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ABSTRACT 

 
Low level clouds are ubiquitous over the Southern Ocean. However, climate and 

weather models fail to accurately simulate their radiative impact. This has been attributed 

in part to the inadequate representation of cloud phase distributions. Using in situ 

airborne observations acquired during the Southern Ocean Clouds, Radiation, Aerosol 

Transport Experimental Study (SOCRATES) campaign, this dissertation classifies cloud 

samples with horizontal spatial resolutions ranging from 120‒150 m as either liquid, ice 

or mixed phase (i.e., liquid and ice particles in the same volume). Cloud phase is 

determined using a combination of data from the in situ cloud probes and a supervised 

machine learning algorithm, which determines phase based on particle imagery. An 

abundance of liquid phase samples is observed over the region (70%) at temperatures 

from -20° to 0°C. The prevalence of supercooled liquid abruptly decreases to single digit 

percentages at temperatures less than -20°C. There is also a notable ice phase presence 

(10%) at relatively high temperatures (> -5°C).  

Ice nucleating particle (INP) and cloud condensation nuclei (CCN) concentrations 

are compared with relative cloud phase frequencies within and above the boundary layer. 

A positive correlation is found between INP concentrations and ice-containing cloud 

phase (i.e., ice and mixed phase) frequencies in select cases. However, many cases do not 

exhibit significant correlation, suggesting a prevalence of alternative ice initiation/growth 

processes, such as secondary ice production. CCN concentrations are negatively 

correlated with ice-containing frequencies above the boundary layer, which may be 

related to longer lifetimes of supercooled liquid clouds in high CCN environments. A 

strong negative correlation is also found between CCN and large cloud drop (> 25 μm) 
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number concentrations, suggesting secondary ice production may be inhibited in the 

presence of high CCN concentrations. 

A novel cloud layer classification method is introduced to classify cloud layers 

into single-layer and multi-layer clouds. Normalized occurrence frequencies of ice-

containing phases are greater for multi-layer clouds (0.10‒0.32) compared with single-

layer clouds (0.05). Frequencies are greatest for the lowest cloud layers of multi-layer 

clouds, and then incrementally decrease up to the third highest layer. When classifying 

multi-layer clouds as the lowest, highest, and middle cloud layers, ice-containing 

frequencies for the lowest and middle cloud layers are similar. These frequencies are 

greater than those for the highest layers and single-layer clouds, which are also similar to 

each other. The tendency of greater ice-containing frequencies within the lowest layers of 

multi-layer clouds suggests a prominent seeder-feeder mechanism exists over the region. 

A novel quantitative measure of phase spatial heterogeneity is introduced and 

used to show that the mixed (liquid) phase is the most (least) spatially heterogeneous 

phase from temperatures between -20° and 0°C. Greater spatial heterogeneity is 

associated with broader vertical velocity distributions, suggesting increased turbulence is 

directly related to spatial heterogeneity. Distributions of precipitation-size particle 

(diameter > 50 μm) mass and mean diameter shift towards smaller values with greater 

heterogeneity. These particles are primarily ice, which are observed in mixed and ice 

phase samples. This may be due to a relationship between cloud lifetime and spatial 

heterogeneity, where ice particles grow as a mixed phase cloud glaciates resulting in 

decreasing spatial heterogeneity.  

Differences in microphysical properties between coupled and decoupled 



vi 

 

 

environments are examined. No significant differences are observed for relative phase 

frequencies or the spatial heterogeneity. However, drop number concentrations were 

approximately doubled in coupled environments compared to decoupled environments.  

Entrainment-mixing has been shown to impact drop size distributions in warm 

clouds, but few studies have considered the impacts on mixed phase clouds. By taking 

advantage of strong correlations between droplet clustering and entrainment-mixing, a 

clustering metric is used as a proxy to assess the degree of entrainment-mixing in order to 

maximize the sample size for a statistical analysis of entrainment-mixing impacts on 

mixed phase cloud properties. A positive relationship is found between the magnitude of 

droplet clustering and large ice crystal concentrations (diameters greater than ~300 μm), 

suggesting entrainment-mixing can enhance the Wegener-Bergeron-Findeisen (WBF) 

process. Particle size distribution functions averaged over different ranges of liquid 

(LWC) to total water content (TWC) ratio provide insight into the relation of 

entrainment-mixing to mixed phase cloud evolution. Mixed phase samples with the 

greatest large ice crystal concentrations occur for LWC/TWC<0.4 in moderate clustering 

regions. However, these samples are relatively few, whereas high clustering regions have 

a greater frequency of samples with LWC/TWC<0.4. This suggests sublimation/vapor 

sinks associated with entrainment can counteract the enhanced WBF. In high clustering 

regions, small drop concentrations are relatively constant and large droplets (>30 μm) are 

preferentially removed as LWC/TWC transitions from 1 to 0, representative of glaciation.  

These results should provide key insights towards improving the representation of 

Southern Ocean clouds in both low and high resolution models, as well as improve our 

overall understanding of varying Southern Ocean cloud types and mixed phase clouds.  
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1 Introduction 

1.1. Clouds over the Southern Ocean 

Low-level clouds are ubiquitous over the Southern Ocean, with an annual mean 

cloud fraction exceeding 80% (e.g., Kay et al., 2012; Mace et al., 2009). These clouds 

generally reside between the -40°C and -0°C isotherms, meaning either supercooled 

liquid drops, ice particles or a combination of both (i.e., mixed phase samples) can exist. 

Both single- and multi-layer low-level clouds are observed over the region, with 34% of 

cloud cover being multi-layered (Haynes et al., 2011). There are still uncertainties 

concerning the formation of multi-layer clouds, as multiple pathways for their 

development have been proposed (e.g., Herman & Goody, 1976; Luo et al., 2008; Tsay & 

Jayaweera, 1984). Further improving our understanding of such clouds is crucial since 

overlying layers can cause differences in net radiative fluxes at top-of-atmosphere or 

towards the surface on the order of 10 W m-2 (Christensen et al., 2013; Li et al., 2011).  

  Due to the remoteness of the Southern Ocean, few field campaigns have taken 

place over the region. Some include the Aerosol Characterization Experiment (ACE-1; 

Bates et al., 1998), a few legs of the HIAPER Pole-to-Pole Observations (HIPPO; Wofsy 

et al. 2011) and the O2/N2 Ratio and CO2 Airborne Southern Ocean Study (ORCAS; 

Stephens et al., 2018). Previous in situ studies from these campaigns have found a 

prevalence of supercooled liquid over the region (Chubb et al., 2016; Chubb et al., 2013; 

D’Alessandro et al., 2019), although most of the campaigns’ primary objects were 

unrelated to obtaining cloud microphysical measurements. Due to the greater sampling 

frequency of satellite platforms, a relatively large number of studies using satellite 

retrievals have been performed to quantify phase partitioning over the Southern Ocean. 
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These studies have previously noted a large frequency of supercooled liquid water over 

the region (e.g., Mace, 2010; Morrison et al., 2011). However, satellite observations are 

often restricted to cloud top measurements (e.g., Coopman et al., 2020; Riedi et al., 

2010). There are also uncertainties associated with cloud edge (e.g., Nagao & Suzuki, 

2021), low-level cloud retrievals due to attenuation (e.g., Hu et al., 2009), and problems 

with low solar zenith angles (e.g., Khanal & Wang, 2018).  

1.2. Simulating Southern Ocean Clouds 

  Previous studies have noted large discrepancies in simulated outgoing shortwave 

radiation over the Southern Ocean compared to observed radiative fluxes. In fact, the 

shortwave error of most climate models is greatest over this latitudinal band (~50°S to 

70°S), and the outgoing shortwave radiation is on the order of 10 W m-2 lower than 

observed (Bodas-Salcedo et al., 2014). These errors have been attributed to simulating 

too little supercooled liquid (Bodas-Salcedo et al., 2016) as well as unrealistically low 

cloud fraction (Naud et al., 2014), which primarily occurs in the cold sector of 

midlatitude cyclones (Trenberth & Fasullo, 2010). The newest iteration of the Coupled 

Model Intercomparison Project (CMIP version 6) has recently been released, and recent 

studies have highlighted improvements towards increasing the frequency of supercooled 

liquid. However, there are still issues in capturing the observed drop concentrations over 

the region (Gettelman et al., 2020; McCoy et al., 2021) and some models now produce 

unrealistically high liquid phase frequencies (Yang et al., 2021). There are still significant 

errors in zonal mean shortwave cloud radiative effect over the Southern Ocean for the 

CMIP version 6 models (Schuddeboom & McDonald, 2021), which have been attributed 

to continued errors in simulated cloud microphysics (Fiddes et al., 2022). It is crucial to 
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correctly represent phase partitioning in low and high resolution models due to its 

impacts on cloud radiative properties (McFarquhar & Cober, 2004; Sun & Shine, 1994) 

and precipitation tendencies (Mülmenstädt et al., 2015).  

  Previous studies have noted additional uncertainties and limitations contributing 

to simulated errors in cloud properties. One example is the spatial distribution of liquid 

and ice particles in a mixed phase sample. Most models simply assume liquid and ice 

particles are homogenously mixed (e.g., Zhang et al., 2019). However, the spatial 

distribution of liquid and ice particles can substantially alter cloud lifetimes by altering 

the Wegener-Bergeron-Findeison (WBF) process rates, whereby ice particles grow at the 

expense of liquid droplets due to differences in the saturation vapor pressures of liquid 

and ice. In fact, Tan & Storelvmo (2016) showed that for one prominent climate model, 

the homogeneously mixed assumption results in unrealistically high glaciation rates, and 

also variability in WBF process rates accounts for the most variability in mixed phase 

properties compared with other relevant mixed phase processes. Efforts must be made to 

observationally constrain phase spatial heterogeneity to improve the representation of 

clouds in both low and high resolution models. 

1.3. Ice initiation mechanisms 

  In order to adequately represent phase frequencies over the Southern Ocean, 

multiple ice initiation mechanisms must be accounted for. Ice initiation occurs through 

primary nucleation or secondary ice production, and it is crucial to account for both 

processes to adequately represent phase partitioning in both low- and high- resolution 

models. Primary nucleation is characterized by the transition of vapor to ice, or of liquid 

to ice, and can be characterized as either homogeneous or heterogeneous nucleation. 
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Heterogeneous nucleation involves an aerosol to aid in the nucleation event, whereas 

homogeneous nucleation is the direct transition of vapor or liquid to the ice phase. Such 

aerosols are commonly referred to as ice nucleating particles (INPs). Heterogeneous 

nucleation occurs from -40° to 0°C, whereas homogeneous nucleation occurs once 

temperatures drop below approximately -40°C. The pristine conditions over the Southern 

Ocean have been found to contain relatively low INP concentrations (McCluskey et al., 

2018), introducing uncertainty concerning the prevalence of heterogeneous ice nucleation 

over the region.  

  In contrast to primary nucleation, secondary ice production generates ice particles 

through varying particle interactions or unique processes, all of which require the pre-

existence of liquid or ice. The most commonly evaluated mechanism is the Hallet-

Mossop process, where irregularly shaped edges of aggregates shed off of the ice 

particles (Hallett & Mossop, 1974) during the riming process. This process is found to be 

favorable in regions with high concentrations of large drops (diameter > 25 μm), which 

result in high accretion rates. Other mechanisms of ice multiplication vary from ice-ice 

collisions to droplet fragmentation, characterized as ice splinters ejecting from a droplet 

as it freezes (e.g., Korolev & Leisner, 2020). Observational studies are crucial to 

constrain prominent ice production methods in order to accurately represent phase 

frequencies and partitioning, as well as other microphysical properties of Southern Ocean 

clouds. 

1.4. Clouds over the Tasmanian Passage 

  Recently, the Southern Ocean Clouds, Radiation, Aerosol Transport Experimental 

Study (SOCRATES) took place (15 January to 28 February, 2018) over the Australasia 
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sector of the Southern Ocean (McFarquhar et al., 2021), obtaining a wealth of in situ 

measurements from varying low-level cloud types. The campaign commonly sampled 

both single- and multi-layered clouds, which varied from multi-layered stratus to broken 

cumulus underlying and puncturing overlying stratus. Research flights often targeted 

clouds in the cold sector of midlatitude cyclones due to the aforementioned simulated 

errors in this region. Multiple cloud probes were deployed on the National Science 

Foundation/National Center for Atmospheric Research G-V aircraft used to collect the 

data, including an optical imaging probe which can derive cloud phase information based 

on particle sphericity. Instrumentation obtaining INP measurements as well as cloud 

condensation nuclei (CCN) concentrations were also deployed, which can aid in 

determining the efficacy of primary and secondary ice production mechanisms.   

  Figure 1 shows flight paths of the 15 research flights associated with 

SOCRATES, acquiring cloud measurements south of Hobart, Tasmania.  

 
Figure 1: Flight tracks from the SOCRATES field campaign over the Tasmanian Passage. 

 

The aircraft was tasked with sampling both the marine boundary layer and the free 

troposphere, and flight paths alternated between level-leg and sawtooth sampling. The 

campaign provided a wealth of in situ observations which have sorely been needed 

towards improving our understanding of Southern Ocean clouds, including relevant ice 

initiation mechanisms and important processes influencing their microphysical properties 
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and lifetimes. 

  The objective of this dissertation is to utilize observations from SOCRATES and 

evaluate relevant properties of Southern Ocean clouds to aid in improving their 

representation in numerical weather prediction. Chapter 2 characterizes the observed 

phase frequencies, as well as introduces a novel method to quantify the degree of phase 

spatial heterogeneity over the region. Chapter 3 compares and contrasts the microphysical 

properties of single- and multi-layer clouds, and provides insight into the different 

physical, dynamic and thermodynamic features of the different cloud types. Additionally, 

phase frequencies are directly related to INP, CCN and large drop concentrations to 

examine the prevalence of primary and secondary ice production mechanisms. Chapter 4 

explores a relatively unique and unexplored topic, namely, the impact of entrainment-

mixing on mixed phase cloud properties. In a review paper summarizing the current field 

of mixed phase clouds, Korolev et al. (2017) states that “until now no studies on 

entrainment and mixing in mixed-phase clouds have been conducted.” Little work has 

been done since, although Hoffmann (2020) found that ice particles can grow 

exceedingly large due to an enhanced WBF process resulting from entrainment using a 

millimeter resolution linear eddy model. This chapter explores whether there is 

observational evidence for this finding. Chapter 5 summarizes findings and provides 

concluding remarks from Chapters 2‒4. Appendix A provides details of calculations used 

in Chapter 4, Appendix B provides supplementary figures from Chapters 2 and 3 and 

Appendix C lists pertinent terms. 
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2 Characterizing the occurrence and spatial heterogeneity of liquid, ice and 

mixed phase low-level clouds over the Southern Ocean using in situ 

observations acquired during SOCRATES 

2.1. Introduction 

Clouds over the Southern Ocean (SO) strongly influence the energy budget over this 

region, with satellite observations showing an annual mean spatial fraction around 80%–

90% (e.g., Kay et al., 2012; Matus & L’Ecuyer, 2017; McCoy et al., 2014). Climate 

models struggle to correctly simulate radiative fluxes over the Southern Ocean (50–

80°S), commonly underestimating reflected shortwave radiation in part because they 

(e.g., Bodas-Salcedo et al., 2016; Cesana & Chepfer, 2013; Kay et al., 2016; Trenberth & 

Fasullo, 2010; Wang et al., 2018) produce lower cloud fraction and less supercooled 

liquid water (SLW, liquid water at temperatures below 0°C) than observed. Similar 

problems have been noted in output from higher-resolution models (e.g., Huang et al. 

2014, 2015; Naud et al. 2014). 

 Supercooled liquid water (SLW) plays a critical role in determining cloud 

radiative forcing (e.g., Ceppi et al., 2014; Lawson & Gettelman, 2014; Shupe & Intrieri, 

2004), cloud feedbacks (e.g., Gettelman & Sherwood, 2016; Tsushima et al., 2006), and 

equilibrium climate sensitivity (e.g., Frey & Kay, 2017; Tan et al., 2016). A negative 

cloud phase feedback resulting from the transition of ice to liquid under surface heating 

was first proposed by Mitchell et al. (1989). Additional considerations must be made for 

mixed phase clouds by characterizing the mass fractions and spatial distribution of ice 

and liquid phases, as well as their degree of mixing, which can substantially impact the 

radiation budget (e.g., Sun & Shine, 1994; McFarquhar & Cober, 2004). Commonly 
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referred to as the Wegener–Bergeron–Findeisen (WBF) process, ice particles grow at the 

expense of neighboring SLW droplets given that the equilibrium water vapor pressure 

with respect to liquid is greater than that with respect to ice (Bergeron, 1928, 1935; 

Findeisen, 1938, 1940; Wegener, 1911). Several microphysical and dynamical 

mechanisms have been introduced to describe mixed phase clouds and their evolution 

(e.g., Korolev & Field, 2008; Jackson et al., 2012; Korolev et al., 2017; Kreidenweis et 

al., 2018). However, considerable work is required to constrain such mechanisms and 

further improve the understanding of these clouds. For example, although mixed phase 

clouds are thermodynamically unstable due to the differences in the saturation vapor 

pressures of liquid and ice, they are commonly observed to persist for hours or even days 

in the high latitudes (e.g., Morrison et al., 2011; Verlinde et al., 2007). 

 The spatial distribution of liquid and ice particles can have major impacts on the 

WBF process (Korolev & Isaac, 2006; Korolev et al., 2003). Further, the relatively coarse 

spatial resolutions of climate models require smaller scale/subgrid cloud heterogeneities 

to be parameterized. Differences in these parameterizations can significantly impact 

simulated cloud lifetimes and microphysical properties (e.g., Storelvmo et al., 2008; 

Zhang et al., 2019). Previous studies have examined the spatial heterogeneity of cloud 

phase at different locations (e.g., Chylek et al., 2006; Field et al., 2004; McFarquhar et 

al., 2007a; Stubenrauch et al., 1999) including the Southern Ocean (D’Alessandro et al., 

2019; Zaremba et al., 2020). However, most of these studies merely comment 

qualitatively on observed heterogeneity from time series and vertical cross sections. 

Improved characterizations of phase spatial heterogeneity are crucially needed to provide 

clear and definite results for the evaluation of model simulations. This study uses in situ 
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observations from the 2018 Southern Ocean Clouds, Radiation, Aerosol Transport 

Experimental Study (SOCRATES) to characterize the frequency and spatial distributions 

of cloud phases over the SO. Section 1.2 introduces the in situ instrumentation and data 

processing techniques, Section 1.3 presents the findings, Section 1.4 provides further 

interpretation of the results, and Section 1.5 summarizes the key findings.  

2.2. Dataset and experimental setup 

2.2.1. In situ observations 

This study uses 1-Hz airborne measurements collected from the National Science 

Foundation (NSF)/National Center for Atmospheric Research (NCAR) Gulfstream-V 

(GV) research aircraft during SOCRATES. SOCRATES was based out of Hobart, 

Tasmania and took place from 15 January to 28 February 2018, sampling over the 

Southern Ocean from 42° to 62°S and from 133° to 163°W. Fifteen research flights were 

conducted during SOCRATES. The aircraft primarily targeted cold sector boundary layer 

clouds. Flight plans were designed to ideally sample 10-minute level legs above cloud, in 

cloud, and below cloud, followed by sawtooth legs to obtain vertical profiles. Additional 

details on flight objectives and analyses can be found in Section 1.4 and in McFarquhar et 

al. (2021). Observations are restricted to temperatures less than 0°C to exclude warm 

clouds (i.e., clouds with no ice or SLW), so that approximately 14 hours (7,680 km) of 

in-cloud data between -40° and 0°C were available for analysis. The flights during 

SOCRATES primarily sampled the cold sector of cyclones with some passes through 

frontal systems, mostly associated with strong westerly flow over the Southern Ocean 

(McFarquhar et al., 2021). These synoptic-scale conditions coupled with a cool ocean 

surface led to cloud cover commonly observed over the SOCRATES flight domain, 
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including many cases of low-level and midlevel stratus and stratocumulus. Multilayer 

stratus and single-layer stratocumulus were frequently observed in several flights. 

Temperature was measured using a fast-response Rosemount temperature probe; for 

steady conditions the estimated accuracy and precision are 0.3K and 0.01K, respectively. 

Table 1 includes information of all the instrumentation used in this study, all of which are 

introduced and discussed further below. 

 

Table 1: A list of all instrumentation and relevant information used in this study. Sources 

related to uncertainties are contained within Section 1.2. 

 

 A suite of cloud probes was installed on the G-V. Probes for measuring size 

distributions included a 2-Dimensional Stereo probe (2DS, manufactured by SPEC, Inc.), 

a 2-Dimensional Cloud probe (2DC, a Particle Measuring Systems instrument, modified 

for fast response), a Precipitation Imaging Probe (PIP, manufactured by Droplet 

Measuring Techniques, DMT), a Particle Habit Imaging and Polar Scattering probe 

(PHIPS HALO) and a DMT Cloud Droplet Probe (CDP). Second-by-second comparison 
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of the size distributions of the 2DC and 2DS showed marked differences between probes. 

Examination of particle images showed degraded 2DC image quality occurred for more 

than half of the flight hours due to fogging, and hence these data were unusable. A 

problem with the time record on the PIP prevented use of the PIP image data, and hence 

information about the size distributions of large particles was not available. Thus, the 

base size distributions were characterized by a combination of the CDP and 2DS data. 

Data from the CDP were used to characterize particles with maximum dimension 

(hereafter size D) ranging from 2 to 50 μm. Although the 2DS can nominally detect 

particles with D ranging from 10 to 1280 μm, only particles having maximum dimensions 

(D2DS) greater than or equal to 50 μm were used because of a small and highly uncertain 

depth of field for D2DS < 50 m (e.g., Baumgardner & Korolev, 1997). The SOCRATES 

2DS size distributions and particle morphological data (Wu & McFarquhar, 2019) were 

determined using the University of Illinois/Oklahoma Optical Probe Processing Software 

(UIOOPS, McFarquhar et al., 2017, 2018), and include corrections for removal of 

shattered artifacts (Field et al., 2003; Field et al., 2006). Mass distribution functions are 

determined using the habit-dependent mass-size relationships summarized by Jackson et 

al. (2012, 2014) for the different particle habits that are identified in UIOOPS 

(McFarquhar et al., 2018) following a modified Holroyd (1987) approach.  

A 1-s sample is identified as in-cloud if either of the following two conditions is 

met: 1) CDP measurements reporting mass concentration (MCDP) greater than 10-3 g m-3 

where MCDP is estimated from the size distributions assuming all particles are spherical 

water droplets, or 2) 2DS measurements report number concentrations of at least one 

particle having D2DS > 50 μm (N2DS). The rest of the time periods are defined as outside 
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of cloud. Although this definition of cloud allows for thinner and more tenuous cloud 

than previous studies that assumed mass thresholds of 0.01 g m-3 for identifying cloud 

(e.g., McFarquhar et al., 2007a), it allows thin layers at lower temperatures to be included 

in the analysis. Further, although MCDP is not a well-defined quantity for ice clouds as 

forward scattering probes assume Mie theory and spherical particles in their sizing and 

the CDP does not properly sample non-spherical particles (McFarquhar et al., 2007b), a 

threshold based on MCDP was chosen to eliminate sea spray (and other large aerosols) as 

confirmed by comparing time series with images from the forward-facing camera, which 

reported encounters with sea spray. The CDP threshold was also chosen by evaluating a 

joint frequency distribution controlled by mass and number concentrations (Figure A in 

supplementary material) and finding a significant bimodality, by which the modes are 

separated by MCDP greater than and less than the threshold chosen, consistent with 

inspection of time series and the forward-facing camera of in-cloud samples and sea 

spray.  

 Liquid water was sampled by two instruments, a Rosemount icing detector 

(RICE), and a King-style hot wire instrument (KING; King et al. 1978, manufactured by 

Droplet Measurement Technologies (DMT)).  The presence of small amounts of SLW 

can be ascertained from the Rosemount Icing Detector (RICE). The RICE is a metal 

protrusion which vibrates at a constant frequency; if supercooled droplets collide with it, 

the droplets freeze and alter the frequency of the vibrating rod. The output is translated 

into a voltage signal, which increases as more, or decreases as less (e.g., by sublimation) 

ice accumulates on the protrusion. The theoretical performance of the RICE is described 

in Mazin et al. (2001). The response of the instrument is dependent on airspeed, air 
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density, and humidity as well as the sizes of droplets, as large drops may splash upon 

hitting the probe and be undetected. Mazin et al. (2001; Figure 4a) suggest a theoretical 

threshold liquid water content limit of ~0.025 g m-3 or less at conditions similar to those 

sampled in this study; however, the response to liquid water may vary from probe-to-

probe, requiring independent calibration for quantitative results. During the lower-level 

cloud conditions in SOCRATES, droplets were found to not freeze on the RICE 

protrusion for temperatures greater than -5˚C due to dynamic heating of the sensor. 

Further, data are not usable during the reheating cycle of the RICE that removes the 

frozen particles accumulated on the wire (e.g., Mazin et al., 2001), which are shown in 

Figure 2C where dV/dt<0 V s-1. Thus, the RICE offers an independent detection of SLW 

conditions, but is not used here as a stand-alone quantitative measure of supercooled 

water concentrations. Sensitivity tests were performed to determine the best method to 

discern the cloud phase using the RICE probe in combination with data obtained from 

other probes, as discussed in the next section.  

 For results examining the characterization of mixed phase microphysical 

properties (Section 3.2), the KING probe was utilized. King et al. (1978) report a 

sensitivity of 0.02 g m−3, a response time of better than 0.05 s and an accuracy of 5% at 1 

g m−3, but these parameters can vary depending on flight speed as discussed in 

McFarquhar et al. (2017) and Baumgardner et al. (2017). Similar to the RICE probe, the 

KING probe responds to smaller liquid droplets (e.g., volume-weighted mean diameter 

less than 0.15 mm as reported by Biter et al. (1987)) so it underestimates SLW in the 

presence of supercooled drizzle (e.g., Schwarzenboeck et al. 2009), but also can 

overestimate SLW in the presence of ice (Cober et al., 2001). Thus, the KING probe is 



14 

 

 

best for measuring the liquid water contents in the presence of exclusively smaller drops, 

while estimates of SLW content in the presence of drizzle are best obtained by integrating 

the size distributions. Water vapor is measured using the 25-Hz Vertical Cavity Surface 

Emitting Laser (VCSEL) hygrometer (Zondlo et al., 2010), which has an accuracy and 

precision of ~6% and ≤1%, respectively. The calculation of relative humidity with 

respect to ice (RHi) is based on Murphy & Koop (2005). For temperatures from -40° to 

0°C, the uncertainties in RHi range from 6% to 8%. Vertical velocity (w) is measured 

using the Radome Gust Probe in combination with pitot tubes and the differential Global 

Positioning System, where Cooper et al. (2016) report a net uncertainty in the standard 

measurement of vertical wind of 0.12 m s-1, although this represents ideal sampling 

conditions. More information on the performance of the GV gust probe processing and 

other instrumentation performance is provided in the manager’s report (EOL, 2018). The 

report describes methods that were used to correct for drift with altitude in the system, 

which likely increases the uncertainty, especially over the whole range of altitudes in 

SOCRATES (although the performance at constant altitudes should be steady). Further 

research on the performance of the system is planned to better document these 

uncertainties. The project manager’s report also provides additional information on the 

processing and data quality issues related to the other routine instruments. 

2.2.2. Dataset and experimental design 

Figure 2A shows normalized frequency distributions of the RICE change in voltage 

(dV/dt) for different ranges of number concentrations from the CDP (NCDP). Greater 

voltage changes are associated with greater liquid mass. Results show changes in voltage 

are positively skewed and noticeably greater for NCDP≥1 cm-3, suggesting that high NCDP 
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are generally liquid samples. This is consistent with previous studies (e.g., Lance et al., 

2010; Heymsfield et al., 2011; Finlon et al., 2019) which have noted that a threshold in 

CDP concentrations can serve as a first estimate for the presence of SLW in the absence 

of information from other probes.  

 

Figure 2: Normalized occurrence frequency of dV/dt (dt=1 second) of RICE for NCDP ≥ 1 

cm-3 and NCDP < 1 cm-3 (A), as well as for NCDP at temperatures from -20° to -5°C and 

less than -20°C (B). Vertical profile of dV/dt colored by NCDP (C). Samples in 1A,B are 

all considered in-cloud for CDP (i.e., MCDP ≥ 10-3 g m-3) and in 1C for CDP or 2DS 

(MCDP ≥ 10-3 g m-3 or N2DS > 0). The grey points in 1C represent in-cloud samples having 

NCDP = 0. The dotted and dashed lines are at 0.002 V s-1 and 0.01 V s-1, respectively. 

 

Figure 2B shows a sharp bimodal distribution of NCDP for temperatures less than -20˚C 

where more ice would be expected. Thus, a threshold value of NCDP≥1 cm-3 is used to 

identify time periods where cloud particles with D < 50 μm are liquid. Examination of the 

CDP and RICE data confirmed that time periods with NCDP < 1 cm-3 correspond to 

minimal voltage responses from RICE, further suggesting low NCDP corresponds with ice 

phase observations. Figure 2C shows vertical profiles of the RICE dV/dt for all in-cloud 

samples acquired during SOCRATES with results colored by NCDP. The dashed line at 

A

B

C
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0.01 V s-1 roughly intersects between datapoints where NCDP=0 (grey points), and NCDP 

>0 (colored points) over most of the vertical column. The dotted line at 0.002 V s-1, based 

on a previously proposed threshold to infer the existence of liquid (Heymsfield & 

Miloshevich, 1989), shows that this threshold would overestimate the frequency of liquid 

based on the CDP measurements, especially those at low temperatures. Thus, results 

presented here suggest a 0.01 V s-1 threshold is less susceptible to overestimating the 

frequency of liquid (for example, the large number of samples >0.002 V s-1 at 

temperatures less than -20°C where NCDP=0 cm-3). 

 The phase of the 2DS particles with D2DS>50 um is calculated using multinomial 

logistic regression (MLR), which models nominal outcome variables. Logistic regression 

is commonly accepted as a successful method for classification (e.g., Bishop, 2006). 

Specifically, MLR produces the logarithmic odds of outcomes modeled as a linear 

combination of the predictor variables. Previously, this method was used to derive the 

habits of ice crystals from two-dimensional particle images using multiple optical array 

probes, including the 2DS (Praz et al., 2018). The 2DS provides two-dimensional particle 

imagery, of which 1362 s worth of particles with D2DS > 50 m were visually inspected 

and classified as either liquid, mixed or ice phase (i.e., the training set). Spherical particle 

images are assumed to be liquid drops whereas all other particles are assumed to be ice 

particles. The predictor variables used in MLR were M2DS, N2DS, number-weighted mean 

D2DS (Mean D2DS), standard deviation of D2DS (σD_2DS), standard deviation of number 

concentrations in 10 μm bins (σN_2DS), the maximum particle D2DS (Max D2DS) and NCDP. 

Since the presence of smaller cloud droplets (D<50 μm) was found to be a successful 

proxy for larger supercooled droplets (D’Alessandro et al., 2019; Finlon et al., 2019; 
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Heymsfield et al., 2011), NCDP was included as a predictor in the MLR. The phase having 

the highest likelihood of the three as determined by the MLR is selected. Additional 

visual inspection of a separate 1287 s worth of 2DS imagery was performed following the 

MLR analysis in order to evaluate its success (i.e., the validation set). A decision tree 

similar to that used for the 2DC in D’Alessandro et al. (2019) was developed for the 2DS 

and compared with results from the MLR as a baseline model. The Heidke skill score 

gives an indication of a prediction’s success, where values approaching one indicate 

improving predictions and a value of 0 indicates the prediction performs as well as a 

randomized dataset. It was calculated as a multi-category forecast (one phase per 

category), of which further information of can be found in Jolliffe & Stephenson (2011). 

The MLR classification was found to perform well, as highlighted by Heidke skill scores 

of 0.88 and 0.68 for the MLR and baseline datasets, respectively. The phase classification 

was manually corrected for the “missed” predictions, including an additional 751 samples 

from further visual inspection of 2DS images showing spherical particles where neither 

the RICE nor CDP was flagged as liquid. The use of RICE and CDP as proxy data for the 

phase of particles having D>50 μm is believed to improve upon the MLR phase 

classification, as distributions of RHi for these cases center around 100%, most notably at 

temperatures less than -20°C (Figure B in supplementary material). A flow chart 

highlighting phase categorization using the RICE, CDP and 2DS is shown in Figure 3.  
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Figure 3: Flow chart highlighting how phase is determined using the CDP, RICE and 

2DS probes. The phase is reported for every second, whereby the combination of CDP 

and 2DS phases determines the phase at every second (e.g., CDP=liquid and Max 

D2DS<0.05 mm is classified as liquid, CDP=liquid and 2DS=ice is classified as mixed 

phase, etc.).  

 

The phase is determined separately for cloud particles having D < 50 μm (CDP and 

RICE) and D > 50 μm (2DS). Thus, a sample is liquid when liquid is only reported for all 

particle sizes, and similarly for ice. A sample is mixed phase when both liquid and ice are 

reported. Cloud phase is determined every second, amounting to horizontal spatial 

resolutions of ~150 m depending on the aircraft flight speed. 

 A time series including 2DS images and cloud phase classification results is 

shown in Figure 4. Examples of images for all three phases are shown underlying the 

time series, where the images correspond with the overlying boxes. The top two rows 

show temperature, particle size distribution statistics from the 2DS (Max D2DS and Mean 

D2DS) and NCDP. The third row shows particle mass distribution functions from the 2DS 

over all available bin sizes and the fourth row shows cloud phase results. For the liquid 

case, Max D2DS reveals that SLW drops can often have D > 0.3 mm, consistent with 
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observations that drizzle is sometimes present in low-level cloud regimes.  

 

Figure 4: Time series from RF06 showing Max D2DS and NCDP (top row), temperature 

and number weighted mean D2DS (2nd row), the mass size distribution normalized by bin 

width (3rd) and the phase derived from the phase algorithm in Figure 3 (bottom row). The 

red, green and blue boxes correspond with underlying 2DS optical array imagery of 

liquid, mixed and ice phase samples, respectively.  

 

Mean D2DS is exceptionally low (typically less than 0.2 mm), due to the vast majority of 

droplets having relatively small D2DS. This is similarly observed for the mixed phase 

case, although in contrast Max D2DS far exceeds the sizes of supercooled drizzle drops 

due to the large ice particles observed that may preferentially grow due to riming or the 

larger supersaturation over ice compared to water. The ice phase case similarly has large 

Max D2DS, and in contrast to the liquid and mixed phase case has much larger Mean D2DS, 

since there is no longer a large concentration of smaller liquid drizzle particles. These 

variations in 2DS particle statistics highlight how the listed statistical parameters can be 

used to derive the phase of larger particles (D > 50μm). Similarly, large segments of the 

mass distribution functions are relatively homogeneous, highlighting relatively static 

microphysical properties over short durations of observations having similar phase. 

ice mixed liquid

Log10(M2DS) (g m-4) 
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2.3. Results 

2.3.1. Cloud phase frequency distributions 

The relative frequency distribution of cloud phase as a function of temperature is shown 

in Figure 5. Cloud samples are primarily liquid phase at the highest temperatures, and ice 

phase at the lowest temperatures.  

 

Figure 5: The relative frequency distribution of liquid, mixed and ice phase samples are 

shown as the colored lines, whereas the number of in-cloud samples from the 

SOCRATES campaign is shown by the black line. Results are binned at 5°C intervals. 

 

Mixed phase samples are the most infrequent, which may be expected since the mixed 

phase is thermodynamically unstable. In fact, previous analyses have shown that mixed 

phase clouds, where the fraction of liquid water content to total water content is between 

0.1 and 0.9, are not common (e.g., Korolev et al., 2003). This may also be related to the 

inability to discern the coexistence of ice and liquid particles having diameters less than 

50 (due to CDP and RICE limitations) to 100 μm (due to coarse resolution of relatively small 

particles in 2DS particle imagery), which might result in an underestimation of mixed phase 
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samples. Interestingly, ice-only observations were observed at temperatures greater than -

5°C, and SLW was observed at temperatures near -35°C. Samples of ice at these high 

temperatures were often observed as precipitating ice particles below the cloud base, 

which may have originated at colder temperatures. Further, there appears to be a sharp 

decrease in the frequency of the liquid phase once temperatures drop below -20°, 

suggesting the possibility of ice nucleating particles being activated at these 

temperatures; conversely, there is a sharp increase in the frequency of the ice phase at 

these low temperatures. Below a temperature of -20°C, liquid phase samples are present, 

but relatively sparse. Approximately 500 CDP and RICE samples meet the conditions for 

SLW occurrence at temperatures less than -30°C, with the lowest temperatures dropping 

a few tenths of a degree below -35°C. Visual inspection of the images confirmed that 

these samples were indeed liquid, with these liquid clouds typically being sampled during 

the high altitude transit legs of the GV. 

2.3.2. Mixed phase characterization 

Figure 6 shows the normalized occurrence frequency of liquid water fraction within 

clouds identified as mixed phase for different temperature ranges, where the liquid 

fraction is the liquid content (LWC) divided by the total condensed water content (TWC). 

LWC and ice water content (IWC) are determined using LWCKING and M2DS, 

respectively. Sensitivity tests relating LWCKING to MCDP were found to be highly 

correlated for NCDP >5 cm-3 (Figure C in supplementary material). Previous studies have 

shown a clear U-shaped distribution of liquid water fraction for in-cloud samples within 

the temperature range focused on in this study (e.g., Korolev et al., 2003; D’Alessandro 

et al., 2019).  
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Figure 6: Normalized frequency distributions of liquid to total condensate mass ratio for 

SOCRATES. Results are only shown for mixed phase cases. Different colored lines 

correspond with different temperature regimes. The number of samples for each 

temperature regime is provided in the legend. 

 

However, results here are only shown for mixed phase samples, which show a reasonable 

number of samples from 0.1<LWC/TWC<0.9, producing relatively uniform distributions. 

This is consistent with the nature of mixed phase conditions observed over this region, 

whereby few and large ice aggregates are surrounded by swaths of SLW, which are 

evidently not depleted significantly by the occasional ice particle. Results show a 

maximum frequency at LWC/TWC>0.9 for the highest temperatures (-20° to 0°C)  and a 

maximum frequency at LWC/TWC<0.1 for the lowest temperatures (-40° to -20°C). 

Interestingly, the LWC/TWC at -10° to 0°C is the most uniformly distributed compared 
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to other temperature regimes, whereby the frequency at LWC/TWC>0.9 is lower for this 

regime (~0.18) compared with that from -20° to -10°C and -30° to -20°C (~0.35 and 

~0.22, respectively).  

 Figure 7 shows multiple microphysical properties sorted by LWC/TWC for only 

those samples identified as mixed phase, whereby moving right to left along the 

respective abscissas corresponds to more glaciated conditions.  

 

Figure 7: Number of 1 second samples for analysis (A). The mean values of σD (B), 

number weighted mean D (C) and N (D) of CDP and 2DS observations controlled by 

LWC/TWC. Colored lines represent one standard deviation. Results are shown for the 

CDP (2DS) in red (blue) and are primarily representative of liquid (ice) particles. Results 

are restricted to mixed phase samples where CDP is classified as liquid.  

 

The parameters in red correspond with CDP measurements and those in blue correspond 

with 2DS measurements, which generally correspond to liquid and ice phase 

observations, respectively. Further, mixed phase samples are restricted to those having 

DC

BA
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CDP meet the definition of liquid as shown in Figure 3, which amounts to ~97% of all 

mixed phase samples. Figure 7A is a histogram of the LWC/TWC samples binned at 

intervals of 0.1. There is a slight peak at LWC/TWC<0.1 and the largest peak is at 

LWC/TWC>0.9, however, the distribution is relatively uniform.  

Focusing on liquid microphysical properties, σD_CDP and Mean DCDP increase with 

LWC/TWC until LWC/TWC reaches about 0.4, and then subsequently decrease (Figure 

7B,C). Noting that NCDP also increases with LWC/TWC (Figure 7D), this is consistent 

with smaller droplets preferentially evaporating during the WBF process, as LWC is 

reduced by transfer to the ice phase. This may be expected as a volume of smaller 

droplets has a greater total surface area relative to a volume of larger droplets having an 

equivalent liquid mass content. For ice phase properties, N2DS slightly increases with 

decreasing LWC/TWC for LWC/TWC > 0.4, whereas mean D2DS is relatively constant 

and begins to increase with decreasing LWC/TWC when LWC/TWC < 0.4. Further, N2DS 

decreases with decreasing LWC/TWC when LWC/TWC<0.4. Examination of 2DS 

particle size distributions and particle imagery show drizzle drops are often collocated at 

LWC/TWC>0.4, and the number of drizzle drops decreases as LWC/TWC decreases 

below 0.4. Because of this, caution must be taken when interpreting the 2DS results, as 

there may still be an overlap of ice and liquid particles. 

2.3.3. Cloud phase spatial heterogeneity 

An additional goal of this study is to describe the phase spatial heterogeneity within low-

level Southern Ocean cloud regimes. A novel quantitative approach to describe spatial 

heterogeneity is developed here. Figure 8A provides a visualization of three terms that 

are introduced to aid in the phase heterogeneity analysis. A sample has a time resolution 
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of one second (~150 m). A segment is defined as a set of samples whose neighboring 

samples all have the same phase.  

 

Figure 8: An idealized diagram highlighting the introduced terms “samples”, “segments” 

and “transects” (A), a scatter plot of the cloud transect length versus the total length of 

the respective phases (colored markers) contained within the transects (B) and the 

number of samples of a cloud transect (black dots) and phase contained within a cloud 

transect (colored markers) versus the respective number of segments (C,D). Results in 

8B,C,D are restricted to temperature ranges shown in their respective panels, and cloud 

transects containing at least two phases. Colored lines in 8B show average phase lengths. 

The lines in 8C,D are best fit linear regressions for the respective phases (colored lines) 

and entire cloud transects (black line). The black line in 8B shows the one-to-one line. 

The dotted (dashed) line in 8C,D represents the minimal possible heterogeneity for cloud 

transects containing two (three) phases. The dotted dashed line represents a completely 

heterogeneous cloud (i.e., the number of samples equals the number of segments). The 

markers in 8B,C correspond with those shown in the legend of 8D. 

 

Transect

Segments

CountsSamples

A B
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A transect is defined as the total length of the cloud sampled (i.e., a set of consecutive in-

cloud samples or segments with no clear air between). Utilizing these terms allows the 

spatial heterogeneity to be quantified by directly relating the number of samples to 

segments within a transect. Namely, a cloud with a greater number of segments will be 

more spatially heterogeneous than one with fewer segments, given similar transect 

lengths. Further, a completely heterogeneous cloud would have the same number of 

samples as segments, as the phase would change along the flight path at every second. In 

contrast, heterogeneity is minimized by having the minimum number of segments 

possible (i.e., one segment for a cloud with one phase, two segments for a cloud with two 

phases and three segments for a cloud with three phases). The visualization in Figure 8A 

is an example of a cloud transect having the minimal amount of heterogeneity, since only 

three segments are observed in the transect containing three phases. Increasing the 

number of segments would increase its spatial heterogeneity. The heterogeneity would be 

maximized if every sample was a different phase from its neighboring sample(s).  

 Figure 8B shows the length of cloud transects (derived from the true aircraft 

speed) related to the total length of each phase contained within the cloud transects. The 

results are restricted to -20°‒0°C in order to focus on boundary layer clouds; and in any 

event, ice phase samples dominate lower temperatures. The number (percentage) of one 

phase transects between -20° and 0°C having at least five samples was 268 (39%), 1 

(~0%), and 54 (~8%) for liquid, mixed, and ice phase conditions, respectively. For 

transects containing at least two phases, 369 (53%) were observed between the same 

temperatures. At temperatures between -40° and -20°C, 73% were one phase transects 

containing ice and 23% contained at least two phases. Figure 8B does not include one 
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phase transects, as the markers would lie directly on the one-to-one line (black line). The 

colored lines show average phase lengths as a function of the cloud transect length. For 

all transect lengths, the total length of liquid phase samples is greater than the lengths of 

mixed phase samples and nearly equal to or greater than the lengths of ice phase samples, 

as the red line is closest to the one-to-one line. This is consistent with the relative 

frequency distributions in Figure 5. The lengths of the ice phase samples are relatively 

close to those of the liquid phase samples for transect lengths less than ~4 km and closer 

to those of the mixed phase samples at transect lengths greater than ~4 km. Overall, 

results reveal that the liquid phase is more frequent (i.e., has greater total lengths) than 

the ice phase for transects greater than 4 km but is equally frequent for transects less than 

4 km. In addition, the mixed phase is less frequent than the ice phase for transects less 

than 4 km and less frequent than the liquid phase regardless of transect length, but is 

approximately as frequent as the ice phase for transects greater than ~5 km. 

Figure 8C,D shows the number of segments within a cloud transect as a function 

of the number of samples within the transect as black dots, whereas the number of 

samples and segments for each phase contained within the cloud transects are given by 

the colored markers. Cloud transects with greater spatial heterogeneity are generally 

farther up the y-axis (i.e., clouds with a relatively large number of segments will 

approach the one-to-one line). Overall, the datapoints are relatively scattered for the 

cloud and phase samples, and the best fit linear regressions (black and colored lines for 

the cloud and phase markers, respectively) lie between the minimum (dotted and dashed 

lines) and maximum (dotted dashed line) heterogeneous values. This allows for an 

absolute measure of the relative heterogeneity between different phases. Figure 8C shows 
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results at temperatures between -10° and 0°C, which reveal the most spatially 

heterogeneous phase is the mixed phase, as the green lines have the greatest number of 

segments. In contrast, the least heterogeneous phase is the liquid phase, as the red lines 

have the least number of segments. Figure 8D shows results at temperatures between -20° 

and -10°C, revealing the most spatially heterogeneous phase is the mixed phase, whereas 

the least heterogeneous phase is the ice phase. When combining the two temperature 

regimes, the most heterogeneous phase is the mixed phase and the least heterogeneous is 

the liquid phase (Figure D in supplementary material). Further, the best fit line for cloud 

transects is slightly lower at -10° to 0°C compared with -20° to -10°C, as seen by the 

relatively similar slopes beyond ~30 samples and the solid black lines intercepting the 

right ordinate at ~40 segments for the warmer regime and greater than 100 segments for 

colder temperatures. This suggests spatial heterogeneity increases with decreasing 

temperature from 0° to -20°C. 

To determine a quantitative measure of heterogeneity, a parameter is developed to 

define the spatial heterogeneity, which is called the spatial heterogeneity score (SHS). 

The equation is simply a normalization equation described as: 

SHSn =
samplesn−segmentsn        

samplesn−1
    1)  

where n is substituted for cld when SHS is calculated for the entire transect (SHScld), and 

for liq, mix or ice when calculated for the respective phases contained within a given 

transect (SHSliq, SHSmix, SHSice). A more homogeneous cloud has SHScld approach one 

and a more heterogeneous cloud will have SHScld approach zero. Figure 9 shows 

histograms of SHScld and SHSliq,mix,ice. The frequency of SHScld cases exceeding 0.5 far 

exceeds the frequency of cases less than 0.5, suggesting clouds over the Southern Ocean 
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are generally spatially homogeneous. Similarly, the frequencies of SHSliq and SHSice 

exceeding 0.5 are much greater than those less than 0.5.  

 

Figure 9: Histogram of SHScld (black line; right ordinate) and normalized frequency 

distributions of SHSliq, SHSmix and SHSice (colored lines; left ordinate). The results are 

restricted similar to Figure 8B, as well as limited for a given number of samples (shown 

in the legend).  

 

In fact, nearly 50% of SHSliq and SHSice are greater than 0.9. In contrast, SHSmix is nearly 

a uniform distribution. This is consistent with Figure 8C,D, highlighting the greater 

degree of spatial heterogeneity of mixed phase samples. Note the frequency distribution 

of SHScld has a peak frequency between 0.8 and 0.9, which may seem to conflict with 

SHSliq and SHSice having peak frequencies greater than 0.9 and SHSmix having 

comparable peak frequencies between 0.8 and 1.0. However, values of SHScld are 

inherently more heterogeneous since they always contain at least two segments for cloud 

transects containing at least two phases. Following the normalization equation, a cloud 

transect with two segments would require a minimum of 12 samples to exceed 0.9 and 22 

samples for a cloud transect with three segments to likewise exceed 0.9.  

The linkage between meteorological and microphysical properties to the degree of 



30 

 

 

spatial heterogeneity is also investigated. An example of the analysis is shown in Figure 

10 where the frequency distribution of SHScld depends on whether the sampled clouds 

were coupled or decoupled from the layer immediately above the ocean surface; previous 

studies (e.g., Wang et al., 2016; McFarquhar et al., 2021) have suggested the degree of 

coupling might affect cloud composition. Generally, potential temperature and moisture 

profiles are examined to determine coupling based on the relation between the lifting 

condensation level and the cloud base height. However, Wang et al. (2016) examined 

decoupling in subtropical environments by looking for discontinuities in vertical profiles 

of potential temperature, moisture content, and aerosol number concentrations. They 

developed a metric whereby environments are considered decoupled if the differences in 

the top and bottom of the subcloud layer (i.e., the cloud base and surface, respectively) 

potential temperature and water vapor mixing ratio exceed 1.0K and 0.6 g kg-1, 

respectively. Otherwise, an environment is considered coupled. This metric is applied 

here using the nearest dropsonde profile to each cloud transect. Figure 10 shows that 

coupled and decoupled environments have similar distributions of SHScld, suggesting 

there is no relation between cloud phase heterogeneity and surface coupling.  

A Whitney-Mann U-test and two-sample Kolmogorov-Smirnov test are 

performed on the two distributions to further evaluate their similarity. The Whitney-

Mann U-test determines whether the median of one distribution is significantly greater or 

less than the other, whereas the two-sample Kolmogorov-Smirnov test determines the 

significance of the maximum absolute difference between the two cumulative frequency 

distributions, both of which use lookup tables. These tests are chosen since they do not 

require prior knowledge of the distributions’ shapes. Results suggest there is no 
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statistically significant difference between the two distributions. Both tests do not reject 

the null hypothesis, namely, that the distributions are similar, at a significance level of 

10%.   

 

Figure 10: Normalized frequency distributions of SHScld for coupled and decoupled 

environments. SHScld are only shown for cloud transects with ≥ 5 samples as in Figure 9. 

Coupling is determined following Wang et al. (2016) whereby the nearest dropsonde to a 

given cloud transect is used.  

 

Heterogeneity analyses are applied to other meteorological and microphysical 

parameters are shown in Figure 11, which provides normalized frequency distributions of 

1 Hz observations of temperature, w, Mean D2DS and M2DS for varying SHS. Results are 

shown for liquid phase (A‒D), mixed phase (E‒H), ice phase (I‒L), and all phases 

combined (cloud; M‒P). The liquid, mixed, ice and cloud results use SHSliq, SHSmix, 

SHSice and SHScld, respectively. In order to provide an analysis of cloud transects having 

comparable spatial scales, as well as allowing for the analysis of localized regions of 

heterogeneity within relatively long transects, transects containing more than 20 samples 

are split into intervals of 20 samples, which are defined as sub-transects. Additionally, a 

minimum of 5 samples is required for a transect to be included in the analysis (e.g., a 
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cloud transect having 68 samples is broken up into three sub-transects, each having 20 

samples and one sub-transect having 8 samples). Results were not statistically different 

when splitting transects into intervals of 10, 30, 40 and 50 samples (Figure E1,2,3,4 in 

supplementary material).  

 

Figure 11: Normalized frequency distributions of temperature (leftmost column), w (left 

column), M2DS (right column) and Mean D2DS (rightmost column) for varying ranges of 

SHS. Results are shown for liquid (A‒D), mixed (E‒H), ice (I‒L) and all phases 

combined (cloud; M‒P). Analyses of liquid, mixed, ice and cloud samples are applied 

using SHSliq, SHSmix, SHSice and SHScld, respectively. Cloud transects longer than 20 

samples are broken down into intervals of 20 samples. Transects shorter than 20 samples 

must contain at least 5 samples. The number of samples for each range of SHScld are 

included in the legend. Homogeneous represents transects containing only one phase. 

 

Distributions of temperature for each phase are visually relatively similar among 

the different heterogeneity ranges, namely, the frequencies at different ranges of SHS 

generally decrease with decreasing temperature. However, there are differences worth 

noting. Larger frequencies of greater SHSliq and SHSmix occur at temperatures greater 
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than -5°C, suggesting more spatial heterogeneity for these phases is observed at relatively 

lower temperatures (Figure 11A,E) which is consistent with Figure 8C,D. In addition, 

more homogeneous distributions of ice are observed at temperatures less than -20°C. This 

is seen with probabilities of ice greater for SHSice>0.8 and completely homogeneous sub-

transects exceeding those of lower SHS at temperatures less than -20°C (Figure 11I). 

Finally, sub-transects are generally found to increase in heterogeneity (decreasing SHScld) 

with decreasing temperature from -20°‒0°C (Figure 11M). Other notable trends are 

observed for additional parameters. For example, distributions of w are slightly broader 

for spatially heterogeneous sub-transects compared with more homogeneous sub-

transects (Figure 11B,F,J,N), which exhibit slightly higher peaks. Statistical tests 

confirmed that this difference is significant (using two-sample Kolmogorov-Smirnov 

tests at a significance level of 1%) by performing multiple comparisons for different SHS 

ranges. This trend is most notable when examining the heterogeneity over entire sub-

transects (Figure 11N), as seen by peak frequencies of ~0.29, ~0.23 and ~0.18 at w~0 m 

s-1 for completely homogeneous, 0.8<SHScld<1.0 and SHScld < 0.8, respectively. The 

broader distributions of w suggest stronger turbulence may be related to the increase in 

heterogeneity within cloud transects.  

In contrast, only ice particles appear to correlate with spatial heterogeneity, as 

highlighted by results of mean D2DS and M2DS. M2DS decreases with decreasing SHSmix 

and SHSice (Figure 11G,K), whereas distributions are similar for varying SHSliq (Figure 

11C). Likewise, mean D2DS decreases with decreasing SHSice (Figure 11L). However, 

distributions of mean D2DS are nearly identical for the liquid and mixed phase, although 

this is due presumably to the large number of 2DS samples containing both liquid 
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droplets and ice particles, of which liquid droplets dominate the number concentrations 

and number-weighted mean. In addition, NCDP, σD_CDP, and MCDP were similarly analyzed 

(as well as N2DS, horizontal windspeed, and wind direction relative to flight direction; 

Figure F and Figure G in supplementary material, respectively) and were found to be 

similarly distributed regardless of SHS.  

The distributions of the microphysical properties do not show any relation with 

SHScld, i.e., when observations from all phases are combined (Figure 11O,P). This is 

most likely due to the similarly distributed liquid phase data at varying ranges of SHSliq 

(Figure 11C,D) smoothing out the combined liquid, mixed and ice phase distributions 

used with SHScld. Thus, differences are only observed in the microphysical properties of 

ice particles when related to the spatial heterogeneity of their respective phases and not 

that of the overall cloud sub-transects.  

2.4. Discussion 

In-cloud samples are determined to be either liquid, ice or mixed phase using a 

combination of cloud probes (CDP, RICE and 2DS). Potential caveats of the proposed 

phase classification method include the inability to discern whether a sample of particles 

having D<50 μm includes both ice and liquid particles. Further, a degree of subjectivity is 

inherent when visually classifying particles having D>50 μm. Aspherical particles can 

appear spherical in 2DS imagery, and spherical particles may even be frozen drops. 

However, it was shown in Section 2.2 that CDP and RICE can be used as a proxy to infer 

whether the phase of the larger particles was correctly classified. Additionally, ice is 

often expected to be associated with larger particle sizes, as theory dictates that under 

most conditions near water saturation, ice particles will quickly grow larger than droplets, 
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such as in the types of cloud regimes sampled during SOCRATES. It is also important to 

note that the aircraft would have experienced significant icing and aborted in-cloud 

measurements if flown through regions of large SLW containing large droplet sizes at 

temperatures below which kinetic heating fails to offset below-freezing ambient 

temperatures, although SLW contents are often low in clouds sampled during 

SOCRATES. However, the most noticeable uncertainty of the phase ID is discerning 

supercooled drizzle (associated with minimal aircraft icing) and precipitating ice. While 

caution was taken to visually examine samples of precipitation, this may introduce slight 

biases in the frequency of liquid and ice phase samples primarily from -10° to 0°C 

(samples below cloud base) in Figure 5. Overall, the observational strategy discussed in 

Section 2.2 provides a relatively uniform in-cloud sampling distribution to minimize any 

sampling bias associated with the structure of boundary layer clouds. 

In situ measurements cannot be used to examine the evolution of mixed phase 

conditions in a Lagrangian framework, due to the aircraft’s inability to sample an air 

parcel throughout its trajectory, which was not a major objective of the SOCRATES 

flights used in this study. However, theoretical and modeling studies show the evolution 

of mixed phase volumes almost always transitions from mostly liquid to all ice (e.g., 

when the WBF process and/or riming dominates). Therefore, by examining mixed phase 

samples as a function of LWC/TWC, different microphysical properties can be 

ascertained, where values near 1 depict conditions before the start of the glaciation 

process and values approaching 0 correspond to complete glaciation.  

Figure 6 reveals U-shaped distributions in the frequency distribution of 

LWC/TWC for mixed phase samples, showing relatively uniform distributions from -20° 
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to 0°C and distributions resembling inverse exponential functions from -40° to -20°C. 

Samples from all temperatures are combined in Figure 7A, revealing an exponential 

shape consistent with the study of McFarquhar et al. (2007a). They also sampled 

stratocumulus boundary layer clouds, but over the Arctic, finding a relatively uniform 

distribution of LWC/TWC near cloud base with an increasing frequency of 

LWC/TWC>0.9 towards cloud top in single-layer stratocumulus mixed phase clouds. 

The uniform distribution of LWC/TWC near cloud base is consistent with results in 

Figure 6, which show the most uniform distributions of LWC/TWC at -10° to 0°C, which 

generally includes most samples near the base of the lowest cloud layers.  

Liquid number concentrations decrease as LWC/TWC decreases, whereas the 

number weighted mean D and σD of liquid drops increase as LWC/TWC decreases. This 

may be due to smaller droplets preferentially evaporating at the expense of the larger 

droplets. Secondary ice production mechanisms (e.g., Field et al., 2017) may also play a 

role in these trends. Flight scientists on the G-V during SOCRATES often found drizzle 

collocated with ice particles, potentially suggesting that precipitation can be induced 

while the WBF process is acting (discussed in flight reports such as RF05, RF12, RF15). 

Korolev (2007) performed a box model study highlighting that the WBF process only 

occurs given prerequisite background requirements and discusses the range of vertical 

velocities whereby WBF can occur. The study found that both ice crystals and liquid 

drops could grow given sufficient updraft speeds. Another potential mechanism may be 

the removal of smaller liquid droplets via accretion. This is consistent with the increase in 

N2DS as LWC/TWC decreases from 1.0 to 0.4, which could be related to secondary ice 

production such as rime splintering activating via accretion (i.e., the Hallett-Mossop 
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process).  

Results examining the spatial heterogeneity of liquid, mixed and ice phase 

occurrence within clouds suggest the mixed phase appears to be the most spatially 

heterogeneous. Further, SHScld are often between 0.6 and 1.0, suggesting relatively 

homogeneous regions often occur within transects along with “pockets” of increased 

heterogeneity, such as that observed in Figure 3 around 02:28:50 UTC. In fact, results in 

Figure 11 are split up into sub-transects in order to focus on localized regions of 

heterogeneity within larger transects. Such localized regions of heterogeneity, associated 

with “pockets” of ice and mixed phase within large swaths of supercooled liquid, could 

be nucleating via heterogenous nucleation. Recent work has highlighted the relatively 

sparse but present ice nucleating particles observed over this region (e.g., Finlon et al., 

2020; McCluskey et al., 2018).  

The existence of small-scale generating cells at cloud top may also be impacting 

the heterogeneity as Wang et al. (2020) showed that the horizontal scales of generating 

cells from which the precipitation emanates range from approximately 200 to 800 m, 

smaller than those observed over the mid-latitudes (Rosenow et al., 2014) or the Arctic 

(McFarquhar et al., 2011). Further, the lengths of cloud segments may be directly related 

to generating cells, as segment lengths are often within the range of generating cells as 

described in Wang et al. (2020) for lower SHS. However, they found number 

concentrations of particles having D>200 μm (of which ice particles dominate) were 

greater within generating cells compared with outside of them. Work presented here 

shows the mass and number-weighted mean D of ice particles generally decreases as 

cloud segments decrease in horizontal length (i.e., increase in spatial heterogeneity). 
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Additionally, a similar analysis was performed on N2DS having D>200 μm as in Figure 11 

(Figure H in supplementary material) and values slightly decreased with increasing 

spatial heterogeneity. However, Wang et al. (2020) only selected 16 selected flight legs 

for analysis, when the GV aircraft was sampling near cloud top. Future work will focus 

on relating spatial heterogeneity to physical features within the environment.  

A physical reason describing the decrease in M2DS and Mean2DS with increasing 

heterogeneity may be related to cloud lifetimes. If SHS is considered as a proxy for the 

evolution/lifecycle of a cloud region, whereby “pockets” of supercooled liquid nucleate 

and freezing events spread spatially, then lower SHSliq and higher SHSice would be 

expected with an “aged” cloud region. This would be consistent with the increase of ice 

mass and mean D (and relatively constant liquid mass and number concentrations) 

observed with increasing homogeneity.  

In situ data are the measurements best suited for determining the heterogeneity of 

phases in Southern Ocean clouds, and this has important implications for modeling 

studies. Zhang et al. (2019) showed that parameterizing mixed phase clouds as pockets 

within supercooled cloud fields for arctic clouds improved model agreement with 

observed liquid water contents from in situ observations taken during the Mixed Phase 

Arctic Cloud Experiment (Verlinde et al., 2007). Tan & Storelvmo (2016) performed a 

quasi-Monte Carlo sampling of varying parameters in the Community Atmospheric 

Model version 5.1 (CAM5) and found the vapor depletion rates associated with the WBF 

process contributed to the greatest amount of variance of the mass partitioning of mixed 

phase clouds. They further tested CAM5 for the spatial heterogeneity of phase by 

parameterizing mixed phase clouds as having “pockets” of liquid and ice versus the 
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assumption of ice and liquid as homogeneously mixed, and found the simulations 

improved cloud macro-scale features when compared to satellite observations. They 

noted that the assumption of mixed phase clouds as homogenously mixed ice and liquid 

particles in the model results in irregularly large rates of vapor depletion, rapidly 

evaporating liquid at the expense of ice growth. The results presented here confirm that 

mixed phase regions are often on the scale of 100 m to 10 km, and adjusting models to 

parameterize the spatial distribution of phase as such will increase cloud fraction and 

lifetimes, which in turn may improve representations of radiative profiles over the SO. 

2.5. Conclusions 

The purpose of this study is to present the characteristics of cloud phase over the 

Southern Ocean using airborne in situ observations acquired during SOCRATES, which 

primarily sampled low-level clouds over the Southern Ocean. The relative phase 

frequencies controlled by temperature reveal an exceptionally large frequency of 

supercooled liquid between -20° and 0°C. Ice was observed at temperatures near freezing 

and supercooled liquid at temperatures near -35°C. A sharp decrease in supercooled 

liquid was observed once temperatures dropped below -20°C, suggesting that the 

activation of ice nucleating particles might be the primary influence on the presence of 

different cloud phases. This is consistent with similar findings of a sharp increase in ice 

phase occurrence frequencies observed over Cape Grim, Tasmania (Alexander & Protat, 

2018).   

 The spatial heterogeneity of cloud phase is examined by relating the number and 

lengths of different cloud phases contained within each cloud. A metric is also introduced 

which diagnoses a degree of spatial heterogeneity to each cloud sampled. Results show 
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that most clouds are relatively spatially homogeneous as highlighted in Figures 8C,D and 

8. The spatial heterogeneity of specific phases are also examined, and results show that 

the mixed phase is the most spatially heterogeneous from -20° to 0°C, whereas the liquid 

phase is the least spatially heterogeneous from -10° to 0°C and the ice phase from -20° to 

-10°C. Correctly characterizing the spatial heterogeneity of low-level clouds over the 

Southern Ocean is crucial, as assumptions on phase mixing can have major impacts on 

cloud cover, lifetime, and microphysical properties.  

Finally, local microphysical and meteorological properties are related to the 

spatial heterogeneity of both the individual phases and of the cloud transects. Transects 

generally increase in heterogeneity with decreasing temperature from -20° to 0°C, and the 

distribution of w broadens with decreasing SHScld. In addition, the mass and mean 

diameter of ice particles are found to decrease with increasing heterogeneity. Future work 

will further explore the relation of microphysical properties to spatial heterogeneity. 
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3 An evaluation of the phase and microphysical properties of single- and 

multi-layer clouds over the Southern Ocean using in situ observations 

from SOCRATES  

3.1. Introduction 

Clouds over the Southern Ocean have been notoriously difficult to simulate in both 

climate models (e.g., D’Alessandro et al., 2019; Kay et al., 2012; Matus & L’Ecuyer, 

2017; McCoy et al., 2014) and high resolution models (Huang et al., 2015; Huang et al., 

2014; Naud et al., 2014). Climate models have overestimated shortwave absorption over 

this region (Trenberth & Fasullo, 2010), which has been attributed to the underestimation 

of liquid water content and cloud fraction (e.g., Bodas-Salcedo et al., 2016). This may be 

due in part to extremely low ice nucleating particle (INP) concentrations (NINP) present 

over the Southern Ocean as observed on ships (McCluskey et al., 2018). While recent 

model changes have improved simulated clouds by increasing the frequency of 

supercooled liquid, work is still required to further improve the representation of 

microphysical properties (e.g., Gettelman et al., 2020; Yang et al., 2021) and the 

understanding of processes producing supercooled water. 

Single- and multi-layer clouds are commonly observed over the Southern Ocean, 

with prior observations indicating multi-layer clouds accounted for 34% of cases when 

clouds were present (Haynes et al., 2011). Multi-layer clouds refer to the presence of 

multiple cloud layers separated by a cloud free interstice, containing either precipitation 

or clear-sky (e.g., Intrieri et al., 2002; Liu et al., 2012). This is distinct from vertically 

heterogeneous clouds, in which cloud properties embedded within a single-cloud layer 

vary (e.g., Verlinde et al., 2013). Although climate models often fail to capture multi-
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layer clouds due to their coarse vertical resolution (e.g., Atlas et al., 2020), multi-layer 

clouds occur frequently and substantially impact the radiative budget. Because of this, 

climate models often parameterize vertical cloud overlap to adequately treat radiative 

fluxes throughout vertical columns (e.g., Collins, 2001).   

Although the reasons that multi-layer clouds form is still uncertain, multiple 

explanations have been proposed. For example, Tsay & Jayaweera (1984) found that a 

combination of large-scale processes can account for multi-layered stratus. Herman & 

Goody (1976) showed that shortwave absorption of droplets within a cloud layer leads to 

evaporation within the cloud deck, which along with destabilization due to longwave 

cooling at cloud top can lead to the formation of two layers. Multiple cloud layers can 

also result from inhomogeneous temperature/moisture horizontal advection (Luo et al., 

2008). They are also associated with additional complexities which do not need to be 

considered for single-layer regimes, such as seeder-feeder mechanisms (Fleishauer et al., 

2002; Hobbs & Rangno, 1998; Houze, 2014). 

Differences in cloud layering can impact the zonally averaged top-of-atmosphere 

longwave and shortwave radiative fluxes by the order of 10 W m-2 (Li et al., 2011), 

contributed in part to differences in the cloud layer heights and thicknesses. Further, 

overlying cloud layers can substantially impact the evolution of the underlying boundary 

layer clouds. Their presence increases downward longwave radiative flux by an average 

of 30 W m-2, impacting turbulent mixing, vertical development and precipitation rates of 

the underlying cloud layers (Christensen et al., 2013).   

Cloud layer microphysical properties substantially impact turbulent, precipitation 

and radiative properties. Thus, high vertical resolution measurements of cloud profiles 
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are needed for both single- and multi-layer clouds. A few studies showing vertical 

profiles of cloud microphysical properties over the Southern Ocean using in situ 

observations have been performed (e.g., Ahn et al., 2017, 2018; Boers et al., 1996, 1998; 

Chubb et al., 2013, 2016). However, they were primarily case studies lacking statistically 

significant datasets, and they primarily focused on single-layer clouds. Little effort has 

been put towards contrasting the microphysical properties of single-versus multi-layer 

clouds, and the dearth of prior in situ observations over the Southern Ocean relative to the 

Arctic warrants a statistical analysis of the varying properties of single- and multi-layer 

clouds.  

This study aims to produce a statistical overview of single- and multi-layer clouds 

over the Southern Ocean using in situ observations. Section 3.2 and 3.3 describe the 

instrumentation and the methodology used to obtain vertical profiles as well as classify 

the measured profiles as either single- or multi-layer clouds. Sections 3.4‒3.7 presents the 

cloud microphysical properties and phase occurrence frequencies for single- and multi-

layer clouds, as well as comparisons of cloud condensation nuclei (CCN) and INP in 

relation to cloud properties. Section 3.8 delivers concluding remarks.   

3.2. Instrumentation and cloud presence/phase methodology 

This study uses observations acquired with instruments onboard the National 

Science Foundation/National Center for Atmospheric Research Gulfstream-V (GV) 

aircraft during the Southern Ocean Cloud-Radiation Aerosol Transport Experimental 

Study (SOCRATES). The aircraft primarily targeted cold sector boundary layer clouds. 

Flight plans were designed to ideally sample 10-minute level legs above cloud, in cloud, 

and below cloud, followed by sawtooth legs (i.e., sawtooths) to obtain vertical profiles. 
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Since major components of this chapter involve evaluating both the variation in cloud 

properties of single- and multi-layer clouds as well as the vertical structure of the 

different cloud layer types, the vertical profiles will be used to diagnose the cloud layers. 

Bulk properties of cloud particles measured by the CDP and 2DS correspond with 

the properties of cloud particles with D less than and greater than 50 μm, respectively. 

Samples are determined to be either in-cloud or clear-sky following D’Alessandro et al. 

(2021), which utilizes measurements from the CDP and 2DS. Samples are considered in-

cloud if the derived mass content of CDP observations (MCDP) is greater than 10-3 g m-3 

or if any particles are detected with D2DS>50 μm. These threshold values were selected to 

eliminate sea spray and other large aerosols. The small threshold of MCDP ensures that 

even optically thin clouds are included in the sample. The phase of in-cloud samples is 

also determined following D’Alessandro et al. (2021), which determines the phase of 

small cloud particles (D<50 μm) using a set of threshold values for the CDP and 

Rosemount Icing Detector measurements, whereas the phase of large particles (D>50 

μm) uses a combination of multinomial logistic regression and visual examination of 

particle imagery from the 2DS. The phase of large particles may be classified as either 

liquid, ice or mixed (i.e., a sample volume containing both liquid and ice particles) 

whereas the phase of small particles may only be classified as either liquid or ice. 

Additional details of the phase classification are discussed in Section 2.2.  

Additional instrumentation to obtain measurements utilized in this study are 

described below. Filters were collected using a forward-facing inlet (Stith et al., 2009) on 

the GV for offline immersion freezing measurements of INP concentrations from the 

released particle suspensions using the Colorado State University ice spectrometer 



45 

 

 

(DeMott et al., 2017). The sample collection approach similarly follows that of previous 

aircraft studies (Levin et al., 2019; Twohy et al., 2016), of which further details on the 

methodology can be found. Measurements of CCN were obtained using two miniaturized 

stream-wise thermal gradient CCN counters (Roberts & Nenes, 2005; Sanchez et al., 

2021). One gathered 1Hz data at a constant supersaturation of 0.43%, whereas the other 

operated with a scanning flow and temperature to measure CCN spectra from 0.06% to 

0.87% supersaturation every five minutes. This study uses measurements from the latter, 

but only using CCN data with supersaturations from 0.26% to 0.34%. This range of range 

of supersaturation is chosen since CCN concentrations at this range best correspond with 

observed NCDP concentrations (Sanchez et al., 2021). Shortwave irradiance measurements 

were taken with a Kipp and Zonen CMP22 Pyranometer. Infrared irradiance 

measurements were taken using two Kipp and Zonen CGR4 Pyrgeometers. Temperature 

was measured using a fast-response Rosemount temperature probe. For steady conditions 

the estimated accuracy and precision are 0.3K and 0.01K, respectively. Water vapor was 

measured using the 25-Hz Vertical Cavity Surface Emitting Laser (VCSEL) hygrometer 

(Zondlo et al., 2010). Additional laboratory calibrations of the VCSEL water vapor 

measurements were conducted in summer 2018, and the final data were reprocessed 

(Diao, 2021). Relative humidity (RH) is calculated following Murphy & Koop (2005). 

The combined uncertainties from temperature and water vapor measurements results in 

the uncertainty of RH ranging from 6.3%‒6.7% from 17° to -31°C, respectively, which is 

the temperature range of the cloud layers in this study (discussed in more detail in the 

following section). Remote sensing platforms onboard the aircraft include the High-



46 

 

 

performance Instrumented Platform for Environmental Research (HIAPER) Cloud Radar 

(Vivekanandan et al., 2015) and High Spectral Resolution Lidar (HSRL; Eloranta, 2006). 

3.3. Cloud layer classification 

Clouds measured during all sawtooths performed during SOCRATES are classified 

as either single- or multi-layer clouds. Level legs are not included in the analysis because 

they do not provide information about the vertical profile. In the analysis, transects are 

first defined as ascending or descending legs, and included in the analysis provided the 

rate of altitude change was consistently greater than 3 m s-1 for the transect, which is less 

than the typical ascent or descent rate of the G-V during sawtooths which was 5 to 7.5 m 

s-1. Transects with vertical lengths less than 60 m are removed from this analysis, all of 

which only contained one single-cloud layer. 

An automated cloud layer classification method is introduced to provide an 

objective measure for identifying individual layers within each transect. For data obtained 

during each transect, a smoothing filter is applied to all 1-s in-cloud samples defined as 

having MCDP > 10-3 g m-3. A binary array is first created where samples with MCDP > 10-3 

g m-3 are set equal to one and all other samples equal to 0. A Savitzky-Golay smoothing 

method (Savitzky & Golay, 1964) is applied with a moving window of 30 1 Hz samples 

to each binary array. The Savitzky-Golay filter is used since it better preserves peak 

heights and widths of data features compared with lower order moving averages. 

Individual layers are identified where consecutive samples of the smoothed binary arrays 

exceed 0.5. Clear interstices between layers of at least 3 m can potentially be captured 

using this method, with the exact threshold dependent on the aircraft rate of ascent or 

descent rate. The vertical extent of the cloud layer within an area where the smoothed 
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binary array exceeds 0.5 is determined to be between the highest and lowest in-cloud 

sample having MCDP > 10-2 g m-3. The lower MCDP threshold applied prior to smoothing 

ensures cloud top and base is contained in each area of the smoothed binary area 

exceeding 0.5. All layers identified using this method are shown by the shaded rectangles 

in Figure 12. The CDP is solely used to identify cloud layers without the use of the 2DS 

to ensure that the presence of precipitating ice or drizzle is not used to identify a cloud 

layer when small droplets or ice crystals are not present. A cloud layer is only included in 

the analysis if the entirety of the layer (cloud base to cloud top) is contained within the 

transect.  

Although flight plans were designed with the intent of sampling all cloud layers 

during sawtooths, it is possible that some layers may have been missed if the G-V did not 

ascend or descend to the altitude where these layers were located. Furthermore, for 

transects where there was a very narrow interstice between layers, the irregular clustering 

of CDP measurements make it difficult to determine the number of layers. Thus, the 

forward-facing camera was inspected for each transect to evaluate the classification. This 

was additionally required for cases when the GV intersected the same cloud layer twice 

(e.g., protruding filaments of cloud below cloud base). Reflectivity profiles from the 

HIAPER cloud radar and retrievals from the HSRL acquired during the transects were 

similarly used to distinguish cloud layers and also to check for cloud layers directly 

above and below the aircraft. The classification algorithm performed relatively well, as 

only 16% of the layers were corrected after manual inspection.    

Figure 12 shows MCDP from vertical transects flown by the GV aircraft, with layers 

indicated by the coloring within each rectangular box. Each column represents a single-
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vertical transect, arranged in the order they took place as shown by the research flight 

number (RF01‒RF15) underlying the respective columns. 

 

Figure 12: Vertical profiles of MCDP from select ramped ascents and descents flown 

during SOCRATES that meet criteria described in Section 3.3. Profiles are only shown 

for transects where the highest and lowest altitude samples of each transect are 

considered clear-sky. Colored circles show MCDP where MCDP > 0.001 g m-3. Solid black 

lines show the vertical extent of each transect. Black shaded regions represent samples 

where M2DS > 0.01 g m-3 and MCDP < 0.001 g m-3. Red, green and blue markers to the 

right of the transects in the magnified panel indicate liquid, mixed and ice phase samples, 

respectively. Phase markers are only shown for temperatures less than 0°C. 

 

The color of the rectangular box surrounding the MCDP shading represents the 

identification of that profile as either a single-layer, or the lowest (Multi-1st), second 

lowest (Multi-2nd), third lowest (Multi-3rd) or higher layer (Multi-grt3rd) in a multi-

layer cloud as determined from the cloud layer classification. Both single- and multi-

layer clouds were regularly encountered in approximately half the flights, whereas other 

flights predominantly sampled either multi-layer or single-layer clouds (e.g., RF01 only 

has two-layer clouds, RF12&13 primarily have single-layer clouds). The magnified panel 
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shows profiles representative of most the layers sampled and includes phase information 

as colored markers immediately to the right of the transects. Cloud layers were typically 

composed of supercooled liquid and mixed phase samples. A case of light ice 

precipitation (M2DS < 0.01 g m-3) is observed for the highest cloud layer in the middle 

transect. Cloud layers were often found to precipitate either supercooled drizzle or ice, 

which has been previously documented (e.g., Alexander et al., 2021). Overall, 55 single-

layer clouds and 183 multi-layer clouds were identified from 153 transects using this 

procedure. Although cloud layers are included in the analysis regardless of their altitude, 

the vast majority of sampling took place below 3 km (96% of single-layer clouds and 

98% of multi-layer clouds).  

Since MCDP is solely used to determine in-cloud conditions, the cloud layer 

classification method fails to capture ice cloud layers with MCDP below the in-cloud 

threshold. One such layer is in the magnified panel of Figure 12 as seen by the presence 

of M2DS > 0.01 g m-3 (black shading and blue markers). Note that the phase information is 

only visible for approximately half the length of the layer since temperatures exceed 0°C 

below the markers and phase information is only provided for temperatures less than 0°C. 

There were six such layers in total (2% of the observed layers), which are not included in 

the analysis to be consistent with the in-cloud definition (MCDP > 10-3 g m-3) proposed in 

order to exclude precipitating particles. Additionally, the cloud layer classification 

method may fail to accurately capture cloud layers which contain these ice layers 

embedded within multiple liquid or mixed phase layers. However, there were only 3 such 

layers (1% of the layers) embedded with multiple liquid layers as well as ice layers which 
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were deep enough to prevent the smoothing algorithm from adequately classify the cloud 

layers. These layers were not included in the analysis.  

3.4. Cloud layer overview 

Figure 13 shows the number of profiles with different layer depths for the single- 

and multi-layered cases (Fig. 13A), as well as the normalized occurrence frequency of 

different phases that occur in single-layer and multi-layer clouds (Fig. 13B).  

 

Figure 13: A) A bar chart showing the number of cloud layers with given depth, sorted 

according to different cloud layer types. B) Relative cloud phase frequency shown for 

different cloud layer types. Results in B) are only shown at temperatures less than 0°C. 

The blue numbers are relative frequencies of the mixed phase to all ice-containing 

samples (mixed and ice phase). Results are only shown for ramped ascents and descents. 

 

Figure 13A shows that relatively thin cloud layers with depths < 200 m are more frequent 

than deeper layers for both single-layer and multi-layer clouds, and for all different layers 
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of the multi-layer clouds, with these thin cloud layers representing 59% of the layers 

sampled during SOCRATES. Cloud layers with average temperatures less than 0°C make 

up 76% of all the layers sampled, with 63% of all such layers having depths < 200 m. 

Additionally, 77% of the multi-layer clouds are observed within the boundary layer and 

the rest above the boundary layer, whereas over 90% of single-layer clouds were 

observed within the boundary layer. The boundary layer heights were determined from 

visual examination of dropsonde data. For flights without dropsonde data (RF01,08,09), 

boundary layer heights are estimated from in situ temperature measurements taken from 

sawtooths. Boundary layer heights are then interpolated using a nearest neighbor method 

over each respective flight. Some layers could therefore be incorrectly characterized as 

either above or within the boundary layer based on uncertainties or limitations associated 

with the interpolation method. 

Figure 13B shows that single-layer clouds contain the smallest percentage of ice-

containing samples (6%), where ice-containing samples are either ice-phase or mixed-

phase clouds, whereas the lowest layers of multi-layer clouds have the highest observed 

frequency of ice-containing phases (32%). The frequency incrementally decreases with 

increasing multi-layer cloud height up to the third lowest cloud layer. The highest layers 

of multi-layer clouds have nearly similar frequencies of ice-containing samples (31%) as 

the lowest layers. The phase frequencies are separately analyzed for above and within the 

boundary layer (not shown), and the trends discussed above are observed in both cases 

(i.e., greatest liquid phase frequencies in single-layer clouds, lowest liquid phase 

frequencies in lowest multi-layer clouds and increasing liquid phase frequencies up to the 

third highest cloud layers). Frequency values within the boundary layer are all within 
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10% of those in Figure 13B, whereas values are much more variable above the boundary 

layer. The fraction of samples that are mixed-phase compared to all ice containing 

samples is greatest for single-layer clouds, with slightly lower frequencies for multi-layer 

clouds, with the frequency decreasing with increasing cloud height (blue text within 

respective columns of Fig. 13B). Within all cloud layers, over 95% of ice-containing 

samples are mixed-phase showing the dominance of supercooled water regardless of 

layering. As cloud phase is dependent on many other factors such as temperature, the 

presence of large drops and the concentrations and compositions of both CCN and INP, 

the dependence of cloud phase in the different cloud layers on these parameters is 

investigated in the following section.  

3.5. CCN and INP 

Determining the concentration of INP over the SO is difficult in part due to their 

relatively sparse concentrations over the region (e.g., McCluskey et al., 2018; 

McFarquhar et al., 2021), which means long averaging times are required to get 

statistically significant samples above background values. The following discussion 

provides context for the INP observations gathered by the GV aircraft during 

SOCRATES and used in this analysis. Sampling of INP is taken over continuous 

durations on the order of minutes, which here are defined as sample areas. The sample 

areas were often combined in post-campaign processing accounting for flow rates which 

ranged from a few to 13 liters per minute (depending on altitude). Sample areas above 

and within the boundary layer were separately combined, with the combined areas 

spanning up to 15° latitude. This resulted in accumulated sample volumes ranging from 

129 to 840 standard liters of air per flight. The total data acquisition time of all samples 
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amounts to approximately 23 hours, obtaining a total of 32 filter samples. Since the 

reported activation temperatures vary for different combined sample areas, reported NINP 

are averaged at 1°C intervals to obtain NINP with a constant activation temperature 

resolution of 1°C. 

The following analysis relates NINP with relative phase frequencies. To obtain 

adequate cloud phase sample size(s), combined INP sample areas are interpolated using a 

nearest neighbor method over the respective flights. Cloud phase data within the 

interpolated regions (including sawtooth and level-leg data) are then related to NINP from 

the same sample area(s). The interpolation is separately performed for sample areas 

above the boundary layer and within the boundary. This mostly results in interpolated 

areas derived from single sample areas above and within the boundary layer spanning the 

entire research flights, with the exception of research flights 1,3,4,10. Namely, all in-

cloud data above (within) the boundary layer is related with a single set of reported NINP 

above (within) the boundary layer. 

Scatter plots relating NINP and liquid phase frequency (i.e., frequency of liquid 

phase to all phases) are shown in Figure 14. Results are separately shown within the 

boundary layer (Figure 14A) and above the boundary layer (Figure 14B). The different 

colored markers denote samples where the liquid phase frequency is taken within a 

specified temperature range (left-hand side of legend text) and relates it to NINP having 

activation temperatures within a specified range (right-hand side of legend text). 

Measurements of INP are reported with activation temperatures ranging from -30° 

to -10°C,  noting NINP is only measurable for activation temperatures < -10°C. Phase data 

for temperatures less than -20°C are not included because D’Alessandro et al. (2021) 
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previously showed there is a sharp decrease in supercooled liquid below -20°C, with 

~93% of samples between -30° and -20°C being ice phase.  

 

Figure 14: Scatter plots of NINP related to liquid phase frequency (i.e., the frequency of 

liquid phase samples relative to all in-cloud samples) for samples within the boundary 

layer (A) and above the boundary layer (B). Samples are taken within the interpolated 

INP sample areas as described in the text. Different colored markers show liquid phase 

frequencies taken within specified temperature ranges compared with NINP having 

different ranges of activation temperatures. The purple circles compare phase frequencies 

within the boundary to NINP above the boundary layer using the above boundary layer 

interpolated area. Best fit lines and correlations correspond to the respective phase 

frequency and INP activation temperature ranges. 

 

Strong negative relationships would likely indicate a prevalence of primary nucleation 

over the region. Perhaps the most likely temperature range and NINP activation 
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temperature range expected to show such relationships would be those having similar 

ranges. However, phase frequencies from -20° to -10°C and NINP with activation 

temperatures in the same range (red points) are associated with low sample sizes. This is 

observed by only three data points within the boundary layer, and six above the boundary 

layer (three of which have sample sizes less than 200; denoted by marker size). This is 

due in part to the fact that the number of in-cloud samples from -10° to 0°C is more than 

a factor of two greater than the number of samples from -20° to -10°C (D’Alessandro et 

al., 2021), and the lowest NINP have relatively warmer activation temperatures which 

increase semi-exponentially with decreasing temperatures (Järvinen et al., 2022).  

There are a few NINP ranges which capture negative relationships associated with 

primary nucleation. One is for NINP with activation temperatures from -20° to -10°C 

above the boundary layer. Correlations between NINP and phase frequencies from -20° to 

-10°C and -20° to -2°C (where NINP is log-scaled) are both approximately -0.3 (only 

shown for -20° to -10°C; Figure 14B). Another NINP range is that having activation 

temperatures from -30° to -10°C within the boundary layer, where the correlation 

between NINP and phase frequencies from -20° to -2°C is more significant at -0.60. This 

significant correlation is only observed within the boundary layer, which may be 

unexpected since there are no in-cloud samples below -20°C within the boundary layer. 

Further, this correlation was observed to decrease when decreasing the range of 

activation temperatures towards temperatures warmer than -30°C (not shown). Therefore, 

the correlation may be related to sedimenting INP from above the boundary layer. 

However, there is no notable relationship between similar NINP and phase frequency 

temperature ranges above the boundary layer. One possible explanation may be the 
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prominence of efficient ice nucleation due to pre-activated INP (Mossop, 1956), whereby 

localized regions above the boundary layer may only experience significant primary 

nucleation via aged INP. Thus, primary ice nucleation may still occur at colder 

temperatures above the boundary layer, and contributions from alternative nucleation 

processes such as accretion and seeding mechanisms may result in decreasing liquid 

phase frequencies at warmer temperatures underlying the localized areas. There is 

evidence for this when relating NINP above the boundary layer with phase frequencies 

below the boundary layer (Figure 14B; purple circles). This is done by obtaining the 

phase frequencies below the boundary layer using the above boundary layer interpolated 

sample areas. A correlation of -0.86 is observed between NINP with activation 

temperatures from -30° to -20°C and phase frequencies from -20° to -7°C with a root 

mean square error of 0.26. However, phase frequencies including temperatures greater 

than -7°C results in weak correlations (|r|<0.2; not shown). 

All the other NINP ranges are weakly correlated (|r|<0.22), with the exception of 

NINP with activation temperatures from -20° to -10°C and phase frequencies within the 

same temperature range within the boundary layer, although this dataset only contains 3 

points. Aside from select combinations of NINP and phase frequencies discussed above, 

there are no clear relationships between most combinations of the listed phase 

frequencies and NINP, suggesting a prominence of alternative ice initiation/growth 

processes (secondary ice nucleation, accretion, etc.). Relationships may be sensitive to 

whether INP sampling took place above or below clouds, although it is at best extremely 

difficult to incorporate this distinction due to the interpolated sampling area method 
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discussed above. At the very least, results here provide a benchmark analysis towards 

directly relating INP to the frequency of ice over the Southern Ocean. 

Liquid phase frequencies are also related to CCN number concentrations (NCCN) 

to determine the potential impacts of CCN on cloud phase. Due to the greater spatial 

resolution of CCN measurements compared with INP sample areas, a method is derived 

to obtain a CCN measurement for each 1 Hz cloud sample. These measurements are 

determined using a moving window ± n 1 Hz samples from each cloud sample. The 

average NCCN is calculated within the window over the clear-sky samples, since droplet 

shattering on the inlet of the CCN counter introduces error in its measurements (Hudson 

& Frisbie, 1991). The averaging is also restricted to samples above or within the 

boundary layer, depending on the location of the in-cloud sample. Results applying this 

methodology are shown in Figure 15, showing the liquid phase frequency for different 

temperature ranges above the boundary layer (15A‒C) and within the boundary layer 

(15D‒F). The different color lines denote the liquid phase frequencies for different 

percentile ranges of NCCN, where the red line denotes samples within low NCCN 

environments (NCCN<33rd percentile) and the blue line denotes samples within high NCCN 

environments (NCCN>67th percentile). Each column shows results using a different 

window size, shown overlying the respective columns. Results above and within the 

boundary layer are relatively consistent over the different window sizes. Focusing first on 

observations within the boundary layer, phase frequencies are either relatively constant or 

slightly increase with decreasing temperature for all the moving window sizes (15D‒F). 

Although inconsistent with observed increases in the frequency of ice-containing cloud 

samples with decreasing temperatures (D’Alessandro et al., 2021), results here are 
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consistent with the increasing liquid phase frequencies with increasing cloud height 

(Figure 13B).  

 

Figure 15: Liquid phase frequencies within 5°C temperature bins above (A‒C) and within 

(D‒F) the boundary layer for different NCCN percentile ranges. Results are shown for 

different moving window averages (overlying each column), in which NCCN are averaged 

over clear-sky samples (further described in the text). The 33rd and 67th percentiles of 

average NCCN are included in the respective panels. The number of in-cloud samples are 

denoted by the dotted-dashed lines. 

 

In contrast, liquid phase frequencies generally decrease with temperature over all the 

CCN percentiles above the boundary layer (15A‒C). Perhaps surprisingly, stark contrasts 

in the liquid phase frequencies are observed for the different CCN percentiles which were 

not observed within the boundary layer. Namely, liquid phase frequencies are much 

greater within high NCCN environments than low NCCN environments. With the exception 

of two temperature bins (e.g., from -5° to 0°C for the ±500 s window; 15A), the liquid 

phase frequencies in the high NCCN environments are 0.4‒0.85 greater than the low NCCN 

environments for all moving window sizes. Previous studies have found high NCCN 

environments correspond with increased frequencies of supercooled liquid in low-level 

± ±±
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Arctic clouds, which has been suggested to be due to increasing lifetimes of supercooled 

liquid clouds (Filioglou et al., 2019). Alternatively, varying NCCN environments may be 

representative of different air mass source regions, and differences in phase frequencies 

may be the result of differences in the nucleation tendencies of the associated aerosols. 

Sanchez et al. (2021) identified four aerosol regimes sampled during SOCRATES, and 

found environments with high NCCN commonly originated or passed over the Antarctic 

coast, where elevated phytoplankton biomass (relative to the open ocean) is a major 

contributor of biogenic emissions.  

Additional explanation(s) may be related to varying secondary ice production 

mechanisms related to the presence of large droplets, which would be limited in a high 

NCCN environment. For example, large drops have been observed to eject small ice 

particles as they freeze (i.e., droplet fragmentation) primarily at temperatures less 

than -10°C (e.g., Korolev & Leisner, 2020). However, a recent study by Järvinen et al. 

(2022) found little evidence to suggest this is a prominent secondary ice production 

mechanism over the region. A more prominent mechanism is referred to as the Hallet-

Mossep process, which is characterized by splintering of small ice particles off of graupel 

during riming (Hallett & Mossop, 1974). Previous studies have noted its likely presence 

over the Southern Ocean (e.g., Huang et al., 2021; Järvinen et al., 2022). The potential for 

this mechanism to influence phase frequencies is explored here by relating large drop 

concentrations having dimensions exceeding 25 μm (NCDP_D>25μm) with NCCN, both of 

which are averaged over the interpolated INP sample areas as discussed earlier. The 

presence of NCDP_D>25μm is favorable for the Hallet-Mossop process, which occurs 

primarily between -8° and -3°C. Averages of NCCN are only performed on clear-sky 
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samples, whereas large drop concentrations are only averaged over liquid and mixed 

phase samples. Comparisons are made using the interpolated sample areas since large 

drop concentrations often varied significantly with average NCCN derived from the 

moving window method used in Figure 15. Results are provided in Figure 16, which 

additionally shades the markers by liquid phase frequency. The scatter plot reveals a 

characteristically parabolic shape, which is motivation to use the Spearman rank 

correlation. The Spearman correlation is moderately significant at -0.61, suggesting the 

possibility that high NCCN environments can inhibit the production of large drops due to 

the increased number of nucleation sites for condensation.  

 

Figure 16: Scatter plots of average NCCN and average NCDP_D>25μm, where averages are 

taken within the interpolated INP sample areas as in Figure 14. Results are colored by the 

liquid phase frequency, and marker size denotes the sample size. Circles denote within 

boundary layer sample areas and squares denote above boundary layer areas. 

 

Liquid phase frequencies are less than 0.2 in all four environments with average 

NCDP_D>25μm exceeding 10 cm-3, whereas only two of the eleven environments have 
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similarly low phase frequencies where there are lower large drop concentrations. This 

finding combined with the high Spearman correlation suggests a weakened 

thermodynamic effect whereby secondary ice production is limited by high CCN 

concentrations (e.g., Rangno & Hobbs, 1991; Jackson et al., 2012). However, the 

relationship of NCCN and large drop concentrations may also be related to precipitation 

scavenging, where NCDP_D>25μm is directly related to the presence of drizzle. Sanchez et al. 

(2021) found low NCCN environments were associated with air masses having a history of 

precipitation within the previous 1.5 days using back trajectory analysis.  

An additional analysis comparing differences in drop concentrations in decoupled 

and coupled environments is provided in Figure 17.  

 

Figure 17: Frequency distribution of NCDP for in-cloud conditions for all flights (blue 

bars). Green and red lines show distributions of NCDP for decoupled and coupled 

environments, respectively. Results here include level periods and ramped ascents and 

descents. 

 

Most of the boundary layers were decoupled with the exception of RF12 and RF13, 

where the presence of coupling was determined using the dropsonde data following 
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Wang et al. (2016). Figure 17 shows a distinct bimodality in NCDP due to differences of 

NCDP in the coupled and decoupled environments. The mode of NCDP for decoupled 

flights is 70 cm-3 and for coupled flights 160 cm-3, consistent with aerosols emitted from 

the ocean serving as effective CCN in the coupled cases. Perhaps unexpectedly, average 

NCCN within the boundary layer is highest for RF09 (191 cm-3), second highest for RF12 

(175 cm-3) and the third highest for RF13 and RF08 (both are 136 cm-3). Further, average 

NCCN for RF12&13 above the boundary layer were the fifth and sixth highest of all 15 

research flights. The tendency for RF12&13 not having the highest average NCCN is 

similarly observed when evaluating NCCN at supersaturations greater than and less than 

0.3% (not shown) and warrants further investigation. 

3.6. Cloud layer properties and profiles of radiative fluxes and drop 

clustering  

Figure 18 shows normalized frequency distributions of NCDP, MCDP, the standard 

deviation of D from CDP drop size distributions (σCDP) and the mean volume weighted 

diameter (MVDCDP) for single-layer clouds and the different layers of multi-layer clouds 

using data from all flights. In Figure 18A it is seen that the NCDP mode for single-layer 

clouds is greater than 100 cm-3, coinciding with the NCDP mode for flights taken in 

coupled environments shown in Figure 17 (RF12 and RF13, both of which primarily 

sampled single-layer clouds as seen in Figure 12). To examine the effect of coupling on 

the distribution of NCDP, results for single-layer cases restricted to decoupled 

environments are separately shown by the dashed line. When comparing the solid and 

dashed black lines for the properties in all panels, NCDP is the only property shown that 

significantly diverges for the coupled and decoupled environments. NCDP distributions in 
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decoupled environments are more similar to distributions of all multi-layer clouds than to 

single-layer distributions in coupled environments. In contrast, the modes for MCDP, σCDP 

and MVDCDP are relatively similar in coupled and decoupled environments (all of which 

are between 100‒300 cm-3, 3‒4 μm and ~16, respectively). 

 

Figure 18: Normalized frequency distributions of NCDP (A), MCDP (B), σCDP (C) and 

MVDCDP (D) for different cloud layer types. The black solid and dashed lines show all 

single-layer samples and single-layer samples from decoupled environments, 

respectively. Results are only shown for ramped ascents and descents. 

 

When comparing single-to multi-layer cases, single-layer cases are slightly skewed 

to larger MCDP values, whereas both σCDP and MVDCDP (Figure 18C&D) are skewed to 

larger values for multi-layer cases. These results suggest multi-layer clouds observed 

during SOCRATES had less liquid water content than single-layer cases, but broader 
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droplet distributions and larger mean particle sizes. These differences may be related to 

the relative phase distributions of liquid and mixed phase samples, whereby available 

liquid is partitioned to large ice particles which often exceed sizes detectable by the CDP. 

This would be consistent with greater mixed and ice phase frequencies in multi-layer 

clouds than in single-layer clouds (Figure 13B). Differences are also consistent with a 

seeder-feeder mechanism, whereby underlying clouds are seeded from overlying clouds 

to broaden drop size distributions. A seeder-feeder mechanism is similarly consistent 

with the relative phase distributions of multi-layer clouds (Figure 13B).  

Parameters in Figure 18 are also separately evaluated within and above the 

boundary layer for single- and multi-layered clouds in Figure 19. Focusing on single-

layer clouds, all of the distributions are multi-modal above the boundary layer with the 

exception of MVDCDP (e.g., more than three modes for MCDP in Figure 19B), which is 

likely due in part to the relatively low sample size (15% of single-layer samples) as well 

as uncertainties associated with the interpolated boundary layer height. However, the 

bimodal distribution of NCDP does capture differences observed between coupled and 

decoupled environments. Larger sample sizes for multi-layered clouds above the 

boundary layer (26% of multi-layer samples) reveal relatively more robust differences in 

the multi-layered clouds. Distributions of NCDP and MCDP are slightly shifted towards 

larger values for multi-layered clouds within the boundary layer, consistent with higher 

NCCN within the boundary layer. The mode for σCDP is slightly lower above the boundary 

layer (equal to single-layer clouds above the boundary layer), whereas distributions of 

MVDCDP are similar for both multi-layer cloud cases.  
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Figure 19: Similar to Figure 18, except single- and multi-layer cloud properties are 

separately evaluated for samples above the boundary layer and within the boundary layer. 

 

The similarity is quantitatively determined using Mann-Whitney U-tests and 

Kolmogorov-Smirnov tests. These tests are chosen since they do not require prior 

knowledge of the distributions’ shapes. When applying the tests to MVDCDP, both tests 

do not reject the null hypothesis that both sample sets are taken from the same population 

at a significance level of 5%. Overall, distributions of σCDP and MVDCDP are more 

positively skewed for both multi-layer cases compared with the single-layer cases, 

confirming differences in the different cloud types is unrelated to differences in boundary 

layer and free tropospheric conditions. 



66 

 

 

It is crucial to examine how the properties vary in relation to their location within 

the cloud layer to get insight into physical processes occurring in the clouds and impacts 

on vertical profiles of radiative heating. Figure 20 shows joint histograms of both 

shortwave (solar) and longwave (terrestrial) irradiance as a function of the normalized 

height within a cloud layer, defined following McFarquhar et al. (2007) as: 

zn =
(z−zCloud_base)

(zCloud_top−zCloud_base)
    2)  

where z refers to the altitude of the local 1Hz sample, zCloud_top and zCloud_base refer to the 

altitudes of cloud top and cloud base for a particular layer, respectively (i.e., the highest 

and lowest samples within a layer having MCDP > 0.01 g m-3, respectively). Cloud layers 

are split into two categories: those that are the highest layer of their respective regime 

(top cloud layers; Figure 20A‒C) and those that are underlying another cloud layer (non-

top cloud layers; Figure 20D‒F). Layers in the latter category are only associated with 

multi-layer clouds and should receive less solar radiation than layers in the former 

category. This is precisely what is observed when comparing the solar irradiance (Fsolar) 

in Figure 20A&D: most measurements in the top cloud-layers occur between 400 and 

600 W m-2 at zn > 0.9 whereas there are nearly zero (< ~10) cases of solar irradiance 

greater than 400 W m-2 for the non-top cloud layer. Likewise, most measurements of net 

longwave irradiance (Fterr_net) ranges from -110‒0 W m-2 for the top cloud layer at zn > 

0.9, with a mean value of -50 W m-2. In contrast, there are nearly zero cases of Fterr_net 

< -50 W m-2 for non-top cloud layers.  

The heating profiles shown in Figure 20C&F reveal relatively weak cloud top 

cooling associated with longwave radiation for both the top and lower layers.  
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Figure 20: Joint histograms showing the frequency of downwelling solar irradiance 

(Fsolar; A,D), net terrestrial irradiance (Fterr_net; B,E) and associated heating profiles from 

terrestrial irradiance (C,F) as a function of zn for layers including single-layer and the 

highest layer of multi-layer clouds (top cloud layers; A, B, C) and for underlying cloud 

layers (non-top cloud layers; D, E, F). Red lines show average irradiance and heating 

rates. 

 

Average cooling rates are ~0.5 K hr-1 for zn > 0.9 for non-top cloud layers, and lower than 

~2.5 K hr-1 for top cloud layers. Such low cooling rates are associated with emitted 

longwave radiation from overlying cloud layers for non-top cloud layers, as well as 

relatively low mass contents of clouds over this region, as seen with MCDP having modes 

ranging from 0.1‒0.2 g m-3 for all cloud layer types (Figure 18B). Weaker cooling rates 

may result in weaker cloud top turbulent mixing for non-top cloud layers, resulting in 

different lifetimes or evolutions for different cloud layer regimes. Higher cooling rates 

were associated with greater average liquid mass of the top cloud layers. Specifically, 

average cloud top cooling rates were 1.5 K hr-1 greater for cloud layers with average 

MCDP above the 50th percentile (0.2 g m-3) than below the 50th percentile (not shown). 
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The clustering of droplets, which can have implications for many factors such as 

precipitation onset (Shaw et al., 1998) and the evolution of raindrop size distributions 

(McFarquhar, 2004), is evaluated using joint histograms in Figure 21A,B and Figure 

21C,D for all non-top cloud layers and all top cloud layers, respectively. Unlike Figure 

20, results are normalized over the respective zn bins. The clustering index (CI) is a 

commonly used metric (e.g., Baker, 1992; Chaumat & Brenguier, 2001; Jaczewski & 

Malinowski, 2005) that is defined as:   

 CI = (
σ2

x̅
− 1)     3)  

where x̅ is the mean and σ2 the variance of a given parameter over a given number of 

samples. This metric takes advantage of the fact that a Poisson distribution has an equal 

mean and variance. By subtracting 1 from σ2/x̅, a droplet distribution sampled from a 

population with a constant mean rate will result in CI equaling zero, and CI will increase 

with increasing droplet heterogeneity. Note that CI less than zero (σ2 < x̅) is simply 

characterized as underdispersed (i.e., having a variance lower than that expected for a 

Poisson distribution). In this study, CI is calculated every second using 10 Hz 

observations, providing a measure of inhomogeneity over scales of ~120 m (depending 

on flight speed). In order to scale results on a logarithmic scale, the subtraction of 1 is 

removed from Eq. (2) so all results have a minimum possible value greater than zero. The 

altered calculation (i.e., altered clustering index; ACI) used in this study is given by:  

ACI= log10 (
σ2

x̅
)    4)  

Figure 21A and 21C show ACI for NCDP (ACIN), whereas figure 21B and 21D show ACI 

for MCDP (ACIM). Joint histograms of ACIN are relatively similar for layers from 0 < zn < 

0.8, with most values ranging from -0.4‒0.2 cm-3. Near cloud base (zn = 0), ACIN varies 
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from ~0 to 1 cm-3 and average values are slightly greater than those from 0.2 < zn < 0.8. 

Values increase near cloud top, with most ACIN between 0.5‒2 cm-3. Increased droplet 

clustering has previously been found to occur at cloud top, which has been attributed to 

mixing and cloud top entrainment in the past (e.g., Baker, 1992; Dodson & Small, 2019; 

Small & Chuang, 2008).  

 

Figure 21: Joint histograms shown with ACIN (A,C) and ACIM (B,D) as a function of zn 

for top cloud layers (top row) and non-top cloud layers (bottom row). Unlike Figure 20, 

histograms are normalized over respective zn intervals. The red lines show average ACIN 

and ACIM. 

 

Mixing is often categorized as either homogeneous or inhomogeneous. 

Homogeneous mixing characteristically results in a shift of drop size distributions 

towards smaller drop sizes due to rapid mixing causing all droplets to experience partial 
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evaporation, whereas inhomogeneous mixing results in a reduction of droplet number 

concentrations but not in droplet sizes due to slower mixing causing different drops to 

experience different amounts of subsaturation (Baker et al., 1980; Latham & Reed, 1977). 

The above pertains to extreme inhomogeneous mixing (e.g., Korolev et al., 2016), 

whereas most mixing events do not necessarily follow one or the other extreme. Due to 

the different impacts of mixing on cloud top microphysical properties, examining how 

droplet concentrations and mass contents (derived from particle size distributions) vary 

can provide some information on the mixing characteristics. In fact, previous studies have 

attempted to characterize entrainment-mixing and its impacts based on drop size 

distribution inhomogeneities (Bower & Choularton, 1988; Paluch, 1986; Paluch & 

Knight, 1984). 

Discernable differences in clustering at cloud top are observed between the top and 

non-top layers near cloud top, which may be due to differences in mixing strength. 

Namely, average ACIN and ACIM are greater at cloud top for the top cloud layers 

compared with non-top layers. The most notable differences are observed for ACIM, 

where normalized occurrence frequencies greater than 0.1 exceed -1 only for the top 

cloud layers. In addition, the variability of ACIM between cloud top and the underlying 

cloud is greater for top cloud layers than for non-top layers. Lower values of the 

clustering metrics at cloud top as well as lower variability of ACIM between cloud top 

and the underlying cloud for the non-top cloud layers than for the top cloud layers is 

consistent with weaker mixing (i.e., more extreme inhomogeneous mixing). This is 

expected with lower cooling rates at the top of non-top cloud layers compared with top 

cloud layers (Figure 20C,F).  
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Other factors may account for the small scale variability of NCDP and MCDP at cloud 

top, such as previously observed generating cells (Wang et al., 2020) or upsidence waves 

(e.g., Rahn & Garreaud, 2010). The influence of upsidence waves on ACIN is evaluated 

in Figure 22, which shows level leg cloud-top observations from two research flights.  

 

Figure 22: Two time series of level legs taken at cloud top showing NCDP (blue) and ACIN 

(red) from RF06 (01:47:00 to 01:51:55 UTC; A) and RF13 (02:19:00 to 02:24:00 UTC; 

B). Correlations are included in the respective panels. Autocorrelations of NCDP and ACIN 

are shown for RF06 (C) and RF13 (D). Bands for rejection testing each autocorrelation=0 

under the assumption of white noise are shown as dashed lines, which are provided at the 

95th percentiles. Autocorrelations are determined for flight data interpolated onto a 1D 

grid with a constant incrementally increasing distance (lag) of 130 m, based off the 

average flight speed for both cases (~130 m s-1). The autocorrelation of ACIN from 0‒17 

km is also provided for RF06, due to missing data from ~17.5‒19 km (missing data is 

also observed at ~16 km, but the interpolation captures the fine scale variability). 

 

Both cases reveal a wavelike structure in NCDP, with a wavelength of ~15 km for RF06 

(Figure 22A) and ~2 km for RF13 (Figure 22B). Autocorrelations of NCDP for RF06 
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(Figure 22C) and RF13 (Figure 22D) capture the wavelike structures of NCDP. For both 

cases, ACIN does not possess the wavelike structures observed for NCDP, which is 

observed when applying autocorrelations to ACIN. A wavelike structure with a 

wavelength of ~1 km exists in RF06, but most amplitudes do not exceed the significance 

bounds. In contrast, autocorrelations exceed the significance bounds for NCDP at lags 

comparable to the observed wavelengths. Correlations of NCDP and ACIN are -0.10 

and -0.46 for RF06 and RF13, respectively. Increases in ACIN often correspond with 

decreases in NCDP (e.g., at 2.5 km and 12 km for RF13, Figure 22B), consistent with 

trends expected from entrainment-mixing. 

Average normalized cloud particle size distributions, such that the integrated 

concentration equals one, are shown in Figure 23. Distributions include contributions 

from both the CDP and 2DS and are normalized over their combined range (2‒1280 μm). 

To characterize their height variation, normalized particle size distributions are first 

interpolated to a 2D grid with zn spaced over 0.01 intervals. Additionally, normalized 

particle size distributions are interpolated to the 2D grid over 80 logarithmically scaled 

bins ranging from 2‒1280 μm. Results are then smoothed using a two-dimensional 

convolution and a 3x3 box kernel (i.e., averaging kernel). This method is analogous to 

that commonly used in image smoothing (e.g., Kim & Casper, 2013), allowing for a clear 

visual depiction of particle size distributions over the range of zn. Focusing on the top 

cloud layers (Figure 23A), the maximum normalized N(log(D)) (i.e., dN/dlog(D)) > 0.01 

at zn < 0.1 occurs at D from 2 to 20 μm. These maximum N(log(D)) shift towards larger 

sizes with increasing zn. At zn > 0.6, maximum normalized N(log(D)) > 0.05) occur at D 

from approximately 10 to 30 μm. This shift is consistent with droplet activation occurring 
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near cloud base producing small droplets, which grow with increasing height due to 

condensational growth and collision-coalescence.  

 

Figure 23: Normalized size distribution functions combining CDP and 2DS observations 

are averaged over zn, using an image smoothing method outlined in the text. The top 

(bottom) row shows results for top (non-top) cloud layers. Results are shown for all in-

cloud samples in the left column (A,D), liquid phase samples at temperatures less than 

0°C in the middle column (B,E) and for mixed phase samples in the right column (C,F). 

Purple lines show the average standard deviation of particle size over the entire size 

distributions, applied prior to the convolution. The dashed and dotted lines correspond 

with D=20 μm and D=40 μm, respectively. 

 

There are notable differences for the non-top cloud layers (Figure 23D) compared 

to the top cloud layers. The non-top layers have greater small droplet concentrations at zn 

>  0.4 compared to the top layers with normalized N(log(D)) at D < 10 μm being ~0.05 

throughout the entire cloud depth, whereas values at D < 10 μm decrease well below 0.01 

for zn > 0.5 in top cloud layers. Further, N(log(D)) greater than 0.01 reach sizes up to 40 

m throughout most of the cloud for non-top cloud layers. This is not seen for the top 
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cloud layers throughout most of the cloud. These trends highlight the differences seen in 

Figure 18C&D, namely that non-top cloud layers which only occur in multi-layer clouds 

have broader droplet size distributions. These broader distributions contain larger relative 

frequencies of both smaller (D < 10 μm) and larger (D from 30‒50 μm) drops. Purple 

lines show the average σ of D for the normalized size distributions, and these values are 

larger for non-top cloud layers compared to top cloud layers over the entire depth. 

Normalized N(log(D)) at D > 50 μm are also greater for the non-top cloud layers 

throughout the cloud depth.  

Broader distributions are likely related to a greater frequency of mixed phase 

samples within non-top cloud layers, which may be associated with a broader range of ice 

crystals. This is suggested by plotting results separately for liquid phase samples (Figure 

23B,E) and mixed phase samples (Figure 23C,F); normalized values of D > 100 μm are 

clearly greater for the mixed phase samples of both top- and non-top cloud layers 

compared with liquid phase samples. However, differences related to cloud phase do not 

account for all the observed differences between the layer types. Non-top cloud layers 

still have broader drop size distributions (D < 50 μm) than top cloud layers regardless of 

the cloud phase, which is likely due to particle interactions occurring vertically through 

local cloud layers. In fact, average ice concentrations in mixed phase samples with 

maximum dimensions exceed 200 μm (aspherical N2DS_D>200μm) are nearly an order of 

magnitude greater in non-top cloud layers (1.7 L-1) than top layers (0.2 L-1). The average 

σ are much lower for mixed phase samples in the top cloud layers compared with non-top 

layers. This is due to mixed phase samples in the top cloud layers having much greater 

drop concentrations (average NCDP = 120 cm-3) than non-top cloud layers (average NCDP 
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= 40 cm-3). Similarly, drop concentrations are greater in the top layers for liquid phase 

samples as well (average NCDP = 110 cm-3) than non-top layers (average NCDP = 70 cm-3), 

consistent with the lowest NCDP observed for the lowest cloud layers in Figure 18A. The 

higher concentrations in top cloud layers are observed even when removing samples from 

coupled environments, which causes the average NCDP of top layers to only decrease ~10 

cm-3 for both phases. 

3.7. Vertical distributions of phase and average cloud properties 

In addition to characterizing multi-layer clouds based on the relative height within 

the cloud layer and based on whether in the top or non-top cloud layer, the relative 

frequency of liquid phase with respect to zn can be analyzed as show in Figure 24. 

Results for multi-layer clouds are sorted by cloud height relative to the lowest cloud layer 

(as in Fig. 13&18; left panel) or by the lowest, highest and middle layers (right panel). 

Results for the lowest cloud layers (Multi-1st and Multi-lowest) are the same for both 

categorizations. Single-layer clouds are seen to contain the most liquid phase samples, 

which is consistent with Figure 13B. Further, the liquid phase frequency is the lowest for 

zn < 0.4, which is similar to previous findings that Arctic single-layer mixed phase clouds 

contain the highest frequency of ice particles in the lower half of the cloud (e.g., 

McFarquhar et al., 2007; Mioche et al., 2017). The lowest cloud layers in multi-layer 

clouds have much lower liquid phase frequencies than in single-layer cases (consistent 

with Figure 13B), with liquid phase frequencies decreasing from 0.75 to 0.60 from cloud 

base to cloud top. 
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Figure 24: Cloud phase frequency as a function of zn (solid lines) colored according to 

the cloud layer for single-layer and multi-layer clouds, where ordering of multi-layer 

height is characterized by incremental order from the lowest layer (A) and by whether 

layers are the lowest, highest, or in-between layer (B). Dotted lines show the number of 

samples for respective cloud layers following the top abscissa. Results are restricted to 

temperatures less than 0°C. 

 

For multi-layer clouds, the second and third highest layers (Multi-2nd and Multi-3rd, 

respectively; Fig. 24A) have liquid frequencies varying between 0.75 to 0.95 throughout 

the normalized heights. Cloud layers overlying the third highest layers have lower 

frequencies which are comparable to the lowest cloud layers, varying from 0.55 to 0.70 

throughout their depth. These layers typically occur at lower temperatures. Figure 24B 

shows results discriminating multi-layer clouds into the highest (Multi-top) and layers 

residing between the highest and lowest cloud layers (Multi-middle). The middle layers 

have much lower liquid phase frequencies compared with the top cloud layers. In fact, the 

liquid phase frequencies are comparable between the middle and lowest layers, whereas 
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the highest cloud layers have frequencies comparable to single-layers. The phase 

frequency structure of multi-layer clouds is consistent with what would be expected from 

a prominent seeder-feeder mechanism. Primary nucleation may occur at the highest cloud 

layers where temperatures are lowest, of which 61% were between -10° and 0°C and 78% 

between -20° to 0°C. Low liquid frequencies at cloud top of the lowest cloud layers may 

indicate seeding from above.  

The remainder of the findings address how other microphysical properties vary as a 

function of zn for the different layers, whose sample sizes are found in Figure 24. Figure 

25 shows vertical profiles for single-layer clouds.  

 

Figure 25: Averaged NCDP (A), MCDP (B), Mean DCDP (C), RH (D), N2DS (E), M2DS (F), 

Mean D2DS (G) and ACIN (H) as function of zn for single-layer cloud regimes. Horizontal 

lines are standard deviations. Results are shown for liquid phase samples with the red 

lines and mixed phase samples with the green lines. Properties are averaged within zn bin 

sizes of 0.125. All panels show results for zn between 0 and 1 except for RH (D), which 

includes additional bins above and below the cloud (dashed lines). Black circles in RH 

denote clear-sky samples. 

 

Results are separately shown for liquid and mixed phase samples by the red and green 

lines, respectively. Ice phase samples are not included due to the relatively small sample 

size of ice phase compared with mixed phase samples (e.g., blue text in Figure 13B). The 
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top row shows NCDP, MCDP and number weighted mean diameter reported by the CDP 

(Mean DCDP) (Figure 25A‒C). All variables, with the exception of NCDP for mixed phase 

samples, increase with height. The discussion for the remainder of this section focuses on 

liquid phase samples due to (1) the small sample size of mixed phase observations for all 

cloud layers and (2) the fact that such observations do not necessarily represent a 

secondary vertical structure, because the majority of mixed phase samples were 

embedded within primarily liquid phase cloud layers.   

Figure 25E-G shows vertical profiles for the properties of particles with dimensions 

greater than 50 μm (N2DS, M2DS and Mean D2DS). Both N2DS and M2DS increase with zn, 

whereas Mean D2DS decreases with zn. Note that M2DS and Mean D2DS are larger for 

mixed phase throughout most of the cloud depth, consistent with the coexistence of larger 

particles which are primarily ice. Mixed phase Mean D2DS were separately determined for 

spherical and non-spherical particles greater than 200 μm, and Mean D2DS for non-

spherical particles were greater than spherical particles at all zn (not shown). Figure 25H 

shows ACIN, which has a U-shaped distribution similar to Figure 21A&C meaning that 

maximum ACIN are at cloud base and cloud top. Vertical profiles of RH in Figure 25D 

are ~100% throughout the cloud depth, with a deviation of ~95% at cloud top. Black dots 

with dashed lines show RH for clear-sky regions which primarily occur above cloud top 

(zn > 1.0). Since the layer classification allows for clear-sky samples to exist within a 

profile, such samples (although very few) may occur within a cloud layer (0 <  zn < 1). 

RH is also shown above cloud top and below cloud base (zn > 1 and zn < 0, respectively). 

Above cloud top and below cloud base data is simply the neighboring 1 Hz clear-sky 

samples to the respective cloud edges. Clear-sky samples below cloud base are nearly 
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saturated, whereas clear-sky samples above cloud top have an average RH of 60%, with 

significant variability (standard deviation of ~25%). 

Figure 26 shows vertical profiles for the lowest cloud layer in multi-layer clouds. 

Similar to single-layers, MCDP, Mean DCDP, and N2DS all increase with height. Average 

ACIN and Mean D2DS have similar distributions, with peak values near cloud top and 

cloud base for ACIN and decreasing values with height for Mean D2DS.  

 

Figure 26: Similar to Figure 25 except for the lowest layer of multi-layer clouds. 

Differences between the cloud layer types are primarily observed for NCDP and RH, 

where NCDP roughly decreases with height and clear-sky RH above cloud top is nearly 

saturated (~96%) with little variance (standard deviation~3%) for the lowest layer in the 

multi-layer clouds.   

Figure 27 shows a similar analysis for the top cloud layers (Figure 27A‒D), the 

non-top cloud layers (Figure 27E‒H), and middle layers (Figure 27I‒L) of multi-layer 

clouds. Average NCDP, Mean DCDP, N2DS and RH are shown for the layer types. NCDP 

increases with increasing height and peaks above zn=0.5 for top cloud layers, and below 

0.5 for non-top layers. When removing single-layer clouds from the top cloud layer 
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analysis, NCDP similarly peaks above zn=0.5 (supplementary Figure I). Mean DCDP 

increases with height for all layer types. However, differences are observed in the 

overlying clear-sky RH for the top and non-top layers.  

 

Figure 27: Similar to Figure 25&26 except results are shown for the top cloud layers (A‒

D), non-top cloud layers (E‒H) and for all cloud layers enclosed within the lowest and 

highest cloud layers of multi-layer clouds (I‒L). Unlike Figure 25&26, results here are 

only shown for NCDP (A,E,I), Mean DCDP (B,F,J), N2DS (C,G,K) and RH (D,H,L). 

 

Similar to the differences in single- and lowest multi-layer clouds (Figure 25D,26D), the 

air is nearly saturated above non-top cloud layers while RH is only ~70% above top 

layers. When separately evaluating highest multi-layer clouds and removing single-layer 

clouds from the analysis, the overlying RH is ~90% (supplementary Figure J). The 

saturated air overlying non-top cloud layers may be an important feature, as previous 

modeling studies have shown the presence of humidity inversions are required to 

maintain low-level mixed phase clouds in the Arctic (e.g., Curry, 1986; Curry et al., 
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1988; Solomon et al., 2011). Differences in overlying RH may be expected as single-

layer clouds will often be capped by rather strong inversions, whereas layers above one 

another will be associated with weaker inversions. In contrast, reduced longwave cooling 

at cloud top will be associated with underlying cloud layers of multi-layer regimes rather 

than top cloud layers.  

The nearly saturated conditions above cloud top could also be associated with 

evaporating drizzle or sublimating ice from overlying cloud layers. This may be unlikely, 

since conditions are still nearly saturated immediately above cloud top for layers 

separated by distances exceeding a kilometer from the overlying cloud layer (not shown). 

However, following Pruppacher & Klett (1996) and Lamb & Verlinde (2011), a spherical 

ice particle ranging from D=50 to 150 um in environments having RH with respect to ice 

ranging from 60% to 80% at temperatures ranging from -20° to 0°C results in ice 

particles which can fall for distances ranging tens of meters to ~1.5 km before completely 

sublimating. In this study, cloud top observations less than 200 m from the overlying 

cloud layer account for 47% of the cases, and observations less than 1 km from the 

overlying cloud accounts for 86%. A potential source of uncertainty could be associated 

with how cloud top and cloud base are determined using the layer classification scheme, 

namely, using a threshold value of MCDP > 0.01 g m-3 at the highest and lowest point of a 

given profile. Slight deviations in actual cloud top could account for differences in the 

overlying RH measurements, as well as differences in cloud top microphysical properties 

which either peak at the highest or second highest normalized height bins (as seen for 

Mean DCDP, N2DS and M2DS amongst different cloud layers in Figures 25‒27).  
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Differences in overlying RH between top and non-top layers are consistent with 

differences in cloud top ACIM (Figure 21B,D). Namely, inhomogeneous mixing is 

characterized by slower mixing relative to homogeneous mixing, whereby partial regions 

of cloud are evaporated and consequently saturate the air which mixes with nearby cloud 

and preserves large particle sizes. The mixing of nearly saturated air would have a 

diminished impact of drop populations compared with considerably subsaturated air. This 

is also consistent with the expected weaker mixing at cloud top for non-top cloud layers 

due to weaker cloud top radiative cooling.  

Despite these differences (including differences in drop clustering in Figure 21), 

droplets greater than 50 μm are observed at cloud top of all layer types with average 

concentrations ranging from ~20‒50 L-1 (as well as mass, although only shown for 

single- and lowest cloud layers; Figure 25F,26F). Since mean D2DS increases from cloud 

top towards cloud base, this suggests collision-coalescence may begin near cloud top. 

Greater degrees of cloud top droplet clustering could potentially contribute to the greater 

large drop concentrations due to increased collision likelihoods as well as screening 

effects (e.g., Castellano & Ávila, 2011). The average drop size of particles greater than 

50 μm increases towards cloud base, which is consistent with increased collision-

coalescence as droplets fall through the cloud. However, other factors may contribute to 

the common occurrence of droplets exceeding 50 μm, such as sea salt acting as giant 

CCN (e.g., CCN with maximum dimensions exceeding 2 μm; Jensen & Nugent, 2017).  

3.8. Conclusions 

The microphysical properties of single- and multi-layer clouds over the Southern 

Ocean were evaluated and contrasted using airborne in situ observations acquired during 
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SOCRATES. Cloud layers were classified using a novel smoothing method applied to in-

situ cloud observations on ramped ascents and descents of the aircraft. This resulted in 55 

profiles of single-layer clouds and 183 profiles of individual multi-layer clouds. Single-

layer clouds have greater cloud liquid droplet mass and number concentrations than 

multi-layer clouds, with number concentrations in single-layer clouds from two research 

flights in coupled environments approximately double those in decoupled environments. 

This is consistent with the impact of an increased supply of CCN from the ocean surface. 

Multi-layer clouds have broader drop size distributions than single-layer clouds. When 

cloud layers are separated according to whether they are underlying other cloud layers 

(non-top cloud layers) or not (top cloud layers), non-top cloud layers have broader drop 

size distributions (D < 50 μm) and total particle size distributions throughout the vertical 

cloud depth compared to top cloud layers.  

The liquid phase most frequently occurs in single-layer clouds compared with 

multi-layer clouds. Liquid phase frequencies in multi-layer clouds are the lowest in the 

lowest cloud layers and increase with higher cloud layers until the third highest layer is 

reached, suggesting a prominent seeder-feeder presence in multi-layer clouds. When 

classifying the layers of multi-layer clouds as lowest, highest, and those lying in-between, 

the highest cloud layers have the greatest frequency of liquid phase samples, and the 

middle layers have similarly low relative frequencies as the lowest layers. These findings 

show that caution should be taken when quantifying cloud phase frequencies solely from 

satellite imagery due to potential biases in cloud top phase as well as overlapping cloud 

layers, as well as caution in classifying phase frequency by temperature alone.  
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Relative phase frequencies are also explored in relation to on CCN and INP 

concentrations. There is evidence of ice frequencies strongly correlating with INP 

concentrations (e.g., a correlation of -0.6 is observed for INP with activation temperatures 

from -30° to -10°C and liquid phase frequencies from -20° to -2°C in the boundary layer), 

but it is only observed for select temperature and activation temperature ranges. This may 

be due to difficulties collocating the datasets, as well as insufficient sample sizes. Phase 

frequencies are found to be directly related to CCN concentrations, but only above the 

boundary layer. Ice is more likely to be observed in environments with low CCN 

concentrations. Results also suggest high CCN concentrations may inhibit large droplet 

growth due to a competition principle and may impede the Hallet-Mossop process. 

The dependence of cloud microphysical properties on cloud layer normalized 

height are also examined. The number weighted mean diameter of drops less than 50 μm 

increases with height for all cloud layer types, whereas number concentrations peak near 

cloud top for top cloud layers and near cloud base for non-top cloud layers. The number 

concentration and mass of drops greater than 50 μm also increase with cloud height, 

whereas the mean diameter decreases with increasing height. These similarities are 

observed between single- and multi-layer clouds in spite of differences in cloud top 

droplet clustering, radiative cooling profiles, overlying RH and relative phase 

frequencies, highlighting a propensity for precipitation initiation in both single and multi-

layer clouds. However, robust differences in the microphysical properties of single- and 

multi-layer clouds warrants further investigation to distinguish and constrain physical 

responses resulting in the differences provide here. 
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4 Impacts of drop clustering and entrainment-mixing on mixed phase 

shallow cloud properties over the Southern Ocean: Results from 

SOCRATES 

4.1. Introduction 

Mixed phase clouds, where liquid and ice particles occur in the same sample 

volume, have been observed in maritime and continental regions ranging from the tropics 

to the poles (Cossich et al., 2021; Costa et al., 2017; Hogan et al., 2003; Korolev et al., 

2003; McFarquhar et al., 2007; Mioche et al., 2015; Morrison et al., 2011; Wang et al., 

2021), and can be associated with cloud types ranging from thin stratiform layers to deep 

convective clouds (Korolev et al., 2017). The common occurrence and even persistence 

(Morrison et al., 2012) of mixed phase clouds is unexpected due to differences in the 

saturation vapor pressure of liquid and ice. When liquid and ice particles are present, ice 

should grow at the expense of liquid drops, commonly known as the Wegener-Bergeron-

Findeison (WBF) process (Bergeron, 1928; Findeisen, 1938; Wegener, 1911).   

Mixed phase clouds are ubiquitous over the Southern Ocean (D’Alessandro et al., 

2019, 2021; Huang et al., 2012, 2021; Mace et al., 2021; Morrison et al., 2011). Large 

errors in simulated shortwave radiative flux common for climate models over this region 

has been attributed to the incorrect representation of mixed phase clouds, and primarily to 

an underrepresentation of supercooled liquid (Bodas-Salcedo et al., 2016; Naud et al., 

2014). However, recent model updates approximately capture and likely overestimate 

observed supercooled liquid frequencies (Gettelman et al., 2020; Yang et al., 2021). In 

addition, climate models often over-estimate WBF, resulting in unrealistic glaciation 

rates (Tan & Storelvmo, 2016). Correctly simulating mixed phase clouds is crucial 
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towards improving both weather and climate models because of their impact on 

precipitation (Mülmenstädt et al., 2015) and radiation (Sun & Shine, 1994).  

Previous theoretical and modeling studies considered the impacts of turbulent 

mixing on mixed phase properties. For example, Korolev & Mazin (2003) found that 

liquid could persist within a vertically oscillating mixed phase air parcel and that liquid 

could form within an ice cloud when the vertical velocity exceeds a critical threshold. 

These findings are consistent with those from Hill et al. (2014) using a large-eddy 

simulation model and from Heymsfield (1977) using doppler radar and airborne 

measurements. Less work has explored impacts of entrainment-mixing on mixed phase 

properties, although one recent study (Hoffmann 2020) utilized a millimeter resolution 

linear eddy model to show that entrainment can enhance the WBF process due to 

increased droplet evaporation if is not offset by the spatial inhomogeneity of phase within 

the mixed areas.  

Cloud top entrainment is important to quantify as it controls the evolution of 

macro- and microscale features of low-level clouds. Entrainment rates are directly related 

to vertical gradients of temperature, humidity and radiative cooling directly overlying the 

cloud (Houze, 2014; Mellado, 2017). When considering the impacts of entrainment-

mixing on microphysical properties, it is common to characterize mixing events as 

homogenous or inhomogeneous (Latham & Reed 1977; Baker et al. 1980) as these two 

alternative mixing schemes result in different pathways for the evolution of drop size 

distributions. Homogeneous mixing is associated with vigorous mixing of dry air into 

cloudy regions, resulting in all droplets undergoing at least partial evaporation. 

Inhomogeneous mixing is associated with weaker mixing. As dry air is slowly mixed 

within the cloud, a few drops will be preferentially evaporated to return the entrained area 
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to near saturation. Inhomogeneous mixing typically has a greater impact on drop 

concentrations than on sizes. In contrast, homogeneous mixing has a greater impact on 

average drop sizes since all droplets are at least partly evaporated. The former is 

associated with drop size distributions having decreasing concentrations at all sizes, 

whereas the latter is often characterized by a shift of the distribution towards smaller 

sizes. 

The Damkӧhler number is commonly used to characterize the type of mixing and 

to determine the impact of entrainment on cloud microphysical properties. It is defined 

as:  

Da =
τm

τr
       5)  

where τm is the turbulent mixing time (i.e., eddy turnover time) and τr is the response time 

of the microphysical properties to mixing. When the response time of the cloud particles 

is much slower than the mixing time, Da<<1 which indicates homogenous mixing. In 

contrast, cloud particles rapidly reacting to weak entrainment events will result in Da>>1 

which indicates extreme inhomogeneous mixing. The τm is expressed as: 

τm = (L2

ε⁄ )
1

3     6)  

where L is the length scale of the entrained eddy (i.e., dry air) and ε is the turbulent 

dissipation rate. Calculations of τr vary depending on whether the evaporation time (τevap), 

phase relaxation time (τphase), or reaction time (τreact) is chosen, as each expression is 

associated with different assumptions. Thus, τr is more ambiguous than τm (e.g., Gao et 

al., 2018; Lu et al., 2018). Further discussion of homogeneous and inhomogeneous 

mixing can be found in Devenish et al. (2012) and Korolev et al. (2016). 

Although a considerable amount of work has characterized mixing in warm 
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clouds, often examining drop size broadening and the potential for rain initiation (e.g., 

Grabowski & Wang, 2013; Jensen & Baker, 1989; Lasher-Trapp et al., 2005; Tölle & 

Krueger, 2014), little work has similarly been done for mixed phase clouds. This study 

provides an observational evaluation of entrainment-mixing impacts on mixed phase 

cloud properties. Section 4.2 describes the instrumentation used and relevant analysis 

techniques. Sections 4.3&4.4 evaluates the relationship between drop clustering and 

multiple measures of entrainment-mixing, which forms the basis of using clustering as a 

proxy to broadly diagnose the intensity of entrainment mixing. Section 4.5 relates 

clustering to mixed phase cloud properties to assess the impacts of mixing. The last two 

sections (4.6&4.7) include additional discussion and concluding remarks. 

4.2. Instrumentation 

This study uses observations acquired with instruments onboard the National 

Science Foundation/National Center for Atmospheric Research Gulfstream-V (GV) 

aircraft during the Southern Ocean Cloud-Radiation Aerosol Transport Experimental 

Study (SOCRATES). The cloud droplet probe (CDP) and the two-dimensional stereo 

probe (2DS) are used to obtain the cloud bulk microphysical properties for cloud particles 

having D less than and greater than 50 μm, respectively. Samples are determined to be in-

cloud or clear-sky following D’Alessandro et al. (2021). Additionally, the phase of in-

cloud samples is determined following D’Alessandro et al. (2021), which determines the 

phase of small cloud particles (D<50 μm) using a set of threshold values for the CDP and 

Rosemount Icing Detector measurements, whereas the phase of large particles (D>50 

μm) is determined using multinomial logistic regression as well as visual examination of 

particle imagery from the 2DS (details of which are provided in Section 2.2). This study 
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only uses time periods identified as liquid or mixed phase. Analysis in this study is 

restricted to samples with NCDP>5 cm-3, which are assumed to represent liquid droplets.  

The phase of a 2DS sample can be classified as either liquid, ice or mixed. Since 

all CDP observations used in this chapter are liquid, a cloud sample is considered mixed 

phase if the 2DS is classified as mixed or ice phase. Cloud particle size distributions 

combine CDP and 2DS size distributions, corresponding to cloud particles less than and 

greater than 50 μm, respectively. When the 2DS sample is ice phase, liquid bulk 

properties are derived from the CDP and ice bulk properties are derived from all 2DS 

particles. For 2DS mixed phase samples, liquid bulk properties are derived from the CDP 

and from 2DS particles identified as spherical, whereas bulk properties of ice are derived 

from non-spherical particles. However, ice particles can appear spherical due to 

variations in particle orientation and shape. Because of this, mixed phase samples must 

have a number concentration ratio of round particles having D > 100 μm to all particles 

with D > 100 μm greater than 0.3 to apply the bulk properties as described. Otherwise, all 

particles greater than 100 μm are classified as ice. This is based off work from Cober & 

Isaac (2012) and directly taken from Schima et al., (2022). Note that this only applies to 

particles greater than 100 μm. Particles from 50‒100 μm are classified as ice or liquid if 

they are non-spherical or spherical, respectively.  

Additional instrumentation includes the Rosemount temperature probe for 

determining air temperature, and the wind components are measured using the Radome 

Gust Probe in combination with pitot tubes and the differential Global Positioning 

System. Cooper et al. (2016) reports a net uncertainty in the standard measurements of 

the horizontal wind components of 0.4 m s-1 and the uncertainty in vertical wind 
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measurements of 0.12 m s−1, although this represents ideal sampling conditions. 

Additional information on the GV gust probe performance and processing is provided in 

the manager's report (EOL, 2018).  

4.3. Entrainment-mixing and clustering calculations 

To calculate τm, ε is determined using equations 11 and 12 from Meischner et al. 

(2001), which are discussed in further detail in Appendix A. The calculation of L follows 

Gao et al. (2021), namely: 

L = F × TAS f⁄     7)  

where TAS is true air speed of the aircraft, f is the sampling frequency and F is the 

fraction of clear-sky observations within each 1 Hz sample, determined using 10 Hz 

observations. Clear-sky samples in Gao et al. (2021) were defined as droplet free, 

whereas a less stringent definition of derived mass content less than 10-3 g m-3 is applied 

here (D’Alessandro et al. 2021). The calculations of τr for the liquid and mixed phase 

follow Pinsky et al., (2018) (shown in Appendix A), where both expressions are phase 

relaxation times expressing the time for reaching equilibrium conditions between the 

condensate and vapor content. These expressions of τr are inversely proportional to the 

particle mean radius and number concentrations. 

Two clustering metrics are used in this study. The clustering index (CI) is a 

commonly used metric to quantify cloud droplet clustering, whose application in cloud 

microphysics was first introduced in Baker (1992). CI takes account of the fact that a 

uniform Poisson distribution will have the variance (σ2) equal to the mean of a given 

quantity (x̅). Thus, CI will equal zero for a perfectly homogeneous distribution and will 

diverge from this value with increasing heterogeneity. A potential caveat of CI is its 

inherent volume dependence, where CI contains “memory” of varying spatial scales 
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within the sample volume (further discussed in Shaw et al., 2002). The volume average 

pairwise correlation (VAPC) is introduced to partially offset this dependence and reduce 

scale memory: 

VAPC =
1

x̅
 (

σ2

x̅
− 1) =  

1

x̅
(CI)   8)  

where CI is weighted by the average quantity. Similar to ACI, an altered VAPC 

(AVAPC) is introduced as:  

AVAPC = log10 (
σ2

x̅2) = log10(
1

x̅
(CI + 1)).  9)  

For this study, 10 Hz observations are used to determine ACI and AVAPC at 1 Hz 

resolution. Clustering results are applied to NCDP (ACIN and AVAPCN).  

4.4. Droplet clustering as a proxy for mixing 

Analysis in the following section shows that applying a clustering method on a 

relatively coarse spatial scale (~100 m) can give a direct, qualitative description of the 

degree of mixing. Higher values of cloud drop clustering indices have commonly been 

observed at cloud edges previously (e.g., Beals et al., 2015; Dodson & Small Griswold, 

2019; Small & Chuang, 2008), including for Southern Ocean clouds (D’Alessandro et al., 

in preparation). Clustering can be related to localized turbulent flows, where droplets 

cluster in low vorticity regions (Shaw et al., 1998).  

Figure 28 shows the relationship between the clustering metrics and Da at cloud 

top. Following D’Alessandro et al. (in preparation), cloud top samples are identified as 

those in-cloud data from ascending and descending flight legs where the normalized 

cloud height (zn) exceeds 0.975. Although the decrease of AVAPCN with Da is more 

pronounced than for ACIN, both clustering metrics show positive correlation with mixing 

strength (i.e., low Da). Additionally, all samples having Da>1 is consistent with most 
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prior studies commonly observing inhomogeneous rather than homogeneous mixing (e.g., 

Andrejczuk et al., 2009; Beals et al., 2015; Burnet & Brenguier, 2007; Gao et al., 2021), 

especially at the relatively large mixing length scales used here (Burnet & Brenguier, 

2007; Kumar et al., 2018; Lehmann et al., 2009). However, the relationship between 

ACIN and Da is quite weak. In fact, previous studies have used other mixing measures in 

conjunction with Da to characterize mixing due to a wide range of observed Da (e.g., 

Burnet & Brenguier, 2007; Kumar et al., 2014; Lu et al., 2011; Yum et al., 2015). One 

reason for this is that there is no commonly accepted method for determining the eddy 

length scale. Further, Lehmann et al. (2009) noted that multiple eddy length scales (and 

thus mixing time scales) will exist for a subsequent entrainment-mixing event. 

 

Figure 28: The clustering metrics ACIN (black markers) and AVAPCN (red markers) 

versus Damkӧhler number. Results are shown for 1 Hz observations at all cloud tops as 

determined in D’Alessandro et al. (in preparation), where cloud top is defined as zn 

greater than 0.975. Respective correlations are shown in the plot. Note that only samples 

with clear-sky fraction (F) greater than 0 are included in the plot (otherwise Da=0). 

 

Because of this, they introduce the transition length scale (L*), where values greater 
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(lower) than the measured eddy length scale is indicative of homogeneous 

(inhomogeneous) mixing. It is defined as: 

L∗ =  ε
1

2 τr

3

2     10)  

where Lehmann et al. (2009) argue τr should use the lower time scale between τphase and 

τevap. Values of L* are determined for SOCRATES observations and similar to Lehmann 

et al. (2009), most values are on the order of meters and lower, much shorter than the 

sampling length scales of this study. For liquid phase conditions, τevap is taken from 

Rogers & Yau (1996) and for mixed phase conditions, τevap is replaced by the glaciation 

time (i.e., time for the total amount of liquid water to convert to ice) taken from 

Hoffmann (2020). These expressions are discussed further in Appendix A. 

Other mixing measures often include mixing diagrams relating drop size, mass 

and number concentrations to their respective adiabatic values. Relating actual to 

adiabatic properties can give insight to the strength of entrainment-mixing, since 

adiabatically derived values assume the respective air parcel does not mix with the 

surrounding environment. In order to evaluate clustering in relation to adiabatically 

derived quantities, Figure 29A shows the clustering metrics as a function of the ratio of 

the observed mass content at cloud top (MCDP+2DS) over the adiabatic mass content 

(Madiabatic). Both ACIN (black points) and AVAPCN (red points) show a strong negative 

relationship with the adiabatic mass ratio (correlation of -0.62 for ACIN and -0.74 for 

AVAPC), showing that the degree of clustering can be directly related to the degree of 

mixing. Similar to the dependence of clustering index on Da, a stronger correlation is 

found for AVAPCN than for ACIN. Nevertheless, ACIN is used to determine the degree of 

mixing for the duration of the study because ACIN is less dependent on NCDP (r = -0.08) 
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than AVAPCN (r = -0.47). This is seen when comparing the clustering metrics and NCDP 

in Figure 29C,D. The entire range of AVAPCN shifts towards smaller sizes with 

increasing NCDP, whereas the range of ACIN is relatively constant for all NCDP. Results 

are colored by the number weighted mean diameter (mean DCDP) in Figure 29C,D. 

Distinct modes are seen for mean DCDP. For NCDP greater than 40 cm-3, the mean DCDP 

varies from 15‒25 μm and the majority of samples (65%) occur here. 

 

Figure 29: (A) The clustering metrics ACIN (black markers) and AVAPCN (red markers) 

related to the ratio of the actual and adiabatic cloud mass. Results are shown for 1 Hz 

observations at cloud top similar to Figure 28, but only for single-layer clouds with 

thicknesses greater than 30 m. Unlike Figure 28, results include samples with clear-sky 

fraction (F) greater than and equal to 0. First order polynomial best fit lines as well as 

correlations are shown for the respective clustering metrics. (B) Normalized frequency 

distributions of zn for different ranges of ACIN. Unlike A), zn is taken from single and 

multi-layer clouds for all layer thicknesses. Bins for zn are at 0.025 intervals. (C) ACIN 

and (D) AVAPCN related to NCDP. Results are colored by mean DCDP. The solid and 

dashed vertical lines in C) correspond to ACIN = 0 cm-3 and ACIN = 1 cm-3, respectively, 

which are used as threshold values for low and high ACIN in (B). 
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For NCDP < 40 cm-3, higher mean DCDP (>25 μm) occur at low clustering values and lower 

mean DCDP (<10 μm) occur at high clustering values. The low mean DCDP and high ACIN 

are primarily cloud edge samples where zn<0.1 and zn>0.9, which is shown by the 

normalized frequency distributions of zn at high ACIN in Figure 29B (blue bars). In 

contrast, the high Mean DCDP are primarily within the cloud core as shown by zn at low 

ACIN in Figure 29B (orange bars). These high Mean DCDP are primarily precipitating 

samples (including drizzle and ice), as 70% of these points detected the presence of 

particles on the 2DS with D > 200 μm (not shown). This shows that precipitating samples 

within on near the cloud core are associated with higher AVAPCN than many non-

precipitating samples having low mean DCDP at higher NCDP (e.g., all samples having 

AVAPCN below -2.5), since they are weighted by lower values of NCDP. Although ACIN 

is used to diagnose mixing, the choice of clustering metric is inconsequential since 

exchanging ACIN with AVAPCN throughout the analyses of this study show similar 

trends. 

Droplet clustering impacts processes such as precipitation initiation (Shaw et al., 

1998), evolution of raindrop distributions (McFarquhar, 2004), and ice crystal growth 

(Castellano et al., 2004; Castellano et al., 2008). However, clustering relevant to such 

mechanisms is associated with spatial scales orders of magnitude smaller (~1 cm) than 

that presented here (~100 m). To determine the direct relationship between the presence 

of ice and drop clustering, drop clustering in liquid and mixed phase samples are 

compared. Figure 30A shows normalized frequency distributions of ACIN for liquid and 

mixed phase conditions as red and blue shading, respectively. Mixed phase results are 

separately shown for different ice concentrations with D > 200 μm. This threshold is 

chosen due to depth of field uncertainties and insufficient bit resolutions at lower sizes 
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(e.g., Baumgardner et al., 2017). Distributions are relatively similar, although the liquid 

phase results are slightly more kurtotic and the mixed phase results have a slight peak at 1 

cm-3. Distributions for different ice concentration ranges are relatively similar to those of 

liquid and total mixed phase samples.  

 

Figure 30: Normalized frequency distributions of ACIN (A) and ACIM (B) shown for 

different cloud phases (shaded colors). The colored lines show normalized frequency 

distributions for mixed phase results with varying ice concentrations exceeding 200 μm. 

 

Perhaps unexpectedly, mixed phase conditions with the greatest number of ice particles 

have distributions most resembling the liquid phase. This is seen using the sum of the 

absolute difference in the bin values (i.e., Euclidian distance) for the liquid phase and 

high ice concentration distributions (0.034), compared with the mixed phase and high ice 

concentration distributions (0.053). Mann-Whitney U-tests and Kolmogorov-Smirnov 

tests are performed to test the similarity of the distributions for the varying ice 

concentration ranges. These tests are chosen since they do not require prior knowledge of 

the distributions' shapes. Results suggest there is no statistically significant difference 

between the distributions of the two lower ice concentration ranges with the mixed phase 

distribution, as well as between the highest ice concentration range and the liquid phase 

distribution. Specifically, both tests do not reject the null hypothesis, namely, that the 

distributions are similar, at a significance level of 5%. 
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Normalized frequency distributions of clustering calculated using MCDP (ACIM) 

are shown in Figure 30B and test whether ACIM may be preferred to ACIN for the mixing 

analysis. The distribution of ACIM for mixed phase samples is clearly shifted towards 

greater values than for the liquid phase, with a mode approximately 1 g m-3 greater. 

Compared with ACIN, the Euclidian distance between the liquid and mixed phase bin 

values is a factor of 2 greater (0.09) than ACIN (0.04). Figure 29B also shows that the 

ACIM distributions shift towards higher values with increasing ice concentrations. The 

sum of the Euclidian distances between the mixed phase and all of the different ice 

concentration ranges for ACIM is also higher by a factor of 2 (0.20) than for ACIN (0.11). 

Since the liquid and mixed phase distributions are more comparable for ACIN, and no 

apparent bias associated with ice concentrations is observed for ACIN, mixing is 

qualitatively determined using drop number rather than drop mass clustering. 

An initial analysis using ACIN as a proxy for entrainment-mixing is shown in 

Figure 31. Particle size distributions (PSDs) are averaged over different ranges of ACIN 

for the liquid phase (A‒C) and mixed phase (D‒F). Results are separated into different 

ranges of NCDP. For both phases, the greatest differences in the PSDs for different ACIN 

is seen for NCDP less than 40 cm-3 (Figure 31A,D), where PSDs are shifted towards 

smaller sizes with increasing ACIN. Distributions are most identical at the highest NCDP, 

which show the greatest deviations at the smallest drop sizes (D<7 μm) for varying ACIN. 

This is confirmed by taking the Euclidian distance of the normalized PSDs (i.e., dividing 

each bin by the sum of the total distribution function), when summed for the PSDs at 

NCDP<40 cm-3 is a factor of 2.5 greater than for PSDs at NCDP>80 cm-3. This shift is 

observed for all particle sizes in the liquid phase, but only for particles less than 400 μm 

in the mixed phase. Drizzle drops do not likely reach sizes larger than ~400 μm at 
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temperatures less than 0°C due to the potential for aircraft icing. This suggests a 

resilience of large ice crystals from sublimating, which is consistent with a replenishing 

water vapor supply from evaporating liquid.  

 

Figure 31: Average PSDs for the liquid phase (A‒C) and mixed phase (D‒F) shown for 

different ranges of ACIN by the different colored lines. Results are shown for different 

ranges of NCDP in the respective columns. The number of samples are shown in the 

respective panels. Gray shading from 50‒200 μm represents particle sizes associated with 

depth of field uncertainties (e.g., Baumgardner et al., 2017). 

 

The distribution shift towards smaller sizes with larger ACIN is consistent with 

condensate loss due to evaporation and sublimation. However, this shift is 

characteristically attributed to homogeneous mixing, whereas inhomogeneous mixing 

typically causes a decrease in the number distribution functions at all particle sizes (i.e., a 

downward shift in the PSDs) (e.g., Korolev et al., 2016). This appearance of 

homogeneous mixing can be a consequence of combining PSDs from varying 

environments. For example, when a cloud with average NCDP > 80 cm-3 has an 

entrainment-mixing event that decreases the local drop concentration to less than 40 cm-3 



99 

 

 

it would be included in the left column. This is consistent with PSDs of NCDP < 40 cm-3 

and high ACIN having high number distribution functions at D < 10 μm, which are more 

similar to PSDs of NCDP > 80 cm-3
 compared with lower ACIN, assuming larger particle 

concentrations primarily decrease. Mixed phase results in the following section may 

suggest this. This is also suggested by high ACIN number distribution functions of D > 

100 μm in NCDP < 40 cm-3 liquid phase samples being the most similar to those at NCDP > 

80 cm-3 (N(log(D)) < 10-1 L-1) compared to lower ACIN. 

To address this potential discrepancy (i.e., the appearance of prevalent 

homogeneous mixing), results must account for the background cloud and environmental 

properties. This is done by analyzing results relative to average quantities of cloud 

transects, which are regions of neighboring samples. Transects are defined by 

consecutive in-cloud samples having NCDP > 5 cm-3. Transects are split so that (1) the 

number of 1 Hz observations never exceeds 10 and (2) transect lengths are at least 1 km. 

For example, a set of 66 neighboring in-cloud samples would be split into 6 transects 

having 10 samples and one transect of 6 samples. If one of the transects has a length less 

than 1 km, it is discarded. This results in 1781 transects having lengths ranging from 1‒

2.1 km, with 86% of transects having lengths from 1200‒1500 m. Quantities will be 

prefaced with “average” (e.g., average ACIN) when referring to transect data, or 

referenced to by their quartile values (e.g., NCDP>50th percentile). 

The average ACIN and average AVAPCN are shown in relation to the NCDP 20th 

and 80th percentiles for all transects in Figure 32A and 32B, respectively. To provide an 

all-encompassing analysis of mixing and maximize the sample size, in-cloud data is 

included in the analysis regardless of their proximity to cloud edge. Both ACIN and 

AVAPCN increase as points diverge from the 1:1 line. This is consistent with greater 
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mixing and resulting evaporation of available condensate within localized regions of the 

transects, represented by points further from the 1:1 line where the 20th and 80th 

percentiles of NCDP are more different, and thus where values of clustering are capturing 

cloud filaments on the order of meters produced by entrainment-mixing events. Figure 

32C,D shows the covariance of the clustering metrics for the NCDP 20th and 80th 

percentiles for all transects. The vast majority of values are negative (>85%) and increase 

in magnitude with greater divergence of the NCDP percentiles. This shows that clustering 

and NCDP within most transects are negatively correlated (i.e., clustering is primarily 

correlated to the low NCDP samples rather than high NCDP within the respective transects), 

consistent with clustering localized to regions of low droplet concentrations resulting 

from entrainment-mixing processes. Mixing for increasing divergence in the NCDP 

percentiles is also evident in Figure 32E, which shows points colored by average Mean 

DCDP. The lowest average Mean DCDP are observed at the greatest differences in the NCDP 

percentiles, consistent with decreasing drop sizes due to evaporation.  

Mixing diagrams relating droplet concentration and volume weighted mean radius 

(rv) have commonly been used in the past to distinguish homogeneous from 

inhomogeneous mixing (e.g., Burnet & Brenguier, 2007; Lehmann et al., 2009; 

Pawlowska et al., 2000) as homogeneous mixing is associated with greater variability of 

rv. This variability is analyzed in Figure 32F, which shows points colored by the 

difference of the 80th and 20th percentiles of rv. The difference in rv percentiles does not 

increase in magnitude with increasing difference of NCDP percentiles, but rather with 

decreasing total NCDP (both 80th and 20th NCDP percentiles decreasing). This irregularity 

highlights why studies often use complementary measures of mixing alongside N-rv 

relationships (e.g., Gerber et al., 2008; Lehmann et al., 2009). Many of these points with 
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low NCDP have the highest average Mean DCDP associated with precipitation (discussed in 

reference to Figure 29C,D).  

 

Figure 32: Scatter plots of the 80th percentile NCDP and 20th percentile NCDP for transect 

data. Results are colored by average ACIN (A), average AVAPCN (B), covariance of 

ACIN and NCDP (C), covariance of AVAPCN and NCDP (D), average mean DCDP (E) and 

the difference of the 80th and 20th percentiles of the volume weighted mean radius (rv; 

F). The black line represents the 1:1 line. 

 

Further, average ACIN and AVAPCN are the least similar at low NCDP, where average 

AVAPCN are relatively high regardless of the difference in NCDP percentiles. Many of 

these relatively high values of AVAPCN overlap with the high Mean DCDP associated 

with precipitation. In addition, the correlation of clustering with the log-scale difference 

in the 80th and 20th NCDP percentiles is much greater for ACIN despite not having results 
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directly weighted by NCDP as for AVAPCN (shown in Figure 32A,B), which is likely due 

to differences at log average NCDP. These findings highlight the reason for choosing to 

use average ACIN for the remaining analysis. 

Figure 32 has shown that droplet clustering is directly related to differences in the 

background droplet concentrations. To relate the transects directly to mixing measures, 

Figure 33 shows average ACIN related to average L and τm. Droplet clustering is 

significantly correlated with average L (r=0.53), consistent with the negative covariance 

of average ACIN and low NCDP within transects (Figure 32C). Clustering is also positively 

correlated with τm, which considers the instantaneous turbulent motions directly related to 

ε.  

 

Figure 33: Transect average ACIN related to the average length scale (L). Results are 

colored by the average mixing relaxation time (τm). Correlations between average ACIN 

and the two averaged mixing variables are shown in the panel, as well as a 1st order 

polynomial best fit line. 

 

Multiple benefits are associated with utilizing clustering as a proxy variable. It 

allows for an indirect estimation of L by obtaining an approximation of F without relying 

on a stringent clear-sky threshold, since clustering is associated with lower number 
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concentrations resulting from evaporation (Figure 32A‒D). This allows for low NCDP 

gaps between cloud filaments, which may not meet the stringent “droplet-free” condition, 

to be considered in the mixing analysis. This method also maximizes the total number of 

available samples. Other methods such as controlling results by the mass content over the 

adiabatic mass content similarly limits the possible sample size by limiting observations 

to regions adiabatic values can be derived. This also applies to other metrics such as 

entrainment rate, which is generally restricted to the entrainment interfacial layer. 

Further, ambiguous assumptions and uncertainties in determining entrainment rates 

(Chen et al., 2011; Romps, 2010; Wood, 2012) and Da are avoided. An additional benefit 

associated with the use of transects is that results are directly applicable to weather and 

climate models having comparable horizontal grid sizes (~1 km). The following section 

presents findings incorporating the use of transects to characterize the impacts of mixing.  

4.5. Impacts of entrainment-mixing 

Figure 34 shows average PSDs for liquid phase (A‒C) and mixed phase (D‒F) 

samples. Figure 34 differs from Figure 31 in that results are organized by different ranges 

of 1 Hz ACIN as well as average ACIN, with the largest averages in the right column. 

Transects expected to be associated with stronger mixing events are in the right column, 

whereas weaker or nonexistent mixing is associated with the left panels.  

Percentiles of 1 Hz ACIN meeting the conditions within each respective panel are shown 

as the different colored PSDs. The PSDs organized by 1 Hz percentiles are relatively 

similar within each respective panel, suggesting relative homogeneity amongst 1 Hz 

ACIN within transects. However, notable differences are observed between the PSDs 

within the varying panels. For both phases, higher percentiles of 1 Hz ACIN (>80th; red 
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lines) generally have lower number distribution functions for D > 50 μm at average ACIN 

greater than the 30th percentile compared with lower ACIN percentiles (black and blue 

lines; Fig. 34B,C,E,F). For mixed phase samples, this trend is only observed from 50‒300 

μm for average ACIN 30th to 70th percentiles and from 50‒200 μm for above the 70th 

percentile (Figure 34E,F).  

 

Figure 34: Average PSDs for liquid (A‒C) and mixed phase (D‒F) samples. Results are 

separated by percentiles of transect average ACIN for each column. Different colored 

lines represent varying percentiles of 1 Hz ACIN associated with the respective transect 

average ACIN percentiles. Images underlying each column show representative cases of 

2DS cloud particle imagery for the respective average ACIN percentiles. 

 

Lower number distribution functions of 1hz ACIN > 80th are also seen from 10‒50 μm, 

most notably at average ACIN greater than 70th percentile. These lower N(log(D)) for 

greater 1 Hz ACIN is characteristic of inhomogeneous mixing, which was not evident in 
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Figure 31 when transect data were not used.  

The most distinguishing differences of PSDs are observed over different ranges of 

average ACIN. For the liquid phase, PSDs are relatively similar amongst the different 

ranges, with the greatest differences observed at the largest drop sizes. Number 

distribution functions of large drops (D greater than ~40 μm) decrease with increasing 

average ACIN, consistent with evaporation from entrainment. The PSDs for mixed phase 

conditions are much more variable amongst average ACIN compared with the liquid 

phase. The most notable trend is the difference in the number distribution functions of 

large particles between average ACIN less than and greater than the 30th percentile. Less 

than the 30th percentile, N(log(D)) from ~100‒400 μm are observed at 1‒10 L-1, and 

rapidly decrease to 0.1 L-1 and lower at sizes greater than 600 mm (Figure 34D). This 

peak is primarily attributed to samples from mixed phase drizzle associated with the 

second and sixth research flights (RF02&06, respectively). Representative particle 

imagery for the different ranges of average ACIN are shown underlying the respective 

columns, and the cases shown for RF02 and RF06 highlight these drizzle cases within the 

lower average ACIN transects. Drizzle from RF02 occurred together with large ice 

crystals as seen in Figure 34G, whereas drizzle from RF06 occurred mainly in the 

absence of ice with the exception of a few cases of small graupel, seen as the aspherical 

particles in Figure 34J. Number distribution functions from ~400‒800 μm increase with 

increasing average ACIN (> 30th percentile) by a factor of 3‒5. This is consistent with 

enhanced WBF due to droplet evaporation, which was also noted by Hoffmann (2020). 

The 1 Hz ACIN from the 30th to 70th average ACIN percentiles (Figure 34E) capture this 

transition, namely, N(log(D)) at D > 400 μm increase above the 20th percentile, and a 

“dip” occurs between ~100‒200 μm. This dip is shown below to be likely related to the 
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removal of large drops. 

Strong mixing events are further examined in Figure 35, where mixed phase 

results greater than the 70th percentile are separated into 70th‒80th (A), 80th‒90th (B) and 

greater than 90th (C) percentiles. Although there is no clear average ACIN threshold that 

categorically defines the presence of entrainment-mixing, the right-most panel with the 

highest ACIN in Figure 35 shows the clearest downward shifts in PSDs amongst 1 Hz 

ACIN percentiles (expected with inhomogeneous mixing; Fig. 34F).  

 

Figure 35: Similar to Figure 34, except results from Figure 34F are separated into 3 

average ACIN percentile ranges. 

 

This adds confidence towards relating the strength of entrainment-mixing to mixed phase 

properties. Number distribution functions for D greater than 300 μm increase with 

increasing average ACIN. Most notably, number distribution functions slightly increase 

from 300‒500 μm, where N(log(D)) vary from 0.3‒0.8 L-1 (0.2‒0.5 L-1) above (below) 

the 90th percentile of average ACIN. In addition, mixed phase PSDs have less prominent 

peaks at ~15 μm and a slight broadening from 15‒25 μm with increasing average ACIN, 

which although observed in Figure 34D‒F is more pronounced here. Overall, drop 

number distribution functions for D <10 μm are relatively similar when compared 

amongst the average ACIN percentiles, whereas relatively larger drops may be 

preferentially evaporating, as seen by an approximate order of magnitude decrease in 
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number distribution functions at 50 μm with increasing ACIN. 

To evaluate how results vary for different temperatures, mixed phase results for 

average ACIN greater than 30th percentile are separated into different temperature ranges 

in Figure 36, with lower (higher) temperatures at A&B (C&D).  

 

Figure 36: Similar to Figure 34, except results are only shown for mixed phase at 

temperatures less than -8°C (A,B) and greater than -8°C (C,D). 

 

Similar to Figure 34, downward shifts of PSDs for greater 1 Hz ACIN percentiles at larger 

average ACIN (indicative of inhomogeneous mixing) are observed for both temperature 

ranges. Number distribution functions for D>400 μm are relatively similar for varying 

ACIN at temperatures greater than -8°C, which may suggest weak mixing is sufficient to 

induce an enhanced WBF process. This would be consistent with increased N(log(D)) at 

D>400 μm for average ACIN above the 30th percentile (Figure 34D,E). It may also 

suggest an enhanced WBF process is more prevalent at lower temperatures, where the 
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difference between the liquid and ice saturation vapor pressures is greater. This is 

consistent with number distribution functions at temperatures less than -8°C, outside the 

Hallett-Mossop secondary ice crystal production zone (Hallett & Mossop, 1974), which 

markedly increase at ACIN greater than the 70th percentile.  

Findings of the increasing number distribution functions of large ice with 

increasing average ACIN have thus far been attributed to entrainment-mixing events 

enhancing WBF. Considering that the characteristic pathway of the WBF process is the 

transition of liquid to ice, the liquid water content (LWC) over the total water content 

(TWC; ice and liquid) would be expected to transition from 1 to 0 during these events. 

Thus, if an enhanced WBF process were present, a hypothetical set of mixed phase 

samples would more likely be associated with lower values of LWC/TWC compared to a 

weak WBF process. Figure 37 directly relates average ACIN to 1 Hz mixed phase 

samples within the transects for all temperatures (Figure 37A), temperatures less 

than -8°C (Figure 37B) and temperatures greater than -8°C (Figure 37C). The joint 

histogram is normalized over each average ACIN bin. For all temperatures, the frequency 

of LWC/TWC at 0.9‒1.0 gradually decreases from ~0.9 to 0.2 as average ACIN increases 

from -0.6 to 1.0 cm-3. The frequency of lower LWC/TWC correspondingly increases with 

increasing average ACIN as well, having frequencies skewed towards higher LWC/TWC 

at low average ACIN and more uniformly distributed at high average ACIN. Results in 

Figure 37B&C examine the impacts of temperature related to differences such as the 

greater difference in liquid and ice saturation vapor pressures at lower temperatures, as 

well as the potential of enhanced ice particle regimes associated with secondary ice 

production from -3° to -8°C. Both trends mentioned for all temperatures are observed for 

both temperature ranges, although they are much more prevalent at temperatures less than 
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-8°C.  

 

Figure 37: Normalized joint histograms of occurrences relating 1 Hz mixed phase 

samples of LWC/TWC to transect average ACIN for all temperatures (A), for 

temperatures less than -8°C (B) and temperatures warmer than -8°C (C). Results are 

normalized by average ACIN bins, where the sum of each row equals one. The number of 

samples for each average ACIN bin are shown in the narrow plots immediately to the 

right of the respective histograms. Percentiles of average ACIN are shown by the colored 

horizontal lines. 

 

Namely, the frequency of samples at relatively low LWC/TWC and low average ACIN is 

slightly greater at higher temperatures, which may be due to the sufficiency of weaker 

mixing to induce an enhanced WBF, increased riming or errors associated with 

misclassification of drizzle (which can appear as aspherical particles) as ice.  

To explore how mixed phase PSDs vary depending on the amount of glaciation, 

PSDs in Figure 38 are calculated for different ranges of LWC/TWC for all average ACIN 

(Figure 38A‒C) and for the upper 50th percentile of ACIN (Figure 38D‒F). Note that 

sample sizes are shown in the respective panels, and the difference in sample sizes 
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between the highest and lowest ranges of LWC/TWC decreases with increasing average 

ACIN, consistent with findings in Figure 37. As previously mentioned, the liquid mass is 

expected to decrease whereas ice mass is expected to increase as LWC/TWC transitions 

from 1 to 0. This is consistent with trends in the average PSDs for all ranges of average 

ACIN, where number distribution functions of particles with D greater than 200 μm are 

greatest for LWC/TWC<0.4 and lowest for LWC/TWC>0.9.  

 

Figure 38: Average mixed phase PSDs shown for percentiles ranging over all mixed 

phase samples (A‒C) and for percentile ranges exceeding the 50th percentile (D‒F). 

Colored lines represent average PSDs for different ranges of LWC/TWC. The number of 

samples is shown in each respective panel. Results are shown for temperatures less than -

2°C. 

 

Number distribution functions of particles with D < 50 μm also decrease with decreasing 

LWC/TWC for all average ACIN. However, number distribution functions for D < 15 μm 

decrease more rapidly for the average ACIN less than the 70th percentile compared to 

higher percentiles of the average ACIN. In fact, these number distribution functions only 

vary by 8‒30% for different LWC/TWC above the 70th percentile (Figure 38C). The 



111 

 

 

difference in the number distribution function for D between 30 and 100 μm amongst 

difference ranges of LWC/TWC increases with increasing average ACIN, characterized 

by decreasing number distribution functions for D = 100 μm. These particles are most 

likely droplets (based off assumptions of CDP sensitivity to spherical particles and from 

visual examination of 2DS imagery), which are preferentially removed at relatively high 

average ACIN.  

Results in Figure 38D‒F focus on differences in PSDs at relatively high ACIN, in 

part to avoid the large set of drizzling samples discussed previously (Figure 34D), which 

appear as sharp decreases in the number distribution functions at D = 400 μm for average 

ACIN less than the 30th percentile (Fig. 38A). This is also done to account for the inability 

to determine when entrainment-mixing is in fact taking place (similarly discussed in 

reference to Figure 35). Similar trends of decreasing N(log(D)) at D<10 μm with 

decreasing LWC/TWC for relatively low average ACIN, (50th to 70th percentile; Figure 

38D) and decreasing number distribution functions at 100 μm with increasing average 

ACIN are observed. In addition, the difference in particle sizes from 30‒100 μm with 

decreasing LWC/TWC, which are primarily large drops, is much more apparent at greater 

average ACIN, as the colored lines do not overlap and increasingly diverge. This is most 

notable at average ACIN greater than the 90th percentile, which also has an order of 

magnitude difference in drop sizes from 10‒30 μm (Figure 38F).  

Although the number distribution functions of large ice (D>200 μm) still differ 

for ranges of LWC/TWC above the 90th percentile of average ACIN, they are the least 

variable compared to lower average ACIN percentiles. This may be due to evaporating 

drops primarily replenishing the subsaturated air resulting from substantial dry air 

entrainment, which may also impede ice crystal growth. In contrast, the highest number 
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distribution functions of large ice occur at low LWC/TWC for average ACIN between the 

50th and 70th percentiles. However, there are fewer samples at low LWC/TWC for lower 

average ACIN compared with higher average ACIN. This is likely why the highest large 

ice concentrations occur at average ACI above the 90th percentile in Figure 35. Namely, 

averages at low average ACIN are heavily weighted by samples having high LWC/TWC. 

These findings suggest that at substantially strong mixing, the enhanced WBF process 

associated with evaporating drops is partially offset by sufficiently large intrusions of dry 

air. 

4.6. Results in context of cloud morphology 

Results thus far have examined entrainment-mixing regardless of cloud type and 

location within the clouds (e.g., cloud top and cloud base). Averaged PSDs in relation to 

the normalized cloud height (zn) are shown in this section and related to the transect 

analysis.  

Figure 39 shows average PSDs for the liquid (A) and mixed phase (B) samples at 

cloud base (zn<0.1), cloud top (zn>0.9) and within the cloud (0.1<zn<0.9). The PSDs shift 

towards larger particle sizes with increasing zn for the liquid phase, consistent with 

particle growth via condensation and collision-coalescence of an ascending air parcel. 

However, large drop number distribution functions (D>200 μm) are nearly similar 

regardless of zn. In contrast, the highest concentrations of large ice particles in mixed 

phase samples are observed at cloud top and are lowest near cloud base. Peak number 

distribution functions of large ice crystals also shift to slightly larger sizes (from 300 to 

500 μm) with increasing zn, suggesting large ice particles are preferentially growing at 

cloud top. It is important to note that although ACIN are often greater at cloud top than 



113 

 

 

cloud base, relatively high ACIN occur at cloud top and cloud base (Figure 29B).  

 

Figure 39: Average PSDs for liquid (A) and mixed (B) phase samples for different ranges 

of zn. 

 

Analysis of 1 Hz and average ACIN are not controlled by normalized cloud height, so 

results may (perhaps likely) combine samples from both of these regions. Since large ice 

concentrations are found to be lowest at cloud base (Figure 39B; Figure 40B,C), there is 

the possibility for an underestimation of entrainment-mixing WBF enhancement. 

Regardless, these peak sizes from 300‒500 μm are similar to those observed with 

relatively high average ACIN throughout this study (e.g., Figure 35), highlighting the 

potential importance of entrainment-mixing on WBF process rates. 

Mixed phase results are separated according to the number of cloud layers in 

Figure 40. PSDs from single-layer clouds are shown in Figure 40A and from multi-layer 

clouds in Figure 40B. Cloud layer classification follows D’Alessandro et al. (in 

preparation). Not only have mixed phase occurrence frequencies been found to be much 

larger in multi-layer clouds (D’Alessandro et al., in preparation), but notable peaks of 

large ice concentrations from 300‒500 μm are primarily observed in multi-layer clouds as 

well. These peaks are enhanced for middle cloud layers, defined as cloud layers residing 

between the highest and lowest cloud layers of multi-layer clouds (Figure 40C).  
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Figure 40: Similar to Figure 39, except results are only shown for mixed phase samples. 

Results are shown for single-layer clouds (A), multi-layer clouds (B) and middle cloud 

layers (residing between the highest and lowest cloud layers of multi-layer clouds; C). 

The blue text is average RH immediately overlying the respective cloud layer types 

(taken from D’Alessandro et al. (in preparation)). 

 

D’Alessandro et al. (in preparation) shows air immediately overlying these middle layers 

is nearly saturated, whereas subsaturated conditions are commonly observed overlying 

single-layer clouds as well as the highest layers of multi-layer clouds (blue text in Figure 

40). This suggests the importance of an ample moisture supply towards ice crystal growth 

in entrainment-mixing events, contrary to simply considering dry air enhancing 

evaporation and the resulting available vapor content.  

4.7. Conclusion 

4.7.1. Overview of findings 

This study uses in situ observations from SOCRATES to provide a statistical 

analysis on the impacts of entrainment-mixing upon mixed phase cloud properties over 

the Southern Ocean. Strong correlations exist between drop clustering and the ratio of 

actual to adiabatic mass content at cloud tops (-0.62 to -0.74), as well as clustering and 

mixing length scales (0.53). These and other findings suggest clustering on scales of 100‒

1000m is primarily related to entrainment-mixing. Because of this, droplet clustering is 

utilized as a proxy variable for qualitatively determining the degree of entrainment-
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mixing. Observations are split into transects, defined as regions of neighboring 1 Hz 

samples which range from 1.0 to 2.1 km in horizontal sampling distance. The use of 

transects allows for samples associated with local entrainment-mixing to be analyzed in 

relation to the background microphysical properties and allows for analysis on spatial 

scales comparable to horizontal grid spacing in weather and climate models.  

Clustering is positively related to ice particle concentrations with maximum 

dimensions exceeding 200 μm, suggesting entrainment-mixing enhances WBF process 

rates. Average number distribution functions associated with the highest percentiles of 

clustering (>70th percentiles) closely resemble those at cloud top of multi-layer clouds, 

suggesting entrainment-mixing could be a major factor determining ice characteristics at 

cloud top. 

Clustering is examined as a function of LWC/TWC in order to ascertain impacts 

of mixing on mixed phase evolution, considering that values will transition from 1 to 0 

during glaciation. Distributions of LWC/TWC are heavily skewed towards 1 at 

minimal/non-existent clustering, and transition to more uniform distributions of 

LWC/TWC with increasing clustering. This trend is more pronounced at temperatures 

less than -8°C, where the difference in the saturation vapor pressures of liquid and ice is 

greater than at higher temperatures. Results suggest that a minimal amount of 

entrainment-mixing may increase the likelihood for mixed phase samples to undergo 

complete glaciation on spatial scales of ~100m. Average PSDs are similarly examined as 

functions of LWC/TWC to evaluate mixed phase evolution. Drop number distribution 

functions between 10‒20 μm decrease with decreasing LWC/TWC regardless of weak or 

prevalent clustering. At relatively low clustering, small drop number distribution 



116 

 

 

functions (D<10 μm) are found to decrease with decreasing LWC/TWC, which is 

consistent with glaciating conditions. In contrast, larger drop number distribution 

functions (D>30 μm) are preferentially reduced with decreasing LWC/TWC when 

clustering is prevalent. These results suggest different drop size modes are preferentially 

removed during glaciation depending on the relative strength of entrainment-mixing.  

4.7.2. Concluding remarks 

The goal of this study was to provide a qualitative assessment of the impact of 

mixing on mixed phase microphysical properties. Drop clustering has been argued to 

provide a simple and effective measure to broadly diagnose the strength of entrainment-

mixing. In fact, previous studies have attempted to characterize entrainment-mixing and 

its impacts based on drop size distribution inhomogeneities (Bower & Choularton, 1988; 

Paluch, 1986; Paluch & Knight, 1984). Although clustering undoubtedly fails to capture 

the associated complexities and relevant properties of air-mass interactions, analysis here 

separates mixed phase properties by broad percentile ranges of clustering in order to 

capture the general strength of mixing and its impacts. Persistent trends (e.g., increasing 

number distribution functions of large ice with greater average ACIN) combined with 

findings consistent with current theoretical understandings of mixing (e.g., downward 

shifts in average PSDs with increasing ACIN indicative of inhomogeneous mixing, 

decreasing number distribution functions of large drops with increasing average ACIN for 

liquid phase transects) suggest the results presented here capture the intended mixing-

cloud particle interactions.  

Previous studies have argued for or against different clustering metrics for reasons 

such as scale dependence (Baker & Lawson, 2010; Shaw et al., 2002). However, scale 
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invariance is expected to be minimal since number concentrations are normalized by a 

constant sample volume. In addition, the clustering metric is only in service of 

diagnosing the magnitude of mixing. The study does not intend to provide an absolute 

measure of clustering but rather to inform the observational and modeling communities 

potential pathways for the evolution of mixed phase microphysical properties in the 

presence of entrainment-mixing.  

A few studies have already been introduced that discuss direct relationships of 

droplet clustering on local microphysical properties (e.g., Castellano et al., 2004; 

Castellano et al., 2008). However, these effects are determined on much smaller spatial 

scales than the scale of clustering presented in this study. Regardless of these potential 

impacts of clustering on microphysical properties, such considerations do not nullify 

findings relating entrainment-mixing to mixed phase evolution. Rather, mixing likely 

enhances clustering which effectively impacts the microphysical properties. For example, 

clustering resulting from dry air insertion may lead to enhanced evaporation of droplets 

near the edges of drop clusters due to differences in the local vapor density fields within 

clusters and near cluster edges (Castellano & Ávila, 2011). It may prove helpful to 

disseminate direct impacts of mixing and clustering on mixed phase properties. 

Clustering is calculated on spatial scales orders of magnitude greater (100 m) than 

those considered in most of the theoretical clustering studies listed here (~1 cm). 

Commonly deployed in situ instrumentation for most field campaigns, including 

SOCRATES, are unable to determine clustering at finer spatial scales. Such probes 

require averaging over relatively long durations to compensate for the instruments’ 

inherent lack of ergodicity. Other probes, such as the Holographic Detector for Clouds 

(HOLODEC), have the advantage of obtaining size distributions by imaging a constant 
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volume sample field. Few intercomparisons between these instruments have been 

performed (e.g., Beals et al., 2015; Glienke et al., 2017; Jackson et al., 2014), and those 

comparing varying scales of clustering are warranted in order to disseminate primary and 

secondary causes impacting mixed phase properties. 

Future work should aim to constrain mixing properties by directly relating 

entrainment rates with mixed phase properties at cloud top. Similar work evaluating 

entrainment-mixing is warranted for different cloud types and regions globally, which 

will be associated with varying atmospheric phenomenon, turbulent features, and mixed 

phase properties. Additional work should also explore the impacts of phase 

inhomogeneity on the potential enhancement of WBF within the length scale of mixed 

phase observations (~100 m) used here. 
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5 CONCLUSIONS 

 
Both climate and higher resolution models fail to adequately represent clouds 

over the Southern Ocean, as they often mischaracterize cloud phase frequencies and bulk 

microphysical properties. This dissertation uses airborne in situ observations from the 

SOCRATES field campaign to characterize the frequency and spatial heterogeneity of 

cloud phase, compare and contrast the microphysical properties of single and multi-

layered clouds, and evaluate the impacts of entrainment-mixing on the microphysical 

properties of mixed phase clouds. Approximately 14 hours of in-cloud data within 

temperatures where liquid, ice and mixed phase samples can coexist (-40° to 0°C) are 

available and are used in the analyses, whereas 55 single- and 183 multi-layer cloud 

profiles are used to compare the different cloud layer types. A combination of in situ 

instrumentation is used here to determine cloud phase, including a supervised machine 

learning algorithm applied to a particle imaging cloud probe. The main results are 

summarized below. 

This dissertation reported large amounts of liquid observed in low-level clouds 

over the Southern Ocean, with ~70% of in-cloud samples classified as liquid at 

temperatures between -20° and 0°C. The frequency of ice generally increased with 

decreasing temperature, and sharply increased as temperatures decreased below -20°C. 

However, the lowest cloud layers of multi-layered clouds had the largest frequency of 

ice-containing samples (i.e., mixed and ice phase), and the highest layers of multi-layered 

clouds had the lowest frequency. Further, ice-containing frequencies were found to 

slightly decrease with decreasing temperature from -20° to 0°C within the boundary 

layer. These results suggest a prominent seeder-feeder mechanism exists over this region, 
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consistent with previous case studies that observed ice precipitation (e.g., Alexander et 

al., 2021). Results from this dissertation also highlight the necessity of using airborne, in 

situ observations to adequately analyze phase frequencies, since relying solely on ground-

based or satellite remote sensing data fails to capture trends reported here due to 

attenuation and other uncertainties (e.g., sun glint due to low solar zenith angle). 

The relationship of cloud phase to concentrations of ice nucleating particles (INP) 

and cloud condensation nuclei (CCN) is also explored in this dissertation, which can give 

insight into the relevance of primary and secondary ice nucleation mechanisms over the 

region. Select cases showed significant correlations between INP concentrations and ice-

containing frequencies expected of primary ice nucleation. However, many cases where 

phase frequencies resided within temperatures similar to INP activation temperatures did 

not have significant correlations. This suggests alternative ice initiation processes (e.g., 

secondary ice production) are likely prevalent over the region. Due to the dearth of INP 

over the Southern Ocean, long averaging times were required to get statistically 

significant samples above background values. This and other limitations introduce 

uncertainties into the collocation of INP and phase data, which may also account for the 

weak correlations. Phase frequencies in this dissertation were separately related to INP 

and CCN above and within the boundary layer. Within the boundary layer, CCN 

concentrations had no impact on phase frequencies. However, the frequency of liquid was 

found to be significantly higher in high CCN environments in the free troposphere. Large 

drop concentrations (diameters > 25 μm) are also negatively correlated with CCN 

concentrations, suggesting a reduced Hallet-Mossop process (a secondary ice production 

mechanism requiring large drops) may contribute to higher liquid phase frequencies. 
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The spatial heterogeneity of cloud phase is analyzed in this dissertation, which is 

crucial to adequately represent in numerical weather models since previous studies have 

shown it can drastically impact simulate cloud properties due to varying the rate of the 

WBF process. The statistical analysis performed here extends previous studies that 

qualitatively evaluated spatial heterogeneity for select cases. The first quantitative 

measure of spatial heterogeneity is introduced here and referred to as a spatial 

heterogeneity score (SHS). The mixed (liquid) phase is found to be the most (least) 

spatially heterogeneous phase between -20° and 0°C. Additionally, utilizing SHS allows 

for directly relating measured parameters to the degree of spatial heterogeneity. Two 

parameters found to be directly related to spatial heterogeneity are vertical air motion and 

ice crystal size. Vertical velocity distributions are centered at 0 m s-1 and broaden with 

increasing heterogeneity, suggesting phase heterogeneity can be parameterized as a 

function of turbulent motion (e.g., turbulent kinetic energy). Ice crystal sizes in ice and 

mixed phase samples are smaller in regions of greater spatial heterogeneity, suggesting 

greater heterogeneity may be associated with the earlier stages of cloud lifetimes. This 

finding may also be due to dry air mixing within spatially heterogeneous regions, which 

could inhibit ice particle growth. 

The bulk microphysical properties of single- and multi-layer clouds are evaluated 

and contrasted in this dissertation. Single-layer clouds have greater liquid drop 

concentrations than multi-layer clouds. However, the highest drop concentrations were 

associated with single-layer clouds from the only two research flights which sampled 

clouds in coupled environments. Drop concentrations in coupled environments are 

approximately double of those in decoupled environments. But, even when comparing 
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single- and multi-layered clouds in decoupled environments, single-layer clouds 

generally have higher drop concentrations. Both liquid drop size distributions and total 

particle size distributions (i.e., including ice particles in mixed and ice phase samples) are 

broader in non-top cloud layers (i.e., multi-layer clouds underlying the highest layer), 

compared with top cloud layers (i.e., single-layer and the highest layer of multi-layer 

clouds). The differences in microphysical properties between single- and multi-layer 

clouds are observed regardless of whether they reside within or above the boundary layer.  

Findings from this dissertation reveal drop clustering is slightly greater at cloud 

top for top cloud layers, which is likely related to greater cloud top cooling rates which 

are also observed for top layers. A distinct difference in relative humidity immediately 

above cloud top is also observed between top and non-top layers. Namely, above-cloud 

relative humidity is ~70% for top cloud layers (~60% for single-layer clouds) whereas 

conditions are nearly saturated above-cloud for non-top layers. Despite differences in the 

cloud top and aforementioned properties between single- and multi-layer clouds, both 

cloud types have relatively high concentrations of drizzle size drops (drops with 

maximum dimensions exceeding 50 μm having average number concentrations ranging 

from 30‒50 L-1), revealing both cloud types have a propensity for precipitating. 

  The impacts of entrainment-mixing on mixed phase cloud properties are analyzed 

in this dissertation by taking advantage of strong, positive relationships between droplet 

clustering and entrainment-mixing. These relationships are observed when relating a 

clustering metric (altered clustering index; ACI) to the ratio of the actual cloud mass to 

adiabatically derived mass at cloud top (i.e., drop clustering increases as the ratio 

approaches zero). Additionally, drop concentrations and clustering in cloud transects (sets 
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of neighboring cloud samples ~1.2 km in length) are found to negatively covary, and 

covary more significantly as the values of the 80th and 20th drop concentration percentiles 

within individual transects diverge. The transect average clustering also increases as the 

values of the 80th and 20th drop concentration percentiles diverge, and the average drop 

size decreases with greater divergence in the drop concentrations percentiles. These 

findings are consistent with entrainment-mixing locally decreasing drop concentrations 

(and average drop size) within the cloud transects, which is directly related to the transect 

average clustering. 

Some of the benefits of utilizing clustering as a proxy variable to diagnose 

entrainment-mixing strength are listed here. First, there is no prior established method for 

deriving the mixing length scale from in situ observations since the length scale varies 

depending on the location and spatial scale of the measurement for a given clear-air eddy. 

Previous studies have derived the length scale based off the clear-sky fraction within a 

cloud sample. This yields an exceedingly low sample size since most in-cloud 

measurements in stratified clouds have a clear-sky fraction of zero. The fact that 

clustering is directly related to (locally) low drop concentrations suggests drop clustering 

can act as a “looser clear-sky restriction” towards diagnosing entrainment, where a given 

entrainment event does not completely evaporate a partial cloud area. Additionally, the 

uncertainty associated with varying spatial scales is not captured when explicitly 

calculating mixing length scales and the associated turbulent mixing times. However, the 

use of 1 Hz clustering values in conjunction with the transect average clustering 

essentially captures scales on the order of 100 m and 1km, respectively.  

Mixed phase size distributions are controlled by 1 Hz and transect average 
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clustering. Results here reveal greater large ice concentrations (maximum dimensions 

exceed ~300 μm) with increasing clustering. This suggests entrainment-mixing can 

enhance ice crystal growth via an enhanced WBF process, whereby the local evaporation 

of drops is enhanced and the associated water vapor contributes to ice crystal growth. 

Greater clustering is also found here to be directly related with increasing frequencies of 

mixed phase samples having low liquid to total water content ratios (LWC/TWC), 

suggesting entrainment-mixing is directly related to increasing glaciation rates (since 

LWC/TWC is expected to decrease during glaciation). However, mixed phase samples 

with the greatest large ice concentrations occur in regions with moderate clustering at low 

LWC/TWC. This suggests sufficiently large degrees of entrainment-mixing may impede 

the enhanced WBF process and partially offset the enhanced ice crystal growth. 

Findings from this dissertation should ultimately be used to improve cloud 

microphysics parameterizations in both climate and higher resolution models, which will 

likely reduce biases in the radiative profiles over the Southern Ocean as discussed in 

Chapters 1‒3. Low resolution models should avoid assumptions of homogeneous 

distributions of liquid and ice particles in mixed phase grid points, which have been 

shown to result in unrealistic glaciation rates (Tan & Storelvmo, 2016). Parameterizing 

phase heterogeneity by turbulence parameter(s) will likely improve simulated cloud 

properties and lifetimes over the region. Modelers should also evaluate the microphysical 

properties of varying simulated cloud layer types. Results show distinct differences in the 

properties of different cloud layer types and suggest a high prevalence of varying ice 

initiation/growth processes, some of which are notoriously difficult to simulate (e.g., 

secondary ice production). Differences in the layer properties may also aid in the 
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understanding of multi-layer cloud formation, which is still uncertain. Modelers should 

also evaluate whether models capture enhanced glaciation rates and under what 

conditions (or whether) an enhanced WBF process occurs given the presence of 

entrainment-mixing. Results here characterize the entrainment-mixing strength by the 

degree of droplet clustering, rather than explicitly solving for entrainment rates or 

turbulent mixing times. Because of this, modelers should simply evaluate the varying 

pathways associated with mixed phase evolution in the presence of entrainment-mixing 

shown here. Namely, that (1) glaciation is enhanced in the presence of entrainment-

mixing, (2) increases in large ice crystal concentrations (i.e., enhanced WBF process) can 

occur in the presence of entrainment-mixing and (3) the enhanced WBF process can be 

offset by sufficiently high degrees of entrainment-mixing.  

Finally, many of the analyses presented here should be replicated for varying 

regions and cloud regime types, particularly for varying regions over the Southern Ocean 

as well as the Arctic, in order to evaluate the representative ess of the results. For 

example, the SOCRATES domain was selected due to its representativeness of the 

pristine conditions commonly observed over more remote regions of the Southern Ocean. 

However, D’Alessandro et al. (2019) found significantly lower liquid phase frequencies 

over the Southern Ocean in the Drake passage compared with the phase frequencies south 

of Tasmania presented here, likely due to differences in aerosol source regions from 

nearby land masses. Analyzing the phase spatial heterogeneity and impacts of 

entrainment-mixing on mixed phase clouds may also be of particular interest for varying 

geographic regions and cloud regimes not evaluated here (e.g., wave clouds, deep 

convective clouds,  etc.), as well as on varying spatial scales (e.g., < 100 m).
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6 APPENDIX A ‒ Supplementary material 

The turbulent dissipation is taken from Paluch & Baumgardner (1989) and shown as: 

ε =
DNN

3
2

(4.01b)
3
2 le

     A1)  

Where b ≈ 0.2(2π)2/3
 (taken from Panofsky & Dutton (1984)), le is the length scale and 

DNN is taken from Meischner et al. (2001) and shown as: 

DNN(t, TAS) =
1

3
{

8

7
[u(t) − u (t −

l𝑒

TAS
)]

2

+
8

7
[v(t) − v (t −

l𝑒

TAS
)]

2

+

[w(t) − w(t −
l𝑒

TAS
)]

2 } A2)  

and additional terms are defined in Appendix C. The phase relaxation times used to 

determine Da are taken from Pinsky et al. (2018), although the phase relaxation time for 

the liquid phase has been introduced in earlier studies (Korolev & Mazin, 2003; Pinsky et 

al., 2015) and is expressed as: 

τphase,w = (
4πρwA2

ρaFw
Nwrw̅̅ ̅)−1   A3)  

where A2 is expressed as: 

A2 =
1

qv
+

Lw
2

cpRvT2    A4)  

and Fw is expressed as: 

Fw =
ρwLw

2

KRvT2
+

ρwRvT

ewDe
    A5)  

and additional terms are defined in Appendix C. To derive the phase relaxation time for 

the mixed phase, the phase relaxation time for the ice is used (Korolev & Mazin, 2003; 

Pinsky et al., 2015) and expressed as: 

τphase,i = (
4πρiA3φ

ρiFi
Niri̅)

−1   A6)  

where A3 is expressed as: 
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A3 =
1

qv
+

LwLi

cpRvT2
    A7)  

and Fi is expressed as: 

Fi =
ρiLi

2

KRvT2
+

ρiRvT

eiDe
    A8)  

and additional terms are defined in Appendix C. The phase relaxation times of the liquid 

and ice phase are combined to determine the relaxation time for the mixed phase (Pinsky 

et al., 2018) and is expressed as:   

τphase,m =
τphase,wτphase,i

(τphase,w+τphase,i)
   A9  

The shorter microphysical response time between the phase relaxation and evaporation 

times is selected when determine L*. The evaporation time for the liquid is taken from 

Rogers & Yau (1996) and is expressed as: 

τevap = −
rm

2

2As
     A10)  

Where A is expressed as: 

A =
1

[(
Lw

RvT
−1)

Lwρw
KT

+
ρwRvT

Deew
]
   A11)  

The evaporation time for the mixed phase is defined as the time for complete glaciation 

to occur within a mixed phase cloud (Hoffmann, 2020), which is expressed as: 

τgl =
3

2
τphase,i

ql

(qs,l−qs,i)
   A12)  

and additional terms are defined in Appendix C. 
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7 APPENDIX B ‒ Supplementary figures 

 

 
Figure A: Joint frequency distribution of MCDP and NCDP. The dashed line shows the 

MCDP threshold as defined in Section 1.2.2. 

 

 

Figure B: Histograms of relative humidity with respect to ice (RHi) and relative humidity 

with respect to liquid (RH) of the 751 cases changed as discussed in Section 1.2.2 at 

temperatures less than -20°C (left panel; 289 cases) and at all temperatures (right panel). 
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Figure C: Scatter plot of MCDP and LWCKING for mixed phase samples where NCDP > 5 

cm-3. 
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Figure D: Similar to Figure 8C,D except for temperatures from -20° to 0°C. 

 

Figure E1: Similar to Figure 11, except subtransects (as defined in the text) are set as 

lengths of 10 samples. 
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Figure E2: Similar to Figure 11, except subtransects (as defined in the text) are set as 

lengths of 30 samples. 

 

 

Figure E3: Similar to Figure 11, except subtransects (as defined in the text) are set as 

lengths of 40 samples. 
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Figure E4: Similar to Figure 11, except subtransects (as defined in the text) are set as 

lengths of 50 samples. 

 

 

Figure F: Similar to Figure 11, showing σD_CDP (left column), MCDP (middle column) and 

NCDP (right column). 
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Figure G: Similar to Figure 11, except for the difference between wind direction and 

flight direction (left column), horizontal wind speed (middle column) and N2DS (right 

column). The difference between wind direction and flight direction is set to have a range 

of 0° to 90°, where an absolute directional difference of 180° would be set to 0° and an 

absolute difference of 100° would be set to 80°, etc. 
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Figure H: Similar to Figure 11, except for N2DS where particles have D>200 μm 

(N2DS>0.2mm) 

 

Figure I: Vertical profile of average NCDP similar to Figure 25‒27, except shown for the 

highest cloud layer of multi-layer clouds. 
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Figure J: Vertical profile of average RH similar to Figure 25‒27 , except shown for the 

highest cloud layer of multi-layer clouds. 
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APPENDIX C ‒ List of relevant terms 

 

Symbol Description 

2DS Two-Dimension Stereo Probe 

ACI Altered Clustering Index 

AVAPC Altered Volume Average Pair Correlation 

CCN Cloud condensation nuclei 

CDP Cloud Droplet Probe 

CI Clustering Index 

D Maximum particle dimension 

Da Damkӧhler number 

De Coefficient of diffusion of water vapor in air 

ei Saturation vapor pressure for ice 

ew Saturation vapor pressure for liquid water 

F Clear sky fraction 

Fsolar Incoming solar irradiance 

Fterr_net Net terrestrial irradiance 

f Sampling frequency 

INP Ice nucleating particle 

K Coefficient of thermal conductivity of air 

L Mixing length scale 

Li Latent heat of sublimation 

Lw Latent heat of vaporization 

L* Transition length scale 

LWC Liquid water content 

le Length scale 

M Mass content 

Mean D Number weighted mean diameter 

MVD Volume weighted mean diameter 

N Number concentration 

Ni Ice number concentration 

Nw Liquid number concentrations 

ql Liquid water mixing ratio 

qs,i Ice saturation vapor mixing ratio 

qs,l Liquid water saturation vapor mixing ratio 

qv Water vapor mixing ratio 

RH Relative humidity 

RICE Rosemount Icing Detector 

Rv Gas constant for water vapor 

ri Ice particle radius 

rw Liquid particle radius 

rm Number weighted mean radius 

rv Volume weighted mean radius 

s Supersaturation  
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SHS Spatial heterogeneity score 

t Time  

T Air temperature 

TAS True air speed 

TWC Total condensed water content 

u East wind component 

v North wind component 

VAPC Volume Average Pair Correlation 

VCSEL Vertical cavity surface emitting laser hygrometer 

w Vertical air motion 

z Altitude 

zcloud_top Cloud top altitude 

zcloud_base Cloud base altitude 

zn Normalized height 

ε Turbulent dissipation rate 

τevap Evaporation time 

τgl Time for glaciation of mixed phase cloud 

τm Turbulent mixing time 

τphase,i Ice phase relaxation time 

τphase,w Liquid phase relaxation time 

τphase,m Mixed phase relaxation time 

τphase Phase relaxation time 

τr Microphysics response time 

τreact Reaction time 

ρa Density of air 

ρi Density of ice 

ρw Density of liquid water 

φ ew/ei  
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