° (WSW), displaying a 20° track direction change. The right turn likely marks a point 

at which the anticyclonic vortex has become coherent with height and has reached a mature 

position at the apex of the RFGF kink, similar to the cyclonic tornado; as a result, the track 
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of the tornado becomes close to the motion of the parent supercell. This transition will be 

explored further in the following radar analysis section. 

 During segment 2, the anticyclonic tornado behavior becomes uniform with height 

and the vortex matures. The tornado tracks consistently to the east northeast, with headings 

that are no more than 5° different across all scan elevations, averaging from 250° (SW). 

Vortex forward speed also differs by less than 1 m s-1, centered on roughly 7 m s-1. 

However, the vertical extent of the measurements is also decreasing continuously as the 

anticyclonic vortex nears the radar; the heights of the bottom and top scans go from 105 m 

ARL and 975 m ARL at the start of segment 2 to 11 m ARL and 98 m ARL at the end of 

the segment. With less than 100 m of vertical depth at the closest scans, differences with 

height are expected to be minimal. Segment 2 also marks peak intensity for the anticyclonic 

vortex, with ΔVmax in between 35 and 40 m s-1, placing the vortex just under the tornadic 

shear threshold in Wurman and Kosiba (2013). Furthermore, French et al. (2014) notes that 

the measured ΔV of an unchanging vortex will increase as distance to the radar decreases 

because of higher sampling resolution within the vortex. Therefore, the threshold for 

tornadic shear should increase as well to reflect the biased measurements. As a result, it is 

likely that the companion anticyclonic vortex did not complete development into a weak 

tornado and was instead an intense, sub-tornadic vortex. At 2337:30, the anticyclonic 

vortex passes within 0.3 km of the radar location and data become unreliable as the vortex 

enters the radar near field.  

 During the brief 2.5-minute gap while the vortex was overhead, the indicated speed 

of the tornado increases markedly. Both before and after the vortex passed over the radar, 

the vortex motion was 7 to 8 m s-1, but while the vortex passed overhead forward speed 
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increases to over 10 m s-1 at all scan elevations. The increase in speed is greatest at the 2° 

level, with the vortex surpassing 12 m s-1 in forward speed. The reasons for the burst in 

speed are not entirely known, but its resemblance to the burst in forward speed of the 

cyclonic tornado during segment 4 as the result of a strong RFD surge suggest that an RFD 

surge may have been responsible. However, no sharp directional change occurred, and 

noisy data in the radar near field filled with ground clutter limit the ability to identify any 

near vortex features. Furthermore, the vortex center passes just to the north of the radar 

deployment location, creating unfavorable angles from the radar to any eastward moving 

RFD surge since any enhanced momentum would be oriented perpendicular to the radar 

beam. Hints of a momentum surge are still detectable however, and findings from radar 

analysis will be presented in the following section. 

After the vortex passes overhead, segment 3 begins. The track heading and speed 

of the anticyclonic vortex return to those seen during segment 2; the 4° track vector was 

roughly 7 m s-1 from 250° (WSW) before the overhead pass and was approximately 8 m s-

1 from 250° (WSW) after the overhead pass. As with segment 2, the track also remains 

unified across all scan elevations. However, the anticyclonic tornado does begin to weaken 

significantly during segment 3, backing off from marginal tornado intensity. Despite this 

weakening, it was not during segment 2 that disturbed dust and dirt was being lofted as 

indicated by the correlation coefficient derived damage paths in Figure 3.6, but during 

segment 3 after the vortex passed overhead that there was scouring of a small amount of 

dust and dirt by the vortex. As described by Tanamachi et al. (2007), the vortex could be 

dissipating in accordance with decay mode 2, where the RMW increases as azimuthal wind 

magnitude decreases. As the tornado’s internal downdraft becomes dominant and inflow 
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ceases, the RMW increases, and more dust is lofted. Consequently, the damage path 

identified for the anticyclonic tornado may be a result of dissipation and not an actual 

damage path of a tornado. More details will be examined in cross section analysis in section 

7.4 to determine if the vortex did follow a mode 2 decay.  

 At the end of segment 3, the sharpest directional shift in track of the anticyclonic 

vortex occurs. Figure 7.4 shows the rapid character of the track shift and its persistence 

with height; at the 4° elevation, the tornado track was 8 m s-1 from 250° (WSW) and shifted 

to 8 m s-1 from 270° (W). Across all scan elevations, the vortex turns an average of 25° to 

the right in 1 or 2 scans. The right turn is coincident with significant vortex weakening to 

a ΔVmax of less than 20 m s-1. As the right turn is concurrent with significant weakening, 

Figure 7.4: Comparison of the right turn between segments 3 and 4 at 4° increments. 

The right turn is persistent with height and generally sharp, occurring in 1 or 2 scans. 

Grid is at 1 km intervals. 
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an occlusion from the RFGF has likely taken place in a process conceptually like the 

occlusion of the cyclonic vortex; indeed, the anticyclonic vortex is intense and likely 

generates an occlusion downdraft similar to the cyclonic tornado. Moreover, the average 

forward speed of the parent supercell is roughly 9.5 m s-1, which is nearly 2 m s-1 faster 

than the average speed of the anticyclonic tornado; the anticyclonic tornado moves 

westward with respect to the parent supercell, reflecting the formation of an occlusion 

downdraft.  The eventual decoupling of the anticyclonic vortex from the RFGF in an 

occlusion process like the cyclonic tornado will be explored in radar analysis.  

 

7.3: Evolution of the Vortex and Near-Vortex Wind Field on Radar 

 A radar analysis showing the development of the companion anticyclonic tornado 

during segment 1 at the 4° level is shown in Figure 7.5. The first panel at 2329:18 UTC is 

the first scan in which a coherent anticyclonic vortex is trackable at the 4° elevation; over 

the next several scans the vortex strengthens and reaches a marginal tornadic intensity with 

ΔVmax over 35 m s-1. By the third analysis time at 2330:38 UTC, a discrete area of outbound 

velocities has become established on the south side of the developing vortex. While the 

vortex remains broad, it rapidly begins to tighten and appears as a coherent anticyclonic 

vortex by the fifth analysis time at 2331:58 UTC. As the vortex strengthens, the kink in the 

RFGF continues to sharpen. The RFGF kink evolves and becomes coupled to the 

anticyclonic tornado, forming a distinct apex near the anticyclonic tornado where the 

portions of the RFGF ahead of the vortex (east) and behind the vortex (west) join. South 

of the apex, a marked inflow notch also becomes established. Like the apex between the 

RFGF and forward flank convergence zone near the cyclonic tornado, the apex at the sharp 
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corner of the RFGF kink near the anticyclonic tornado marks the inflow notch for the 

anticyclonic tornado and a zone of enhanced anticyclonic shear and vorticity underneath 

flanking line updrafts that support the continuation of the anticyclonic tornado. If the 

anticyclonic tornado can remain near the apex in the RFGF in proximity to flanking line 

updrafts, the vortex will continue to intensify or maintain strength; if the anticyclonic 

tornado moves away from or otherwise becomes decoupled from RFGF, the vortex will 

become occluded from its inflow and dissipate. Notably, the flanking line updrafts and 

enhanced convergence and vorticity located at the new RFGF apex are not as intense as 

similar features associated with the parent supercell located near the cyclonic tornado, so 

the overall potential for the anticyclonic vortex to intensify is probably not as great. 

Figure 7.5: RaXPol imagery at the 4° elevation taken every 2 scans (40 s) during 

segment 1. In each radar panel, reflectivity is on the left and Doppler velocity on the 

right. Range ring spacing is 1.0 km. Black circles denote the anticyclonic vortex. Red 

lines mark the approximate positions of RFGF near the vortex. 
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 A similar radar analysis during segment 2 while the anticyclonic vortex reaches 

maturity is produced in Figure 7.6. Throughout the analysis, the anticyclonic vortex visibly 

starts to lag the RFGF and apex that marks the inflow notch. During the first 2 analysis 

times, the anticyclonic tornado remains coupled to the RFGF and the inflow remains 

unobstructed; the vortex continues to intensify and reaches peak intensity around 2333 

UTC. However, like the cyclonic tornado, the anticyclonic tornado represents a vorticity 

maximum and pressure minimum. Unlike the cyclonic tornado, there is no persistent mid-

level mesoanticyclone above the anticyclonic vortex, and the magnitude of vorticity near 

the ground quickly surpasses that aloft. Consequently, a downward directed dynamic 

pressure gradient force likely develops rapidly and an occlusion downdraft becomes 

established. Because of the lack of vorticity aloft and subsequent rapid onset of the 

Figure 7.6: RaXPol imagery at the 4° elevation taken every 2 scans (40 s) during 

segment 2. In each radar panel, reflectivity is on the left and Doppler velocity on the 

right. Range ring spacing is 1.0 km. Black circles denote the anticyclonic vortex. Red 

lines mark the approximate positions of RFGF near the vortex. 
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downward directed pressure gradient force and formation of the occlusion downdraft, the 

anticyclonic tornado is not able to intensify much before occlusion takes place. The 

occlusion downdraft forms quickly, and the RFD surges it creates (See Figure 5.4) displace 

the RFGF from the anticyclonic tornado and occlusion occurs. As a result, the companion 

anticyclonic tornado only reaches a ΔVmax of 37 to 38 m s-1; the early formation of the 

occlusion downdraft associated with companion anticyclonic tornadoes explains why most 

tornadoes of this type are relatively weak.   

The motion of the anticyclonic tornado is evidence that an occlusion downdraft has 

become established. The vortex is moving at a consistent pace that is roughly 2 m s-1 slower 

than the parent supercell, which reflects westward storm relative movement of the vortex. 

Like the cyclonic tornado, this westward motion is likely a result of occlusion of the 

anticyclonic vortex, which has proceeded in a similar manner to the occlusion of the 

cyclonic tornado. The occlusion downdraft formed and generated RFD surges that 

decoupled the RFGF from the tornado, causing the occlusion to take place. Once occlusion 

occurs, the companion anticyclonic tornado slows down relative to the parent storm as it 

and the RFGF are no longer coupled. Again, the rapidity of occlusion and early onset of 

westward propagation reflects the more rapid lifecycle of the companion anticyclonic 

tornado as compared to the cyclonic tornado. Unfortunately, unlike with the cyclonic 

tornado, there are no direct indications of significant surging momentum within the RFD 

near the vortex. This may be because the surging momentum and occlusion downdraft 

related RFD surges are difficult to differentiate from the anticyclonic tornado in the data; 

the companion anticyclonic tornado, occlusion downdraft, and any surging RFD 

momentum generated by the occlusion downdraft are all smaller in scale and weaker than 
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similar features associated with the cyclonic tornado. Moreover, as time passes, the 

companion anticyclonic tornado gets very close to the radar and then passes over it, making 

it difficult to discern features such as RFD surges since the interpretation of Doppler 

velocity changes as angles relative to the radar rapidly shift.  

Throughout its lifecycle, the companion anticyclonic tornado follows an occlusion 

process conceptually like the one that the cyclonic vortex undergoes. Figure 7.7 presents a 

conceptual model comparing the occlusion of both the cyclonic and companion 

anticyclonic tornadoes. First, the intensity of the vortex increases and the magnitude of 

vorticity near the surface surpasses that aloft. A downward directed pressure gradient 

forms, leading to the development of the occlusion downdraft. The occlusion downdraft 

Figure 7.7: Conceptual diagram comparing the anticyclonic tornado occlusion process 

to the more familiar cyclonic tornado occlusion process. Red lines represent the major 

near-tornado boundaries. A dotted area shaded light blue denotes the approximate 

location of the occlusion downdraft. Gray arrows show where momentum is surging 

because of the occlusion downdraft. There is a scale difference between the two 

diagrams. 
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often forms off-center from the tornado within the RFD, which could be the result of a tilt 

in the vorticity maximum with height or due to buoyancy contributions to the downward 

directed pressure gradient force (Adlerman and Droegemeier 1999; Bluestein 2013). Then, 

the occlusion downdraft generates strong RFD surges (e.g., Skinner et al. 2014). Figure 5.4 

provided a possible physical mechanism for this, showing that pulsing occlusion downdraft 

outflow could generate RFD surges as the outflow pulses interacted with the RFD flow. 

The RFD surges are advected about the tornado circulation and reach the RFGF, displacing 

it. If the surging momentum is sufficiently strong as to overwhelm the near-surface 

convergence driven by the tornado’s central low pressure, the RFD surges cause the RFGF 

to break away from the tornado and the two become decoupled. Once decoupling occurs, 

the tornado is occluded from relatively warm and buoyant inflow and the tornado begins 

to weaken.  

However, there are a few key differences between the occlusion of the anticyclonic 

and cyclonic tornadoes. First is that the companion anticyclonic tornado is not overlain by 

a persistent mid-level mesoanticyclone like the cyclonic tornado. As a result, the magnitude 

of vorticity near the surface quickly surpasses the magnitude of vorticity aloft and a 

downward directed pressure gradient force develops rapidly at relatively low vortex 

intensities. Second, is that unlike the cyclonic tornado, the companion anticyclonic tornado 

did not deviate significantly in the direction opposite the RFD after occlusion occurred, 

which is rightwards in a storm relative sense. The lack of rightward motion appears to stem 

from the lack of significant or strong RFD surges near the anticyclonic tornado. Because 

the companion anticyclonic tornado is weaker than the cyclonic tornado, the associated 

features, such as the occlusion downdraft and surging RFD momentum, were likely weaker 
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as well and strong RFD surges may not have been generated. Moreover, the companion 

anticyclonic tornado is also located away from the parent supercell, isolated from other 

mechanisms that can generate RFD surges closer to the cyclonic tornado. As a result, there 

are few, if any, strong RFD surges near the anticyclonic tornado to affect its track.   

The anticyclonic tornado also highlights a contradiction in a tornado’s mere 

existence; as a tornadic circulation intensifies, it will drive the formation of an occlusion 

downdraft unless the magnitude of vorticity aloft is also exceptionally strong. In this way, 

the maximum potential intensity of most tornadoes is limited; as soon as the tornado 

intensifies to a point where near-surface vorticity grows stronger than that aloft, then the 

occlusion downdraft forms. The occlusion downdraft outflow creates RFD surges when 

interacting with the RFD flow (See Figure 5.4), and these surges are then advected around 

the tornado circulation where they can displace the RFGF and cause occlusion. For this 

reason, it is critical for a tornado to be overlain by an exceptionally strong mid-level 

mesocyclone. A strong mid-level mesocyclone delays the formation of a strong occlusion 

downdraft, allowing the tornado to grow more intense before the occlusion downdraft 

forms. This makes it more likely that the tornado will be able to drive enough surface 

convergence to stay coupled to the RFGF despite attempted displacement of the RFGF by 

the surging momentum caused by the occlusion downdraft. However, most supercells 

display cycling behavior to some degree, including the Selden supercell that underwent 

occluding mesocyclogenesis.  Only in combinations of environmental shear and instability 

that are generally unrealistic in all but the most extreme synoptic patterns can supercells 

possess a strong enough mid-level mesocyclone to achieve non-cycling behavior 

(Adlerman and Droegemeier 2005). Because of the high directional and speed shear 



197 
 

requirements of such supercells, steady non-cycling behavior is exceptionally rare; such a 

case was seen in December of 2021 when a steady non-cycling supercell developed and 

spawned the long track Mayfield, Kentucky tornado.  

Following segment 2, the anticyclonic vortex is observed to accelerate significantly 

while it passes overhead of the radar. Figure 7.8 contains a radar analysis at the 4° level 

that may show evidence of an RFD surge brushing by the north side of the vortex that does 

not otherwise interact with the circulation by wrapping around it. In the first panel at 

2336:38 UTC, a slight enhancement of momentum within the RFD north of the vortex is 

apparent. However, because the surge moves eastward north of the radar, momentum is 

oriented perpendicular to the radar, and it is difficult to determine with certainty whether a 

momentum surge is occurring. Because of this, only a small area of enhanced momentum 

just to the north of the vortex is identifiable at the second analysis time. The surge continues 

Figure 7.8: Radar analysis at the 4° scan elevation depicting a possible RFD surge 

brushing by the north side of the anticyclonic tornado. Black circles denote the area of 

enhanced momentum, while arrows indicate direction of movement. A dotted circle 

and arrow mark weakening of the possible surge in the last panel. 
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eastwards until a weak area of enhanced outbound momentum emerges in the fourth panel 

at 2339:38 UTC as the surge passes to the northeast of the radar. The area of enhanced 

momentum continues to accompany the anticyclonic vortex to its north while it gradually 

decays. By 2341:38, any hint of a surge has all but disappeared as momentum north of the 

anticyclonic tornado returns closer to a baseline state. From these observations, it appears 

that a weak surge or extension of a stronger surge located farther to the north deeper within 

the RFD may have brushed by the northern side of the vortex from 2336:30 to 2341:30 

UTC, moving only slightly faster than the vortex itself. The center of this time interval 

aligns well with when the vortex was directly overhead and forward speed briefly 

increased; it is possible that this surge was responsible for increasing momentum on the 

north side of the anticyclonic vortex, causing it to accelerate eastwards briefly. 

After the anticyclonic tornado passes overhead of the radar location, it continues to 

weaken considerably. A radar analysis at the 4° elevation covering segments 3 and 4 is 

shown in Figure 7.9. Notably, the vortex becomes deeply occluded during the analysis; the 

apex in the RFGF is no longer visible anywhere near the tornado and the occluded 

extension of the RFGF reaching back to the anticyclonic vortex becomes less defined. As 

a result, the anticyclonic tornado dissipates to a point where the vortex signature is barely 

visible in the velocity field. Ironically, the reflectivity signature associated with the tornado 

is most visible as the vortex decays. The development of the reflectivity appendage is 

coincident with the start of the correlation coefficient drop indicated in the damage swaths 

in Figure 3.6, and it is likely that the disturbing of dust and dirt has finally allowed the 

vortex to develop a distinct reflectivity feature. While some reflectors are likely being 

pulled down from the north by the anticyclonic circulation, the vortex continues to decay; 
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this process would be expected to slow as the vortex weakened, not increase in intensity 

such that a full reflectivity feature could develop. As discussed previously, the increased 

presence of dirt and dust may be the result of a mode 2 decay where the vortex broadens 

as winds decrease (Tanamachi et al. 2007), so the appearance of the reflectivity appendage 

may be an indicator of dissipation rather than an intense vortex. 

 

7.4: Cross Section Analysis 

 The averaged azimuthal cross sections at the 4° scan elevation for segments 1 and 

2 are exhibited in Figure 7.10. The segment 1 cross section accounts for the first 3.5 

minutes of the anticyclonic vortex lifecycle and averages 230 m ARL. Notably, the vortex 

width is relatively large, with an average diameter of roughly 370 m. Although this appears 

Figure 7.9: RaXPol imagery at the 4° elevation taken every 2 scans (40 s) during 

segments 3 and 4. In each radar panel, reflectivity is on the left and Doppler velocity 

on the right. Range ring spacing is 1.0 km. Black circles denote the anticyclonic 

vortex. Red lines mark the approximate positions of RFGF near the vortex. 
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contradictory at first, the large width is indicative of a broad circulation that has yet to 

tighten into a coherent, intense vortex. For a majority of the first segment, the anticyclonic 

vortex is developing, and the radar appearance of the vortex (see Figure 7.5) is in good 

agreement with the cross section; the vortex remains broad as vorticity is supplied and 

slowly concentrated and stretched by flanking line updrafts. Another indication of vortex 

development is that the cross section departs from expected behavior in the vortex core, 

where winds are expected to obey solid body rotation (e.g., Tanamachi et al. 2007). Finally, 

Figure 7.10: Azimuthal Cross Sections through the Selden anticyclonic Tornado at 4° 

elevation for track segments 1 (top) and 2 (bottom). 
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the average ΔV during segment 1 is less than 30 m s-1, placing it well below tornadic 

thresholds.  

 The segment 2 azimuthal cross section in Figure 7.10 stands in sharp contrast to the 

segment 1 cross section. By segment 2, the anticyclonic vortex has tightened considerably, 

with a width of about 230 m. Despite the smaller diameter, the vortex width continues to 

be quite large compared to prior studies. In their analysis, Tanamachi et al. (2007) found 

that the RMW of their tornado was 100 to 150 m during peak intensity, resulting in a vortex 

diameter of 200 to 300 m while the vortex was mature. Furthermore, this diameter was for 

a larger cyclonic tornado; a small, marginally tornadic anticyclonic vortex should not have 

an RMW the same size as a mature cyclonic tornado. This finding highlights the differences 

between GBVTD analysis, where tornadic circulations are attempted to be isolated from 

larger scale flows, and cross section analysis from the unaltered Doppler velocity field, 

where flow of multiple scales is superimposed on the vortex. A further indicator that larger 

scale flow within the RFD is superimposing on the vortex circulation is that the profile 

winds do not decrease very rapidly outside the RMW as would be expected in GBVTD 

analyses, where a potential flow region is generally found outside the RMW (Kosiba and 

Wurman 2010, Tanamachi et al. 2007, Wakimoto et al. 2012). A similar observation was 

made in Wurman and Gill (2000), when they noted that winds outside the RMW did not 

decrease at the rates expected; when vortices are not isolated using GBVTD techniques, 

the size of the wind field and coverage of intense winds associated with the vortex are 

much larger. Otherwise, the segment 2 profile reveals a mature and healthy anticyclonic 

vortex verging on tornadic strength. The ΔV has continued to increase to approximately 33 

m s-1 as the width of the vortex decreases, fitting a mode 2 intensification from Tanamachi 
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et al. (2007). The vortex core region also reflects solid body rotation while the magnitude 

of velocity measured on both sides of the vortex is within 2 m s-1. 

 After segment 2, the anticyclonic vortex passes directly overhead of the radar. 

Although data are unreliable as the vortex passes into the near field, a unique picture was 

taken looking straight up from the deployment site towards the cloud base as the vortex 

passed overhead and is shown in Figure 7.11. At the time when the vortex was overhead, 

the vortex was near its peak intensity; rotation within the cloud base is evident. Note that 

since the view is from the ground looking vertically, the rotation of the vortex will appear 

to be counterclockwise and not clockwise. A small protrusion of cloud is also visible at the 

center of the vortex, which may be a small funnel cloud forming in response to the intensity 

of the anticyclonic vortex. During the latter half of segment 2, the ΔV across the vortex 

was commonly 37 or 38 m s-1, making it possible that the vortex was a marginal tornado 

Figure 7.11: Picture of the anticyclonic vortex looking straight up as it passed 

overhead of the radar. The vortex is roughly in the center of the image, with a small 

funnel cloud or protrusion visible in the center of the vortex. Photo courtesy of Sam 

Emmerson. 
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as it passed over the radar. Furthermore, small pieces of vegetation were being lofted when 

the anticyclonic vortex passed overhead, indicating that the vortex was intense, with 

marginally tornadic winds. Caution, however, must be exercised since the presence of any 

debris may be just as much a function of the onset of vortex dissipation as its intensity.  

 Figure 7.12 contains the averaged azimuthal cross sections at the 4° elevation for 

segments 3 and 4, from after the anticyclonic vortex passed to the east of the radar. The 

segment 3 profile appears much like the segment 2 profile, except that it contains a 

significantly greater amount of noise because it contains fewer scans that were all taken 

when the vortex was very close to the radar where pixel width was only a few meters. From 

segment 2 to segment 3, the anticyclonic vortex has begun to weaken, with a ΔV of 

approximately 28 m s-1. The vortex width has also contracted to or slightly under 200 m. 

As the vortex weakens, it is also becoming less distinct from the background flow, so the 

winds do not decrease much outside the RMW. The segment 4 profile in Figure 7.12 is 

telling of a vortex that has almost entirely dissipated. The anticyclonic vortex has weakened 

considerably while broadening; the ΔV across the vortex is now less than 20 m s-1 and the 

vortex diameter has grown to at least 250 m. The vortex has followed a mode 2 decay, 

confirming that the appearance of the reflectivity feature on radar and presence of any 

debris is likely the result of vortex dissipation. This does not preclude small amounts of 

debris from being picked up by the sub-tornadic anticyclonic vortex as was noted by the 

radar crew when the vortex passed overhead of the radar, but the best-defined reflectivity 

signature that did not appear until segment 3 and was likely the result of decay and not due 

to the intensity of the vortex. The ΔV and diameter of the vortex are also difficult to discern, 

showing that the vortex has largely dissipated. The core region of the vortex no longer 



204 
 

obeys solid body rotation, and symmetry in the vortex profile has entirely disappeared; the 

vortex is both off center and the velocity magnitude on either side of the vortex is very 

different. Segment 4 reflects the occlusion of the vortex from the RFGF and inflow that 

was noted during radar analysis; the vortex has weakened rapidly in response and is barely 

a discernible vortex be the end of D7. 

 

 

Figure 7.12: Azimuthal Cross Sections through the Selden anticyclonic Tornado at 4° 

elevation for track segments 3 (top) and 4 (bottom). 
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Chapter 8 

Summary of the Selden Tornado, Conclusions, and Future Work 

  

 In May of 2021, the RaXPol mobile radar intercepted a supercell in northwestern 

Kansas that produced a tornado and companion anticyclonic tornado near the small town 

of Selden. In this thesis, the data collected by RaXPol during the Selden tornadoes were 

analyzed using multiple methods with the goal of explaining the behavior of both tornadoes 

throughout their lifecycles. Numerous features were identified, analyzed, and compared 

with prior literature to ascertain their potential influence on the behavior of both tornadoes. 

Some rarely documented phenomena with previously undetermined or uncertain impacts 

on tornado behavior were also observed, building on small sample sizes and limited 

understanding of potentially important features. Throughout analysis, particular emphasis 

was placed on how all identified features and their influences contributed to a summed 

whole, culminating in a comprehensive narrative for the Selden tornadoes. Throughout 

analysis, several key findings emerged. First was that RFD surges were critical for the 

evolution of both tornadoes, influencing track and advancing the occlusion process. Second 

was that the companion anticyclonic tornado formed only after a strong RFD surge 

impinged the southern flank of the RFGF, highlighting the possibility that companion 

anticyclonic tornadoes may be relatively scarce because they require vorticity from an RFD 

surge of sufficient strength and on a certain trajectory to form. Finally, it was found that 

both cyclonic and companion anticyclonic tornadoes followed conceptually similar 
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occlusion processes. The narrative of the Selden tornadoes that emerged from this study 

was based mostly on kinematic arguments, owing to the nature of the available data; there 

were certainly contributions to tornado behavior from thermodynamic or dynamic 

processes which could not be analyzed or investigated. 

 Over its roughly 35-minute life, the Selden tornado exhibited a plethora of 

behavioral changes and track shifts. RaXPol began observing the tornado at 2305 UTC, 

shortly after its genesis. During the early portions of the tornado’s development, evidence 

was found for a near simultaneous or ascending pattern of intensification, such as been 

found in studies that focus on tornadogenesis such as Houser et al. (2022). Additionally, 

the tornado became less coherent above the 2 to 2.5 km level, reflecting observations in 

Houser et al. (2022) that tornadoes may not be very deep. This finding was postulated to 

be the result of the low shear synoptic environment. Through the first several minutes of 

the tornado lifespan, the supercell RFD continued to intensify, and the tornado turned 

slightly to the right as it reached its ‘mature’ position relative to the parent supercell (e.g., 

Dowell and Bluestein 2002; French et al. 2014). Additionally, the forward flank 

convergence boundary, which was not well established at the onset of the tornado, became 

rooted to the tornadic circulation by 2307 UTC. Consequently, the Selden tornado began 

to intensify while it maintained an advantageous position near the apex of the surface 

boundaries underneath the storm updraft.  

While the Selden tornado was reaching a mature phase as described by numerous 

studies (e.g., Dowell and Bluestein 2002; Marquis et al. 2012; 2016), RFD momentum 

surges were also ongoing. Yet, the momentum associated with the surges was not yet 

enough to alter the tornado’s course as in Kurdzo et al. (2015) or Lee and Finley (2022). 
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Also leading up to the D6 data gap, a DRC fitting the definition in Rasmussen et al. (2006) 

was identified. The impacts of this DRC are unknown as data collection stopped before the 

DRC reached the ground, but it appears to match the criteria for a category 1 DRC from 

Byko et al. (2009); the DRC may have had a significant impact on the tornado once 

reaching the surface. An additional finding from the early stages of the Selden tornado was 

that the averaged cross sections revealed a much wider vortex than in previous studies 

where cross sections were constructed. Because the cross sections were produced from the 

raw Doppler velocity field and not from GBVTD analysis as in Kosiba and Wurman 

(2010), Tanamachi et al. (2007), or Wakimoto et al. (2012), the tornadic circulation was 

not filtered or isolated and flow fields of larger scale circulations, such as the supercell 

mesocyclone, superimposed with the tornado. Consequently, winds in the azimuthal cross 

sections did not fall off exponentially outside the RMW and the indicated RMW was 

shifted outwards.  

Immediately after data collection restarts following the D6 data gap at 2316 UTC, 

the tornado appears to be exiting a potential track loop. Although the D6 data gap precludes 

a definitive conclusion, the Selden tornado may have executed a track loop at the end of 

the data gap and exited it shortly after data collection restarted. An RFD surge present at 

the start of data collection after the data gap is supportive of the occurrence of a track loop, 

appearing in a similar position as the second RFD surge in the track loop conceptual model 

in Kurdzo et al. (2015) that causes the tornado to exit a loop. Analysis also indicates that 

the loop was most defined aloft, highlighting the subtleties inherent in small scale RFD 

surges; RFD surges have varying vertical extents, follow different trajectories, are 
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associated with widely varying magnitudes of enhanced momentum, and contain air with 

vastly different thermodynamic qualities (Finley and Lee 2004; 2008; Lee et al. 2004).  

Shortly after 2318 UTC, the tornado undergoes a multiple vortex transition. 

Secondary vortices were observed both visually and in radar data, often displaying great 

shear magnitudes over incredibly small distances, matching the description of secondary 

vortices in Wurman (2002). The multiple vortex transition was coincident with a temporary 

but significant inflow disruption like in Marquis et al. (2008), which was instigated by an 

RFD surge that had been advected by the tornado circulation to the northern flank of the 

tornado where the RFGF was temporarily displaced from the tornado. Similar behavior has 

been noted by previous studies, such as Marquis et al. (2016) and Skinner et al. (2014), but 

a temporary and rapid inflow disruption tied to a multiple vortex transition has not been 

specifically documented before. When the tornado became briefly enveloped in outflow 

air, the swirl ratio of the tornadic circulation increased because radial inflow decreased as 

the tornado updraft struggled to lift less buoyant air, leading to a multiple vortex transition 

(Rotunno 1984). Shortly after multiple vortex transition, the inflow recovers and is no 

longer blocked, but the tornado remains a multiple vortex tornado.  This was postulated to 

be the result of the tornado’s central pressure; because of the tornado’s larger size and an 

attendant decrease in the centrifugal force, the tornado’s central pressure was not as low 

and was unable to drive enough vortex radial inflow to decrease the swirl ratio even after 

the tornado was no longer entirely enveloped in RFD air. 

In between the D6 data gap and the end of D6 (2316 to 2319 UTC), another DRC 

was identified in the RaXPol data. This time, the DRC was able to reach the ground before 

data collection ended and a small increase in velocities on the side of the tornado closest 
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to the DRC was observed in the lowest scan elevation. While this would be expected since 

the DRC again fits the type 1 DRC definition from Byko et al. (2009), the lower limit of 

observations hinders the ability to make a definitive conclusion. Finally, with the tornado 

and forward flank at favorable angles from the radar and the supercell in a mature phase, 

reconstructed RHIs were made to search for a possible SVC. A small core of enhanced 

streamwise vorticity was found, particularly at the very end of D6 at 2319 UTC. The core 

of streamwise vorticity had a magnitude of approximately 0.15 s-1 and was located at 

roughly 600 m ARL right above the forward flank outflow just upwind of the tornado, 

which is in good agreement with models and observations of the SVC in Orf et al. (2017) 

and Schueth et al. (2021). However, the averaged RHI results were found to reflect more 

the presence of a density current rather than an SVC; the SVC is likely a transient structure 

that occurs in the heads of Kelvin-Helmholtz waves associated with the baroclinicity of the 

forward flank and is not a steady structure. Therefore, the average RHI plots do not reveal 

a defined SVC but simply reveal the defined density current associated with the forward 

flank cold pool, although, there are no temperature data to confirm this. 

After a nearly 7-minute gap, D7 begins at 2326 UTC. Early in D7, the Selden 

tornado executes a cyclonic track loop. The track loop was accompanied by a configuration 

of surges that closely matches the model offered in Kurdzo et al. (2015). However, in the 

Kurdzo et al. (2015) case, the tornado ejected from the track loop to the right of the 

tornado’s initial heading, preventing occlusion from taking place; in the Selden case, the 

tornado ejects from the loop on a similar heading to what it had before, and occlusion 

occurs. Immediately following the early D7 track loop a ‘rogue’ anticyclonic vortex 

appeared and orbited the Selden tornado. Although the origins of the vortex remain 
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uncertain due to the lack of data in between deployments, the ‘rogue’ anticyclonic vortex 

appears to be a satellite of the Selden tornado (e.g., Tanamachi et al. 2012).  

At 2329 UTC, the tornado becomes occluded in response to a particularly strong 

RFD surge that had impinged north of the tornado. The appearance of significant surging 

momentum and potent RFD surges during segments 3 and 4 are likely the result of the 

occlusion downdraft, and by late segment 4, the surging momentum causes occlusion as 

the RFGF is displaced from the tornado and the two decouple from each other (e.g., Skinner 

et al. 2014). While small track deviations continue to occur, the trend of the tornado is to 

start moving rearward into the parent supercell now that the tornado is no longer coupled 

to the RFGF (Dowell and Bluestein 2002; French et al. 2014). Furthermore, since the 

tornado was severed from its more buoyant inflow and is being displaced from the zone of 

enhanced surface vorticity and convergence associated with the RFGF and forward flank 

boundary, it begins to slowly decay (Dowell and Bluestein 2002). Finally, the Selden 

tornado reverts to a single celled vortex, likely because of a decreasing swirl ratio resulting 

from azimuthal winds weakening at a greater pace than radial inflow. 

After the Selden tornado begins occluding at 2329 UTC, the behavior of the vortex 

becomes disparate with height. At lower scan elevations, the tornado ejected rapidly east 

from the track loop on an RFD surge before suddenly stopping as momentum built on the 

northern flank of the tornado. Momentum continued to build on the tornado’s northern 

flank, eventually causing the tornado to retrograde starting at 2332 UTC. Finley and Lee 

(2022) documented a similar trend in which they observed tornadoes to undergo sharp track 

shifts when strong surges occurred and transported enhanced momentum around the 

tornadoes. After retrograding for about 2.5 minutes, the tornado then turns north because 
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of bounding momentum changes caused by another surge. Meanwhile, at higher scan 

elevations, the tornado ejected from the first track loop on a more northeasterly heading as 

the result of differences in the configuration of RFD surges aloft relative to the tornado. 

Then, the tornado underwent another track loop at upper levels at the same time as the 

tornado was retrograding and turning north at lower levels. Once again, the configuration 

of momentum proximate the tornado at upper scan elevations was like that in the Kurdzo 

et al. (2015) model.  

Subsequent the second cyclonic track loop, the track of the Selden tornado once 

again becomes unified with height. At 2335 UTC as the tornado starts tracking north 

northeastward, a WRB appears in lower elevation scans; the WRB lasts for about 3 

minutes, is narrow, and seems to cause a brief intensification of the tornado. While the 

observed WRB feature behaves largely like that in Houser et al. (2016), its formation 

appears to have occurred due to the positioning of 2 RFD surges, which was not noted in 

Houser et al. (2016). After the WRB dissipates, the Selden tornado begins to rapidly decay 

as the occlusion process completes; the tornado and low-level mesocyclone migrate into 

active downdraft areas and the tornado dissipates over a short time of roughly 1.5 minutes, 

completely disappearing by 2341 UTC. 

Shortly after the start of D7 at 2326 UTC, a companion anticyclonic tornado 

developed to the southeast of the primary Selden tornado on the opposite side of the 

supercell RFD. Aligning with formation mechanism 2 from Bluestein et al. (2016), a strong 

RFD surge impinged on the southern flank of the RFGF instigating vortex genesis. 

However, it also appears that vortex arches from the RFD contributed to genesis (Bluestein 

et al. 2016; Markowski and Richardson 2009). Although vorticity from RFD vortex ring 
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tilting appears to be required for anticyclonic tornadogenesis, it only predisposes the 

environment to the possibility of anticyclonic tornadogenesis and is incapable of forming 

a tornado without additional vorticity contributions. Consequently, it appears that 

additional anticyclonic vorticity on the right side of a strong RFD surge is critical for 

anticyclonic tornadogenesis, a possible explanation for the rarity of companion 

anticyclonic tornadoes. Further studies are needed to validate this important finding; the 

requirement for RFD surge vorticity for companion anticyclonic tornado formation can 

help to explain the frequency of these types of tornadoes and has ramifications on their 

predictability. 

After formation, the anticyclonic tornado established its own inflow notch and the 

RFGF became rooted to the tornado in a similar fashion as the cyclonic tornado. However, 

the anticyclonic vortex began to occlude rather quickly, as the occlusion downdraft likely 

formed due to the rapid onset of a downward directed dynamically driven pressure gradient 

force. Since there is no significant mid-level vorticity above the anticyclonic tornado as 

there is for the cyclonic tornado, vorticity near the surface quickly surpassed that aloft. All 

tornadoes are subject to this to some degree, since the existence of a strong circulation 

necessitates strong vorticity near the ground that is always threatening to exceed the 

vorticity aloft and drive the creation of the occlusion downdraft. Over the course of roughly 

15 minutes, the anticyclonic vortex rapidly reaches a peak intensity just under tornadic 

thresholds and then steadily occludes, nearly completely dissipating by the end of D7 at 

2343 UTC. 

Thorough analysis of the Selden tornado’s lifecycle prompts several points of 

discussion. First is the feasibility of using RFD surges to anticipate changes in tornado 
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motion in the near term to update NWS tornado warnings. A building number of cases 

show that RFD surges have a demonstrable effect on tornado behavior, and that the effect 

of any given surge or configuration of surges is at least somewhat predictable; the tornado 

tends to move in the same direction that the surge is moving. For example, Finley and Lee 

(2022) found that tornadoes turned significantly left when RFD surges passed in front of a 

tornado as they moved around the circulation; as surges passed from right to left in front 

of the tornado, they encouraged leftward motion with respect to the tornado track. Kurdzo 

et al. (2015) also showed that a specific arrangement of RFD surges can cause a tornado to 

execute a track loop. Similar patterns of behavior were documented with the Selden 

tornado, such as the observation that two RFD surges oriented 90° clockwise from each 

other about a tornado can cause a track loop to occur; however, the sample size of cases is 

not yet high enough to make generalizing conclusions. There are innumerable 

arrangements of RFD surges that could cause different tornado tracks, or perhaps, lead to 

a similar pattern of motion. The response of a tornado to an RFD surge also depends greatly 

on the surge trajectory and strength, which cover a wide spectrum (Finley and Lee 2004; 

2008; Lee et al. 2004). Many more studies will need to be conducted on high resolution 

radar and thermodynamic data sets to begin ascertaining a true picture of RFD surges. 

Moreover, RFD surges are small features, requiring high resolution radar observations to 

detect. NEXRAD WSR-88D radars are simply too far from many storms to provide the 

necessary fidelity of measurement at heights close enough to the ground to capture all RFD 

surges.  

A second key area of discussion that is related to using RFD surges to anticipate 

tornado behavior changes is how and why RFD surges form and where they originate. 
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Numerous studies have investigated the impacts of RFD surges on tornado behavior and 

lifecycle, and some have focused on the properties of surges directly (e.g., Finley and Lee 

2004; 2008; Lee and Finley 2022; Kurdzo et al. 2015; Lee et al. 2004). However, the origin 

and formation processes for surges are still not well understood. One specific formation 

mechanism for RFD surges which was found in Skinner et al. (2014) and was also 

supported by this study was the occlusion downdraft. When the occlusion downdraft 

reaches the surface and generates outflow, RFD surges are generated; Figure 5.4 presents 

a conceptual model of this process. Another likely culprit are DRCs, which likely generate 

surges when they reach the surface and spread outwards; significant near-surface 

convergence is observed with DRCs in RFD surge-like bands (e.g., Rasmussen et al 2006 

or Byko et al 2009). However, RFD surges of widely variable trajectory, source region, 

strength, and duration were noted in this study, highlighting the reality that RFD surges 

can result from many formation mechanisms. Furthermore, RFD surges have been 

observed to accompany air with a wide range of thermodynamic qualities, suggesting a 

wide range of different formation mechanisms.  

While RFD surge formation is not yet fully understood, some possibilities are 

mentioned here. Perhaps most simply, higher momentum could be briefly mixed 

downwards to the surface from aloft, generating a surge. The storm could also advect 

higher momentum from aloft to the surface. Since downdrafts are largely driven by 

precipitation processes, it also stands to reason that local or short-lived perturbations to 

them could generate RFD surges. For instance, a brief increase in evaporative cooling as 

precipitation falls into dry air would briefly enhance the RFD locally as the air becomes 

even more negatively buoyant than the air immediately surrounding it. Additionally, a 
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simple increase in precipitation loading could also locally enhance the RFD and generate 

a surge. Vorticity near the surface within the RFD could also play a role. If a horizontal 

buoyancy gradient develops, then horizontal vorticity is generated, and the horizontal 

circulation creates enhanced momentum within the RFD near the surface if the circulation 

has the correct sense. Existing vertical vorticity could also be tilted into the horizontal near 

the surface for the same effect. Finally, an enhancement of the surface pressure gradient 

between the storm cold pool and updraft region could result in the generation of an RFD 

surge. This would require an intensification of either the supercell updraft, RFD, or both. 

Further work will be required to investigate these mechanisms. However, to investigate 

these mechanisms, it may be necessary to complete very high-resolution simulations or 

collect 3-dimensional observations of a supercell and its RFD, which may be out of reach 

given current technological limitations. 

Finally, the spectrum of anticyclonic vortex behavior observed in this study 

warrants further investigation. Despite the relative unremarkable nature of the Selden case 

(the tornado was not particularly strong or violent), two entirely different anticyclonic 

vortices were found. The first vortex appeared to be a satellite tornado consistent with 

Tanamachi et al. (2012), but its origins are unknown. Only a few minutes after the first 

vortex appears, a second anticyclonic vortex undergoes genesis. However, this vortex is in 

an entirely different location in the storm and behaves dissimilarly to the first vortex; the 

vortex is a companion anticyclonic tornado fitting the description in Bluestein et al. (2016). 

Perhaps the most important finding in this study was that an RFD surge was observed to 

instigate the genesis of the companion anticyclonic tornado, and that the companion 

anticyclonic tornado only formed once the RFD surge vorticity added to the weak ambient 
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vorticity from RFD vortex ring. Studies focusing on anticyclonic tornadoes and the 

different types observed in cyclonic supercells need to be completed to answer questions 

concerning frequency, formation, and impacts on the primary cyclonic tornado. These 

questions are particularly salient for companion anticyclonic tornadoes, which can attain 

significant intensity on occasion (Bluestein et al. 2018) and are often difficult to anticipate 

owing to the potential role of RFD surges in their formation (Bluestein et al. 2016, Finley 

and Lee 2008). The two formation mechanisms given in Bluestein et al. (2016) certainly 

play a role in companion anticyclonic tornadogenesis as was seen in this study, but it 

remains unclear as to why some cyclonic supercells have companion anticyclonic 

tornadoes and others do not especially since RFD surges remain only partially understood.    

There remains ample room for additional work surrounding the features identified 

in this study. As previously discussed, RFD surges remain poorly understood; questions 

regarding origins, frequency, and range of impacts on tornadoes are remain unanswered. 

Different types of studies, including simulation based and observational must be 

completed. However, some of the work that should be done, such as attaining full high-

resolution 3-dimensional observations of an entire supercell RFD, remains out of reach. 

Yet, additional datasets become available from mobile weather radars every year, which 

are waiting to be analyzed. To further understanding of how RFD surges impact tornado 

behavior as well as to investigate the numerous other features identified in this study and 

others that may or may not yet have been discovered, these cases need to be analyzed. 

Polarimetric variables should also be considered to grasp a complete picture of a storm; for 

instance, microphysical information from polarimetric moments may reveal RFD surge 

formation mechanisms or highlight additional features. Furthermore, consideration should 
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be given to attempt dual Doppler analyses wherever possible to yield the full 2-dimensional 

horizontal velocities that make RFD surges much easier to discern, thereby increasing the 

accuracy and potential value of a study. Most importantly, this study focused on a 

kinematic explanation of tornado behavior. Thermodynamic processes, while certainly 

important to the behavior of tornadoes, were not a focus of this study owing to a complete 

lack of thermodynamic data. Furthermore, the occlusion of tornadoes is not a totally 

understood process (Adlerman and Droegemeier 2005). While RFD surges and the 

occlusion downdraft appear to play a large role in the occlusion process, it is possible that 

other mechanisms on multiple scales, from the synoptic environment down to the tornado 

itself, exert considerable influence on the occlusion process. 
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