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Abstract

Digital polarimetric Phased Array Radar (PAR) has the potential to achieve high temporal

and spatial resolution needed for next-generation weather observations. It offers flexibil-

ity in scanning strategies, including the use of electronic steering, coupled with traditional

“pencil” beams, spoiled beams, and/or multiple beams. Digital beamforming (DBF) is

one of the unique capabilities of PAR used to simultaneously form multiple beams digi-

tally, a critical capability needed to improve temporal resolution. DBF can be done with

non-adaptive or adaptive methods. The Fourier method pre-computes the beamforming

weights based on the configuration of the antenna elements, which results in fixed sidelobe

levels and angular resolution. In contrast, the Capon method computes the beamforming

weights adaptively from receive signals. The Capon method can provide enhanced angular

resolution over the Fourier method by lowering antenna sidelobe levels in directions with

strong contaminating returns. However, it is challenging to implement the Capon method

in real-time as the number of antenna elements grows due to the high computational cost.

This work proposes a computationally efficient Deep Learning Adaptive digital beam-

Forming (DLAF) method using a neural network trained with time-series IQ signals as in-

put and the Capon beamforming weights as output. The network is built with a combination

of convolution, activation, normalization, and dense layers. The novelty of the proposed

network is that it implements an AI-based adaptive beamforming method preserving signal

phase information, which improves the efficiency and accuracy of the learning. The pro-

posed DLAF model is evaluated using a simulated point target, an actual point target, and

xv



simulated weather signals for a planar digital array architecture. Specifically the perfor-

mance of DLAF is evaluated and compared to both the Capon and Fourier methods. Two

qualitative metrics used for the evaluation are the quality of the generated beam pattern,

such as the half-power beamwidth, artifacts from sidelobes, and the capability of placing

nulls at locations with strong interference signals. Four quantitative metrics used for the

evaluation are computation time, the performance of DLAF as a function of SNR, mean

squared error of beamforming weight values, and normalized cross-correlation of gener-

ated beam patterns. Preliminary results show that DLAF was trained successfully to per-

form adaptive DBF and mimic the behavior of the Capon method for point and distributed

targets. Furthermore, DLAF can significantly reduce the computational time which allows

real-time implementation of adaptive DBF.
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Chapter 1

Introduction

1.1 Background

Radar technology has existed since the 1940s [1] and was largely developed during the

World War II. After the development of initial defense radars, weather radar systems

were produced, with most based on parabolic-reflector antennas. In the late 1980s, dual-

polarization technology research for meteorological observations started developing [2],

whereby a radar can transmit and receive horizontally (H) and vertically (V) polarized elec-

tric fields simultaneously. These two orthogonally polarized fields can provide information

of the shape, orientation, and size of the scatters in the radar resolution volume [3]. The

U.S. operational weather radar, named Weather Surveillance Radar-1988 Doppler (WSR-

88D), provides observations of the atmosphere to estimate spectral moments such as re-

flectivity factor (Zh), Doppler velocity (vr), and spectrum width (σv) [4]. Since the upgrade

of the WSR-88D network to dual-polarization capability, completed in 2012 [5], the radar

also provides the estimates of polarimetric variables such as differential reflectivity (ZDR),

differential phase (ΦDP), and co-polar correlation coefficient (ρhv). ZDR is defined as the

ratio of the H and V reflectivities, conventionally expressed in dB. ΦDP is the difference

between the phases of signals received at the H and V polarization channels. Lastly, ρhv

is the normalized cross correlation coefficient between returned signals at the H and V
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polarization channels [6].

Severe weather, such as tornado-producing supercells, evolves fast and requires high-

temporal resolution observations to improve our physical understanding of underlying pro-

cesses driving tornadogenesis [7]. Yet, conventional radars with parabolic dish are con-

strained by the antenna’s mechanical inertia due to rotation [4], which imposes an inherent

limitation on temporal resolution. Therefore, Phased Array Radar (PAR) has been intro-

duced as a promising technology for polarimetric weather observations with high-temporal

resolution due to its unique capabilities, such as electronic steering and digital beamform-

ing (DBF) [8].

The phase array antenna consists of small radiating elements, each of which has an

amplitude and phase controller. PAR technology reduces the need for mechanical rota-

tion by steering the beam electronically in the desired direction, which is know as beam

agility. This is done by controlling the excitation phases applied to individual antenna ele-

ments [9]. For example, the beam multiplexing (BMX) technique exploits beam agility to

reduce the variance of estimates without increasing scan time [10]. To optimize the flex-

ibility in scanning strategies that support the use of the traditional pencil beams, spoiled

beams, and/or multiple beams, all-digital PAR was introduced [11]. The “Horus” radar is

an all-digital, S-band, polarimetric PAR developed by the Advanced Radar Research Center

(ARRC) at the University of Oklahoma, funded by the National Oceanic and Atmospheric

Administration (NOAA) [12]. The Horus antenna consists of 1024 (32×32) fully digital

polarimetric antenna elements [13], that can be used to transmit (TX) and receive (RX)

arbitrary waveforms. Horus is envisioned to operate as a rotating PAR (RPAR), steering

the beam electronically (mostly in elevation) and rotating mechanically in azimuth. This

is the most promising PAR architecture to achieve requirements needed for polarimetric

meteorological observations [14, 15].

Radar imaging involves the transmission of a wide spoiled beam and the use of DBF to

2



form multiple simultaneous narrow beams on reception, within the transmit beam [16, 17].

DBF is a unique capability of PARs, which can be used to improve temporal resolution.

Hence, a wide sector can be observed quickly, reducing the overall scan time [18–20]. For

example, the X-band phased array weather radar (PAWR) described by [21] performs DBF

in a wide elevation sector (-5◦ to 87◦ ) and rotates in azimuth to observe a three-dimensional

space within 80 km in range and up to 17 km altitude every 30 s. DBF can be done by

either predetermining the beamforming weights, considered a non-adaptive method, or cal-

culating beamforming weights based on received signals, considered an adaptive method.

For the non-adaptive methods, the beamforming weights (amplitude and phase) applied to

the antenna elements determines the beam pattern, which affects performance [22]. The

Fourier DBF method can be used to determine the beamforming weights by calculating

the phase differences needed between antenna elements to electronically steer the beam

in desired directions. That is, precomputed weights are multiplied by the received sig-

nals at every element to perform coherent summation and produce a synthesized beam in

the angular direction of interest. Therefore, the beam pattern computed using the Fourier

method depends only on the antenna geometry. In contrast, the Capon method (also known

as the MVDR, minimum variance distortionless response method), adaptively calculates

beamforming weights from the received signals to reduce signal interference contamination

coming from the antenna sidelobes [23]. This method started from the idea of frequency-

wavenumber power spectral density estimation [24], and it has better performance than the

Fourier method. This is achieved by lowering antenna sidelobe levels in directions of in-

terference and improving angular resolution of the scanning beam [25, 26]. However, it

is challenging to implement the Capon method in real time since its computational com-

plexity increases exponentially with the number of antenna elements. This is because it

requires the inversion of the spatial covariance matrix, with a size of N × N , where N is

number of receivers.

3



1.2 Motivation

Artificial Intelligent (AI) has been widely applied in various fields because of its flexibil-

ity and adaptability. It established a new approach to tackle high-complexity, nonlinear

problems. One of the AI subfields, known as Machine Learning (ML), is an efficient data

analysis tool [27]. For example, in the radar meteorology domain, ML has been used for

storm-mode classification, classification of precipitation type, tornado prediction, and hail

prediction [28]. Deep learning (DL), a subset of ML, is a technique that makes use of a

neural network with multiple layers to create complex mappings that connect inputs to out-

puts and learns complex relationships between data [29]. DL has been applied to weather

radar observations to improve the temporal resolution while maintaining data quality using

DBF [30]. In this research, a radial-basis-function neural network (RBFNN) that performs

real-time PAR DBF is proposed. RBFNN has been trained with the covariance matrix of

received signals as input and produces beamforming weights to implement adaptive DBF

in real time. However, RBFNN does not support the use of complex numbers; instead, they

ingest real and imaginary parts separately. Therefore, it results in a neural network model

with doubled length and, more importantly, loss of critical signal phase information. ML

with its flexibility and adaptability has shown the potential to overcome the computational

burden of the adaptive DBF. Therefore, this thesis is focused on evaluating the potential of

DL to improve weather observations using a DBF-capable PARs in real time.

1.3 Contributions and Outline

A deep neural network (DNN) is designed to perform adaptive DBF with improved train-

ing efficiency by preserving phase information, to overcome the computational burden of

adaptive DBF. It is designed as a feed-forward network to take the time-series in-phase

and quadrature (IQ) signals as inputs and produce beamforming weights as outputs. The

4



network is trained using IQ signals and Capon-beamforming weights for two applications,

point and distributed targets (i.e., weather). In general, complex-valued data are separated

into real and imaginary parts prior to the learning process. However, loss of phase informa-

tion from IQ signals and beamforming weights is critical and often leads to learning failure

or time inefficiency [30]. The current version of Keras, one of the largest ML libraries

implemented in Python, does not support complex values during the learning process and

limits many applications of ML [31]. Therefore, transforming complex values into am-

plitude and phase, leads to the use of real-valued data, which makes full use of Keras’

flexibility and improves the learning process.

The novelty of the network developed in this thesis is that it preserves the phase infor-

mation in IQ signals and beamforming weights. This is done by expressing the complex

values in phasor form, i.e., using amplitude and phase. Amplitude information contains

only positive values while phase information contains values from −π to π. Therefore,

signal amplitude and phase are trained independently in parallel for efficient learning. One

of the most important features of the neural network for efficient learning is the activa-

tion function. For amplitude information, a rectified linear unit (ReLU), well known for

supporting positive values, is used as activation function [32]. For phase information, a

hyperbolic tangent function, that can take negative values and support non-linear changes

of data is used as activation function [33]. Moreover, the proposed neural network uses a

combination of convolution layers and dense layers to optimize the quality of data that is

extracted during training.

The remainder of the thesis is organized as follows. In Chapter 2, an overview of ML

methods is presented, including its component functions, and example uses in different

research fields. Also, a mathematical basis to describe the neural network, activation func-

tions, and normalization is discussed. Chapter 3 starts with fundamental radar concepts

including, the conventional parabolic-reflector antenna radar, the development of PAR for
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weather observations, and a discussion of different PAR architectures. A review of PAR

signals is introduced in this section on simulations of IQ signals for a point target and dis-

tributed targets. The Fourier method and the Capon method are discussed as non-adaptive

and adaptive methods with their advantages and limitations. Then, Chapter 3 concludes by

summarizing the challenges of adaptive DBF, mainly, the exponentially increasing com-

putational power needed as the antenna size increases. Chapter 4 proposes a potential

solution to address the issue in the previous chapter. The proposed DNN is trained to take

IQ signals as input and produce Capon-like beamforming weights as outputs. Details of the

neural network, such as its architecture, training strategy, and data processing for training

are discussed. Chapter 5 shows preliminary results of the proposed method. The method is

tested for three different data sets: a simulated moving point target, real data of a moving

point target, simulated weather cases (e.g., tornado, hail, thunderstorm). The performance

of the proposed method is analyzed with qualitative and quantitative metrics. For the qual-

itative analysis, the following are evaluated: quality of the generated beam pattern and the

performance of the adaptive DBF patterns. For the quantitative analysis, the following are

evaluated: the computation time, the performance as a function of SNR, the mean square

error (MSE) of beamforming weights values, the normalized cross-correlation of gener-

ated beam patterns. Finally, Chapter 6 provides a summary of this work, and directions for

future research.
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Chapter 2

Review of Artificial Intelligence Concepts

AI consists of a set of algorithms and numerical simulation tools to model the human

intelligence using machines [34]. AI algorithms can quickly learn to perform desired tasks

with proper training and network architecture. AI has been widely used to perform a variety

of tasks in our daily lives, some simpler and others more complicated. For example, a traffic

light controller that is optimized with AI can operate adaptively [35]. To handle various

types of tasks, AI has been developed in many different forms. For example, machine

vision [36], speech recognition [37], expert systems [38], AI robotics [39], and ML are

subsets of AI. ML is defined as a computer algorithm that can learn or adapt to solve

associated tasks on its own without being explicitly programmed or designed to do so [40].

Because of its flexibility and adaptability, it has been extremely useful in many different

fields [41]. Especially ML is actively used in biomedicine and healthcare system as clinical

decision support systems, where medical imaging is one of the most suitable applications

for using AI [42].

2.1 Machine Learning

ML has the ability to learn from a specific collection of data to solve associated tasks

without being programmed [40]. A simple linear ML model behaves like a function, such
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as,

fw,b(x) = wx+ b, (2.1)

where x represents an input vector, w is the corresponding set of weights to each input,

and b is the bias term. ML has been actively used in meteorology for weather prediction

and classification [28]. The ridge classifier is a well known linear ML model, which is built

based on the Ridge regression method and allows the model to achieve better distinction

between classes of outputs [43]. For example, this linear ML was used to detect and classify

the migration of birds and insects from radar echoes with data collected by the S-band

WSR-88D in [44]. It takes images of radar variables, such as the ZDR, ΦDP, and ρhv as

inputs. Additionally, [44] evaluated the use of extra features, such as sectors, textures,

and/or range interval, and how these would impact the quality of the output. It extracts the

bird migration echoes by blob coloring, then computes their texture. The function of the

proposed ML model is described as follows,

fw,b(x) = |wZDR
wΦDP

wρhv |

∣∣∣∣∣∣∣∣∣∣
ZDR

ΦDP

ρhv

∣∣∣∣∣∣∣∣∣∣
+ b, (2.2)

where wZDR
, wΦDP

, and wρhv are the weights for ZDR, ΦDP, and ρhv. There are total 8 ridge

classifiers with different combinations of inputs and their results are shown in Fig. 2.1. The

birds and insects are colored blue and red. These results indicate that the ridge classifiers

have 94.4%− 95.4% detection of classified gates.

ML algorithms can also improve efficiency by ingesting image data. For instance,

saliency is another type of ML that models the human attention system and extracts the

eye-attracting spots in the meteorological images. Weather Radar Spatiotemporal Saliency

(WR-STS) has been developed to quantify the amount of spatial and temporal information
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Figure 2.1: Ridge classification results for bird migration observed with KTLX radar at
0413 UTC 2 May 2015. BIR represents birds and INS represents insects [44]

in the weather radar reflectivity images in [45]. The proposed WR-STS is composed of 4

main steps: 1. Multi-scale decomposition and feature extraction 2. Spatial activation and

fusion 3. Temporal activation 4. Spatio-temporal fusion. Illustrative results are shown in

Fig. 2.2, where images show time series of reflectivity estimates going from 1932 UTC

to 2256 UTC collected on 24 May 2011. The Fig. 2.2 shows a line of convective storms

moving eastward, with active tornado warning polygons, severe thunderstorm polygons,

and WR-STS contours that are indicated with white lines.

Despite its simplicity and efficiency, linear ML could lead to over-fitting of data. It

predicts well for the examples used in the training, but frequently makes an error when

it is applied to new data that have not been seen in the training phase. Also, there are

limitations on the quality of learning for different levels of tasks. In contrast, DL, which is

a ML-based artificial neural network, has become popular over linear ML by getting trained

in more complex ways. More details of DL will be discussed in the following section.
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Figure 2.2: WR-STS maps for the reflectivity images of the tornadic storm on 24 May 2011
were obtained from the KTLX radar. Active tornado warning polygons (red), severe thun-
derstorm polygons (yellow), and 30-dBZ reflectivity contour lines (white) are overlaid on
top of the WR-STS maps: (a)1932, (b)1957, (c)2027, (d)2057, (e)2127, (f)2157, (g)2226,
and (h)2256 UTC.[45].

2.2 Deep Neural Networks

Deep neural networks, that consist of more than one hidden layer, create more complex

networks with advanced operations such as convolution and multiple activation functions

[46]. The relationship between ML and DL is shown in Fig. 2.3.

Figure 2.3: Process of analytical model building [40].
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A neural network with i-layers has a nested function that is mathematically described

as follows [34, 47],

y = FNN(x) = fi(fi−1(...(f2(f1)))), (2.3)

where the inner layers, f1,f2, ...,fi−2,fi−1, are mathematically described as follows,

fi(z) = gi(W iz + bi), (2.4)

where gi is an activation function, W i is the set of learned weights of the layer in matrix

form, and bl is the error between true and tested value. Neural networks with more than two

non-output layers are called DNN as shown in Fig. 2.4. A Convolutional Neural Network

(CNN) is an efficient neural network developed for data with spatial information (e.g.,

pictures). That is because it learns the input data by applying a convolution filter and

extracting important features [48]. While CNN has been producing outstanding results for

pattern recognition-related tasks, it might not be an efficient way to learn data that does

not have any spatial information. For example, time-series signals, binary data, or audio

data often do not have spatial information. For these datasets, dense (also called fully

connected) layers have been used. A dense layer creates a full mapping connection among

the data between layers [34].

DNN has been used for adaptive ultrasound beamforming in the biomedical domain to

minimize the computational burden of data-driven reconstruction methods [50]. Their pro-

posed DNN is built with four dense layers, three activation functions, and three dropout lay-

ers to optimize its learning process for non-spatial data without excessive over-fitting. Then

the network is trained to take the real and imaginary parts of time-aligned array signals sep-

arately as inputs and produces the optimal set of beamforming weights to perform adaptive

beamforming. The beam patterns produced by the proposed neural network (Adaptive
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Figure 2.4: General deep neural network concept from [49].

Beamforming by deep-LEarning, ABLE) are compared to other conventional methods for

beamforming in the biomedical domain, as shown in Fig. 2.5. Delay-And-Sum (DAS)

and iterative maximum a posteriori (iMAP2) are the non-adaptive beamforming method.

EBMV (i.e., the MVDR or Capon method) is the adaptive beamforming method used as

ground truth for the training. Then, the reconstructed images obtained by each method are

shown in Fig. 2.6

As shown in Eq. (2.4), a neural network is not built with only convolution or dense

layers. To build an efficient neural network, activation functions (g) and normalization are

essential. These are introduced in the following subsection.
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Figure 2.5: Normalized beamprofiles along a simulated pointscatterer for (left) Plane-wave
imaging and (right) Synthetic Aperture (IVUS) imaging [50].

2.2.1 Activation functions

Activation functions (g(x)) transform the activation level of input neurons to output neurons

[32, 51]. Activation functions play an important role in the learning process as they sort

out complicated data and help the neural network connect neurons between layers to create

meaningful mapping [49]. Careful selection of activation functions is required for different

tasks so the neural network can learn properly and have good prediction accuracy. Also,

the neural network without activation function is just a linear regression that will not be

able to predict properly with new data and will likely fail to learn complex connections

among the data. The activation function can be either linear or non-linear. One of the most

well-known activation functions is the ReLU, which is a linear activation and often used

for image-related tasks. ReLU can be mathematically described as follows [33],

g(x) = max(x, 0), (2.5)

where x is the input data. Linear activations can be efficient when the model is learning

using the back-propagation of errors. Because its behavior is similar to linear regression

and it avoids easy saturation and provides sensitivity for non-zero data. However, the linear

13



Figure 2.6: Reconstructed synthetic aperture in-vivo images using: a) DAS beamforming
with Hanning apodization, b) iMAP2 beamforming c) ABLE, and d) Eigen-Based Mini-
mum variance (EBMV) beamforming. Images are logarithmically compressed with a dy-
namic range of 60 dB. From top to bottom we have a wire phantom, an arterial stent, and a
coronary artery with plaque [50].

activation function has a linear boundary and will fail with non-linear changes in data. As

described in Eq. (2.5), the linear activation function will vanish nodes if the data contain

negative values. This limitation of linear activation is often critical because many prob-

lems in the real world have non-linear behavior and non-positive values. In contrast, the

non-linear activation function allows the neural network to extract complex information

from data by letting the non-positive and non-linear changes pass through the function.

One activation function may work better than an other one depending on the task of the

neural network. Fig. 2.7 shows the behavior of six different activation functions. Sigmoid

14



Figure 2.7: Behavior of several activation functions. Linear function, ReLU is in light blue.
Non-linear functions are Sigmoid (dark blue), Tanh (red), Softplus (Yellow), Elu (purple),
and exponential (green). The X-axis represents the input to the function and the Y-axis
represents the output from the function.

[52], softplus [53], and exponential [54] are the non-linear activation functions that only

return positive values. The sigmoid activation function can be mathematically described as

follows,

g(x) =
1

1 + e−x
. (2.6)

It returns a value close to zero when input x is smaller than −5 and a value close to one

when input x is bigger than 5. Compared to the ReLU activation function, the sigmoid

function does not vanish negative values as long as they are greater than −5. Therefore, it

could be useful for data that contain negative values. However, it gets easily saturated and

will lose many pieces of information if the data have a wide range of values. The softplus
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activation is another non-linear activation function that only produces positive values and

it is mathematically described as follows,

g(x) = log(ex + 1). (2.7)

While the softplus function has a lower tolerance for negative values than the sigmoid func-

tion, it does not get saturated easily with large positive values. The exponential activation

function is described as follows,

g(x) = ex. (2.8)

Even though it is a non-linear activation function, it acts similar to ReLU. It gets saturated

with low values (< −5), but does not get saturated with positive x values. Exponential

Linear Unit (ELU) and tanh are the non-linear activation functions that return both positive

and negative values. The ELU function is described as follows,

g(x) =


x, if x > 0,

α(ex − 1), if x < 0.

(2.9)

The tanh function is described as follows:

g(x) =
ex − e−x

ex + e−x
. (2.10)

To understand the behavior of each activation function, their behaviors are tested on an

example image, shown in Fig. 2.8. The Fig. 2.9 shows how each activation function sorts

out the data. Note that image data contain positive values only. ReLU, softplus, and ELU

do not easily get saturated with positive values and preserve the valuable information from

the test image, while sigmoid and tanh get saturated as shown in Fig. 2.9. Therefore, ReLU,
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softplus, and ELU would work better for the neural network with image related tasks, while

sigmoid and tanh would work better for non-spatial data such as time-series data.

Figure 2.8: Test image for evaluating behavior of different activation functions.

2.2.2 Data Normalization

As the data used for neural networks are becoming more complicated, the training time

increases. This is when normalization plays an important role that impacts the quality of

training with reduced time [55]. Normalization is one of the necessary components to build

an efficient neural network, especially with Stochastic Gradient Descent (SGD), because

the normalization can improve the efficiency by standardizing inputs with the mean and

standard deviation of the training data [56]. There are various ways to normalize the data
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Figure 2.9: Output images from activation functions. The test image was separated into
three different filters, RGB, shown in the first row. The outputs from each activation func-
tions, ReLU, Softplus, ELU, Sigmoid, Exponential, and Tanh are shown in each row.
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depending on the learning process and data structures. The general normalization process

can be simply written as a transformation,

x̂ = Norm(x,X), (2.11)

where x is the given training data and X is the set of training data.

Keras, Python’s library for DL built on a TensorFlow platform [57], has its built-in

normalization that can be used as a layer inside the neural network. Keras has many built-

in functions that allows users to build their own network in an easier and faster way [31,

58]. Having a normalization layer inside the neural network keeps the consistency of the

data throughout the learning process and reduces the training time. Batch normalization

and layer normalization are the two normalization techniques implemented in the Keras

library. Batch normalization processes a group of input data x, defined as a mini-batch

B = x1, x2, ..., xm [59]. Also, it has two different function modes for training and inference.

During the training, it normalizes each dimension of a d-dimensional input with the mean

(µBt) and variance (σBt) of the current batch of inputs as follows,

µBt =
1

m

m∑
i=1

xi, (2.12)

σ2
Bt =

1

m

m∑
i=1

(xi − µBt)
2, (2.13)

x̂i =
xi − µBt√
σ2
Bt + ϵ

, (2.14)

where ϵ is a small constant parameter usually assigned as 0.001. However, using the mean

and variance of the batch is not desirable when the network is in the inference mode. Un-

biased (i.e., moving average) mean (µBi) and variance (σ2
Bi) for the inference mode are

calculated based on the mean and variance estimated from the training. Therefore, the
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output depends only on the input deterministically.

µBi =
1

j

j∑
µBt, (2.15)

σ2
Bi =

m

m− 1

(
1

j

j∑
σ2
Bt

)
, (2.16)

where j represents the number of mini-batch used during the training [56]. However, batch

normalization has a limitation when used for a Recurrent Neural Network (RNN). Averag-

ing inputs of each batch becomes complicated when RNN does not have the same shape

for all sequences of data. Also, batch normalization loses the advantage of grouping the

inputs as a batch when the values of data are largely distributed. To overcome the weak-

ness of batch normalization, layer normalization is introduced. Layer normalization is used

to normalize the input data within each layer of the network, instead of normalizing over

summed multiple input data [60]. Layer normalization calculates the mean and variance of

ith hidden units at the lth layer as follows [61],

µL =
1

h

h∑
i=1

ali, (2.17)

σ2
L =

1

h

h∑
i=1

(aLi − µL)
2, (2.18)

where h denotes the number of hidden units in a layer and aLi is a vector of the summed

inputs to the neurons in Lth layer. In summary, while batch normalization shares the same

mean and standard deviation among the batch of multiple input data, layer normalization

shares only among the neurons in the layer of single input dataset. The performance of

batch and layer normalization tested on MNIST is shown in Fig. 2.10.
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Figure 2.10: Evaluation of batch and layer normalization on MNIST model with negative
log likelihood and test error. (Left) Batch size is 128. (Right) Batch size is 4.
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Chapter 3

Simulation of Radar Signals

3.1 Radar Fundamentals

Radar technology has been actively used for weather observations for several decades.

Weather radar monitors the occurrence and movement of precipitation systems, which can

provide information about precipitation timing, probability, location, type, and intensity. It

is one of the most important tools to detect hazardous weather conditions in real-time over

a large coverage area [62]. Weather radars often use pulsed waveforms to estimate the lo-

cation and Doppler velocity of hydrometeors. Pulsed Doppler radars consist of a waveform

generator, transmitter, antenna, and receiver [3]. An example of a conventional pulsed-

Doppler radar is the S-band WSR-88D, which remotely observes the atmosphere and col-

lects high-quality data such as reflectivity, mean radial velocity, and spectrum width [4]. It

uses a parabolic-reflector antenna to transmit pulses of electromagnetic energy forming a

narrow pencil beam pattern, and receive energy back-scattered from hydrometeors or other

scatterers in the atmosphere. The incident power density (Si) of the transmitted pulse can
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be expressed as follows [63],

Si(θ, ϕ) =
Pt

4πr2
G, (3.1)

G = gt f
2(θ, ϕ), (3.2)

where Pt is the peak transmit power, r is the range, gt is antenna gain which defines how

much the energy can be focused in the beam, and f 2(θ, ϕ) is the normalized antenna ra-

diation pattern 1. As the transmitted wave impinges on hydrometeors, part of the energy

is back-scattered to the radar. The back-scattering radar cross-section (RCS, σb) repre-

sents the scatterers’ effective area that intercepts the propagating wave and reflects energy

back. Then, the power density (Sr) received back at the antenna can be determined as

follows [63],

Sr(θ, ϕ) =
Si(θ, ϕ)σb

4πr2
=

Ptσb
(4πr2)2

. (3.3)

The power received by the antenna is [63],

Pr = SrAe(θ, ϕ) =
Ptgrλσbf

4(θ, ϕ)

(4π)3r4
l2, (3.4)

where Ae =
grλ2

4π
f 2(θ, ϕ) denotes effective antenna area, gr is received gain, l2 is the two-

way losses, and λ is the radar wavelength. Note that the received gain is equal to transmit

gain (gt = gr) for pencil beam operation.

The echo voltage V (t) from a point target at the receiver can be viewd as the time-

delayed transmitted signal and is described as follows,

V (t, r) = A {exp[j2πf(t− 2r/c) + jψ]}U(t− 2r/c), (3.5)

1Note that all the equations assume the use of variables in the international system of units.
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where A is the complex amplitude, c is the speed of light, and 2r/c is the range time. The

echo phase is defined as follows [63],

ψe = −4πr

λ
+ ψt + ψs, (3.6)

where ψs is the phase shift upon scattering, and ψt is the transmitter phase. The received

signal is split into I and Q channels. The I channel mixes the received signal with a local

oscillator at the radar frequency and produces signal as follows [63]:

I(t) = (|A|/
√
2)U(t− 2r/c) cos(4πr/λ− ψt − ψs). (3.7)

Similarly, the Q channel mixes the received signal with a local oscillator at the radar fre-

quency but with a 90− deg phase shift and results in the following form [63],

Q(t) = (|A|/
√
2)U(t− 2r/c) sin(4πr/λ− ψt − ψs). (3.8)

The weather signal received contains contributions from all the hydrometeors in the

resolution volume. The locations of each hydrometeor are random, therefore, the amplitude

and phase of the weather signal sample are considered random variables. Assuming the

discrete range time delay received from echoes at r to be τs = r/(2c), the complex weather

signal sample V (τs) is defined as [63],

V (τs) =
1√
2

∑
i

AiWie
−j4πri/λ = I + jQ, (3.9)

whereAi and ri are the amplitude and range of the ith scatterer, andWi is a range-dependent

weight. Note that the effects from the antenna radiation pattern, f 2(θ, ϕ), are considered to
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be part of Ai. The power at range time τs, P (τs), is derived as follows [63],

P (τs) = V V ∗ =
1

2

Ns∑
i,k

AiA
∗
kWiW

∗
k e

j4π(rk−ri)/λ. (3.10)

Weather signals at the IQ channels can be defined as follows,

I(τs, Ts) =
∑
i

|AiWi| cos γi = |V (τs, Ts)| cos(θs, Ts), (3.11)

Q(τs, Ts) = −
∑
i

|AiWi| sin γi = |V (τs, Ts)| sin(θs, Ts). (3.12)

Assuming the elemental volume dV = r2dr sin θ dθ dϕ , where θ and ϕ represent elevation

and azimuth angle, in the polar coordinate system is filled with hydrometeors, then the

expected power return from an elemental volume is [63],

E[dP ] =
Ptg

2λ2f 4(θ − θ0, ϕ− ϕ0)

(4π)3r4l2
|Ws(r0, r)|2dV

E[σb]

dV
, (3.13)

where θ0 and ϕ0 indicate the beam direction in elevation and azimuth, and E[σb]
dV

is the

expected backscatter cross-section per volume and can be defined as reflectivity, η(r) with

an equation,

η(r) =

∫ ∞

0

σb(D)N(D, r)dD. (3.14)

Then, Eq. (3.13) can be rewritten as:

E[dP ] = I(r0, r)dV

∫ ∞

0

σb(D)N(D, r)dD, (3.15)

with

I(r0, r) =
Cf 4(θ − θ0, ϕ− ϕ0)|Ws(r0, r)|2

l4r4
, (3.16)
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C =
Ptg

2λ2

(4π)3
, (3.17)

where θ0 and ϕ0 are the beam direction, and r0 is the range to the center of the resolu-

tion volume being considered. By integrating over space, Eq. (3.15) is converted to the

following equation:

P (r0) =

∫ r2

0

∫ π

0

∫ 2π

0

η(r)I(r0, r)dV. (3.18)

Assume that the volume is filled uniformlly, loss and reflectivity do not change inside the

resolution volume, and the antenna pattern is circularly symmetric and has a Gaussian

shape in Eq. (3.18). Then, the expected weather signal power at the receiver is,

P (r0) =
Ptg

2ηcτπθ21λ
2

(4π)3r20l
216 ln 2

. (3.19)

The angular resolution of the antenna can be measured by determining the half-power

beamwidth beamwidth (i.e., -3 dB width), which can be approximated as [64],

θ1 = 2 sin−1

(
1.4λ

πD

)
≈ 0.89

λ

D
(3.20)

whereD is the antenna diameter. Another important key feature that determines the quality

of radar estimates is the Signal-to-Noise Ratio (SNR). In real measurements, there are two

types of noise, one from external sources and the other one from the radar receiver itself.

The SNR can be simply described as follows,

SNR =
Pr0

N
(3.21)

where Pr0 is the signal power at the receiver output, and N is the white noise power.

The information that can be obtained from single polarization weather radars is reflec-

tivity factor (Zh), mean Doppler velocity (vr), and spectrum width (σv). Signal power from
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the dual-polarization of H and V channels can be estimated in terms of the received echo

voltages Vh and Vv, as follows [63],

Ŝh =
1

M

M−1∑
k=0

|Vh(k)|2 −N, (3.22)

and

Ŝv =
1

M

M−1∑
k=0

|Vv(k)|2 −N, (3.23)

where M is the number of signal samples. Second, the mean Doppler velocity can be

estimated as follows [63],

v̂ = −(λ/4πTs) arg{R̂(Ts)}, (3.24)

where R̂(Ts) is the autocorrelation estimated at lag Ts, and which is pulse repetition time.

The autocorrelation estimated from the horizontal polarization is described as follows,

R̂h(Ts) =
1

M

M−1∑
m=0

V ∗
h (m)Vh(m+ 1). (3.25)

Last, spectrum width can be calculated with the estimation of |R̂1h| = |R̂h(Ts)|, as fol-

lows [63],

σ̂vh =
λ

2πTs
√
2

∣∣∣∣∣ln
(

Ŝh

|R̂1h|

)∣∣∣∣∣
1/2

. (3.26)

Single-polarization weather radars are not able to obtain information about shape or

aspect ratio of hydrometeors, or the phase of the hydrometeor (e.g., water/ice), due to

transmitting only horizontally polarized waves [3]. Dual-polarization radars offer addi-

tional information by transmitting and receiving horizontally and vertically polarized elec-

tric fields . Therefore, weather radars have been upgraded to dual-polarization, enabling
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algorithms such hydrometeor classification, better rainfall rate estimation, hail detection,

to cite a few [65].

Polarimetric variables derived include ZDR, ΦDP, and ρhv [66]. The ZDR can be esti-

mated as follows [63],

ẐDR = 10 log
Ŝh

Ŝv

, (3.27)

where Ŝh and Ŝv are the mean signal powers estimated from H and V polarizations. The

ΦDP can be estimated as follows [67],

Φ̂DP = arg{R̂hv(0)} (3.28)

where, R̂hv(0) is the cross-correlation estimated at lag 0,

R̂hv(0) =
1

M

M−1∑
i=0

Vhi
∗Vvi (3.29)

where Vh and Vv are the IQ signals received at horizontal and vertical polarizations. The

correlation coefficient and spectrum width can be estimated as follows [63],

ρ̂hv(0) =

∣∣∣R̂hv(0)
∣∣∣

(ŜhŜv)
1/2

. (3.30)

Conventional radars with a parabolic antenna can offer dual-polarization capabilities,

increase receiver sensitivity, and provide real-time data that allow forecasters to identify se-

vere weather events [4]. However, mechanical scanning with a rotating parabolic antenna

limits the temporal resolution and the flexibility of the system. This is a critical limitation,

especially for severe weather observation that requires fast scan update rates. Also, they

cannot support adaptive scanning, which is one of the scanning strategies that can adap-

tively change the beam patterns to sample specific locations that have the potential for the
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severe weather [9].

3.2 Phased Array Radar

Figure 3.1: An example phased array radar with a potential beam pattern and a closeup
look of its radiating elements [8].

The phased array antenna is composed of several antenna elements, through which elec-

tronic steering, beamforming, and other capabilities are possible [8]. It has the potential

to improve temporal and spatial resolution through its unique capabilities, without impact-

ing data quality. Instead of mechanically scanning the beam, the PAR steers the beam to

the desired direction electronically by changing the relative phase of signals radiated by

its elements, and creating wave fronts progressing in the desired direction [9]. Each ele-

ment of the PAR, normally separated by d = λ/2 to mitigate the grating lobes, transmits

and receives independent electromagnetic waves. Waves from each element are coherently

added together to form a collimated beam in the desired direction. The main lobe can be

electronically steered by varying the difference in phases between antenna elements. To

steer the beam in a given direction, the phase difference between adjacent elements should
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be [8],

φ = kd sin θ, (3.31)

where k = 2π/λ is the wavenumber and θ is the steering angle. An example of this is

shown in Fig. 3.2.

Figure 3.2: Fundamental concept of PAR with uniform linear array [8] is shown. φ is the
phase shift needed to steer at θ for each elements that are spacing with d.

The National Weather Radar Testbed (NWRT) was a PAR built using an AN/SPY-1A

antenna provided by the US Navy, for weather research installed in Norman, OK, and

shown in Fig. 3.3. Compared to the WSR-88D radar, the NWRT was able to improve the

temporal resolution, collecting volumetric scans 5 times faster (in ≤ 1 min). However, the

NWRT was a single-polarization radar. More recently, the National Severe Storms Labo-

ratory installed a dual-polarization phased array radar, the Advanced Technology Demon-

strator (ATD), in the NWRT facility to evaluate the performance of polarimetric PAR for

weather observations [68, 69]. ATD is a dual-polarization PAR with a scalable antenna
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panel architecture, deployed for testing weather and aircraft surveillance. It is shown in

shown in Fig. 3.5 [68], along with other radar systems in the surrounding area. The Multi-

function Phased Array Radar (MPAR) concept involves using the same radar system for

multiple applications simultaneously. MPAR can reduce the system cost by combining

several radars into one, and by reducing the need for maintenance due to lower wear and

tear caused by mechanical rotation.

Figure 3.3: NWRT: Installation of the radome over the single aperture of the AN/SPY-IA
radar antenna [9].

The Turbulent Eddy Profiler (TEP) was a vertically-pointing profiler with 2-D DBF

capability to observe the intensity and motion of turbulence with high temporal and spatial

resolution [70]. A picture of TEP is shown in Fig. 3.4. TEP transmits wide vertical beams

to observe the motion of turbulence at altitudes from 200 m to 1.5 km. It provides three-

dimensional estimates of the echo power, radial velocity, and spectrum width obtained by
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Figure 3.4: TEP array under construction in the field. Clutter fences, the transmit horn, and
the trailer are visible in the background [70].

performing DBF.

The C-band mobile Parametric Atmospheric Imagining Radar (PAIR) offers high-

temporal resolution, scanning flexibility, and fast update time with DBF in elevation [72,

73]. It is being developed by the ARRC at OU with funding from the National Science

Foundation (NSF). Also, it has a novel polarimetric phased array antenna design that allows

to achieve required dual-polarization data quality, due to its ultra-low cross-polarization

levels (on the order of -50 dB) [74]. A picture of PAIR is shown in Fig. 3.6.

The Horus radar is an all-digital, S-band, polarimetric phased array radar for multi-

mission surveillance, including weather and aircraft surveillance [71]. The antenna is com-

posed of 1024 (32 × 32) dual-polarization antenna elements that offers great flexibility in

scanning strategies, including traditional pencil beams and DBF with spoiled beams [75,

76]. A picture of Horus is shown in Fig. 3.7.
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Figure 3.5: (left foreground) The MPAR 10-panel proof of concept demonstrator, based
on the Lincoln Laboratory panel provided the first S-band dual-polarization weather data.
(blue radome) The National Weather Radar Testbed is the background (right), and the
(white radome) NSSL WSR-88D is in the background (left) [68].

3.3 Simulation of Digital Phased Array Radar

In this section, a simulation framework for point target and weather-like signals is pre-

sented. Point target signals are simulated based on the TEP radar specification [70], which

is a vertical transmitting radar and performs DBF in two dimensions, north-south (NS)

and east-west (EW). Therefore simulation of a point target is conducted for one range gate

in two angular dimensions. Weather-like IQ voltage signals are simulated from existing

Next-generation Weather Radar (NEXRAD) data following the methods described in [77]

and [78]. Since NEXRAD is a reflector-antenna based radar with a single receiver, addi-

tional received signals from a PAR are simulated to evaluate DBF methods. In this thesis,

the Horus radar specification is used to investigate the DBF in azimuth direction.
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Figure 3.6: A picture of C-band mobile Polarimetric Atmospheric Imagining Radar (PAIR)
is shown.

3.3.1 Simulation of Point Target Signals

The time-series IQ voltage signals for a point target are simulated based on TEP specifi-

cations [79], shown in Table 3.1. The geometry of the TEP receiving antenna elements is

Table 3.1: Point target simulation parameters based on TEP specification

Parameter Value
Frequency (f ) 915 MHz
Number of subarrays (N ) 56
Pulse repetition time (prt) 1/140 s
Spacing between adjacent antenna elements (d) 16.4 mm
Number of sample (M ) 64
Number of scan (rec) 75
Height 2000 (m)
NS scan -15◦ to 15◦

EW scan -15◦ to 15◦

shown in Fig. 3.8. The simulation of IQ voltage signals is implemented using the following

equation,

Vn(t) = Ane
jk(rt(t)+rrn (t)) (3.32)

where rt(t) is the range from transmitter to the target at time t, and rrn(t) is the range from

target to the nth antenna element at time t. The simulated point target moves in the shape
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Figure 3.7: The mobile Horus is an S-Band, dual-polarization, fully digital radar [71].

of a heart; its location over time is shown in Fig. 3.9.

3.3.2 Simulation of Weather-like Signals

Three different weather cases are simulated based on Horus specification as shown in Table

3.2, each with different types of storms. These include a tornadic supercell storm, hail

storm, and thunderstorm. First the NEXRAD data are used to produce realistic time-series

IQ data. Radar variables such as ρhv, ΦDP, σv, Zh, and vr for each case are shown in

Fig. 3.10, Fig. 3.11, and Fig. 3.12.

In particular, NEXRAD data have two types of flags, one is for overlaid echoes la-

beled with -888 in Doppler variables and the other one is for censored data labeled with

-999 in Doppler variables. Therefore, the collected radar variables need robust filling and
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Figure 3.8: Geometry of TEP with 56 receiving channels is shown.

Figure 3.9: Location of a simulated point target. The point target is moving in a heart shape
over 75 scans.
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Figure 3.10: Tornadic supercell storm case is shown. Radar variables were collected by
NEXRAD, 05/20/2013 20:04:14.23 KTLX. Top left: correlation coefficient (ρhv), top right:
differential phase (ΦDP), bottom left: spectrum width (σv), bottom middle: reflectivity
factor (Zh), bottom right: velocity (vr).

Figure 3.11: Hail storm case is shown. Radar variables were collected by NEXRAD,
04/27/2013 01:52:04.19 KTLX. Top left: correlation coefficient (ρhv), top right: differential
phase (ΦDP), bottom left: spectrum width (σv), bottom middle: reflectivity factor (Zh),
bottom right: velocity (vr).
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Figure 3.12: Thunderstorm case is shown. Radar variables were collected by NEXRAD,
04/26/2013 14:02:37.15 KTLX. Top left: correlation coefficient (ρhv), top right: differential
phase (ΦDP), bottom left: spectrum width (σv), bottom middle: reflectivity factor (Zh),
bottom right: velocity (vr).

de-aliasing before they can be used to simulate IQ signals. The overlaid echoes and the

censored data are filled up with interpolation and Gaussian noise, respectively. Processed

data are shown in Fig. 3.13, Fig. 3.14, and Fig. 3.15.

The three important spectral moments, Zh, vr, and σv, are used to simulate weather-like

IQ signals following the method discussed in [77]. First, power (S) can be estimated from

Zh as follows [63],

ẐdBZ = 10 log10 Ŝh + 20 log10R +R · µ+ C0, (3.33)

where R is the range of the radar in km, µ is atmospheric attenuation in dB/km, and C0 is

the radar calibration constant. Second, Gaussian-shaped Doppler spectrum Sk is generated

with power S, σv, and vr as follows,

Sk =
S√
2πσv

exp

[
−(vk − v)2

2σ2
v

]
. (3.34)
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Figure 3.13: This is the output from robust filling and de-aliasing for the tornadic supercell
storm case. Top left: correlation coefficient (ρhv), top right: differential phase (ΦDP), bottom
left: spectrum width (σv), bottom middle: reflectivity factor (Zh), bottom right: velocity
(vr).

Figure 3.14: This is the output from robust filling and de-aliasing for the hail storm case.
Top left: correlation coefficient (ρhv), top right: differential phase (ΦDP), bottom left: spec-
trum width (σv), bottom middle: reflectivity factor (Zh), bottom right: velocity (vr).

Third, the time-series IQ voltage signals (V (i)) for distributed targets are computed
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Figure 3.15: This is the output from robust filling and de-aliasing for the thunderstorm
case. Top left: correlation coefficient (ρhv), top right: differential phase (ΦDP), bottom left:
spectrum width (σv), bottom middle: reflectivity factor (Zh), bottom right: velocity (vr).

through inverse Fourier transform of the simulated power spectrum.

V (i) = I(i) + jQ(i) =
1

n

n∑
k=1

P
1/2
k exp [jθk] exp

[
−j 2π

n
ki

]
. (3.35)

Finally, a stationary point target was added at the location of 99.7476◦ (azimuth) and

21.125 km (range), where there are no significant weather echoes, to evaluate the ability of

adaptive nulling using the Capon method.

The simulated IQ signals from NEXRAD variables are for one receiver, yet, additional

received signals are required to evaluate DBF. Therefore, the simulation is extended to

include digital PARs. The synthesized transmit pattern for Horus radar is used for for

simulation to generate realistic data and is in Fig. 3.16. This pattern is 60◦ wide.

A schematic representing the digital PAR simulation is shown in Fig. 3.17 with an
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Figure 3.16: One way of transmit pattern for Horus is shown. The x-axis shows the angle
(azimuth) and the y-axis shows the power in dB.

equation as follows,

Vn(t) =
nt∑
i=1

f 2
θ Vi exp [−jk(rt(t) + rrn(t))] + nt(t) (3.36)

where Vi is the simulated IQ signals from NEXRAD variables, nt is the number of sim-

ulated IQ signals used to form a spoiled beam, and Nt(t) is Gaussian-distributed white

noise with mean value extracted from the NEXRAD KTLX, equal to 1.0357 × 10−8 for

the tornadic storm case, 1.0096 × 10−8 for the hail storm case, and 1.0008 × 10−8 for the

thunderstorm case. This process is repeated for every receiving antenna element (32 in this

case). The simulated spoiled beams are 60◦ wide (nt = 120) and overlap 20 deg to miti-

gate discontinuities at each edge. A total of 36 spoiled beams were simulated to cover 360◦

(azimuth). The SNR from one antenna element is shown in Fig. 3.18. SNR is calculated

with Eq. (3.21).

3.3.3 Digital Beamforming

Digital beamforming is a unique capability of PAR, which can be used to improve tem-

poral resolution. The improved temporal resolution of PAR has the potential to meet the

41



Figure 3.17: Illustration of PAR simulation based on Horus specifications with a spacing of
λ/2 between antenna elements. Yellow indicates the simulated IQ signals from NEXRAD,
red represents the transmitting range from nth antenna element to the target, blue represents
the receiving range from the target to nth antenna element, and purple indicates Gaussian
two-way electric field pattern.

Figure 3.18: SNR of simulated spoiled beams for (left) tornadic supercell storm case cov-
ering 360◦ in azimuth and 37.375 km in range, (middle) hail storm case covering 360◦ in
azimuth and 99.875 km in range, and (right) Thunderstorm case covering 360◦ in azimuth
and 62.375 km in range.
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Figure 3.19: Illustration of DBF. The transmitting antenna element transmits a spoiled
beam (pink) and multiple narrow receiving beams at each receiving antenna element (mul-
tiple colors) are formed simultaneously.

requirement needed for high-impact weather observations [21]. DBF is accomplished by

transmitting the spoiled beams and forming narrow receive beams within the transmit beam

simultaneously to sample a wide sector of the atmosphere, as illustrated in Fig. 3.19. DBF

can be done in either a non-adaptive (i.e., deterministic) or adaptive way. The Fourier

method is a non-adaptive DBF method that pre-computes the beamforming weights based

Table 3.2: Weather Simulation Parameters: 1D Horus

Parameter Tornado Hail Thunderstorm
Date 05/20/2013 04/27/2013 04/26/2013
Time 20:04:14.23 01:52:04.19 14:02:37.15
Range Gate coverage (rg) 37.375 km 99.875 km 62.375 km
Azimuth coverage (az) 360◦

Frequency (f ) 3 GHz
Range resolution 250 m
Number of antenna element (N ) 32
Spacing (d) 16.4 mm
Number of sample (M ) 64
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Figure 3.20: Illustration of non-adaptive and adaptive DBF methods. The non-adaptive
method has fixed sidelobes while the adaptive method lowers the sidelobe when there’s an
interference source.

on the geometry of the antenna elements. Therefore it results in fixed sidelobe levels and

fixed angular resolution, which could lead to high sidelobe levels in undesirable directions

that have high return power, often caused by a ground clutter or interference. In contrast,

the Capon method (also known as the MVDR) is an adaptive DBF method that computes

the beamforming weights using received signals. Therefore the Capon method is able to

suppress the high power return from an undesired direction by placing a null adaptively as

illustrated in Fig. 3.20.

Fig. 3.21 shows simulated digitally formed beams based on the TEP specifications.

The beams generated using the Fourier method are shown on the left two plots, and the

beams generated using the Capon method are shown on the right two plots. The location of

an interfering source is marked in black and the steering direction is marked in blue. The

beam generated by the Capon method puts a null at the location of the interfering source.
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Figure 3.21: The generated beams by the (left two plots) Fourier and the (right two plots)
Capon methods based on TEP specification. The location of the interfering source is
marked in black and the steering direction is marked in blue.

Non-adaptive digital beamforming

The Fourier method computes beamforming weights by calculating the needed phase shift

between antenna elements to electronically steer the beam in desired directions, as fol-

lows [16],

ωf = [ejk·D1 ejk·D2 . . . ejk·DN ]T , (3.37)

where D represents the position vector of the N th antenna element, and k is the wavenum-

ber vector determined as k = 2π/λ [sin θ sinϕ sin θ cosϕ cos θ]. Note that the Fourier

beamforming weights are the conventional steering vector. Then, the power of the gener-

ated beam can be obtained as follows,

P̂f (k, t) = ωH
f Rωf , (3.38)

where H indicates the Hermitian operator, and R is the autocovariance matrix of the re-

ceived signals from N elements at time t. Since the Fourier method is independent of the

received data and the beamforming weights are pre-computed based on the antenna geom-
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etry and steering angle, it does not optimize sidelobe levels based on contaminating target

locations [26].

Adaptive digital beamforming

The Capon method is a data-dependent technique that adaptively calculates the beamform-

ing weights from the returned signals to improve the quality of data. It attempts to lower

the sidelobe levels in directions with high return power and minimize the power in all di-

rections except the desired direction k [25, 26]. This minimization problem is described

mathematically as follows,

min
w

P (k, f) subject to eHw = 1. (3.39)

To solve this problem, standard Lagrange methods [80] was applied to the general form of

power given Eq. (3.38), as follows,

L(w, γ) = wHV w + γ(eHw − 1), (3.40)

where γ is the Lagrange multiplier shown below [25],

γ =
−2

eHV −1e
. (3.41)

Finally, the Capon beamforming weights are computed as follows [16],

ωC =
R−1e

eHR−1e
, (3.42)
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where e = ωf is the steering vector, R−1 is the inverse of the autocovariance matrix with

a size of N ×N . The power of the formed beam can be computed as follows,

P̂c(k, t) = ωH
c Rωc. (3.43)

The computation time of the autocovariance matrix inversion will exponentially grow with

N which limits the real-time implementation of the Capon method for large digital PARs.

Details for calculating algorithm complexity will be discussed later in this chapter.

DBF Results

The results of the non-adaptive and adaptive DBF methods for the simulated point target,

an actual point target observed by TEP, and the three different weather cases are presented

next. First, DBF has been done in two dimensions (NS and EW) for the simulated point

target and actual point target cases, and 121 narrow receiving beams generated. For the

simulated point target case, the DBF electronic scan covers -15◦ to 15◦ in NS (θy) and EW

(θx) with 3◦ sampling. The power of the generated beam by each method is calculated with

Eq. (3.38) and Eq. (3.43) and is shown in Fig. 3.22 and Fig. 3.23 with every 5th scan out of

total 75 scans plotted. The second point target case is real data of a moving bird collected

by TEP with 56 sub-arrays on June 14, 2003. The location of the bird is shown in Fig. 3.24.

The DBF electronic scan covers -10◦ to 10◦ in NS (θy) and EW (θx) with 2◦ sampling. The

power of the Fourier and the Capon methods is shown in Fig. 3.25 and Fig. 3.26 with the

first 15 scans out of total 21 scans plotted.

DBF has been done in one dimension for 360◦ azimuth and oversampled at 0.5◦ az-

imuthal sampling for the weather cases based on the Horus specifications. The normalized

power and reflectivity fields of the Fourier and Capon methods for each weather case are

shown in Fig. 3.27, Fig. 3.30, and Fig. 3.33. The stationary point target, which was arti-
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Figure 3.22: Normalized power of the Fourier method with simulated point target data.
The point target is moving in a heart-shaped path over 75 scans. Every 5th scan is plotted.
X-axis is EW (θx) and y-axis is NS (θy).

Figure 3.23: Normalized power of the Capon method with simulated point target data. The
point target is moving in a heart-shaped path over 75 scans. Every 5th scan is plotted. X-
axis is EW (θx) and y-axis is NS (θy).
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Figure 3.24: The movement of a bird that was observed by TEP with 21 scans. It starts at
(-4◦ , 6◦ ) and ends at (2◦ , -4◦ ). The X-axis is EW (θx) and the y-axis is NS (θy).

Figure 3.25: Normalized power of the Fourier method with real TEP data of a moving bird.
A bird is moving over 21 scans. Every 5th scan is plotted. X-axis is EW (θx) and y-axis is
NS (θy).

ficially added, is circled in red. This figures show that the Fourier method was not able to

suppress the high power coming back from the interference caused by the stationary point
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Figure 3.26: Normalized power of the Capon method with real TEP data of a moving bird.
The point target is moving in a heart-shaped path over 75 scans. Every 5th scan is plotted.
X-axis is EW (θx) and y-axis is NS (θy).

target while the Capon method was able to suppress the high power coming back from the

undesired directions.

Normalized antenna patterns of the Fourier and the Capon methods around the station-

ary point target for each weather case are shown in Fig. 3.28, Fig. 3.31, and Fig. 3.34.

The Fourier beam pattern is in red and the Capon one is in blue. The location of the sta-

tionary point target is marked with a green dotted line and the boresight angle is marked

with a black line. These figures are showing that the beam pattern generated by the Capon

method places a null adaptively at the location of the stationary point target while the

Fourier method generates beam patterns with a fixed sidelobe level. Normalized antenna

patterns of the Fourier and the Capon methods in the weather area for each weather case

are shown in Fig. 3.29, Fig. 3.32, and Fig. 3.35.

The Capon method shows better performance achieved by adaptive nulling. However,

it becomes challenging to implement in real-time when the number of antenna elements

50



Figure 3.27: Normalized power in dB (top row) and reflectivity fields in dBZ (bottom row)
by the Capon method (left column) and the Fourier method (right column) for the tornadic
supercell storm case. The location of a stationary point target that was artificially added is
circled in red.

Figure 3.28: Normalized antenna pattern generated by the Fourier and the Capon methods
around a stationary point target for the tornadic supercell storm case. A stationary point
target is located at 99.7476◦ in azimuth, marked with a dotted green line. From the left
to the right, the beam steers at 91.257◦ , 93.2767◦ , 95.2295◦ , 97.2372◦ , and 99.2615◦ ,
marked with a solid black line.
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Figure 3.29: Normalized antenna pattern generated by the Fourier and the Capon methods
for a tornadic supercell storm case. From left to right, the beam steers at 271.2387◦ ,
273.2602◦ , 275.2570◦ , 277.2729◦ , and 279.2587◦ , marked with a solid black line.

Figure 3.30: Normalized power in dB (top row) and reflectivity fields in dBZ (bottom row)
by the Capon method (left column) and the Fourier method (right column) for a hail storm
case. The location of a stationary point target that was artificially added is circled in red.
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Figure 3.31: Normalized antenna pattern generated by the Fourier and the Capon methods
around a stationary point target for the hail storm case. A stationary point target is located
at 99.7476◦ in azimuth, marked with a dotted green line. From the left to the right, the
beam steers at 90.2472◦ , 92.2330◦ , 94.2517◦ , 96.2512◦ , and 98.2343◦ , marked with a
solid black line.

Figure 3.32: Normalized antenna pattern generated by the Fourier and the Capon methods
in weather area for the hail storm case. From the left to the right, the beam steers at
270.2280◦ , 272.2495◦ , 274.2627◦ , 276.2512◦ , and 278.2617◦ , marked with a black line.

grows. That is because its computational complexity increases exponentially due to the

needed covariance matrix inversion. Computational complexity of each DBF method is

discussed in the following section.
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Figure 3.33: Normalized power in dB (top row) and reflectivity fields in dBZ (bottom
row) by the Capon method (left column) and the Fourier method (right column) for the
thunderstorm case. The location of a stationary point target that was artificially added is
circled in red.

Figure 3.34: Normalized antenna pattern generated by the Fourier and the Capon methods
around a stationary point target for the thunderstorm case. A stationary point target is
located at 99.7476◦ in azimuth, marked with a dotted green line. From the left to the right,
the beam steers at 90.2472◦ , 91.2579◦ , 93.7766◦ , 94.7296◦ , and 99.7394◦ , marked as a
solid black line.
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Figure 3.35: Normalized antenna pattern generated by the Fourier and the Capon methods
in weather area for the thunderstorm case. From the left to the right, the beam steers at
271.2387◦ , 272.7301◦ , 274.2627◦ , 275.7980◦ , and 277.2729◦ , which is marked with a
black line.

3.4 Computational Complexity of Digital Beamforming Methods

The Fourier method involves only matrix multiplication, namely k ·D, where k has a size

of 1 × 3 and D has a size of 3 × 1 as described in Eq. (3.37). The complexity order of

matrix multiplication of a n ×m matrix and a m × p matrix that produces a n × p matrix

will be O(nmp) [81]. Therefore the complexity order of the Fourier method is O(3) which

is independent of the size of the receivers and remains constant.

The Capon method involves the matrix inversion to calculate R−1, and the auto-

covariance matrix R has a size of the number of receivers by the number of receivers

(N×N), as described in Eq. (3.42). The complexity order of matrix inversion done by

Gauss-Jordan elimination with a n × n matrix that produces a n × n will be O(n3) [81].

Therefore, the complexity order of the Capon method will be O(N3), which increases ex-

ponentially with N . Fig. 3.36 shows the order of complexity as a function of the number

of receivers for each DBF method.
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Figure 3.36: Complexity order of the Fourier and the Capon methods as a function of the
number of the receiver. The blue line represents the complexity order of the Capon method
and the green line represents the complexity order of the Fourier method.
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Chapter 4

Deep Learning for Adaptive Digital Beamforming

To overcome the computational burden of the Capon method, the Deep Learning for Adap-

tive digital beamForming (DLAF) algorithm is developed in this thesis. DLAF is a feed-

forward deep neural network and is trained through deep learning. The overview of DLAF’s

network is described in Fig. 4.1. The model is designed to take the time-series IQ signals

Figure 4.1: The proposed convolutional neural network that takes the time-series IQ signals
and produces the beamforming weights to perform adaptive DBF. The network is built
with convolution layer, batch normalization layer, activation layer, and dense layer. It
extracts important features of inputs, compares with ground truth data, and learns from the
estimated bias.

as inputs and produce beamforming weights for each antenna element at specific angular

directions as output, based on the Keras library in Python. Keras is one of the most widely
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used libraries for ML users, since it offers many different layers including activation, con-

volution, and dense to help users build flexible and efficient networks [82]. Yet, Keras does

not support complex values in the network. Separating complex values into real and imag-

inary parts is not desirable for this case, because it loses the phase information. Therefore,

complex values of signals are transformed into phasor form for the full use of Keras’ flex-

ibility and preserving the phase information of the signals. The transformation between

rectangular and polar forms of complex values are shown below,

x = a+ jb, (4.1)

θ = tan−1

(
b

a

)
, (4.2)

A =
√
a2 + b2, (4.3)

a = A cos (θ), (4.4)

b = A sin (θ). (4.5)

For efficient learning, signal phase and amplitude are trained independently in parallel with

different activation functions.

The remainder of this section is organized as follows. The structure of the training

datasets is discussed in Section 4.1. The components of the network and their functions are

discussed in Section 4.2. Lastly, the training strategy is discussed in Section 4.3.

4.1 Training Data for DLAF

This section will discuss how to prepare datasets for DLAF training. The size and order

of data dimension are important for the proper training of the network, because the convo-

lution filter is applied on the two dimensions of the data (e.g., image). Therefore, the first

dimension of the input data indicates the different sets of training data, and the second and
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Figure 4.2: (a) Structure of input data for DLAF training. Input data have a 3D matrix
format with a size of a × N × M , where a is the number of range gate, N is number
of receivers, and M is number of radar samples. (b) Structure of output data for DLAF
training. Output data have a 3D matrix format with a size of a × N × b, where b is the
number of beam directions.

third dimension indicate the two dimensional input data. For DLAF, the time-series IQ sig-

nals and the Capon beamforming weights are used as input and output. The time-series IQ

signals have four dimensions, each indicating the number of transmit beams, range gates,

antenna elements, and radar samples. The first two dimensions are combined together to

form a 3D matrix with a size of a × N ×M , where a is the range number of IQ signals,

and M is number of radar samples, as shown in Fig. 4.2. The Capon beamforming weights

have four dimensions, each indicating the number of transmit beams, range gates, antenna

elements, and beam index. The first two dimensions are combined together to form a 3D

matrix with a size of a × N × b, where b is the number of beam directions. Then, the

training data are normalized to minimize the loss and time of the learning before being fed

to the network. Phase is normalized by π and amplitude is normalized by their maximum
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value. For point target cases, 200 IQ realizations of a moving point target were simulated

for training, the number of receivers is 56 (TEP), with 64 samples. For weather cases, total

1800 IQ realizations (36 transmit beams and 50 range gates) of the tornadic supercell storm

case were used for the training. Since the IQ signals of distributed targets (i.e., weather)

are more complicated than the point target IQ signals, more datasets were used for DLAF

training. The N is 32 (Horus), and M is 64 for the weather IQ signals.

4.2 Architecture of the Neural Network

Figure 4.3: Architecture of the neural network. It contains 7 convolution layers followed
by normalization layers and activation layers, and a dense layer as an output layer.

Two different networks were built to train phase and amplitude information indepen-

dently. Both networks are composed of 7 convolution layers, 6 normalization layers, 6

activation layers, a dense layer, as shown in Fig. 4.3, to extract important features from

input data. Yet, different activation functions are used for phase and amplitude information

to improve the efficiency of the training. Tanh function, which can support negative val-

ues and non-linear changes of the data, is used as activation function for phase inputs, and

ReLU, which can only support the positive values with the linear change, is used as activa-

tion function for amplitude inputs. The convolution layer uses the 64 convolution filters. A

dense layer fully connects the neurons of current layer to the next layer, which could help
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to improve the accuracy. Then the network produces phase and amplitude of beamforming

weights for each receiving elements and each beam index.

A set of phase and amplitude training data with a size of N ×M are shown in Fig. 4.4.

As shown, phase contains values from −π to π and amplitude contains only positive values

(≤ 0.07). Phase and amplitude data are going through the network separately. Then, they

are combined to form complex valued beamforming weights at the end of the network. The

convolution layers learns each data with 64 convolution filters. The results from the first

Figure 4.4: Illustration of phase (left) and amplitude (right) of training data for DLAF.
The x-axis-axis shows number of samples and the y-axis-axis shows number of antenna
elements. The value at each pixel is indicated with color. Phase has a range of −π to π
(radians) and amplitude has a range of 0 to 0.07

convolution layer for the phase and amplitude are shown in Fig. 4.5 and Fig. 4.6. The

spatial information of the time-series IQ signals may seem insignificant compared to image

data. Therefore, the 64 convolution filters are used to improve the efficiency of learning

spatial information in the input data.

Data are normalized after every convolution layers to avoid excessive data loss dur-

ing the activation layers. Batch normalization is used inside the neural network as it gets

trained with a batch size of 36. Batch normalization takes 36 inputs of training data and

uses the averaged statistical parameters to normalize data. Also, normalizing data through-

out the training preserves the consistency of data. As data gets more complex, the role of

normalization becomes critical for proper learning. The number of batch size, 36, indicates

61



Figure 4.5: Illustration of outputs from 64 convolution filters applied to the phase. The
color-scale is constant. Note that they have the same color scales from Fig. 4.4.

the number of transmit beams that is used to cover 360◦ in azimuth for one range gate. Ac-

tivation functions allow the neural network to learn complex features of the data that cannot

be analyzed by simple linear regression, as it was discussed in Chapter 2 with Eq. (2.4).

Choosing the right type of activation function will impact the training significantly. Since

phase and amplitude data types are different, two different activation functions are used.

Linear activation function ReLU, which does not get saturated easily Eq. (2.5), is used

for amplitude data and tanh activation layer, which support negative values and non-linear

changes Eq. (2.10), is used for phase data. The function of the first convolution, normal-

ization, and activation layers for each phase and amplitude data are illustrated in Fig. 4.7

and Fig. 4.8.

This process of convolution, normalization, and activation is repeated for 7 times. The
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size of data reduces due to the kernel size of convolution filters. The convolution layer has

a kernel size of (1 × 10) for 6 times and (1 × 6) for the 7th convolution layer. The size of

the convolution kernel was chosen considering to have the right dimension for outputs. The

second dimension of the data is constant between input and output, but the third dimension

of the data changes from size of radar samples to size of DBF steering angles. It would be

easier to start with a larger size of inputs and produce a smaller size of outputs. However,

it is also possible to upsize the dimension of data from inputs to outputs with some extra

layers such as maximum pooling or deconvolution layers. The last set of this process for

phase and amplitude are shown in Fig. 4.9 and Fig. 4.10.

At the end of the convolution process, two dimension of neurons are transformed into

one dimension with a flatten layer and a dense layer fully connects all the neurons from 64

Figure 4.6: Illustration of outputs from 64 convolution filters applied to the amplitude. The
color-scale is constant. Note that they have the same color scales from Fig. 4.4.
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Figure 4.7: First set of convolution (left), normalization (middle), and activation (right)
applied to the phase training data.

Figure 4.8: First set of convolution (left), normalization (middle), and activation (right)
applied to the amplitude training data.

Figure 4.9: Last set of convolution (left), normalization (middle), and activation (right)
applied to the phase training data.

filters of convolution layers as shown in Fig. 4.11. The number of neurons gets matched

with the number of groundtruth data neurons through the dense layer. Then the phase

and amplitude outputs from the network are shown in Fig. 4.12 and Fig. 4.13. From this

state, the neural network calculates the bias between the output and truth, and update the
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Figure 4.10: Last set of convolution (left), normalization (middle), and activation (right)
applied to the amplitude training data.

learning weights over many epochs. After couple hundreds of epochs, the network is able

to minimize the errors with MSE loss function and produce similar data to the truth as

shown in Fig. 4.14.

4.3 Methodology

The performance of the training phase is evaluated with the loss over the number of epochs

for two different normalization methods. One is called layer normalization, Eq. (2.18), and

the other one is called batch normalization, Eq. (2.14). Details of these two normalization

were discussed in Chapter 2. The results are shown in Fig. 4.15 and Fig. 4.16. Batch

normalization starts with larger loss, yet it can be reduced over the epoch. In contrast, layer

normalization could start with smaller loss, yet the training quality is not stable throughout

the epoch. That is because strong IQ signals for the tornadic supercell storm can dominate

the learning process over the weak weather IQ signals with layer normalization, which

normalizes one layer at a time. However, batch normalization can normalize data for one

range gate over the 360◦ azimuth to keep the consistency of the data.
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Figure 4.11: Flatten layer (left column) and Dense layer (right column). The first row
shows the phase and second row shows the amplitude. The x-axis shows the number of
neurons from the convolution layer and the y-axis shows the value of each neuron.

Figure 4.12: Training output from DLAF for phase values (left) and the true values, which
are the Capon beamforming weights (right).
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Figure 4.13: Training output from DLAF for amplitude values (left) and the true values,
which is the Capon beamforming weights (right).

Figure 4.14: Result of the DLAF after the training for a couple hundreds epochs (left) and
the true values (right).
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Figure 4.15: Loss during the training with the layer normalization.

Figure 4.16: Loss during the training with batch normalization.

4.3.1 Complexity of the Neural Network

The complexity of this neural network is defined as O(nsLd), where n is the number of

neuron in the hidden layer, L is number of layer, s is the first dimension of the layer, and
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d is the second dimension of the layer [83]. The complexity of the neural network will

increase linearly depending on the number of layers and neurons. In this case, number of

neurons will increase depending on the size of the time-series IQ signals. Therefore, the

complexity order of training for DLAF will increase linearly with increasing antenna size

or the number of radar samples. However, it would not impact the computation time for the

inference mode once it is trained.
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Chapter 5

Application and Evaluation of DLAF

DLAF has been tested on three different sets: 1. simulated moving point target 2. real data

of a bird collected with the TEP 3. simulated weather cases 3a. supercell 3b. hail storm

3c. thunderstorm. The point target and weather simulations are described in Chapter 3.

As DLAF has been trained with time-series IQ signals and Capon beamforming weights,

the expected performance of DLAF is to produce similar beam patterns as the Capon pat-

terns. In this chapter, the performance of DLAF is evaluated and compared with the Capon

and Fourier methods. Two qualitative metrics are used for the evaluation of DLAF perfor-

mance: 1. Quality of the generated beam pattern, such as the -3 dB beamwidth and artifacts

from sidelobes 2. The capability of adaptive DBF in placing a null at the location of the

interference. Four quantitative metrics are used for the evaluation: 1. Computation time 2.

Performance of DLAF as a function of SNR 3. MSE of beamforming weight values and 4.

Normalized cross-correlation of generated beam patterns.

5.1 Qualitative Analysis

The quality of the generated DLAF beams is analyzed and compared to the beam patterns

generated by the Capon and Fourier methods. The generated patterns by DLAF DBF are

evaluated based on how well they agree with the Capon patterns. DLAF has been tested
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for a moving point target that was simulated based on TEP configuration as described in

Chapter 3, with simulation specifications described in Tab. 3.1. Then it was tested with

real point target data that was collected by TEP, described in Chapter 3. Finally, DLAF

was tested with weather data, which are distributed targets, of three different weather cases,

supercell, hail storm, and thunderstorm. The results of DLAF for the simulated and real

point target data are analyzed with power plots, 3D antenna pattern plots, and 2D antenna

pattern plots. The application of DLAF to weather data is analyzed using PPI maps of

signal power, line plots of power at 21.125km (range) for 360◦ (azimuth), reflectivity fields,

and 2D antenna pattern plots.

A total of 5 different scans of the normalized power by each DBF method for the sim-

ulated point target are shown in Fig. 5.1. The power is normalized to have a peak at 0 dB

and plotted with the same color scale from -25 dB to 0 dB. Based on the TEP configuration,

DBF has been done in 2D scanning from -15◦ to 15◦ for both θx and θy. The top view of

the 3D normalized antenna pattern plots by three different DBF methods of the 5th scan are

shown in Fig. 5.2. The interference is located at θx = −3.5◦ and θy = 3◦, marked with an

X, and the beam is steered at θx = 3◦ and θy = 3◦. The 2D normalized antenna pattern

plots from EW cut and NS cut of the Capon, the Fourier, and the DLAF methods are shown

in Fig. 5.3. In the EW cut plot (left), the beam is steered to 3◦ and the point target is located

at 3.5◦ . As it is shown in Fig. 5.3, the Fourier pattern (red) has high return power from

the location of the point target due to its fixed sidelobe level. On the other hand, the Capon

pattern (blue) and the DLAF (yellow) are placing a null at the location of the point target

and lowering the sidelobe levels.

The real data of bird case collected by TEP as described in Fig. 3.24 is used to test the

DLAF performance. DBF has been done in 2D scanning from -10◦ to 10◦ for both θx and

θy. The power of each DBF method is shown in Fig. 5.4. The power is not normalized

for this case due to different power levels and dynamic ranges. The Capon DBF power is
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Figure 5.1: Normalized power (dB) plot of simulated moving point target by the Capon
method (left), the Fourier method (middle), and DLAF (right). Note that all the power is
normalized and has the same color scale for easy comparison. DBF has been done in 2D
scanning, NS, and EW direction. The x-axis represents θx and the y-axis represents θy.

plotted in a range of 45 dB to 55 dB, the Fourier DBF power is plotted in a range of 50

dB to 85 dB, and the DLAF DBF power is plotted in a range of 40 dB to 50 dB. The top
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Figure 5.2: Top view of the 3D normalized antenna pattern of simulated moving point
target by the Capon method (left), the Fourier method (middle), and DLAF (right). Note
that all patterns are normalized and have the same color scale for easy comparison. DBF
has been done in 2D. The x-axis represents θx (EW) and the y-axis represents θy (NS). The
steering direction of the beam is marked with EW cut and NS cut. The location of the point
target is marked as X.

Figure 5.3: 2D normalized antenna pattern plot of simulated moving point target by the
Capon method (blue), the Fourier method (red), and DLAF (yellow). The left plot is a 2D
antenna pattern at EW cut and the right plot is a 2D antenna pattern at the NS cut. The
x-axis represents θx (left) and θy (right). The y-axis represents the power of the antenna
pattern in dB. The boresight of the beam is marked as a black solid line and the location of
the point target is marked as a green solid line.

view of 3D antenna patterns plots by three different DBF methods of 60th scan are shown

in Fig. 5.5. The beam is steered to θx = 4◦ and θy = 2◦ and the interference is located at
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θx = 3◦ and θy = 3◦. The 2D normalized antenna patterns from EW cut and NS cut are

shown in Fig. 5.6. The Fourier beam patterns (red) have fixed sidelobe levels and result

in high return power in the direction of the interference. Yet, the Capon and DLAF are

minimizing power coming from the direction of the interference by placing a null. As it

is shown in the Fig. 5.6, the point target is located in the mainlobe. However, the Capon

and DLAF methods are still able to suppress the power in that direction. Furthermore,

the overall shape of the beam patterns of DLAF are matched well with the Capon beam

patterns.

DLAF is also tested for weather data, which is composed of distributed targets. Three

different weather cases, supercell, hail storm, and thunderstorms are used to evaluate the

performance of DLAF. As described in Chapter 3, a point target was artificially added at

a location of 21.125km (range) and 99.7475◦ (azimuth) to test the capability of adaptive

nulling. First, DLAF is tested for the supercell case. The power PPI of the three methods

under consideration, Capon, Fourier, and DLAF are shown in Fig. 5.7. The point target

that was artificially added is circled with red in each plot. There are some areas, especially

around the tornado hook echo, showing discontinuity in the power PPI by the Fourier DBF

method, while DLAF is showing better angular resolution. Also, the Fourier DBF method

was not able to suppress the artificially added interference and result in high power from

the undesired direction as shown in the power PPI. On the other hand, the Capon and DLAF

DBF methods are able to suppress the power coming from the undesired direction as shown

in the PPI plots. The power (in dB) of the three DBF methods at the ranges of 21.125km

for 360◦ in azimuth are plotted in Fig. 5.8. To compare with the original IQ signals, which

was simulated with NEXRAD radar variables, the power of IQ signals from one of the

receiver is calculated and plotted in Fig. 5.8. The overall power level by DLAF method

(purple) matches well with the power level by the Capon method (orange) and the power of

the simulated IQ signal (blue). Furthermore, it shows that DLAF method was able to sup-
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Figure 5.4: Normalized power plot (dB) of real data of a bird observed by TEP, with the
Capon method (left), the Fourier method (middle), and DLAF (right). Note that all the
power is normalized and has the same color scale for ease of comparison. DBF has been
done in 2D scanning, NS, and EW direction. The x-axis represents θx and the y-axis repre-
sents θy
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Figure 5.5: Top view of the 3D normalized antenna pattern of real data of a bird observed
with TEP, by the Capon method (left), the Fourier method (middle), and DLAF (right).
Note that all patterns are normalized and have the same color scale for easy comparison.
DBF has been done in 2D. The x-axis represents θx (EW) and the y-axis represents θy (NS).
The steering direction of the beam is marked with EW cut and NS cut. The location of the
point target is marked as X.

Figure 5.6: 2D normalized antenna pattern plot of real data of a bird observed with TEP, by
the Capon method (blue), the Fourier method (red), and DLAF (yellow). The left plot is a
2D antenna pattern at EW cut and the right plot is a 2D antenna pattern at the NS cut. The
x-axis represents θx (left) and θy (right). The y-axis represents the power of the antenna
pattern in dB. The boresight of the beam is marked as a black solid line and the location of
the point target is marked as a green solid line.

press the high power coming from undesired direction just like the Capon method, while

it shows high power coming back from the undesired direction for the Fourier method.

The reflectivity is calculated with Eq. (3.33). The PPI of the reflectivity field is plotted
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in Fig. 5.9 with the location of the point target circled in red. In the reflectivity field, the

adaptive nulling of DLAF can be clearly seen, in contrast to the Fourier pattern. Normal-

ized antenna patterns by three different methods for the point target area and the strong

weather area at 21.125km (range) are plotted in Fig. 5.10 and Fig. 5.11. The location of

the interference is marked with a dotted green line and the steering angle for each case is

marked with a solid black line. The antenna patterns of DLAF (yellow) are well matched

with the Capon antenna patterns (blue). Both method places a null at the location of the

interference while the Fourier method (red) has the fixed beam patterns.

Figure 5.7: Power PPI (dB) by the Capon (left), the Fourier (middle), and DLAF (right)
methods of the supercell case. The location of the point target, 99.7475◦ is circled in red.

Second, DLAF is tested for the hail storm case. The power PPI by the Capon (left), the

Fourier (middle), and DLAF (right) methods are shown in Fig. 5.12. They are normalized

to have a max value at 0dB. The power by the Capon and DLAF methods has the similar

dynamic ranges and the same color scale, from -25dB to 0dB. On the other hand, the power

by the Fourier has wider dynamic ranges and plotted from -75dB to 0dB. The point target

that was artificially added is circled in red. The power by this three DBF methods at the

range 21.125km for 360◦ in azimuth is plotted in Fig. 5.13 to compare the return power by

each method around the point target. Note that there is no weather data around this area.
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Figure 5.8: Power (dB) by the Capon, the Fourier, and DLAF methods at the range
21.125km for 360◦ in azimuth of the supercell case.

Figure 5.9: Reflectivity field of the supercell case. The Capon (left), the Fourier (middle),
and DLAF (right) methods are plotted in the same color scale, from 17 dBZ to 68 dBZ.
The point target is circled in red.

Figure 5.10: Antenna pattern of the Capon (blue), the Fourier (red), and DLAF (yellow)
methods of supercell case in the point target area. The steering angle is marked with a solid
black and the location of the point target with marked as a dotted green line.
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Figure 5.11: Antenna pattern by the Capon (blue), the Fourier (red), and DLAF (yellow)
methods of the supercell case in the weather area. The steering angle is marked with a solid
black.

The return power by the Fourier method (yellow) is high from 80◦ to 120◦ while the Capon

(orange) and DLAF (purple) methods are able to suppress the power coming from unde-

sired direction. The reflectivity field by the Capon (left), the Fourier (middle), and DLAF

(right) methods is plotted in Fig. 5.14. The location of the point target is circled in red.

Antenna patterns by this three different DBF methods for the point target area and for the

weather area are plotted in Fig. 5.15 and Fig. 5.16. Fig. 5.15 shows the adaptive nulling

capability of DLAF (yellow) even though overall shape of the pattern is not matched to the

patterns by the Capon method (blue) as much as it did for the previous supercell case. This

is because DLAF has been trained only with a part of the supercell case and the hail storm

case has different SNR as shown in Fig. 3.18. This shows that the function of DLAF is sen-

sitive with SNR, which will be discussed more in the following section. Yet, DLAF is still

able to perform the adaptive nulling skill which means that DLAF has successfully learned

from the training data, the Capon beamforming weights. For the weather area which con-

tains distributed targets, DLAF has produced similar patterns to the Capon patterns.

Lastly, DLAF is tested for the thunderstorm case which has the low SNR. The power

PPI by the Capon (left), the Fourier (middle), and DLAF (right) methods are shown in

Fig. 5.17. The location of the artifically added point target is circled with red. For this

case, DLAF shows the wider dynamic range which is from -48dB to 40dB. The power by
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Figure 5.12: Power PPI (dB) by the Capon (left), the Fourier (middle), and DLAF (right)
methods of the hail storm case. The location of the point target, 21.125km (range) and
99.7475◦ (azimuth), is circled in red.

Figure 5.13: Power (dB) by the Capon, the Fourier, and DLAF methods at the range
21.125km for 360◦ in azimuth of the hail storm case.

this three DBF methods at the range 21.125km for 360◦ in azimuth are plotted in Fig. 5.18

to compare the return power by each method around the point target. The Fourier method

(yellow) has high return power from undesired directions, 80◦ to 120◦ , while the Capon (or-

ange) and DLAF (purple) methods suppress the power except the desired direction which

is 99.7474◦ . The reflectivity field by each method is plotted in Fig. 5.19 and the location

of the point target is circled in red. There is strong reflectivity appearing at the undesired
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Figure 5.14: Reflectivity field (dBZ) of the hail case. The Capon (left), the Fourier (mid-
dle), and DLAF (right) methods for the hail storm case are plotted in the same color scale,
from 17 dBZ to 68 dBZ. The point target is circled in red.

Figure 5.15: Antenna pattern by the Capon (blue), the Fourier (red), and DLAF (yellow)
methods for the hail storm case. The steering angle is marked with a solid black and the
location of the point target is marked with a dotted green line.

Figure 5.16: Antenna pattern by the Capon (blue), the Fourier (red), and DLAF (yellow)
methods for the hail storm case. The steering angle is marked in a solid black.

location around the point target in the Fourier method (middle) plot while the Capon (left)

and DLAF (right) method have strong reflectivity at the desired location. Antenna patterns

by the Capon (blue), the Fourier (orange), and DLAF (yellow) methods for the point target
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area and for the weather area are plotted in Fig. 5.20 and Fig. 5.21. Fig. 5.20 shows that

DLAF has successfully placed a null at the location of interference, yet the overall shape

of the patterns may not be matched well as in the previous supercell case. Note again that

DLAF has been only trained with supercell case which has high SNR. Since the thunder-

storm case has the lowest SNR, patterns generated by DLAF may not be matched well with

the Capon patterns even for the weather area as shown in Fig. 5.21.

Figure 5.17: Power PPI (dB) by the Capon (left), the Fourier (middle), and DLAF (right)
methods of the thunderstorm case. The location of the point target, 99.7475◦ is circled in
red.

Figure 5.18: Power (dB) by the Capon, the Fourier, and DLAF methods of the thunderstorm
case at the range 21.125km for 360◦ in azimuth.

DLAF has a better quality of performance for cases with higher SNR, such as a tornadic
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Figure 5.19: Reflectivity field (dBZ) of the thunderstorm case. The Capon (left), the Fourier
(middle), and DLAF (right) methods are plotted in the same color scale, from 17 dBZ to
68 dBZ. The point target is circled in red.

Figure 5.20: Antenna pattern by the Capon (blue), the Fourier (red), and DLAF (yellow)
methods for the thunderstorm case. The steering angle is marked with a solid black and the
location of the point target is marked with a dotted green line.

Figure 5.21: Antenna pattern of the Capon (blue), the Fourier (red), and DLAF (yellow)
methods for the thunderstorm case. The steering angle is marked with a solid black.
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supercell storm, compared to less impactful weather like a thunderstorm. Yet, DLAF has

shown good quality performance of adaptive DBF for the point target. In the following

section, DLAF will be analyzed quantitatively and discussed how the SNR would impact

the performance of DLAF.

5.2 Quantitative Analysis

The DLAF performance is analyzed for the supercell case with four quantitative metrics.

These include, the computation time, the MSE of the Capon and DLAF beamforming

weights, the SNR impact on DLAF performance, and the correlation coefficient between

the Capon and DLAF beam patterns.

Figure 5.22: Measured computation time of the Capon DBF (blue) and DLAF DBF (red)
for one spoiled beam with 20 receiving beams generated and 150 range gates. Computation
time is measured for different sizes of the antenna element. The X-axis is the number of
the antenna element and Y-axis is the computation time in seconds.

DBF has been done with 20 receiving beams generated for one transmitted spoiled beam

to cover 10◦ in azimuth as discussed in Chapter 3. The computation time of performing
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DBF with the Capon and DLAF methods to cover 360◦ azimuth and 150 range gates are

measured with different number of receivers and it is shown in Fig. 5.22. The computation

time of the Capon method is in blue and DLAF method is in red. As expected from Fig. 3.36

and Chapter 4, the computational complexity of the Capon method exponentially grows

with the number of receivers while the complexity of the DLAF method linearly grows

with the number of receivers. Especially at the size of Horus antenna, 1024 (32×32),

the Capon method takes about 9 seconds and the DLAF method takes about 2 seconds.

Therefore, DLAF has shown the potential to overcome the computational burden of the

Capon method for radars with the bigger antenna size while it still performs adaptive DBF.

The MSE of the beamforming weights can show how much the values are different,

which could be a good evaluation of DLAF training. MSE is calculated between beam-

forming weights of the Capon and DLAF methods. Note again that DBF generates com-

plex valued beamforming weights of 20 received beams for one transmit spoiled beam and

every receivers. The MSE of complex valued beamforming weights was calculated in two

different ways, one with imaginary and real parts and the other one with phase (radians)

and amplitude, as follows,

MSEX,Y =

√√√√ N∑
i=1

∆X2 +
N∑
i=1

∆Y 2, (5.1)

where ∆X is the difference between the Capon and DLAF beamforming weights in the

real part, ∆Y is the difference between the Capon and DLAF beamforming weights in the

imaginary part, and N is the number of receivers. The other way uses amplitude and phase

of beamforming weights, as follows,

MSEθ,A =

√√√√ N∑
i=1

∆θ2 +
N∑
i=1

∆A2, (5.2)
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where ∆θ is the difference between the Capon and DLAF beamforming weights in phase

and ∆A is the difference between the Capon and DLAF beamforming weights in amplitude.

Each MSE is plotted in Fig. 5.23 and Fig. 5.24. The MSE calculated for the point target

Figure 5.23: MSE between the Capon and DLAF beamforming weights in phase and am-
plitude for 32 antenna elements. The x-axis represents the number of receive beams and
the y-axis represents the MSE value. The blue line represents the MSE for the point target
area and the red line represents the MSE for the weather area.

area is in blue and MSE calculated for the weather is in red. The x-axis represents number

of receive beams, which is 20, and the y-axis represents MSE values. Both figures show

that MSE is smaller around the weather area than the point target area, which means the

beamforming weights for the weather area are matched better than the point target area.

This result makes sense since the shape of the beam patterns depends on the location of

the targets. For the point target area, as long as it can minimize the power coming from

the undesired direction, the sidelobes do not have to be matched. They shows high MSE

values for 17th to 20th receiver. This could be related to the kernel size of the convolution

86



Figure 5.24: MSE between the Capon and DLAF beamforming weights in phase and am-
plitude for 32 antenna elements. The x-axis represents the number of receive beams and
the y-axis represents the MSE value. The blue line represents the MSE for the point target
area and the red line represents the MSE for the weather area.

layers during the training. However, the overall MSE value is very small, the max value is

approximately 3 × 10−4 from the complex values, and 14 × 10−3 from the phase values.

Therefore MSE figures show that the beamforming values of the Capon and DLAF methods

are very similar.

The impact of SNR on the DLAF performance is analyzed by testing different noise

levels applied to the supercell case. The original SNR of the supercell case is 30.29dB at

the point target area and 30.22dB around the hook echo area. Note that the noise power

measured in the WSR-88D system is used in the simulation as described in Chapter. 3.

Then SNR was changed to test the performance of DLAF with the changes of -10, -2.22, -

0.97, +0.97, +2.30, and +6.99 (dB). The power by the Capon (orange), the Fourier (yellow),

and DLAF (purple) methods at 21.125km (range) for 360◦ (azimuth) for different SNR is
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shown in Fig. 5.25. The power calculated by the three DBF methods with the original

SNR is shown in Fig. 5.8. The location of the point target is 99.7475◦ and is indicated

with a dotted green line in each plot. The x-axis represents the azimuth angle from 0◦ to

360◦ . The y-axis represents power in dB. DLAF is still able to suppress the high return

power from the undesired direction around the point target, yet the overall power level is

not match well as the original one. The antenna patterns by the Capon (blue), the Fourier

(red), and DLAF (yellow) methods for different SNRs around the point target area (top

row) and the weather area (bottom row) are shown in Fig. 5.26. The location of the point

target is indicated with a dotted green line. The beam is steering at 99.2615◦ for the point

target area and the beam is steering at 273.2602◦ for the weather area. The x-axis represents

the azimuth angle from 1◦ to 360◦ . The y-axis represents the power of the pattern in dB.

These plots shows DLAF can tolerate the change of SNR for the point target area. DLAF

still places a null at the location of the interference and the sidelobe levels are well matched

with the Capon patterns for all of the different SNR. However, the sidelobe levels of the

pattern generated by DLAF are not matched with the Capon patterns when SNR is reduced

by 10dB or increased by 6.99dB for the weather area. This can be dependent on how the

targets are distributed within the transmit beam. As a result, it has been verified that SNR

impacts the DLAF performance, yet DLAF has the tolerance for SNR changes of ±10dB

for the point target area and ±2dB for the weather area.

The Pearson correlation coefficient is calculated with generated beam patterns by the

Capon and DLAF methods as follows:

Cnorm =
(ωDLAFi

− ω̄DLAF )(ωCi
− ω̄C)√∑

(ωDLAFi
− ω̄DLAF )2

∑
(ωCi

− ω̄C)2
, (5.3)

where ω̄DLAF and ω̄C are the mean values of generated beam pattern power by DLAF and

the Capon methods. The Pearson correlation coefficient measures the linear correlation
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Figure 5.25: SNR impact on the performance of DLAF is shown in this figure. Power by
the Capon (red), the Fourier (yellow), and DLAF (purple) methods at different SNR are
plotted in dB. The location of the point target is marked as a dotted green line. The x-axis
represents the azimuth angle from 0◦ to 360◦ . The y-axis represents power in dB.

between two sets of data. In this case, it tells how much the DLAF patterns are similar to

the Capon patterns. The correlation coefficient of 10 different beam patterns each for the

point target area and the strong weather area (hook echo) are plotted in in Fig. 5.27 and

Fig. 5.28. The steering angle of each case is listed in the top corner of the figure. Both

figures show the maximum correlation coefficient value at angle shift 0. This means that the

DLAF patterns are the most similar to the Capon patterns when there is no shift in angle.

Furthermore, in Fig. 5.28, the maximum value of the normalized correlation coefficient at

angle shift 0 is close to 1, which means that the DLAF pattern and the Capon pattern are

almost identical when there is no angle shift. This result makes sense since the sidelobe
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Figure 5.26: Antenna pattern of the Capon (blue), the Fourier (red), and DLAF (yellow)
methods for the point target area (top row) and the weather area (bottom row) with different
SNR. Each plot has a different SNR increment ratio, as indicated on the left side of the
figure. The beam is steering at 99.2615◦ for the point target area and the beam is steering
at 273.2602◦ for the weather area. The location of the point target is marked as a dotted
green line. The x-axis represents the azimuth angle from 1◦ to 360◦ . The y-axis represents
the power of the pattern in dB.

Figure 5.27: Pearson correlation coefficient of generated patterns by the Capon and DLAF
methods for the point target area. Ten different patterns are used to calculate the correlation
coefficient. The steering angle of each beam pattern is indicated in the top right corner. The
x-axis shows angle shift and the y-axis shows the normalized correlation coefficient.
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Figure 5.28: Pearson correlation coefficient of generated patterns by the Capon and DLAF
methods for the weather area. Ten different patterns are used to calculate the Pearson
correlation coefficient. The steering angle of each beam pattern is indicated in the top right
corner. The x-axis is angle shift and the y-axis is the normalized correlation coefficient.

levels for the point target area can have more freedom as long as it can place a null at

the interference direction, while sidelobe levels for the weather area, which has distributed

targets, have to be matched well with the Capon.
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Chapter 6

Conclusion and Future Work

6.1 Summary and Conclusion

This thesis started with a brief introduction on radar history and recent development in

phased array radar technology. Parabolic-reflector radar was briefly discussed with its

capabilities and limitations. Then, phased array radar and its unique capability, digital

beamforming with two different methods was introduced. DBF can be done by either pre-

computing the beamforming weights based on the configuration of the antenna or adap-

tively calculating the beamforming weights from received signals. The motivation of this

thesis is to mitigate the computational burden of the adaptive DBF method. A potential

solution based on DL was proposed.

AI has been widely adopted in various fields and developed into many different forms

to resolve a variety of issues. ML, which is a subsection of AI, is a flexible and useful

data analysis tool that can learn to perform tasks without human supervision or explicitly

programmed. DL is a subsection of ML that is composed of multiple hidden layers and

can learn complicated algorithms which can not be easily resolved by humans. Examples

of ML use in different research fields and components of ML, such as neural networks,

activation functions, and normalization were discussed with mathematical description in

Chapter 2.
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Fundamental radar equations for reflector antenna and phased array antenna were in-

troduced in Chapter 3. The development of different PARs and their own characteristics

were discussed. DBF, which is a unique capability of PAR that has the potential to im-

prove the temporal resolution, relies on a spoiled transmit beam to digitally form multiple

narrow beams simultaneously. The Fourier method is the conventional non-adaptive DBF

method that predetermines the beamforming weights based on the antenna configuration.

Since the Fourier method does not reflect the received signals, it results in fixed sidelobe

levels and fixed angular resolution. The Capon method is one of the conventional adaptive

DBF methods to calculate the beamforming weights with the received signals. It calculates

the inverse of auto-covariance matrix, R−1, with the size of N ×N . Therefore, the Capon

method is able to place nulls adaptively to lower the sidelobes and minimize the power com-

ing back from undesired directions caused by interference or ground clutter. However, it

gets computationally expensive which could limit the real-time implementation. Real data

of a moving bird collected by TEP was used to evaluate each DBF method. Furthermore,

a moving point target based on TEP specifications and distributed targets (i.e., weather)

based on Horus specification were simulated. The simulation of distributed targets has two

parts. First the simulation of time-series IQ signals from the NEXRAD variables, then the

simulation of multiple received IQ signals created by adding apropriate phase shifts using

the array geometry.

To overcome the computational burden of the Capon method, a DNN called DLAF was

proposed in Chapter 4. DLAF is a DNN that was trained with time-series IQ signals and

the Capon beamforming weights. DLAF contains a combination of convolution layers and

dense layers followed by activation and normalization layers. For training data, the com-

plex values of time-series IQ signals and beamforming weights are transformed into phase

and amplitude, instead of separating them into real and imaginary parts to preserve the

phase information. Then, phase and amplitude are trained independently. Phase values are
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trained with tanh activation function while amplitude values are trained with ReLU activa-

tion function since phase contains negative values while amplitude contains only positive

values. Then the network is trained with 200 realizations of time-series IQ signals for the

point target case and 1800 realizations of time-series IQ signals for the weather case. The

training performance was also evaluated for layer and batch normalization.

DLAF was tested with simulated point-target data, real data of a moving bird collected

by TEP, and simulated weather data. The performance of DLAF was compared with the

Capon and the Fourier methods in Chapter 5, using qualitative and quantitative metrics. The

two qualitative metrics are the quality of the generated beam patterns and the capability of

adaptive DBF. The four quantitative metrics are the computation time, the performance

of DLAF as a function of SNR, mean square error of beamforming weights, and cross-

correlation of generated beam patterns by the Capon method and DLAF.

To conclude the work, DLAF was trained successfully to perform adaptive DBF and

mimic the behavior of the Capon method for point and distributed targets. Yet, DLAF was

trained faster and produced better quality beam patterns for point target cases than dis-

tributed target cases. Also, DLAF was more robust at lower SNRs than higher SNR. The

Pearson correlation coefficient of beam patterns generated by DLAF and the Capon method

was used to analyze pattern similarity. DLAF produced well-matched main lobes and gen-

eral sidelobe structure compared to the beam patterns generated by the Capon method.

Then the computation time of the Capon method and DLAF are measured for different

number of receivers, showing that DLAF was about 8 times faster than the Capon method

at the size of Horus antenna (N = 1024).
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6.2 Future Work

DL is a flexible and efficient data analysis tool that has great potential to learn complex

algorithms. Using this advantage of DL, future efforts could involve expanding DLAF in

many different directions. First, to enhance and improve the adaptive DBF quality, the net-

work could be trained with multiple inputs such as the location of targets and interference,

and the steering angle of the antenna. In this case, the network is trained to perform the

adaptive DBF instead of just mimicking the Capon DBF method. Second, future efforts

could involve expanding DLAF to include information related to the physical properties

of the observed hydrometeors. Instead of only calculating beamforming weights, DLAF

could be trained with more radar variables, such as correlation coefficient, differential re-

flectivity, or velocity. Lastly, DLAF could be also trained to predict the movement of the

storm. ML is a flexible tool that could be used for many different tasks. Furthermore, ML

is capable to learn complex algorithms with proper training, which could be a solution to

many difficult problems in the real world.
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Appendix A

Acronyms

ABLE Adaptive beamforming by deep learning

AI Artificial Intelligent

DAS Delay-and-sum

DBF Digital Beamforming

DL Deep Learning

DLAF Deep learning for adaptive digital beamforming

DNN Deep neural network

EBMV Eigen-based minimum variance

ELU Exponential linear unit

EW East-west

H Horizontal polarization

ML Machine Learning

MPAR Multi-function phased array radar

MSE Mean square error

NEXRAD Next generation weather radar

NS North-south

NWRT National weather radar testbed
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PAIR C-band mobile parametric atmospheric imaging radar

PAR Phased Array Radar

PAWR X-band phased array weather radar

PPI Plane-position indicator

RBFNN Radial-basis-function neural network

RI range interval

RNN Recurrent neural network

RX Receiver

SGD Stochastic gradient descent

SNR Signal-to-Noise ratio

tahn Hyperbolic tangent

TEP Turbulent eddy profiler

TX Transmitter

V Vertical polarization

WR-STS Weather radar spatiotemporal

WSR-88D Weather Surveillance Radar - 1988 Doppler
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