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We study the non-equilibrium dynamics of dipoles confined in multiple stacked two-dimensional
layers realising a long-range interacting quantum spin 1/2 XXZ model. We demonstrate that strong
in-plane XXX interactions can protect a manifold of collective layer dynamics. This then allows us
to map the many-body spin dynamics to bosonic models. In a bilayer configuration we show how to
engineer the paradigmatic two-mode squeezing Hamiltonian known from quantum optics, resulting
in exponential production of entangled pairs and generation of metrologically useful entanglement
from initially prepared product states. In multi-layer configurations we engineer a bosonic variant of
the Kitaev model displaying chiral propagation along the layer direction. Our study illustrates how
the control over interactions, lattice geometry and state preparation in interacting dipolar systems
uniquely afforded by AMO platforms such as Rydberg and magnetic atoms, polar molecules or
trapped ions allow for the control over the temporal and spatial propagation of correlations for
applications in quantum sensing and quantum simulation.

The individual particle control recently offered by
quantum gas microscopes [1] and optical tweezers [2],
the impressive advances in spectroscopic methods [3],
complemented by the capability of experiments to trap
and manipulate a broad range of atomic, molecular and
optical systems featuring diverse types of interactions (
from contact [4, 5], to dipolar [6–13] to all-to-all [14–19])
are opening untapped opportunities for quantum simula-
tion [20–22], metrology [23] and computation [24–26]. In
these systems it is now possible to explore the propaga-
tion and growth of quantum entanglement and correla-
tions [27] which is crucial for demonstrating their quan-
tum advantage.

One of the most basic mechanisms for entanglement
growth, which is also at the very heart of foundational
questions in quantum mechanics [28, 29], is the creation
of entangled states consisting of pairs of correlated par-
ticles in the guise of two-mode squeezed (TMS) states
[30–32]. These states were originally understood in quan-
tum optics in the context of parametric amplification,
but have been shown to be relevant to a wide range of
phenomena including the Schwinger effect in high energy
physics [33, 34], the Unruh thermal radiation in general
relativity [35], mode-changing collisions in spinor conden-
sates [36–39] and thermofield double states in the holo-
graphic correspondence relating a quantum-field theory
to a gravitational theory in one higher dimension [40, 41].

In this work we explore various ways to produce corre-
lated pairs during during the non-equilibrium many-body
dynamics of spins 1/2 arrays prepared in a stack of two-
dimensional layers. Specifically, we use strong in-plane
Heisenberg interactions to lock the spin of each layer into
a collective spin, with magnitude set by the number of
particles in each layer, and show that by preparing dif-

FIG. 1. Illustration of spin 1/2 dipoles in multi-layers and
mapping to bosonic pair creation. a) Dipoles in stacked 2D
layers of a 3D optical lattice are prepared layer selectively
in (distinct) coherent spin states illustrated by the Bloch
spheres. They interact via long-range (dipolar) interactions
within and between layers. b) Strong in-plane interactions

Ŝi · Ŝi (illustrated as red ellipse) couple spins within a layer
resulting in collective behavior. Inter-layer dipolar spin ex-
change (Ŝ+

i Ŝ
−
j ) maps to pair creation of bosonic collective

excitations.

ferent initial orientations of the collective spins (enabled
by layer-selectivity [42]), interlayer interactions [42] can
be used to engineer distinct types of pair production pro-
cesses.

One of them is the paradigmatic two-mode squeezing
Hamiltonian [30–32] known for its capability to gener-
ate metrologically useful states. Originally encapsulated
by the Einstein, Podolsky, and Rosen (EPR) paradox
[28, 29], two-mode squeezing occurs when two separate
ensembles A and B are correlated such that the rela-
tive fluctuations between the sum and difference of two
quadratures can be determined below the Heisenberg
uncertainty constraint [43]. In this work A and B are
bosonic excitations in different spatially separated layers
generated exponentially fast through long-range dipolar
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interactions between the particles allowing fast scalable
entanglement generation in large systems.

Pioneering work on spatially distributed entanglement
has been accomplished using atom-light interactions in
photonic systems [44–46], and hot atomic vapors [47, 48],
as well as in Bose-Einstein condensates [49, 50], and more
generally in quantum networks [51–54]. However, the
possibility of using long-range interactions to directly cor-
relate spatially separated arrays without the detrimental
degradation of coherence from motional effects or pho-
ton loss can offer significant opportunities for quantum
metrology, in particular in terms of scalability and speed
of entanglement generation. Furthermore, by prepar-
ing an initial state with states cyclically staggered along
three perpendicular Bloch vector directions we show it
is possible to engineer a bosonic variety [55, 56] of the
Kitaev model [57] which shows remarkable properties
such as phase-dependent chirality, drastic sensitivity to
boundary conditions and rich dynamical behaviors [56].
While there have been proposals to generate bosonic Ki-
taev models in coupled cavities subject to parametric
driving [56], their implementation in long lived molecular
or atomic states interacting via long range interactions
can offer important advantages for their preparation, de-
tection and storage .

Model.— We consider spins interacting via long-range
interactions in two or more two-dimensional layers as
shown in Fig. 1(a), prepared for example via a deep 3D
optical lattice . We assume distinct in-plane lattice spac-
ing alat and layer spacing aZ . We restrict dynamics to
two internal states representing a spin 1/2 degree of free-
dom with dynamics determined by the XXZ Hamiltonian

ĤXXZ = 1/2
∑
i 6=j

Vij

[
J⊥
2

(ŝ+i ŝ
−
j + ŝ−i ŝ

+
j ) + Jz ŝ

z
i ŝ
z
j

]
(1)

where i, j are three-dimensional positions (iX , iY , iZ) and
iX , iY run along the positions in a given two-dimensional
layer of size L × L indexed by iZ . The spin-operators
ŝαi = σ̂αi /2 are given in terms of the Pauli matrices σ̂x,y,z

that act on the spin at site i. The couplings J⊥ and Jz
determine the relative strength of the spin-exchange and
Ising terms respectively, which we will tune to be equal,
Jz = J⊥ in the following.

For specificity we consider dipolar interactions of the
form Vij = Vdd(ri − rj) with Vdd(r) = Cdd

r3 (1 − 3Z2)
parametrised by a dipolar coupling strength Cdd. We
note that the Hamiltonian contains both intra-layer as
well as inter-layer Heisenberg interactions, the relative
strength of which we can tune by changing the ratio
aZ/alat. We emphasise that the specific spatial depen-
dence of the interactions is not material to our conclu-
sions as long as intra-plane versus inter-plane interac-
tions are tunable, and the interactions protect collective
behaviour which can already occur for nearest neighbour
interactions [58].
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FIG. 2. Exponential pair-creation and dynamical phase tran-
sition in a dipolar bilayer. Main panel: Exponential growth
of bosonic excitations, Npair = Sz1 − Sz0 − N , versus time
compared to the two-mode squeezing prediction Npair =
2 sinh2 (SV t/~) (gray dashed). Bilayer with aZ/alat = 12
in an initially anti-aligned spin state, Sz1 (0) = −Sz0 (0) = N/2
with L = 10, 20, 40 (N = 100, 400, 1600 per layer). Inset:

DPT to collective regime. Spin-length 〈Ŝ2〉/N2 versus time
for different layer spacings aZ/alat = 2, 4, 8, 12 displaying the
transition to collective behavior for L = 40 (N = 1600).

We assume that in a given layer iZ all spins are pre-
pared in the same state such that the collective layer
spin ~S2

iZ
=
∑
iX ,iY

~siX ,iY ,iZ points in a layer dependent

direction 〈~SiZ 〉 = N/2~niZ with N = L2 at unit filling as
illustrated in Fig. 1(a) for alternating anti-aligned layer
spins, ~niZ = (−1)iZ ẑ. For simplicity we have assumed
all the layers have the same particle number N .

At the Heisenberg point, achieved when Jz = J⊥, the
interactions between spins within a plane open a many-
body gap between permutationally symmetric states of
maximal spin-length 〈~S2

iZ
〉 = N/2(N/2 + 1) and states

with 〈~S2
iZ
〉 < N/2(N/2 + 1) [58–62]. Assuming the dy-

namics remains in this manifold the model further re-
duces to

Ĥlayer = 1/2
∑
i6=j

V av
ij

[
1

2
(Ŝ+
i Ŝ
−
j + h.c.) + Ŝzi Ŝ

z
j

]
(2)

where we have removed for simplicity the sub-
script z, i, j now denote the layers, and V av

ij =

1/N2
∑
x,y,x′,y′ V(x,y,i),(x′,y′,j). Note that we dropped the

in-plane interactions, which in the fully collective man-
ifold just contribute a constant term. In this collective
limit the layer-averaged interaction also sets the natural
scale for the time evolution. For convenience we define
the nearest-layer averaged interaction V = V av

i,i+1.
Bilayer.— We first study the case of a bilayer con-

figuration with initially anti-aligned layer spins, 〈~S1(t =

0)〉 = −〈~S0(t = 0)〉 = N/2 ẑ, as shown in Fig. 1(b).
We simulate the quantum dynamics of the full dipo-

lar spin model using the discrete truncated Wigner ap-
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proximation (dTWA) [63–68]. In the inset of Fig. 2 we
show the time evolution of the total layer spin-length
〈Ŝ2
i 〉 for a range of layer-spacings aZ/alat. While for

closely spaced layers the dynamics quickly leaves the
fully collective manifold resulting in rapid decay, for suf-
ficiently large spacings we observe a transition to ro-
bust collective behaviour with the spin-length remain-
ing maximal throughout the dynamics. This is readily
explained by the relative increase of the in-plane interac-
tions, which gap protect the permutationally symmetric
manifold in each layer, compared to the inter-plane in-
teractions, which allow excitations out of this manifold,
with increasing layer distance.

As a first result of this work we thus observe that for
an appropriate ratio of aZ/alat (or generically for suffi-
ciently strong intra-plane and sufficiently homogeneous
inter-layer interactions) the dynamics of the full model
indeed closely follows the collective model, thus allowing
the simulation of 1D Heisenberg chains with large (tun-
able) spin.

Mapping to two-mode Squeezing.— Having demon-
strated the collectiveness during the dynamics, we use
a standard Holstein-Primakoff transformation [69] as

Sz1 = S − â†a, S+
1 =

√
2S
√

1− â†â
2S â, S−1 = (S+

1 )†, and

Sz0 = −S + b̂†b, S+
0 =

√
2Sb̂†

√
1− b̂†b̂

2S , S−0 = (S+
1 )† with

S = N/2, with â and b̂ bosonic operators. To quadratic
order we obtain

Hpair = SV
(

(â†b̂† + âb̂) + (â†â+ b̂†b̂)
)

(3)

where S+
0 S
−
1 +S−0 S

+
1 maps to pair creation 2S(â†b̂†+âb̂),

while Sz0S
z
1 maps to −S2 + S(â†â + b̂†b̂). To cancel this

Ising induced term we apply an additional staggered field∑
i(−1)ihSzi with h = −SV obtaining the pure two-

mode squeezing Hamiltonian. Then, the dynamics cor-
responds to the resonant creation of correlated pairs of
bosonic excitations in both layers. This mapping and the
resulting pair creation due to dipolar interlayer spin ex-
change in the collective spin manifold is also illustrated
in Fig. 1(b).

Exponential Pair Creation A first prediction of this
mapping is the exponential creation of bosonic pairs
of excitations Npair = (â†â + b̂†b̂) = Sz1 − Sz0 − N as
Npair(t) = 2 sinh2 (SV t/~) [30–32]. In Fig. 2 we demon-
strate that the dynamics of the full dipolar bilayer based
on dTWA simulations also shows exponential creation of
pairs. In fact, it closely follows the prediction of the two-
mode squeezing Hamiltonian (dashed gray line) as long
as Npair .

√
N , beyond which the Holstein-Primakoff ap-

proximation is invalid, and higher order corrections be-
come relevant.

Squeezed Quadratures.— Due to the correlated cre-
ation of pairs in two modes the Hamiltonian (Eq. 3)
generates squeezed states in hybrid quadratures [30–
32]. Translating these well known results from the

FIG. 3. Exponential two-mode squeezing. Main panel:
Time evolution of the squeezed variances for different layer-
spacings, compared to the two-mode-squeezing prediction
V ar[O] = N/2e±2SV t/~ (gray dashed) for L = 40 (N = 1600
per layer). Bloch spheres using the appropriate combinations
of the layer-spin operators illustrating squeezed and anti-
squeezed variances. Inset: N-dependence of the minimal vari-
ance achieved (aZ/alat = 12) demonstrating N−1/2-scaling
(gray dashed).

bosonic operators into our original spin operators we
find that Sx0 + Sy1 and Sy0 − Sx1 correspond to squeezed
quadratures, and Sx0 − Sy1 and Sy0 + Sx1 correspond to
the anti-squeezed quadratures. Consequently, the vari-
ance of these hybrid operators is predicted to evolve as
V ar[O±] = N/2e±2SV t/~, where we use ± to refer to the
anti-squeezed/squeezed quadratures.

Based on the full dynamics of the dipolar bilayer we
confirm this prediction in Fig. 3 which shows the expo-
nential decrease of the variance of the squeezed quadra-
tures for a range of layer spacings (anti-squeezed quadra-
tures not shown also behave accordingly). We observe
that the minimal squeezing achievable relies on a suffi-
ciently large layer separation to ensure we stay in the fully
collective manifold. If that is the case we observe excel-
lent agreement up to a time at which Npair ∼

√
N where

corrections to the quadratic Hamiltonian become rele-
vant. As a consequence, the minimal achievable squeez-
ing scales as N−1/2 with respect to the total number
of spins as shown in the inset of Fig. 3. We note that
these generated states directly allow quantum-enhanced
sensing using recently devised Ramsey protocols only re-
quiring measurements of the collective spin variables and
collective spin rotations of the individual layers [70].

Bosonic Kitaev Model and chiral spin transport. —

We next extend our discussion to multiple layers, and
exploit the capability to prepare more complex initial
states. To this end we consider a non-coplanar spiral
state where we take the layer spin directions to be ~ni = x̂,
ŷ and ẑ in order and repeating periodically along the
layers (Fig. 4(a)).

We then rotate the local spin basis in each layer to
be aligned with the initially prepared spin direction via
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FIG. 4. Chirality of spin transport in a multi-layer system
of dipoles. (a) Layers are prepared in a non-coplanar spiral
state with the collective layer spin pointing along x̂, ŷ, ẑ re-
peating periodically (gray arrows). Central layer also shows
the local x (red, into plane) and y (blue) direction (b) Largest

singular value λmax of the spin Green’s function Gαβic,j(t) =

i〈
[
Sαic(t = 0), Sβj (t)

]
〉 at fixed times as indicated in the legend

versus distance j. Colorbar shows the (left) eigenvector struc-
ture |vx|2 − |vy|2 indicating that correlations that propagate
to the right originate from Sxic(t = 0), while correlations that
propagate to the left originate from Syic(t = 0). System with
L = 10 (N = 100 molecules per layer) with 12 total layers.

Sj = U†j S̃jUj with Uj = eij2π/3(Ŝ
x
i +Ŝ

y
i +Ŝ

z
i )/
√
3. In this

rotated frame, the XXX Hamiltonian can be projected
onto the fully symmetric state in each layer. If we also
restrict the interactions to nearest-layer interactions, it
can be mapped to

Ĥ = V
∑
i

(U†i S̃iUi) · (U
†
j S̃jUj) (4)

= V
∑
i

(
S̃xi S̃

z
i+1 + S̃yi S̃

x
i+1 + S̃zi S̃

y
i+1

)
(5)

We then perform a unitary transformation to re-
move a global rotation of all spins via U(t) =

e−itV/~
∑

i(Ŝ
x
i +Ŝ

y
i +Ŝ

z
i ), and finally use a Holstein-

Primakoff transformation ([71]) to obtain up to quadratic
order

Ĥ ≈ SV
∑
j

(
iâj â

†
j+1 − iâ

†
j â
†
j+1 + h.c.

)
(6)

where âj is a bosonic creation operator acting on the
time and layer-dependent vacuum state. This Hamilto-
nian is the bosonic version of the famous Kitaev model
first introduced in Ref. [55]. It can be expressed in
terms of hermitian quadrature operators [56], x̂j = (âj +

â†j)/
√

2, p̂†j = (âj − â†j)/(i
√

2) as Ĥ = −2SV
∑
j p̂j x̂j+1,

whose equations of motion are fully decoupled ˙̂xi =
−2SV/~ x̂i+1, and ˙̂pi = 2SV/~ p̂i−1, and therefore show
perfect chiral transport: the x̂ quadratures are only cou-
pled to x̂-quadratures to the right and the p̂ quadratures
are only coupled to p̂-quadratures to the left.

The chiral nature of this propagation directly manifests
in the corresponding Green’s functions which take the
following form ([71])

[x̂j , p̂j+r(t)] = i(−2SV t/~)
r
/r! θ(r) (7)

[p̂j , x̂j−r(t)] = −i(2SV t/~)
r
/r! θ(r) (8)

where the step function θ(r) = 1 if r ≥ 0 ensures the
chiral propagation, and all other commutators vanish.

This chiral transport can also be directly observed in
the spin dynamics via the Green’s function Gαβij (t) =

i〈
[
Sαi (t = 0), Sβj (t)

]
〉. This intuitively measures the

propagation of correlations to layer j along the spin com-
ponent β due to an initial infinitesimal rotation in layer
i around spin direction α. Using a short-time expan-
sion ([71]), we analytically recover the chiral transport
predicted by the bosonic model, i.e for a site i with the

spin initially pointing along z we obtain 〈
[
Ŝxi , Ŝ

z
i+1(t)

]
〉 ≈

−iV t
~ S2 and 〈

[
Ŝyi , Ŝ

z
i−1(t)

]
〉 ≈ −iV t

~ S2 indicating that x

perturbations propagate to the right, and y propagate to
the left.

We confirm this phenomenology of correlation propa-
gation using numerical simulations of the full spin dy-
namics in Fig. 4b) which shows the largest singular value
of this Green’s function as a function of distance from the
central layer ic chosen in such a way that its collective
spin initially points along z. When we look at the struc-
ture of the left eigenvector, which is associated to the ini-
tial rotation by Sαic(t = 0), we observe that to the right
of the initial perturbation (j > ic) it is (almost) purely
along x, while to the left (j < ic) it is (almost) purely
along y. This implies that that correlations that propa-
gate to the right originate from Sxic(t = 0), while correla-
tions that propagate to the left originate from Syic(t = 0),
demonstrating genuine chiral behavior. We additionally
compare the full dipolar spin model to the analytical so-
lution of the bosonic model and observe good quantita-
tive agreement between both solutions up to times where
boundary effects become relevant [71].

Outlook.— In summary, our work demonstrates the
large space of opportunities, uniquely enabled by the ca-
pability to spatially select, prepare and measure quan-
tum states, to study novel non-equilibrium phenomena
and to control the growth and propagation of quan-
tum correlations with applications in quantum sensing
and simulation. While here we focused on the limit of
Heisenberg in-plane interactions which favor spin align-
ment within layers, and thus homogeneous excitations
predominantly in the fully symmetric manifold within
the layers, by using a more general type of intralayer
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spin Hamiltonians enriched by the anisotropic nature of
the dipolar interactions, one should be able to generate
spatially dependent and anisotropic excitations featuring
rich non-equilibrium universal behaviors [72]. Further-
more, the use of time-reversal protocols should enable
measurements of out-of-time-order correlations [73] to
better quantify correlation growth, or to realise SU(1, 1)
interferometry [38]. The phenomenology discussed here
might be even further enriched utilizing dipoles with a
larger internal state space, e.g. multiple rotational states
of molecules or larger spin magnetic atoms.
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Supplementary Information

Holstein-Primakoff for non-coplanar states

In this section, we briefly recap the Holstein-Primakoff
transformation applied to non-collinear states following
Ref.[74]. We start from a nearest-neighbor spin model

H = 1/2
∑
ij

∑
µν

Sµi J
µν
ij S

ν
j =

∑
i,j

STi JijSj

where i, j label sites/pancake indices, and µ, ν label spin
components x, y, z.

We now perform site-dependent rotations to a local
spin-coordinate frame

Sj = U†j S̃jUj = RjSj (9)

where Uj = eiθ(
~S·n̂) is a general rotation and Ri is the

corresponding rotation-matrix defined by the equality
above. Thus, in the rotated frame we obtain

H = 1/2
∑
ij

S̃Ti RiJijRj
T S̃j = 1/2

∑
ij

S̃Ti J̃ijS̃j (10)

where we defined J̃ij = RiJijRj
T .

Assuming that in the rotated spin basis the initial state
is aligned along Z on all sites i, Si(t = 0) = (0, 0, 1),
as a second step we now perform a Holstein-Primakoff
transformation,

S̃i = Mâi (11)

with

M =
√
S/2

 1 1 0
−i i 0

0 0
√

2/S

 , âi =

 âi
â†i

S − â†iai


(12)

to obtain

H = 1/2
∑
ij

â†iJ
′

ij âj

with

J
′

ij = MTRiJijR
T
j M (13)

Now truncating the Hamiltonian at quadratic order in
the bosonic operators we have

H ≈ H0 +H1 +H2 (14)

We ignore the zero-order term which corresponds to
the classical energy of the initial state.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
tSJ/

0.50

0.25

0.00

0.25

0.50

0.75

1.00

S i
/S

FIG. 5. Mean field dynamics of the (1, 1, 1) spiral state.
Shown are the x, y, z components of the spins which are up to
permutation the same for all spins (assuming that the lattice
size is a multiple of 3 under periodic boundary conditions).

The second order term can be written as

H2 = 1/2
∑
ij

(
âi, â

†
i

)(H++
ij H+−

ij

H−+ij H−−ij

)(
âj
â†j

)
(15)

The first order term takes the form

H1 =
∑
i

(
h+

h−

)
·
(
âi
â†i

)
(16)

Generically, the first order term does not vanish for an
arbitrary initial state that is not the classical groundstate
of the model, and thus there will be mean-field dynamics.

(1, 1, 1) Spiral State

In the following we specialise to a translationally in-
variant system with periodic boundary conditions with
nearest neighbour Heisenberg interactions, e.g. Jµ,νi,j =
(δj,i+1 + δj,i−1)δµ,νJ .

We consider a non-coplanar spiral, for which the initial
state is polarised along (x, y, z) on sites 1, 2, 3 repeat-

ing periodically. This corresponds to Uj = eij2π/3(
~S·n̂)

with n̂ = (1, 1, 1)/
√

3 and Rj being the rotation around
(1, 1, 1)/

√
3 by an angle j 2π/3.

The Hamiltonian in the rotated frame can be written
as

H = J
∑
i

(
Sxi S

z
i+1 + Syi S

x
i+1 + Szi S

y
i+1

)
(17)

Substituting in the HP transformation, we see that
in the rotated frame we find an effective magnetic field
h = (SJ, SJ, 0), or alternatively h+ = S

√
S/2(J − iJ),

h− = S
√
S/2(J + iJ).
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Fortunately, this global rotation can easily be removed
by a time-dependent unitary transformation. For sim-
plicity we perform this rotation in the original frame via

U(t) = e−itJ
∑

i(S
x
i +S

y
i +S

z
i ) (18)

which demonstrates that the mean field dynamics is just
a global rotation of all spins around the (1, 1, 1) direction.

We show in Fig. 5 that the mean-field dynamics start-
ing from this initial state indeed corresponds to a rigid
rotation of all spins around the (1, 1, 1) direction at a
constant speed as seen in the collapse of all spin compo-
nents of all sites along the chain onto only 3 curves which
can for example be taken to be the x, y, z components of
a spin on any site. Interestingly, this thus corresponds
to a special initial state for which the dynamics of the
(classical) Heisenberg chain can be exactly solved.

Since this unitary transformation commutes with the
Hamiltonian (as it only depends on the total magnetisa-
tion which is preserved by the Heisenberg Hamiltonian),
the Hamiltonian in the time-dependent rotating frame
simplifies to

HU = UHU† + i~
∂U

∂t
U† = H − J

∑
i

(Sxi + Syi + Szi )

(19)

Starting from this Hamiltonian in a time-dependent
frame, performing the transformation to the initial state
and the HP transformation we obtain the second order
Hamiltonian as

HU ≈ JS
∑
i

(
âi, â

†
i

)(
i i
−i −i

)(
âi+1

â†i+1

)
(20)

= JS
∑
i

(
iâiâ

†
i+1 − iâ

†
i â
†
i+1 + H.c.

)
(21)

which is the ”bosonic” kitaev model at the ”critical”
point. It turns out that the corresponding dynami-
cal/associated matrix cannot be diagonalised as all eigen-
values are zero, but only 2 zero eigenvectors exist.

It is more convenient to this model in terms of her-
mitian quadrature operators, âi = (x̂ + ip̂i)/

√
2, â† =

(x̂ − ip̂i)/
√

2, which in this case up to rescaling are just
the S̃x and S̃y components of the spin-vector in the time-
dependent frame, resulting in

H = −2JS
∑
i

p̂ix̂i+1 (22)

From this we obtain the equations of motion for ĉ =
(x̂1, · · · , x̂N , p̂1, · · · , p̂N ) as ∂tĉ = Mĉ with

M = −2JS/~
(
S 0
0 −ST

)
(23)

with

S =



0 1 0 · · · 0
. . .

. . .
. . .

...
. . .

. . . 0

0 . . . 1
0


(24)

which only contains a single upper diagonal entry, e.g. is
in Jordan normal form. This immediately allows us to
compute the matrix exponential using standard formulae.
We also note the explicit zero-modes given by x̂N and p̂1
apparent in the zero row of S and immediate from the
chiral coupling of the x̂ and p̂ operators and the open
boundary conditions.

Defining T = etM we have ĉ(t) = T ĉ(t =
0), and we can directly obtain the Green’s function[
ĉ(t = 0), ĉT (t)

]
= GTT with G =

(
0 i1
−i1 0

)
Based on this we obtain

[x̂i, p̂i+r(t)] =

{
i(−2JSt/~)

r
/r! if r ≥ 0

0 if r < 0
(25)

[p̂i, x̂i+r(t)] =

{
0 if r > 0

−i(2JSt/~)
r
/r! if r ≤ 0

(26)

[x̂i, x̂j(t)] = [p̂i, p̂j(t)] = 0 (27)

These expressions are manifestly chiral, confirming the
expectation that a forcing of p̂(t) due to x̂ propagates
only to the right (and vice-versa).

We note that the same calculation can of course be per-
formed in the basis of bosonic operators, and our Hamil-
tonian falls into the class of non-diagonalisable bosonic
problems due to soft modes. Specifically, all eigenval-
ues are 0, and there only are the two explicit zero-
modes/eigenvectors mentioned, with 2N−2 eigenvectors
missing.

One can also perform a short-time expansion of the full
spin green’s function[

Ŝαi , Ŝ
β
j (t)

]
=
[
Ŝαi , e

itH/~Ŝβj e
−itH/~

]
(28)

≈
[
Ŝαi , Ŝ

β
j

]
+
it

~

[
Ŝαi ,

[
H, Ŝβj

]]
(29)

which in the case of i 6= j and α 6= β reduces to[
Ŝαi , Ŝ

β
j (t)

]
≈ −iJt

~
VijŜ

β
j Ŝ

α
i (30)

For the initial (1, 1, 1) spiral state with sites pointing
along x, y, z periodically evaluating this on a site iz which
points initially along z we then obtain

〈
[
Ŝxiz , Ŝ

z
iz+1(t)

]
〉 ≈ −iJt

~
S2 (31)

〈
[
Ŝyiz , Ŝ

z
iz−1(t)

]
〉 ≈ −iJt

~
S2 (32)
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FIG. 6. dTWA dynamics of the dipolar multi-layer with
LX = LY = 30, LZ = 12 system with aZ/alat = 12, initially
prepared layer-selectively in the (1, 1, 1) spiral state. Shown
are the x, y, z components of the collective spin in each layer
Sαi (t) =

∑
iX ,iY

〈σαiX ,iY ,i(t)〉 for layers i = 3, · · · , 9. Note
this assumes open boundary conditions and includes all the
dipolar interactions

which agrees with the results of Eq. 25-26 in linear or-
der after rotating to the proper spin-frame and using
S̃x ≈

√
S/2x̂ and S̃Y ≈

√
S/2p̂. This provides a direct

intuitive explanation of the chiral behavior in the spin
language in terms of the local exchange fields exerted by
nearest neighbours.

Dipolar Multi-Layer - Spiral Dynamics

While the discussion so far strictly only applies in
the case of the nearest neighbour Heisenberg spin model
with periodic boundary conditions, corrections in the full
model of dipoles prepared in multiple two-dimensional
stacked layers with the full dipolar interactions remain
relatively small.

We show in Fig. 6 the individual x, y, z components
of the collective layer spins Sαi (t) =

∑
iX ,iY

σαiX ,iY ,i(t)
of the full dipolar spin model including the full spatial
dependence of the dipolar interactions and using open
boundary conditions obtained via dTWA simulations.
We note that due to the open boundary conditions and
loss of translational invariance the individual layers are
not equivalent up to permutation of the spin components
anymore, which is the main reason for different layers
showing distinct dynamics on these timescales. Even so
the dynamics remains close to the ideal neareast neigh-
bour case with periodic boundary conditions over a long
time-scale. Deviation appear approximately at a time-
scale of the order of LZ/2 where perturbations are ex-

pected to have propagated from the edges to the central
layer.

Next, we compare the analytical predictions based
on the Holstein-Primakoff transformation of the ideal
nearest-neighbour XXX spin chain from (Eqs. 25- 26) to
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FIG. 7. Top: Largest eigenvalue λmax of the spin Green’s

function Gαβic,j(t) = i〈
[
Sαic(t = 0), Sβj (t)

]
〉 at fixed times versus

distance j. Colorbar shows the (left) eigenvector structure
|vx|2 − |vy|2 indicating that correlations that propagate to
the right originate from Sxic(t = 0), while correlations that
propagate to the left originate from Syic(t = 0). Gray-dashed
lines are the analytical results (Eqs. 25-26). Bottom: Largest

eigenvalue of the spin Green’s function Gαβic,j(t) versus time for
different distances j (solid), compared to the analytical results
(dashed) showing linear, quadratic and cubic dependence of
t. All results for LX = LY = 10, LZ = 12

the full dynamics of the multi-layer system in Fig. 7. We
observe both qualitative as well as decent quantitative
agreement: the full dynamics shows the expected chiral-
ity (top panel), and the distance resolved results show the
correct polynomial time-dependence (bottom panel) up
to the times where boundary effects become important.
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