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4.12 Average fields conditioned on ũ′/u∗ < α− as in Equation 4.16 from
simulations (a–c) A, (d–f) B, (g–i) C, and (j–l) D. Conditional fields
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Abstract

The physical processes governing stable atmospheric boundary layer (SBL) dynamics

have significant societal impacts ranging from pollution dispersion and wind energy

production to polar sea ice loss. For decades, SBL turbulence has proven challenging

to measure, parameterize, simulate, and interpret for a variety of reasons. For exam-

ple, turbulence intensity in the SBL is often orders of magnitude smaller than in the

convective boundary layer as thermal stratification suppresses vertical motions. As

atmospheric stability increases, turbulence can also become intermittent in space and

time, resulting in poor convergence of temporally-averaged turbulence statistics. Char-

acteristic turbulent motions within the SBL can also be considerably smaller than the

grid spacings employed by operational numerical weather prediction (NWP) models.

These NWP models therefore need to parameterize turbulent energy exchange within

the SBL, which can result in significant errors in near-surface temperature and wind

speed forecasts due to the imperfect nature of parameterization schemes. It has been

shown that improvements in SBL forecasting skill have been hindered by a relative lack

in knowledge of fundamental SBL processes, which in turn is partially due to a dearth

in routine and spatially dense thermodynamic and kinematic observations within the

SBL. To address this so-called data gap, uncrewed aircraft systems (UAS) are proving

the ability to reliably sample the atmospheric boundary layer (ABL), offering a new

perspective for understanding the SBL. Moreover, continual computational advances

have enabled the use of large-eddy simulations (LES) to simulate the atmosphere at

ever-smaller scales. This dissertation therefore seeks to synergize UAS observations and

large-eddy simulations to explore the underlying processes governing SBL dynamics.

In the first component of this dissertation, we explore the potential of a new

method for the estimation of profiles of turbulence statistics in the SBL. By applying

gradient-based scaling to multicopter UAS profiles of temperature and wind, sampled
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over sea ice during the 2018 Innovative Strategies for Observations in the Arctic At-

mospheric Boundary Layer (ISOBAR18) field campaign, turbulence profiles can be

derived. We first validate this method by scaling turbulence observations from three

levels on a 10-m mast with the corresponding scaling parameters, and comparing the

resulting non-dimensional parameters to the semi-empirical similarity functions pro-

posed for this scaling framework. The scaled data of turbulent fluxes and variances

from the three levels collapse to their corresponding similarity functions. After the

successful validation, we estimate turbulence statistics from UAS profiles by comput-

ing profiles of the gradient Richardson number to which we then apply the similarity

functions. These UAS profiles are processed from raw time series data by applying

low-pass filters, time-response corrections, altitude corrections, and temporal averag-

ing across successive flights. We present three case studies covering a broad range of

SBL conditions to demonstrate the validity of this approach. Comparisons against

turbulence statistics from the 10-m mast and a sodar indicate the broad agreement

and physically meaningful results of this method. Successful implementation of this

method thus offers a powerful diagnostic tool that requires only a multicopter UAS with

a simple thermodynamic sensor payload. This ability to estimate vertical profiles of

turbulent parameters that were otherwise unobtainable with traditional ground-based

observations can be invaluable, e.g., for NWP verification studies within the SBL.

As UAS continue to be recognized as a robust observational platform, it is be-

coming increasingly important to establish a baseline framework towards understanding

the extent to which vertical profiles from UAS can represent larger-scale SBL flows.

This representativeness can be quantified by evaluating the magnitude of random er-

rors for a given observation, which arise due to averaging a signal across an insufficient

amount of independent samples for a statistical quantity to converge towards its true

underlying ensemble value. Moreover, the LES technique can be a powerful tool for

simulating SBL turbulence in space and time while varying thermal stratification to

contextualize observations by UASs. The second component of this dissertation there-

fore seeks to quantify the representativeness of observations from UAS profiles and

eddy-covariance observations within the SBL by performing a random error analysis

using a suite of six large eddy simulations for a wide range of stabilities. For each exper-

iment, we estimate relative random errors using the relaxed filtering method of Dias et

al. (Boundary-Layer Meteorology, 2018, Vol. 168, 387–416) for first- and second-order
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moments as functions of height and averaging time. We show that the random errors

can be of the same order of magnitude as other errors due to e.g. instrument bias and

dynamic response, especially close to the surface. For these reasons, we recommend

coupling UAS observations with other ground based instruments as well as dynamically

adjusting the UAS vertical ascent rate to account for how errors change with height

and stability.

In the first component of this dissertation, we consider only observations by UAS

in the Arctic SBL, and in the second component we further explore the representative-

ness of UAS observations within idealized SBLs with LES. To conclude this disserta-

tion, in the third component we employ only a series of eight large-eddy simulations

to investigate fundamental processes within stably-stratified wall-bounded turbulent

flows from the perspective of coherent structures. To date, a growing body of litera-

ture has documented the existence and impacts of so-called large- and very-large-scale

motions within wall-bounded turbulent flows under neutral and convective thermal

stratification. Large- and very-large-scale motions have been attributed to modulating

turbulence intensity near the wall, and properly characterizing their contributions to

ABL turbulence may lead to improvements in NWP forecast skill. In the context of the

SBL, however, the examination of such coherent structures has garnered relatively little

attention. Stable stratification limits vertical transport and turbulent mixing within

flows, which makes it unclear whether previous findings on coherent structures un-

der unstable and neutral stratification are applicable to the SBL. Moreover, mesoscale

processes can obscure the underlying physics of stably-stratified flows when collecting

observations in the SBL. In this third component, we investigate the existence and

characteristics of coherent structures within the SBL with a wide range of statistical

and spectral analyses. A quadrant analysis of turbulent transport efficiencies (the ratio

of net fluxes to their respective downgradient components) demonstrates dependencies

on both stability and height above ground, which may be related to morphological

differences in the coherent structures under increasing stability. Physical mechanisms

responsible for these differences are explored through analyses of spectrograms, linear

coherence spectra, amplitude modulation coefficients, and conditional sampling for a

variety of first- and second-order turbulent moments. Results indicate the presence

of coherent structures at near-neutral stability that diminish with increasing stable
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stratification. Stable stratification was found to suppress large eddies, thereby limiting

any inner-outer scale interactions.
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Chapter 1

Introduction

1.1 The Atmospheric Boundary Layer

The atmospheric boundary layer (ABL) is the region of the Earth’s atmosphere which

directly interfaces with its surface. Yet for such a simple definition, the dynamics

within are anything but simple. Understanding the constant exchange of momentum,

heat, moisture, aerosols, and other chemical species from the surface and within the

atmosphere via turbulent transport has challenged scientists for centuries. Weather

systems, including thunderstorms, tornadoes, hurricanes, and winter storms, largely

draw their energy and moisture from the ABL, and have been shown to transport

mass vertically through the troposphere and into the stratosphere. It is also the region

of the atmosphere where the entirety of humanity resides; the air we breathe, the

pollution we emit, and the weather we experience all take place within the ABL.

The structure of the ABL is largely driven by the varying incoming solar radiation

throughout the diurnal cycle (Stull, 1988). As depicted in Figure 1.1a, the ABL under-

goes transitions around sunrise and sunset. In the afternoon, incoming solar radiation

is at its greatest and causes the surface to heat rapidly. This heat is transferred into

the overlying atmospheric surface layer that is characterized by vertical fluxes that are

constant with height. The middle of the convective boundary layer (CBL, Figure 1.1b)

is marked by a well-mixed layer in which potential temperature, water vapor mixing
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Figure 1.1: Conceptual model of the diurnal evolution of the ABL (after Stull, 1988;
Markowski and Richardson, 2011). (a) Time-height cross-section over a full 24-hr
period identifying the key layers, and vertical profiles of mean potential temperature
〈θ〉 for (b) the convective boundary layer and (c) the stable boundary layer. Note that
(b) and (c) are marked by red and blue stars in (a) for their corresponding times.

ratio, and wind speed remain roughly constant with height due to constant mixing

by turbulent eddies. These eddies can range in size from the depth of the CBL (∼ 1–

3 km) down to where molecular viscosity becomes relevant and turbulent kinetic energy

undergoes viscous dissipation (∼ 1 mm).

Continuing with the diurnal cycle presented in Figure 1.1a, as the sun sets in the

evening, the source of downwelling solar radiation is reduced to zero. Throughout

the night, the surface continues to cool via longwave radiation, resulting in a negative

net energy budget if no large-scale weather patterns are present. The relatively small

specific heat capacity of the Earth’s surface enables it to cool more rapidly than the air

directly above, which results in a vertical profile where potential temperature increases

with height (Figure 1.1c) topped by the residual CBL from the previous afternoon.

In polar regions of the Earth that go without sunlight for months at a time, this

surface-based inversion can extend for hundreds of meters in the vertical (e.g., Curry,

1983). A proper understanding of SBL dynamics has far-reaching implications from

pollution dispersion and wind energy production to how the effects of climate change are
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disproportionately strong at high latitudes, a phenomenon known as polar amplification

(Taylor et al., 2013; Pithan and Mauritsen, 2014; Beer et al., 2020). Polar amplification

is in part related to a nonlinear combination of feedback mechanisms including, for

example, the surface albedo feedback which can be summarized as follows: decreasing

sea ice extent reduces the surface albedo of the polar regions which enables greater

quantities of solar radiation to be absorbed by the oceans, thereby increasing their

temperature and accelerating the rate of sea ice melt (Taylor et al., 2013).

1.1.1 The Stable Atmospheric Boundary Layer

It has been shown that difficulties in the simulation of the stable boundary layer (SBL)

by numerical weather prediction (NWP) models can be attributed to the lack of fun-

damental knowledge of how to represent turbulence in the SBL (e.g., Steeneveld et al.,

2008; Sandu et al., 2013; Holtslag et al., 2013). Stably-stratified flows are subject to

considerable variability both in time and space, with turbulent fluctuations that are of-

ten intermittent and small in magnitude (Coulter and Doran, 2002; van de Wiel et al.,

2003; Klipp and Mahrt, 2004; Steeneveld, 2014), making it difficult to parameterize

energy and momentum transfer across the relevant stability range. With such weak

turbulent motions, SBL flows are sensitive to a wide variety of feedback mechanisms

such as soil heat fluxes, cloud cover, radiative flux divergence, and the formation of

a low-level jet (LLJ; see Figure 1.2). These processes can play significant roles in de-

termining the predominant sources of turbulence generation within the SBL (Mahrt,

1999; Mahrt et al., 2012; Mahrt and Acevedo, 2022). A better understanding of the

SBL is in particular hampered by the lack of available vertical profile observations of

mean and turbulence variables at an appropriate vertical and temporal resolution.

Numerous weather models rely on turbulence parameterizations and boundary con-

ditions predicted by Monin–Obukhov similarity theory (MOST, Monin and Obukhov,
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1954), which non-dimensionalizes vertical gradients of wind, temperature, and humid-

ity in the atmospheric surface layer (ASL) by scaling with estimates of their respective

surface fluxes. The MOST scaling relationships and resulting profiles of momentum,

heat, and moisture therefore have the advantage of considerably reducing the compu-

tational expense of forecasting these parameters. However, MOST is theoretically only

valid for statistically stationary, horizontally homogeneous flow fields at high Reynolds

number and with zero mean subsidence. Because the atmosphere rarely satisfies these

conditions, there is substantial room for improvement in parameterizing atmospheric

boundary-layer (ABL) processes, especially for the SBL. Moreover, empirical studies

evaluating MOST commonly identify an inability to differentiate between near-neutral

and strongly stable regimes (Foken, 2006; Sorbjan, 2010; Sorbjan and Grachev, 2010;

Grachev et al., 2013). Studies using large datasets collected in the SBL have shown

success with a turbulence scaling framework based on local vertical gradients of tem-

perature and wind (Sorbjan, 2010; Sorbjan and Grachev, 2010; Sorbjan, 2017). This

method is formally equivalent to MOST but utilizes scaling properties based upon well-

defined vertical gradients. These gradient-based scales are advantageous over those in

traditional MOST, which are second-order turbulent moments that are difficult to mea-

sure due to the weak and possibly intermittent nature of SBL turbulence, and they are

also sensitive to conditions of stationarity and larger-scale forcings. Gradient-based

scaling as a function of Richardson number, Ri, also has the advantage over MOST

since it does not suffer from self-correlation (artificially inflated/deflated agreement

between theory and observations of scaled turbulent quantities arising when the same

scale appears on both sides of a statistical relationship Baas et al., 2006; Sorbjan, 2010),

which mitigates considerable uncertainty in the shape of the similarity functions. This

therefore leads to an application of gradient-based scaling as eluded to by Sorbjan
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and Grachev (2010): when the similarity functions between local gradients and tur-

bulent parameters are known, the problem can be reversed to estimate the turbulent

parameters only by measuring the vertical gradients of wind speed and temperature.

Recent advances in computational power and NWP model efficiency have enabled

considerable strides in operational forecasting abilities. While these models tend to

perform well in neutrally and unstably stratified flows, they struggle to properly rep-

resent SBLs (Sandu et al., 2013; Holtslag et al., 2013; Vignon et al., 2018). These

model deficiencies are typically related to an overestimation of turbulent mixing rates

(albeit intentionally to gain forecast skill at large scales) and therefore increased ABL

heights, which then manifest as errors in surface temperature and wind forecasts (Holt-

slag et al., 2013) and a general warm bias in the SBL (Lüpkes et al., 2010; Atlaskin

and Vihma, 2012).

5



Figure 1.2: Overview of the physical processes governing the SBL from Steeneveld
(2014), their Figure 2. Solid lines denote positive feedbacks, dashed are negative feed-
back mechanisms, and grey lines can be either depending on the state of the ABL.
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1.2 Uncrewed Aircraft Systems

In response to the recent rapid technological advances in open source autopilot hard-

ware and miniaturization of thermodynamic sensors, several groups around the world

have embraced the utility of uncrewed aircraft system (UAS) technology (also known

as unoccupied aircraft systems or remotely piloted aircraft; for a discussion on ter-

minology, see Joyce et al., 2021) for atmospheric research (e.g., Reuder et al., 2009,

2012; Houston et al., 2012; Wildmann et al., 2014; de Boer et al., 2016; Wrenger and

Cuxart, 2017; Lampert et al., 2020; Segales et al., 2020; Pinto et al., 2021; Al-Ghussain

and Bailey, 2022). Numerous national reports have described the need for significantly

more frequent and spatially dense observations within the ABL (National Academies of

Sciences, Engineering, and Medicine, 2007, 2018a,b; National Research Council, 2009;

Hoff and Hardesty, 2012), and measurements collected by UASs are showing promise in

bridging this so-called data gap (e.g., Greene, 2018; Chilson et al., 2019; McFarquhar

et al., 2020; Pinto et al., 2021; Houston et al., 2021; Bell, 2021). A common application

of UAS technology in atmospheric sciences is to collect thermodynamic and kinematic

observations as a function of altitude, similar to a traditional radiosonde and with

comparable accuracy (Bell et al., 2020) while also offering significantly improved verti-

cal resolution, mobility, and experimental control (Jiménez et al., 2016; Cuxart et al.,

2019; Chilson et al., 2019; Bell et al., 2020).

Several recent field campaigns have incorporated UASs, such as the Innovative

Strategies for Observations in the Arctic Atmospheric Boundary Layer campaign (ISO-

BAR; Kral et al., 2018, 2021; Greene et al., 2022), the Lower Atmospheric Profiling

Studies at Elevation–A Remotely Piloted Aircraft Team Experiment (LAPSE-RATE;

de Boer et al., 2019, 2020), and the Tracking Aerosol Convection Interactions ExpeRi-

ment (TRACER; Jensen, 2019). The UASs featured in these campaigns fall into one of
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two main categories: fixed- and rotary-wing. Fixed-wing UASs are capable of carrying

heavier payloads with longer flight endurances as compared to rotary-wing UASs, and

are therefore better suited for carrying sensor packages containing turbulence-resolving

instruments (e.g., Wildmann et al., 2014; Rautenberg et al., 2019; Alaoui-Sosse et al.,

2022; de Boer et al., 2022) or bulky chemical species and aerosol instruments (e.g.,

Schuyler and Guzman, 2017; Krautwurst et al., 2021). Rotary-wing UASs include

both commercial off-the-shelf aircraft outfitted with sensors (e.g., Islam et al., 2021)

as well as custom-built multicopters such as the University of Oklahoma CopterSonde

(Segales et al., 2020; Pillar-Little et al., 2021). Rotary-wing UASs offer advantages over

fixed-wing UASs in that they are more easily controlled and operated, offer a quasi-

Eulerian perspective of atmospheric sampling, can take off and land vertically, and are

capable of hovering and slow vertical profiling. Rotary-wing UAS observations must

also consider the effects of propeller downwash in a thermally stratified environment

(Houston and Keeler, 2020). As such, these rotary-wing UASs are typically best suited

for collecting observations in vertical profiles, where they offer high vertical and tem-

poral resolution (e.g., one profile every 15 min at 3 m vertical resolution) for analysis

of vertical gradients (e.g., Lappin et al., 2022; Greene et al., 2022). With an advanced

level of automation, it may one day be possible to operate a spatially-distributed net-

work of rotary-wing UASs for routine and unattended profiling of the ABL (Chilson

et al., 2019; Jacobs et al., 2020).

However, it is still a challenge to collect the high-frequency (i.e., � 1 Hz) ob-

servations needed for turbulence estimates using UASs on a consistent basis. While

recent research in autopilot control theory shows the potential for large-bandwidth

environmental wind measurements (González-Rocha et al., 2019, 2020), which could

potentially resolve turbulent stresses, many commercial off-the-shelf platforms do not
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enable this level of precision. A handful of research groups have developed special-

ized fixed-wing UASs with sophisticated turbulence sensor packages including hot- and

cold-wire thermometers and anemometers plus multi-hole pitot tube probes that can

explicitly resolve turbulence (e.g., Wildmann et al., 2014; de Boer et al., 2016; Raut-

enberg et al., 2019; Al-Ghussain and Bailey, 2022). Such systems offer great potential

for ABL research, in particular due to their horizontal sampling capabilities. However,

these instruments and aircraft are expensive, delicate, and difficult to operate on a

consistent basis. Stable boundary-layer conditions (e.g., very weak and intermittent

turbulence, strong vertical gradients, and often cold conditions) are particularly chal-

lenging. Obtaining representative turbulence observations from these platforms also

involves systemic challenges due to measured parameters (e.g., air speed, UAS speed,

and attitude angles) being an order of magnitude larger than the turbulent fluctuations.

1.2.1 Field Campaigns at High Latitudes

The polar regions of the globe are an ideal location to study the SBL since they

are characterized by prolonged periods of stability and are not limited to overnight

diurnal patterns as in mid-latitudes. Additionally, the presence of sea ice at high

latitudes produces horizontally homogeneous flow across large distances. These regions,

however, pose logistical challenges for personnel and equipment due to their remote

access and extreme conditions. There have been a handful of sea- and land-based efforts

to study the SBL in the Arctic and Antarctic since the 1990s, including the Surface

Heat Budget of the Arctic Ocean (SHEBA) program in the Beaufort Sea (1997–1998;

Persson et al., 2002; Grachev et al., 2005); at the Summit Station in central Greenland

(Miller et al., 2013); and most recently, the Multidisciplinary drifting Observatory

for the Study of Arctic Climate (MOSAiC) expedition (Shupe et al., 2018; Wake,

2019). Field campaigns targeting the SBL commonly employ masts equipped with
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eddy-covariance instruments, radiosondes, tethersondes, and remote sensing such as

sodar, lidar, Fourier transform spectrometers, and microwave radiometers. Although

these technologies are relatively mature, they are not without drawbacks that hinder

the ability to continually observe the SBL. For example, it is difficult to employ flexible

deployment strategies with fixed masts and heavy ground-based remote sensors. Spatial

resolution and the lowest measurement height is also a limitation for sodar and lidar,

which cannot observe flow close to the ground. Conversely, maximum vertical extent is

limited by the height of a mast, which is typically confined to the ASL. Environmental

conditions can prohibit the use of tethersondes altogether, limiting the ability to collect

in situ turbulence observations above a micrometeorological mast.

One of the first major field campaigns to incorporate UASs for SBL research, the

Innovative Strategies for Observations in the Arctic Atmospheric Boundary Layer (ISO-

BAR) field campaign was conducted at 65oN latitude off the island of Hailuoto, Finland,

in February 2017 and 2018 (Kral et al., 2018, 2021). Herein we refer to the 2018 portion

of the campaign as “ISOBAR18”. The ISOBAR18 campaign aimed to address many of

the previously mentioned gaps in SBL understanding by combining conventional ABL

observations (instrumented masts, sodars, and a lidar) with an innovative deployment

of UASs. During intensive observational periods (IOPs), flights were continually con-

ducted above the sea ice just off the west coast of the island. Airspace permissions

allowed flights up to 1800 m, which enabled sampling by UASs to capture the entirety

of the SBL vertical structure, even at night and in the presence of clouds and fog.

Observations from this campaign have been used for verification of gradient-based sim-

ilarity scaling of the SBL (Greene et al., 2022) as well as model evaluation of flow over

simulated sea ice (Lorenz et al., 2022).
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1.2.2 Characterizing Novel Observations in the SBL

Some potential avenues for understanding the ability of UAS observations to improve

NWP models include case studies with novel data assimilation techniques (Flagg et al.,

2018; Jensen et al., 2021, 2022) as well as observing system simulation experiments

(OSSEs; Moore, 2018; Chilson et al., 2019; Shenoy, 2021). These techniques all require

characterization of the uncertainties involved with the UAS observations, which for

simplicity are typically assumed to be constant and related to general sensor biases.

Considerable progress has been made in recent years to characterize uncertainties in

UAS observations due to sensor placement (Greene et al., 2018, 2019; Barbieri et al.,

2019), sensor response times (Houston and Keeler, 2018, 2020; Segales et al., 2021), and

improved wind vector estimations (González-Rocha et al., 2019, 2020). Although these

studies have been critical for establishing UAS technology as a legitimate observational

technique, few studies have examined how well these novel platforms can characterize

atmospheric flow at larger scales.

A relatively unexplored method of assessing the representativeness of observations

within the SBL is through an analysis of random errors, which arise due to averag-

ing a stochastic signal over an insufficient time period for the time mean to converge

to the true ensemble mean by the ergodic hypothesis (Lumley and Panofsky, 1964;

Sreenivasan et al., 1978; Mann and Lenschow, 1994; Lenschow et al., 1994). Random

errors fundamentally differ from those due to instrument bias, imprecision, or dynamic

response, as random errors are mitigated by increased averaging time whereas instru-

mental errors are relatively unaffected by this and instead require regular calibration.

For context, random errors can still be of the same order of magnitude as instrumental

errors for many parameters (Salesky et al., 2012; Salesky and Chamecki, 2012; Bell

et al., 2020), and theoretically all these errors independently compound. Quantifying
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the relative random errors for atmospheric parameters within the SBL typically ob-

served by UAS and surface-based eddy-covariance systems is therefore an important

framework to consider.

1.3 Coherent Structures in turbulent wall-bounded

flows

In recent decades, researchers have come to recognize the importance of coherent, or-

ganized structures within neutrally-stratified wall-bounded turbulent flows, which can

account for a majority of turbulent fluxes close to the wall (Corino and Brodkey, 1969;

Wallace et al., 1972; Willmarth and Lu, 1972; Guala et al., 2006; Balakumar and

Adrian, 2007; Wallace, 2016). The streamwise spatial extent of these structures can

exceed the depth of the flow itself, zi. The Reynolds number Re within the ABL effec-

tively approaches infinity, implying that viscous forces are relevant only at small scales

and near the wall. Turbulence in the ABL is typically dominated by shear in the inner

layer (also known as the surface layer) for 0 . z/zi . 0.1 or by buoyancy and Coriolis

forcings in the outer (or intertial) layer for z/zi & 0.1. Within the inner layer, turbu-

lence can be generated by hairpin vorticies that eject low-momentum fluid vertically

upwards (i.e. u′ < 0 and w′ > 0), which serves to generate additional hairpin vortices

that continually bound regions of low-momentum fluid (Head and Bandyopadhyay,

1981; Meinhart and Adrian, 1995; Adrian, 2007). Conversely, structures within the

outer layer can affect turbulence within the inner layer by sweeping high-momemtum

fluid downwards towards the wall (i.e. u′ > 0 and w′ < 0). These collections of hair-

pin vortices, known as large-scale motions (LSMs), have been widely studied in the

fluid mechanics community since the early 1970s (e.g., Kovasznay et al., 1970; Brown

and Thomas, 1977; Nakagawa and Nezu, 1981; Murlis et al., 1982; Wark and Nagib,
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1991; Adrian et al., 2000; Ganapathisubramani et al., 2003; Tomkins and Adrian, 2003;

Del Álamo et al., 2004). LSMs are characterized by regions of high- and low-momentum

fluid in the log-layer region of high Re flows (also known as the inertial sublayer, which

can overlap between the inner and outer layers) that scale as O(zi) in the streamwise

direction and can comprise of several successive hairpin vortices propagating at similar

speeds (Adrian, 2007).

It has also been found that LSMs can organize into superstructures known as

very-large-scale motions (VLSMs) that can extend O(10zi) in the streamwise direction

(Cantwell, 1981; Kim and Adrian, 1999; Guala et al., 2006; Balakumar and Adrian,

2007; Hutchins and Marusic, 2007a; Marusic and Hutchins, 2008). Studies examining

VLSMs have only been possible more recently due to limitations of Re accessible by

laboratory setups and direct numerical simulations (DNSs), but since the early 2000s

they have been identified in turbulent channel flows (Del Álamo et al., 2004; Chung

and McKeon, 2010), pipe flows (Guala et al., 2006), and ABLs (Tomkins and Adrian,

2003; Hutchins and Marusic, 2007a,b; Lee and Sung, 2011).

One common area of focus when studying the morphology of LSMs and VLSMs

involves quantifying the inclination angle, γ, of these structures. This angle is defined

relative to the surface (Brown and Thomas, 1977; Rajagopalan and Antonia, 1979),

and for neutrally-stratified flows is commonly found to be γ = 15◦ and is invariant

with respect to Re (Marusic and Heuer, 2007). Studies typically employ two-point

correlations for streamwise velocity or cross-correlations between velocity and surface

shear stress as functions in both height z and streamwise lag of maximum correlation

∆∗x to determine the inclination angle as γ = arctan(z/∆x∗) (e.g., Kovasznay et al.,

1970; Brown and Thomas, 1977; Rajagopalan and Antonia, 1979; Boppe et al., 1999;

Ganapathisubramani et al., 2005; Marusic and Heuer, 2007; Hutchins et al., 2012).
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1.3.1 Unstable Stratification

It is generally well understood that buoyancy can significantly affect the nature of

turbulence under unstable stratification, for example in terms of integral lengthscales

(Sullivan et al., 2003; Salesky et al., 2013), the turbulence kinetic energy (TKE) bud-

get (Wyngaard and Coté, 1971; Salesky et al., 2017), and velocity and temperature

spectra (Kaimal and Finnigan, 1994). The effects of buoyancy on inner-outer scale

interactions, however, have only recently been explored in the literature. Salesky et al.

(2017) explored the role of instability on the organization of motions within the CBL

using a suite of large-eddy simulations (LESs; Stoll et al., 2020) at varying levels of

instability, and demonstrated a transition between modes from quasi-two-dimensional

horizontal convective rolls (HCRs) under weak surface heat fluxes relative to large mean

wind shear towards open cellular convection reminsicent of Rayleigh-Bénard convec-

tion as instability increases. These HCRs are typically aligned within 10–20◦ of the

geostrophic wind vector (Weckwerth et al., 1996, 1997, 1999) and can act to spatially

partition the distributions of turbulent fluxes (Salesky et al., 2017). Under increasing

instability, the inclination angles of LSMs in the CBL have been found to increase past

50◦ (Salesky and Anderson, 2018, and references therein), which is consistent with

the topological transition towards vertical buoyant plumes at high instability. Using

sonic anemometer data from the ABL, Li et al. (2022) also examined the relationship

between stability, inclination angle, and aspect ratio of coherent structures in the con-

text of self-similar wall-attached eddies after Townsend (1976) (also see Woodcock and

Marusic, 2015; Marusic and Monty, 2019). They found that coherent structures have

an aspect ratio close to unity under neutral stratification, and become progressively

taller and wider under increasing unstable stratification. For unstable conditions, they

also found structures to be inclined at greater angles at larger scales as compared with

smaller scales.
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The changes in LSM and VLSM structure under convective conditions also can

be detected by examining how turbulent transport efficiencies (fraction of the net

flux in the downgradient direction) change for momentum versus scalars such as heat

and moisture. Using atmospheric surface data, Li and Bou-Zeid (2011) found that

under near-neutral stratification, momentum and scalars are transported by the same

updrafts with high correlations. With increasingly unstable conditions, they observed

a reduction in the transport efficiency of momentum paired with an increase in scalar

transport efficiency, indicating these processes are governed by differing mechanisms

related to the structure of vertical plumes. Through quadrant analysis, (also referred

to as conditional sampling; e.g., Wallace et al., 1972; Willmarth and Lu, 1972; Holland,

1973; Grossman, 1984; Finnigan, 2000; Wallace, 2016) they further identified that under

higher instability, vertical motions preferentially organize into rapid, intense updrafts

compensated by longer, weaker downdrafts. Salesky et al. (2017) later confirmed these

findings, further noting that these differences are related to the spatial distribution of

individual quadrant events which are in turn affected by global stability.

Following the procedure of Mathis et al. (2009a), Salesky and Anderson (2018)

examined the effects of buoyancy on inner-outer interactions through the lens of am-

plitude modulation (AM). The AM analysis begins by decomposing a signal into large-

and small-scale components via low and highpass filtering, followed by determining the

small-scale envelope function via Hilbert transforms. After again filtering this envelope

with a lowpass filter to extract the large-scale envelope of the small-scale signal, one

can compute the correlation between this envelope and the large-scale component of

the raw signal. By repeating this process with simulated eddy-covariance tower data at

multiple heights within CBLs across varying stabilities, Salesky and Anderson (2018)

found the strongest correlations for the least convective cases considered. They also

noted that significant correlations existed for all cases as long as there existed sufficient
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separation between inner and outer peaks in the premultiplied spectrograms. Their re-

sults indicated that small-scale fluctuating velocity, temperature, and instantaneous

second-order moments can be modulated by the large-scale streamwise and vertical

velocity components associated with LSMs. Salesky and Anderson (2018) conclude

with a conceptual model illustrating the effects of buoyancy on LSM inclination angles

and how LSMs at varying stabilities act to modulate surface-layer turbulence.

1.3.2 Stable Stratification

While a majority of research on LSMs focus on neutrally and unstably stratified flows,

analogous investigations of stably stratified flows are not as prominent. As discussed

previously in Section 1.1.1, turbulence within the SBL is difficult to observe or simulate

due to the buoyant suppression of vertical motions which results in turbulence that

is weak and highly localized in space and time (Lan et al., 2018). With increasing

stability, turbulent eddies become decoupled from the surface and scale with local

stability (Nieuwstadt, 1984; van de Wiel et al., 2008), and eventually z loses relevance

as a characteristic lengthscale (the so-called z-less regime, e.g., Wyngaard and Coté,

1972; Dias et al., 1995; Grachev et al., 2013).

Due to the nature of scales involved, most of the studies examining coherent struc-

tures in stably stratified flows leverage DNSs of channel or free-shear flows (e.g., Garćıa-

Villalba and del Álamo, 2011; Watanabe et al., 2018, 2019; Atoufi et al., 2021; Gibbs

et al., 2022). Watanabe et al. (2019) confirmed the existence of hairpin vortices within

stably stratified free shear layers, noting their strong similarity to those typically ob-

served in wall-bounded turbulent flows. They observed that while these hairpin vortices

could be found throughout the shear layer, so-called superstructures (collections of mul-

tiple individual hairpin vortices that can be up to 10 times larger than the depth of

the shear layer) only exist in the center of the layer. The authors also noted strong

16



turbulent mixing in cospectra at the wavelengths associated with the horizontal extent

of individual hairpin vortices, and that the composite superstructures are responsi-

ble for large peaks in density and velocity spectra at wavelengths associated with the

streamwise length of these structures. In a DNS investigation of stratified channel

flow, Garćıa-Villalba and del Álamo (2011) considered a wide range of stability and

noted several key findings. Two-dimensional energy density analysis indicated that

the primary effect of stratification is to damp the large-scale modulation of intensity

of near-surface streaks caused by global stability modes. Close to the surface, vertical

motions are largely unaffected by stability as the flow is dominated by wall effects and

coherent structures within the outer layer of the flow are not tall enough to penetrate

down to the surface due to the suppression of vertical motions by negative buoyancy.

They argue that stratification prevents the formation of larger scale structures by

damping turbulent vertical fluxes at those scales.

Observational studies in in the SBL largely agree with these findings, particarly

when vertical wind shear is weak which enables the development of strong vertical

temperature gradients due to the lack of vertical mixing (Lan et al., 2018). In these

cases, turbulence becomes highly localized into thin layers that are completely decou-

pled from the surface. In weakly stable boundary layers with high levels of coupling,

Lan et al. (2019) found that large eddies can contribute equally to both turbulent

production and transport, resulting in fluxes that were nearly constant with height.

However, for increasing stability, such large eddies do not contribute evenly thereby

resulting in nonzero vertical gradients of fluxes. Lan et al. (2022) found that sudden

events of wind profile distortion can trigger large eddies that penetrate downwards

and initiate a transition towards lower stability as they induce enhanced regions of
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turbulent transport, increased fluxes, and reduced TKE and flux gradients across lay-

ers. With such weak turbulent motions, these studies elucidate the imprtance of large

eddies in the SBL when they are able to penetrate across scales in the vertical.

Extending the analysis of stability effects on inclination angle to stably stratified

channel flow, Gibbs et al. (2022) recently found that structures become increasingly

inclined with height above the lower boundary up to z/h = 0.15, where h is the

boundary-layer depth. Above this height, the inclination angles level off, which they

discuss is indicative of a region where local z-less scaling behavior may no longer exist

(Grachev et al., 2013). Moreover, they found that the inclination angle decreases with

increasing stability at all heights, and that angles inferred from buoyancy structures

are larger than those from momentum.

Although these studies have provided foundational context on the existence of tur-

bulent coherent structures in stably stratified flows, they are limited in Reynolds num-

ber Re by at least four orders of magnitude when compared with typical SBL flows. At

these scales, the LES technique offers the ability to simulate high-Re flows with relative

computational efficiency at the expense of not being able to explicitly resolve the fine-

scale dynamics. This tradeoff results in a statistical dependence on grid resolution that

becomes especially important for SBL studies (Khani and Waite, 2014; Sullivan et al.,

2016; Khani, 2018; Dai et al., 2021; Maronga and Li, 2021; Greene and Salesky, 2022).

One of the few studies on coherent structures in the SBL that employed LES, Sullivan

et al. (2016) utilized a fine grid spacing of ∆ = 0.39 m to simulate the SBL with vary-

ing surface cooling rates to induce increasing levels of static stability. They focused

on the nature of localized coherent boundaries in the temperature field, and how these

so-called microfronts act upon the surrounding flow. Through conditional averaging,

the authors identified ring and hairpin vortices along the frontal boundaries that also

lie within the energy-containing range of the turbulent flow. These frontal boundaries
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were also present in the DNS experiments of Gibbs et al. (2022), who similarly noted

how their inclination angles flattened with height above the surface. Huang and Bou-

Zeid (2013) additionally presented two-point correlation statistics on horizontal planes

at varying heights within the SBL along with profiles of integral lengthscales. They

concluded that turbulence becomes increasingly local with stability and that coherent

structures are buoyantly suppressed in the vertical, leading to elongated features in the

streamwise direction.

1.4 Research Questions

It is abundantly clear that although understanding turbulence within the SBL has

far-reaching implications for society from public health to the declining polar sea ice

extent, there remains considerable progress to be made. Recent advancements in ob-

servational strategies such as the use of uncrewed aircraft systems in field operations

fortunately present a unique opportunity to observe the SBL at unprecedented scales.

Furthermore, the large-eddy simulation technique offers a compromise between reduced

computational expense and a reduction in the explicit representation of resolved scales

within simulated flows. By building from the growing community knowledge of accu-

rately simulating idealized SBLs, LES can be a powerful tool for examining both the

context of UAS measurements as well as exploring some of the underlying processes

governing SBL dynamics. This dissertation therefore seeks to answer the following

research questions through a novel synthesis of UAS observations and LES of the SBL:

1. Do gradient-based similarity functions based on ISOBAR18 eddy-covariance data

collapse to common functions of the Richardson number Ri?

2. What considerations are necessary to appropriately extend the application of

these gradient-based similarity functions to UAS vertical profile data?
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3. How do random errors depend on atmospheric stability and measurement height

for various first- and second-order turbulence moments?

4. How well do emulated UAS and eddy-covariance measurements represent the

ensemble mean?

5. What considerations are necessary to mitigate random errors for observations in

the SBL?

6. How does stability impact the properties of large-scale motions within the SBL?

7. How does buoyancy affect transport efficiencies of momentum and temperature?

8. How do coherent structures with the SBL contribute to these differences?

This dissertation is structured as follows. In Chapter 2, UAS and tower-mounted

eddy-covariance data from the ISOBAR18 campaign are utilized to examine questions

1–2. In Chapter 3 the representativeness of UAS and eddy-covariance observations

within the SBL are explored through a random error analysis of large eddy simulations

to address questions 3–5. The existence and characteristics of coherent structures

within the SBL are investigated in Chapter 4 to address questions 6–8. Finally, all of

these results are summarized in Chapter 5 along with an outlook on the future of SBL

studies using UAS and LES.
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Chapter 2

Gradient-based Turbulence Estimates from

Multicopter Profiles in the Arctic Stable Boundary

Layer

2.1 Research Objectives

In this chapter, we combine the gradient-based similarity framework from Sorbjan

(2010) with new observations from the ISOBAR18 campaign to address the following

key questions:

1. Do gradient-based similarity functions based on ISOBAR18 eddy-covariance data

collapse to common functions of the Richardson number Ri?

2. What considerations are necessary to appropriately extend the application of

these gradient-based similarity functions to UAS vertical profile data?

and their corresponding hypotheses:

1. The data utilized in previous studies to develop the gradient-based similarity

relationships featured strong horizontal homogeneity. By filtering the ISOBAR18

eddy-covariance data to analyze only onshore flow, non-dimensionalized turbulent

moments collapse to universal functions of Ri.
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2. Uncrewed aircraft system observations are quasi-instantaneous in situ observa-

tions, whereas the turbulence scaling typically relies on temporally averaged

quantities. By averaging multiple sequential profiles, it is possible to obtain

physically meaningful profiles of estimated turbulent quantities with the gradient-

based similarity theory.

This chapter is organized in the following manner: Section 2.2 outlines the back-

ground and theory of traditional surface layer turbulence scaling and reviews the

gradient-based scaling framework. An overview of the ISOBAR18 campaign and obser-

vational systems are presented in Section 2.3. Section 2.4 addresses research question

1 by detailing results from similarity scaling ISOBAR18 eddy-covariance data, and

Section 2.5 builds off those results by extending the gradient-based scaling to three

different case studies of UAS profiles from the ISOBAR18 campaign to address re-

search question 2. Overall discussion and caveats are provided in Section 2.6 followed

by concluding remarks in Section 5.1.1.

2.2 Background

Since the mid-twentieth century, MOST has provided a framework to describe turbu-

lence in thermally stratified ASL flows based on the concept of similarity scales with

three independent physical units. The MOST framework formally applies only to the

ASL where the vertical flux divergence is weak (i.e., fluxes vary by less than 10% com-

pared to their surface values), and is based on the hypothesis that scaled statistics of

turbulence collapse to universal functions of the stability parameter ζ = z/L. Here, z

represents the height above ground level and L is the Obukhov length scale (Obukhov,

1946) defined as

L = − u3
∗θ0

κgw′θ′

∣∣∣∣
0

, (2.1)
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with the friction velocity, u∗ =
(
u′w′

2
+ v′w′

2
)1/4

; the surface potential temperature,

θ0; the von Kármán constant, κ (see Högström, 1988); the acceleration due to gravity,

g; and the vertical kinematic heat flux, w′θ′. Here, u, v, and w are the streamwise,

lateral, and vertical velocity components, respectively. In this notation, quantities with

a prime denote fluctuating components about the mean values and an overbar denotes

the Reynolds averaging operator, whereas the subscript 0 indicates surface values. The

MOST scaling results in non-dimensional vertical gradients of the mean wind speed

and potential temperature, respectively, as

κz

u∗

∂U

∂z
=ϕm(ζ), (2.2a)

and

κz

θ∗

∂θ

∂z
=ϕh(ζ), (2.2b)

where U is the wind speed, θ∗ = −w′θ′v/u∗ is the temperature scale based on the surface

kinematic heat flux and friction velocity, and ϕm and ϕh are dimensionless universal

functions of the stability parameter ζ. Note that these functions are not prescribed

by MOST and must be determined empirically. In this chapter, we consider both the

Businger–Dyer (Businger et al., 1971) and the SHEBA profile functions (Grachev et al.,

2007). In their re-evaluated form (Högström, 1988), with an adjusted von Kármán

constant of κ = 0.40, the Businger–Dyer formulations for stable conditions (ζ > 0) are

ϕH
m =1 + 6ζ, (2.3a)

ϕH
h =0.95 + 7.8ζ, (2.3b)
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where the superscript H represents Högstrom. We note that it is also commonly ac-

cepted to use ϕm = ϕh = 1 + 5ζ for κ = 0.4 in the SBL (e.g., Kaimal and Finnigan,

1994), which has the advantage of simplicity over other empirical formulations. Perhaps

more applicable to the ISOBAR18 campaign data, Grachev et al. (2007) determined

empirical forms of the MOST formulations based on data from the SHEBA campaign

to take the form (with superscript S representing SHEBA)

ϕS
m = 1 +

6.5ζ(1 + ζ)1/3

1.3 + ζ
(2.4a)

ϕS
h = 1 +

5ζ + 5ζ2

1 + 3ζ + ζ2
. (2.4b)

Several studies (e.g., Nieuwstadt, 1984; Sorbjan, 1986, 1988) have shown that

MOST can be applied to the entire SBL depth (where the ASL may be shallow and

not well-defined) by utilizing local instead of surface scales when defining the MOST

functions in Equation 2.2. In this framework, it is possible to define the gradient

Richardson number Ri as

Ri =
z

Λ

ϕh(z/Λ)

ϕ2
m(z/Λ)

, (2.5)

where Λ is the local Obukhov length and defined as in Equation 2.1 except using local

vertical stresses and kinematic heat fluxes. Substituting the Högström and SHEBA

formulas under stable conditions (Eqs. 2.3, 2.4) yields

RiH =
z

Λ

0.95 + 7.8z/Λ

(1 + 6z/Λ)2
, (2.6a)

RiS =
z

Λ

[
1 +

5 z
Λ

+ 5( z
Λ

)2

1 + 3 z
Λ

+ ( z
Λ

)2

][
1 +

6.5 z
Λ

(1 + z
Λ

)1/3

1.3 + z
Λ

]−2

. (2.6b)

Turbulent motions in the SBL are commonly weak (and intermittent for increasing

stability), which leads to poor definitions of the MOST scales u∗, θ∗, and L. As a
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consequence, the form of the universal functions in Equation 2.2 yields ambiguous re-

sults as z/L→ 0/0 for increasing thermal stratification. Yano and Wac lawczyk (2021)

attempt to circumvent this limiting case through a generalized nondimensionalization

of the governing equations that alternatively defines characteristic length scales in the

ABL, although further work is needed to better define boundary conditions for dif-

ferent applications. Moreover, the MOST universal functions become susceptible to

self-correlation as u∗ and θ∗ appear on both sides of Equation 2.2, which leads to arti-

ficially strong agreement between theory and observations for ϕm and poor agreement

for ϕh (Baas et al., 2006).

To overcome these issues in the SBL, Sorbjan (2010) proposed a “master” scaling

scheme based upon vertical gradients, defining similarity scales for length, velocity, and

temperature in the SBL as, respectively,

Ls = `, (2.7a)

Us = ` N , (2.7b)

Ts = ` Γ, (2.7c)

where ` is a mixing length after Prandtl (1925), the Brunt–Väisälä frequencyN =
√
βΓ,

Γ = ∂θ/∂z is the local vertical potential temperature gradient, and β = g/T0 is the

buoyancy parameter with T0 being a reference surface temperature. Originally, Sorbjan

(2010) approximated ` = κz based upon surface-layer scaling in the neutral limit. To

extend the applicability of these similarity scales beyond the surface layer where ` is

expected to increase nonlinearly with height, Sorbjan (2017) showed that the mixing

lengths for momentum and heat in any stably stratified fluid are equal and can be

approximated as

` =
κz

1 + κz
λ0

+ κz
λ1

, (2.8)
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where λ0 = 19.22 m, λ1 = c/Ri3/2, c = 1 m, and Ri = N2/S2 is the Richardson number

where

S =
√

(∂u/∂z)2 + (∂v/∂z)2 (2.9)

is the local vertical gradient of the horizontal wind vector. Herein, we utilize the

blended mixing length ` defined in Equation 2.8 when defining and calculating the

gradient-based similarity scales in Equation 2.7.

In this scaling framework, Sorbjan (2010) defined four universal dimensionless func-

tions of the Richardson number as

u2
∗

U2
s

= Gm(Ri), (2.10a)

− w
′θ′

UsTs
= Gh(Ri), (2.10b)

σw
Us

= Gw(Ri), (2.10c)

σθ
Ts

= Gθ(Ri), (2.10d)

with the standard deviations of the vertical velocity component and potential temper-

ature, σw and σθ; and the universal similarity functions of the Richardson number,

Gm, Gh, Gw, and Gθ. Note that the notation from Sorbjan (2010) for this paper’s

Equation 2.10a has been changed to maintain consistency with the MOST function in

Equation 2.2a. This is similar to how Monin and Obukhov (1954) defined universal

functions of the stability parameter ζ = z/L, except for that the use of Ri virtually

eliminates the issue of self-correlation.

Using 1-h observations from the SHEBA campaign, Sorbjan (2010) and Sorbjan

and Grachev (2010) introduced the following analytical empirical expressions for Equa-

tion 2.10 (including the modified version of Gθ from Sorbjan (2017)):
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Gm =
1

Ri(1 + 300Ri2)3/2
, (2.11a)

Gh =
1

0.9Ri1/2(1 + 250Ri2)3/2
, (2.11b)

Gw =
1

0.85Ri1/2(1 + 450Ri2)1/2
, (2.11c)

Gθ =
3

(1 + 1000Ri2)1/2
. (2.11d)

Sorbjan (2010) originally applied this framework to the range 0.001 < Ri < 0.7

with observations from the SHEBA campaign and found strong agreement between all

four scaled parameters in this range. He also noted that for Ri > 0.7, the turbulence

kinetic energy budget dictates that turbulence no longer be stationary, and does not

consider observations in this range. Sorbjan (2017) further demonstrated the validity

of this framework using large-eddy-simulation output in the range 0.02 < Ri < 0.2, also

noting strong agreement. As will be shown, a majority of the ISOBAR18 observations

fall within the range 0.005 < Ri < 0.3, which is consistent with Sorbjan (2010).

The utility of the gradient-based similarity framework (Eqs. 2.7, 2.10) also extends

beyond micrometeorological mast observations. If one were to obtain vertical profiles

of potential temperature and wind speed within the SBL, they could then construct

vertical profiles of Ri as well as the gradient-based similarity scales (Equation 2.7).

With Ri they could then evaluate the magnitude of the similarity functions using the

empirical expressions in Equation 2.11. Finally, by rearranging Equation 2.10 and

multiplying the similarity functions by their corresponding gradient-based scales, they
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can produce an estimate of the desired turbulent parameters. For example, in the case

of estimating u2
∗, the calculation would be

u2
∗ = Gm(Ri)UsUs =

(`N)2

Ri(1 + 300Ri2)3/2
, (2.12)

with `, N , and Ri calculated directly from observations.

We aim to evaluate the performance of the gradient-based similarity framework

with a multifaceted approach. In Section 2.4, we will validate the formulation of the

empirical similarity functions (Equation 2.11) using eddy-covariance observations from

the ISOBAR18 campaign. After the empirical functions are deemed appropriate for

the conditions observed during the campaign, in Section 2.5 we turn our attention

to vertical profile observations collected by UASs. There we assess the conditions

necessary to adequately estimate profiles of turbulent moments with the approach

summarized in Equation 2.12.

2.3 ISOBAR18 Campaign Overview

The 2018 portion of the Innovative Strategies for Observations in the Arctic Atmo-

spheric Boundary Layer campaign (ISOBAR18) took place over the sea ice of the

Bothnian Bay off the western coast of the Finnish island Hailuoto at 65◦N (Kral et al.,

2021). During this month-long campaign, numerous observation systems, including

micrometeorological masts, boundary-layer remote-sensing systems, and various UASs,

were utilized over the sea ice or on the coast during February 2018, resulting in eight

IOPs. In this chapter, we make use of data from the 10-m micrometeorological tower,
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Figure 2.1: Panoramic photo taken on the sea ice west of Hailuoto, Finland, on 18
February 2018. In the center of the image (facing south) are the GFI1 and GFI2 me-
teorological towers. On the right side (facing west) is the orange takeoff and landing
pad, which acted as the primary launch point for the CopterSonde during ISOBAR18.
The island of Hailuoto is visible on the left side of the image (facing east). It is ap-
parent from this image that atmospheric flows from the south and west have relatively
unobstructed fetches across sea ice and snow.

the ground-based Doppler wind lidar, the vertically sampling ground-based Doppler so-

dar, and the rotary-wing UAS. A summary of these instruments and their specifications

are outlined in Table 2.1.

An integral component of the observational systems during the ISOBAR18 cam-

paign was the inclusion of two micrometeorological masts on the sea ice just off the

coast of Hailuoto (Figure 2.1; for a map, see Figure 1 in Kral et al., 2021). The primary

mast utilized in this chapter (Figure 2.2d; herein GFI2, denoting the second Univer-

sity of Bergen Geophysical Institute mast and consistent with Kral et al., 2021) was

10.3-m tall with multiple levels of instruments. Of note, these included three levels of

eddy-covariance systems (CSAT-3, Campbell Scientific, Logan, Utah, USA) located at

1.97, 4.55, and 10.31 m, and three levels of thermocouple temperature measurements

located at 0.6, 1.9, and 6.9 m. The thermocouple measurements are available at 1-s

resolution, but 10-min averages were utilized in this chapter.

For a near-continuous monitoring of vertical profiles of the three-dimensional wind

vector, a Leosphere WindCube v1 Doppler wind lidar (Figure 2.2b; Kumer et al., 2014,

2016) was deployed on the shoreline halfway through the ISOBAR18 campaign. This
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Figure 2.2: Pictures of the instruments in this chapter taken in Hailuoto, Finland,
during the ISOBAR18 campaign: (a) the CopterSonde with sensors mounted inside an
aspirated right-angle duct on the front of the aircraft (credit: Bill Doyle, Universty of
Oklahoma), (b) the WindCube v1 Doppler lidar (credit: Joachim Reuder, University
of Bergen), (c) the LATAN-3M vertically pointing sodar (credit: Joachim Reuder,
University of Bergen), and (d) the 10-m GFI2 instrumented tower (credit: Andrew
Seidl, University of Bergen).
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lidar sampled at 1 Hz (0.25 Hz for independent observations) at ranges of 45, 65, 85,

105, 125, 145, 165, 185, 205, and 255 m above mean sea level (a.m.s.l.). Standard

deviations of the vertical velocity component σw are estimated based on averages of

the 1 s Doppler spectral broadening, and thus correspond to a spatial average over the

20-m range gate.

We additionally make use of observations from the vertically-sampling sodar (Fig-

ure 2.2c, LATAN-3M; Kouznetsov, 2009). The sodar sampled the ABL vertically every

3 s to produce time–height depictions of the attenuated backscatter signal, which is

used primarily to classify the vertical structure of the SBL and diagnose its height in

the case studies presented in Section 2.5.2.

Complementing these ground-based observing systems, the ISOBAR18 campaign

also made extensive use of UAS technology to collect valuable in situ thermodynamic

and kinematic observations of the lower atmosphere. For the lowest levels (from the

surface to 300 m above ground level, a.g.l.), a series of different rotary-wing UASs flew

vertical profiles once roughly every 20 min throughout the eight IOPs (Kral et al.,

2021). Intensive operational periods were primarily conducted for periods with fore-

casted strong surface cooling and weak synoptic background flow. As will be discussed,

the actual conditions during the IOPs varied from clear skies to intermittent fog and

cloudiness. To achieve the highest level of data consistency, this chapter only focuses

on observations from the CopterSonde UAS (Figure 2.2a; Greene et al., 2018, 2019;

Segales et al., 2020) operated by the University of Oklahoma (U.S.).
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2.4 Evaluation of Similarity Relationships for Mast

Data

As outlined at the end of Section 2.2, in this section we assess the performance of the

empirical gradient-based similarity function (Equation 2.11) based on eddy-covariance

observations during the ISOBAR18 campaign. To provide additional context and to

highlight the differences between the two frameworks, we also present the same data

scaled with the traditional MOST (Equation 2.2).

2.4.1 Mast Data Processing

Extracting turbulence statistics from the raw 20-Hz eddy-covariance observations re-

quires considerable attention to detail (e.g., Lee et al., 2004; Foken, 2008). To stream-

line this process, we utilized the TK3.11 software package (Mauder and Foken, 2015),

which tested for a physical range of observations, spikes, stationarity, and integration

of developed turbulence. These quality checks resulted in various quality flags in the

post-processed data. Based on an Ogive-analysis and a flux-convergence classification

(following Foken et al., 2006), we utilized an averaging period of 10 min for data in

this chapter. We further use an additional flag denoting statistical convergence within

the spectral integration period of each 10-min eddy-covariance-data interval. After

accounting for convergence to each eddy-covariance level separately, about 74.3% of

the data are retained in total. The TK3 software also performed planar-fit coordinate

transformations as well as the corrections outlined by Webb et al. (1980), Schotanus

et al. (1983), and Moore (1986).

Like MOST, the gradient-based scaling framework outlined by Sorbjan (2010) relies

on the underlying assumptions of horizontal homogeneity. Because of the GFI2 mast’s

proximity to the coast of Hailuoto, it is also necessary to filter measurements by the
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prevailing wind direction to ensure a fetch across sea ice (Barskov et al., 2019). For this

chapter, we impose a requirement that the flow must be from a sector between 150◦

(south-easterly) and 300◦ (north-westerly) based upon the geometry of the coastline

(see Figure 1 in Kral et al., 2021, for a top-down view of the observational site). When

accounting for wind direction in addition to the statistical flags mentioned previously,

about 15.9% (1358 out of 8553) of the total 10-min data points from each of the three

eddy-covariance levels remain for further analysis.

Vertical gradients of temperature and wind speed are calculated by first fitting

second-order polynomials of the form

y = a ln(z)2 + b ln(z) + c, (2.13)

where y represents any atmospheric parameter and a, b, and c are empirical constants.

In this form, it is convenient to calculate the vertical derivatives analytically as

dy

dz
=

1

z
(2a ln(z) + b). (2.14)

Note here that vertical derivatives of wind speed are calculated using the vector

wind components u and v thus taking the contribution of directional shear into ac-

count (Equation 2.9). With this method, we also specify a lower boundary condition

U(z = z0) = 0, where z0 is the aerodynamic roughness length set to 0.001 m for sea ice,

to constrain physically representative estimates of velocity gradients. Furthermore, we

approximate ∂θ/∂z ≈ ∂T/∂z + 0.01 K m−1. This analytical method is advantageous

over finite differencing techniques because it enables the estimation of gradients at any

height z within the bounds of the defined function as opposed to only one level ar-

bitrarily between two observation points. Because the three levels of eddy-covariance
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observations do not align with the three levels of slow-response temperature measure-

ments, this enables us to bypass the interpolation required to directly calculate Ri at

a specific height.

Resulting profiles of the scaled turbulence statistics rely considerably on the nu-

merical methods employed to calculate vertical gradients using multiple observational

levels. In this chapter we chose the second-order fit in Equation 2.13, as it performed

markedly better than finite differencing (first and second order) and various other fitting

functions (not shown). Other studies have demonstrated the efficacy of this technique

for calculating vertical gradients in the SBL (e.g., Grachev et al., 2005, 2007), but we

do acknowledge that there is no perfect method for every application.

After calculating the vertical gradients, we calculate Ri using the GFI2 0.6 m

temperatures for T0 in the buoyancy parameter. Following the method in Sorbjan

(2010), Grachev et al. (2012), and Sorbjan (2017) to filter for outliers, we employ a

prerequisite on Ri for an individual observation to be considered. After calculating Ri

directly, an observation is omitted from further analysis if it does not fall within the

range 0.5RiS < Ri < 2RiS (where RiS is defined in Equation 2.6b). After applying this

final condition, about 12.1% (1031 out of the original 8553) of the total 10-min data

points were considered in this investigation. We also construct the scaling parameters

Us, Ts, and Ls as defined in Equation 2.7 to estimate values of the dimensionless

functions outlined in Equation 2.10. All of these are valid at the same heights as the

three eddy-covariance systems. For clarity, bin-medians of the dimensionless turbulent

statistics are computed based on Ri with each bin containing 25 individual observations

at each eddy-covariance measurement level.
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2.4.2 Results

The eddy-covariance results for the GFI2 tower are organized based on the similarity

scaling frameworks, beginning first with the traditional MOST scaling as a baseline

reference in Section 2.4.2.1. After highlighting the strengths and shortcomings of this

method, results from the gradient-based scaling are presented in Section 2.4.2.2.

2.4.2.1 Local Monin–Obukhov Similarity Theory Scaling

Of the 1031 individual observations considered, 290 (about 28%) are in the “nearly-

neutral” regime as defined by Sorbjan and Grachev (2010) with 0 < z/Λ < 0.02,

681 (about 66%) are “weakly-stable” with 0.02 < z/Λ < 0.6, and the remaining 60

(about 6%) are “very-stable” with 0.6 < z/Λ < 50. In general, there appears to

be good agreement between the observed dimensionless momentum fluxes ϕm as a

function of the stability parameter z/Λ compared to the empirical Businger–Dyer and

SHEBA formulations at all three eddy-covariance levels (Figure 2.3a). The spread

in observed ϕm is largest in the “weakly-stable” regime. For z/Λ > 0.1, observed

ϕm appears to closely follow the trend predicted by the SHEBA formulation (Equa-

tion 2.4), which has a smaller slope in log-log coordinates than the Businger–Dyer form

(Equation 2.3). Otherwise, even at higher measures of stability, scaled bin-median ob-

servations of ϕm collapse to a common universal function in agreement with previous

studies (e.g., Grachev et al., 2005, 2007, 2008; Sorbjan and Grachev, 2010).

Conversely, the observed dimensionless heat fluxes ϕh (Figure 2.3b) exhibit con-

siderable spread at all stabilities and all eddy-covariance levels, differing by up to one

order of magnitude in near-neutral and weakly-stable conditions. This large spread in

ϕh and general lack thereof in ϕm is likely a result of self-correlation, as errors in heat

flux observations (which appear in both θ∗ and z/Λ) mathematically induce scatter
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Figure 2.3: Dimensionless (a) momentum flux and (b) heat flux versus the local sta-
bility parameter ζ = z/Λ from each of the three sonic anemometer levels on GFI2
(color-coded by height) in log-log coordinates. In both figures, faded stars are indi-
vidual observations, and shaded circles are bin-median values based on ζ for clarity.
For reference, the solid and dashed black lines respectively represent the SHEBA and
Businger–Dyer formulation of the MOST functions for stable conditions (Equation 2.3).
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Figure 2.4: Direct calculation of the Richardson number Ri from each of the three GFI2
heights versus the stability parameter z/Λ in log-log coordinates during ISOBAR18.
For reference, the theoretical relationship, based on the SHEBA (Businger–Dyer) for-
mulation (Equation 2.6), is also drawn as the solid (dashed) black line. Individual
observations appear as faded stars, and bin-median values appear as solid circles (as
in Figure 2.3).
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normal to the empirical function for ϕm in stable conditions (Baas et al., 2006). By

this same principal, errors in momentum flux generally induce scatter along the em-

pirical functions, which acts to artificially improve the correlation for ϕm (Baas et al.,

2006). Moreover, uncertainties in evaluating the potential temperature gradient at

the 10-m eddy-covariance level with data extrapolated from below this observational

level likely contribute to the overall scatter in ϕh. This is also a relevant factor in the

gradient-based similarity scales as discussed in the following subsection.

When examining the relationship between Ri and z/Λ (Figure 2.4), the effect of

excluding outliers based on Ri and RiS is apparent as an envelope around the empirical

RiS curve. In general, both the SHEBA and Businger–Dyer formulations appear to fit

the trend in observations at all levels for z/Λ < 0.1. For increasing stability, individual

observations and bin-medians at 2 and 5 m follow more closely with the SHEBA curve,

whereas the 10-m data maintain larger values of Ri than predicted as z/Λ approaches

1. Without the RiS constraint described earlier, the overall spread in Ri is much larger

about the empirical curve (not shown). This is undoubtedly related to the propagation

of error from ϕh via Equation 2.5, and in itself provides justification for excluding

outliers when evaluating the gradient-based similarity relationships in the following

subsection. From Figure 2.4 it is also apparent that a majority of observations during

the ISOBAR18 campaign fall in the ranges 0.02 < Ri < 0.12, which is defined by

Sorbjan (2010) as “weakly stable”. Although this campaign took place in the Arctic

during winter, we believe the presence of low-level clouds influenced by the marine

boundary layer and heterogeneous ice covering in the mesoscale strongly influenced

the net radiation balance at Hailuoto. Downwelling longwave radiation from these

clouds dampens the ability of the surface to radiatively cool, thereby reducing the

near-surface stability. As seen in the following subsection, these observations are still
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well within the range to be appropriately characterized by the gradient-based scaling

framework.

2.4.2.2 Gradient-Based Similarity Scaling

The dimensionless momentum and heat fluxes, Gm and Gh, and the dimensionless

standard deviations of the vertical velocity component and temperature, Gw and Gθ,

all show a strong dependence on the Richardson number, Ri (Figure 2.5). In gen-

eral, all four of these scaled observations follow the SHEBA empirical formulations in

Equation 2.11 for 0.005 < Ri < 0.3. Specifically, we expect the following trends for

near-neutral conditions:

Gm ∼ Ri−1, (2.15a)

Gh ∼ Ri−1/2, (2.15b)

Gw ∼ Ri−1/2, (2.15c)

Gθ ∼ Ri0. (2.15d)

Sorbjan (2010) found the valid range of these near-neutral scaling laws to be for

Ri < 0.01, which is also supported empirically by the ISOBAR18 data (Figure 2.5).

Observations in this regime are effectively entirely from the 2-m level, which neatly

collapse to the empirical functions in Equation 2.15 for all scaled moments except the

potential temperature standard deviations.

A majority of the GFI2 mast observations occurred in the “weakly stable” regime,

i.e. 0.02 < Ri < 0.12 (Sorbjan, 2010). In this regime, scaled observations from all

three eddy-covariance measurement levels appear to collapse to their empirical curves
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Figure 2.5: Relationship between dimensionless (a) momentum flux Gm = u2
∗/U

2
s , (b)

heat flux Gh = −w′θ′/UsTs, (c) vertical velocity standard deviation Gw = σw/Us, and
(d) potential temperature Gθ = σθ/Ts and Richardson number Ri. Individual points
are plotted as faint Xs with bin-median values denoted by larger circles. All points
are color-coded based on height. The solid black lines denote the empirical functions
defined in Equation 2.11.

41



(Equation 2.11). As indicated by their bin-median values and individual observations

(Figure 2.5), the 2-m and 5-m observations strongly agree with their predicted values.

The 10-m observations in this range differ by a factor of 2–3, resulting in values larger

than the empirical curves across all statistics. This is most likely related to the inability

to constrain the temperature profile above 7 m (above the topmost thermocouple) and

requiring extrapolation of the temperature gradient to the 10-m eddy-covariance level.

In the weakly stable regime, scatter in Gθ appears to be fairly large. Moreover,

in this regime observations from 2-m appear to match the empirical curve of Equa-

tion 2.11d the closest whereas the 5 and 10-m observations are 30–40% larger on av-

erage, which is closer to the original formulation in Sorbjan (2010). This is a similar

observation as that made by Sorbjan (2017), who reasoned that the dimensionless

temperature standard deviation is not well defined because as Ri→ 0, σθ/Ts → 0/0.

Sorbjan (2010) also identified that the similarity functions begin falling off more

drastically for stronger stability, namely for 0.1 < Ri < 0.7, where they follow these

scaling laws:

Gm ∼ Ri−4, (2.16a)

Gh ∼ Ri−7/2, (2.16b)

Gw ∼ Ri−3/2, (2.16c)

Gθ ∼ Ri−1. (2.16d)

In general, the data appear to transition between the near-neutral scaling regime (Equa-

tion 2.15) to one of stronger stability (Equation 2.16) around Ri ≈ 0.1. Similar to the

weakly stable regime, the scaled observations from all three levels indeed fall off as

expected even for Ri as high as 0.4. This is perhaps a surprising result, as time series
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analysis at the 10-m level (Kral et al., 2021) showed that the surface layer routinely

decoupled from the 10-m observations. These results indicate that the function fitting

and analytical gradient calculations perform well, even if the magnitudes of the 10-m

scaled turbulence are routinely larger than predicted. Further sensitivity studies on

the method of calculating vertical gradients in the SBL are therefore warranted.

It is apparent from the eddy-covariance data that this gradient-based similarity

framework is consistent with the results from Sorbjan (2010, 2017), including a general

validation of the empirical relationships in Equation 2.11. In particular, the scaled

5-m eddy-covariance observations collapse nearly perfectly to these relationships. As

discussed further in Section 2.6, this is likely related to having observational constraints

above and below, whereas these constraints do not necessarily exist for the 2-m and

10-m eddy-covariance levels. With this in mind, the following section outlines the

potential for extending these relationships into the new realm of in situ observations

from UASs.

2.5 Applications to Uncrewed Aircraft Systems

The validation of the empirical gradient-based similarity equations in Section 2.4.2.2

now presents a unique opportunity to apply the algorithm in Equation 2.12 to calculate

vertical profiles of turbulent parameters by measuring only temperature and wind

speeds. These parameters are readily available by leveraging the vertical profiles from

rotary-wing UAS flights conducted during the ISOBAR18 campaign. We first outline

the necessary data-processing steps to appropriately perform these calculations before

presenting three case studies from the campaign to highlight the utility of this method.
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2.5.1 Uncrewed Aircraft System Data Processing

To ensure the highest data quality, post-processing UAS data requires considerations

on how the aircraft behaves in its environment (Barbieri et al., 2019). The CopterSonde

data used in this chapter are therefore processed in the following manner: After initial

quality checking (i.e., range tests and spike removal), temperature, relative humidity,

pressure, and attitude data are low-pass filtered applying the settings summarized in

Table 2.2. These parameters were subjectively chosen to mitigate the effects of high-

frequency aircraft oscillations when estimating the horizontal winds without affecting

the phase of the signals and still maintaining information from time scales the temper-

ature sensors can resolve. This filtering is essential towards improving the convergence

of vertical gradient and especially Ri calculations, as high frequency noise and bias

can severely reduce the physical representativeness of these calculations. Filtering the

raw CopterSonde data should also improve the ability of singular profiles to represent

the surrounding SBL flow in space and time. By oversampling at 10 Hz (Table 2.1,

compared to the 1/τ ≈ 0.4 Hz temperature response frequency as explained below),

we implicitly are able to reduce errors due to aliasing, and do not apply any further

anti-aliasing corrections.

Table 2.2: Quantitative description of the digital zero-phase finite impulse response
low-pass filter utilized on the raw CopterSonde data. Calculations were performed
using the Remez exchange algorithm (McClellan and Parks, 1973) available in the
open-source SciPy Python library (Virtanen et al., 2020).

Parameter Value

Sample frequency 10 Hz

Passband edge frequency 0.01 Hz

Stopband edge frequency 0.1 Hz

Number of taps 501
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After low-pass filtering, the measurements from the temperature and humidity sen-

sors are time-response corrected as outlined in Kral (2020), who was originally inspired

by the work of Jonassen (2008) utilizing the fixed-wing Small Unmanned Meteorolog-

ical Observer. This is a crucial step in processing, as errors in vertical profiles due

to sensor lags can substantially impact the magnitude of observed temperature inver-

sions and resulting profile shapes (Houston and Keeler, 2018). This method essentially

involves a convolution of the time series data,

ψrci =
ψrawi − (ψrawi−1 e

−δt/τ )

1− e−δt/τ , (2.17)

where ψ is an arbitrary discrete-time variable, the subscript i denotes an index of the

digital signal, the superscripts rc and raw denote the response-corrected and raw time

series data (respectively), δt = ti − ti−1 is the timestep between subsequent samples,

and τ is the time constant of a first-order system (i.e., the sensor output can be mod-

elled as a first-order differential equation of the input). We estimated τ of the iMet-XF

thermistor, while integrated into the CopterSonde, through a series of step-function

inputs between a sauna and the below-freezing environment on Hailuoto during the

ISOBAR18 campaign. For reference, this value ranges from 2.5–2.7 s (the manufac-

turer did not supply a reference value, although this range is similar to those from other

bead thermistors). Other methods of time constant estimation include: 1) rapidly as-

cending and descending through an inversion layer to simulate a step change (Kral,

2020); and 2) comparing pairs of ascent and descent profiles and iteratively testing

values of τ until the root-mean-squared difference between the corrected pair of time

series is minimized (Mahesh et al., 1997; Jonassen, 2008). It should also be noted that

applying the low-pass filter described previously has an impact on the response times

of the thermodynamic sensors. In testing, we found this difference to be less than
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10%, which should be small enough to be offset by the slow (1 m s−1) ascent rates

and vertical altitude bin averaging when further processing the profiles. A successful

reconstruction of the response-corrected signal (Equation 2.17) also depends on a rel-

atively smooth input signal ψraw, as abrupt changes onset by sensor noise can result

in non-physical enhancements of these changes (Jonassen, 2008). Although we do not

present a validation of this method during ISOBAR18, Jonassen (2008) demonstrated

substantial intra-flight sensor accuracy improvements (8–62.5% for temperature), and

this correction method across multiple aircraft datasets in Kral et al. (2021) enabled

considerable improvements in their comparisons. Herein, all calculations and analyses

are performed using the low-pass-filtered and response-corrected measurements.

Since vertical gradients of atmospheric parameters are exceptionally large in this

experiment, it is also crucial to assure accuracy in altitude estimations from the

CopterSonde’s autopilot. Autopilots typically use a standard atmospheric lapse rate

of 6.5 K km−1 with a 15◦C surface temperature at sea level to estimate altitude from

pressure and global navigation satellite systems (GNSS), which is far from accurate in

the Arctic SBL. Instead of relying on these estimates, hydrostatic balance is assumed

so that altitude can be iteratively calculated using ambient air density as calculated

from pressure and temperature observations (Barbieri et al., 2019):

zi = zi−1 −
∆p

gρ
, (2.18)

where z is the altitude, the subscript i denotes an index of the altitude array, ρ is the

average density for a layer (i.e., ρ = 1
N

∑N
j=0 ρj for all samples N between zi−1 and

zi), ∆p is the change in pressure for a layer, and g is the acceleration due to gravity.

From UAS data, we can estimate ρ from the ideal gas law: ρ = p/(RdT ), where p

is the geometric mean since p changes exponentially with height: p = (
∏N

j=0 pj)
1/N ,
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Rd = 287.058 J kg−1 K−1 is the specific heat capacity of dry air, and T the mean

temperature of each layer. For the present chapter, we prescribe a constant ∆p of

0.04 hPa to discriminate between subsequent layers as a trade-off between temperature

sensor response time, barometer accuracy, and the CopterSonde’s vertical ascent rate.

Once the new array of altitudes is calculated, all remaining parameters are bin-averaged

to match the same vertical spatial resolution (which correspondingly has an average

time resolution of ∼ 3 s).

After altitude post-processing, we then interpolate all parameters to a consistent

time vector with a 0.25 s resolution to maintain a convenient gridded format for later

analysis. At this stage, we compare the CopterSonde temperature and relative hu-

midity measurements to the “slow-response” temperature sensors on the GFI2 mast

to calculate and apply relative offsets for the duration of the campaign (Kral, 2020).

Finally, horizontal winds are estimated using aircraft flight dynamics (see Segales et al.,

2020) calibrated against the Doppler lidar present during the campaign (Kral et al.,

2021).

At this stage, the differing characteristics of quasi-instantaneous UAS profiles and

continuous time-averaged mast observations need some special attention. To address

this issue, we choose to average data from multiple CopterSonde vertical profiles within

1-h windows, which typically correspond to three separate flights. We only consider

CopterSonde data during the ascent portion of individual flights, because CopterSonde

flight operations consisted of slower ascent and rapid descent to optimize battery usage

and sensor response time versus averaging intervals. Moreover, the underlying assump-

tions for the kinematic model used to estimate horizontal winds are not valid when

the aircraft is descending (for additional discussion on this decision, see Segales et al.,

2020).
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To facilitate this time averaging, and to ensure numerical stability in calculating

vertical gradients, each processed profile is regridded in the vertical with a constant

dz = 5 m before averaging across each altitude bin. These regridded profiles also have

the advantage of reduced frequency response errors that may have resulted from the

original observations, post-processing, and/or interpolating to a common time vector.

From these time-averaged profiles, we calculate Ri and the gradient-based similarity

scales from Equation 2.7 using first-order central finite differencing of potential temper-

ature and horizontal wind components. When calculating Ri, we also follow Sorbjan

and Balsley (2008) and sort potential temperature such that it is monotonically in-

creasing throughout the profile. This method better represents the background state

of the atmosphere if turbulence was allowed to relax adiabatically (Sorbjan and Bal-

sley, 2008), and has the added benefit of returning positive values of Ri. Although

Sorbjan and Balsley (2008) utilized this technique in the analysis of singular profiles

of high-frequency measurements from a tethered lifting system in the SBL, we find it a

worthwhile technique for our purposes as it further improves our ability to accurately

compute vertical gradients from CopterSonde observations. As outlined in Section 2.2,

turbulence parameters are then readily calculated by solving Equation 2.10 for the sta-

tistical moments and utilizing the gradient-based scales calculated from Equation 2.7

and the empirical dimensionless equations as a function of Ri in Equation 2.11.

2.5.2 Uncrewed Aircraft System Results

To examine the potential strengths and limitations of the gradient-based similarity

framework applied to UAS data, we examine three case studies, each spanning 1 h and

consisting of composites from 2–3 CopterSonde vertical profiles. These three cases cover

a broad stability range including varying characteristics of near-surface temperature
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inversion, differing characteristics of low-level jets (LLJs), and the presence of low-level

internal gravity waves.

To evaluate the vertical limit for this scaling approach in the SBL we provide

several estimates of the SBL height based on (1) vertical profiles of CopterSonde-

observed temperature, wind speed, and wind direction; (2) Ri profiles as derived from

the CopterSonde observations; and (3) sodar attenuated backscatter profiles. We es-

timate turbulence for the entire range of vertical observations since the SBL height is

poorly defined in general and the applied metrics are not mutually consistent. More-

over, Sorbjan (2017) also emphasizes that incorporating the blended mixing length

(Equation 2.8) into the gradient-based similarity framework theoretically extends its

validity to any stably-stratified fluid.

For the cases presented, we also quantify ranges of uncertainties in Ri and turbu-

lence estimations by calculating these parameters from each individual profile within

the 1-h period. By overlaying these ranges with the estimates based on the mean pro-

files, we demonstrate how natural flow variability captured by a single vertical profile

can occasionally result in non-physical ranges of turbulence estimates. To validate the

in situ CopterSonde observations and resulting turbulence estimates, we also present

comparisons of profiles from the mast, lidar, and sodar where appropriate. Note that we

do not validate the vertical velocity standard deviation against the lidar due to high

uncertainties related to observations based on a four-beam velocity azimuth display

scanning technique and to the spatial averaging over varying measurement volumes

with scanning altitude (Mann et al., 2010; Sathe et al., 2011; Sathe and Mann, 2013;

Sathe et al., 2015). We instead present a comparison to the vertically oriented sodar

based on time-domain averaging the 3 s noise-filtered w observations at each altitude.

Although these resulting estimates of σw may be biased due to spectral losses, they

49



are more reliable than those from the lidar and provide one of our only CopterSonde

validations above 10 m.

2.5.2.1 Case 1: 16 February 2018, 2100–2200 UTC

On the night of 16 February 2018, the atmosphere exhibited a three-layer thermal strat-

ification within the lowest 300 m a.g.l. as observed by the CopterSonde (Figure 2.6a).

A cloud layer around 400 m a.g.l. (more than 100 m above the maximum CopterSonde

flight altitude) and continuous snow counteracted the surface-based longwave radiative

cooling, resulting in a shallow neutrally stratified layer up to about 20 m a.g.l. The

second layer (≈ 20−100 m a.g.l.) contained a ≈ 4 K temperature increase centered on

an LLJ with a core velocity of 6 m s−1 at 70 m a.g.l. (Figure 2.6b). Above 300 m a.g.l.,

layer three appeared to be decoupled from the surface, as both temperature and wind

speed decreased with height. In general, there is strong agreement between the Copter-

Sonde, mast, and lidar observations of temperature, wind speed, and wind direction

at all heights in both magnitude and profile shape. Moreover, both the mean profiles

and ranges encountered in the 1-h timeframe also agree markedly well.

The CopterSonde-estimated Ri was O(10−1) near the surface and generally in-

creased with height throughout layers 1 and 2 as thermal stratification became in-

creasingly dominant with height until a local maxima in Ri around 70–90 m a.g.l. at

and directly above the LLJ core (Figure 2.6c). In the topmost layer, Ri occasionally

became > 1 as wind shear became small compared to the modest lapse rates. The

presence of clouds and precipitation is also noted by the variability in individual Ri

profiles, which span a decade or two at each altitude. Except for a few outlier points

above 150 m a.g.l., the range from individual Ri profiles encompasses the mean Ri pro-

file, which implies that the mean SBL flow is better represented by the time-averaged
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Figure 2.6: Composite profiles of (a) temperature (solid) and potential temperature
(dashed), (b) wind speed, (c) gradient Richardson number in logarithmic coordinates,
and (d) wind direction from 16 February 2018 between 21–22 UTC. For (a) and (b),
the black solid lines represent the mean CopterSonde values at each height, and the
grey shading in (a) and (b) envelopes the maximum and minimum values. The same
convention is used for data from the GFI2 mast (blue lines) and the lidar (magenta
lines). In (c), the black Xs denote Ri calculated using only the mean values of potential
temperature and wind speed, with indigo shading denoting εRi, the range of Ri as
determined by the individual profiles. For clarity, only the mean wind directions are
shown in (d).
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Figure 2.7: Profile time series of attenuated backscatter, observed by the sodar for the
period 2100–2200 UTC on 16 February 2018.
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Figure 2.8: Vertical profiles of (a) kinematic momentum flux, (b) kinematic heat flux,
(c) vertical velocity standard deviation σw, and (d) potential temperature standard
deviation σθ calculated using the gradient-based similarity functions based on Copter-
Sonde data (black Xs), and the range of observations from the GFI2 mast (blue lines
and shading) and the sodar [magenta line and shading in (c)]. As in Figure 2.6c, the
indigo shading in each represents the range of turbulence estimates ε when calculated
from the individual profiles.

CopterSonde profiles. Also of note, most levels of the profile exhibited wind directions

between 150–300◦ as specified for the eddy-covariance analysis in the previous section

(Figure 2.6d), which ensures a high degree of horizontal homogeneity in the flow across

sea ice.

The sodar echogram of this 1-h period (Figure 2.7) indicates a strong signal in a

surface-bound layer, descending from about 70 m a.g.l. to 40 m a.g.l. over this time

frame. Apart from this, the echogram does not reveal any other significant temporal

changes (non-stationarities). Hence, the mean SBL height based on the sodar observa-

tions is estimated to 55 m, whereas the temperature, wind speed, and direction profiles

indicate a slightly deeper SBL extending to an altitude of about 75 m. The first major

peak in the Ri profile is detected at 125 m a.g.l., although there is also a minor peak

indicating stronger stability at 85 m a.g.l. Note that it is not uncommon that different

methods for estimating the SBL height are subject to discrepancies. One important

aspect here is also the differences in temporal sampling and averaging, i.e., ensemble
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averages of few quasi-instantaneous UAS observations and time averages of continuous

sodar measurements.

By leveraging the empirical dimensionless similarity functions (Equation 2.11) in

combination with the in situ CopterSonde observed gradient-based scales, the estimated

turbulence profiles display several encouraging patterns (Figure 2.8). The lowest levels

of CopterSonde-estimated momentum and heat fluxes (Figure 2.8a and b, respectively)

match well with the GFI2 observations of the same parameters, both in magnitudes

and profile shapes. The momentum (heat) flux generally increases (decreases) until

reaching a maximum (minimum) around 40 m a.g.l., which aligns with the bases of

the elevated temperature inversion and LLJ (Figure 2.6a and b, respectively). Between

45–55 m a.g.l., there is a peak in both momentum and heat flux, possibly corresponding

to the elevated inversion interacting with turbulence in the neutral layer below. Aside

from additional peaks at the core of the LLJ around 75 m a.g.l. and at the top of the

elevated inversion around 100 m a.g.l., both momentum and heat flux is estimated to

be near zero throughout the remainder of the profile.

Vertical velocity standard deviations σw display a similar qualitative structure (Fig-

ure 2.8c) as the momentum flux profile, with a maximum around 75 m a.g.l. and

additional peaks around 50 and 100 m a.g.l. The magnitudes of the estimated σw

values also agrees within an order of magnitude with the sodar-observed values below

100 m a.g.l. Although the CopterSonde σw estimates above 100 m a.g.l. are near-zero,

the uncertainties from individual profiles are within the observed sodar ranges.

Potential temperature standard deviation σθ also demonstrates a similar pattern

(Figure 2.8d), with near-surface values of σθ close to zero (as would be expected in neu-

tral stratification), giving way to a broad peak of 0.2 K centered between 30–70 m a.g.l.

This peak may be associated with the temporally evolving temperature inversion in

this layer acting as a source for potential temperature variance (e.g., Wyngaard and
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Coté, 1971). This pattern of σθ, along with the other turbulent parameters, outlines

the importance of vertical wind shear associated with the LLJ in mixing the SBL,

especially when located within the lowest 100 m a.g.l. and in the presence of strong

temperature gradients.

2.5.2.2 Case 2: 18 February 2018, 1700–1800 UTC

Between 1700 and 1800 UTC on the evening of 18 February 2018, the CopterSonde

observed a persistent considerable temperature inversion atop a surface-based weakly

stable layer (Figure 2.9a), with a lapse rate of 21 K km−1 between 5 m and 85 m. In

the 85–100 m layer, the average lapse rate increased to 147 K km−1. Between 100 and

200 m, the atmosphere was nearly isothermal, and temperature decreased gradually

above 200 m with an approximately dry adiabatic lapse rate. The presence of low-level

clouds (around 300–400 m a.g.l.) during this period reduced the net radiation balance

close to zero (not shown), thereby limiting the surface longwave cooling and resulting

in a relatively weak surface-based inversion.

The wind speed profile (Figure 2.9b) increased from below 0.5 m s−1 near the surface

to about 5 m s−1 at 200 m as measured by both the CopterSonde and lidar with a

wide (±1 m s−1) variability between flights. This variability seems to be related to the

elevated oscillations in sodar backscatter signal between 50–150 m a.g.l. and a period

of 3–5 min (Figure 2.10; outlined below). While neither the CopterSonde or lidar

perform exceptionally well at detecting wind speed at such low ambient flow velocities

(for further discussion, see Bell et al., 2020), the general agreement between the two

systems is consistent below 200 m. Above 200 m, the CopterSonde detected decreasing

wind speeds with height, indicative of an LLJ core centered around 200 m, whereas

the lidar showed further increase in wind speed at 255 m. This may also be related to
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Figure 2.9: Same layout and conventions as Figure 2.6, but for 1700–1800 UTC on 18
February 2018.
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Figure 2.10: Profile time series of attenuated backscatter, observed by the sodar for
the period 1700–1800 UTC on 18 February 2018.
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Figure 2.11: Same layout and conventions as Figure 2.8, but for 1700–1800 UTC on
18 February 2018.

only one CopterSonde flight reaching above 250 m a.g.l., as well as the elevated wave

activity influencing the quasi-instantaneous lidar sample thereby creating an artificial

LLJ signal.

Near-surface wind directions (Figure 2.9d) are subject to uncertainty both from the

CopterSonde and GFI2 observations due to the low wind speeds, with a majority of

samples indicating a south-easterly direction. Above 50 m, both the CopterSonde and

lidar agreed that winds were primarily north-easterly. Although this direction implies

an offshore flow, the forest and vegetation near the coast of the island were confined

to below 50 m. This offshore flow likely also contributed to the weak inversion in the

surface-based layer by advecting relatively warm air above the sea ice only an hour

after local sunset.

The resulting average Ri profile during this time frame (Figure 2.9c) identifies a

very stable (0.12 < Ri < 0.7) regime throughout the lowest 300 m of the atmosphere.

Maxima of Ri > 5 are estimated to be centered around 60, 105, and 140 m, mostly

coinciding with inflection points in the CopterSonde wind speed profiles.
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The structure of the SBL during this 1-h period, as seen from the sodar echogram

(Figure 2.10), appears more complex than during the previous case. A strong backscat-

ter signal is detected in a layer below 50 m a.g.l. with an estimated average height

of 35 m a.g.l. Above this layer we identify oscillating patterns between approximately

75 and 200 m a.g.l. with a period in the order of 2 min. This pattern is most likely

associated with internal gravity waves ducted by the elevated inversion centered at

100 m a.g.l. The source of these waves is difficult to determine, but is possibly related

to flow across the approximately 40 km diameter island of Hailuoto upstream of the

observational site. For most of the time this layer appears to be clearly detached from

the surface-based turbulent layer below. Based on this interpretation of two separate

layers, we estimate the SBL height from the sodar to be 35 m. The vertical profiles

of temperature, wind speed and direction suggest an SBL height of 80 m, which is in

particular based on the wind direction profile, whereas considering the lowest peak in

the Ri profile as the SBL height results in 60 m a.g.l.

As expected for considerable dynamic stability, CopterSonde momentum and heat

flux estimates below 50 m a.g.l. are close to zero, which are in strong agreement with

the GFI2 obervations (Figure 2.11a and b). Estimated fluxes imply enhanced vertical

mixing around 70 m a.g.l., likely associated with a slight decrease in mean wind speed

with height in the 60–70 m a.g.l. layer. Otherwise, turbulent fluxes were largely

suppressed below 200 m a.g.l., possibly an artifact of temporally averaging profiles

through mesoscale wave activity. Above 200 m a.g.l., the turbulence estimates are an

order of magnitude larger, with considerably more scatter, and without validation it is

not known whether these values are physical considering they are above the internal

gravity wave signal.
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Throughout the lowest 200 m a.g.l., σw was relatively small (< 0.2 m s−1) but

displayed several peaks coinciding with the momentum and heat flux profiles (Fig-

ure 2.11c). Only these peaks compare well in order of magnitude to the sodar ob-

servations, although the uncertainty bounds from individual profiles compare more

closely. Also of note when comparing with the sodar is that the 10 m a.g.l. σw obser-

vations from the sodar are more than double that from the top GFI2 eddy-covariance

level. Because of the non-stationarity of this case, it is plausible that the individual

CopterSonde profiles may more realistically represent the SBL dynamics. There is also

considerable variability in the σw estimates above 200 m a.g.l., likely due to the same

reasons as described for the fluxes.

The σθ profile (Figure 2.11d) exhibits similar characteristics as the σw one, i.e.,

weak values of σθ (< 0.1 K) throughout the lowest 200 m a.g.l. with peaks located at

inflection points of the temperature and wind speed profiles. Above 200 m a.g.l., there

is also enhanced scatter in σθ, but rarely exceeding 0.1 K.

Although the meteorological set-up for this case was not necessarily horizontally

homogeneous and statistically stationarity as required by the gradient-based scaling

framework, the resulting turbulence estimates agreed reasonably well with observations

being within 1–2 orders of magnitude.

2.5.2.3 Case 3: 18 February 2018, 2100–2200 UTC

This case took place 3 h after case 2 during the same IOP. The dissolution of low clouds

around between these two cases (around 1900 UTC) enabled continuous longwave

cooling, thereby strengthening the low-level stability. The near-surface temperature

had cooled to about 254.5 K and increased to about 260.5 K at 50 m resulting in a

mean lapse rate of 120 K km−1 in this layer (Figure 2.12a). This increased stability

acted to suppress the wind speed within the SBL, resulting in weak (≈ 1 m s−1) values
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throughout the lowest 50 m a.g.l. (Figure 2.12b). There was considerable wind veer

with height exceeding 180◦ in this layer (Figure 2.12d). Analysis of raw lidar data and

individual CopterSonde profiles (not shown) indicates that the relative disagreement

between instruments within this shear layer is likely related to temporal variability

within the averaging period. This combination of strong lapse rates and constant wind

speed with height yielded very stable to extremely stable conditions, as evidenced by

Ri > 0.7 in the lowest 50 m (Figure 2.12c; Sorbjan and Grachev, 2010).

In the 50–100 m layer, the temperature increased by another 2.5 K on average

whereas the wind speed increased by 3 m s−1 and the wind direction continued to veer

(according to the CopterSonde) until reaching 60◦, leading to a nearly constantRi ≈ 0.5

in this layer (Figure 2.12c). Above 100 m, the atmosphere was quasi-neutral with only

a weak increase in potential temperature up to the top of the CopterSonde profile at

270 m. There was a maximum in wind speed between 120–160 m a.g.l., above which the

wind speed decreased slowly with height, whereas the wind direction remained nearly

constant around 60◦. The Ri profile above 100 m a.g.l. also fluctuates between strongly

stable and near-neutral, as both wind shear and lapse rates are relatively small.

The sodar echogram (Figure 2.13) for case 3 indicates a very shallow surface-based

turbulent layer of roughly 20 m a.g.l. almost for the entire period. Only between 2145

and 2150 UTC is there some sign for turbulence in a slightly deeper layer. Clearly sepa-

rated from this is an elevated layer with strong scattering properties, below 120 m a.g.l.

with its lower limit decreasing from 80 m a.g.l. to 40 m a.g.l. This layer coincides with

an elevated inversion and a strong wind speed gradient as seen from the CopterSonde

profiles (Figure 2.12a and b). The signal is therefore likely to result from shear driven

turbulence in a layer with relatively strong density gradients. The observed wind veer

below 80 m a.g.l. (Figure 2.12d) suggests an SBL height in the range of 80 m a.g.l.,
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which is also consistent with the vertical gradients of temperature and wind speed (Fig-

ure 2.12a and b). The Ri profile suggests an SBL height similar to the sodar estimate,

with a first major peak at about 20 m a.g.l.

As with the case earlier on the night of 18 February 2018, exceptional near-surface

stability suppressed most turbulent motions below 50 m a.g.l., as indicated by the

GFI2 observations and CopterSonde estimates (Figure 2.14a and b). Coinciding with

the relatively strong wind shear in the 50–100 m a.g.l. layer, the CopterSonde estimates

of momentum and heat flux denoted peaks around 70 m related to the local minimum

in Ri. Between 100–150 m a.g.l., there were also peaks in turbulence centered on the

local maximum in wind speed.

The profiles of σw and σθ (Figure 2.14c and d, respectively) exhibit similar behaviors

as the turbulent fluxes in the lowest 100 m a.g.l.. Of note, the near-surface standard

deviation of vertical velocity, σw, is minimal, with reasonable agreement between the

CopterSonde estimates and GFI2 observations in both magnitude and profile shape.

The near-surface peaks in σθ observed by the GFI2 mast are likely related to mesoscale

motions (see Figure 7a in Kral et al., 2021), however the CopterSonde estimates are

still within an order of magnitude. Peaks in σw and σθ values were observed around
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70 m a.g.l., around the base of the increase of wind speed with height but roughly

20 m higher than the peak in σw observed by the sodar. Above 100 m a.g.l., the

σw and σθ profiles generally displayed more spread than the flux profiles, with fewer

distinguishable patterns related to the potential temperature and wind speed profiles.

The magnitudes of σw and σθ were, however, still in a physically reasonable range.

2.6 Discussion

In Section 2.4, we evaluated the empirical Businger–Dyer MOST formulations with

eddy-covariance data during SBL flow across sea ice as a baseline to contextualize the

performance of gradient-based SBL scales. Results from the application of MOST in

Section 2.4.2.1 maintain the notion that self-correlation and poorly defined flux-based

scales in strong stability limit the applicability of MOST. Moreover, considerable spread

in the dimensionless sensible heat flux ϕh as a function of stability parameter ζ = z/Λ

(Figure 2.3) highlights the overall inability of MOST to effectively portray the nature

of weak and intermittent turbulence, thereby making the generalization of the MOST

functions to other vertical profile data dubious.

The application of gradient-based scaling to the micro-meteorological mast data

(Section 2.4.2.2, Figure 2.5) reveals several intricacies relating to the computation of

vertical gradients. Scaled eddy-covariance observations from the middle level (5 m) gen-

erally performed better than from the top (10 m) and bottom (2 m) eddy-covariance

levels. This is most likely a boundary condition problem: the 5-m eddy-covariance

polynomial fit can be constrained by the 2-m and 10-m observations, with no need for

extrapolation. Although we imposed a surface boundary condition of U(z = z0) = 0

to better constrain the velocity profile at 2 m, the exact value of z0 is not known and

had to be estimated. The uncertainty in this estimate, however, can be assumed to be
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insignificant compared to uncertainties in the other observation heights. Additionally,

we do not make use of a corresponding surface skin temperature to constrain the near-

surface temperature profile, since the determination of its value from, e.g., longwave

radiation or ground heat flux data, has a high uncertainty (e.g., Simó et al., 2019). As

for the 10-m level, there is no upper constraint for temperature or wind speed; more-

over, the highest temperature observational level from the more precise thermocouples

is located at 6.8 m (Table 2.1), meaning this temperature profile is extrapolated by

more than 3 m to the 10-m eddy-covariance level. With these caveats in mind, all three

eddy-covariance levels of scaled observations collapse to their expected empirical func-

tions within an acceptable degree. We therefore consider this experiment a successful

demonstration of the gradient-based similarity framework.

After demonstrating the efficacy of the gradient-based scaling framework outlined

by Sorbjan (2010, 2017) with ISOBAR18 eddy-covariance data, we proceeded to ex-

amine their utility throughout the SBL. On the surface, it may appear that limiting

rotary-wing UAS observations to mean thermodynamic and kinematic quantities may

not be a viable way to directly study SBL turbulence. On the contrary, we show that

accurate observations of potential temperature and wind speed by the UAS are enough

to determine the gradient-based similarity scales. Therefore, it is possible to estimate

vertical profiles of turbulent parameters without needing to collect high-frequency ob-

servations for long (> 10 min) time periods at each level. In Section 2.5, three case

studies highlighted the viability of this method in examining the complex structure

of the Arctic SBL. The interpretation of the UAS profiles of mean, stability, and tur-

bulence statistics is aided by making use of high-resolution eddy-covariance, Doppler

lidar, and sodar backscatter data, which provide detailed additional information on

the vertical structure of the lower atmosphere and the nature of relevant layers. Solid

estimates of the SBL height are essential to set an upper limit for the applicability of
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the gradient-based similarity approach, as it relies on the height above the surface, z,

as a scaling parameter. The SBL length scale ` as defined in Equation 2.8 attempts to

blend both the neutral limit with the z-less scaling regime via an inverse sum such that

1/` = 1/κz+ 1/λ0 +Ri3/2/c. The validity of this approach has been the subject of nu-

merous investigations (e.g., van de Wiel et al., 2008; Huang et al., 2013; Sorbjan, 2017,

and references therein), although it remains unclear how the present definition may

impact the estimated turbulent moments near the top of the SBL far away from the

surface or under strong stratification. In this chapter, we estimated SBL height from

a combination of sodar echograms, the UAS mean temperature and wind profiles, and

the derived UAS Ri profiles. Sorbjan (2017) argues that this definition of ` is valid for

any stably-stratified flow, so an SBL depth based on the potential temperature lapse

rate may suffice for these purposes. In the presence of an LLJ or internal gravity waves

that locally produce turbulence regardless of height above the surface, the use of z

as a scaling parameter deserves further investigation to improve the generality of this

similarity framework.

One disadvantage of this gradient-based scaling framework is the inability to extract

information on the sign of momentum fluxes, especially in the presence of decreasing

wind speed with height above a LLJ core. The way we calculate vertical wind shear

in Equation 2.9 results in positive-definite values, and the master scaling functions

are only valid for Ri > 0 to produce positive values of u2
∗. This is an important

consideration for the application of this flux estimation method, and further efforts to

objectively recover the signs of, e.g., the fluxes u′w′, v′w′ should be pursued.

While this gradient-based similarity approach also depends on the assumption of

horizontal homogeneity, results from these case studies indicate reasonable validity of

the turbulence profiles when compared to the tower and lidar observations regardless

of ambient flow direction. Although the ISOBAR18 campaign took place over sea ice,
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the surface snow cover and ice conditions, along with variable amounts of cloud cover

and precipitation throughout the campaign, undoubtedly impacted these results. Flow

heterogeneity manifested in the GFI2 eddy-covariance scaling as scatter in the nondi-

mensional turbulent moments even after accounting for flow direction but ultimately

these results were in good agreement with the empirical predictions. This is encour-

aging especially given that 1) to perfectly control for homogeneity would require a

multi-year long campaign and 2) these conditions more closely match other real-world

applications in typical SBL flows. The sodar echogram from the UAS case 2 indi-

cated modulation of the atmosphere by an internal gravity wave, the fine-scale details

of which were likely lost through temporal averaging of the CopterSonde profiles. In

this particular case, the individual profiles may potentially be more representative of

the turbulent structure of the atmosphere, although without proper validation this is

difficult to determine. Further studies with additional profiles for a given time period

and eddy-covariance systems mounted higher than in the ISOBAR18 campaign (e.g.,

> 50 m a.g.l.) will be necessary to determine a framework for appropriate averaging

to converge on physically representative statistics. Coupling observations with high-

resolution simulations could additionally be used to examine the impact of internal

gravity waves, heterogeneous surface covers, and canopy characteristics on modifying

the turbulent structure of the SBL.
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Chapter 3

Random Errors in the Stable Boundary Layer:

Implications for Modern Observational Techniques

3.1 Research Objectives

In this chapter, we leverage a suite of large eddy simulations to estimate the random

errors for various first- and second-order turbulence moments at typical averaging pe-

riods along with emulated observations by UAS and eddy-covariance systems within

the SBL to answer the following key questions:

3. How do random errors depend on atmospheric stability and measurement height

for various first- and second-order turbulence moments?

4. How well do emulated UAS and eddy-covariance measurements represent the

ensemble mean?

5. What considerations are necessary to mitigate random errors for observations in

the SBL?

This chapter is organized as follows: we provide the background theory for and

methods to estimate random errors in stochastic signals in Section 3.2. In Section 3.3

we describe our LES code as well as the parameter space of simulations conducted.

We then provide an overview for how we adapted existing methods for random error

estimation for use with volumetric LES output in Section 3.4 and present results in
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Section 3.5. A discussion on the significance of these results is presented in Section 3.6

before a summary and concluding remarks in Section 5.1.2.

3.2 Estimating Random Errors with the Relaxed

Filtering Method

As discussed previously, random errors emerge when a timeseries is not averaged long

enough for the time mean to converge sufficiently to the true ensemble mean via the

ergodic hypothesis (Lumley and Panofsky, 1964; Sreenivasan et al., 1978; Mann and

Lenschow, 1994; Lenschow et al., 1994). For a given random variable f , we are therefore

interested in the ability of its temporal mean f to approximate the ensemble mean 〈f〉.

Herein we define temporal averaging with an overbar (·) and ensemble averaging with

brackets 〈·〉. Lumley and Panofsky (1964) describe the random error of f in terms of

its error variance σ2
f

over an averaging period T

σ2
f
(T ) =

〈[
1

T

∫ t0+T/2

t0−T/2
f(t)dt− 〈f〉

]2〉
=
〈[
f − 〈f〉

]2〉
. (3.1)

They further show that by assuming statistical stationarity, the error variance of f can

be related to its integral time scale Tf as

σ2
f
(T ) =

〈f ′2〉
N

=
2Tf〈f ′2〉

T
, (3.2)

where 〈f ′2〉 =
〈
[f−〈f〉]2

〉
is the ensemble variance of f and N = T/(2Tf ) is the number

of independent samples. It is then possible to define a relative error by normalizing

the error standard deviation by the ensemble mean, εf = σf/ |〈f〉|, which yields

εf =

[
2Tf〈f ′2〉
〈f〉2T

]1/2

. (3.3)
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A major drawback of using Equation 3.3 to calculate relative random errors stems

from the difficulty in computing the integral timescale Tf (if it exists at all; see dis-

cussion in Dias et al., 2004). In general, the integral timescale of f can be defined

as

Tf =

∫ ∞

0

ρ(τ)dτ, (3.4)

where ρ(τ) is the autocorrelation function of f as a function of lag τ , which is defined

as

ρ(τ) =
〈[f(t)− 〈f〉][f(t+ τ)− 〈f〉]〉

〈f ′2〉 . (3.5)

To use Equation 3.4 for computing the integral timescale for any real signal, one must

impose an upper bound of integration. This upper bound may be arbitrarily large, but

common choices include the first zero crossing of ρ(τ) (e.g., Sreenivasan et al., 1978;

Lenschow et al., 1994; Salesky et al., 2012), when ρ(τ) = e−1, or at the minimum point

of the autocorrelation (Tritton, 1988; Theunissen et al., 2008). Moreover, it is possible

to assume an exponential form of the autocorrelation function (Lenschow et al., 1994;

Kaimal and Finnigan, 1994; Sullivan et al., 2003) or fit a lag-window function (Dias

et al., 2004) in order to compute the integral. Ultimately, the computed value of Tf is

highly sensitive to the choice of integration method, which may not necessarily converge

implying the nonexistence of the integral timescale. In addition to these computational

difficulties, a physical constraint on accurately calculating an integral timescale depends

heavily on the assumption of stationarity in the timeseries itself. A nonstationary

process may possess an autocorrelation function that does not converge towards zero,

which would result in an unbounded integral scale. Statistical preprocessing techniques
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such as linear detrending may mitigate the effects of nonstationarity in windows of

≈ 1 hr, but is not always guaranteed.

It is therefore apparent that one’s ability to determine relative random errors is

impeded by the difficulty in accurately calculating integral time- and lengthscales.

To circumvent these difficulties, Finkelstein and Sims (2001) introduced a statistical

method for calculating the variance of a covariance that is based on a sample’s auto

and cross covariance functions. While shown to be effective for observational timeseries

data across a wide range of environments, this method is only suited for estimating

the relative random errors in second-order turbulence moments. Additionally, Salesky

et al. (2012) proposed the so-called filtering method, which uses a spatially-local flux

decomposition to recover a power-law fit for the error variance of any parameter as

a function of averaging time (or averaging length in the case of spatial filters). The

premise is based on the commutative nature of linear filters, which requires that the

vertical flux w′c′ of some quantity c averaged over length L is equivalent to an average

of separately filtered fluxes w̃′c′ (Sagaut, 2006; Salesky et al., 2012). Using this com-

mutative property, the standard deviation of the local flux w̃′c′, σ
w̃′c′ , can be related

to the filter width ∆ via a power law of the form

σ
w̃′c′(∆) = Cwc∆

−1/2, (3.6)

where the coefficient Cwc is determined via least-squares. The relative random error

of the flux for any given averaging length L can therefore be determined without a

priori knowledge of the integral lengthscale by evaluating Equation 3.6 at ∆ = L and

normalizing by the mean flux as

εwc =
σ
w̃′c′(L)

〈w′c′〉 . (3.7)
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If desired, it is then possible to recover the integral scale a posteriori through a com-

bination of Eqs. 3.6 and 3.2.

Dias et al. (2018) later expanded upon the work by Salesky et al. (2012) by acknowl-

edging that fixing the −1/2 exponent in Equation 3.6 still implies the existence of an

integral lengthscale. They argued that for a wide variety of real-world applications,

Hurst’s phenomenon of long-term persistence (Hurst, 1951; O’Connell et al., 2016) will

cause this exponent to deviate from −1/2 and that a more general approach may be

more appropriate. By letting this exponent vary freely, Dias et al. (2018) proposed

a relaxed filtering method (RFM) that is capable of determining error statistics even

when an integral scale does not exist. The RFM thus relies on a generalized form of

Equation 3.6, which takes the form

σ
w̃′c′(∆) = Cwc∆

−p/2, (3.8)

where the exponent p is allowed to vary freely and can be determined through least-

squares regression. In this framework, Dias et al. (2018) showed analytically that

0 < p < 1 are evidence for Hurst’s phenomenon in a stochastic process. Dias et al.

(2018) also noted that the errors estimated by the RFM generally are higher than those

from the method of Lumley and Panofsky (1964) in Equation 3.3 due to accounting

for the presence of Hurst’s phenomenon. Moreover, as Equation 3.3 directly requires

that the exponent p = 1 in Equation 3.8, error estimates from the RFM may not

necessarily enable one to calculate an integral lengthscale a posteriori as in Salesky

et al. (2012). Readers are directed to the works of Salesky et al. (2012) and Dias et al.

(2018) for the mathematical justification for this technique. Although we present the

general premise for the RFM in terms of second-order turbulent moments in Eqs. 3.6–

3.8, this technique is valid in estimating relative random errors in turbulence moments
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of any order including, for example, the mean velocity or potential temperature. We

further expand upon the implementation of the RFM using LES volumetric output in

Section 3.4.

3.3 Large-Eddy Simulations

3.3.1 Code Description

We utilize LES code based on Albertson and Parlange (1999) and Kumar et al. (2006),

which solves the filtered rotational form of the incompressible Navier-Stokes equations

for momentum and potential temperature, respectively:

∂ũi
∂t

+ ũj

(
∂ũi
∂xj
− ∂ũj
∂xi

)
= −1

ρ

∂p̃∗

∂xi
+ g

(
θ̃ − 〈θ̃〉xy
〈θ̃〉xy

)
δi3 −

∂τij
∂xj

+f(ũ2 − Vg)δi1 − f(ũ1 − Ug)δi2,
(3.9)

∂θ̃

∂t
+ ũj

∂θ̃

∂xj
= −∂π

θ
j

∂xj
. (3.10)

In this context, the tilde denotes a filtered quantity, ũi denotes the filtered velocity

vector with i = 1, 2, 3 representing streamwise, spanwise, and wall-normal components

(respectively), p̃∗ = p̃ + 1
2
ρũ2

i is the modified pressure, θ is potential temperature, δij

is the Kronecker delta, τij = ũiuj − ũiũj is the SGS stress tensor, πθj = θ̃uj − θ̃ũj

is the SGS potential temperature flux, (Ug, Vg) are the geostrophic wind components,

and g = 9.81 m s−1 is the acceleration due to gravity. Brackets with the subscript xy

denote horizontal planar averaging. Spatial derivatives are calculated pseudospectrally

in the horizontal plane and via second-order centered finite differencing in the vertical,

and the second-order Adams-Bashforth method is utilized for time integration. The

subgrid-scale (SGS) model is based on the Lagrangian-averaged scale dependent model
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described by Bou-Zeid et al. (2005), and the wall model is based on Monin-Obukhov

similarity theory (MOST; Monin and Obukhov, 1954) applied locally with test filtering

at a scale twice the grid spacing to improve average stress profiles (Bou-Zeid et al.,

2005). For simulating the SBL, we prescribe a surface temperature with a constant

cooling rate as the lower boundary condition. The upper boundary condition is stress-

free and impenetrable, and a sponge layer is applied in the upper 25% of the domain

after Nieuwstadt et al. (1993). The LES code is parallelized in horizontal (xy) slabs

using message passing interface (MPI; Aoyama and Nakano, 1999).

3.3.2 Cases

To simulate the SBL with LES, we impose a lower boundary condition as a prescribed

constant cooling rate Cr = −∂〈θ0〉/∂t at the surface coupled with a wall model to

determine surface heat fluxes (e.g., Basu et al., 2008; Gibbs et al., 2015). Here we

simulate a series of six idealized SBL cases A–F after those by Huang and Bou-Zeid

(2013), which were in turn based on those by Kosović and Curry (2000) (Table 3.1).

Kosović and Curry (2000) originally utilized constant surface cooling rates based on

observations from the Beaufort Sea Arctic Stratus Experiment and has been the in-

spiration for numerous other SBL studies using LES (e.g., Beare et al., 2006; Sullivan

et al., 2016; Maronga et al., 2020; Stoll et al., 2020, and references therein). The six

cases presented by Huang and Bou-Zeid (2013) vary only in their prescribed values of

Cr, and as such were easily adapted for our purposes.

Our simulated domain was fixed at (Lx, Ly, Lz) = (800, 800, 400) m with a hori-

zontally homogeneous land surface of aerodynamic roughness length z0 = 0.1 m. The

domain size is sufficiently large relative to the integral lengthscales (Lx ≈ 10L) so that

our results are not expected to be influenced significantly by the periodic boundary
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conditions employed in the horizontal directions. In our code, the roughness lengths

for momentum and heat, z0m and z0h, are chosen to be equal for consistency with pre-

vious studies. We imposed a constant geostrophic wind of Ug = 8 m s−1 along with a

Coriolis parameter of f = 1.318 × 10−4 s−1 corresponding to a latitude of 65◦N. The

initial temperature profile (including the surface) was set to a constant 265 K up to a

height of z = 100 m, above which the temperature increased with a constant inversion

strength ∂θ/∂z = 0.01 K m−1.

Due to computational expense, we initialize and run each simulated case on a

domain with n = nx × ny × nz = 963 total grid points for six hours of physical time

before interpolating to a grid with n = 1923 grid points and simulating for four more

hours. At the higher resolution, this equates to a grid spacing of ∆f = (∆x∆y∆z)
1/3 =

3.31 m. This resolution was selected after performing grid convergence tests with

n ∈ {963, 1283, 1603, 1923} (see Appendix 1). Our timestep ∆t was set to a constant

0.04 s during the spinup simulations, which was then decreased to a value of 0.02 s in

each of the interpolated cases for numerical stability. Ensemble means are calculated

by averaging in horizontal planes and in time over the last hour of simulation (i.e.,

〈〉 = 〈〉xyt), which corresponds to 5.4–7.7 large-eddy turnover times (TL = h/u∗0,

Table 3.1) and is consistent with other idealized investigations of the SBL (e.g., Huang

and Bou-Zeid, 2013; Sullivan et al., 2016; van der Linden et al., 2019; Maronga and

Li, 2021). Additional analysis of timeseries output of numerous simulated parameters

as well as SBL depth and Obukhov length indicate this final hour is quasi-stationary

(not shown). To further improve statistical convergence when calculating second-order

turbulent parameters, all first-order fields are linearly detrended in time.

Bulk properties from the six simulations are summarized in Table 3.1. We determine

the SBL height h after the mean stress profile technique by Beare et al. (2006): h is

the height where the mean stress u2
∗ first falls to less than 5% of its surface value of u2

∗0
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and divided by 0.95. With this definition we ensure the majority of turbulent motions

are contained within the SBL. In this framework,

u2
∗ =

(
〈u′w′〉2 + 〈v′w′〉2

)1/2
(3.11)

represents the magnitude of the vertical kinematic momentum flux, and the subscript

0 denotes the value of a quantity at the lowest grid level. The Obukhov length

L = u2
∗0〈θ0〉/κgθ∗0 depends on the von Kármán constant κ = 0.4, and the potential

temperature scale θ∗ = −〈θ′w′〉/u∗. The height of the low-level jet (LLJ) is denoted

as zj, and we estimate a bulk SBL inversion strength using the top and bottom grid

points within the SBL: ∆〈θ〉/∆z = (〈θ(z = h)〉 − 〈θ(z = ∆z/2)〉) /(h−∆z/2).

For each of these cases, we consider both mean profiles as well as emulated ob-

servations from UAS and eddy-covariance vertical profiles. The emulated UAS and

eddy-covariance profiles are derived from a virtual tower similar to that described by

Salesky and Anderson (2018): it is located at (x, y) = (Lx/2, Ly/2) and outputs a

timeseries of each of the simulated parameters at every gridpoint in the vertical and

at every simulated timestep (recall that ∆t = 0.02 s), yielding data with dimensions

of height and time (Figure 3.1a). By assuming a constant UAS ascent rate, we can

determine a timeseries of its corresponding vertical coordinates, which we then match

and subsample from interpolated virtual tower data (Figure 3.1b). We then average

the resulting one-dimensional timeseries in the same way as is customary for true UAS

data (e.g., Pillar-Little et al., 2021; Greene et al., 2022) to obtain an emulated UAS

profile with a constant vertical resolution (Figure 3.1c).

In this analysis we utilize averaging times of 3 s and 30 min for first- and second-

order moments, respectively. These times were chosen with regard to typical averaging

timescales when operating a UAS (3 s) or eddy-covariance system (30 min). Within
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Figure 3.1: (a) Emulated trajectory of a rotary-wing UAS ascending at a constant rate
of 1 m s−1 (solid line) and an instantaneous trajectory (dashed line) overlaid upon a
time-height cross-section of u from a virtual tower in the center of the LES domain
(b) timeseries of u velocity sampled by the virtual UAS (c) resulting vertical profile of
wind speed in its raw state (black) and averaged into 3 m vertical bins (red).

the SBL it is common for a rotary-wing UAS to ascend at approximately 1 m s−1 and

to post-process the data into altitude bins 3 m high, which corresponds to an averaging

time of about 3 s (e.g., Greene et al., 2022). In general, UAS data is processed with

emphasis on the resulting vertical resolution instead of the averaging time for each

vertical bin. Vertical ascent rates from UAS are also typically chosen to optimize the

aircraft’s ability to reach a targeted maximum height with regards for sensor response

times. It is also common practice to average over blocks varying from 10–60 min when

calculating turbulence moments from mast-mounted eddy-covariance systems within

the SBL. Thus, we chose the 30-min averaging time as representative of a typical

application.
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(¢

)/
hu
02
i

¢
m

in

¢
m

a
x

LUAS
u (z) = hu(z)iTUAS

u

error estimate

(b)

RFM
Fit

Figure 3.2: Graphic demonstration of the relaxed filtering method applied to volumetric
LES data. (a) Raw u versus streamwise distance x from case A centered spanwise in
the domain and at a height of z/h = 0.14 (black) overlaid with iterations of the signal
filtered at varying scales ∆. (b) y- and time-averaged variances of u as a function of
filter scale ∆ (RFM, solid curve) to which Equation 3.8 is fit between ∆min and ∆max

(Fit, dashed line); adapted from Figure 2 in Salesky et al. (2012). An error estimate
for a UAS sampling timescale TUASu can then be extracted from the power law.
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3.4 Relaxed Filtering Method Applied to Large-

Eddy Simulation Output

In this section we describe how we adapted the relaxed filtering method algorithm

from timeseries output analyzed in Salesky et al. (2012) and Dias et al. (2018) for use

with volumetric data generated by LES. We implement the RFM for a given variable

f = f(x, y, z, t) by first calculating its error variance through the following steps:

1. Isolate a “pencil” slice of f along the streamwise (x) dimension at a constant

value of y, z, t (Figure 3.2a, black curve).

2. Apply an idealized tophat filter spatially with filter width ∆ (Figure 3.2a, colored

curves).

3. Calculate the variance of the filtered signal, σ2
f̃
.

4. Repeat steps 2 and 3 using 50 different filter widths spaced logarithmically such

that ∆ ∈ [∆x, Lx] to attain σ2
f̃
(∆).

5. Repeat steps 1–4 for all y, z, and t in the final physical hour of simulation.

6. Average the variances in y and t to finally obtain a two-dimensional error variance

that is a function of both filter width and height: σ2
f̃

= σ2
f̃
(∆, z).

An example of steps 1–6 is presented in Figure 3.2a for f = u, which includes the

resulting spatial distributions after 4 levels of filtering. Calculating error variance

along x followed by averaging in y and t method can be interpreted as averaging a row

of instrumented towers spanning the y-direction individually measuring the streamwise

flow. Variations on this technique (e.g., filtering in both x and y and averaging only

in t) are beyond the scope of this chapter, but the horizontal homogeneity of the

simulations would likely lead to similar conclusions as this chapter.
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After calculating the error variance for a given parameter, the remaining procedure

to estimate its corresponding relative random error for a desired sampling time closely

resembles that from Salesky et al. (2012):

7. For a given z, normalize the error variance by its corresponding ensemble variance

〈f ′2〉 (Figure 3.2b, solid curve).

8. Select a range of filter widths to isolate the normalized error variance (Figure 3.2b,

∆min and ∆max).

9. Fit a function of the form σ2
f̃
/〈f ′2〉 = Cf∆

−p (similar to Equation 3.8 except

utilizing the error variance instead of standard deviation) within the window

selected in step 8 (Figure 3.2b, dashed line).

10. Estimate the relative random error of f for a desired sampling time T by con-

verting to a length L through Taylor’s hypothesis and substituting into the em-

pirical power law for normalized error variance obtained in the previous step

(Figure 3.2b, black dot).

11. Repeat steps 7–10 for all heights to obtain σ2
f̃
(L, z)/〈f ′2(z)〉.

12. Finally, compute the relative random error εf (L, z) = σf̃ (L, z)/〈f(z)〉 using the

corresponding ensemble mean.

Note that in step 8 we choose the window of 300–700 m to fit the power law, which

corresponds closely to the O(10–100 s) denoted by Salesky et al. (2012) when invoking

Taylor’s hypothesis. This power law is theoretically valid for extrapolation to any scale

∆, as seen in Figure 3.2b for a UAS sampling scale LUASu that happens to be within

the range [∆x, Lx] where the error variance has also explicitly been calculated. In this

particular case, it is still advantageous in an applied sense to utilize the extrapolated
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power law over what would effectively be a lookup table with the understanding that

random error estimates by the RFM are larger than those by other direct methods

(Dias et al., 2018).

The decision to perform the RFM in spatial coordinates instead of in the time

dimension also warrants a brief discussion. With considerations for hard disk drive

storage space, it is not computationally feasible to save every single volumetric output

for the total of 1.26× 106 timesteps. At our prescribed output frequency, the resulting

temporal resolution would equate to an order of magnitude worse spatial resolution

when invoking Taylor’s hypothesis, so to retain as much information as possible we

iterate over individual streamwise segments as described previously. In the case that

we did perform the RFM in temporal coordinates, then step 10 would no longer be

necessary as one could simply input the desired sampling time directly into the derived

power law.

To determine errors in wind speed uh = (〈u〉2 + 〈v〉2)
1/2

, wind direction α =

arctan(〈u〉/〈v〉), and momentum flux u2
∗, we implement error propagation based on

these parameters’ functional dependence on the direct LES output of u, v, 〈u′w′〉, and

〈v′w′〉. In general, for a given variable c with functional dependence on the variables

a, b (i.e. c = f(a, b)), it is possible to relate all of their error variances based on a

Taylor expansion (e.g., Bevington and Robinson, 1969; Salesky and Chamecki, 2012)

as

σ2
c ≈ σ2

a

(
∂c

∂a

)2

+ σ2
b

(
∂c

∂b

)2

+ 2Cov(a, b)
∂c

∂a

∂c

∂b
, (3.12)

where Cov(a, b) is the covariance between the errors in a and b. In practice, this third

error covariance term on the right-hand side of Equation 3.12 is difficult to calculate

or interpret even with full volumetric output from LES. We assume that all errors
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are uncorrelated, thereby neglecting this term in further calculations. Applying Equa-

tion 3.12 to estimate relative random errors in uh, α, and u2
∗ gives us the following

expressions:

εuh =
σuh
|〈uh〉|

≈ 1

〈uh〉

(
σ2
u†〈u†〉2 + σ2

v†〈v†〉2
〈u†〉2 + 〈v†〉2

)1/2

, (3.13a)

εα =
σα
|〈α〉| ≈

1

〈α〉

(
σ2
u†〈v†〉2 + σ2

v†〈u†〉2
(〈u†〉2 + 〈v†〉2)2

)1/2

, (3.13b)

and

εu2∗ =
σu2∗
|u2
∗|
≈ 1

u2
∗

(
σ2
u′w′〈u′w′〉2 + σ2

v′w′〈v′w′〉2
u4
∗

)1/2

. (3.13c)

Note that when performing the error propagation calculations using Equation 3.13, we

use the unrotated forms of u and v, denoted u† and v†, along with their associated

errors from the RFM.

3.5 Results

In this section we provide a general overview with the simulated mean profiles for each

of cases A–F in Section 3.5.1, consider the stability- and height-dependence of random

errors in Section 3.5.3, and consider implications of random errors to observations

collected by UAS and eddy-covariance in Sections 3.5.4 and 3.5.5, respectively.
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Figure 3.3: Mean profiles of (a) wind speed, (b) wind direction, (c) potential tem-
perature, (d) total (resolved plus SGS) momentum flux, (e) total heat flux, (f) bulk
Richardson number (solid) and flux Richardson number (dashed), (g) streamwise ve-
locity variance, (h) vertical velocity variance, and (i) potential temperature variance
for all cases A–F as a function of z/h. For (d)–(i), quantities are scaled by surface
values of u∗ and θ∗ where appropriate.
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3.5.1 Mean Profiles and Instantaneous Fields

In general the wind speed profiles (Figure 3.3a) do not change drastically with stability,

although there are subtle differences in curvature for z/h < 0.4. The low-level jet height

zj relative to the SBL height h is also largely unaffected by stability (see Table 3.1).

The wind direction profiles (Figure 3.3b) are also relatively insensitive to stability, and

one can see a general veering with height consistent with the canonical idealized SBL

(e.g., Zilitinkevich, 1989). The potential temperature profiles (Figure 3.3c) demon-

strate mean lapse rates that increase strongly with surface cooling rates, as expected

(Table 3.1).

The profiles of nondimensional momentum and heat fluxes (Figures 3.3d,e) collapse

to common curves, with irregularities in the lowest few grid points likely induced by

the wall model. These profiles compare well with the results from Huang and Bou-Zeid

(2013) for their cases A–F. We acknowledge the collapse of these profiles in particular is

sensitive to the choice in defining the SBL height h. For example, Sullivan et al. (2016)

define their SBL height based on the mean potential temperature gradient. Regardless,

this general collapse indicates the quasi-stationarity for these second-order moments

as required for an appropriate random error analysis.

Both the gradient and flux Richardson numbers (Rig, Rif , respectively) increase

strongly with height and stability (Figure 3.3f). Here we define Rig and Rif as

Rig =
g

〈θ〉0
∂〈θ〉
∂z

[(
∂〈u†〉
∂z

)2

+

(
∂〈v†〉
∂z

)2
]−1

, (3.14a)

Rif =
g〈θ′w′〉
〈θ〉0

[
〈u′w′〉∂〈u

†〉
∂z

+ 〈v′w′〉∂〈v
†〉

∂z

]−1

. (3.14b)
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The resulting profile of the turbulent Prandtl number, Prt ≡ Km/Kh = Rig/Rif , is

relatively constant with height with values between 0.6–0.7 (not shown). Since Prt is

defined based on the ratio between the momentum and heat transfer eddy diffusivities

(Km and Kh, respectively), this implies a dissimilarity between the turbulent transports

of momentum and heat for the flows considered. This topic will be discussed in further

detail in Chapter 4.

The nondimensional streamwise and vertical velocity variances (Figures 3.3g,h) dis-

play similar trends where the variances generally decrease with stability in the middle

of the SBL. Enhanced levels of 〈u′2〉 between 0.2 < z/h < 0.6 for cases E and F could

be signatures of intermittent turbulence or related to inertial oscillations within the

SBL. Finally, the nondimensional potential temperature variance (Figure 3.3i) follows

two general trends dependant on stability. In cases A and B the variance general in-

creases from the surface up to z/h ≈ 0.2, remains constant up to z/h ≈ 0.6, and then

decreases with height. Variances in cases C–F peak close to the surface and generally

decrease with height monotonically for z/h > 0.2. Common across all cases, however,

is that for z/h < 0.1, variance generally increases with stability. The implications for

this pattern will be discussed further in Section 3.5.3.

For a qualitative comparison between cases A and F, Figure 3.4 portrays instan-

taneous x − z cross-sections in the center of the domain for scaled streamwise veloc-

ity and potential temperature. In case A (Figure 3.4a,b) there is evidence of turbu-

lent motions with pockets of high and low momentum throughout as well as quasi-

organized structures within the temperature fields (e.g., between 1.0 < x/h < 1.8 and

0.3 < z/h < 0.75) reminiscent of the microfronts observed by Sullivan et al. (2016).

Case F (Figure 3.4c,d) appears far more quiescent, as one may expect for strongly sta-

ble conditions. Both the velocity and temperature fields are highly stratified, and the

84



Figure 3.4: Instantaneous x–z cross-sections at y = Ly/2 of scaled streamwise velocity
(left column) and potential temperature (right column) for simulations A and F (top
and bottom rows, respectively).

vertical extent of eddies are considerably smaller than those in case A. This perspective

supports the expectation that in general, we would expect integral lengthscales in the

SBL to decrease with increasing stability.

3.5.2 Integral Lengthscales

To provide context for the random error profiles in the following section, in Figure 3.5

we include the integral lengthscales of first-order parameters determined from the vol-

umetric LES output. These lengthscales were calculated along individual streamwise

samples of the full volumetric field by integrating the sample’s spatial autocorrelation

function until the first zero crossing. This process was repeated and averaged over all

y and timesteps as in the RFM described in Section 3.4, resulting in vertical profiles

of integral lengthscales, L(z).

For all parameters it is readily apparent that the integral scales decrease at all

heights with stability. For weak stability, there is a peak in Lu around 0.5 < z/h <

0.7, just below the level of the LLJ (Figure 3.3a), whereas with increasing stability

these scales remain generally constant with height for 0.2 < z/h < 0.8 (Figure 3.5a).
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Figure 3.5: Profiles of integral lengthscales for (a) streamwise velocity, (b) vertical
velocity, and (c) potential temperature for all six cases A–F. The LES filter width ∆f

is plotted as a vertical dashed black line for reference.

In general, Lu is larger than Lw for all stabilities and heights (Figure 3.5b), and is

comparable in magnitude to Lθ (Figure 3.5c). For cases C–F, Lw is of similar length

to the LES filter scale ∆f below the LLJ, indicating that buoyancy strongly acts to

suppress vertical turbulent mixing through the characteristic size of eddies.

The integral scale profiles for cases A–C are generally on par with those presented

by Huang and Bou-Zeid (2013) (note that they did not include an estimate for the

potential temperature lengthscale), most notably in the shape of the peaks in Lu and

the strong increase in Lw with height for z/h > 0.6. Interestingly, for cases D–F, our

results do not indicate the strong peak in Lu around z/h ≈ 0.4 that they reported

being related to buoyantly-flattened coherent structures. Although our simulations

are based on those by Huang and Bou-Zeid (2013) and other mean profiles compare

strongly (Figure 3.3) to theirs, determining the reasoning behind these discrepancies

in integral scales is outside the scope of this chapter.
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Figure 3.6: Profiles of relative random errors for (a) wind speed, (b) wind direction,
and (c) potential temperature for all six cases A–F. Errors are calculated based on 3 s
averaging times consistent with typical UAS observation processing.

3.5.3 Random Error Profiles

Utilizing the RFM outlined in Sections 3.2 and 3.4, in Figure 3.6 we show relative

random errors for the first-order thermodynamic and kinematic parameters typically

observed with UASs as a function of stability and z/h. It is apparent that errors gen-

erally decrease with height and stability for wind speed and direction (Figure 3.6a,b),

which can logically follow from the premise that integral lengthscales for velocity com-

ponents decrease with stability (Figure 3.5a,b), and larger errors are associated with

longer integral lengthscales via Equation 3.2. This is additionally supported by the fact

that the dimensional values of streamwise velocity variance also decreases with stabil-

ity (Figure 3.3g, recall from Table 3.1 that u∗0 decreases with stability) which would

necessitate longer averaging times at weak stability to constrain the natural variability

in the flow. To the contrary, relative random errors in potential temperature actu-

ally increase with stability (Figure 3.6c), and do not decrease as strongly with height.

While possibly counterintuitive at first, this potential temperature error pattern can

be justified physically as follows. As surface cooling increases with global stability,

the near-surface lapse rates increase in magnitude more rapidly. From Lumley and
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Panofsky (1964) and Wyngaard and Coté (1971), this temporally-evolving tempera-

ture gradient is a source term in potential temperature variance (given a stationary

heat flux, which is generally valid in this case), which would correspondingly increase

the amount of averaging time necessary for a timeseries mean to converge towards the

ensemble mean potential temperature. This is also consistent with the mean profiles

of potential temperature variance (Figure 3.3i) wherein the dimensional value of 〈θ′2〉

generally increases with stability (again recall from Table 3.1 that θ∗0 increases by

an order of magnitude between cases A and F and therefore so do the dimensional

variances). Therefore, stronger stability begets larger εθ, as seen in Figure 3.6c.

For all profiles, and especially at lower stabilities, the near-surface wind speed errors

are substantial (i.e. > 25%). For context, a relative random error of 25% implies that

a wind speed of 2 m s−1 near the surface could result in an error standard deviation

of at least 0.5 m s−1 due just to the limited averaging time. Additionally, a 0.1%

error from an observed θ = 250 K results in an absolute error of only 0.25 K. These

errors are of the same order of magnitude as those due to calibration and instrument

uncertainty, which are independent of each other and therefore are compounded. For

example, the CopterSonde rotary-wing UAS is accurate to within 0.6 m s−1 and 0.5◦C

compared against radiosondes (Segales et al., 2020; Bell et al., 2020). The most direct

solution to offset these errors is to increase the averaging times in the lower SBL, which

is then a tradeoff between UAS vertical ascent rates and the vertical resolution desired

(discussed further in Section 3.5.4).

The relative random errors for second-order moments based on 30-min averaging

times (Figure 3.7) also generally decrease with stability. Recall that we utilize 30-min

averaging times for these parameters, which is consistent with typical values used with

the eddy-covariance method. The errors in Reynolds stresses are relatively constant
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Figure 3.7: Profiles of relative random errors for (a) momentum flux, (b) potential
temperature flux, (c) streamwise velocity variance, (d) vertical velocity variance, and
(e) potential temperature variance for all six cases A–F. Errors are calculated based
on 30 min averaging times consistent with typical eddy-covariance measurements.

between 5–15% from the surface up to z/h ≈ 0.7 (Figure 3.7a). Due to the way

we define h as a linear extrapolation to where u2
∗ → 0, and since u2

∗ appears in the

denominator when calculating εu2∗ via Equation 3.13c, the errors near the top of the

SBL grow to be considerably larger than near the surface. To a lesser extent this

pattern also occur near the top of the SBL for εθ′w′ for cases A–C, likely for similar

reasons (Figure 3.7b).

The errors for heat flux across all cases (Figure 3.7b) nearly double from the surface

to z/h ≈ 0.07 for all cases. This may be indicative of surface layer processes, although

it could also be an artifact of the LES wall model. For 0.15 < z/h < 0.7, εθ′w′

appears to organize into two categories: increasing slowly with height (cases A and B)

and decreasing slowly with height (cases C–F). These two groups likely correspond to

differing regimes of fully turbulent flow in weakly stable stratification versus generally

weak vertical mixing at higher stability.

The error profiles of velocity and potential temperature variances (Figure 3.7c,d,e)

also exhibit this clustering into two primary groups of 1) cases A and B, and 2) cases

C–F. The εu′u′ and εθ′θ′ profiles peak around z/h ≈ 0.7 for group 1, and group 2 does
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not necessarily peak but rather decreases continuously throughout the SBL. For all

cases, however, the magnitudes of the relative errors are consistently in the 5–20%

range for streamwise velocity variance and even narrower ranges of 2–8% for vertical

velocity variance and 3–12% for potential temperature variance. These results are

consistent with the notion that turbulence intensity within increasingly stable regimes

should become weaker, resulting in increasingly localized motions with smaller inte-

gral scales (as also hinted to by Figure 3.5). The general decrease in height for the

second-order errors combined with decreasing variability for higher stabilities is also

consistent with the “z-less” scaling regime. This is because the distance from the

ground loses relevance as a characteristic length for higher stratification as turbulence

becomes more localized and mixing lengths depend more on parameters such as wind

shear and buoyancy frequency (e.g., van de Wiel et al., 2008; Huang et al., 2013; Sor-

bjan, 2017; Greene et al., 2022). Since these parameters do not change dramatically

with height in the quasi-stationary cases presented, it is reasonable to conclude that the

corresponding second-order integral lengthscales would similarly remain relatively con-

stant with height, thereby resulting in the observed profiles of relative random errors

in the second-order moments.

The exponent p determined by least-squares fitting of Equation 3.8 lies within the

range 0.8 < p < 1.2 for all parameters shown at all heights and stabilities (not shown).

This corresponds to a similar range in the Hurst exponent H as found Dias et al.

(2018) using sonic anemometer data, indicating that Hurst’s phenomenon is indeed

influencing the flow dynamics. Therefore, error estimates by the RFM will generally

exceed those by the Lumley and Panofsky method of Equation 3.1 and the existence

of an integral scale is dubious (Dias et al., 2004, 2018). Regardless, we include these

integral scales (Figure 3.5) for improved physical understanding of the random error

results.
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3.5.4 Implications for Measurements from Uncrewed Aircraft

Systems

A UAS takes a finite amount of time to fly a vertical profile, and the atmosphere is con-

tinually evolving while it does so. Figure 3.1 conceptualizes this for a UAS ascending

at 1 m s−1 through the depth of the SBL, which in this case would take about three

minutes to reach a height of z = h. In this section we emulate a rotary-wing UAS

ascending through the simulated domain at a fixed rate as described in Section 3.3.2.

Note that these emulated profiles assume idealized thermodynamic and kinematic sen-

sors free from bias, imprecision, or dynamic response errors, as we are strictly interested

in the impact of random errors on observed profiles. Finally, we calculate random error

bounds for these emulated profiles based on the results from the previous section for

comparison with the ensemble mean profiles (i.e., Figure 3.3). These error bounds

physically represent the error standard deviation σf for a given parameter f due to

inadequate sampling time (recall Eqs. 3.1 and 3.8), which we refer to succinctly as

the random error. They are determined by combining an observed parameter fobs(z)

with its corresponding relative random error εf (z) as σf (z) = fobs(z)εf (z) to yield a

dimensional value. In Figure 3.8 (and later in Figure 3.11), these dimensional values

of random error are shaded around the emulated observation values at each height

corresponding to the 1 and 3σ levels, which should virtually capture the full range of

random errors in an ensemble of realizations.

In Figure 3.8 we demonstrate the ability of emulated UAS profiles to represent the

ensemble mean for wind speed, wind direction, and potential temperature in cases A

and F. In general it is apparent that the UAS profiles are more variable with height in

case A (Figure 3.8a–c) as compared to case F (Figure 3.8d–f). This is likely related to

the integral length scales being smaller at high stability (Figure 3.5) resulting in smaller
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Figure 3.8: Profiles of (left) wind speed, (center) wind direction, and (right) potential
temperature from cases A (top) and F (bottom). The solid black line in each is the
horizontally and temporally averaged ensemble mean reproduced from Figure 3.3. Each
colored solid line represents observations from an emulated UAS profile ascending at
1 m s−1 and averaged in 3 s bins. Dark (light) shading denotes 1 (3) error standard
deviations.
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random errors for case F. Each of these UAS profiles exhibit differences relative to their

respective ensemble means, and these differences are also smaller for higher stability.

For both cases A and F, the random errors in wind direction (Figure 3.8b,e) near the

surface are substantial at these averaging times, with 3σ ranges of around 90◦. This is

related to the relatively low wind speeds close to the surface, which some observational

systems have difficulty measuring to begin with. We also note that the uncertainty

range in wind speed for case A (Figure 3.8a) spans between 0–4 m s−1 at the 3σ level,

which may further add to operational difficulties in determining representative wind

directions at weak stability. Although the emulated profiles of wind speed for case F

(Figure 3.8d) generally converge to the ensemble means on their own due to shorter

integral lengthscales at high stabilities, it is still apparent that errors for z/h < 0.2 are

of similar order of magnitude to the observations themselves.

With these results, it is therefore apparent that maintaining constant ascent rates

(and corresponding constant averaging times) for UAS within the SBL may result in

disproportionately large random errors close to the ground. To address this issue,

Figure 3.9 portrays the parameter space of relative errors contoured as functions of

both z/h and averaging times for cases A and F. It is initially apparent that these

errors drop off rapidly with averaging time, which follows directly from the power-

law relationship fundamental to these estimations (Equation 3.8). One can see that

it is generally difficult to mitigate errors in uh and α below z/h < 0.1 for both cases

without averaging for an impractical amount of time, as UAS battery capacity becomes

a limiting factor in the ability to sample the entire SBL in a single flight. This issue

can potentially be overcome through pairing UAS operations with other continually-

sampling sensors such as eddy-covariance systems or ground-based remote sensors,

which can be averaged arbitrarily long to supplement UAS profiles. It is additionally
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Figure 3.9: Contours of relative random errors in (left) wind speed, (center) wind
direction, and (right) potential temperature as functions of height and averaging time
during cases A (top) and F (bottom). For reference, the vertical dashed line denotes
an averaging time of 3 s, and the solid black contours denote error levels of 10% in
(a),(d) and 2% in (b),(e). Note that the y-axis for each panel is logarithmic and the
color scale range varies for each parameter.
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apparent from Figures 3.9c and f that the errors in potential temperature are small

(but not negligible) across the displayed parameter space. In case A there is little

dependence on either z/h or averaging time, whereas these dependencies are modestly

stronger in case F.

Due to the adaptive abilities of UAS technology, it is possible for a UAS operator

to optimize a flight plan that accounts for random error dependencies on stability,

height, and averaging time. For example, if an end-user wishes to specify a threshold

of random errors they deem acceptable, they would first need to obtain an estimate

of atmospheric stability from e.g. an instrumented tower to estimate the local surface

cooling rate or Obukhov length, a ground-based remote sensor that can estimate the

SBL depth, or the static stability as measured by a previous UAS flight or radiosonde

launch to compare with the values in Table 3.1. It is also possible to estimate the

dimensionless parameter z/L from multiple levels of tower-based observations utilizing

Monin-Obukhov similarity functions (Launiainen and Vihma, 1990). With this infor-

mation, a UAS could be programmed in a pre-defined mission to ascend at variable

rates. This variable ascent rate would enable a constant post-processed vertical reso-

lution and also takes into account the necessary amount of averaging time required at

each height to reach the desired threshold. Figure 3.10 highlights this process for uh

and α in cases A and F assuming a constant 3 m altitude bins after averaging. These

bins were chosen as a tradeoff between the accuracy of typical UAS autopilot altitude

estimations and the desire to achieve the highest reasonable vertical resolution (see

Greene et al., 2022). Note that we omitted the analysis ascent rate accounting for θ,

as the averaging times necessary to approach ε = 1% were so short that the ascent rate

was effectively not a factor.
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Figure 3.10: Optimal ascent rates for various error levels for observations collected
during an emulated UAS vertical profile with constant 3 m altitude bins for the follow-
ing: (top row) wind speed, (bottom row) wind direction, (left column) case A, (right
column) case F. For reference, a vertical solid grey line is included for a 1 m s−1 as-
cent rate, and the vertical dashed red lines denote the minimum constant ascent rate
required to reach z = h within 15 min.
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From Figure 3.10 it is readily apparent that to achieve εuh ≤ 5% for z/h < 0.2, a

UAS must ascend with a vertical velocity vz of O(0.01–0.1) m s−1 across all stabilities.

A similar trend is also discernible for εα, although relative random errors are generally

smaller for α and therefore higher ascent rates are warranted. Herein lies a significant

challenge when designing a UAS flight strategy: the total battery discharge time for

a rotary-wing UAS utilizing lithium-polymer batteries such as the CopterSonde is

generally ≈15 min (Segales et al., 2020). Ascending at ≤ 0.1 m s−1 for z/h < 0.2

would therefore not guarantee enough battery charge to ascend the full depth of the

SBL. In Figure 3.10 we visually represent this by overlaying the minimum ascent rate

required to reach z = h within 15 min. A UAS operator is thus presented with a

tradeoff when designing a flight strategy. They could either fly slowly close to the

surface to minimize random errors but risk not sampling the entire SBL in one flight,

or they could sacrifice the random error uncertainty to prioritize a maximum flight

altitude.

In Section 3.5.5 we continue this analysis for second-order moments that may be

collected by eddy-covariance systems or fixed-wing UASs with a turbulence-resolving

sensor payload.

3.5.5 Implications for Eddy-Covariance Measurements

Determining second-order turbulence moments from observations within the SBL re-

quires substantially longer averaging times than for first-order moments to achieve

similar levels of relative random errors (see Figure 3.7; Lenschow et al., 1994; Mann

and Lenschow, 1994; Dias et al., 2004). This concept will be especially important as

sensors continue to miniaturize and both rotary- and fixed-wing UASs can more reliably

collect turbulence-resolving observations. We again employ the virtual tower output
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Figure 3.11: Profiles of normalized (a,f,k,p) momentum flux, (b,g,l,q) heat flux,
(c,h,m,r) streamwise velocity variance, (d,i,n,s) vertical velocity variance, and (e,j,o,t)
potential temperature variance from cases A (rows 1 and 2) and F (rows 3 and 4). The
emulated profiles are evaluated for 30 min averaging time in rows 1 and 3, and 1 min
in rows 2 and 4. As in Figure 3.8, the solid black lines denote the xyt-averaged LES
output whereas the colored lines are emulated virtual eddy-covariance (EC) towers in
the center of the domain. Dark (light) shading denotes 1 (3) standard deviation of
random errors.
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described in Section 3.3.2 to emulate eddy-covariance observations that are sampled

simultaneously. This framework could be interpreted as 1) a tall instrumented tower or

a collection of either 2) fixed-wing UASs flying at fixed-altitude circling within the hor-

izontal domain or 3) vertically dispersed rotary-wing UASs hovering at a fixed position

in space.

The resulting emulated profiles of normalized fluxes and variances are presented

in Figure 3.11 for cases A and F. One can see from Figure 3.11 that in general the

30 min eddy-covariance profiles approximate the ensemble means reasonably well across

the range of stabilities. The error bounds for each of the four second-order moments

also encapsulate the ensemble mean profiles for virtually all heights and stabilities.

The mean absolute differences between the emulated and ensemble mean profiles are

also generally smaller for case F than case A, which follows the same trends we have

observed throughout the chapter.

The emulated eddy-covariance profiles averaged over only 1 min depict a vastly

different scenario. These 1-min profiles in case A vary substantially with height, with

the only discernible trends being a gradual decrease with z/h (Figure 3.11e–h). The

case F 1-min profiles are at least of the same order of magnitude as the ensemble

mean, but also demonstrate considerable variability with height (Figure 3.11m–p).

The corresponding random error bounds are also substantial, often of the same order

of magnitude as the fluxes and variances themselves. While these results are perhaps

unsurprising, they are provided as emphasis that many considerations are necessary

to properly calculate physically meaningful second-order turbulence moments as it

becomes more accessible to obtain the necessary observations with UAS.

To expand upon the two discrete averaging times for the emulated profiles demon-

strated previously in Figure 3.11, we consider the parameter space of averaging times as
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Figure 3.12: Profiles of necessary eddy-covariance averaging times (Tavg) to reach spec-
ified levels of relative random error for cases A (top row) and F (bottom row). The sec-
ond order moments include (a,f) momentum flux, (b,g) temperature flux, (c,h) stream-
wise velocity variance, (d,i) vertical velocity variance, and (e,j) potential temperature
variance.

a function of stability, z/h, and desired level of relative random errors. In Figure 3.12,

one can draw the comparison to the framework presented in Figure 3.10, except in

this case we are concerned only with averaging times at each height. In case A (Fig-

ure 3.12a–e) for example, it is difficult to achieve errors less than 5% near the surface,

as the necessary averaging times exceed 1 hr, and the ABL cannot always be expected

to be quasi-stationary over these long averaging periods. One is again potentially faced

with a tradeoff in the application of these results, and may need to compromise on the

level of acceptable random errors for observations collected near the surface. On the

contrary, achieving even a 10% error level is far more accessible across all stabilities,

heights, and parameters, with averaging times ranging between 10–30 min. The ve-

locity variance component error profiles in both cases (Figure 3.12c,d,h,i) as well as

potential temperature variance (Figure 3.12e,j) require even shorter averaging times
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for ε > 10% at all heights, at 15 min or less. These relatively short averaging times for

the velocity variances are again indicative of the weak nature of turbulence intensity in

the SBL that correspond to small integral lengthscales. For weak stability it generally

requires more averaging time to constrain u′u′ and θ′θ′ than it does for w′w′ for a given

error level, but they become more comparable at high stability.

3.6 Discussion

Clearly there is no universal means to mitigate random errors for any of the considered

first- and second-order turbulence moments. Even with careful experimental consider-

ations for atmospheric stability, instrumentation heights, and averaging times, without

access to an infinitely dense observational network, random errors are unavoidable for

observations of real-world geophysical flows. We therefore analyze these results by con-

textualizing the random errors one might expect for their observations across a realistic

parameter space.

Given the magnitude of errors in first-order moments near the surface, it may be

difficult for a UAS to adequately sample for long enough and still reach the target max-

imum altitude on a single battery charge. For this reason we recommend conducting

UAS operations in proximity to surface-based observational systems whenever possi-

ble. Tower-mounted instruments and ground-based remote sensors (i.e. Dopper wind

lidars, microwave radiometers, etc.) have the advantage of continually observing at a

fixed location in space (Smith et al., 2019, 2021; Bonin et al., 2020). Therefore, the

raw timeseries output from these sensors can be averaged at longer temporal periods

than for UAS observations to mitigate random errors close to the surface.

Another possibility for improving the representativeness of UAS observations in-

volves the temporal averaging of multiple vertical profiles as in Greene et al. (2022).
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This technique consists of averaging discontinuous subsamples of the overall atmo-

spheric flow at a fixed point, which may have nonlinear impacts on the overall reduction

in random errors. Similarly, one could also consider the averaging of multiple simulta-

neous UAS profiles distributed spatially within a target domain (Balsley et al., 2018;

van den Heever et al., 2021). The exact quantification of these methods is beyond the

scope of this chapter, but it logically follows that these would be effective methods of

reducing random errors in general.

The quantification of random errors for potential temperature variance are of par-

ticular interest with regards to recent studies in the SBL using distributed temperature

sensors compared with instrumented towers (Peltola et al., 2021), UAS (Higgins et al.,

2018), and tethered balloons (Fritz et al., 2021; Lapo et al., 2022). As technology

advances and rotary-wing UAS sensors continue to miniaturize, it is possible that po-

tential temperature variance may be easier to observe directly when compared with

velocity component variances, which typically rely on complex autopilot-based physi-

cal retrievals for estimates.

We acknowledge that this chapter only addresses an idealized parameter space with

respect to the SBL. True geophysical flows are rarely characterized by horizontally

homogeneous topography or land surface usage, and the diurnal cycle can drastically

impact the assumption of stationarity. Regardless, the results from this chapter retain

significant utility as a baseline of random errors, especially since the RFM has also

been shown to produce larger estimates than through alternative methods (Dias et al.,

2018).

It is important to note that random errors are not directly comparable with in-

strumental errors due to their underlying sources. Random errors are resultant of

fundamental stochastic processes, and are to be interpreted as how well a given obser-

vation can represent the overall flow in an ensemble sense. This is not necessarily the
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same interpretation of instrumental biases or imprecision, which relate the ability of

a sensor to describe its ambient environment at any given time. Further studies are

necessary to determine how to best combine these sources of error for the purposes of

NWP data assimilation of SBL observations.

Finally, as with any study with wall-modeled LES, reasonable uncertainty exists

for all results close to the surface. This is largely due to the inability of LES to

explicitly resolve turbulent motions in the viscous sublayer and instead relying on a wall

model (in our case based on the dimensionless Monin-Obukhov similarity functions).

Especially at higher stabilities, this may affect the resulting random error profiles close

to the surface, although to what extent remains unknown. A recent pair of studies

by Chinita et al. (2022a,b) used LES with a very small domain size and a 10 cm

grid resolution to better resolve the surface layer of SBLs, which could potentially

be suitable for comparisons with ground-based instrumented meteorological masts. A

direct numerical simulation or wall-resolved LES would likewise provide more detailed

information close to the wall, but these investigations are beyond the scope of the

present chapter.
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Chapter 4

Coherent structures in stably stratified

wall-bounded turbulent flows

4.1 Research Objectives

While the existence and general features of turbulent coherent structures within SBL

flows have recently been explored, at present there is a relative dearth of studies ex-

amining their role in modulating turbulence throughout the SBL. This chapter aims

to close this knowledge gap by addressing the following key questions:

6. How does stability impact the properties of large-scale motions within the SBL?

7. How does buoyancy affect transport efficiencies of momentum and temperature?

8. How do coherent structures with the SBL contribute to these differences?

The rest of this chapter is organized as follows: we provide an overview of the large-

eddy simulation code and cases considered in Section 4.2. We provide justification for

the use of LES in studying the SBL along with a discussion on its overall performance

in Section 4.3. In Section 4.4 we present our results on mean profiles and instantaneous

fields in Section 4.4.1, spectral analysis including spectrograms and linear coherence

spectra in Section 4.4.2 and Section 4.4.3, transport efficiencies in Section 4.4.4, am-

plitude modulation in Section 4.4.5, and conditionally-averaged fields in Section 4.4.6.
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We conclude with a general discussion and interpretation of results, along with a future

outlook in Section 5.1.3.

4.2 Large-eddy simulation and cases

In this chapter we employ the same LES code summarized in Chapter 3 (see Equations

3.9 and 3.10) as well as Greene and Salesky (2022). The cases presented in this chapter

are also identical to those in Chapter 3, with the exception of two additional simula-

tions run at intermediate stabilities to better capture the near-neutral regime. These

eight simulations are run with a constant value of surface cooling rate Cr = −∂〈θ0〉/∂t

spanning from values of 0.10 ≤ Cr ≤ 2.50 K hr−1 (Table 4.1). All other parameters are

held constant during the simulations, and are summarized in Table 4.2. For computa-

tional efficiency, the simulations were run on a coarse grid of n = nxnynz = 963 for six

physical hours, after which they were interpolated to a grid of n = 1923 and allowed

to run for four more physical hours for a total of ten hours.

As in 3, we use angle brackets 〈〉 = 〈〉xyt to denote ensemble averaging in horizontal

planes and over the final hour of simulation, which corresponds to 4.5–7.4 large-eddy

turnover times (Table 4.1). Quantities with a prime indicate fluctuations about the

mean, e.g. ũ′ = ũ − 〈ũ〉. Additional analysis of these periods indicate they are quasi-

stationary (not shown), and to improve statistical robustness we implement linear

detrending when calculating second-order turbulent parameters.

We determine the SBL depth h as in Beare et al. (2006), namely h is the normal

distance from the wall where the mean stress profile u∗(z) falls to a value equal to 5%

of its surface value u∗0 and then linearly interpolated to zero by dividing by a factor

of 0.95. Although many definitions of SBL depth exist in the literature, this one is
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most consistent with other LES studies of the SBL and still retains the majority of the

low-level jet (LLJ) peak.

Here we define the mean stress profile by combining the streamwise and spanwise

components as

u2
∗ = (〈ũ′w̃′ + τxz〉+ 〈ṽ′w̃′ + τyz〉)1/2

, (4.1)

where τxz and τyz are the SGS contributions to momentum flux. Other parameters

defined in Table 4.1 include the potential temperature scale θ∗ = −〈θ̃′w̃′ + q3〉/u∗
where q3 is the SGS heat flux, the Obukhov length L = u2

∗0〈θ0〉/κgθ∗0 which depends

on the von Kármán constant κ = 0.4, the mean lapse rate between the SBL top and

lowest grid point ∆〈θ〉/∆z, and the bulk Richardson number RiB defined as

RiB =

g
〈θ0〉

∆θ
∆z(

∆〈u〉
∆z

)2

+
(

∆〈v〉
∆z

)2 , (4.2)

where the differences are similarly calculated between the SBL top and lowest grid

point.

For the results presented in Section 4.4 and unless otherwise stated, we utilize

the full volumetric fields for analysis. In Section 4.4.5 we additionally employ output

from a virtual tower centered in the domain at (x, y, z) = (Lx/2, Ly/2, z) that emulates

measurements from eddy-covariance systems at each domain height z sampling at 50 Hz

for timeseries analysis (see Salesky and Anderson, 2018; Greene and Salesky, 2022).
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Table 4.2: Values of various simulation parameters. Values in parentheses indicate
those for the spinup time period.

Parameter Description Units Value

Lx, Ly, Lz Domain dimensions m 800, 800, 400

nx, ny, nz Number of grid points - 192, 192, 192

(96, 96, 96)

∆x, ∆y, ∆z Grid resolution m 4.17, 4.17, 2.08

(8.33, 8.33, 4.17)

∆f = (∆x∆y∆z)
1/3 Characteristic filter width m 3.31 (6.61)

∆t Time step s 0.02 (0.04)

Ug, Vg Geostrophic wind components m s−1 8, 0

f Coriolis parameter s−1 1.318× 10−4

z0 Aerodynamic roughness length m 0.10

z0h Roughness length for heat m 0.10

zinv Height of initial inversion m 100

Γinv Initial inversion lapse rate K m−1 0.01
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4.3 Ability of LES to resolve SBL dynamics

Before reviewing the results for this chapter, it is worth discussing the performance

of our LES model with regards to resolving the finescale dynamics for increasing sta-

ble stratification. In this context it is interesting to consider the Ozmidov scale LO

(Dougherty, 1961; Ozmidov, 1965), which is defined based on the mean TKE dissipa-

tion rate ε and the Brunt–Väisälä frequency N as

LO =

√
ε

N3
. (4.3)

The Ozmidov scale has the physical interpretation of being the largest eddy size un-

affected by buoyancy, and has been shown to be the characteristic size of momentum

transporting eddies within the SBL (Bou-Zeid et al., 2010; Li et al., 2016). Li et al.

(2016) found that LO actually constrains the energy-production end of the inertial

subrange under increasing stability. Sullivan et al. (2016) discuss the importance of

explicitly resolving this scale when using LES, as typical SGS models are dissipative

and are not designed to effectively emulate the small-scale overturnings when LO < ∆f .

Because they utilize a fine mesh grid of ∆f = 0.39 m, this is only an issue close to

the surface and near the top of the SBL. With coarser resolution, as considered in

this chapter (as well as Chapter 3), this is a more significant issue. Huang and Bou-

Zeid (2013) address this explicitly, noting that when the LES filter scale lies within

the inertial subrange, it is imperative for the SGS model to correctly drain fluxes and

TKE from the resolved to SGS scales to produce correct fluxes. They further argue

that the LASD SGS model has proven capable of this difficult task, and has supe-

rior performance to traditional Smagorinsky-Lily or scale-invariant models (Bou-Zeid

et al., 2005). We therefore can maintain reasonable confidence in the ability of our

LES model setup to reproduce accurate total fluxes in the SBL. As will be discussed
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further, heightened caution will be necessary when considering spectral analysis of only

the resolved velocity and temperature fields, as it is not always possible to include the

SGS contributions with these analyses.

Profiles of LO relative to the grid scale ∆f are presented in Figure 4.1a. For these

cases we define TKE dissipation rate for LES as the energy flux across the filter scale

(Pope, 2000) based on the subgrid stress tensor τij and the filtered strain rate tensor

S̃ij such that ε = −〈τijS̃ij〉. It is apparent that LO is explicitly resolved in at least 80%

of the SBL for cases A–D, but this proportion decreases with increasing stability. In

case H, LO(z) < ∆f for the entire SBL, decreasing to a value of LO/∆f ≈ 0.2 near the

top of the SBL.

With such a reliance on the SGS model when simulating the SBL, it is also useful

to consider the ratios of the SGS fluxes to the total (resolved + SGS) fluxes. Profiles

of these ratios for momentum and heat fluxes are included in Figure 4.1b and c, re-

spectively. As expected, this ratio is large across all cases close to the wall, but in the

middle of the SBL the ratios increase monotonically with stability and cluster into two

primary groups. The ratios of SGS momentum and heat fluxes for cases A–D remain

at or below 20% for 0.1 < z/h < 0.6, whereas cases E–H are in the 25–60% range

within this region. In proximity to the LLJ, these ratios begin to increase with height

across all cases for momentum and especially heat fluxes. As in Huang and Bou-Zeid

(2013), we believe that although these ratios are large at higher stabilities, the LASD

SGS model employed in this chapter should be capable of reproducing accurate flux

profiles. Greene and Salesky (2022) (see Section 4.3) performed a grid sensitivity study

using these same cases, and concluded that the grid size only had marginal impacts on

the total flux profiles, even at the highest stability considered (their case F, which is

equivalently case H in this chapter). It was found that the largest sensitivity to grid size
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Figure 4.1: Profiles of the (a) ratio of the Ozmidov scale LO to the LES characteristic
filter size ∆f (in log coordinates), and ratios of subgrid (b) momentum and (c) heat
flux to the total (resolved + SGS) fluxes for all simulations A–H.

came from consideration of integral lengthscales, which depend wholly on the resolved

fields and do not incorporate SGS contributions. Therefore, for the remainder of this

chapter, we will primarily consider cases A–D for analysis when it is not reasonable to

include the SGS terms, and references to cases E–F are for reference.

4.4 Results

4.4.1 Mean profiles and instantaneous fields

Profiles of mean quantities from cases A–H over the final hour of simulation are included

in Figure 4.2. The mean wind speed profile Uh =
√
〈ũ〉2 + 〈ṽ〉2 (Figure 4.2a) generally

displays a low-level jet (LLJ) for each simulation for 0.8 < z/h < 1, with the maximum

speed increasing with stability. The mean potential temperature profiles Θ = 〈θ̃〉

(Figure 4.2b) display a strong sensitivity to the surface cooling rate, as mean lapse rates

increase monotonically from cases A–H. The normalized root-mean square velocity

urms =
√

0.5(ũ′2 + ṽ′2 + w̃′2) (Figure 4.2c) generally decreases with stability likely due

in part to the buoyant suppression of turbulence kinetic energy (TKE) with increasing
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stability. The enhancement of urms at higher stability may be signatures of intermittent

turbulence or could also be related to inertial oscillations due Coriolis forcing (Holton,

2004).

Profiles of the gradient Richardson number (Figure 4.2g),

Rig =
g

Θ0

∂Θ

∂z

[(
∂〈ũ〉
∂z

)2

+

(
∂〈ṽ〉
∂z

)2
]−1

, (4.4)

also increase monotonically with surface cooling rate for a given height. The weakly-

stable cases are largely within the subcritical regime associated with Kolmogorov tur-

bulence, Rig < 0.2, as identified by Grachev et al. (2013), whereas simulation H lies

entirely above this threshold for z/h > 0.1. Finally, the mean profiles of nondimensional

total (resolved + SGS) momentum and heat flux (Figure 4.2d,e) generally collapse, al-

though the weakly stable cases A and B are more linear than the rest as they are closer

to neutral stratification. The irregularities in the lowest grid points for these profiles

can be attributed to the wall model. An analysis comparing these mean profiles with

those from longer averaging periods (not shown), namely 1.5 and 2 hr, indicate only

marginal differences and provide confidence in the quasi-stationarity of the simulations

during this one hour period.

To visually highlight coherent structures within these SBL flows, in Figure 4.3 we

present horizontal and vertical cross-sections of the instantaneous fluctuating stream-

wise velocity and potential temperature fields from simulations A and E. Inspection of

the horizontal (xy) cross-section of ũ′/u∗ located at z/h = 0.05 (Figure 4.3a,b) indi-

cate elongated streaks of high and low momentum that decrease in size and magnitude

with stability. In simulation A (Figure 4.3a) these streaks are of O(h) in length and

are rotated with respect to the geostrophic wind (Table 4.2). This is analogous to how
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Figure 4.2: Mean profiles from all simulations A–H of (a) wind speed Uh =√
〈ũ〉2 + 〈ṽ〉2, (b) potential temperature Θ = 〈θ̃〉, (c) root mean square velocity

urms =
√

0.5(ũ′2 + ṽ′2 + w̃′2), (d) total momentum flux u2
∗ (Equation 4.1), (e) total

potential temperature flux, and (f) gradient Richardson number Rig. Statistics are
calculated using the final hour of each simulation.
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Figure 4.3: Instantaneous cross-sections from simulations A (left column) and E (right
column) including: xy plane at z/h = 0.05 of (a,b) streamwise velocity perturbations,
(e,f) potential temperature perturbations, and xz plane at y/h = 2 of (c,d) streamwise
velocity perturbations and (g,h) potential temperature perturbations. The spanwise
cross-sections in panels (c,d,g,h) are denoted as horizontal black lines in panels (a,b,e,f)
for reference, and the line plotted in (c,d,g,h) denotes z/h = 0.05.
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HCRs in the CBL are typically rotated ≈15–20◦ to the left of the geostrophic wind

due to surface drag and momentum flux divergence (e.g., Salesky et al., 2017, and

references therein). Ansorge and Mellado (2014) include discussion of these features

within stably stratified turbulent flows, but is otherwise beyond the scope of this chap-

ter. With increasing stability, in case E (Figure 4.3b) the velocity field is organized

into fine ribbons of weaker fluctuations than in case A, and areas of locally similar

magnitudes are less well-defined.

Unlike streamwise velocity, the horizontal cross-sections of potential temperature

fluctuations (Figure 4.3e,f) do not demonstrate corresponding elongated streaks. This

result is strikingly different than what is found in the convective boundary layer

(Salesky et al., 2017), where the velocity and potential temperature fields are visually

analogous. Instead, the potential temperature field is comprised of a patchy network

of warm and cold pockets whose magnitudes depend on stability. In case A, there are a

few locations where seemingly organized patches of temperature overlap with the long

streaks in velocity, e.g., around (x/h ≈ 1, y/2 ≈ 2) (there is actually a similar corre-

spondence at the same coordinates for case E). It is clear, however, that the frequency

of these overlapping patterns is lower in case E than for case A.

Finally, it is apparent from the vertical cross sections located at y/h = 2 (Fig-

ure 4.3c,d) that the elongated velocity streaks extend into the vertical under weak

stability. For example, between 0.75 < x/h < 2.5, a region of ũ′/u∗ > 0 extends

from the surface up to z/h ≈ 0.5. These dimensions (∆x/h ≈ 1.75, ∆z/h ≈ 0.5)

correspond to an inclination angle of γ = arctan(0.5/1.75) = 15.9◦ with respect to the

surface, which agrees well with the values based on two-point correlation statistics as

presented by Gibbs et al. (2022) under weak stable stratification. With increasing sta-

bility, however, analogous structures do not appear within the flow (Figure 4.3f). The

vertical cross sections of potential temperature fluctuations (Figure 4.3g,h) highlight
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similar features as those from the streamwise velocity fluctuations. In case A, there

are elongated regions of high and low perturbations with sharp boundaries in between,

which is highly reminiscent of the temperature microfronts presented by Sullivan et al.

(2016). It is apparent by examining the warm anomaly attached to the surface around

x/h ≈ 0.75 (corresponding to the one discussed in Figure 4.3c) that the temperature

structures do not necessarily incline at the same relative angles as for momentum. As

will be discussed further, this eludes to differing mechanisms for vertical transport of

heat and momentum under stable stratification. The overall spatial correlation be-

tween the momentum and temperature fluctuations in this region align with a sweep

of relatively warmer, high momentum fluid moving towards the surface.

From an analysis of the instantaneous fields presented in Figure 4.3, it is clear that

buoyancy acts to suppress vertical organization more strongly than in the horizontal.

This will be important to consider when analyzing the results in the following sections.

4.4.2 Spectrograms

One common method for identifying the presence of coherent structures within tur-

bulent flows is through the analysis of spectrograms (Hutchins and Marusic, 2007a;

Mathis et al., 2009a; Anderson, 2016; Baars et al., 2017; Salesky and Anderson, 2018).

Spectrograms are premultiplied power spectra presented as functions of both wave-

length and height above the surface, and evidence for large-scale motions exists when

an outer peak at large scales is present. Included in Figure 4.4 are spectrograms for

cases A–E of streamwise and vertical velocities, potential temperature, and cospectra

for uw as well as θw.

Inspection of Figure 4.4 reveals distinct inner and outer peaks in case A across all

parameters. In case A (Figure 4.4a,f,k,p,u), the outer peak is located approximately
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Figure 4.4: Premultiplied spectrograms from simulations A–E (columns) for (a–e)
streamwise velocity, (f–j) vertical velocity, (k–o) potential temperature, as well as
cospectra for (p–t) uw and (u–y) θw. Each is plotted versus streamwise wavelength
λx and wall-normal height z normalized by the SBL depth h. Horizontal lines at
λx = zj/2 indicate the cutoff frequency utilized in the decoupling procedure outlined
in Section 4.4.5 that roughly separates the inner and outer peaks (where they exist).
Vertical lines at plotted for z = L to indicate the Obukhov length from each case.
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at z/h ≈ 0.1 and λx/h ≈ 0.8, which is as expected within the logarithmic/outer

region of the wall-bounded flow at streamwise wavelengths approximately scaling with

the boundary layer depth. These scales are slightly smaller than those reported by,

e.g., Baars et al. (2017) for neutrally-stratified channel flow, but roughly an order of

magnitude smaller than those in the convective boundary layer reported by Salesky

and Anderson (2018). These differences may likely be due to the lack of very large-scale

motions in the domain considered, so energy peaks at the scale of individual coherent

structures instead of a collective superstructure.

For increasing stability, the outer peaks in all of the spectrograms considered at-

tenuate until they disappear entirely. This behavior, specifically in streamwise velocity

(Figure 4.4a–e), is also in contrast with the findings of Salesky and Anderson (2018),

who found that within the CBL, the peak distinctly moved toward smaller wavelengths

until it merged with the inner peak with increasing instability. This is undoubtedly

the signature of buoyant suppression of vertical motions, which has been shown to act

at the large scales (Garćıa-Villalba and del Álamo, 2011) so that large eddies do not

traverse the full depth of the SBL. Recall from the discussion in Section 4.3 and from

the results of Li et al. (2016) that the Ozmidov scale is a characteristic eddy size within

the SBL that denotes the beginning of the inertial subrange. Since LO increases with

stability, this implies that the inertial subrange shifts towards higher wavenumbers as

energy carried by large eddies is damped by buoyancy. This notion is further supported

by the lack of outer peak in vertical velocity beyond case A (Figure 4.4f–j), although a

noticeable ridge does extend from the surface towards larger scales and heights in cases

B–D. The combined effect of these results is evident in the uw cospectra (Figure 4.4p–

t), indicating a declining correlation between u and w with stability. The outer peak

in the potential temperature spectrogram kxΦθθ/θ
2
∗ (Figure 4.4k–o) notably is higher

in the SBL and occurs at longer wavelengths than those for u and w for each case. For
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example, in case B (Figure 4.4l) this peak is centered on z/h ≈ 0.3, λx/h ≈ 15. More-

over, the ridge in the potential temperature spectrogram persists through at least case

D in similar fashion to the u spectrograms. Finally, there appears to be an outer peak

in the θw cospectra kxΦθw/θ∗u∗ (Figure 4.4u–y) only for case A. These differences in

momentum and scalar spectrograms indicate underlying differences in their respective

transports, which will be discussed further in Section 4.4.4.

From these spectrograms, it is apparent that buoyancy acts strongly to attenuate

vertical motions at large streamwise wavelengths, resulting in turbulence that is in-

creasingly local with increasing stability. There is evidence that velocity and potential

temperature organize into coherent structures through at least through case C (recall

from Table 4.1 that Cr = 0.33 K h−1, h/L = 2.06) based on the presence of outer

peaks. In Section 4.4.3 we explore further how these fields are affected by stability

across scales.

4.4.3 Linear coherence spectra

In addition to spectrograms, another method of diagnosing the relevant scales affected

by coherent structures is through computation of the linear coherence spectrum (LCS;

Baars et al., 2017). The LCS is a measure of the linear coupling between variables

across scales, and is defined as

γ2
uu(z, zR;λx) =

|〈û(z;λx)û
∗(zR;λx)〉|2

〈|û(z;λx)|2〉〈|û(zR;λx)|2〉
, (4.5)

where û(z;λx) = F{u(x, y, z)} is the Fourier transform of u(x, y, z) along the stream-

wise dimension with the asterisk ∗ denoting its complex conjugate, and zR represents a

constant reference height above ground level for comparison against all heights z. The

angle brackets 〈〉 indicate an ensemble average across the spanwise dimension y and
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time for the final hour of each simulation, and || refers to the modulus of a complex

value. In this context, γ2
uu falls within the range 0 ≤ γ2

uu ≤ 1, and can be interpreted as

the squared value of the correlation coefficient at a specific scale λx between fluctuating

values of u at two different heights z and zR. An example of this is included in Fig-

ure 4.5, where we calculate γ2
uu, γ

2
ww, and γ2

θθ using a reference height zR as the lowest

gridpoint in each simulation. The strongest coupling across all simulations and pa-

rameters is noticeably found at horizontal wavelengths of O(h), as was found with the

outer peaks in the premultiplied spectrograms in the previous section. Moreover, the

vertical extent of the LCS peaks diminishes with increasing stability. For example, γ2
uu

for case A extends well beyond z/h = 0.1 whereas by case D the contour for γ2
uu = 0.1

only extends to z/h ≈ 0.05. The γ2
uu and γ2

θθ peaks for case A (Figure 4.5a,k) can also

be attributed to the coherent features identified in the instantaneous fields that extend

from the surface up into the outer region of the flow (Figure 4.3a,e). We note here that

due to vertical resolution limitations using a wall-modeled LES, the contours near the

surface do not provide significant amounts of information at higher stabilities. Baars

et al. (2017) argue that a 1:1 slope of these peaks in log-log coordinates, specifically

in streamwise velocity under near-neutral stratification (case A), is consistent with the

attached-eddy hypothesis (Townsend, 1976) across a self-similar hierarchy of scales.

Analysis of these cases in the framework of the attached-eddy hypothesis is beyond the

scope of this chapter, but certainly warrants further investigation, ideally with higher

resolutions close to the wall.

It is also possible to define Equation 4.5 for two independent variables at the same

height, which provides information on the coupling of two parameters across scales.

The LCS between u and w for example would be determined as
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Figure 4.5: Linear coherence spectra for (a–e) u, (f–j) w, and (k–o) θ for cases A–E
(columns) calculated with the reference point zR as the lowest gridpoint and plotted
against nondimensional wavelength and wall-normal distance. The horizontal line in
each panel is the same as in Figure 4.4.

γ2
uw(z;λx) =

|〈û(z;λx)ŵ
∗(z;λx)〉|2

〈|û(z;λx)|2〉〈|ŵ(z;λx)|2〉
. (4.6)

The resulting values of γ2
uw and γ2

θw are included in Figure 4.6 for cross-sections at con-

stant heights z/h within the SBL. Low in the boundary layer (z/h = 0.2, Figure 4.6a)

it is apparent that the coupling between u and w is strongest for λx/h > 0.5 in cases

A–D. This coupling becomes increasingly scale-invariant with stability as indicated by

a flattening of the γ2
uw curves. A different pattern is observed for γ2

θw at z/h = 0.2 (Fig-

ure 4.6d), with distinct relative maxima that is generally centered around λx/h ≈ 0.5

across all stabilities. For vertical transport of potential temperature at this height,

the impacts from buoyancy are noticeable in the attenuation of γ2
θw with increasing

stability at larger scales (λx/h > 0.5).
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In the middle of the SBL at z/h = 0.5 (Figure 4.6b), u and w are again most strongly

linked at large wavelengths, with the γ2
uw peak moving towards smaller wavelengths

with increasing stability. This transition is noticeable as a peak in case A for λx/h ≈ 20

and tailing off for small wavelengths. In cases B–D this peak becomes wider and

its center shifts towards smaller scales, and cases E–F have distinct peaks around

λx/h ≈ 0.3 that tail off towards higher wavelengths. Cases E–F largely differ in

magnitude, monotonically decreasing across scales with stability. The coupling between

θ and w at this height (Figure 4.6e) follow a similar pattern at large wavelengths, but

for λx/h < 0.2 cases E–F actually demonstrate higher values of γ2
θw than for cases A–D.

These results again reflect how buoyancy negatively affects vertical transport of both

momentum and heat at large scales, but the differences in γ2
uw and γ2

θw at fine scales

allude to differing transport mechanisms.

Finally, near the top of the SBL (but still below the LLJ) at z/h = 0.8, γ2
uw is

generally smaller across all scales than it is closer to the wall (Figure 4.6c). There

are broad peaks in all cases generally centered around λx/h ≈ 0.5 and spanning most

of the considered scales, with overall magnitudes generally decreasing with stability.

This likely is related to the relative lack of turbulent momentum flux near the top

of the SBL (see Figure 4.2d) with strongly increasing local stability as indicated by

Rig (Figure 4.2f). One can identify that γ2
θw > γ2

uw at this level across all cases and

scales (Figure 4.6c,f), although both become increasingly scale-invariant with stability.

It appears in general, however, that temperature is more efficiently transported than

momentum for greater local and global stabilities. This topic is discussed in further

detail in Section 4.4.4.
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Figure 4.6: Cross-sections of LCS from cases A–H at constant heights: (a,d) z/h = 0.2,
(b,e) z/h = 0.5, and (c,f) z/h = 0.8 for (a–c) γ2

uw and (d–f) γ2
θw. Vertical lines at

λx/h = 0.5 are included for reference.

4.4.4 Transport efficiency

In Section 4.4.2 we identified the existence of an outer peak in the premultiplied spec-

trograms in cases A–C, and in Section 4.4.3 found enhanced linear coupling at the

scales of these outer peaks. Previous studies of the convective boundary layer have

shown that turbulent transports of momentum and scalars become increasingly dis-

similar with increasing instability (Li and Bou-Zeid, 2011; Dupont and Patton, 2012;

Patton et al., 2016), and Salesky et al. (2017) were able to connect these differences

to varying modes of convective organization. However, the relationships between mo-

mentum and heat transport in stably-stratified turbulent shear flows remain relatively

unexplored. To study these effects, it is useful to consider the partitioning of turbulent

fluxes into contributions by individual positive and negative fluctuations in either term.

This technique is known as quadrant analysis (also conditional sampling; see Wallace,
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2016, and references therein), and is outlined as follows. Using the resolved vertical

momentum flux 〈ũ′w̃′〉 as an example, we define the four quadrants as

• Quadrant I: ũ′ > 0, w̃′ > 0

• Quadrant II: ũ′ < 0, w̃′ > 0

• Quadrant III: ũ′ < 0, w̃′ < 0

• Quadrant IV: ũ′ > 0, w̃′ < 0

With this definition, quadrants II and IV are respectively referred to as ejections and

sweeps. The quadrants for potential temperature flux are defined likewise by replacing

u with θ, and for stable thermal stratification quadrants II and IV also refer to the

downgradient direction. The turbulent transport efficiencies based on these quadrants

are defined based on the fraction of the total flux occurring in the downgradient direc-

tion (Wyngaard and Moeng, 1992; Li and Bou-Zeid, 2011; Salesky et al., 2017). For

the SBL where ∂Uh/∂z > 0 and ∂Θ/∂z > 0, the transport efficiencies for momentum

and heat are defined (adopting the notation of the present article) as

ηuw =
〈ũ′w̃′〉

〈ũ′w̃′〉II + 〈ũ′w̃′〉IV (4.7)

and

ηθw =
〈θ̃′w̃′〉

〈θ̃′w̃′〉II + 〈θ̃′w̃′〉IV
. (4.8)

Here the superscripts II and IV refer to the individual quadrant contributions to the

total flux from specifically quadrants II and IV. Note that we intentionally neglect the

SGS flux contributions in Equations 4.7 and (4.8) for use with LES output, as the

quadrant assignment for, e.g., τxz is not directly discernible from the signs of ũ′ and

w̃′.
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Figure 4.7: Profiles of transport efficiencies (a) ηuw (Equation 4.7), (b) ηθw (Equa-
tion 4.8), and (c) their ratio ηuw/ηθw for cases A–D. The vertical line in (c) denotes a
ratio of 1.

Profiles of these transport efficiencies along with their ratio are included in Fig-

ure 4.7. Here we choose only to consider cases A–D because with increasing stability,

the fraction of unresolved fluxes throughout the SBL becomes relevant when comparing

the transport efficiencies defined in Equations 4.7 and 4.8 without SGS contributions.

Recall from Figure 4.1b,c that the SGS fluxes comprise an appreciable fraction of the

total fluxes for cases E–F. There is a noticeable dependence on stability for both ηuw

and ηθw that is most apparent in the profile of their ratio (Figure 4.7c). The ratio

ηuw/ηθw is close to unity throughout the SBL for case A, and generally decreases with

stability. This effect is generally due to the combination of decreasing ηuw and increas-

ing ηθw with stability, with case D seemingly affected the strongest for z/h > 0.5. The

momentum transport efficiencies trend towards zero near the top of the SBL at a height

roughly corresponding to the Uh maximum in the LLJ (see Figure 4.2a). Interestingly,

the heat transport efficiencies do not follow the same pattern but instead decrease at

roughly constant rates throughout the depth of the SBL (except for case A, which

decreases more rapidly above z/h > 0.6). Overall, the transport efficiencies in both

momentum and heat are markedly lower than those reported in both observed and

simulated CBLs at weak instability (e.g., Li and Bou-Zeid, 2011; Salesky et al., 2017).

125



Therefore it is apparent that even weak stratification plays a strong role in inhibiting

flow’s ability to vertically redistribute momentum or heat.

These differences in transport efficiencies can be traced to changes in turbulent

motions from each quadrant I–IV as displayed in Figure 4.8. Plotted are the individual

quadrant fractions Qk
uw and Qk

θw, which we define as

Qk
uw =

|〈ũ′w̃′〉k|∑ |〈ũ′w̃′〉k| (4.9)

and

Qk
θw =

|〈θ̃′w̃′〉k|
∑ |〈θ̃′w̃′〉k|

, (4.10)

where k ∈ {I, II, III, IV} represents the individual quadrant contributions to the ab-

solute sum.

Recalling that quadrants II and IV in the momentum flux (Figure 4.8b,d) denote

ejections and sweeps, respectively, it is apparent that motions in these quadrants dom-

inate the total flux profile with quadrant fractions QII
uw, Q

IV
uw > 0.25 for all cases

A–D. The fraction of ejections remains roughly constant with height for each case for

0.1 < z/h < 0.8, whereas the sweeps decrease with height in this range. In upper half of

the SBL, the fraction of ejections decreases with stability, and the fluxes are primarily

compensated for in the countergradient motions of quadrant I (Figure 4.8a). The dif-

ferences in quadrants III and IV (Figure 4.8c,d) are comparatively smaller with changes

in stability, indicating that changes in transport efficiency largely depend on how posi-

tive vertical motions interact with relatively high or low streamwise momentum parcels

within the SBL. At the top of the SBL, all four quadrants reach equilibrium with an

even distribution of Qk
uw = 0.25. The same does not occur for the heat fluxes, however,

with quadrants II and IV dominating the contributions at all levels (Figure 4.8f,h).
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Figure 4.8: Individual quadrant fractions (a–d) Qk
uw (Equation 4.9) and (e–h) Qk

θw

(Equation 4.10) for cases A–D.

Otherwise the general trends in the heat flux quadrant fractions are largely similar to

those of momentum fluxes: ejections (upwelling relatively cold parcels) are relatively

constant with height whereas sweeps decrease with height, and the countergradient

components (Figure 4.8e,g) primarily depend on stability above z/h > 0.5.

It is apparent from the turbulent transfer efficiencies (Figure 4.7) and individual

quadrant fractions (Figure 4.8) that momentum and heat are transported differently

as stability increases. Under weakly stable stratification (case A), our results generally

match those from Li and Bou-Zeid (2011) and Salesky et al. (2017) under weakly

unstable conditions. Therefore it is likely that coherent turbulent structures such as

hairpin vortices exist in case A (Adrian, 2007), but increasing stratification flattens

motions into largely horizontal features. Vertical motions become more localized and

contributions from countergradient fluxes reduce the overall efficiencies in turbulent

transport of both momentum and heat. This is also consistent with the small-scale
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circulations around microfronts in the SBL as observed by Sullivan et al. (2016) from

their high-resolution LES.

4.4.5 Amplitude modulation

To further examine how large-scale motions affect the smaller scales within the SBL,

in this section we perform the decoupling procedure outlined by Mathis et al. (2009a)

and more recently by Salesky and Anderson (2018). The decoupling procedure as

implemented with single-point correlations is summarized as follows.

First we consider two random variables a = a(z; t) and b = b(z; t). We are interested

in computing the extent to which the large scales of signal b at height z modulate the

small-scale amplitude of signal a also at height z. To extract the large-scale components

of these signals al and bl, we lowpass filter each such that al(z; t) = G ∗ a(z; t) where

G is the impulse response function of a sharp spectral filter that is convolved with a.

For the present chapter we define the filter function to have a cutoff wavelength equal

to half the height of the LLJ, λc = zj/2, which generally is in the range separating

the inner and outer peaks in the premultiplied spectrograms (Figure 4.4). We further

extract the small-scale component of each signal as as(z; t) = a(z; t)− al(z; t).

The next step involves a Hilbert transform H, which for the small-scale signal as is

defined as

As(t) = H{as(t)} =
1

π
P
∫ +∞

−∞

as(τ)

t− τ dτ, (4.11)

where P is the Cauchy principal value of the integral for time shift τ . Mathematically,

Equation 4.11 is the convolution integral between as(t) and the quantity 1/πt such

that As(t) = as(t) ∗ (1/πt). From the fundamental properties of the Hilbert transform
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(Mathis et al., 2009a; Bendat and Piersol, 2010), as(t) and As(t) form a complex

analytic signal Z(t) such that

Z(t) = as(t) + iAs(t) = As(t)e
iφs(t) (4.12)

where As(t) and φs(t) are the instantaneous modulus and phase of Z(t) (Sreenivasan,

1985; Tardu, 2008; Mathis et al., 2009a). The modulus A(t) of the analytic signal,

As(t) =
√
a2
s(t) +A2

s(t), (4.13)

represents the envelope of the original signal, E(as). Next, we lowpass filter the enve-

lope of as such that El(as) = G∗E(as), which is the final element required to determine

the amplitude modulation (AM) coefficients.

The AM coefficient in this example are given as the correlation coefficient between

the large-scale component of b and the large-scale component of the envelope of small-

scale a, i.e.

Rbl,as(z) =
〈b′l(z; t)E ′l(as(z; t))〉√
〈b′2l (z; t)〉

√
〈E ′2l (as(z; t))〉

. (4.14)

We note that Equation 4.14 differs from that presented by Salesky and Anderson (2018)

in generality since they considered both two- and one-point statistics, whereas in this

present chapter we consider only one-point AM coefficients (i.e. at the same height).

Their results indicate that the one-point statistics provide a stronger signal in terms

of correlations when compared with the two-point AM coefficients. Since increasing

stability further limits vertical turbulent transport, we would similarly expect two-point

AM coefficients in this application to be small.

For the decoupling procedure to be implemented appropriately, there needs to be

adequate scale separation between the inner and outer peaks (Mathis et al., 2009a).
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Investigation of Figure 4.4 indicates this condition is only met for cases A–C, with case

D (Cr = 0.50 K h−1, h/L = 3.01) on the fringe. For cases E–F, there was no discernable

outer peak in any of the premultiplied spectrograms, and as such application of the

decoupling procedure would not retain physical significance. Herein, we present results

using virtual tower output at 50 Hz frequency from cases A–D with the added caveats

of marginal scale separation existing in case D. In Figure 4.9 we include the AM

coefficients between large-scale ul and wl with small-scale us, ws, θs, (uw)s, and (θw)s.

The AM coefficients are presented for each case as functions of wall-normal distance z/h

to identify the role of global stability on coupling between the large and small scales.

As one can discern from the amplitude modulation by large-scale ul (Figure 4.9a–

e), the largest correlations are found close to the surface, namely z/h < 0.1. In

this region, the values of R are also positive and generally decrease with stability

for a given height. Using the example of Rul,us (Figure 4.9a), a positive correlation

can physically be interpreted as follows: the small-scale velocity us increases due to

modulation by a high-momentum large-scale motion with ul > 0, or decreases due to

modulation by a low-momentum large-scale motion with ul < 0. Conversely, a negative

correlation implies that on average, a high-momentum LSM will act to suppress small-

scale perturbations, and a low-momentum LSM will excite small-scale perturbations.

For the weakly stable case A, Rul,us is positive near the surface, decreases towards

negligible values around z/h ≈ 0.2, and further decreases to Rul,us < 0 in the upper

half of the SBL. This behavior is consistent with both the weakly convective case

presented by Salesky and Anderson (2018) as well as the neutrally-stratified case by

Mathis et al. (2009b). This similarity also holds for all the other AM coefficients for

ul. In terms of overall magnitude for modulations by ul, the largest impact is observed

near the top of the SBL for Rul,(uw)s , which reaches values as low as −0.4 in cases A

and B (Figure 4.9d). Negative coupling between large-scale streamwise velocity and
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small-scale momentum flux at these heights is most likely associated with turbulence

production by the LLJ.

By contrast, the AM coefficients for large-scale vertical velocity wl (Figure 4.9f–

j) are markedly smaller than those for ul across all cases. The only non-negligible

coefficients occur under weak stability (cases A and B) for coupling between wl and

the instantaneous second-order moments (uw)s and (θw)s (Figure 4.9i,j) in the upper

half of the SBL. Even these values are modest, however, and again may likely be

associated with turbulent transport within the LLJ.

There are a few core similarities and differences between the AM coefficients dis-

played in Figure 4.9 versus those presented by Salesky and Anderson (2018) under

varying convective stratifications. First, the coupling with small-scale instantaneous

momentum flux (uw)s is the largest observed among all considered combinations of

parameters in both the CBL and SBL. However, under unstable conditions, the mod-

ulations by large-scale wl were relatively unaffected by global stability, whereas they

are heavily influenced by negative buoyancy in the SBL. With increasing stability, the

results from Figure 4.9 indicate that amplitude modulation occurs due to large-scale

ul but not necessarily for wl, which is also consistent with the notion that buoyancy

suppresses large-scale vertical motions. These differences are explored further by con-

sidering the height-averaged AM coefficients Rbl,as , which is determined for large-scale

parameter bl and small-scale as as

Rbl,as =
1

h

∫ h

0

Rbl,asdz. (4.15)

We note here that as Rbl,as is bounded on the interval [−1, 1], so too is the integrated

value Rbl,as . The resulting values for the same combinations of large- and small-scale

parameters are included in Figure 4.10. There is a clear dependence on stability for
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Figure 4.9: AM coefficients R from cases A–D bin-averaged versus z/h for correlations
with (a–e) ul and (f–j) wl. Small-scale envelopes include (a,f) us, (b,g) ws, (c,h) θs,
(d,i) (uw)s, and (e,j) (θw)s.

the coupling between large-scale ul (Figure 4.10a), whose values decrease nearly mono-

tonically with stability. This decrease is likely due to the diminishing outer peak

with increasing stability observed in Figure 4.4, since large-scale motions in general

carry less energy. Moreover, this perspective makes it clear that amplitude modula-

tion is strongest between ul and (uw)s, especially for weak stability. As observed in

Figure 4.9f–j, the averaged AM coefficients of wl (Figure 4.10b) are far smaller than

those for ul, and each are maximized for case B (Cr = 0.25 K h−1, h/L = 1.71).

This appears to be related to slightly higher AM coefficients in the middle of the SBL

(0.2 < z/h < 0.6) from case B, which may indicate a region of vertical motions that

draw turbulent energy more efficiently from the mean wind profile in case B than case

A. Recall from Figure 4.2a that the profile of Uh demonstrates noticably larger verti-

cal shear in the region 0.2 < z/h < 0.6. Therefore, from the perspective of amplitude

modulation, it appears that the conditions in case B offer a compromise in stability and

shear production of turbulence that results in larger values of averaged AM coefficients

for wl.

In an attempt to better characterize the effects of local stability on amplitude

modulation, included in Figure 4.11 are the AM coefficients plotted against Rig. We
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Figure 4.10: Integrated AM coefficients within the SBL for large-scale (a) ul and (b)
wl from cases A–D.

composited all four simulations A–D and bin-averaged the AM coefficients based on

evenly logarithmically spaced bins in Rig with vertical error bars denoting the stan-

dard deviation of each bin in Figure 4.11. It is apparent that on average, ul positively

correlates with small-scale parameters under weak local stability (Rig < 0.05, Fig-

ure 4.11a–e), and these correlations decrease and eventually become negative under

higher stability (Rig > 0.1). Above the so-called critical Richardson number (Grachev

et al., 2013) of around Rig ≈ 0.2–0.25, the AM coefficients trend towards zero. The

spread in correlations appears to increase with Rig, especially for the small-scale in-

stantaneous second-order moments, although this may be an artifact of fewer points

under weak stability. The correlations with large-scale wl (Figure 4.11f–j) are virtually

zero for Rig > 0.03 across all parameters.

The results following from the decoupling procedure discussed in this section are

consistent with those throughout this chapter: negative buoyancy in the SBL sup-

presses vertical motions at large scales, forcing coherent structures to become increas-

ingly confined to horizontal planes and at increasingly local scales (recall Figure 4.1a).
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Figure 4.11: As in Figure 4.9, but composited across all cases and plotted against
Rig. Bin medians are plotted in blue, and means in black with error bars denoting ±1
standard deviation.

4.4.6 Conditional averaging

Large-scale motions in wall-bounded flows are commonly identified through low- and

high-speed streaks in the logarithmic layer (Adrian, 2007), so it is therefore advan-

tageous to composite snapshots of the flow when these conditions are present. This

process is known as conditional sampling (Antonia, 1981), which we can define for

the streamwise velocity (in notation following Salesky and Anderson, 2020, and with

adapted conventions) as

ũ′†(x, t)

u∗
=

〈
ũ′(x, t)

u∗

∣∣∣∣∣
ũ′(xc, t)

u∗
< −2

σũ′(xc)
u∗

〉

Nα−

, (4.16)

where ũ′†(x, t)/u∗ is the streamwise velocity averaged over Nα− instances where the

flow is below the threshold α− = −2σũ′(xc)/u∗ at the coordinate xc = (x, y, z = 0.05h)

and σũ′(xc) is the standard deviation of velocity fluctuations. Here, (·)† is used to denote

a conditionally-averaged variable.

Conditionally averaged streamwise velocity, vertical velocity, and potential temper-

ature fields based on α− in Equation 4.16 are included in Figure 4.12 for cases A–D.

The effects of stability are immediately apparent in all three averaged fields, with the

134



Figure 4.12: Average fields conditioned on ũ′/u∗ < α− as in Equation 4.16 from simu-
lations (a–c) A, (d–f) B, (g–i) C, and (j–l) D. Conditional fields include (a,d,g,j) ũ′†/u∗,

(b,e,h,k) w̃′†/u∗, and (c,f,i,l) θ̃′†/θ∗.
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extent of the conditionally-averaged coherent structures diminishing in spatial extent

(both horizontally and vertically) with increasing stability. In case A, the streamwise

extent of the central ũ′†/u∗ feature is ≈ 0.4h, which corresponds well to the wavelength

associated with the outer peak in the streamwise velocity spectrogram (Figure 4.4a) of

λx/h ≈ 0.5–0.6. When conditioning on low-speed streaks near the surface, the ũ′†/u∗

minimum extends vertically up to z/h ≈ 0.3 in case A, and is flanked by two condi-

tional high-speed streaks that similarly appear attached to the surface (Figure 4.12a).

These conditional high-speed streaks diminish under increasing stratification until the

conditional low-speed streak becomes localized in space (follow Figure 4.12a,d,g,j se-

quentially). Combined with the evidence from the spectrograms, these results largely

agree with the conceptual model of LSMs by, e.g., Marusic et al. (2010). Interestingly,

the corresponding field of ũ′†/u∗ in case A (Figure 4.12b) features a nearly vertical

plume of vertical velocity directly overlaid with the low-speed streak, which highlights

the dynamics of an ejection (recall Section 4.4.4) in both momentum and temperature

(Figure 4.12c). The correlation between u and θ throughout the SBL is highlighted by

how similarly the ũ′†/u∗ and θ̃′†/θ∗ fields evolve under increasing stability, as they are

nearly identical qualitatively. This again may be related to the presence of tempera-

ture microfronts (Sullivan et al., 2016) within the SBL that concentrate gradients in

velocity and temperature.

The conditionally averaged fields in Figure 4.12 are a visual representation of the

statistical results presented in Sections 4.4.2–4.4.5: buoyancy suppresses large-scale

vertical circulations within SBL flows. Even under weak stability, the updrafts asso-

ciated with ejections do not penetrate far above the surface and are roughly 50% as

wide as their corresponding low-speed streaks and cold air parcels.
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Chapter 5

Summary and Conclusions

5.1 Summary of Findings

Chapters 2–4 of this dissertation sought to investigate stable boundary layer turbu-

lence by taking advantage of recent technological advancements in observational and

simulation capabilities. Specifically, this dissertation sought to answer a series of eight

research questions posed in Chapter 1. This chapter summarizes the findings from

Chapters 2, 3, and 4 in Sections 5.1.1, 5.1.2, and 5.1.3, respectively. Final remarks and

a future outlook are included in Section 5.2.

5.1.1 Gradient-Based Similarity Scaling in the Arctic SBL

To address the gap of high-resolution observations of the SBL, Chapter 2 explores a

novel method of estimating vertical profiles of turbulent statistics through a gradient-

based similarity theory. We do so by synthesizing data from a surface micrometeo-

rological tower, a ground-based Doppler lidar wind profiler, and a vertically sampling

sodar to validate observations by rotary-wing UAS during the ISOBAR18 field cam-

paign. Our primary conclusions from this analysis, as related to questions 1–2 from

Chapter 1, are as follows:
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1. By scaling turbulent statistics in the SBL based on local gradients of potential

temperature and wind speed, we find a strong dependence on Ri that is consis-

tent with the empirical functions defined in Sorbjan (2010, 2017). These results

therefore support our hypothesis that the gradient-based similarity theory holds

when filtering data to include only onshore flow to promote the likelihood of

homogeneity. We also determined the following considerations to be useful in

improving our results:

• filtering observations for outliers by comparing observedRi values with those

predicted by MOST (as in e.g., Grachev et al., 2012),

• calculating vertical gradients analytically (as opposed to finite differencing)

by fitting functions of the form y = a ln(z)2 + b ln(z) + c to the three tower

levels at each timestep.

2. To reasonably apply a similarity framework based on temporally averaged statis-

tics to quasi-instantaneous vertical profiles from a UAS, we have identified the

following key post-processing procedures (in order):

(a) low-pass filtering raw thermodynamic sensor data and aircraft attitude an-

gles,

(b) time-response correction of thermodynamic measurements,

(c) iteratively calculating new estimates of altitude based on hydrostatic bal-

ance,

(d) regridding resulting observations to a consistently spaced vertical grid for

numerical stability in calculating vertical gradients as well as averaging tem-

porally across multiple profiles.
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By following these steps, it is possible to obtain physically representative profiles

of Ri from only measuring ambient temperature and horizontal winds. From this

point, applying the gradient-based similarity scales produced profiles of turbulent

statistics that compare reasonably well to eddy-covariance observations and re-

vealed vertical structures of the SBL consistent with sodar observations, thereby

yielding reasonable confidence in this approach. While these results from UAS

scaling generally support our hypothesis posed earlier, it should be noted that

nonstationary features (e.g., internal gravity waves or turbulence bursting events)

may be improperly represented through temporal averaging of UAS profiles.

5.1.2 Random Errors in Novel Observations of the SBL

As UAS and eddy-covariance observations continue to demonstrate their utility for

studies of the SBL, it is becoming increasingly important to characterize how well

these systems can represent the stably stratified flows at larger scales. In Chapter 3 we

address this issue through the lens of random error analyses of first- and second-order

turbulence moments as estimated with the relaxed filtering method (Dias et al., 2018)

applied to LES output. Our main findings from this chapter in the context of questions

3–5 from Chapter 1 are as follows:

3. Random errors decrease with height for all first-order moments. Errors decrease

with stability for wind speed and direction, but increase for potential tempera-

ture. In general, the errors in second-order moments are smaller than those in

wind speed and potential temperature, but are strongly dependent on stability.

4. The emulated UAS and eddy-covariance profiles approximate the ensemble mean

reasonably well for the cases shown, and the addition of the random error bounds

explicitly demonstrates the representativeness of these profiles. Moreover, the
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emulated eddy-covariance profiles highlight the importance of sufficient averaging

periods towards producing physically meaningful statistics.

5. Dynamically modifying the ascent rate of a UAS flying a vertical profile can be

one method of decreasing the random errors in first-order quantities, especially

close to the surface. Whenever possible, it would be advantageous to couple

UAS operations with other ground-based sensors such as instrumented masts and

remote sensors to better constrain the random errors for z/h < 0.1. Tradeoffs

between acceptable random errors and UAS ascent rates may also be necessary

with considerations for UAS battery life.

5.1.3 Coherent Strucutres in Turbulent SBL Flows

In the past half of a century, investigations of turbulent wall-bounded flows have in-

creasingly focused on the existence and dynamics of coherent structures (e.g., Kovasz-

nay et al., 1970; Brown and Thomas, 1977; Nakagawa and Nezu, 1981; Murlis et al.,

1982; Wark and Nagib, 1991; Adrian et al., 2000; Ganapathisubramani et al., 2003;

Tomkins and Adrian, 2003; Del Álamo et al., 2004; Hutchins and Marusic, 2007a;

Marusic et al., 2010; Salesky and Anderson, 2018). A majority of the investigations

into turbulent coherent structures have been focused on flows under neutral and un-

stable stratification, but recent advances in computational resources and observational

techniques have enabled further studies of stably stratified flows (e.g., Garćıa-Villalba

and del Álamo, 2011; Watanabe et al., 2018, 2019; Atoufi et al., 2021; Gibbs et al., 2022;

Lan et al., 2018, 2019, 2022). Chapter 4 builds upon previous research by simulating

a suite of eight stable atmospheric boundary layers using large-eddy simulations (Stoll

et al., 2020) to examine the existence of turbulent coherent structures along with their
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role in governing SBL dynamics. We analyze these SBL simulations through a synergis-

tic combination of mean profiles, instantaneous cross-sections, premultiplied spectro-

grams, linear coherence spectra, turbulent transport efficiencies, amplitude modulation

coefficients, and conditionally averaged fields. Our key findings as related to questions

6–8 from Chapter 1 are as follows:

6. The outer peak in premultiplied spectrograms at weak stability diminishes with

increasing stability until only an inner peak remains. This is notably different

than under unstable stratification, for which the outer and inner peaks actually

merge at intermediate wavelengths for increasing instability (e.g., Salesky and

Anderson, 2018).

7. For weak stability, the ratio between turbulent transport efficiencies of momen-

tum and heat ηuw/ηθw is nearly unity and is constant with height, which is con-

sistent with observed and simulated CBLs under weak instability (e.g., Li and

Bou-Zeid, 2011; Salesky et al., 2017). For increasing stability, this ratio decreases

owing to a more rapid decrease in momentum transport efficiency versus only a

modest decrease in heat transport. The individual transport efficiencies are also

appreciably smaller in the SBL than those reported in the CBL.

8. In Section 4.4.1, we observe the existence of low- and high-speed streaks at weak

stability, a telltale signature of canonical large-scale motions. These features de-

crease in coherence with increasing stability in conjunction with the attenuation

of outer peaks in the spectrograms (Section 4.4.2). Analysis of linear coupling

between flow parameters across scales in Section 4.4.3 indicates that increas-

ing stratification limits the vertical extent of coherent structures in the SBL.

Without the added flux contributions by large-scale motions, vertical turbulent

transport efficiencies decay for both momentum and heat with increasing stability
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(Section 4.4.4). By decomposing the simulated flows into large and small scales

in Section 4.4.5, we find that under increasing stability, horizontal motions re-

main correlated across scales whereas vertical motions are buoyantly suppressed

throughout the SBL. Finally, by conditionally averaging on the presence of low-

speed streaks near the surface in Section 4.4.6, the resulting vertical cross-sections

of u, w, and θ indicate the clear presence of LSMs under weak stability that are

largely consistent with the conceptual models proposed in the literature (e.g.,

Marusic et al., 2010; Baars et al., 2017; Salesky and Anderson, 2018). Under in-

creasing stratification, however, these coherent structures decrease in streamwise

and vertical extent, and their intensities are attenuated.

5.2 Discussion and Future Outlook

One key takeaway from Chapter 2 is the potential application of gradient-based simi-

larity scaling as a diagnostic tool in future ABL studies. Rotary-wing UAS technology

offer a relatively inexpensive and flexible solution to collecting valuable atmospheric

observations, and the success of gradient-based similarity scaling offers great utility

from a simple thermodynamic sensor payload. For example, using this method as a

diagnostic tool to evaluate the SBL height (estimated from Ri) and the vertical extent

of turbulent exchange around the LLJ could be invaluable to the wind energy industry.

Additionally, this method could provide a possible validation technique for near-surface

mixing in NWP forecasts.

While we presented three case studies for analysis here, further research is needed

to better characterize the strengths and limitations of the application of gradient-

based similarity theory with UAS data. Some conditions that need to be addressed

include the following: flows over heterogeneous and complex terrain, averaging over
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contemporaneous UAS vertical profiles instead of or in addition to temporal averaging,

an objective method to determine SBL height that can help address the validity of

Ls = ` = κz/(1 + κz
λ0

+ κz
λ1

) as a scaling parameter, comparisons with a shear-based

scale set (as opposed to the one presented here based largely on thermal stratification),

near-surface effects of UAS propeller wash on their ability to sample in stably-stratified

flow, comparing observed profiles of turbulent statistics to high-resolution models such

as LES or single-column models, and an evaluation of the representativeness of vertical

UAS profiles compared with the surrounding SBL flow. Additionally, the effects of

coherent structures on the ability of MOST to accurately describe SBL flows is an

ongoing area of investigation. The presence of wall-attached eddies (Townsend, 1976)

within the SBL transitioning to a z-less scaling regime is important for numerical

weather and climate models to properly parameterize. The prediction of turbulent

drag and momentum transport in wall-bounded flows additionally has wide applications

within the fluid dynamics literature.

With the growing success of UAS-based ABL studies, it is imperative to under-

stand how their fine-scale observations represent the surrounding flow. The results

from Chapter 3 offer perspective on this issue through a random error analysis, but it

is also important to recall that random errors are independent from errors arising due

to instrument biases, imprecision, dynamic response, etc. At present, it is not clear

how these error sources compound quantitatively. Since results indicate that random

errors can be of the same order of magnitude as the other sources mentioned, they

should therefore receive careful considerations in the context of NWP, data assimila-

tion, and other general investigations of the SBL. We additionally acknowledge that

only a limited parameter space was considered in this study, which is due in part to
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computational expense. Future work would ideally include iterations over model con-

figurations such as flow over complex terrain and heterogeneous surface conditions to

broaden this parameter space.

Results from Chapter 4 elucidate how vertical motions are unable to penetrate far

beyond their initial levels, resulting in turbulence that is disproportionately horizontal.

Further increasing stability acts to suppress turbulence in all directions, with charac-

teristic motions becoming increasingly local in scale and weak in magnitude. While

these conclusions are consistent with literature, we acknowledge the imperfect nature

of LES as a tool to study stably stratified flows at high Reynolds numbers. Strong sta-

bility results in characteristic motions that are often at or below the model resolution,

which causes the LES to lean heavily on its subgrid model. Depending on the choice

and implementation of one’s SGS model, it is important to consider the relative contri-

butions of SGS fluxes to the total flux profile when simulating the SBL. In Appendix 1

we performed a grid resolution experiment and concluded that the first- and second-

order turbulent moments converged adequately, thus providing reasonable confidence

in the accuracy of the simulated total flux profiles in all cases. That being said, further

studies that better capture the spectrum of turbulent motions under moderate to high

stability are certainly warranted (see discussion in Maronga and Li, 2021).

This dissertation has highlighted how the synergy between observations and simu-

lations can be greater than the sum of their parts. Results from Chapter 2 highlighted

the utility of continual profiling by UAS within the SBL. As demonstrated in Chapter 3,

LES can be a powerful tool for informing future observation-based studies utilizing UAS

within the SBL. In addition to contextualizing observations with spatial and temporal

flow evolutions, simulations can also identify key features within flows that warrant

further investigation. For example, Al-Ghussain and Bailey (2022) developed novel

flight stragies for a fleet of fixed- and rotary-wing UAS to sample coherent structures
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within the ABL. By continuing to leverage these UAS sampling strategies along with

other instrumentation techniques, the existence and behavior of LSMs within the SBL

can continue to be examined in the context of the results presented in Chapter 4.
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Del Álamo, J. C., J. Jiménez, P. Zandonade, and R. D. Moser, 2004: Scaling of the
energy spectra of turbulent channels. Journal of Fluid Mechanics, 500, 135–144,
https://doi.org/10.1017/S002211200300733X.

149



Dias, N. L., W. Brutsaert, and M. L. Wesely, 1995: Z-Less stratification under stable
conditions. Boundary-Layer Meteorology, 75 (1), 175–187, https://doi.org/10.1007/
BF00721048.

Dias, N. L., M. Chamecki, A. Kan, and C. M. P. Okawa, 2004: A Study of Spec-
tra, Structure and Correlation Functions and Their Implications for the Stationar-
ity of Surface-Layer Turbulence. Boundary-Layer Meteorology, 110 (2), 165–189,
https://doi.org/10.1023/A:1026067224894.

Dias, N. L., B. L. Crivellaro, and M. Chamecki, 2018: The Hurst Phenomenon in
Error Estimates Related to Atmospheric Turbulence. Boundary-Layer Meteorology,
168 (3), 387–416, https://doi.org/10.1007/s10546-018-0353-7.

Dougherty, J. P., 1961: The anisotropy of turbulence at the meteor level. Journal
of Atmospheric and Terrestrial Physics, 21 (2), 210–213, https://doi.org/10.1016/
0021-9169(61)90116-7.

Dupont, S., and E. G. Patton, 2012: Momentum and scalar transport within a veg-
etation canopy following atmospheric stability and seasonal canopy changes: The
CHATS experiment. Atmospheric Chemistry and Physics, 12 (13), 5913–5935,
https://doi.org/10.5194/acp-12-5913-2012.

Finkelstein, P. L., and P. F. Sims, 2001: Sampling error in eddy correlation flux mea-
surements. Journal of Geophysical Research: Atmospheres, 106 (D4), 3503–3509,
https://doi.org/10.1029/2000JD900731.

Finnigan, J., 2000: Turbulence in plant canopies. Ann. Rev. Fluid Mech, 32 (1), 519–
571.

Flagg, D. D., and Coauthors, 2018: On the Impact of Unmanned Aerial System Ob-
servations on Numerical Weather Prediction in the Coastal Zone. Mon. Wea. Rev.,
146 (2), 599–622, https://doi.org/10.1175/MWR-D-17-0028.1.

Foken, T., 2006: 50 years of the Monin–Obukhov similarity theory. Boundary-Layer
Meteorol, 119 (3), 431–447, https://doi.org/10.1007/s10546-006-9048-6.

Foken, T., 2008: Micrometeorology. Springer Berlin Heidelberg, https://doi.org/10.
1007/978-3-540-74666-9.

Foken, T., F. Wimmer, M. Mauder, C. Thomas, and C. Liebethal, 2006: Some aspects
of the energy balance closure problem. Atmos Chem and Phys, 6 (2), 3381–3402,
https://doi.org/10.5194/acpd-6-3381-2006.

Fritz, A. M., K. Lapo, A. Freundorfer, T. Linhardt, and C. K. Thomas, 2021: Re-
vealing the Morning Transition in the Mountain Boundary Layer Using Fiber-
Optic Distributed Temperature Sensing. Geophysical Research Letters, 48 (9),
e2020GL092 238, https://doi.org/10.1029/2020GL092238.

150



Ganapathisubramani, B., N. Hutchins, W. T. Hambleton, E. K. Longmire, and I. Maru-
sic, 2005: Investigation of large-scale coherence in a turbulent boundary layer using
two-point correlations. Journal of Fluid Mechanics, 524, 57–80, https://doi.org/
10.1017/S0022112004002277.

Ganapathisubramani, B., E. K. Longmire, and I. Marusic, 2003: Characteristics of
vortex packets in turbulent boundary layers. Journal of Fluid Mechanics, 478, 35–
46, https://doi.org/10.1017/S0022112002003270.
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González-Rocha, J., C. A. Woolsey, C. Sultan, and S. F. J. De Wekker, 2019: Sensing
Wind from Quadrotor Motion. Journal of Guidance, Control, and Dynamics, 42 (4),
836–852, https://doi.org/10.2514/1.G003542.

Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Pers-
son, 2007: SHEBA flux–profile relationships in the stable atmospheric bound-
ary layer. Boundary-Layer Meteorol, 124 (3), 315–333, https://doi.org/10.1007/
s10546-007-9177-6.

Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2008:
Turbulent measurements in the stable atmospheric boundary layer during SHEBA:
ten years after. Acta Geophys, 56 (1), 142–166.

Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson,
2012: Outlier problem in evaluating similarity functions in the stable atmospheric
boundary layer. Boundary-Layer Meteorol, 144 (2), 137–155, https://doi.org/10.
1007/s10546-012-9714-9.

Grachev, A. A., E. L. Andreas, C. W. Fairall, P. S. Guest, and P. O. G. Persson, 2013:
The Critical Richardson Number and Limits of Applicability of Local Similarity

151



Theory in the Stable Boundary Layer. Boundary-Layer Meteorology, 147 (1), 51–
82, https://doi.org/10.1007/s10546-012-9771-0.

Grachev, A. A., C. W. Fairall, P. O. G. Persson, E. L. Andreas, and P. S. Guest, 2005:
Stable boundary-layer scaling regimes: The SHEBA data. Boundary-Layer Meteorol,
116 (2), 201–235, https://doi.org/10.1007/s10546-004-2729-0.

Greene, B. R., 2018: Boundary layer profiling using rotary-wing unmanned aircraft
systems: Filling the atmospheric data gap. M.S. thesis, School of Meteorology, Uni-
versity of Oklahoma, URL https://shareok.org/handle/11244/301374.

Greene, B. R., S. T. Kral, P. B. Chilson, and J. Reuder, 2022: Gradient-Based
Turbulence Estimates from Multicopter Profiles in the Arctic Stable Boundary
Layer. Boundary-Layer Meteorology, 183 (3), 321–353, https://doi.org/10.1007/
s10546-022-00693-x.

Greene, B. R., and S. T. Salesky, 2022: Random Errors in the Stable Boundary Layer:
Implications for Modern Observational Techniques. Journal of the Atmospheric Sci-
ences, -1 (aop), https://doi.org/10.1175/JAS-D-22-0096.1.

Greene, B. R., A. R. Segales, T. M. Bell, E. A. Pillar-Little, and P. B. Chilson, 2019:
Environmental and Sensor Integration Influences on Temperature Measurements by
Rotary-Wing Unmanned Aircraft Systems. Sensors, 19 (6), 1470, https://doi.org/
10.3390/s19061470.

Greene, B. R., A. R. Segales, S. Waugh, S. Duthoit, and P. B. Chilson, 2018: Con-
siderations for temperature sensor placement on rotary-wing unmanned aircraft sys-
tems. Atmospheric Measurement Techniques, 11 (10), 5519–5530, https://doi.org/
10.5194/amt-11-5519-2018.

Grossman, R. L., 1984: Bivariate Conditional Sampling of Moisture Flux over
a Tropical Ocean. Journal of the Atmospheric Sciences, 41 (22), 3238–3254,
https://doi.org/10.1175/1520-0469(1984)041〈3238:BCSOMF〉2.0.CO;2.

Guala, M., S. E. Hommema, and R. J. Adrian, 2006: Large-scale and very-large-
scale motions in turbulent pipe flow. Journal of Fluid Mechanics, 554, 521–542,
https://doi.org/10.1017/S0022112006008871.

Head, M. R., and P. Bandyopadhyay, 1981: New aspects of turbulent boundary-
layer structure. Journal of Fluid Mechanics, 107, 297–338, https://doi.org/10.1017/
S0022112081001791.

Higgins, C. W., M. G. Wing, J. Kelley, C. Sayde, J. Burnett, and H. A. Holmes, 2018:
A high resolution measurement of the morning ABL transition using distributed tem-
perature sensing and an unmanned aircraft system. Environmental Fluid Mechanics,
18 (3), 683–693, https://doi.org/10.1007/s10652-017-9569-1.

152



Hoff, R., and R. Hardesty, 2012: Thermodynamic Profiling Technologies Workshop
Report to the National Science Foundation and the National Weather Service. Tech.
rep., National Center for Atmospheric Research.
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Seas, I. Vilibić, K. Horvath, and J. L. Palau, Eds., Springer International Publishing,
219–233, https://doi.org/10.1007/978-3-030-11958-4.

Smith, E. N., J. G. Gebauer, P. M. Klein, E. Fedorovich, and J. A. Gibbs, 2019: The
Great Plains Low-Level Jet during PECAN: Observed and Simulated Characteristics.
Mon. Wea. Rev., 147 (6), 1845–1869, https://doi.org/10.1175/MWR-D-18-0293.1.

Smith, E. N., and Coauthors, 2021: Evaluation and Applications of Multi-
Instrument Boundary-Layer Thermodynamic Retrievals. Boundary-Layer Meteorol-
ogy, https://doi.org/10.1007/s10546-021-00640-2.

163



Sorbjan, Z., 1986: On similarity in the atmospheric boundary layer. Boundary-Layer
Meteorol, 34 (4), 377–397, https://doi.org/10.1007/BF00120989.

Sorbjan, Z., 1988: Structure of the stably-stratified boundary layer during
the SESAME-1979 experiment. Boundary-Layer Meteorol, 44 (3), 255–266,
https://doi.org/10.1007/BF00116065.

Sorbjan, Z., 2010: Gradient-based scales and similarity laws in the stable boundary
layer. Q J R Meteorol Soc, 136 (650), 1243–1254, https://doi.org/10.1002/qj.638.

Sorbjan, Z., 2017: Assessment of gradient-based similarity functions in the stable
boundary layer derived from a large-eddy simulation. Boundary-Layer Meteorol,
163 (3), 375–392, https://doi.org/10.1007/s10546-017-0234-5.

Sorbjan, Z., and B. B. Balsley, 2008: Microstructure of turbulence in the stably strat-
ified boundary layer. Boundary-Layer Meteorol, 129 (2), 191–210, https://doi.org/
10.1007/s10546-008-9310-1.

Sorbjan, Z., and A. A. Grachev, 2010: An evaluation of the flux–gradient relation-
ship in the stable boundary layer. Boundary-Layer Meteorol, 135 (3), 385–405,
https://doi.org/10.1007/s10546-010-9482-3.

Sreenivasan, K. R., 1985: On the fine-scale intermittency of turbulence. Journal of
Fluid Mechanics, 151, 81–103, https://doi.org/10.1017/S0022112085000878.

Sreenivasan, K. R., A. J. Chambers, and R. A. Antonia, 1978: Accuracy of moments
of velocity and scalar fluctuations in the atmospheric surface layer. Boundary-Layer
Meteorology, 14 (3), 341–359, https://doi.org/10.1007/BF00121044.

Steeneveld, G.-J., 2014: Current challenges in understanding and forecasting sta-
ble boundary layers over land and ice. Frontiers in Environmental Science, 2,
https://doi.org/10.3389/fenvs.2014.00041.

Steeneveld, G. J., T. Mauritsen, E. I. F. de Bruijn, J. Vilà-Guerau de Arellano,
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1 Appendix: Grid Convergence Tests

To investigate the effects of model grid spacing on our LES results, here we present

the results from a series of grid convergence tests. The cases presented in this chapter

were simulated in an 800 × 800 × 400 m3 domain with a numerical grid consisting

of 1923 total points. This was decided upon after first simulating cases A and F at

additional resolutions of 963, 1283, 1603, and 1923 (see Table A.1). The 1283, 1603, and

1923 simulations were first run at a resolution of 963 for 6 physical hours before being

interpolated to their final resolution and continued for another 4 physical hours. The

963 simulation was run for 10 total hours without interpolation.

Mean profiles of relevant quantities are plotted in Figure A.1 for case A and Fig-

ure A.2 for case F, and simulation parameters are outlined in Table A.1. The mean

first-order profiles for case A (Figure A.1a–c) show clear convergence for resolutions

of 1283 and higher, whereas the second-order profiles (Figure A.1d–f) show stronger

convergence at the 1603 and higher resolutions. The 1923 profile of normalized heat

flux resides in between those from the 963 and the 1283, 1603 resolutions, which is most

pronounced for 0.4 < z/h < 0.8, however this spread is ultimately not that large.

The largest spread between resolutions for case A occurs in the normalized stream-

wise velocity variance profiles (Figure A.1f), with the largest difference occurring for

z/h < 0.3. Of note for these profiles is that the dynamic Smagorinsky SGS model is

only written for the deviatoric part of the SGS stress tensor, so the velocity variance

components are determined as 〈u′2〉 = 〈ũ′ũ′〉. Therefore it is not entirely surprising

that the convergence of the variance profiles will depend somewhat on model resolution

as increasing energy can be resolved for increasing resolutions.

Similarly, in case F there is reasonable convergence among all profiles at resolutions

of 1603 and above. The maximum wind speed within the LLJ is slightly decreased
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Table A.1: Mean simulation properties for cases A and F for grid convergence. Here we
include the x and z filter widths ∆x, ∆z, characteristic filter width ∆f = (∆x∆y∆x)

1/3,
timestep ∆t, and other parameters as in Table 3.1.

Resolution ∆x ∆z ∆f ∆t h L h/L u∗0 zj/h

Case - (m) (m) (m) (s) (m) (m) - (m s−1) -

A 963 8.33 4.17 6.61 0.04 175 93.0 1.88 0.239 0.926

1283 6.25 3.12 4.96 0.02 167 91.2 1.84 0.232 0.950

1603 5.00 2.50 3.97 0.02 166 93.0 1.78 0.233 0.950

1923 4.17 2.08 3.31 0.02 160 93.5 1.71 0.231 0.976

F 963 8.33 4.17 6.61 0.04 99.7 7.64 13.1 0.177 0.908

1283 6.25 3.12 4.96 0.02 91.2 7.61 12.0 0.174 0.915

1603 5.00 2.50 3.97 0.02 83.4 7.47 11.2 0.170 0.950

1923 4.17 2.08 3.31 0.02 80.5 7.28 11.1 0.166 0.924

at the 963 resolution, but this appears to converge on a similar value for increasing

resolutions. The 963 potential temperature profile in Figure A.2c appears warmer than

the others, possibly due to the the limitations of the LES wall model at this relatively

coarse resolution and low-level temperature gradients. The momentum and heat flux

profiles demonstrate little to no dependence on resolution, which is a testament to the

ability of the LASD SGS model to simulate the subgrid contributions of these terms

(Bou-Zeid et al., 2005). Finally, the streamwise velocity variance profiles vary the most

out of the parameters presented here, although the relatively small differences between

the 1603 and 1923 resolutions imply a reasonable convergence.

Due to the relevance of the integral lengthscale to this chapter, in Figure A.3 are

the resulting profiles of integral scales evaluated at each grid resolution for simulations

A and F. For case A, in the lower half of the SBL all of the integral scales converge

reasonably well at all resolutions. In the upper half of the SBL, there is some divergence
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in particular for Lu and Lθ, where it is observed that higher resolutions lead to larger

integral lengthscales. This can perhaps be explained by the ability of the LES to

resolve turbulence produced below the LLJ at finer and finer scales, which will lead

to an enhancement in coherence. In case F it is notable that the integral scales grow

slowly with increasing resolution for all parameters at all heights, and especially for Lw
(Figure A.3e) which follows fairly closely with the LES filter width for each resolution

considered. This is evidence that the LES filter extends towards the peak in resolved

spectral energy density, and the SGS model is heavily relied upon to model vertical

transport at high stabilities. It therefore makes sense that the integral scales for case F

tend to depend on LES grid resolution, as a finer grid will be able to explicitly resolve

additional energy in the flow.

Overall it is apparent that the 1923 simulations provide a sufficient level of resolution

for this study of random errors within the SBL. Although studies simulating the SBL

with LES have been conducted at resolutions on the order of 10243 (e.g., Sullivan et al.,

2016; Maronga and Li, 2021), this type of model configuration is unobtainable with our

current computational resources. Moreover, recent literature still reports a sensitivity

to grid spacing even down to a spacing of 0.39 m wherein SBL heights continually

decrease without a proper convergence (Sullivan et al., 2016; Maronga et al., 2020;

Dai et al., 2021; Maronga and Li, 2021). Although Maronga and Li (2021) recently

recommend simulating closer to 40 physical hours instead of 10 as in studies based

off the GABLS project (Beare et al., 2006; Huang and Bou-Zeid, 2013), this is also

computationally prohibitive. Regardless, for our study we believe the 1923 resolution

with ∆f = 3.31 m, when coupled with the LASD SGS model, is sufficient.

170



0 2 4 6 8 10 12
〈uh〉 [m s−1]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

z/
h

(a)

230 240 250 260 270 280
〈α〉 [deg]

(b)

263 264 265 266
〈θ〉 [K]

(c)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
u2
∗/u

2
∗0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

z/
h

(d)

963 (∆f = 6.61 m)
1283 (∆f = 4.96 m)
1603 (∆f = 3.97 m)
1923 (∆f = 3.31 m)

−1.2 −1.0 −0.8 −0.6 −0.4 −0.2 0.0
〈θ′w′〉/u∗0θ∗0

(e)

0 1 2 3 4 5
〈u′2〉/u2

∗0

(f)

Figure A.1: Grid sensitivity for case A run at four different resolutions. Parameters
are averaged in the xy plane over the last physical hour of simulation. (a) wind speed,
(b) wind direction, (c) potential temperature, (d) normalized momentum flux, (e)
normalized heat flux, and (f) normalized streamwise velocity variance.
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Figure A.2: Same as in Figure A.1 but for case F.
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Figure A.3: Grid sensitivity for cases A (top row) and F (bottom row). Plotted
are integral lengthscales of (a,d) streamwise velocity, (b,e) vertical velocity, and (c,f)
potential temperature.
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