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Abstract 

There has been a research gap in examining fit indices under the context of reproducing 

the result of structural equation modeling (SEM) since a replication attempt revisited not many 

SEM studies. Two simulation studies were conducted to examine the distribution of fit indices of 

SEM on replicated samples. The first simulation chose three examples from social science 

literature to mimic replication attempts and found that the distribution of some indices shifted 

away from the original value. Specifically, the fit indices that use chi-square in their formulation 

consistently indicated a worse fit between the model and the data in a large proportion of 

replication attempts. Meanwhile, relative fit indices that use log-likelihood values such as AIC 

and BIC were less affected by replication, showing the distribution of replicated indices centered 

around the value from the original sample. The chi-squared family of fit indices showed an 

inferior fit than the original when one tries to replicate data using the observed moment matrix, 

even if the model fitted well to the original data. Using a baseline model log-likelihood, a new 

likelihood ratio LR0 that resists the fit-worsening effect of replications is suggested. The second 

simulation that varied model specification, model complexity, and sample size confirmed the 

finding from the first study and examined the performance of the LR0. The new likelihood ratio 

was much less affected by replication than the standard likelihood ratio, but its interpretability 

was limited. The diminishing effect on fit indices in replicated samples implies that one should 

interpret them carefully.  
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The replicability of research findings is one of the key features of science that 

distinguishes it from pseudo-science. However, replicability has been questioned in many areas 

of science, especially in Psychology, by concerned researchers in the past nearly two decades 

(Ioannidis, 2005; Klein et al., 2014, Open Science Collaboration, 2015). While it is still an 

ongoing endeavor to define replicability, two distinctive categories of replication have emerged. 

Direct replication emphasizes the exact do-over of research, while conceptual replication uses a 

different procedure from the original study and often includes an expansion of context (Koul, 

Becchio, & Cavallo, 2018, Zwaan, Etz, Lucas, & Donnellan, 2017). In the academic culture of 

novelty, replication studies have been neglected by journals. (Everett & Earp, 2015) Such trends 

started to change with reformation in publishing practices like result-blind peer review (Allen & 

Mehler, 2019) and registered reports (Simons & Holcombe, 2014). 

The reformation effort is also taking place in a quantitative analytic area. While the most 

significant movement revolves around the usage of the p-value (Wasserstein & Lazar, 2016; 

McShane, Gal, Gelman, Robert, & Tackett, 2019), other viewpoints or resolutions, such as the 

role of measurement error (Loken & Gelman, 2017), the use of metascience (Schooler, 2014), 

and reassessing the statistical power (Anderson & Maxwell, 2017) are also being discussed. As a 

part of these efforts, adopting cross-validation techniques to evaluate replicability is suggested 

(Koul et al., 2018). 

While there are apparent similarities between replicability and cross-validation, we would 

like to clarify their differences. They are similar in that both involve two or more samples and 

compare the estimates of interest. However, they differ in their purpose. To validate a set of 

regression weights, one might use a different sample from the same population or divide one into 

two parts. In either case, one sample is used to calibrate the regression equation and another to 
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evaluate it. These regression coefficients are used to predict the criterion in another sample. The 

purpose of cross-validation is to examine whether the predicted values – calculated by using the 

coefficients from the calibration sample – correlate well to the criterion. Meanwhile, replication 

is a more overarching concept. Although there are different opinions about what actually counts 

as replicated research (Simonsohn, 2013; Verhagen & Wagenmakers, 2014), the general purpose 

of replication is to confirm the previous scientific findings rather than to examine the predictive 

effectiveness of coefficients. 

Because of the conceptual differences, the interpretation of related analyses should be 

different. Even if the research was a direct replication attempt and the analytic strategy was 

identical to cross-validation, the interpretation of the result focusing on replication usually pays 

attention to the significance of coefficients of focal variables because that is often a criterion of 

whether a hypothesis is supported or not. Cross-validation studies, on the other hand, usually 

focus on the usefulness of regression equations, which often boils down to the evaluation of the 

usefulness of calibrated coefficients. 

The difference between replication and cross-validation becomes more apparent when a 

study uses covariance structure analysis, such as confirmatory factor analysis (CFA) or structural 

equation modeling (SEM). Cross-validation was initially developed to examine the predictive 

validity of a regression equation, and the idea expanded to the covariance structure analysis 

(Browne, 2000). The main idea of the covariance structure analysis is to find a set of parameters 

 that makes the discrepancy between the model-implied covariance matrix  and the 

sample covariance matrix S minimum. Cross-validation on the covariance structure analysis 

compares the model-implied covariance matrix estimated on a calibration sample  to the 

covariance matrix of a validation sample SV. (This will be discussed further in the later section.) 
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Ultimately, cross-validation on a covariance matrix examines the usefulness of the estimated 

value of the parameters. On the other hand, a replication study does not necessarily have to look 

into the specific value of the parameters. The research interests of a replication study can span 

from examining the utility of parameter estimates to investigating whether an effect(s) from the 

original study can be found in another context. In other words, a replication study on a moment 

matrix could, but does not need to, fix the parameter estimates to specific values.  

Despite the recent increasing trend in replications, research that uses SEM has seen fewer 

attempts (Goodboy & Kline, 2017; Babin & Svensson, 2012). While there have been cautionary 

notes for readers and reviewers of literature using SEM that replication is strongly 

recommended, particularly when a model undergoes a series of modifications (Ullman & 

Bentler, 2009; Hermida, 2015; Babin & Svensson, 2012), such research is rarely revisited by 

replication attempts (Goodboy & Kline, 2017). While no extensive review sheds light on this 

research gap, we speculate that one of the reasons would be a scarcity of guidelines on how to 

replicate a finding that has been found in the SEM framework. The current study aims to provide 

some helpful information on SEM replication by investigating what happens when one tries to 

replicate an SEM study. 

Although it is not a focal interest of the current research, we offer speculation on degrees 

of SEM replication. Assume one tries to replicate research that used SEM techniques. There are 

several possible scenarios one can expect. First, one can expect the configuration of the model 

will be replicated. In this case, all paths in the original study will be included in the replication 

study, but no additional constraint will be given. In other words, the measurement and structural 

models are the same as the original, but all parameters will be freely estimated. The researcher 

would conclude that the replication is successful if all the significant path coefficients in the 
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original are also significant in the replication attempt. SEM literature on replication does not 

have a terminology for such an attempt, but literature on measurement invariance (MI) deals 

with a similar concept called configural invariance. It is similar in that it also imposes the same 

number of factors and patterns of loadings on different groups. 

Second, one can expect to replicate the sizes of the effects. In this case, the magnitudes of 

effects are also of interest in addition to the configuration of the model. If the MI between the 

original and the replicated sample is met in the measurement part of the model, then the 

relationship between the latent variables can be a subject of interest. One can employ a multiple-

group analysis technique to examine the equivalence of regression coefficients between 

variables, like the practice routinely done in measurement invariance (MI) literature. 

Alternatively, one can also think of a mixture of the two cases above. An SEM study 

often contains more than one path between latent variables, and the MI of those variables may 

not always be guaranteed. In such cases, one can constrain the equivalence of estimates only 

where appropriate and free other estimates where coercing the equivalency is inappropriate. 

The definition of successful replication depends on a goal a researcher sets according to 

the situation specific to the original. If one expects the pattern of significant paths to replicate but 

not the magnitude of the effects, then fitting only the model's skeleton and checking the 

hypothesized paths would determine the success of the replication attempt. On the other hand, if 

the importance of the study lies in the replication of effect sizes, the equivalency of the effects 

must be examined to confirm the successful replication. 

In any case, the replication attempt is considered an independent trial of the original. A 

common practice of examining a model regarding its fit is required to advance further 

investigation on any substantial interpretation of the significances or magnitudes of effects. A 
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model with a bad fit would be out of any further consideration. In this sense, satisfactory fit 

indices are vital to defining a successful replication. Before moving on to the examination of the 

estimation result, the fit indices are the factors to determine whether the replication attempt is 

successful or not. Satisfactory fit indices are not sufficient but necessary for successful 

replication.  

Evaluations of fit indices are conventionally done by guidelines suggested by some 

researchers (West, Taylor, & Wu, 2012; Hu & Bentler, 1999; Kline, 2015). However, there is 

more than one way to evaluate fit indices when one wants to do so for the replication attempt. 

First, the fit indices of the replication attempt can be evaluated by comparing them to the 

guidelines as those of the original study had been. Second, one can compare the fit indices from 

the replication to the original study and look for equal or better indices. This approach seems 

somewhat conservative but reasonable for those looking for solid evidence of replication. 

However, we will argue that this is not an appropriate approach in a later section. Third, one can 

consider the replication attempt successful if the newly obtained fit indices fall into a range 

around the original fits that account for sampling error (i.e., confidence interval). This option is 

out of the scope of the current study for two reasons: a) not all fit indices have readily available 

confidence intervals, and b) building ones is not a trivial task considering that it involves not 

only the sampling variability but also the variability of the predicted covariance matrix. The 

latter will be discussed further in a later section. 

The current study focuses on the model's fit indices rather than specific effects. Usually, 

the fit indices are a gateway to further interpretation of the SEM result. Thus, the characteristic 

of fit indices of replicated study is crucial in understanding and interpreting the result.  

SEM and Fit Indices 
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The SEM, or covariance structure analysis in a more general term, is a technique that 

compares the observed data and the theoretical model. Usually, the theoretical model specifies 

the relationships between variables denoted by a set of parameters . In turn, the model is 

expressed as a matrix, with each element being a covariance that is a function of the parameters 

(the model-implied covariance matrix  or ). If the parameters are unknown, they are 

estimated to minimize the discrepancy between  and the sample covariance matrix S. The 

most widely used discrepancy function in SEM is  

 , (Eq 1) 

where p is the number of observed variables. 

Chi-square ( ) 

One way to assess the quality of the model is to examine how the model fits the data. To 

do so, many researchers suggested indices that measure the fit of the model and the data. 

Joreskog(1969) showed that , the minimum value of Equation 1, times  follows  

distribution under the null that  and the population covariance matrix Σ are equal with the 

degrees of freedom equals , where  is the number of non-redundant elements of the 

covariance matrix, and q is the number of parameters in the model. (The  can be obtained by 

.) It is, however, not a widely used fit index by itself because the null hypothesis is 

likely to be rejected when N is large. Although the  test itself has limitations in empirical 

studies (Joreskog, 1969), it provides a basis for many fit indices. 

Root Mean Square Error of Approximation (RMSEA) 

The test statistic  follows the central  distribution under the null 

hypothesis, but under the alternative, it follows a non-central  distribution (Steiger & Lind, 

1980), which has two parameters, the degrees of freedom k and the non-centrality parameter λ. 
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(As the mean of the non-central  distribution is , where the mean of the central  

distribution is k.) The non-centrality parameter can be estimated by 

, 

where the df equals  (Steiger, 1989). This non-centrality parameter reflects how well the 

model fits the data. Based on this idea, the RMSEA measures the absolute badness-of-fit, 

decreasing with the improvement of fit. It is estimated as 

. 

The RMSEA is normed to be greater than or equal to 0 and is divided by the df to penalize 

overfitting.  

Tucker-Lewis Index (TLI) 

Another strategy to formulate the fit is to compare the hypothesized model with a 

baseline model, which is usually the most restrictive model. There are several ways to specify a 

baseline model, but the most widely used method is to make the observed variables mutually 

independent so that the reproduced covariances between observed variables would be zero 

(Widaman & Thompson, 2003). Naturally, the baseline model does not likely fit the data well, 

and the improvement from it is used as a measure of the fit of the hypothesized model. The TLI 

is one such index. It is defined as 

, 

where the subscript 0 and H denote the baseline and the hypothesized model, respectively 

(Tucker & Lewis, 1973). The TLI gives the ratio of the distance of the true and the hypothesized 
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model in terms of the ratio of  values obtained (from the central  distribution) and the df. 

The denominator is the distance between the baseline and the true model, while the numerator is 

the distance between the baseline and the hypothesized model. (The true model is "true" in the 

sense that the population would follow the model. Theoretically, it fits the data perfectly.)  The 

index increases when the model fits the data better. 

Comparative Fit Index (CFI) 

Bentler (1990) suggested a fit index based on the idea of non-centrality, like the RMSEA. 

However, it also uses the notion of comparative fit that involves the baseline model. The 

comparison of non-centralities is the key feature of CFI. It is defined as 

, 

and increases as the model fits better to the data. The non-centrality of the true model is zero, 

which is hidden in the denominator. It compares two non-centrality parameters, one of the 

baseline and one of the hypothesized model. 

Likelihood 

While the likelihood is not exactly an indication of the fit between the model and the 

data, it is worth noting since it provides bases for a couple of indices. Maximum Likelihood 

(ML) estimation in a restricted parameter space finds a set of parameters  that maximize the 

likelihood function in Equation 1. Sometimes the statistical packages that include ML estimation 

give log-likelihood instead of likelihood, but they serve the same purpose in finding parameters 

that maximize the function. Specifically, the log-likelihood function in SEM is given 

 
, 

(Eq 2) 
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when the mean structure is not included in the model. Additionally, the unrestricted model 

assumes that the model-implied dispersion matrix equals the sample dispersion matrix. As a 

result, the unrestricted log-likelihood is reduced to 

 
, 

(Eq 3) 

(see Rosseel, 2021, for a detailed derivation.) The twice difference between the two log-

likelihoods is equal to Equation 1 times N, and the minimum value of it follows  distribution. 

The maximized value of the likelihood function is used in several model selection indices like 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 

Based on the information theory, Akaike (1973) introduced AIC to measure the expected 

information loss caused by using a statistical model to represent reality in the population. The 

reality, or the population, is determined by an unknown underlying process. A statistical model 

usually tries to reveal the hidden relationships between variables. However, most of the time, the 

model fails to represent reality perfectly, and the loss of information occurs. The AIC estimates 

this information loss. It is defined as 

, 

where LM is the maximum value of the likelihood function. (Note that the negative log of LM 

equals f above.) Usually, the exact amount of information loss is unknown, so the AIC can only 

tell the relative information loss between different models. Schwarz (1978) suggested BIC, a 

similar index to AIC, with an argument adopting a Bayesian perspective. The definition is 

, 

and the only difference to the AIC is its penalty term for the model complexity. 

Cross-validation and Replication 
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Although the cross-validation technique originated from the regression approach, it 

expanded to covariance structure analysis like confirmative factor analysis (CFA) or SEM 

(Browne, 2000). Such techniques find parameters  that minimize the discrepancy between the 

model-implied covariance matrix  and the sample covariance matrix S. These discrepancies 

are often evaluated with one or more of the fit indices. Cross-validation of the model is started by 

splitting the sample into two parts; the calibration and validation samples. Then the discrepancy 

between the model-implied covariance matrix from the calibration sample  and the 

covariance matrix of the validation sample SV   is examined. The subscript C and V represent that 

its scalar, vector, or matrix is from the calibration and validation samples. Note that a set of 

parameter estimates varies across samples because the calibration aims to minimize the 

discrepancy of the matrices. Thus, a small discrepancy between  and the SV defines the 

potential usefulness of  in another sample. The cross-validation technique is used to examine 

the model's validity in a different context and to provide a mean of model selection alongside 

many fit indices (Browne, 2000).  

Expected Cross-Validation Index (ECVI) 

The Cross-Validation Index (CVI) uses the discrepancy function illustrated in Equation 1 

as many other fit indices, but the critical difference is that it measures the discrepancy between 

 and the SV. However, this method split the sample into two parts, wasting the 

observations. To address this issue, Browne (2000) suggested the following index; 

, 

showed that the ECVI is the expected CVI over both calibration and validation samples when the 

sample sizes are equal. 
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Phase 1 

First, we want to illustrate what a replicated study using SEM looks like. Most of the 

time, a replication attempt tries to answer either or both of the following questions: 1) are the 

hypotheses supported in the original study supported in the replication? 2) would the magnitude 

of effects found in the original study be replicated? In SEM studies, hypothesis testing and 

assessing the effect are done after fitting the model to the data. In other words, the model with 

bad fit indices is not a subject for further consideration. Thus, our interest lies in how the fit 

indices are distributed across multiple replication attempts. 

Another proclaiming should be made on which type of replication we focused on in this 

study. As we briefly mentioned above, direct replication of a study would collect data with the 

same variables as the original and use the same model. Alternatively, a conceptual replication in 

which a researcher tries to expand the original findings to a new setting may use a different 

model incorporating variables that reflect the new context. While a conceptual replication might 

have the original model as a part of its research model, the added components will complicate 

the comparison of the original and the replicate. For example, a conceptual replication attempt 

might be interested in a boundary condition of the original phenomenon and could incorporate a 

moderator variable in their model. It is hard to decompose the difference in fit indices into a part 

due to the replication and a part due to the newly added component. For this reason, we dismiss a 

conceptual replication in the current study and focus on a direct replication, where the original 

and the replication are the same in their variables and the model specification. 

Method 

We chose three published studies using SEM to test their hypotheses and randomly 

generated data that resembles the original. They were selected to illustrate situations where the 



12 
 

fit indices' levels differ from exceptional to acceptable to mediocre. Although the selection 

process was not exhaustive, no other factors were considered except that their method was SEM 

and their level of fit indices. The first example is Guido, Marcati, & Peluso's (2011) research on 

the marketing conception of entrepreneurs using Azjen's (1991) Theory of Planned Behavior. 

Their model includes four latent variables (Attitude, Subjective Norm, Perceived Behavioral 

Control, and Intention to perform the behavior) indicated by twelve observed variables. The 

model is specified to predict the Intention by three other latent variables with covariances 

between the predictors. A detailed model specification can be found in Figure A1 in Appendix. 

Their original data consists of 188 observations. Because the data was unavailable to the public, 

we used their reported means, standard deviations, and correlation matrix to conduct further 

simulations. The model shows excellent fit (CFI = 0.996, RMSEA = 0.023) and serves as an 

example of exceptional fit. 

The second example was taken from Huth-Bocks, Levendosky, Bogat, and von Eye's 

(2004) infant-mother attachment research. Their final model contains 21 observed variables as 

the indicators of six latent variables (Maternal Attachment Experience, Prenatal Social Support, 

Postnatal Social Support, Prenatal Representations of Caregiving, Prenatal Risk Factors, and 

Infant-Mother Attachment). In their model, the Experience indirectly predicts Attachment via 

two paths: a) Prenatal Social Support, which leads to Postnatal Social Support, and b) 

Caregiving. In addition, the Risk Factors affect Caregiving. Figure A2 in Appendix shows a 

measurement and the structural model specification. Their model fitted the data with the size of 

204 and showed acceptable fit indices values; RMSEA = .04 and CFI = .97. 

We took research about mathematics learning by Passolunghi, Vercelloni, and Schadee 

(2007) as our third example. The research aimed to identify the precursors of mathematics 



13 
 

learning and went through extensive model modifications and comparisons, cutting down more 

than half of the variables they collected in their final model. We used the full model (rather than 

the final model) as our example. This decision provided an illustrative example where the fit 

indices are insufficient. Despite the trend that research with such a bad fit would rarely get 

published, their full model is theoretically defensible while showing an inadequate fit. Therefore, 

we took the full model (Model 5, Passolunghi et al., 2007). It has 21 observed variables, 

including Vocabulary and Block Design, and seven latent variables, which are Span Forward, 

Phonology, Number, Comparison, Working Memory, Counting, and Mathematics, fitted to a 

sample data size of 170. (See Passolunghi et al., 2007 for detailed descriptions.) Their model 

specifies that Vocabulary predicts Span Forward, Phonology, Number, Comparison, Working 

Memory, and Counting, while Block Design only predicts Comparison, Working Memory, and 

Counting. Furthermore, Working Memory and Counting jointly predict Mathematics, creating 

indirect paths from the exogenous variables to the final outcome, Mathematics. The more 

detailed model specification can be found in Figure A3 in Appendix. It is worth noting that we 

failed to reproduce the same result as theirs in terms of the fit indices. We found worse fit index 

values than they did (CFI = .85, TLI = .81, RMSEA = .07). Again, we proceed with this model 

as it serves our purpose of illustrating the situation where the fit indices are mediocre. 

Simulation 

All simulations have two population moment matrix conditions across six different 

sample sizes (N = 100, 200, 400, 1,000, 2,000, and the original sample size). The first condition 

uses the observed covariance matrix to generate simulated data (and will be referred to as 

“observed” condition hereafter), while the second condition uses the predicted covariance matrix 

(also referred to as model-implied covariance matrix) for the same purpose (and will be called as 
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“perfect-fit” condition afterward). The model will have a perfect fit to the predicted covariance 

matrix. As a result, the second condition illustrates “the upper bound” when one tries to replicate 

research. 

The first (“observed”) condition of simulations using each of the three examples above 

was done by following these steps: 1) reconstruct the covariance matrix using the standard 

deviations and the correlation matrix, 2) generate random numbers that follow a multivariate 

normal distribution with the means and the reconstructed covariance matrix, with the size 

according to the sample size conditions, 3) fit the original model to the replicated data and record 

the fit indices, 4) repeat the step two and three 1,000 times.  

The main differences between the second (“perfect-fit”) condition to the “observed” 

condition is in the first few steps described above. In the “perfect-fit” condition, we 1) 

reconstructed the moment matrix from the reported means, standard deviations, and correlation 

matrix, 2) fitted the original model to it to generate the predicted covariance matrix, 3) generated 

random numbers that follow a multivariate normal distribution, using the observed means and 

the predicted covariance matrix, with the size corresponding to the sample size conditions, 4) 

fitted the replicated data generated in step 3 and record the fit indices, and 5) repeated the step 3 

and 4 1,000 times. Note that none of the models include a mean structure, so the means of the 

observed variable are not estimated. Therefore, we used the observed mean vector for data 

generation.  

Each fitting to the replicated sample used ML estimation provided by the ‘lavaan’ 

package (Rosseel, 2012) in R (R Core Team, 2022). The replication attempts that failed to reach 

convergence are excluded from the results. We examined the influence of sample size on the 

distribution of the fit indices by setting it at the sample size of the original study, 100, 200, 400, 
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1,000, and 2,000, intended to cover the range of sample sizes that can often be found in the SEM 

literature. Note that since some fit indices are sensitive to sample size, we specified a sample size 

corresponding to each condition when we fit the model to the original covariance matrix for 

comparable results. For example, for the N = 100 condition, we used the original covariance 

matrix for fitting the model, but we specified the number of sample observations as 100 instead 

of the original sample size. The only condition identical in every aspect of the original is the 

original sample size condition. 

Research Outcome 

To examine how replication attempts affect the fit indices, we propose two types of 

satisfactory fit: a) a better index value than the conventional guideline of evaluating fit, and b) a 

better index value than the original. We use the recommendation suggested by West, Taylor, and 

Wu (2012). Note that not all fit indices have fixed recommended value; for example, less AIC 

indicates a better fit, but there is no specific value for AIC that tell readers a good fit. The 

threshold of acceptable values for CFI is .95 or greater. It is also .95 for TLI. The RMSEA 

threshold is .06 or smaller. Then, we calculated the percentage of each type of satisfactory fit for 

each fit index. 

Results 

The result showed an interesting phenomenon in the distribution of fit indices. Generally, 

the fit indices of simulated replications were worse than the original in the first two examples 

when the replicated samples were generated using the observed moment matrix of the original 

study. Notably, any chi-square-based fit indices, such as CFI, TLI, and RMSEA, showed worse 

performance on the replication. On the other hand, the fit indices based on the log-likelihood 

value (AIC and BIC) are less impacted by replication.  
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The “Observed” Condition 

Because of the difference in the bases of data generation, the patterns in both conditions 

are quite different. We focus on the result of the “observed” condition first. In Example 1, , 

CFI, TLI, RMSEA, and ECVI of the original study were 54.21, 0.99, 0.99, 0.03, and 0.61, 

respectively, while the means of 1,000 replication from the observed covariance matrix and the 

original sample size (N = 188) were 104.47, 0.95, 0.94, 0.08 and 0.87, respectively, showing that 

the fit indices of replicated samples are worse than the original. A complete simulation result of 

the “observed” condition in Example 1 can be found in Table 1. Similar patterns can be found in 

Example 2. As the simulation result of the “observed” condition on Example 2 in Table 2 shows, 

the mean fit indices of the replicated sample (M  = 553.93, MCFI = 0.86, MTLI = 0.83, MRMSEA = 

0.10, and MECVI = 3.15) are worse than the fit indices of the original study (  = 363.58, CFI = 

0.92, TLI = 0.91, RMSEA = 0.07, and ECVI = 2.23) when the sample size was equal to the 

original (N = 206).  

The estimation details of Example 3 are not identical to Example 1 and Example 2, where 

the non-convergence replication and the inadmissible solutions (e.g., negative variance 

estimates) are dropped. Example 3 was selected to illustrate when the model fit is below the 

acceptable range. In the original study (Passolunghi et al., 2007), the model we selected was not 

their final model and had suboptimal fit indices. In consequence, we had trouble fitting the 

model to their original data. Specifically, the converged solution contained a negative variance 

on one of the latent variables. Typically, such a solution is not admissible, and the model would 

likely undergo some modifications. However, considering the current study’s exploratory nature 

in a phenomenon that has not been reported before, we decided to report the fit indices of the 

converged solution and proceed with subsequent replication attempts. Like the original data 
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producing an impermissible solution, most replicated samples generated unacceptable solutions. 

We have not included such replications in the results of Examples 1 and 2, but for illustration 

purposes, we decided to include the non-admissible results in Example 3. In Example 3, the fit 

indices (M  = 571.30, MCFI = 0.64, MTLI = 0.55, MRMSEA = 0.12, and MECVI = 4.05) are worse 

than the original (  = 317.40, CFI = 0.83, TLI = 0.79, RMSEA = 0.07, and ECVI = 2.56) in the 

“observed” condition with the sample size of the original (N = 170). A detailed simulation result 

on Example 3 can be found in Table 3. 

[INSERT TABLE 1 HERE.] 

[INSERT TABLE 2 HERE.] 

[INSERT TABLE 3 HERE.] 

In contrast to the  family fit indices, the fit indices calculated from the maximized log-

likelihood value do not show a diminishing pattern by replication attempt. As shown in Table 1, 

in the “observed” condition in Example 1, where the sample size is equal to the original (N = 

188), the original value of the log-likelihood is -7719.76 while the mean log-likelihood of 

replicated samples is -7705.59 with a standard deviation (SD) of 33.87. The original value fell 

into an interval surrounded by less than a half SD from the replicated means. The AIC and BIC, 

consequently, showed similar patterns (the original AIC is 15499.52 while the mean AIC 

replicated is 15471.17 with an SD of 67.74, and the original BIC is 15596.61, while the mean 

BIC replicated is 15568.26 with an SD of 67.74).  Similarly, in the original sample size condition 

of Example 2 in Table 2, the value of original log-likelihood, AIC, and BIC is -7868.80, 

15833.59, and 15993.33, respectively, while the mean and the SD of those from replicated 

samples is MlogL = -7843.04, SDlogL = 48.75, MAIC = 15782.07, SDAIC = 97.50, MBIC = 15941.81, 

and SDBIC = 97.50.  
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Example 3 showed a vastly different pattern in the log-likelihood, AIC, and BIC. As 

shown in Table 3, when the sample size was equal to the original (N = 170), the values of the 

original are logL = -7483.77, AIC = 15085.54, and BIC = 15270.55, while the replicated 

distributions have MlogL = -6768.07, SDlogL = 47.20, MAIC = 13654.14, SDAIC = 94.41, MBIC = 

13839.15, and SDBIC = 94.41. Notice that the original fit values were much worse than the 

replicated fits. We believe that this is not a subject of serious interpretation. Instead, we consider 

this as a quirk that happened to be in the original data. This matter will be addressed in the next 

section. 

We calculated the percentage of replication attempts with a better fit than the fit from the 

original covariance matrix. We observed two common trends in this satisfactory fit percentage 

when we varied the sample sizes within the “observed” condition across all examples. First, none 

to a tiny percentage of replication attempts have better chi-square and chi-square-based fits (CFI, 

TLI, RMSEA, and ECVI) than the original when the sample size is equal to or under 400, as 

shown in Table 1 and Table 2. The percentage increased when the sample sizes were 1,000 and 

2,000, but not by much. The largest percentage was 18.04%, observed in CFI and TLI in 

Example 1 when the sample size was 2,000. Second, the percentages of a better fit in the log-

likelihood and the likelihood-based fits (AIC and BIC) tended to decrease as the sample size 

increased. For example, the percentage of replication with better AIC in the “observed” 

condition in Example 1 was 66.32% when the sample size was 188, and it decreased by 55.04% 

when the sample size was 2,000. 

We compared the replicated fit indices to specific values considered “cut-off” criteria. 

West et al. (2012) suggested such criteria on many fit indices, including CFI, TLI, and RMSEA, 

to be 0.95, 0.95, and 0.06, respectively, to be considered a good fit. We defined another type of 
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satisfactory fit according to this guideline in the previous section. Accordingly, we calculated the 

percentages of replications that had fit values exceeding these criteria. Generally, the magnitudes 

of this rate depended on the fit of the original study and the type of fit index. In Example 1, 

which was selected as a study with excellent fit, the rate of satisfactory fit ranged from 54.84% 

to 94.15% on CFI as the sample size increased, as shown in Table 1. On the other hand, the rate 

decreased from 32.97% to 2.62% on TLI with the increasing sample size. The satisfactory fit rate 

for RMSEA also decreased from 16.94% to 0.00%. 

In Table 2 that contains the results of Example 2, the satisfactory fit rate using the 

threshold showed 0.00% in all -based fit indices in all “observed” conditions. That is, no 

replication attempts we tried reached a satisfactory level commonly used in SEM literature. We 

emphasize the importance of this result. In a small sample size condition (N = 100), the CFI, 

TLI, and RMSEA indicated excellent fit (1.00, 1.01, and 0.00, respectively) of the model to the 

data. Yet, when one tried to replicate the sample, the fit of the same model went down to an 

unacceptable level (MCFI = 0.84, MTLI = 0.82, and MRMSEA = 0.10). Although they differ in 

magnitude, the deteriorating fit happened in all sample size conditions, leading to the result that 

no condition achieved satisfactory -based fits. 

The pattern described above can be better understood with Figure 1, which visualizes the 

empirical cumulative distribution of fit indices for the replication samples. The x-axis represents 

each fit indices' value, while the y-axis represents the percentile of the value. Also, the solid 

curve lines represent the cumulative distribution of the fit index in the “observed” condition, 

while the dots on the lines signify the fit index value from the original covariance matrix. As 

shown in Figure 1, the chi-square values for the replicated samples are almost always distributed 

on the right-hand side of the original, showing that few replicated samples have better chi-square 
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than the original. This pattern of worsened fit also can be found in the distributions of CFI, TLI, 

and RMSEA, compared to the dots in Figure 1. 

On the other hand, the distribution of AIC and BIC in Figure 1 centered around the 

original values, showing clear contrasts to the shifted distribution of the chi-square-based fit 

indices away from the original values. Note that the seemingly vertical lines in the graphs for 

AIC and BIC is due to vast differences in the range of each distribution and the overall range of 

the scale. The patterns identical to Example 1 were found in Example 2. In Example 2, the chi-

square and its descendants (CFI, TLI, and RMSEA) showed worse fits than the original, while 

the distribution of AIC and BIC are centered around in Figure 2. In Example 3, where the model 

had an inadmissible solution on the original data, the chi-square and the fit indices stemming 

from it showed shifted distributions away from the original values in Figure 3. Interestingly, the 

AIC and BIC distribution are much better than the original values. This will be discussed in the 

later section. 

[INSERT FIGURE 1 HERE.] 

[INSERT FIGURE 2 HERE.] 

[INSERT FIGURE 3 HERE.] 

A final note about the visualizations of the “observed” condition is on the pattern with 

varying sample sizes that were described above. As the sample size increased, the shift of the 

chi-square distribution away from its original value became less salient. (see Figure 1, Figure 2, 

and Figure 3.) In other words, the distribution of the chi-square moved toward its original value 

as the sample size increased. A similar pattern was found in the likelihood fit indices (AIC and 

BIC). Specifically, the centers of distribution of AIC and BIC are located slightly left of the 
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original values when the sample size was small, but they moved toward the original values as the 

sample size increased.  

The “perfect-fit” Condition 

The purpose of running a simulation on the “perfect-fit” condition was to illustrate what 

one can expect to see under the “ideal” situation when one tries to replicate an SEM. In the 

“perfect-fit” condition, we used a model-implied (predicted) covariance matrix as our bases for 

generating replication samples. Considering that the function in Equation 1 measures the 

discrepancy between two covariance matrices, fitting the model to its own predicted matrix 

would show a perfect fit. Consequently, the discrepancy observed in fitting the replication data 

generated from the predicted matrix would be solely due to the sampling error. 

As expected, the distributions of replication fit from the “perfect-fit” condition are 

generally better than the “observed” condition distribution. In the “perfect-fit” condition of 

Example 1, as shown in Table 1, the mean of  replicated was 49.71 with the SD of 10.15 when 

N = 188, but in the “observed” condition the mean of  was 104.47 with the SD of 16.84. In all 

other sample size conditions, the mean  were smaller in the “perfect-fit” condition than those 

of the “observed” condition. The same pattern was found in Example 2. The mean of  

replicated was 192.19 in the “perfect-fit” condition, while it was 553.93 in the “observed” 

condition when N = 206. 

An interesting trend is that the mean of  and its descendants (CFI, TLI, and RMSEA) 

did not change its magnitude as the sample size changed. Table 1 shows that the mean  of 

replicated ranged from 47.61 to 50.66, the mean of CFI from 0.99 to 1.00, the mean of TLI from 

0.99 to 1.00, and the mean of RMSEA from 0.02 to 0.00. This consistency is especially 

unexpected for  as it is known to be sensitive to N. The result of Example 2 in Table 2 
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demonstrated a similar pattern. The  means ranged from 184.44 to 201.71 across varying 

sample sizes. 

Figure 1 contained empirical cumulative distribution functions of two conditions 

superimposed on one another. The  distribution of the “perfect-fit” condition (the dotted curve) 

did not change as the sample size varied, while one of the “observed” condition (the solid curve) 

moved away from the “perfect-fit” distribution. The CFI, TLI, and RMSEA do not share this 

pattern. The  distributions in Example 2 were depicted in Figure 2, showing the same pattern 

as Example 1: the distribution of the “perfect-fit” did not move, but the distribution of the 

“observed” increased in value. The  family fit indices (CFI, TLI, and RMSEA) showing 

similar patterns in Example 2 to those in Example 1 were represented in Figure 2. 

Another noteworthy characteristic of AIC and BIC is revealed in Figure 1. The 

distributions of AIC and BIC from both conditions largely overlapped. For example, the means 

and SDs of the “observed” condition and the “perfect-fit” condition in Example 1 in Table 1 are 

MAIC (SDAIC) = 15471.17 (67.74) and MAIC (SDAIC) = 15454.46 (68.58), respectively, when N = 

188. The same pattern was observed in Example 2. In Figure 2, the distributions of AIC and BIC 

from the “observed” condition and the “perfect-fit” condition overlapped each other (e.g., MBIC 

(SDBIC) = 15941.81 (97.50) and MBIC (SDBIC) = 15923.32 (90.00), respectively, when N = 206, 

as shown in Table 2). This result implies that the log-likelihood-based fit indices like AIC and 

BIC are not only insensitive to the replication, but also insensitive to the bases of data 

generation; the observed or the predicted covariance matrix. 

While the result of Example 3 is based on an impermissible solution, it provided useful 

insights. First, the worsening pattern of the  family fit indices in the “observed” condition and 

the insensitivity of  to the N in the “perfect-fit” condition (the  means ranged from 180.64 to 
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216.17, while N varied from 100 to 2,000, as shown in Table 3) were observed in here as well. 

Second, unlike the patterns observed in Example 1 and Example 2, the distributions of AIC and 

BIC from both conditions were not overlapped but were placed far apart. Moreover, the 

distribution of the “perfect-fit” condition showed worse fits (larger values). This seemingly 

inconsistent result can be understood considering the problem we encountered in fitting the 

original data. The predicted covariance matrix, the result of the original model fitting, was not a 

viable solution for the original data. Hence, the replication data generated from the problematic 

predicted covariance matrix showed a much worse fit than the replication from the observed 

covariance matrix. 

Phase 2 

The purpose of the second part of the current study is to examine the phenomenon 

observed in Phase 1 in controlled settings. The examples in Phase 1 were from empirical 

research. Although the parameters that might impact on the outcome of the study (such as the 

number of observed variables, the number of parameters to be estimated, the degrees of freedom, 

or the sample size) are known for the examples, using the real-world samples inhibits the 

flexibility of manipulating the conditions. In Phase 2, we built a simulation with varying 

conditions. For simplicity, we employed an intercorrelated factor model commonly used in 

confirmatory factor analysis (CFA). It can be considered a simplified SEM model where the 

measurement models are specified, but the structural model is just correlated factors. Figure 4 

depicts a general model we used in Phase 2. A detailed model specification will be introduced in 

the simulation section. 

[INSERT FIGURE 4 HERE.] 
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Specifically, we manipulated the number of observed variables p, the number of latent 

factors f, and the sample size N. The number of parameters and the degree of freedom is 

functions of p and f when the models are inter-correlated factor models, which we used. These 

factors are commonly used in the literature to examine the impact of model size on various SEM 

outcomes, such as fit indices and empirical rejection rates of the chi-square (Moshagen, 2012; 

Shi, Lee, & Terry, 2018). Additionally, we added a misspecified model condition to examine the 

fit indices when the model fit is not optimal. 

Another purpose of Phase 2 simulation is to suggest a new index useful in replication 

attempts. The fit indices such as CFI, TLI, and RMSEA provide easy-to-use metrics and 

guidelines to evaluate a model according to its values. However, as observed in Phase 1, 

conventional fit indices based on  such as CFI, TLI, ECVI, and RMSEA deteriorate when one 

tries to replicate a study. Meanwhile, the fit indices based on the likelihood, such as AIC and 

BIC, are much less affected by replication, meaning that their expected values of a replicated 

sample are close to those of the original. Yet, their values are not easy to interpret when they are 

used alone. In fact, they estimate the relative amount of information lost by using a model. Their 

intended usage is to compare the model’s AIC or BIC to each other and select the best model. 

A constant pattern observed in Phase 1 is that the fit indices based on  worsen on 

replication attempts while the fit indices based on likelihood do not. Recall that  is the 

likelihood ratio of the saturated (unrestricted) and the hypothesized model. From this, we 

speculate that the likelihood of a saturated model affects the worsening effects of the -based fit 

indices. To avoid such an effect, we suggest an alternative likelihood ratio. Instead of the 

likelihood ratio of the saturated and the hypothesized model, the likelihood ratio of the baseline 

model and the hypothesized model is suggested. 
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A theorem offered by Wilks (Wilks, 1938) shows that twice the likelihood ratio will 

asymptotically follow  distribution with degrees of freedom df equal to the difference of dfs of 

two likelihoods as the sample size N approaches infinity. In theory, we can formulate the 

likelihood ratio of the baseline and the hypothesis model and expect the ratio to be distributed as 

 distribution. The new ratio does not involve the unrestricted likelihood so that it will be less 

impacted by replication attempts. Therefore, the baseline likelihood ratio is defined as 

 

where ln𝐿(𝜽0) is the log-likelihood of the baseline model, and ln𝐿(𝜽̂) is the log-likelihood of 

the hypothesized model.  

Using a baseline model to formulate a fit index is not unusual. The CFI and TLI, 

introduced in the previous section, utilize the idea of the baseline model. To recap, the TLI 

compares the baseline chi-square  and its df ratio to the hypothesized model chi-square  and 

its df. The CFI compares the non-centrality of the baseline and the hypothesized model. As 

another example that is more directly related to LR0, Bentler & Bonett (1980) suggested the 

normed fit index (NFI) that is defined as 

 

, (Eq 4) 

where  is the likelihood ratio of the baseline and the saturated model, 

, 

and  is the likelihood ratio of the hypothesized and the saturated model, 

. 

Expanding Equation 4 in terms of log-likelihoods, we get 
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Per our speculation that the saturated model's log-likelihood is the reason for the deteriorating fit, 

the NFI would also show the worsened fits on the replicated samples since it has the log-

likelihood of the saturated model as its components. It is also worth noting that the log-likelihood 

of the saturated model cancels out on the numerator of NFI, which is the difference between the 

baseline chi-square and the hypothesized model chi-square. We speculate that NFI would suffer 

from the replication while LR0 would resist the replication effect on the chi-square-based fits.  

To summarize, the goal of Phase 2 is to investigate the generalizability of the diminishing 

phenomenon of fit indices observed in Phase 1 in terms of several factors, such as the number of 

observed variables and the model complexity, and to formulate a new index that can be used in 

replication attempts. 

Simulation 

The simulation strategy was identical to Phase 1 in the broad sense that it also mimicked 

a replication attempt. We generated many simulated replication samples from the observed 
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covariance matrix to examine the distribution of fit indices. The main difference in Phase 2 is 

that we also generated the (original) observed covariance matrix to gain more control of the 

model specifications. Specifically, we imposed a population model to generate data that serves as 

the original. Then, we used the original to generate many datasets as the replication samples. We 

justify the reasons for adopting the two-step data generation scheme as followings: 1) it granted 

the control of the population, and 2) it imitated a replication attempt in a typical scenario that a 

researcher does not have information about the population and relies on the observed data. 

Four levels of the number of observed variables (p = 15, 30, 45, and 60), two levels of the 

number of latent factors (f = 3 and p/3), four levels of the sample size (N = 200, 400, 1000, and 

2000), and two conditions of the model specification had crossed each other to build 64 different 

models. A commonly used confirmatory factor analysis (CFA) with a congeneric measurement 

model where each observed variable is loaded to a single corresponding latent factor was used to 

generate data for each condition. A generalized depiction of the model specification is 

represented in Figure 4. For example, in a condition where p = 30 and f = p/3, each of the ten 

factors is indicated by three observed variables while those factors are correlated with each other. 

Data Generation 

The first step of the two-step procedure was generating original data. This step was done 

by imposing population relationships onto a generated dataset. The intercorrelated factor model 

is specified as follows: 

 

where X is a vector of observed variables,  is a factor loading matrix,  are the latent variables, 

and  is a residual vector. In this notation, two random components cause the value of X; the 

value of the latent variable and the unexplained residual. Note that only one latent factor is 

loaded to an observed variable. We assumed both are normally distributed, independent of each 



28 
 

other. Thus, we generated a sample size of N that contains f normally distributed factor scores 

and p normally distributed residuals. For simplicity, we set all factor loadings to 0.7 and the 

residual variances to 0.51. Additionally, we set all latent factor variances to 1, and all factor 

correlations are set to 0.3. We obtained a dataset of observed variables by applying the 

relationship to the generated factor scores and residuals. 

Although we took the strategy that generates unobserved variables and imposes a 

population relationship on them, note that this is equivalent to generating observed random 

variables that follow multivariate normal distribution directly from a population moment matrix 

corresponding to a model specification. It is because a sum of normally distributed random 

variables is also normally distributed. In our configuration of the factor loadings set to 0.7 and 

the factor correlations of 0.3, a correlation between the observed variables that are loaded on the 

same factor is the factor loading  times the variance of latent variable times  again, 0.7 × 1 × 

0.7 = 0.49. A correlation between observed variables loaded on different factors is  times the 

correlation between those factors times , 0.7 × 0.3 × 0.7 = 0.147. Since we simplified the factor 

loadings and the factor correlations, the value of each non-diagonal element of the population 

correlation matrix is either 0.49 when the indicators are on the same factor or 0.147 when the 

indicators are on different factors. Again, our strategy of generating observed variables from 

latent variables is equivalent to a strategy that constructs the population moment matrix first and 

generates random variables directly from it. 

The first step was to obtain the “original” data to be replicated. The second step was to 

generate many “replicated” samples from the original data. Similar to what has been done in 

Phase 1, we calculated the observed covariance matrix of the original and generated 1,000 sets of 

multivariate normal random variables per condition that follows it. 
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Model Fitting 

Aside from the model complexity conditions (e.g., p and f), we also created two 

conditions for how a model is specified. In a well-specified condition, we used the same model 

that generates the dataset, except the model parameters (e.g., factor loadings, residual variances, 

and factor correlations) are freely estimated. In contrast, we also created a misspecified condition 

where the fitted model is not identical to the population model. In the misspecified condition, a 

single path to an observed variable is moved from one latent variable to another so that that 

observed variable is loaded to a different factor than what it supposed to be loaded. For example, 

in the well-specified condition where p = 15 and f = 3, the first five observed variables (X11 to 

X15) are loaded to the first factor (F1), the next five (X21 to X25) are loaded to the second factor 

(F2) and so on, where Xij represents the ith indicator of jth latent factor. In the misspecified 

condition, the X12 to X15 are loaded to F1 while X11, X21, X22, X23, X24, and X25 are loaded to F2. 

Figure 5 contains a generalized diagram of the model that is fitted in the misspecified condition. 

Only one observed variable was moved to the other factor to create a misalignment in the data 

regardless of other conditions. That is, no matter how complex the model is, only one indicator-

factor misalignment occurred. 

[INSERT FIGURE 5 HERE.] 

Since we generated all models in the same manner (a congeneric correlated factor 

model), the number of parameters estimated q and the degree of freedom df are functions of p 

and f. The number of unique information in the dispersion matrix is ( 1) / 2 120p p + =  when p = 

15. When f = 3, q is equal to 33 and consists of 15 factor loadings, 15 residual variances, and 

three correlations between factors, whereas when f = 5, q is equal to 40, consists of the same 
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numbers of factor loadings and the residual variances but now ten correlations between factors. 

The dfs are equal to 87 and 80, respectively. 

Once the model is specified according to the condition, it is fitted to the replicated 

sample. The remaining steps for the simulation are similar to the simulation in Phase 1. After the 

model fitting is completed and converged, the fit indices are recorded, and the process of 

generating the replication sample and the model fitting is repeated. Another main difference 

between Phase 1 and Phase 2 is that Phase 2 does not have the “perfect-fit” condition. The 

scheme for data generation is already known in Phase 2, and the purpose of the “perfect-fit” 

condition in Phase 1, which was to give illustrations of the “upper-bound” of replication results, 

can be achieved in the well-specified condition in Phase 2. In other words, the well-specified 

condition fits a “true” model to data, and theoretically, the imperfection of fit is only due to the 

sampling error.  

The simulations in Phase 1 and Phase 2 have another meaningful difference. In Phase 1, 

we used examples from the literature. Therefore, we do not know what the true model that 

generates data in the population is. On the contrary, we know the true model that fits perfectly to 

the population in Phase 2. This difference makes the well-specified condition in Phase 2 unique 

compared to any conditions in the Phase 1 simulation. The difference between the well-specified 

condition and the “perfect-fit” condition is that the well-specified condition uses the two-step 

data generation so that it does not sample from the population but from the observed covariance 

matrix, like researchers who do not know the population would do. 

Additionally, the well-specified condition differs from the “observed” condition in Phase 

1 in that we know the former fits the true model to the data, while we do not know the true model 

in the latter. It is highly likely that the model we fitted in the “observed” condition in Phase 1 is 
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not the true model. Thus, the “observed” condition in Phase 1 is comparable to the misspecified 

condition in Phase 2 because they both fit a misspecified model to the data. 

Results 

The baseline likelihood ratio LR0 and the standard likelihood ratio LR were collected 

across the simulated originals and replications. All fit indices included in Phase 1 can be derived 

from either the log-likelihood value of the hypothesized model or the , which is equal to LR. 

Therefore, we included only these two as our results. Note that we will use  as the notation of 

the standard likelihood ratio instead of LR to maintain consistency with the notation we 

introduced and used in Phase 1. Also, note that LR0 is an index of goodness-of-fit. A small value 

indicates that the discrepancy between the baseline and hypothesized models is small. This is 

different from the interpretation of . The  is an index of badness-of-fit, which means the 

larger value indicates the hypothesized model is far from the “true” model. In turn, we consider 

the replication attempt with a larger value of LR0 than the original has a satisfactory fit, while the 

replication with a smaller value of  than the original has a satisfactory fit. 

As expected, LR0 is not heavily affected by replication, while  has a 0% of satisfactory 

fit in most conditions, with a few exceptions in the misspecified condition. In the well-specified 

condition, none of the model complexity parameters (p and f, and consequently q and df) 

impacted the percentage of satisfactory ; in all conditions, the rate was 0.00%. In other words, 

the  always showed a worse fit than the original when the model was well-specified. Figure 6 

contains empirical cumulative distribution functions of  in the well-specified condition. The 

curves representing the replicated distribution are placed on the right side of the dots, 

representing the value from the original covariance matrix.  On the other hand, the LR0 exhibited 

a different property in replicated samples. More than half of the replication attempts in the well-
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specified condition had better LR0 across all other conditions, ranging from 50.90% to 92.59%, 

as shown in Table 4 and Figure 7. Considering the sampling error, the ideal would be a 

satisfactory rate of 50%. While the LR0 was consistently overestimating the difference between 

the baseline and the hypothesized log-likelihood, it has a much better property than the  in 

terms of diminishing the fit in replication. Another pattern that can be found in Figure 7, 

consistent with the observation made in Phase 1, was that the overestimation tended to decrease 

with increasing sample size. For instance, the proportions of satisfactory LR0 gradually decreased 

(57.70%, 52.90%, 51.90%, and 50.90%) as we increased the sample size (N = 200, 400, 1,000, 

and 2,000) when p = 60 and f = 3, as shown in Table 4. Lastly, the overestimation of LR0 was 

larger when the number of parameters estimated q was greater. We indirectly manipulated q by 

imposing different numbers of latent factors f. For example, q = 63 when p = 30 and f = 3, while 

q = 105 when p = 30 and f = 10. For these conditions, the satisfactory LR0 rates were 51.20% and 

58.40%, respectively, when N = 2,000. Parallel patterns can be observed across other conditions. 

A complete simulation result for the well-specified condition can be found in Table 4. 

[INSERT TABLE 4 HERE.] 

[INSERT FIGURE 6 HERE.] 

[INSERT FIGURE 7 HERE.] 

The pattern of non-replication of  repeated in the misspecified condition, with a few 

exceptions. As we can see in Table 5, only in the conditions where p = 15 the satisfactory  rate 

showed a slightly increasing pattern with increasing sample sizes (the percentages of  smaller 

than the original were 0.10%, 0.00%, 2.10%, and 5.80% when f = 3 and N = 200, 400, 1,000, and 

2,000, respectively, while the percentages were 0.00%, 0.90%, 3.20%, and 6.60%, respectively, 

when f = 5.) The pattern was not observed in any other conditions on p, as shown in Figure 8. On 
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the contrary, the LR0 showed a similar pattern observed in the well-specified condition. It tended 

to overestimate the LR0 observed in the original sample, but the overestimation decreased with 

increasing sample size, as shown in Figure 9. For example, the satisfactory LR0 rate decreased 

(58.10%, 56.60%, 55.00%, and 51.90%) when the sample size increased (N = 200, 400, 1,000, 

and 2,000, respectively) when p = 15 and f = 3. The effect of the number of parameters on the 

satisfactory LR0 rate was also observed in the misspecified condition. For instance, the 

satisfactory LR0 rates were 56.70%, 54.50%, 56.10%, and 52.00% when p = 45, f = 3, q = 93, 

and N increased from 200 to 2,000, respectively, while the rates were 84.40%, 77.80%, 67.20%, 

and 61.30%, respectively, when p = 45, f = 15, and q = 195. A detailed result of the misspecified 

conditions is contained in Table 5. 

[INSERT TABLE 5 HERE.] 

[INSERT FIGURE 8 HERE.] 

[INSERT FIGURE 9 HERE.] 

One of the main findings in Phase 2 was a confirmation of what had been observed in 

Phase 1. We have observed that the fit indices with  in their formulation deteriorated when one 

tries to replicate an SEM from the observed moment matrix, while the fit indices stemmed from 

the log-likelihood value did not. Based on this observation, we also have speculated that the 

likelihood of the saturated model was causing the deterioration since the  is the ratio of two 

likelihood values, one for the hypothesized model and the other for the saturated model. Another 

main finding of Phase 2 was that the likelihood ratio that involves the unrestricted likelihood 

showed a weaker fit in the context of replication of a study, while the LR0, which is the ratio of 

the likelihood of the baseline model and the likelihood of the hypothesized model and does not 

involve the likelihood of the saturated model, was less affected by replication.  
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It is worth noting that replicated LR0 overestimates its original value, especially when p 

and q are large and N is small. While the LR0 is newly introduced and its distributional properties 

have not been scrutinized, some helpful research findings are available to explain the such 

deviation. In their investigation of the model size effect of SEM, Shi et al. (2018) found that the 

standard likelihood ratio test statistic does not follow the asymptotic chi-square distribution well 

when the number of observed variables is large (p ≥ 60). Moreover, Jackson (2003) also found 

an association between the number of parameters estimated and the poor approximation of the 

likelihood ratio to the chi-square distribution. From these findings, we can speculate that LR0 

also suffered from the small sample size and the large model complexity. 

An important advantage of LR0 over AIC and BIC is that it performed better than the 

likelihood-based fit indices in distinguishing a better model-data fit from a worse one. A 

comparison of Figure 10 and Figure 11 revealed that the distributions of BIC are identical 

whether the model is well-specified or misspecified. In other words, BIC showed limited 

usefulness in distinguishing a better fit from a worse one. On the contrary, a comparison of 

Figure 7 and Figure 9 showed a general tendency of larger LR0 on the well-specified condition 

than the misspecified condition, with a few exceptions. Considering that the Phase 2 simulation 

results depended on a single random draw from the population that serves as the original dataset, 

this potential advantage over BIC is worth investigating in future research. 

[INSERT FIGURE 10 HERE.] 

[INSERT FIGURE 11 HERE.] 

Finally, we speculated that Bentler & Bonett’s (1980) NFI would show the worsening 

effect caused by replication attempts despite its apparent similarity with LR0. This speculation 

has been supported by the simulation result done in Phase 2. In short, the worsening pattern is 
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parallel to the pattern of  shown in Table 4 and Table 5. Almost no conditions have shown a 

better NFI than the original in the well-specified condition, while small percentages of 

replications with better NFI were observed in the misspecified condition. A complete result 

regarding the NFI is contained in Table B1 in Appendix B. 

Discussion 

The pattern we observed in both phases is unexpected because there should be no 

difference in the fit indices of the original and the replicates on average. Fit indices are intended 

to indicate how well (or poorly) the model fits the data. In the current context, the model is fixed, 

while the data is stochastic, following a population distribution. All samples should be 

exchangeable, including the original. Considering the sampling error, some of the replicated data 

should show a better fit than the original while others worse. Note that we are not constraining 

the estimates to the original; all parameters are freely estimated, corresponding to the data in 

each replication. It also means that the discrepancy between  and S is minimized in each 

replication and is reflected in the fit indices. 

The difference between the theoretical  distribution and the simulated  distribution is 

worth noting. Joreskog (1969) indicated that N times the minimized discrepancy follows the  

distribution. In other words, the theoretical  distribution can be obtained once the parameter 

estimates fix the minimum value of the discrepancy function. The sampling variability, then, 

makes the theoretical  distribution. On the other hand, the simulated distribution in the current 

study differs in that the value of the discrepancy function and the sample both vary. Although the 

model specification is identical throughout the simulation, each replication has its own set of 

parameter estimates and, therefore,  differs from others. This critical difference makes the 

theoretical  distribution unusable to make any inference about the current result. The simulated 
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distribution does not follow the  distribution, and it is difficult to determine what kind of 

distribution it follows. 

The result of the simulation in Phase 2 showed that the standard likelihood ratio that 

compares the unrestricted and the restricted (hypothesized) log-likelihood does not replicate. 

Especially the replication of the unrestricted log-likelihood was problematic. Recall that 

Equation 2 is reduced to Equation 3 when the model-implied moment matrix equals the sample 

moment matrix. In turn, the unrestricted log-likelihood in Equation 3 is independent of parameter 

estimates. The source of variability in Equation 3 is the determinant of the sample moment 

matrix, given that the dimension and the sample size are fixed. We can conclude that the 

determinant of the sample moment matrix diminishes when we generate multivariate normal data 

from other sources. One could speculate that generating random numbers based on simplified 

assumptions (such as assuming the sample follows the multivariate normal distribution) may lose 

some information in the original sample or even the population. In fact, the differential entropy 

(which is a measure of information) for a multivariate normal distribution is defined as 

, 

which can be obtained by dividing Equation 3 by negative of the sample size. We dismiss this 

speculation for the results in Phase 2. Unlike the simulation in Phase 1, where we do not know 

how the observed variables were distributed, the simulation in Phase 2 generated the original 

data that follows a multivariate normal distribution. No unknown causes or relationships affected 

the generation of observed variables. However, the diminishing effect of  was still observable 

in the Phase 2 simulation. Thus, we rule out the violation of the multivariate normal assumption 

as a possible reason for the fit-worsening effect. 
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Despite of unclarified reason for the phenomena, the results showed a clear pattern of 

worsening in specific fit indices. The chi-square and its descendants (CFI, TLI, and RMSEA) on 

the replicated sample showed worse fits than the original most of the time, particularly when the 

sample size was not large. This finding invites caution in interpreting the result of any replication 

attempts using these SEM indices. The current observation warns that if a study tries to replicate 

previous findings on SEM, the fit indices such as CFI, TLI, RMSEA, and ECVI would likely fail 

to replicate the original fit index. Thus, it requires further investigation before dismissing the 

attempt due to its (possibly) inadequate fit indices. 

Moreover, the risk of rejecting the replication is amplified with a conjunction of a 

common SEM practice that puts clear "cut-off" points for the indices (see West, Taylor, & Wu, 

2012). In some cases, a researcher may face a situation where the original research was 

acceptable in terms of fit, but the replication was not. 

Another suggestion the current finding could make is to use the chi-square family indices 

in conjunction with the likelihood family (AIC and BIC). They are less influenced by replication, 

so they can provide additional information to the widely used chi-square family. For example, if 

the CFI of replication is worse than the original, but the AIC is close to the original, it may 

indicate a successful replication that the CFI failed to capture. 

Nevertheless, a cautionary note should be made about using relative fits such as AIC and 

BIC. As stated above, the relative fits compare model-data fit among different models to select a 

model that loses a minimum amount of information. However, the performance of AIC and BIC 

in selecting a model has been questioned in recent research (Sen & Bradshaw, 2017). 

Specifically, the accuracy of the relative fits in selecting the true model is concerningly low, 

especially when the measurement properties of indicators are not optimal. The context of usage 



38 
 

of AIC and BIC, however, is different in the current study. Relative fits are conventionally used 

to select a model among many, but here it is used to compare the same model with a different 

dataset. 

We also formulated an index to determine whether the replicated sample fits the model. 

Although the newly suggested baseline likelihood ratio LR0 showed the property of resistance to 

the fit-worsening effect of replication attempt, it has a clear limitation to be used in assessing the 

fit between the model and the data. Like the standard likelihood ratio test, it follows  

distribution when the sample size approaches infinity. It is not very useful by itself as the null 

that the baseline and the hypothesized model are the same would almost always be rejected. 

Moreover, it is difficult to determine the distribution the test statistic follows under the 

alternative. The attempts to formulate fit indices that resemble the formula of CFI, TLI, and 

RMSEA were unsuccessful in discerning well- and misspecified models from each other. This 

failure is partially due to the lack of criteria that indicate model-data fit in an absolute sense (i.e., 

a CFI value over .95 indicates a good fit) that is not influenced by the replication. In such 

circumstances where one should doubt the credibility of most indices, any evaluation of newly 

suggested goodness- or badness-of-fit would be a self-reference. We suggest a further 

examination of the LR0 in terms of the characteristics of its distribution by empirical methods as 

well as mathematical derivations for future research. 

On a final note, the current study sheds light on a gap in the research area of replication 

of SEM. The finding that many fit indices show worse fit in replicated samples offers helpful 

information to whoever tries to reproduce a result from SEM. Furthermore, researchers who use 

covariance structure analysis with generating multivariate normal random variables would be 

directly affected by the current finding. In such a case, one should be aware that the observed  
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value may not represent the value that could be observed in the result from the original moment 

matrix. 
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Figure 1. Empirical cumulative distribution functions of fit indices on Example 1. The dots represent the value from the original 

moment matrix. The blue vertical lines on CFI, TLI, and RMSEA mark the recommendation values by West, Taylor, and Wu (2012). 
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Figure 2. Empirical cumulative distribution functions of fit indices on Example 2. The dots represent the value from the original 

moment matrix. The blue vertical lines on CFI, TLI, and RMSEA mark the recommendation values by West, Taylor, and Wu (2012). 
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Figure 3. Empirical cumulative distribution functions of fit indices on Example 3. The dots represent the value from the original 

moment matrix. The blue vertical lines on CFI, TLI, and RMSEA mark the recommendation values by West, Taylor, and Wu (2012). 
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Figure 4. An intercorrelated factor model with i times j observed variables and j latent factors. 
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Figure 5. A diagram for the misspecified condition in Phase 2 simulation. 
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Figure 6. Empirical cumulative distribution functions of chi-square in the well-specified condition in Phase 2 simulation. The dots 

represent the value from the original covariance matrix. 
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Figure 7. Empirical cumulative distribution functions of LR0 in the well-specified condition in Phase 2 simulation. The dots represent 

the value from the original covariance matrix. 
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Figure 8. Empirical cumulative distribution functions of chi-square in the misspecified condition in Phase 2 simulation. The dots 

represent the value from the original covariance matrix. 
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Figure 9. Empirical cumulative distribution functions of LR0 in the misspecified condition in Phase 2 simulation. The dots represent 

the value from the original covariance matrix. 
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Figure 10. Empirical cumulative distribution functions of BIC in the well-specified condition in Phase 2 simulation. The dots represent 

the value from the original covariance matrix. 
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Figure 11. Empirical cumulative distribution functions of BIC in the misspecified condition in Phase 2 simulation. The dots represent 

the value from the original covariance matrix.
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Table 1. Result of simulated replication attempts on Guido et al. (2011) 

Condition N   CFI TLI RMSEA ECVI LogLik. AIC BIC 

           

Observed 100 ORIG 28.83 1.00 1.04 0.00 0.89 -4103.42 8266.85 8345.00 
  M 80.09 0.95 0.93 0.08 1.40 -4087.06 8234.12 8312.28 
  SD 15.21 0.02 0.03 0.02 0.15 24.99 49.98 49.98 
  %Vs.THR - 54.84% 32.97% 16.97% - - - - 

  %Vs.ORIG 0.00% 0.65% 0.00% 0.65% 0.00% 75.95% 75.95% 75.95% 
           
 188a ORIG 54.21 0.99 0.99 0.03 0.61 -7719.76 15499.52 15596.61 
  M 104.47 0.95 0.94 0.08 0.87 -7705.59 15471.17 15568.26 
  SD 16.84 0.01 0.02 0.01 0.09 33.87 67.74 67.74 
  %Vs.THR - 65.60% 25.52% 6.20% - - - - 
  %Vs.ORIG 0.10% 0.10% 0.10% 0.10% 0.10% 66.32% 66.32% 66.32% 
           
 200 ORIG 57.67 0.99 0.99 0.03 0.59 -8212.90 16485.79 16584.74 

  M 107.16 0.95 0.94 0.08 0.84 -8197.45 16454.91 16553.86 
  SD 17.60 0.01 0.02 0.01 0.09 35.93 71.87 71.87 
  %Vs.THR - 66.19% 26.58% 7.54% - - - - 
  %Vs.ORIG 0.00% 0.00% 0.00% 0.00% 0.00% 68.84% 68.84% 68.84% 
           
 400 ORIG 115.33 0.97 0.96 0.06 0.44 -16431.81 32923.63 33043.37 
  M 165.97 0.96 0.94 0.08 0.56 -16418.52 32897.04 33016.78 
  SD 23.80 0.01 0.01 0.01 0.06 52.07 104.15 104.15 

  %Vs.THR - 71.40% 19.34% 1.01% - - - - 
  %Vs.ORIG 0.70% 1.21% 1.21% 0.70% 0.70% 58.41% 58.41% 58.41% 
           
 1000 ORIG 288.33 0.96 0.95 0.07 0.35 -41088.55 82237.09 82384.33 
  M 334.91 0.96 0.94 0.08 0.39 -41076.98 82213.96 82361.19 
  SD 34.66 0.01 0.01 0.00 0.03 81.31 162.62 162.62 
  %Vs.THR - 87.93% 7.95% 0.00% - - - - 
  %Vs.ORIG 8.85% 9.76% 9.76% 8.85% 8.85% 56.64% 56.64% 56.64% 

           
 2000 ORIG 576.65 0.96 0.94 0.07 0.32 -82183.10 164426.20 164594.23 
  M 623.12 0.96 0.94 0.08 0.34 -82167.63 164395.26 164563.28 
  SD 49.42 0.00 0.01 0.00 0.02 111.73 223.47 223.47 
  %Vs.THR - 94.15 2.62 0.00 - - - - 
  %Vs.ORIG 16.33 18.04 18.04 16.33 16.33 55.04 55.04 55.04 
           

Perfect-fit 100 ORIG 28.83 1.00 1.04 0.00 0.89 -4103.42 8266.85 8345.00 
  M 50.66 0.99 0.99 0.02 1.11 -4080.93 8221.85 8300.01 
  SD 10.71 0.01 0.02 0.02 0.11 25.40 50.81 50.81 
  %Vs.THR - 98.92% 96.31% 91.00% - - - - 
  %Vs.ORIG 1.19% 41.00% 1.41% 41.00% 1.19% 81.02% 81.02% 81.02% 
           
 188a ORIG 54.21 0.99 0.99 0.03 0.61 -7719.76 15499.52 15596.61 

  M 49.71 1.00 1.00 0.02 0.58 -7697.23 15454.46 15551.55 
  SD 10.15 0.01 0.01 0.02 0.05 34.29 68.58 68.58 
  %Vs.THR - 100.00% 100.00% 99.90% - - - - 
  %Vs.ORIG 69.05% 69.05% 69.05% 69.05% 69.05% 74.22% 74.22% 74.22% 
           
 200 ORIG 57.67 0.99 0.99 0.03 0.59 -8212.90 16485.79 16584.74 
  M 49.56 1.00 1.00 0.02 0.55 -8192.39 16444.79 16543.74 
  SD 10.33 0.01 0.01 0.02 0.05 35.85 71.69 71.69 

  %Vs.THR - 100.00% 100.00% 99.69% - - - - 
  %Vs.ORIG 79.11% 79.11% 79.11% 79.11% 79.11% 71.87% 71.87% 71.87% 
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Table 1. Continued 

Condition N   CFI TLI RMSEA ECVI LogLik. AIC BIC 

           
 400 ORIG 115.33 0.97 0.96 0.06 0.44 -16431.81 32923.63 33043.37 

  M 48.68 1.00 1.00 0.01 0.27 -16412.48 32884.97 33004.71 
  SD 10.30 0.00 0.01 0.01 0.03 48.98 97.95 97.95 
  %Vs.THR - 100.00% 100.00% 100.00% - - - - 
  %Vs.ORIG 100.00% 100.00% 100.00% 100.00% 100.00% 64.97% 64.97% 64.97% 
           
 1000 ORIG 288.33 0.96 0.95 0.07 0.35 -41088.55 82237.09 82384.33 
  M 47.61 1.00 1.00 0.01 0.11 -41066.01 82192.03 82339.26 
  SD 10.01 0.00 0.00 0.01 0.01 79.29 158.59 158.59 

  %Vs.THR - 100.00% 100.00% 100.00% - - - - 
  %Vs.ORIG 100.00% 100.00% 100.00% 100.00% 100.00% 59.50% 59.50% 59.50% 
           
 2000 ORIG 576.65 0.96 0.94 0.07 0.32 -82183.10 164426.20 164594.23 
  M 48.23 1.00 1.00 0.00 0.05 -82168.19 164396.38 164564.41 
  SD 9.62 0.00 0.00 0.00 0.00 109.12 218.23 218.23 
  %Vs.THR - 100.00% 100.00% 100.00% - - - - 
  %Vs.ORIG 100.00% 100.00% 100.00% 100.00% 100.00% 54.77% 54.77% 54.77% 
           

a. Sample size of the original study is 188. 

Note. ORIG = statistics of the original study; M and SD are of the replication attempts; Vs.THR is the percentage of 

replications that showed a better fit than thresholds suggested in West et al., (2012); Vs.ORIG is the percentage of 

replications that showed a better fit than the ones from the original dispersion matrix. 
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Table 2. Result of simulated replication attempts on Huth-Bocks et al. (2004) 

Condition N   CFI TLI RMSEA ECVI LogLik. AIC BIC 

           

Observed 100 ORIG 176.49 1.00 1.01 0.00 2.72 -3814.36 7724.72 7849.77 
  M 378.86 0.84 0.82 0.10 4.75 -3791.46 7678.92 7803.96 
  SD 35.13 0.03 0.03 0.01 0.35 35.30 70.59 70.59 
  %Vs.THR - 0.00% 0.00% 0.00% - - - - 

  %Vs.ORIG 0.00% 0.00% 0.00% 0.00% 0.00% 74.01% 74.01% 74.01% 
           
 200 ORIG 352.99 0.93 0.91 0.07 2.24 -7639.30 15374.60 15532.92 
  M 546.70 0.85 0.83 0.10 3.21 -7616.03 15328.07 15486.39 
  SD 43.34 0.02 0.02 0.01 0.22 50.33 100.66 100.66 
  %Vs.THR - 0.00% 0.00% 0.00% - - - - 
  %Vs.ORIG 0.00% 0.00% 0.00% 0.00% 0.00% 67.60% 67.60% 67.60% 
           
 206a ORIG 363.58 0.92 0.91 0.07 2.23 -7868.80 15833.59 15993.33 

  M 553.93 0.86 0.83 0.10 3.15 -7843.04 15782.07 15941.81 
  SD 42.86 0.02 0.02 0.01 0.21 48.75 97.50 97.50 
  %Vs.THR - 0.00% 0.00% 0.00% - - - - 
  %Vs.ORIG 0.00% 0.00% 0.00% 0.00% 0.00% 68.88% 68.88% 68.88% 
           
 400 ORIG 705.98 0.89 0.87 0.08 2.00 -15289.14 30674.28 30865.87 
  M 894.87 0.86 0.84 0.10 2.48 -15269.67 30635.34 30826.93 
  SD 58.18 0.01 0.01 0.00 0.15 69.25 138.49 138.49 

  %Vs.THR - 0.00% 0.00% 0.00% - - - - 
  %Vs.ORIG 0.10% 0.40% 0.40% 0.10% 0.10% 61.10% 61.10% 61.10% 
           
 1000 ORIG 1764.94 0.87 0.85 0.09 1.86 -38238.63 76573.26 76808.83 
  M 1947.83 0.86 0.84 0.10 2.04 -38214.22 76524.44 76760.01 
  SD 86.70 0.01 0.01 0.00 0.09 110.51 221.02 221.02 
  %Vs.THR - 0.00% 0.00% 0.00% - - - - 
  %Vs.ORIG 1.00% 1.60% 1.60% 1.00% 1.00% 60.10% 60.10% 60.10% 

           
 2000 ORIG 3529.89 0.86 0.84 0.10 1.81 -76487.77 153071.54 153340.38 
  M 3714.00 0.86 0.84 0.10 1.91 -76465.26 153026.51 153295.36 
  SD 121.30 0.00 0.01 0.00 0.06 154.87 309.74 309.74 
  %Vs.THR - 0.00% 0.00% 0.00% - - - - 
  %Vs.ORIG 6.10% 9.30% 9.30% 6.10% 6.10% 56.60% 56.60% 56.60% 
           

Perfect-fit 100 ORIG 176.49 1.00 1.01 0.00 2.72 -3814.36 7724.72 7849.77 
  M 201.71 0.98 0.98 0.03 2.98 -3778.62 7653.24 7778.29 
  SD 21.05 0.02 0.02 0.02 0.21 33.51 67.01 67.01 
  %Vs.THR - 95.41% 91.85% 98.57% - - - - 
  %Vs.ORIG 11.72% 18.25% 11.82% 18.25% 11.72% 85.73% 85.73% 85.73% 
           
 200 ORIG 352.99 0.93 0.91 0.07 2.24 -7639.30 15374.60 15532.92 

  M 193.61 0.99 0.99 0.02 1.45 -7604.71 15305.42 15463.74 
  SD 20.24 0.01 0.01 0.01 0.10 47.30 94.61 94.61 
  %Vs.THR - 100.00% 100.00% 100.00% - - - - 
  %Vs.ORIG 100.00% 100.00% 100.00% 100.00% 100.00% 76.40% 76.40% 76.40% 
           
 206a ORIG 363.58 0.92 0.91 0.07 2.23 -7868.80 15833.59 15993.33 
  M 192.19 0.99 1.00 0.01 1.40 -7833.79 15763.58 15923.32 
  SD 20.13 0.01 0.01 0.01 0.10 45.00 90.00 90.00 

  %Vs.THR - 100.00% 100.00% 100.00% - - - - 
  %Vs.ORIG 100.00% 100.00% 100.00% 100.00% 100.00% 78.68% 78.68% 78.68% 
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Table 2. Continued 

Condition N   CFI TLI RMSEA ECVI LogLik. AIC BIC 

           
 400 ORIG 705.98 0.89 0.87 0.08 2.00 -15289.14 30674.28 30865.87 

  M 187.52 1.00 1.00 0.01 0.71 -15256.32 30608.64 30800.23 
  SD 19.77 0.00 0.01 0.01 0.05 66.77 133.54 133.54 
  %Vs.THR - 100.00% 100.00% 100.00% - - - - 
  %Vs.ORIG 100.00% 100.00% 100.00% 100.00% 100.00% 67.00% 67.00% 67.00% 
           
 1000 ORIG 1764.94 0.87 0.85 0.09 1.86 -38238.63 76573.26 76808.83 
  M 185.22 1.00 1.00 0.00 0.28 -38200.64 76497.29 76732.86 
  SD 18.77 0.00 0.00 0.01 0.02 105.61 211.23 211.23 

  %Vs.THR - 100.00% 100.00% 100.00% - - - - 
  %Vs.ORIG 100.00% 100.00% 100.00% 100.00% 100.00% 63.70% 63.70% 63.70% 
           
 2000 ORIG 3529.89 0.86 0.84 0.10 1.81 -76487.77 153071.54 153340.38 
  M 184.44 1.00 1.00 0.00 0.14 -76454.19 153004.39 153273.23 
  SD 18.88 0.00 0.00 0.00 0.01 141.32 282.65 282.65 
  %Vs.THR - 100.00% 100.00% 100.00% - - - - 
  %Vs.ORIG 100.00% 100.00% 100.00% 100.00% 100.00% 57.80% 57.80% 57.80% 
           

a. Sample size of the original study is 206. 

Note. ORIG = statistics of the original study; M and SD are of the replication attempts; Vs.THR is the percentage of 

replications that showed a better fit than thresholds suggested in West et al., (2012); Vs.ORIG is the percentage of 

replications that showed a better fit than the ones from the original dispersion matrix. 
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Table 3. Result of simulated replication attempts on Passolunghi et al. (2007) 

Condition N   CFI TLI RMSEA ECVI LogLik. AIC BIC 

           

Observed 100 ORIG 186.71 0.96 0.95 0.03 3.05 -4398.27 8914.55 9068.25 
  M 413.88 0.63 0.55 0.12 5.32 -3963.91 8045.82 8199.53 
  SD 38.60 0.05 0.06 0.01 0.39 34.03 68.06 68.06 
  %Vs.THR - 0.00% 0.00% 0.00% - - - - 

  %Vs.ORIG 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 
           
 170a ORIG 317.40 0.83 0.79 0.07 2.56 -7483.77 15085.54 15270.55 
  M 571.30 0.64 0.55 0.12 4.05 -6768.07 13654.14 13839.15 
  SD 49.27 0.04 0.05 0.01 0.29 47.20 94.41 94.41 
  %Vs.THR - 0.00% 0.00% 0.00% - - - - 
  %Vs.ORIG 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 
           
 200 ORIG 373.43 0.81 0.77 0.08 2.46 -8806.13 17730.25 17924.85 

  M 638.36 0.64 0.55 0.12 3.78 -7968.14 16054.28 16248.88 
  SD 52.19 0.03 0.04 0.01 0.26 50.08 100.15 100.15 
  %Vs.THR - 0.00% 0.00% 0.00% - - - - 
  %Vs.ORIG 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 
           
 400 ORIG 724.11 0.77 0.71 0.09 2.11 -17610.41 35338.82 35574.32 
  M 1096.58 0.64 0.56 0.12 3.04 -15986.12 32090.25 32325.74 
  SD 83.93 0.03 0.04 0.01 0.21 73.75 147.51 147.51 

  %Vs.THR - 0.00% 0.00% 0.00% - - - - 
  %Vs.ORIG 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 
           
 1000 ORIG 1867.16 0.73 0.66 0.10 1.99 -44068.75 88255.49 88545.05 
  M 2486.03 0.64 0.56 0.12 2.60 -40024.32 80166.63 80456.19 
  SD 166.18 0.02 0.03 0.00 0.17 128.72 257.44 257.44 
  %Vs.THR - 0.00% 0.00% 0.00% - - - - 
  %Vs.ORIG 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 

           
 2000 ORIG 3734.21 0.72 0.65 0.10 1.93 -88146.95 176411.90 176742.35 
  M 4786.94 0.64 0.56 0.12 2.45 -80085.02 160288.04 160618.49 
  SD 293.34 0.02 0.03 0.00 0.15 206.17 412.34 412.34 
  %Vs.THR - 0.00% 0.00% 0.00% - - - - 
  %Vs.ORIG 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 100.00% 100.00% 
           

Perfect-fit 100 ORIG 186.71 0.96 0.95 0.03 3.05 -4398.27 8914.55 9068.25 
  M 186.87 0.96 0.95 0.03 3.05 -4358.24 8834.48 8988.18 
  SD 20.01 0.04 0.05 0.02 0.20 32.62 65.24 65.24 
  %Vs.THR - 62.75% 53.91% 97.54% - - - - 
  %Vs.ORIG 52.35% 54.14% 54.14% 52.35% 52.35% 88.48% 88.48% 88.48% 
           
 170a ORIG 317.40 0.83 0.79 0.07 2.56 -7483.77 15085.54 15270.55 

  M 182.72 0.98 0.98 0.02 1.77 -7446.01 15010.02 15195.03 
  SD 20.49 0.02 0.03 0.01 0.12 39.61 79.23 79.23 
  %Vs.THR - 89.04% 82.01% 99.88% - - - - 
  %Vs.ORIG 100.00% 100.00% 100.00% 100.00% 100.00% 83.97% 83.97% 83.97% 
           
 200 ORIG 373.43 0.81 0.77 0.08 2.46 -8806.13 17730.25 17924.85 
  M 180.64 0.98 0.98 0.02 1.49 -8766.78 17651.56 17846.16 
  SD 23.16 0.02 0.03 0.01 0.12 45.98 91.97 91.97 

  %Vs.THR - 92.28% 87.10% 99.88% - - - - 
  %Vs.ORIG 100.00% 100.00% 100.00% 100.00% 100.00% 80.18% 80.18% 80.18% 
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Table 3. Continued 

Condition N   CFI TLI RMSEA ECVI LogLik. AIC BIC 

           
 400 ORIG 724.11 0.77 0.71 0.09 2.11 -17610.41 35338.82 35574.32 

  M 183.99 0.99 0.99 0.01 0.75 -17577.53 35273.05 35508.55 
  SD 34.65 0.02 0.02 0.01 0.09 63.26 126.53 126.53 
  %Vs.THR - 95.83% 94.93% 100.00% - - - - 
  %Vs.ORIG 100.00% 100.00% 100.00% 100.00% 100.00% 68.21% 68.21% 68.21% 
           
 1000 ORIG 1867.16 0.73 0.66 0.10 1.99 -44068.75 88255.49 88545.05 
  M 195.20 0.99 0.99 0.01 0.31 -44040.72 88199.45 88489.01 
  SD 64.51 0.01 0.02 0.01 0.06 103.77 207.54 207.54 

  %Vs.THR - 95.70% 95.57% 100.00% - - - - 
  %Vs.ORIG 100.00% 100.00% 100.00% 100.00% 100.00% 61.21% 61.21% 61.21% 
           
 2000 ORIG 3734.21 0.72 0.65 0.10 1.93 -88146.95 176411.90 176742.35 
  M 216.17 0.99 0.99 0.01 0.17 -88132.52 176383.04 176713.49 
  SD 133.98 0.02 0.02 0.01 0.07 148.02 296.05 296.05 
  %Vs.THR - 95.73% 95.73% 99.85% - - - - 
  %Vs.ORIG 100.00% 100.00% 100.00% 100.00% 100.00% 55.82% 55.82% 55.82% 
           

a. Sample size of the original study is 170. 

Note. ORIG = statistics of the original study; M and SD are of the replication attempts; Vs.THR is the percentage of 

replications that showed a better fit than thresholds suggested in West et al., (2012); Vs.ORIG is the percentage of 

replications that showed a better fit than the ones from the original dispersion matrix. 
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Table 4. Simulation results of well-specified models. 

p f q df df0 N dfLR0 Orig. LR0 MLR0 SDLR0 LR0 > orig. Orig. χ2 M χ2 SD χ2 χ2 < orig. 

15 3 33 87 105 200 18 950.22 966.07 81.08 57.70% 64.09 154.65 20.81 0.00% 

15 3 33 87 105 400 18 1882.40 1901.81 114.60 54.40% 82.79 171.58 22.33 0.00% 

15 3 33 87 105 1000 18 5076.10 5092.03 184.18 53.30% 89.60 177.94 22.93 0.00% 

15 3 33 87 105 2000 18 9870.07 9891.97 260.19 53.30% 90.43 177.38 22.88 0.00% 

15 5 40 80 105 200 25 810.55 835.01 72.76 62.10% 78.97 161.56 21.50 0.00% 

15 5 40 80 105 400 25 1526.54 1556.22 100.21 61.40% 68.20 150.10 21.74 0.00% 

15 5 40 80 105 1000 25 3846.52 3879.43 151.86 57.60% 80.30 160.88 22.52 0.00% 

15 5 40 80 105 2000 25 7503.75 7524.30 213.67 54.30% 80.17 160.47 22.87 0.00% 

30 3 63 402 435 200 33 2573.29 2609.46 175.64 57.60% 413.37 842.22 49.74 0.00% 

30 3 63 402 435 400 33 5842.40 5866.75 259.89 53.10% 451.31 866.04 51.94 0.00% 

30 3 63 402 435 1000 33 13537.09 13578.78 385.26 54.00% 402.08 807.97 49.23 0.00% 

30 3 63 402 435 2000 33 26658.88 26684.78 553.02 51.20% 392.32 799.38 47.85 0.00% 

30 10 105 360 435 200 75 1685.70 1767.18 130.12 73.30% 322.61 704.89 46.05 0.00% 

30 10 105 360 435 400 75 2892.77 2967.14 151.75 67.40% 310.94 680.78 45.10 0.00% 

30 10 105 360 435 1000 75 8066.13 8155.19 251.82 63.50% 331.76 696.41 46.24 0.00% 

30 10 105 360 435 2000 75 15583.71 15659.03 348.99 58.40% 366.41 729.78 46.77 0.00% 

45 3 93 942 990 200 48 4390.68 4440.83 268.65 56.70% 996.27 2034.90 76.72 0.00% 

45 3 93 942 990 400 48 8823.67 8872.84 372.85 54.50% 990.12 1973.48 78.73 0.00% 

45 3 93 942 990 1000 48 23119.85 23191.22 617.06 56.10% 950.99 1909.05 73.72 0.00% 

45 3 93 942 990 2000 48 45020.93 45061.98 833.92 52.00% 943.67 1891.28 76.14 0.00% 

45 15 195 840 990 200 150 2663.32 2828.51 167.70 84.40% 1003.88 1926.37 73.70 0.00% 

45 15 195 840 990 400 150 4744.68 4911.41 214.04 77.80% 903.39 1782.10 73.83 0.00% 

45 15 195 840 990 1000 150 12101.70 12263.76 363.27 67.20% 852.91 1713.03 73.19 0.00% 

45 15 195 840 990 2000 150 23957.63 24115.69 507.87 61.30% 846.91 1696.55 70.06 0.00% 

60 3 123 1707 1770 200 63 5910.93 5987.55 371.08 57.70% 2084.73 4022.48 110.04 0.00% 

60 3 123 1707 1770 400 63 13091.80 13135.06 542.32 52.90% 1754.77 3568.70 103.06 0.00% 

60 3 123 1707 1770 1000 63 31101.95 31152.11 827.55 51.90% 1842.89 3590.12 107.40 0.00% 

60 3 123 1707 1770 2000 63 63950.35 64016.64 1151.44 50.90% 1691.22 3412.26 102.50 0.00% 

60 20 310 1520 1770 200 250 3425.09 3698.32 196.18 92.59% 1806.96 3532.62 98.72 0.00% 

60 20 310 1520 1770 400 250 6548.69 6811.93 290.71 82.00% 1636.73 3247.14 94.08 0.00% 

60 20 310 1520 1770 1000 250 15973.99 16256.06 449.68 73.50% 1555.06 3109.80 95.46 0.00% 

60 20 310 1520 1770 2000 250 33728.41 33934.77 634.05 61.70% 1582.25 3117.57 95.95 0.00% 

Note. p = no. of observed variables; f = no. of latent factors; q = no. of parameters estimated; df0 = degrees of freedom of baseline model; N = sample size; LR0 and subscript LR0 = 

statistics regarding baseline likelihood ratio; χ2 and subscript χ2 = statistics regarding standard likelihood ratio. M and SD are of replication attempts.  
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Table 5. Simulation results of misspecified models. 

p f q df df0 N dfLR0 Orig. LR0 MLR0 SDLR0 LR0 > orig. Orig. χ2 M χ2 SD χ2 χ2 < orig. 

15 3 33 87 105 200 18 884.18 904.07 83.39 58.10% 168.99 260.12 28.65 0.10% 

15 3 33 87 105 400 18 1910.89 1932.40 121.46 56.60% 238.72 328.74 31.23 0.00% 

15 3 33 87 105 1000 18 4396.98 4417.38 175.74 55.00% 524.83 612.00 44.27 2.10% 

15 3 33 87 105 2000 18 9405.63 9420.50 256.86 51.90% 1033.78 1120.17 56.58 5.80% 

15 5 40 80 105 200 25 747.83 775.16 66.31 63.65% 123.44 205.42 25.47 0.00% 

15 5 40 80 105 400 25 1502.10 1531.27 103.30 60.60% 249.69 328.55 33.95 0.90% 

15 5 40 80 105 1000 25 3363.37 3387.93 146.35 55.80% 435.51 514.87 40.85 3.20% 

15 5 40 80 105 2000 25 6418.09 6446.85 188.40 54.90% 710.99 790.93 52.42 6.60% 

30 3 63 402 435 200 33 2530.41 2543.26 206.27 54.50% 541.43 987.73 124.82 0.00% 

30 3 63 402 435 400 33 5097.86 5140.79 242.68 54.50% 636.40 1051.04 58.32 0.00% 

30 3 63 402 435 1000 33 12268.45 12303.00 370.94 53.80% 1012.65 1420.01 65.20 0.00% 

30 3 63 402 435 2000 33 25762.45 25795.47 531.92 52.70% 1493.13 1898.82 74.52 0.00% 

30 10 105 360 435 200 75 1626.16 1712.11 117.98 76.23% 452.41 835.55 49.42 0.00% 

30 10 105 360 435 400 75 2992.64 3068.53 156.66 69.20% 471.05 842.74 50.97 0.00% 

30 10 105 360 435 1000 75 7267.15 7334.32 231.86 59.90% 709.85 1075.23 59.62 0.00% 

30 10 105 360 435 2000 75 14880.16 14960.11 362.84 57.90% 1159.99 1520.66 72.20 0.00% 

45 3 93 942 990 200 48 4642.07 4711.78 300.98 59.18% 1147.94 2184.03 86.75 0.00% 

45 3 93 942 990 400 48 8618.30 8663.12 362.15 54.50% 1386.15 2376.97 84.26 0.00% 

45 3 93 942 990 1000 48 22286.97 22314.06 608.76 51.00% 1481.32 2443.44 83.34 0.00% 

45 3 93 942 990 2000 48 41832.42 41846.59 797.55 49.30% 2119.90 3065.31 93.38 0.00% 

45 15 195 840 990 200 150 2513.28 2680.75 160.66 84.31% 1063.41 1981.58 77.83 0.00% 

45 15 195 840 990 400 150 4743.11 4921.76 226.01 78.80% 1001.85 1879.02 73.94 0.00% 

45 15 195 840 990 1000 150 11880.79 12028.47 340.07 67.00% 1174.97 2030.04 83.27 0.00% 

45 15 195 840 990 2000 150 24228.40 24369.54 499.16 59.80% 1596.53 2442.22 86.57 0.00% 

60 3 123 1707 1770 200 63 6757.76 6818.17 376.64 55.75% 2112.18 4048.26 124.00 0.00% 

60 3 123 1707 1770 400 63 13113.47 13189.15 526.26 54.67% 2050.35 3866.88 155.83 0.00% 

60 3 123 1707 1770 1000 63 31566.85 31618.94 813.09 50.80% 2362.52 4108.38 111.25 0.00% 

60 3 123 1707 1770 2000 63 59643.02 59780.73 1104.56 55.40% 2773.87 4507.71 114.33 0.00% 

60 20 310 1520 1770 200 250 3402.38 3688.05 204.06 92.59% 1794.09 3514.61 99.86 0.00% 

60 20 310 1520 1770 400 250 6552.68 6812.01 292.15 81.00% 1804.50 3419.24 101.65 0.00% 

60 20 310 1520 1770 1000 250 16823.49 17101.74 459.96 72.50% 1902.60 3460.84 101.18 0.00% 

60 20 310 1520 1770 2000 250 32480.35 32751.85 657.87 66.30% 2250.86 3795.68 108.90 0.00% 

Note. p = no. of observed variables; f = no. of latent factors; q = no. of parameters estimated; df0 = degrees of freedom of baseline model; N = sample size; LR0 and subscript LR0 = 

statistics regarding baseline likelihood ratio; χ2 and subscript χ2 = statistics regarding standard likelihood ratio. M and SD are of replication attempts.
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Appendix A 

Diagrams For the Models Used in Examples 

 

Figure A1. The model specification of Guido et al., (2017). The number of parameters estimated 

was 30, and the degrees of freedom was 48. 
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Figure A2. The model specification on Huth-Bocks et al., (2004). The number of parameters 

estimated was 48, and the degrees of freedom was 183. 
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Figure A3. The model specification of Model 5 on Passolunghi et al., (2007). The number of 

parameters estimated was 59, and the degrees of freedom was 169.
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Appendix B 

Supplement Information on Simulation in Phase 2 

Table B1. The simulation result for NFI in Phase 2. 

     Well-specified Condition  Misspecified Condition 

p f q df N Orig. NFI MNFI SDNFI % v.Og. % v.THR.  Orig. NFI MNFI SDNFI % v.Og. % v.THR. 

15 3 33 87 200 0.937 0.862 0.020 0.00% 0.00%  0.840 0.776 0.025 0.30% 0.00% 

15 3 33 87 400 0.958 0.917 0.011 0.00% 0.00%  0.889 0.854 0.013 0.20% 0.00% 

15 3 33 87 1000 0.983 0.966 0.004 0.00% 100.00%  0.893 0.878 0.009 3.30% 0.00% 

15 3 33 87 2000 0.991 0.982 0.002 0.00% 100.00%  0.901 0.894 0.005 7.70% 0.00% 

15 5 40 80 200 0.911 0.837 0.022 0.00% 0.00%  0.858 0.790 0.025 0.00% 0.00% 

15 5 40 80 400 0.957 0.912 0.013 0.00% 0.00%  0.857 0.823 0.017 1.50% 0.00% 

15 5 40 80 1000 0.980 0.960 0.006 0.10% 95.30%  0.885 0.868 0.010 4.80% 0.00% 

15 5 40 80 2000 0.989 0.979 0.003 0.00% 100.00%  0.900 0.891 0.007 8.60% 0.00% 

30 3 63 402 200 0.862 0.756 0.017 0.00% 0.00%  0.824 0.720 0.036 0.00% 0.00% 

30 3 63 402 400 0.928 0.871 0.009 0.00% 0.00%  0.889 0.830 0.010 0.00% 0.00% 

30 3 63 402 1000 0.971 0.944 0.004 0.00% 3.60%  0.924 0.896 0.005 0.00% 0.00% 

30 3 63 402 2000 0.985 0.971 0.002 0.00% 100.00%  0.945 0.931 0.003 0.00% 0.00% 

30 10 105 360 200 0.839 0.714 0.020 0.00% 0.00%  0.782 0.672 0.021 0.00% 0.00% 

30 10 105 360 400 0.903 0.813 0.013 0.00% 0.00%  0.864 0.784 0.013 0.00% 0.00% 

30 10 105 360 1000 0.960 0.921 0.005 0.00% 0.00%  0.911 0.872 0.007 0.00% 0.00% 

30 10 105 360 2000 0.977 0.955 0.003 0.00% 97.00%  0.928 0.908 0.004 0.00% 0.00% 

45 3 93 942 200 0.815 0.685 0.016 0.00% 0.00%  0.802 0.683 0.016 0.00% 0.00% 

45 3 93 942 400 0.899 0.818 0.009 0.00% 0.00%  0.861 0.785 0.009 0.00% 0.00% 

45 3 93 942 1000 0.960 0.924 0.003 0.00% 0.00%  0.938 0.901 0.004 0.00% 0.00% 

45 3 93 942 2000 0.979 0.960 0.002 0.00% 100.00%  0.952 0.932 0.002 0.00% 0.00% 

45 15 195 840 200 0.726 0.595 0.017 0.00% 0.00%  0.703 0.575 0.018 0.00% 0.00% 

45 15 195 840 400 0.840 0.734 0.012 0.00% 0.00%  0.826 0.723 0.012 0.00% 0.00% 

45 15 195 840 1000 0.934 0.877 0.006 0.00% 0.00%  0.910 0.856 0.006 0.00% 0.00% 

45 15 195 840 2000 0.966 0.934 0.003 0.00% 0.00%  0.938 0.909 0.003 0.00% 0.00% 

60 3 123 1707 200 0.739 0.598 0.016 0.00% 0.00%  0.762 0.627 0.015 0.00% 0.00% 

60 3 123 1707 400 0.882 0.786 0.008 0.00% 0.00%  0.865 0.773 0.011 0.00% 0.00% 
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     Well-specified Condition  Misspecified Condition 

p f q df N Orig. NFI MNFI SDNFI % v.Og. % v.THR.  Orig. NFI MNFI SDNFI % v.Og. % v.THR. 

60 3 123 1707 1000 0.944 0.897 0.004 0.00% 0.00%  0.930 0.885 0.004 0.00% 0.00% 

60 3 123 1707 2000 0.974 0.949 0.002 0.00% 34.00%  0.956 0.930 0.002 0.00% 0.00% 

60 20 310 1520 200 0.655 0.511 0.015 0.00% 0.00%  0.655 0.512 0.015 0.00% 0.00% 

60 20 310 1520 400 0.800 0.677 0.011 0.00% 0.00%  0.784 0.666 0.012 0.00% 0.00% 

60 20 310 1520 1000 0.911 0.839 0.006 0.00% 0.00%  0.898 0.832 0.006 0.00% 0.00% 

60 20 310 1520 2000 0.955 0.916 0.003 0.00% 0.00%  0.935 0.896 0.003 0.00% 0.00% 

Note. Orig. NFI: The “original” value of NFI. The original sample was generated under population, while the replication samples are 

generated using the original covariance matrix. 

MNFI: The mean of NFI observed in replicated samples. 

SDNFI: The standard deviation of NFI in replicated samples. 

% v.Og.: The percentage of replication attempts that have a better fit than the original. 

% v.THR.: The percentage of replication attempts that have a better fit than the original. 

 

 

 

 


