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Abstract

Deep convection that overshoots the tropopause have been recognized for its relevance

to stratospheric composition and prolific severe weather production for decades. No-

tably, tropopause-penetrating storms can inject cloud ice above the tropopause and the

broader storm anvil, producing ice clouds called above-anvil cirrus plumes (AACPs).

When transported into the upper troposphere and lower stratosphere (UTLS), the

convectively-influenced air can modify the surrounding environment, resulting in short-

and long-term impacts. Supercell storms, argued to be responsible for the majority of

U.S. severe hail reports (especially for the largest sizes), also frequently produce AACPs

due to the strong updrafts needed for supercell maintenance. However, U.S. hail re-

port databases are plagued by serious limitations, including biases in reported sizes,

occurrence time, and location, which has led to the development of various radar-based

estimates of severe hail occurrence and hail size. Many established relationships be-

tween radar-observed storm characteristics and severe hail occurrence have been found

using data for few storms and in isolation from other radar metrics. In addition to pre-

vious work being spatially and temporally limited, recent improvements to radar-based

metrics warrant detailed comparisons between original and updated parameters.

While radar-based analyses of storm and associated severe report characteristics

have a rich history, much less work has been done on these aspects of explicitly AACP-

producing storms and the AACP itself. Recent studies of AACPs have shown large

variability in their satellite-observed features, particularly in infrared (IR) imagery, al-

though many of the causes remain unknown. The typical altitude range in relation to

the storm anvil and tropopause height, in situ trace gas observations, and stratospheric

hydration variability are all aspects of AACPs that have little-to-no existing research.

The recently conducted NASA Earth Ventures Suborbital field project, Dynamics and

Chemistry of the Summer Stratosphere (DCOTSS), was specifically designed to col-

lect in situ observations and multi-satellite imagery of convectively-injected material

xv



(i.e. AACPs) in the stratosphere to better understand their effects on the chemistry,

dynamics, and radiative features that are characteristic of the upper troposphere and

lower stratosphere (UTLS). By leveraging the different viewing geometry between two

satellites simultaneously observing one region, stereoscopy (stereo) can estimate cloud-

top heights for AACPs and other cloud features. Although a few studies have utilized

stereo for older generations of satellites, there lacks a focused effort to update stereo

methods for next-generation satellites.

Motivated by the vast knowledge gaps in AACP understanding, associated climate

impacts, existing challenges for objective severe hail identification, and recent DCOTSS

observations of AACPs, the four projects detailed herein aim to better understand deep,

severe convective storms on climatological timescales and their potential impacts on the

climate by utilizing long data records and/or recent, novel observations. The first study

aims to quantify severe hail fall characteristics during a markedly longer time period

than previous studies, using both radar observations and reanalysis data, and found

that an environmentally-filtered radar-based U.S. hail climatology provided the greatest

agreement with reports. The second study evaluates the reanalysis-represented envi-

ronments of radar-identified supercell populations with different maximum reported

hail size, and found that the greatest differences exist in the wind speed perpendicular

to storm motion. The third study compares warm and cold AACP-producing storms

(based on IR signatures) using ground-based radar observations and reanalysis data

to better understand the different AACP IR signatures. This study found that cold

AACPs tend to occur in tropical environments (higher, cold-point tropopauses), while

warm AACPs tend to occur in mid-latitude environments (lower tropopauses and an

isothermal layer in the lower stratosphere). Storm-relative environmental characteris-

tics indicate that cold AACPs are predominantly tropospheric phenomena, while warm

AACPs reside in the lower stratosphere. The fourth, and final study applies a recently

developed stereoscopic cloud-top height retrieval algorithm for modern GOES visible

imagery to DCOTSS research flight 13 (RF13) on 31 May 2022 for comparison with

in situ water vapor observations. Preliminary stereo results show moderate agreement

with various observational datasets but concerning nonphysical features.

xvi



Overall, these studies provide further evidence that radar-based hail identification

and size estimation can benefit from incorporating environmental information, partic-

ularly in a storm-relative framework. These studies additionally highlight the impor-

tance of understanding trace gas composition and satellite observations of AACPs to

accurately characterize their impacts on the UTLS.
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Chapter 1

Introduction

Deep convection that overshoots the tropopause (or some other atmospheric stable

layer, e.g., the equilibrium level or level of neutral buoyancy) can inject cloud ice above

said layer and the broader storm anvil, producing ice clouds called above-anvil cirrus

plumes (AACPs; Setvák and Doswell III, 1991; Wang, 2003; Levizzani and Setvák,

1996; Setvák et al., 2010; Homeyer et al., 2017). When transported into the upper

troposphere and lower stratosphere (UTLS), the convectively-influenced air can modify

the surrounding environment, resulting in short- and long-term impacts (Fujita, 1982;

Holton et al., 1995; Wang, 2003; Stohl et al., 2003; Mullendore et al., 2005; Gettelman

et al., 2011; Wang et al., 2016; Anderson et al., 2017; Seguchi et al., 2019; Smith, 2021;

Zou et al., 2021). Additionally, tropopause-penetrating storms (e.g., Adler and Fenn,

1981; Bedka et al., 2015; Sandmæl et al., 2019), especially those that produce AACPs

(Fujita, 1982; McCann, 1983; Brunner et al., 2007; Setvák et al., 2010, 2013; Bedka

et al., 2015; Homeyer et al., 2017; Bedka et al., 2018b; Kunz et al., 2018; Mecikalski

et al., 2021) have been recognized as prolific severe weather producers, and their utility

for severe weather identification and forecasting has been documented for decades.

Bedka et al. (2018b) evaluated the relationship between supercell and AACP-producing

storms, finding that the majority of supercell storms produce AACPs; this is not

surprising given the strong updrafts necessary for supercell and AACP development.

Further, supercells are argued to be responsible for a majority of severe hail observed

in the U.S., especially for the largest sizes (≥2-in. (5 cm) maximum dimension; e.g.,
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Thompson et al., 2003; Duda and Jr., 2010; Blair et al., 2011; Smith et al., 2012; Blair

et al., 2017; Murphy et al., 2022).

Motivated by the vast knowledge gaps in AACP understanding, associated climate

impacts, existing challenges for objective severe hail identification, and recent field

campaign observations of AACPs, each of the four projects discussed herein focus on

various aspects of hail, AACPs, and their storm and environmental characteristics.

The objectives of this work are to better understand severe overshooting convective

storms on climatological timescales, increase our knowledge of AACPs, and gain more

insight into the potential impacts of such storms on the UTLS climate and at the

surface. These goals are achieved by utilizing long records of numerous data sources

and recent, novel observations and associated approaches.

1.1 Hail Occurrence: Remote Sensing and Storm

Environments

Severe hail accounts for the vast majority of severe weather-induced property loss in

the United States (U.S.), and supercell storms (those with mid-level rotation broadly

collocated with their updraft) are argued to be responsible for a majority of severe

hail observed in the U.S., especially for the largest sizes (≥2-in. (5 cm) maximum

dimension; e.g., Thompson et al., 2003; Duda and Jr., 2010; Blair et al., 2011; Smith

et al., 2012; Blair et al., 2017; Murphy et al., 2022). However, our understanding of hail-

producing storms and spatiotemporal variability of hail fall is limited due to numerous

documented biases associated with hail reports (Kelly et al., 1985; Bardsley, 1990; Witt

et al., 1998b; Fraile et al., 1992; Changnon, 1999; Schaefer et al., 2004; Doswell et al.,

2005; Trapp et al., 2006; Ortega et al., 2009; Allen and Tippett, 2015; Blair et al.,

2017; Allen et al., 2017; Witt et al., 2018; Murillo and Homeyer, 2019). There are a
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variety of factors that can introduce errors to hail reports, including (but not limited to)

population density near a storm, concurrent weather hazards, and the use of reference

objects to estimate size (Kelly et al., 1985; Allen and Tippett, 2015; Allen et al., 2017;

Witt et al., 2018). The largest and most quality-controlled U.S. hail report database

produced by the Storm Prediction Center (SPC) is also limited by an exclusion of

small hail (sizes below 19.05 mm [0.75 in.]) and an overall under-representation of

severe hail frequency (Cecil, 2009; Ortega et al., 2009; Allen et al., 2015b; Blair et al.,

2017). These limitations prevent testing of objective hail identification methods for

the full range of possible hail sizes, which has motivated multiple efforts to fill this

data gap (Ortega et al., 2009; Elmore et al., 2014). For a more extensive summary of

the myriad limitations and errors associated with hail reports, see Allen and Tippett

(2015).

Despite these limitations, hail reports provide one of the most confident ground-

truths of hail fall. Thus, numerous studies have evaluated U.S. hail reports from

different sources and time periods to establish U.S. spatiotemporal distributions of hail

occurrence and size (e.g., Allen and Tippett (2015) and references therein; Changnon,

1999; Allen et al., 2015a,b; Childs and Schumacher, 2019). Overall, these studies have

found a hail fall frequency maximum in the U.S. Great Plains, which shifts northward

as Summer progresses, and a secondary frequency maximum in the Southeast U.S.

(SEUS).

Alternative approaches to better understand and estimate severe hail occurrence,

maximum hail size, and broader storm characteristics have increased during the past

several decades, utilizing various remote sensing tools and statistical models driven by

environmental parameters. Radar observations have been the primary remote-sensing

tool used to study severe hail events and storms. Early work using single-polarization

radar revealed a broad relationship between radar reflectivity (Z, which depends on
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particle concentration and size) and hail size, as well as the maximum altitude (absolute

and/or above the environmental 0◦C level) reached by high-Z (≥45 dBZ) radar echoes

(e.g., Donaldson Jr., 1958, 1959; Geotis, 1963; Mather et al., 1976; Dye and Martner,

1978; Waldvogel et al., 1979). Although broad relationships exist between Z and

hail size, there is no direct relationship due to complex backscattering behavior that

depends on radar wavelength and hail size, which results from hail size approaching

or exceeding the radar wavelength. These effects are often referred to as resonance

scattering, which is unfortunately common in volumes containing severe hail (e.g.,

Herman and Battan, 1961; Atlas and Wexler, 1963; Bohren and Battan, 1982; Aydin

et al., 1986; Kumjian et al., 2018; Jiang et al., 2019). Beginning shortly after the

establishment of operational radar networks in the U.S. and elsewhere, various metrics

involving vertical integration of Z have since been used for hail size estimation, with

varying success.

A commonly used metric to estimate hail occurrence and size from radar is the

single-polarization parameter “maximum expected size of hail” (MESH) from Witt

et al. (1998a). Briefly, MESH represents the vertically integrated Z in a storm to

estimate the presence and depth of hydrometeors that have the expected scattering

characteristics of hail stones. Previous studies have used MESH as the main hail

identification method and compared their results to existing hail reports (Cintineo

et al., 2012; Nisi et al., 2016b; Allen et al., 2017; Schlie et al., 2018; Ortega, 2018; Nisi

et al., 2016a; Murillo and Homeyer, 2019; Tang et al., 2019; Allen et al., 2020; Warren

et al., 2020). For those focusing on U.S. hail fall patterns, a notable difference is found

between the radar-based and report-based assessments; although most features are

similar between the two methods, a local maximum in reports is seen the SEUS that is

not replicated in radar-based analyses. Overall, key MESH-related results from several

of these studies indicate that the parameter does not produce reliable hail size estimates
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(e.g., see detailed analysis by Bunkers and Smith (2013), Ortega (2018), and Murillo

and Homeyer (2019)), and is more skillful at identifying hail occurrence rather than hail

size. Additionally, most studies using MESH have been carried out over a limited time

period, lack extensive comparison with report distributions, or (in some cases) have

only leveraged MESH as a secondary source of identification. Murillo and Homeyer

(2019) recently evaluated numerous hail identification parameters to assess their ability

to discriminate between severe hail producing and non-severe hail producing storms

and found the original MESH, in addition to two revised MESH calculations, produced

skillful storm discrimination. The revised MESH utilized a significantly larger number

of reports than that used in the original MESH configuration Witt et al. (1998a) and

could be utilized to assess broader spatiotemporal hail frequency in the U.S.

Kinematic techniques for estimating hail size were developed once Doppler (i.e.

radial) radar velocity observations became operationally available. Studies often com-

bine Doppler velocities with derived parameters, most frequently including storm-top

divergence (e.g., Witt and Nelson, 1991; Boustead, 2008) and rotation within the hail

growth region (between the 0◦C and −30◦C isotherms) inferred from azimuthal shear

(e.g., Witt et al., 1998a; Blair et al., 2011; Witt et al., 2018; Gutierrez and Kumjian,

2021). These two metrics in particular, storm-top divergence and mid-altitude rota-

tion, have shown to increase in magnitude with increasing hail size, which demonstrate

a stronger updraft and mesocyclone, respectively, for supercells. These relationships

are also broadly consistent with the strong updrafts required to support hailstone res-

idence time in the hail growth region, especially for increasingly large hailstones (e.g.,

Johnson and Sugden, 2014; Gutierrez and Kumjian, 2021), and greater likelihood of

favorable pathways for growth (e.g., Kumjian et al., 2021). However, despite radar-

derived hail identification likely being the most documented of the hail report proxy

methods, our knowledge regarding the best practices for objective hail identification,
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and especially, size estimation using radar observations is still limited (Allen et al.,

2020). This is ultimately due to the aforementioned complexity of observing hail with

radar and the lack of a fully representative hail report database.

Satellite observations have also been leveraged for hail assessments, particularly

useful for global hail climatology. Several studies have established hail occurrence

metrics utilizing space-borne passive microwave imagery (e.g., Cecil, 2009; Cecil and

Blankenship, 2012; Ferraro et al., 2015; Punge et al., 2017; Ni et al., 2017; Mroz et al.,

2017, 2018; Bedka et al., 2018a; Bruick et al., 2019). Earlier work found similar distri-

butions to those diagnosed from reports and radar over the U.S., though they noted

that their methods likely produced overestimates in tropical regions and underesti-

mates in mid-latitudes globally. These biases were a result of differing tropopause

heights between the two environmental regimes. Mid-latitude overshooting convective

storms often reside in the warmer, stratospheric environment as opposed to the colder,

upper troposphere. More recent studies have made efforts to mitigate these biases

and result in more consistent results with other hail climatologies (Bang and Cecil,

2019). Although satellite observations display realized convection and typically fea-

ture large spatial domains, the low temporal and horizontal resolutions, coupled with

the 2-dimensional nature of microwave imagery make it difficult to discern vertical

and small-scale characteristics of storms in these data. It is also difficult to establish

a long-term record of satellite imagery due to the unique challenges associated with

space-borne platforms. Specifically, it is uncertain how long a given platform remains

operational, and there are often measurement differences between successive observing

platforms.

Supercell physics and dynamics conducive to severe hail growth have been increas-

ingly studied with numerical models over the past several decades. Such studies often

leverage convection-resolving simulations (real or ideal) of supercell storms and/or a
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trajectory model to elucidate hail growth pathways, source locations of hail embryos,

and key dynamical features supporting hail growth to various sizes (e.g., Kumjian and

Lombardo, 2020, and references therein). Recent findings include the importance of

the vertical profile of storm-relative wind, which significantly affects the updraft width

and mesocyclone structure that can lead to increased maximum hail size (e.g., Nel-

son, 1983; Dennis and Kumjian, 2017; Peters et al., 2019; Kumjian and Lombardo,

2020; Kumjian et al., 2021), and a more nuanced dependence of maximum hail size on

convective available potential energy (CAPE) (Lin and Kumjian, 2022).

Due to the limitations of previously mentioned direct and indirect methods of hail

identification, environmental parameters from proximity soundings and/or reanalyses

have been leveraged as a proxy for hail occurrence and in combination with severe

hail reports. Environments with favorable ingredients for convective storms and hail

reaching the surface include various combinations of vertical wind shear, storm-relative

winds, storm-relative helicity (SRH), and CAPE (e.g., Johnson and Sugden, 2014; Allen

et al., 2015b; Barrett and Henley, 2015; Mohr et al., 2015a,b; Prein and Holland, 2018;

Gensini and Tippett, 2019; Tang et al., 2019; Gutierrez and Kumjian, 2021). Allen et al.

(2015b) developed the first model to predict hail frequency over the U.S. by combining

convective precipitation, 0–3 km SRH, 180 hPa mixed-layer CAPE, and mean-specific

humidity in the lowest 90 hPa of the atmosphere as hail identifiers and showed similar

patterns to those seen in reports, albeit with some timing errors in the seasonal cycle. A

more recent study by Prein and Holland (2018) focused on observable environmental

parameters, including most unstable CAPE, melting level altitude, 0–3 km vertical

wind shear and 0–3 km SRH. The overall U.S. spatial distribution and seasonal cycle

of observed hail frequency was reproduced, however the SEUS and regions on the lee

side of mountains were biased low, and the Central Plains was biased high.
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Additionally, these studies have found a general increase in maximum reported hail

size and CAPE (Edwards and Thompson, 1998; Johnson and Sugden, 2014; Taszarek

et al., 2020), though most of the environmental parameters studied display significant

overlap for adjacent hail-size categories. Reporting limitations and biases have been

an important constraint on progress in understanding relationships between observed

hail size and storm environments (e.g., Allen and Tippett, 2015; Blair et al., 2017).

Moreover, the vast majority (if not all) of the extensive environmental analyses in

past work have focused on relating bulk metrics such as CAPE, mid-level temperature

lapse rates, 0–6 km wind shear, 0–3 km SRH, and others to observed severe hail size.

Some studies leverage a combination of these and related fixed-layer measurements

as composite parameters to assess hail potential, which have been more successful

than evaluation of the bulk metrics alone (e.g., Johnson and Sugden, 2014). Thus,

improved understanding of hail size and environment relationships may be possible

with more comprehensive analysis of atmospheric profiles near well-characterized se-

vere hail storms. Compared to satellite-based approaches, hail distributions (in both

size and geographic location) derived from environmental proxies benefit from the sim-

ilarly large spatial domains with the added benefit of higher temporal resolution. One

unique limitation, however, is the lack of known realization of these environments (i.e.,

how often these environments result in severe hail occurrence and what their hail size

maxima would be).

1.2 Overshooting Storm Tops: Characteristics and

Environments

AACPs are primarily identified in visible (VIS) satellite imagery as a region within a

storm anvil that is relatively smoother in texture when compared to the broader anvil
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and casts a shadow on the underlying anvil, especially near sunset (Figs. 3.1a & 3.1b).

Often, but not always, the VIS feature is co-located with warm brightness temperature

anomalies in infrared (IR) imagery that are surrounded by colder brightness tempera-

ture anomalies characteristic of the broader storm anvil (Fig. 3.1c), a feature commonly

referred to as the enhanced- or cold- U, V, or ring (Adler et al., 1983; McCann, 1983;

Brunner et al., 2007; Setvák et al., 2010; Púčik et al., 2013; Homeyer, 2014). Most prior

studies focus on such warm AACPs identified in IR imagery, occasionally supplemented

with confirmation from VIS imagery.

In these studies, warm AACPs have been demonstrated to represent stratospheric

injection of cloud ice, which then sublimates into water vapor. This convective UTLS

transport can heavily influence the chemistry, dynamics, and radiative properties,

thereby significantly impacting associated climate forcing (Fujita, 1982; Holton et al.,

1995; Wang, 2003; Stohl et al., 2003; Mullendore et al., 2005; Gettelman et al., 2011;

Wang et al., 2016; Anderson et al., 2017; Seguchi et al., 2019; Smith, 2021; Zou et al.,

2021). In particular, anticyclonic circulation in summer over North America can trap

convectively-transported air for long periods, potentially exacerbating their climate im-

pacts (Solomon et al., 2016; Cooney et al., 2018). The recently conducted NASA Earth

Ventures Suborbital field project, Dynamics and Chemistry of the Summer Strato-

sphere (DCOTSS), was specifically designed to sample convectively-injected material

(i.e. AACPs) in the stratosphere to better understand their effects on the chemistry,

dynamics, and radiative features that are characteristic of the UTLS. The NASA ER-2

high-altitude research aircraft, fitted with numerous instruments that measure trace

gases and aerosol properties, was used to collect in situ observations up to approxi-

mately 69,500 feet. Based in Salina, KS, the project consisted of 23 research flights

during the Summers of 2021 and 2022.
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Satellite observations have also been routinely used to determine the altitude of

various cloud tops, with particular focus on tropopause-overshooting storm tops (e.g.,

Berendes et al., 2008; Lindsey and Grasso, 2008; Rosenfeld et al., 2008; Bedka et al.,

2010; Griffin et al., 2016). Single-satellite, cloud-top retrievals based on VIS, however,

are less reliable at sunrise/sunset, miss frequent nighttime tropopause-overshooting

storms, and do not consider convectively-modified tropopause characteristics (Bedka

et al., 2010). Conversely, single-satellite IR-derived methods are more common, but

several challenges hinder their wide-spread applicability. In addition to evidence sug-

gesting that there is no direct relationship between IR brightness temperature and

cloud-top height (Setvák et al., 2013), IR-based cloud-top height retrievals are subject

to lower-than-VIS spatial resolution, variable cloud radiative properties, and inaccu-

rate representations of cloud tops above the tropopause (due to continued cloud-top

cooling or mixing). Even if the full environmental temperature profile and cloud emis-

sivity were known, large deviations from thermodynamic equilibrium surrounding deep

convection limit altitude accuracy (Hasler, 1981).

To minimize the limitations presented by single-satellite IR and VIS techniques,

stereoscopy (stereo) leverages the viewing geometry of two satellites simultaneously

observing the same region to retrieve cloud top heights. Early stereo analyses typically

coupled geostationary and polar-orbiting satellite platforms and were thus constrained

by short observing periods and coarse spatial resolution (Ondrejka and Conover, 1966;

Kikuchi and Kasai, 1968; Shenk et al., 1975; Hasler, 1981). As more geostationary

satellites became operational, particularly those tasked with viewing the same region,

stereo cloud-top height retrievals leveraged the increased spatiotemporal resolution

(Hasler et al., 1983; Wylie et al., 1998; Minzner et al., 1978; Seiz et al., 2007; Lee

et al., 2020; Lee and Shin, 2021; Liu et al., 2021). The increased resolution motivated

the development of automated techniques, as opposed to the manual binocular viewer
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approach, for retrieving stereo cloud-top heights (Hasler et al., 1991). To date, the use

of stereo to retrieve cloud top heights from observations of AACP-producing storms

has been rather limited (Fujita, 1982; Mack et al., 1983).

While much of the early work on AACPs documented their satellite characteristics,

recent efforts have focused on developing an understanding of mechanisms responsible

for their formation. Numerous high-resolution numerical model simulations, comple-

mented by observational analyses, have revealed that frequent gravity wave breaking

borne out of strong storm-relative wind in the lower stratosphere in and near the over-

shooting top is responsible for AACP formation (Wang, 2003, 2007; Luderer et al.,

2007; Wang et al., 2016; Homeyer et al., 2017; O’Neill et al., 2021). Earlier work from

Wang (2007) identified two distinct AACP modes in numerical simulations that both

formed as a result of gravity wave breaking. Recent very high-resolution simulations by

O’Neill et al. (2021) emphasized that the continuous gravity wave breaking responsible

for AACPs is accomplished through the establishment of a hydraulic jump downstream

of the overshooting top. Although AACP formation through gravity wave breaking has

been demonstrated repeatedly in existing work, the presence of two (or more) distinct

AACP modes has not been routinely observed or documented in AACP studies.

Despite improved understanding of AACP formation and their significance to weat-

her and climate, there are characteristics of AACPs that remain poorly understood.

One such characteristic is that some AACPs exhibit typical features in VIS imagery

while appearing cold (or colder) than the broader storm top (Figs. 3.1b & 3.1d). Heyms-

field et al. (1983) attributed the warm region near the overshoot to subsidence from

the descending portion of gravity wave breaking, which was also suggested by Fujita

(1974, 1982), potentially indicating different formation mechanisms for warm and cold

AACPs. Alternatively, other studies have suggested that these IR brightness temper-

ature differences could instead be evidence of unique microphysics in AACPs.
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Setvák and Doswell III (1991), Levizzani and Setvák (1996), Rosenfeld et al. (2008),

Setvák et al. (2013), and Shou et al. (2019) utilized polar-orbiting satellite observa-

tions to show that AACPs often have unique microphysical signatures evidenced by

higher radiance in shortwave IR imagery. However, it is exceedingly rare that these

platforms encounter AACPs, as they do not sample over land during peak convection

and overshooting periods. For example, Setvák et al. (2013) utilized observations from

NASA’s A-Train constellation to find global instances where AACPs were sampled and

documented only five cases from 2006-2010. Rosenfeld et al. (2008) and Lindsey et al.

(2006) leveraged geostationary satellite observations to assess cloud-top microphysical

structures given their higher temporal sampling for a given spatial domain, but did not

focus on AACPs. Prior to DCOTSS, in situ trace gas observations of AACPs had only

recently been documented in Smith et al. (2017), highlighting elevated water vapor

concentrations in the stratosphere from an aircraft observation during 2013 over the

U.S. As such, these different microphysical characteristics could have implications for

AACP temperature (e.g., due to differing optical thickness of AACPs).

Recently, Bedka et al. (2018b) acknowledged the greater complexity of AACP IR

signatures, provided several examples, discussed potential explanations based on exist-

ing literature, and presented several hypotheses for variable AACP IR brightness tem-

perature: 1) sedimentation of large ice crystals that reduces the cloud optical depth,

allowing a colder tropospheric anvil beneath the AACP to dominate the radiative sig-

nal; 2) AACP injection into nearly isothermal UTLS environments or above-anvil layers

that are cooling with height; 3) AACP subsidence into layers with colder temperature;

and/or 4) cooling of the local UTLS temperature through AACP sublimation. These

hypotheses from Bedka et al. (2018b), as well as potential alternative explanations for

variable IR signatures, have not been evaluated to date.
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Although AACP cloud-top heights would be valuable when investigating their

unique IR signatures and depth of stratospheric hydration, it has historically been

difficult to accurately estimate cloud heights given the aforementioned complexities of

AACP appearance, frequent nocturnal overshooting, previous IR/VIS capabilities, and

limited methods of validation. The majority of existing work developed stereoscopic

algorithms for older NOAA/NASA Geostationary Operational Environmental Satel-

lite (GOES) platforms (e.g., Wylie et al., 1998) and other new geostationary satellites

(e.g., Merucci et al., 2016; Prata and Lynch, 2019; Lee et al., 2020; Lee and Shin, 2021;

Liu et al., 2021). Only very recent work from Young (2021), built on similar framework

established in (Hasler et al., 1991), has documented stereoscopic techniques capable of

retrieving cloud-top heights from the newest generation of GOES platforms. Even with

updated stereo techniques, the infrequency of very deep overshooting convection (≥2

km into the stratosphere occurs a handful of times a year (Cooney et al., 2018)) com-

bined with infrequent overlapping GOES–East and GOES–West (currently GOES-16

and GOES-17, respectively) domains results in exceedingly rare opportunities for their

combined evaluation. However, two of the research flights during the DCOTSS field

campaign sampled intense recent convection in a region of overlapping GOES-16 and

GOES-17 mesoscale sectors: research flight 13 on 31 May 2022 (RF13) and research

flight 19 on 24 June 2022 (RF19). These two flight in particular provide the unique,

proper situation to analyze stereo-derived cloud top height retrievals of these intense

convective events and leverage in situ observations for validation.

1.3 Study Objectives

In this section, research questions for all four studies are presented. The first two focus

on hail identification and the second two on characteristics of overshooting storms.
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Studies no. 1 & 3 have already been published in the refereed literature (Murillo et al.,

2021; Murillo and Homeyer, 2022), while Study no. 2 is in final preparation for review

and Study no. 4 summarizes ongoing preliminary research of field project observations.

Study no. 1 (Chapter 2.1):

When comparing the various methods for the objective of establishing a U.S. severe

hail climatology with the greatest possible level of confidence, ground-based radar ob-

servations would appear to provide considerable strengths compared to other datasets

that outweigh its weaknesses. Due to the extensive time period of data availability

from the operational network in the U.S. and its ability to provide three-dimensional

hydrometeor information of an existing storm in near real-time, we seek to quantify

features of severe hail fall from radar using a markedly longer time period than pre-

vious studies to produce a climatology of 23 years. In particular, radar observations

during the period 1995–2017 are used to create multiple MESH climatologies, which

are compared to hail reports. In doing so, we seek to address three primary research

questions: 1) How reliable is a radar-only hail climatology when compared to a report-

based method? 2) What additional information (i.e., environmental variables) could

improve accuracy of a radar climatology? and 3) What new information can we learn

about severe hail fall over much of the contiguous U.S. (CONUS) from a long-term,

well-calibrated, radar-based climatology? Potential severe hail occurrences are identi-

fied using radar observations, while environmental characteristics provide information

regarding the likelihood that hail reaches the surface before melting.

Study no. 2 (Chapter 2.2):

With the increasingly extensive archive of CONUS Doppler radar data, higher tem-

poral resolution reanalyses, and the more recent stability of hail reporting (Allen and
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Tippett, 2015), it is now possible to identify severe hail-producing supercells in radar

observations and comprehensively evaluate their environments based on their maximum

reported hail size. As such, this study leverages hundreds of objectively-identified hail-

producing supercell storms from 2010–2019 to answer the following research questions:

1) How useful are bulk environmental parameters for estimating the maximum hail

size of supercells? and 2) Can any additional information be gained by leveraging

full environmental profiles and storm-relative motions? To assess these questions, we

group supercells into three maximum hail diameter categories based on the maximum

diameter hail they produce: marginally severe (1–1.5-in.), significant severe (2–3-in.),

and giant/gargantuan (≥4-in.). These hail size populations include a buffer between

categories to account for uncertainty in the reported sizes used to define them. Profiles

of the near-storm environment are extracted for a sample of each supercell population

to conduct a detailed evaluation of the vertical distribution of buoyancy, humidity,

wind shear, and their potential utility for estimating the maximum expected hail size.

This work aims to both re-evaluate the utility of environmental proxy hail size indi-

cators identified in previous studies from much smaller storm populations and reveal

new insights that can be utilized in the development of future hail size algorithms.

Study no. 3 (Chapter 3.1):

In this study, we identify 89 warm and 89 cold AACPs from 1-minute GOES-16

satellite imagery, coupled with ground-based radar observations and environmental

information from reanalysis to answer the following research questions: 1) Why do

some AACPs exhibit a warm feature in IR imagery while others do not? and 2) What

observable storm and environment differences exist between warm and cold AACPs?

We have outlined 3 key hypotheses, which are illustrated in Fig. 3.2, and add contextual

information to several of the points outlined in Bedka et al. (2018b).
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For Hypothesis 1 (Fig. 3.2, top row), warm AACPs occur in environments with a

single tropopause, reside in the lower stratosphere, and appear warm because the lower

stratosphere environment is warmer than the tropopause below (this is consistent with

warm AACP analyses from past studies). Cold AACPs for this hypothesis, however,

occur in environments with a double tropopause (i.e., where temperature decreases

significantly above the primary tropopause until eventually increasing again above

the secondary tropopause), and reside in the layer between tropopauses where the

lower stratosphere is colder than the primary tropopause. Double tropopauses occur

most often during spring and early summer in the midlatitudes when AACPs are also

frequently observed (Randel et al., 2007; Añel et al., 2008; Manney et al., 2017; Xian

and Homeyer, 2019; Wilhelmsen et al., 2020).

Hypothesis 2 (Fig. 3.2, middle row) states that warm AACPs occur in UTLS en-

vironments with midlatitude characteristics, residing in the lower stratosphere, while

cold AACPs occur in UTLS environments with tropical characteristics, residing in the

upper troposphere where temperature is still decreasing with height. The wide vari-

ability in tropopause height over the North American midlatitudes, both zonally and

meridionally (e.g., Hoinka, 1998; Li et al., 2017), suggests that such a difference could

be responsible for the variable IR signatures so long as the depths of warm and cold

AACP-producing storms do not differ substantially.

Lastly, Hypothesis 3 (Fig. 3.2, bottom row) indicates that warm and cold AACPs

occur in similar UTLS environments, but differ microphysically. Warm AACPs in

this case are optically thick, such that the satellite senses the temperature of the

warm stratosphere environment (compared to the anvil and tropopause layer below).

On the other hand, cold AACPs are optically thin in this hypothesis, such that the

satellite is sensing temperatures consistent with the broader storm anvil below, rather

than that characteristic of the AACP. Differences in apparent AACP translucence in
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VIS imagery suggests that variability of AACP optical thickness and thus AACP IR

brightness temperature could be a likely control.

Hypotheses 1 and 2 are explicitly tested in this study given the availability and

utility of environmental reanalyses and ground-based radar observations in diagnosing

tropopause structures and storm-relative characteristics. Thorough evaluations of Hy-

potheses 1 and 2, devoid of explicit Hypothesis 3 assessment due to the lack of available

microphysical data for these AACPs, could provide sufficient evidence in favor of one

explanation; if such results indicate neither Hypothesis 1 nor 2 are supported, then

Hypothesis 3 or one of the more nuanced processes outlined in Bedka et al. (2018b)

would prove the most likely alternative explanation.

Study no. 4 (Chapter 3.2):

Coordinated operations of GOES-16 and -17 mesoscale sectors during designated

DCOTSS research flights provide a unique opportunity for detailed cloud-top height

retrieval validation. This study leverages RF13, which took place on 31 May 2022,

and the recent stereoscopic cloud-top height retrieval algorithm designed for modern

GOES VIS imagery (Young, 2021) to answer the following research questions: 1) How

do stereoscopic cloud-top height retrievals compare to radar-derived echo top products

and in situ water vapor measurements? and 2) What new information can be gained

from stereoscopic cloud-top height retrievals regarding AACPs? We focus on RF13 due

to the flight track’s proximity to recent AACP production (discussed further in Section

3.2.7). Given that the results presented here contain preliminary in situ observations

with ongoing analyses, our results and conclusions are subject to change upon final

analysis.
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Chapter 2

Hail Occurrence

2.1 Study no. 1: A 23-Year Severe Hail Climatolo-

gy using GridRad MESH Observations

As mentioned in Section 1.3, this study aims to answer three main research questions:

1) How reliable is a radar-only hail climatology when compared to a report-based

method? 2) What additional information (i.e., environmental variables) could improve

accuracy of a radar climatology? and 3) What new information can we learn about

severe hail fall over much of the CONUS from a long-term, well-calibrated, radar-based

climatology?

2.1.1 Radar observations

To identify potential hail events, this study employs hourly, four-dimensional space-

time composite NEXRAD data known as GridRad Version 3.1 (Bowman and Homeyer,

2017) that are available over most of the CONUS (the west coast is not included,

which rarely experiences severe hail), spanning the time period 1995–2017. Spatial

and time weighted binning is used to merge individual NEXRAD scans in the common

GridRad volume (described in greater detail in Homeyer and Bowman (2017) and

references therein). These weights are such that shorter ranges and temporal proximity

to the radar are prioritized, leading to retaining of data with the highest quality and
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resolution. Volumes are available on a ∼2-km horizontal resolution and 1-km vertical

resolution grid. The same or similar GridRad data has been used for hail detection in

several recent studies (e.g., Murillo and Homeyer, 2019; Tang et al., 2019; Jeong et al.,

2020).

Quality control is applied at several steps from the native GridRad volumes. One of

the more substantial filters focuses on the removal of low-confidence echoes consistent

with the recommendations outlined in Homeyer and Bowman (2017). These data qual-

ity measures ensure that GridRad data retained for analysis contain high-confidence

observations of storms. In addition, manual identification of failed radar scans from

individual radars (and consequently, erroneous or nonphysical echoes merged into the

GridRad volumes) was carried out for the entire record to exclude such data from anal-

yses in this study. Instances of uniform or linearly increasing radar reflectivity in range

from a given radar are egregious examples of such erroneous scans. Subjective evalu-

ation of maximum annual MESH was often the best indication of these events, which

are more common in the earlier part of the record. In total, 200,694 hourly GridRad

volumes are retained for analysis after completing these quality control measures (930

out of 201,624 volumes had erroneous scans that could impact MESH analysis, 78% of

which were found in years prior to 2006).

MESH is a power law relationship of observed hail sizes to the radar reflectivity-

based severe hail index (SHI), both of which are defined in Witt et al. (1998a). The

original MESH relationship (hereafter MESHWitt) was empirically fit to the 75th per-

centile of 147 hail reports and has been broadly used in prior studies. However, Murillo

and Homeyer (2019) refit the power law relationship between SHI and MESH to the

75th and 95th percentiles of observed hail size from nearly 6,000 hail reports using

GridRad data (hereafter MESH75 and MESH95, respectively). MESH75 and MESH95
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are more sensitive to lower SHI values, which results in overall smaller SHI values sat-

isfying a 1-in size threshold (Murillo and Homeyer, 2019). In this study, we generate

a hail climatology using all three MESH configurations to test their performance with

respect to hail reports. Based on the results of Murillo and Homeyer (2019), we expect

that MESHWitt might underestimate hail occurrence in comparison to the new con-

figurations because it was not calibrated using smoothed radar observations and was

developed using a small sample of 147 hail reports, which were geographically confined

to Oklahoma and Florida. MESH calculations using any of these fits may be affected

by radar reflectivity biases from radar miscalibration, which have been documented

to commonly reach 1 dB for NEXRAD radars (OFCM, 2005) and may lead to an

overestimate of MESH by up to 20% (Warren et al., 2020).

2.1.2 Environmental data

Numerical model analyses provide environmental quantities for radar metric calcu-

lations and statistical analyses carried out in this study, for which we employ the

Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-

2; Gelaro et al., 2017) for the 23-year period. MERRA-2 is available from 1979 to

present with a 3-hourly temporal resolution, a 0.5◦ x 0.625◦ longitude-latitude resolu-

tion, and with 72 vertical model levels with a model top of 0.01 hPa. Environmental

parameters used for analysis include the altitudes of multiple isotherms, relative hu-

midity (RH), low- to mid-tropospheric temperature lapse rates, vertical wind shear,

and precipitable water (PWAT). It is also worth noting that we tested the sensitivity

of isotherm altitudes used in MESH calculations to different reanalysis temperature

fields and found that MESH was insensitive to these changes.
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2.1.3 Hail reports

The SPC Severe Weather Database (available at http://www.spc.noaa.gov/wcm/) pro-

vides the time, location, and size of severe hail reports in the U.S. (NOAA/NWS/SPC,

1955). Though the severe hail criteria changed in 2010 from a diameter of ≥ 19.05 mm

[0.75 in.] to ≥ 25.4 mm [1 in.], comparisons between between the two severe hail day

frequencies showed small differences in spatiotemporal distributions (Allen and Tip-

pett, 2015). Therefore, we utilize the current severe hail criteria of a diameter ≥ 25.4

mm [1 in.] for the full time period evaluated in this study. The criteria for significant

severe hail for this period remained consistent and is defined as a diameter of ≥ 50.8

mm [2.0 in.] In total, 272,921 reports were used in this study.

2.1.4 Data synthesis and analysis techniques

All datasets are analyzed on an 80 x 80 km grid with 1-sigma Gaussian smoothing

applied spatially. The resolution was chosen based on the lowest resolution dataset, the

hail report database, following the same procedure as Brooks et al. (2003) and Doswell

et al. (2005). This allows for spatial inhomogeneities of the population biased reports

to be somewhat smoothed out for a climatological evaluation. This methodology allows

for all data to be evaluated on a common grid, while appropriately utilizing the report

observations. We then structure all data such that days are evaluated for the 24-

hr period from 12 UTC through 11 UTC to be consistent with the SPC definition

of a severe weather day, allowing for direct comparison between MESH and report

distributions. For analysis, we retain the climatological maximum MESH size, and

counts of severe and significant severe hail days, along with the hour of each severe

and significant severe hail occurrence. These distributions are calculated over the full

GridRad domain with reports and each MESH configuration to produce yearly and
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seasonal distributions. A report hail day is defined as at least one severe or significant

severe hail report in a grid box during a 24-hr SPC severe weather day. A MESH

hail day is only defined when there is at least one severe or significant severe MESH

observation in a grid box during a 24-hr SPC severe weather day, and GridRad data

is available for at least 20 of those hours to ensure that the comparison between radar

and reports is fair. MESH days identified over the ocean are discarded due to reduced

radar coverage and lack of validation (report) data. To be consistent with the radar

analysis, report data analyzed was limited to ±10 minutes from each GridRad analysis

time to account for potential/expected errors in report timing. There are two types

of thresholds that we use to define hail days for MESH: 1) conventional thresholds

for severe and significant severe hail days, and 2) threshold values corresponding to

the peak critical success index (CSI) for detecting severe and significant severe hail-

producing storms, as found in Murillo and Homeyer (2019) (see their Figs. 9a and

11a). This second method removes sensitivity of the result to the MESH relationship,

essentially relaxing the identification to the integrated radar reflectivity (i.e., SHI value)

- the resulting climatologies should be insensitive to the MESH fit used. Table 2.1 lists

the MESH thresholds for all methods used in this study, for which a hail event is

identified as a MESH value that reaches or exceeds the given threshold.

To address the second research question, we evaluate the ability of several envi-

ronmental parameters in correctly distinguishing identified and false alarm hail days

(see Section 2.1.5 for the motivation to incorporate environmental characteristics). We

focus on environmental discriminators that could produce storms with similar MESH

values to those observed during hail events but dissimilar hail likelihood due to in-

creased opportunity for melting before reaching the ground. The parameters we test

are as follows: melting level (0◦C) altitude, low-level (altitudes below the melting level)

RH, low-level (altitudes below the melting level) lapse rate, 2–4 km lapse rate, PWAT,
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and 0–6 km bulk wind shear. To do so, we first group hail events into two categories:

small hail (sizes of at least 0.75 in. and less than 1.5 in.) and large hail (sizes of at

least 1.5 in.). Each of these two categories are further divided into two populations:

1) the “correct” hail identification group, defined at a grid box level as observing both

a MESH value and a hail report within the given size range within 10 minutes of each

hourly GridRad analysis and 2) the “false alarm” group, defined as observing a MESH

value within the given size range but no corresponding hail report. These size cate-

gories were chosen because false alarms are considered most likely in the lower range

(given their relatively slow fall speeds – for hail – and as a result, greater times spent in

the warm cloud layer (Heymsfield et al., 2014)). Note that due to the aforementioned

limitations of hail reports, these populations are not expected to be solely comprised

of true hits or false alarms, but it is the best available approach for statistical eval-

uation. The correct and false alarm populations of MESH events are then used to:

1) identify environmental factors that discriminate best between correct identifications

and false alarms, and 2) use the leading discriminants as input for Fisher’s Linear Dis-

criminant Analysis (LDA) for two groups (Wilks, 2006). Briefly, Fischer’s LDA solves

for a function (or two-dimensional boundary in discriminant space) that best separates

Table 2.1: MESH thresholds for the various hail day analyses.

Hail Day Criteria Type MESHWitt

mm [in.]
MESH75

mm [in.]
MESH95

mm [in.]

Conventional Severe 25.4 [1.00] 25.4 [1.00] 25.4 [1.00]

Max CSI Adjusted Severe 35.56 [1.14] 41.91 [1.65] 63.25 [2.49]

Conventional Sig. Severe 50.8 [2.00] 50.8 [2.00] 50.8 [2.00]

Max CSI Adjusted Sig. Severe 45.72 [1.80] 50.55 [1.99] 76.71 [3.02]
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potential hail events into the two target populations (correct and false alarm) using

linear combinations of the corresponding environmental quantities.

2.1.5 Results: Report and radar-based climatology

Though hail size comparisons can be useful for identifying large hail risk areas, there

are several other limitations when diagnosing hail size extrema from radar or hail

report observations. In addition to the reporting biases previously mentioned in Sec-

tion 1.1, the rarity of large hail, coupled with the an unknown hail size distribution

produced from a storm, pose unique challenges when interpreting hail size extrema

(Cheng et al., 1985; Bardsley, 1990; Fraile et al., 1992; Blair and Leighton, 2012; Allen

and Tippett, 2015; Blair et al., 2017; Allen et al., 2017). The sensitivity to errors in

radar observations, though minimized by the extensive quality control, could still result

in an overestimation or underestimation of the maximum hail size. Given these limita-

tions, hail magnitude comparisons are focused on assessing broad spatial maximums,

rather than event specific hail sizes. The climatology from reports indicates that the

largest hail sizes occur over the Central Plains (Fig. 2.1), as routinely documented

in previous work. Using the 23-year GridRad dataset, MESHWitt broadly underesti-

mates the reported hail sizes, which are known to generally under-represent true sizes

(Fig. 2.2a). MESH75 better represents reported hail sizes in most areas excluding the

Central Plains, where it likely underestimates hail size with respect to reports (Fig.

2.2b). MESH95 provides more reliable estimates over the Central Plains, but generally

is calibrated slightly high otherwise, with more extreme overestimates across the Ohio

Valley and in southern Florida (Fig. 2.2c).

Rather than evaluating individual hail reports, we analyze the frequency of hail

days as suggested in Allen and Tippett (2015), which reduces the sensitivity to report

errors, mitigates duplicate reporting, and is more relevant to impacts and losses. There
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is a maximum in severe hail report days per year over the Central Plains (Fig. 2.3).

When using the severe threshold corresponding to the maximum skill (Table 2.1), we

see similar distributions and frequencies for all MESH identifications, which broadly

agree with the reports (Fig. 2.4). However, as mentioned above, hail reports likely

underestimate true hail occurrence, which indicates that this approach is also likely

underestimating severe hail frequency. Thus, a more appropriate approach for captur-

ing the majority of severe hail events and identifying differences in hail climatology due

to varying MESH configuration is to apply the conventional threshold (i.e., diameter

≥ 25.4 mm [1 in.]) to each (Fig. 2.5). This conventional threshold approach reveals

considerable differences in severe hail frequency between the MESH configurations.

The conventional MESHWitt hail day climatology (Fig. 2.5a) shows similar geographic

distribution and magnitude to that seen in the report climatology, with slightly higher

frequencies than found in the climatology using the maximum skill threshold. The

conventional MESH75 and MESH95 hail day climatologies result in 2–4 times more hail

days per year than the corresponding max skill climatologies, with peak occurrence

found over the Central Plains and SEUS (Fig. 2.5b & c).

The considerable differences seen between MESHWitt and new MESH configurations

in the SEUS is likely due to the reduced slopes of the new power law fits. Ultimately,

the changes in the new MESH fits result in a greater sensitivity to lower SHI values

and smaller sizes than MESHWitt, resulting in more severe hail days as the 25.4-mm

[1-in.] diameter conventional severe hail threshold is more easily reached. When eval-

uating seasonality (Fig. 2.6), we see the largest discrepancy between the reports and

MESH75/MESH95 in the SEUS occurs during the summer (JJA). This large (and pre-

sumably false) signal in the SEUS is likely a result of deep, tropical summer storms

that achieve similarly high ZH aloft as compared continental hailstorms. However,

these storms typically lack the necessary thermodynamic and dynamic conditions for
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severe hail production and/or maintenance. From a radar perspective, storms with a

large concentration of small, sub-severe hail or a small concentration of large hail can

produce similarly high radar reflectivity but unique dual-polarization scattering char-

acteristics, which is impossible to assess using MESH-only identification approaches

(e.g., see emerging work on storms with large accumulations of small hail; Kumjian

et al., 2019). In the SEUS, many storms occur in a dynamic regime that is not sup-

portive for severe hail growth but may be capable of producing small hail aloft. Due to

the large warm layer depth (or similarly, high melting level height) in the SEUS during

summer, these small hail stones melt before reaching the surface. Thus, leveraging

environmental information to establish confidence in a diagnosed MESH severe hail

day would help to limit impacts from non-severe hail producing storms in the analysis,

in the SEUS and elsewhere.

2.1.6 Results: Radar climatology with parameter filtering

The results summarized in Section 2.1.5 highlight that a severe hail climatology based

on MESH alone does not adequately represent (or agree with) the frequency and size of

severe hail as diagnosed from reports. Here, we address the second research question:

What additional information could improve accuracy of radar climatology? Namely, we

evaluate the utility of incorporating certain environmental quantities into severe hail

diagnosis that have been previously identified as relevant to hail potential: melting

level altitude, low-level RH, low-level lapse rate, 2–4 km lapse rate, PWAT, and 0–

6 km bulk wind shear (Johnson and Sugden, 2014; Allen et al., 2015a, 2020). To

do this, we considered two criteria: 1) separation between the correct identifications
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Figure 2.1: The maximum reported hail size over the full domain.
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Figure 2.2: The maximum MESH value computed with a) MESHWitt, b) MESH75, and
c) MESH95 over the full domain.
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Figure 2.3: The number of reported severe (diameter ≥ 25.4 mm [1 in.]) hail days per
year.
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Figure 2.4: The number of severe hail days per year as defined by the corrected thresh-
old sizes for a) MESHWitt (diameter ≥ 35.56 mm [1.14 in.]), b) MESH75 (diameter ≥
41.91 mm [1.65 in.]), and c) MESH95 (diameter ≥ 63.25 mm [2.49 in.].
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Figure 2.5: The number of severe hail days per year using the conventional threshold
(diameter ≥ 25.4 mm [1 in.]) for a) MESHWitt, b) MESH75, and c) MESH95. Note
that the range in b) and c) are 2x and 4x as large, respectively, as that seen in a).
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Figure 2.6: The number of severe hail days per year using the conventional threshold
(diameter ≥ 25.4 mm [1 in.]) during each season for reports (left column), MESH75

(middle column), and MESH95 (right column). Seasons are represented by rows and
labelled with each season’s month abbreviations. Note that the range is different
depending on the season and type of hail identification.
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and “false” alarms in a 2-dimensional parameter space and 2) sensitivity to diurnal

variability. The environmental parameters that show the greatest separation between

the two populations and little sensitivity to the diurnal cycle were PWAT and 0–6 bulk

wind shear (Fig. 2.7d). Other parameter combinations were tested (Fig. 2.7, a–c and

others not shown) but either displayed larger overlap between the two populations or

were sensitive to diurnal variations and produced vastly different peak timing of hail

frequency.

Performing the LDA using PWAT and 0–6 bulk wind shear produced greater sep-

aration between the two populations, further indicating “false” alarms tend to occur

in regions with higher PWAT and lower 0–6 bulk wind shear. We note that the two

populations seen in both the pre- and post- LDA distributions are not expected to be

completely composed of true hits or false alarms due to the numerous report limitations

mentioned above. However, utilizing the large sample size and LDA provide a higher

confidence in these distributions than that possible using radar data alone.

Applying LDA environmental filtering to the MESH climatologies leads to minimal

differences in the maximum sizes. MESHWitt is nearly equivalent to the radar-only

climatology (not shown). The large maximum for southern Florida in MESH75 and

MESH95 in the radar-only climatology are suppressed after environmental filtering (not

shown). Larger climatological differences are seen in the frequency analysis, with an

environmentally filtered MESHWitt producing significant underestimates in hail days

compared to reports (Fig. 2.8a). MESH75 and MESH95 severe hail day frequencies

in the corrected climatology better represent the overall spatial distribution of severe

hail days, with the previous presumably false maximum in the SEUS now absent (Fig.

2.8b & c), a result that was also found in Cintineo et al. (2012). Additionally, the

resulting magnitudes are slightly higher than the reports, which is expected and is

likely more representative of true hail days given the previously mentioned report

33



biases. When evaluating hail days by season (Fig. 2.9), we see the expected Central

Plains maximum during the spring and summer, which is consistent with the report

climatology. MESH95 better captures extremes, especially in the cool season and for

regions with non-zero but rare hail occurrence (e.g. Arizona).

Using this filtered hail climatology, we compare MESH75 and MESH95 to the original

report distribution to assess the overall spatiotemporal variability and address our third

research question: What new information can we learn about U.S. hail fall from a long-

term, well-calibrated, radar-based climatology? Apart from the previously mentioned

differences in frequency between the annual filtered MESH and report distributions,

there are notable differences in locations of frequency maxima both in the annual and

seasonal geographic distributions (Figs. 2.3 & 2.8, b–c). First, the SEUS frequency

maximum (stretching mostly in the east-west direction from Northeast Mississippi

to the western portions of the Carolinas) is only present in the report climatology,

which indicates possible over-reporting in this region noted in several previous studies

(Cintineo et al., 2012; Allen et al., 2015b; Allen and Tippett, 2015). This high bias could

be due to various factors such as the high population density in the SEUS, resulting

in a higher likelihood of severe hail being reported compared to adjacent locations.

Non-stationarities identified by Allen and Tippett (2015) in this region in the spatial

frequency of reporting also suggest that this region may be subject to a greater fraction

of reports being driven by warning verification. Perceptual biases as to the size of SEUS

hail may also be a factor, because this region infrequently receives hail much larger

than 25.4 mm [1 in.]. Second, the Central Plains frequency maximum extends slightly

further into SW Texas and E Colorado in the filtered MESH than the report climatology

indicated. These shifts could be a result of better capturing hail occurrence in regions

with low population density. The independence of the filtered radar-based climatology
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of this bias indicates greater severe hail occurrence than previously estimated via radar

methods.

The filtered seasonal hail climatology seems to indicate that filtered MESH75 pro-

duces a more realistic climatological frequency distribution, while filtered MESH95

generates frequencies closer to a worst case scenario (Fig. 2.9). There is also a clear

seasonal shift in the peak frequency of hail. The winter is characterized by predom-

inantly SEUS events, while the rest of the year sees a shift towards different regions

of the Central Plains. There are also frequency maxima in Idaho and upstate New

York during winter when using MESH95, which are mostly a result of false detections

of a few heavy winter precipitation events. The higher sensitivity to lower hail sizes in

MESH95, combined with bright band contamination during these winter events, likely

contributes to the false signal over these regions.

To briefly evaluate the yearly changes of the multiple MESH configurations, we

accumulate all the grid points with severe hail days for each year (Fig. 2.10). Data

were quite sparse prior to 2000 and showed increasing trends in frequency until 2006,

after which data availability is roughly constant from the NEXRAD network. From

that point forward, natural variability dominates, and frequency on the national scale

appears to be fairly stable, consistent with findings from Allen and Tippett (2015).

The relative severe hail day frequency between each unfiltered and filtered MESH also

stays rather constant, indicating that the filtering process works uniformly. When as-

sessing each MESH configuration, we find that MESHWitt is the least useful, since it

is insensitive to filtering, does not adequately demonstrate observed spatial patterns,

and underestimates the frequency of severe hail days. Conversely, both MESH95 con-

figurations likely overestimate the frequency, given the considerable increase from that

seen in reports. MESH75 is likely the most useful for a climatological approach, as it

displays a moderate increase in frequency with respect to reports and demonstrates
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reasonably consistent interannual variability (after 2006). Because of the lower radar

data quality/completeness before 2006, frequency analyses (Figs. 2.8-2.9) likely under-

represent the overall true frequency of hail events diagnosed by radar over the 23-year

period. However, restricting MESH analyses to 2006–2017 where data quality are much

more consistent reveals consistent spatial distributions compared to the full period (not

shown).
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Figure 2.7: 2-dimensional joint frequency distributions of correct identifications (blue)
and “false” alarms (red) for precipitable water and 0–6 bulk wind shear. Populations
are split into two size groups: a) and c) are limited to sizes between 0.75 and 1.5
in., while b) and d) are limited to sizes greater than 1.5 in. Populations in a)–b) are
generated through report verification, and those in c)–d) are generated through LDA
environmental filtering. The contour values represent the percentage of all correct
identifications (blue) or “false” alarms (red) that exist within the parameter space.
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Figure 2.8: The number of severe hail days per year, after environmental filtering,
using the conventional threshold (diameter ≥ 25.4 mm [1 in.]) for a) MESHWitt, b)
MESH75, and c) MESH95. Note that the range in b) and c) are 2x and 4x as large,
respectively, as that seen in a).
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Figure 2.9: The number of severe hail days per year, after environmental filtering,
using the conventional threshold (diameter ≥ 25.4 mm [1 in.]) during each season for
reports (left column), MESH75 (middle column), and MESH95 (right column). Seasons
are represented by rows and labelled with each season’s month abbreviations. Note
that the range is different depending on the season and type of hail identification.
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study. The black (blue) axes on the left (right) correspond to the black (blue) curves.
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2.2 Study no. 2: A 10-Year Proximity Sounding

Analysis of Severe Hail-Producing Supercells

The second hail identification study addresses two research questions, as listed in Sec-

tion 1.3: 1) How useful are bulk environmental parameters for estimating the maximum

hail size of supercells? and 2) Can any additional information be gained by leveraging

full environmental profiles and storm-relative motions?

2.2.1 Radar observations

To first identify supercells, we leverage the recently created GridRad-Severe dataset

(School of Meteorology/University of Oklahoma, 2021). GridRad-Severe was curated

using GridRad Version 4.2 methods (Homeyer and Bowman, 2022) to develop a 10-

year record (2010–2019) of data for ∼100 of the most severe events (12 UTC – 12

UTC days) per year in the CONUS (Murphy et al., 2022). The longitude, latitude,

and time bounds of GridRad-Severe events vary to encompass ∼90% of tornado, severe

hail, and/or severe wind reports during the event day. Radar observations feature a

vertical resolution of 0.5 km for altitudes below 7 km above mean sea level (AMSL)

and 1 km for altitudes between 7 and 22 km, as well as a horizontal grid with ∼0.02◦

× ∼0.02◦ longitude-latitude resolution. The 5-min radar volumes are then used to

generate objective storm tracks from a ZH = 30 dBZ echo-top tracking algorithm

(following Homeyer et al. (2017), with revisions as in Lagerquist et al. (2020)).
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Table 2.2: The number of hail-producing supercell storms identified and analyzed in
this study, sorted by maximum reported hail size linked with each storm.

Storm Category No. Storms Identified No. Storms Used

Marginally Severe (1–1.5 in.) 3262 235

Significant Severe (2–3 in.) 882 235

Giant/Gargantuan (4+ in.) 235 235

2.2.2 Environmental data

ERA5 is the fifth and most recent generation of the global European Centre for

Medium-Range Weather Forecasts (ECMWF) reanalysis and is available from 1979

to present (Hersbach et al., 2020). ERA5 features 137 vertical hybrid sigma/pressure

(model) levels from the surface up to 0.01 hPa, with approximately ∼20 m resolution

near the ground and 400–500 m resolution in the UTLS. ERA5 has 0.28125◦ native

horizontal resolution, but here the 1◦ horizontal resolution data are utilized. We use

vertical profiles of temperature, pressure, humidity, and winds.

2.2.3 Hail reports

The National Centers for Environmental Information hosts the storm event database

(SED) which encompasses the time and/or duration, location, magnitude, and report-

ing source for all U.S. severe weather reports (NCEI/NOAA, 2022). A severe weather

event, following the NOAA Storm Prediction Center (SPC) definition, is defined as

wind gusts ≥ 50 kts, hail ≥ 1 inch in diameter, or any tornado report. To reduce limi-

tations from population-based reporting, we follow methods from Murillo and Homeyer

(2019), such that only severe weather reports that occurred in a population dense re-

gion (> 25 people per square mile) are retained for analysis, according to version 4 of
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the Gridded Population of the World dataset (Center for International Earth Science

Information Network - CIESIN - Columbia University, 2018). This provides the best

chance to analyze hail-producing supercells at a time where reliable maximum hail size

reports exist.

Tornado, wind, and hail SED reports were leveraged here, as opposed to the com-

monly used alternative quality-controlled version released by the SPC, due to the addi-

tional tornado report information available in the original SED reports that is excluded

when incorporated in the SPC. The inherent filtering that results from objective storm-

matching techniques (see Section 2.2.4) result in a similar quality dataset to that of

the SPC.

2.2.4 Data synthesis and analysis techniques

To identify hail-producing supercell storms with differing maximum hail size, we first

add several parameters from the GridRad volumes to the storm tracks, considering

only observations within 30 km of storm center, and population density. The GridRad

parameters extracted along each storm track are used to objectively identify right-

moving supercell storms, following that done previously and well-demonstrated to be

reliable in Sandmæl et al. (2019) and Homeyer et al. (2020). The only exception to our

application of the supercell classification is that we remove a previously used echo top

criterion to avoid exclusion of shallow supercell storms, which we found to be common

in months outside of May-September. We objectively define storms as supercells if the

following criteria are met: 1) maximum mid-level (4–7 km AMSL) azimuthal shear

> 4×10−3 s−1 for at least 40 min, 2) storm-maximum mid-level azimuthal shear ≥

5×10−3 s−1 and column-maximum azimuthal shear 7×10−3 s−1, 3) storm-maximum

radial divergence at any altitude ≥ 1×10−2 s−1, and 4) storm-maximum σV at any

altitude ≥ 13 m s−1.
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Once supercells are identified, they are examined for hail reports and grouped into

three categories based on their maximum hail diameter: marginally severe (1–1.5-

in.), significant severe (2–3-in.), and giant/gargantuan (≥4-in.). For marginally and

significant severe hail-producing supercell storms, we only consider times at which a

storm was over a population-dense location and extract the radar observations for

analysis at the time the maximum hail size was reported in such locations. For gi-

ant/gargantuan hail-producing supercells, no population density requirement is ap-

plied, given the smaller sample size, and therefore, encompasses all hail sizes ≥4 in

in maximum dimension. The number of hail-producing supercell storms identified in

each category are summarized in Table 2.2, and their locations are shown in Figure

2.11. Given the different population sizes, with the 235 giant/gargantuan storm popu-

lation being the smallest (Table 2.2), we randomly select 235 profiles from each smaller

size category to normalize the sample sizes. This sub-sampling helps to identifying

meaningful differences between the storm categories.

We extract volumes at the 5-min radar analysis time closest to the time of maximum

reported hail size, centered on the objectively tracked storm location, and rotate the

volume so that the 30-min average storm motion vector is aligned with the positive

x-dimension, such that we now have supercells on a storm-relative grid. Note that

extracting the closest 5-min GridRad volume to the report time introduces a timing

uncertainty of ±2.5 min in the radar products, but the reports typically have a larger

time uncertainty of up to ±5 min (Witt et al., 1998b). Environmental profiles are

extracted from the closest hour preceding and ≥30 min prior to each storm analysis

time and one grid point removed to the east. Although the results were insensitive

to the precise grid point extracted within one grid point, these spatial and temporal

offsets minimize the chances of outflow contamination in the lower troposphere.

44



To assess our first research question, we calculate bulk parameters that are com-

monly used to assess differences in hail environments, including most unstable CAPE

(MUCAPE), 0–6 km above ground level (AGL) bulk wind shear, and PWAT. We

then examine profiles of environmental temperature, most unstable parcel tempera-

ture, humidity, and wind speed to assess purely environmental influences, including

conventional hodographs calculated based on the u- and v-components of the ground-

relative environmental wind. Last, we investigate distributions of storm-relative winds

by leveraging radar-derived storm motions. In particular, we construct a hodograph

that is calculated using the storm-relative u- and v-component winds, with the entire

profile rotated based on the observed direction of storm motion so that it aligns with

the positive x-dimension prior to computing the mean. Rotating the profiles prior to

calculating the average storm-relative component wind speeds ensures that the means

represent purely parallel and perpendicular storm-relative flow. It is important to note

that this is different from the rotation relative to the deep-layer shear vector performed

in other studies (e.g., Parker, 2014; Kumjian et al., 2019; Gutierrez and Kumjian, 2021).

The approach here assesses what the observed storms experience in a more easily un-

derstood, physical framework (parallel/perpendicular to storm motion), made possible

by the availability of observed storm motions.

2.2.5 Results

Focusing first on frequency distributions of MUCAPE, 0–6 km AGL bulk wind shear,

and PWAT, we find broad overlap between these distributions with slight indications

of increased MUCAPE, increased bulk shear, and decreased PWAT with increasing

hail size, similar to prior work (Fig. 2.12). These bulk parameters, however, provide

limited understanding on how exactly such differences arise (i.e., where in the vertical
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profile differences are most substantial) and ultimately contribute little-to-no practical

utility for forecasting or nowcasting applications.

To best assess where differences exist between environments of supercell storms

with differing hail potential, we evaluate distributions as a function of altitude (Fig.

2.13). Temperature, humidity, and wind speeds at all altitudes are mostly identical

among the three storm populations (Figs. 2.13a–c). However, comparing profiles of the

difference between most unstable parcel and environmental temperature (Fig. 2.13d)

and storm-relative wind speed (Fig. 2.13e) leads to the emergence of clear incremen-

tal increases in both quantities throughout much of the troposphere with increasing

hail size (also consistent with prior work). For example, low-level storm-relative wind

speeds for giant/gargantuan cases increase to at least 1 m/s greater than other hail-

size categories by just a few hundred meters AGL. Such an increase in storm-relative

wind speeds in the inflow layer lead to wider updrafts (e.g., Peters et al., 2019). The

storm-relative wind profiles also demonstrate that low-level (0–2 km AGL) wind shear

is ∼0.5 m s−1 km−1 weaker in the giant/gargantuan hail-producing supercell environ-

ment. Substantial overlap in the environments remain for these quantities (as for the

bulk parameters), but differences in the hail growth layer (4–10 km AGL or temper-

atures of ∼0◦C to −40◦C) are most evident. Note that these profiles were also made

in altitude relative to the 0◦C level, but results found are broadly insensitive to this

choice since the altitudes of a given tropospheric isotherm typically differ by ≤1 km in

these environments (identifiable in Fig. 2.13a as the altitude span of the distributions

at a select threshold temperature). In summary, the practical use of detailed profile

information likely remains as low as the bulk parameters given the overlap between

hail size categories.

Because the environmental ground-relative wind profiles differ little between the

supercell storm populations, whereas the storm-relative wind speed shows incremental
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differences, statistics on the speed and direction of radar-observed storm motion were

investigated (Fig. 2.14). This analysis demonstrates that both the speed and direction

of supercell motion change with increasing hail size potential and are the primary source

of identified differences in storm-relative wind. There is a slight slowing of storm motion

and more right-ward (i.e., deviant) motion with increasing hail size, especially at the

most extreme hail sizes analyzed. Thus, both elements of storm motion contribute to

the incremental increases in storm-relative wind speed found with increasing hail size,

in agreement with recent studies by Bunkers (2018), Gutierrez and Kumjian (2021),

and Lin and Kumjian (2022).

Lastly, we find the greatest differences between supercell environments from the

hodograph analysis (Fig. 2.15). The conventional hodographs suggest slightly greater

0–3 km directional shear and slightly greater deep-layer speed shear for increasing hail

size potential (Fig. 2.15a). Conversely, the storm-relative, storm-rotated hodographs

partially de-emphasize the importance of differences in low-level directional shear and

more substantially indicate that storm-relative wind speed perpendicular to storm mo-

tion above 2 km AGL is an important environmental constraint on hail size (Fig. 2.15b).

This result is consistent with recent machine learning efforts by Gensini et al. (2021)

that identified mid-level SRH as the most important environmental predictor of severe

hail size.

47



(a) Marginally Severe (1–1.5 inch)

(b) Significant Severe (2–3 inch)

(c) Giant/Gargantuan (4+ inch)

Figure 2.11: Maps of analyzed hail-producing supercell storm locations that are (a)
marginally severe, (b) significant severe, and (c) giant/gargantuan.
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Figure 2.13: Ground-relative vertical profiles of near-storm environments. Panels a–
e show profiles of temperature, specific humidity, wind speed, the difference between
most unstable parcel temperature and the environmental temperature (i.e., potential
buoyancy), and storm-relative wind speed, respectively. Solid lines show the average
profile, while dashed lines with dotted ends show the 10th to 90th percentile range of
values. Colors as in Fig. 2.12.
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Figure 2.15: Mean 0–10 km AGL hodographs of ERA5 winds computed (a) conven-
tionally such that u- and v-component winds are aligned with the x- and y-dimensions,
respectively, and (b) in magnitude relative to storm motion and rotated prior to com-
puting the mean such that the storm motion vector is aligned with the positive x-
dimension. Colors indicate the corresponding hail size population, as in Fig. 2.12,
and circles superimposed along each storm profile indicate altitudes every 1 km AGL
beginning at 0 km.
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Chapter 3

Overshooting Storm Tops

3.1 Study no. 3: What Determines Above-Anvil

Cirrus Plume Infrared Temperature?

As previously described in Section 1.3, this study seeks to answer the following research

questions: 1) Why do some AACPs exhibit a warm feature in IR imagery while others

do not? and 2) What observable storm and environment differences exist between

warm and cold AACPs? Hypothesis, outline in Section 1.3, are depicted in Fig. 3.2.

3.1.1 Satellite observations

The latest GOES generation, including GOES-16, features the Advanced Baseline Im-

ager (ABI; Schmit et al., 2017, 2018). The ABI samples 16 spectral bands at 2 km

horizontal resolution every 5 min for the CONUS domain. Additionally, the ABI can

perform more frequent sampling over two fixed areas, each approximately 1000 km2,

that can provide more detailed observations for areas of interest (e.g., severe storms,

blizzards, or tropical cyclones). When the ABI is operating in this mesoscale mode,

scans are completed every 60 s, such that if the two mesoscale domains overlap, the

overlapping area would be scanned every 30 s. Given the manual and highly com-

plex nature of AACPs and their identification (Bedka et al., 2018b), we only evaluated

mesoscale mode imagery between March and July from years 2017-2020 in this study
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to increase confidence in AACP identification and focus on times when AACPs are

common.

AACPs are manually identified using visible imagery (0.64 µm band) and classified

as either warm or cold based on their IR imagery characteristics (10.3 µm band). We

first searched for cold AACPs, given their relative infrequency, recording the latitude

and longitude of the corresponding overshoot at hourly intervals. We required that

all AACPs used in this study were sustained (continuously emitted) for at least one

hour to compare only long-lived AACPs and to ensure that hourly model analyses were

representative. Once 100 cold AACPs were identified, we repeated the process for warm

AACPs, but only searching during the months and years that cold AACPs had been

identified to mitigate biases associated with seasonality, thus initially resulting in 100

warm and 100 cold manually-identified AACP storms for analysis (reduced slightly to

89 storms each for final analysis based on additional criteria outlined in Section 3.1.5).

It is important to note that regardless of their IR signatures, AACPs in this study had

no discernible differences in their visible signatures.

3.1.2 Radar observations

To evaluate absolute and storm-relative warm and cold AACP-producing storm char-

acteristics and to quantify their degree of tropopause-overshooting, we utilize ground-

based radar observations. This study leveraged identical methods of GridRad creation

(GridRad Version 4.2), objective storm tracking, and severe weather report matching

as described in Section 2.2.1. The resulting multi-radar volumes were then used to

calculate the level of maximum detrainment (LMD, see Section 3.1.5). GridRad echo

top heights and intra-storm features typically have near-zero bias and an uncertainty

of ±1 km (e.g., Homeyer and Bowman, 2022, and references therein). The radar tracks
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Figure 3.1: Example satellite imagery from 0.64 µm channel 2 (a and b) and 10.3 µm
channel 13 (c and d) for a warm AACP event (left) and a cold AACP event (right). The
warm AACP is from 21:59Z on 7 May 2019 (a and c). The cold AACP is from 21:04Z
on 24 June 2019 (b and d). The outlines in each panel enclose the AACP features.

include 5-min latitude/longitude position, LMD heights, echo-top heights for multiple

radar reflectivity thresholds, and 30-min mean storm motion.

3.1.3 Environmental data

This study used similar ERA5 profiles to that described in Section 2.2.2, featuring

approximately 400–500 m resolution in the UTLS. We extracted the closest ERA5 grid

point to the storm location every hour for the environmental analysis. We tested the

sensitivity of the ERA5 results to the precise model grid box chosen by performing

similar analyses with a randomly-selected nearby grid point and found little to no

impact on the results summarized below. Vertical profiles of temperature, pressure,

geopotential height and winds are leveraged to examine tropopause characteristics
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and environmental differences between those associated with warm or cold AACPs.

When defining the tropopause in this study, we use the lapse rate tropopause definition

(World Meteorological Organization, 1957) given its capability for multiple tropopause

identification in a profile and its well-demonstrated global reliability (Gettelman et al.,

2011; Hoffmann and Spang, 2021; Pan et al., 2018).

3.1.4 Severe weather reports

These analyses use the same severe report dataset and filtering process discussed in

Section 2.2.1, that leverages the SED (NCEI/NOAA, 2022) and the Gridded Population

of the World dataset (Center for International Earth Science Information Network -

CIESIN - Columbia University, 2018).

3.1.5 Data synthesis and analysis techniques

The 100 warm and 100 cold AACPs identified using satellite imagery were manually

matched with their corresponding radar storm track to enable comprehensive analysis.

Warm and cold AACP storms that were not fully captured in radar observations due to

data coverage limitations were removed from final analysis. After reevaluating storm

populations so that equal seasonal distributions for both storm sets remained, 89 warm

and 89 cold AACPs were retained. The full radar storm tracks are shown in Figure 3.3,

with storms exhibiting warm (cold) AACPs in red (blue). Storm-relative winds, defined

as the difference between ERA5 winds and the radar-tracked 30-min storm motion, are

computed for warm and cold AACPs to characterize the potential for gravity wave

breaking and thus AACP formation in the UTLS (e.g., Homeyer et al., 2017; O’Neill

et al., 2021, and references therein).
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Severe weather reports were matched to the radar-based storm tracks if they oc-

curred at a time the storm was tracked and within 30 km of storm center. To comple-

ment the report analyses, we evaluate one of the recently revised hail parameters from

Murillo and Homeyer (2019) and Murillo et al. (2021), the Linear Discriminant Analy-

sis (LDA)-filtered 75th percentile of the maximum estimated size of hail (LDA-filtered

MESH75, see Murillo et al. (2021) for more details). We also calculate the level of max-

imum detrainment (LMD) in each storm to compare transport characteristics, defined

here as the altitude of the column-maximum anvil ice water content, utilizing methods

similar to those of Mullendore et al. (2009), Carletta et al. (2016), and Starzec et al.

(2020). Several steps were taken to minimize errors in LMD height due to limitations

of the radar observations and downward settling of precipitation-sized hydrometeors in

the anvil separate from the convective core (e.g., Homeyer, 2014; Homeyer and Bow-

man, 2022), as was done in previous studies using GridRad data (e.g., Starzec et al.,

2020). Namely, we limited our search radius to 30 km from storm center to be con-

sistent across the analysis and applied the Storm Labeling in 3 Dimensions (SL3D;

Starzec et al., 2017) algorithm to identify anvil grid boxes adjacent to convective grid

boxes for ice water content analysis. We only considered convective regions where

reflectivity observations exist below 4 km. Additionally, we only considered anvil re-

gions that featured ≥ 15 dBZ above 6 km, ≥ 5 grid boxes of observed reflectivity at

individual heights, and ≥ 25 grid boxes of observed reflectivity within the full search

volume. Carletta et al. (2016) demonstrate that an LMD based on anvil ice water

content is generally biased ∼750 m low compared to that derived from 3-D winds. The

uncertainty of GridRad-retrieved LMDs is expected to be comparable to the vertical

grid spacing of the data in anvil regions, ±1 km.

The two-sample Kolmogorov–Smirnov (KS) test is used in this study to determine

statistical significance with 99% confidence (α = 0.01) for one-dimensional radar and
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environmental metrics of warm and cold AACP storms. The null hypothesis of the

two-sample KS test states that the two populations originate from the same distribu-

tion. Statistically significant differences between samples are found when the p-value

< α and thus, the null hypothesis is rejected. Although warm and cold AACP ver-

tical profile analyses are not explicitly evaluated for statistical significance, vertical

layers where there is clear separation (a lack of overlap) between the full distribution

of values for each AACP population likely indicate statistically significant differences.

Moreover, the approximate coincidence in the locations of warm and cold AACP storm

populations implies that radar data coverage (and therefore, quality) is similar such

that statistically significant differences between the two populations are robust, espe-

cially given the relatively large uncertainty (± 1 km) of the GridRad echo tops and

LMD heights.

3.1.6 Results

Although warm and cold AACP environments in the lower and middle troposphere

are quite similar, the largest differences between them are found in the UTLS region.

When looking at vertical profiles of temperature, we find that warm AACPs are as-

sociated with lower tropopause heights and warmer UTLS temperatures, as opposed

to cold AACPs environments that feature higher tropopause heights and colder UTLS

temperatures (Fig. 3.4, left). Namely, primary tropopause altitudes in warm AACP en-

vironments are most frequently found near 13 km, consistently lower than cold AACP

environments, which commonly occur near 15 km (Fig. 3.6, left). We also find that

temperature starts to increase immediately above the tropopause in cold AACP en-

vironments, while an inversion/isothermal layer exists above the tropopause in warm

AACP environments (Fig. 3.4, right). These characteristics indicate that warm AACPs

are associated with midlatitude environments, given the low tropopause height and
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tropopause inversion layer; meanwhile, cold AACPs are associated with tropical envi-

ronments, given the resemblance to the cold-point tropopause and transition layer that

is characteristic of tropical environments.

We also independently evaluate warm (cold) AACPs that feature double tropopause

environments, which includes 38 (13) of the 89 storms. These environments exhibit

similar primary and secondary tropopause heights, but feature unique lapse rate char-

acteristics above the primary tropopause (Fig. 3.5, left). In cold AACP environments,

temperature continues to decrease with height, however at a slower rate, and satis-

fies the WMO second tropopause condition several kilometers higher (Fig. 3.5, right).

Above the primary tropopause in warm AACP environments, however, there are clear

inversion and isothermal segments up to the secondary tropopause, which is found at

even higher altitudes than that in cold AACP environments. Such separation between

tropopause heights is commonly ∼4 km in warm AACP environments and ∼3 km in

cold AACP environments, despite similar secondary tropopause altitudes (Fig. 3.6,

right). Thus, these results demonstrate that in a select few cold AACP cases (∼15%),

the UTLS contains a double tropopause and is characterized as more of a subtropical

environment, with no inversion layer above the primary tropopause and relatively small

separation between tropopauses. Warm AACP environments with a double tropopause

are far more common (∼43%) and, similar to the analysis for all cases, exhibit a strong

tropopause inversion layer above the primary tropopause.

Next, we evaluate radar-observed characteristics of each storm population in the

context of associated environmental factors. When assessing storm-relative wind speed,

we find comparable structure throughout the troposphere (Fig. 3.7, left), but key dif-

ferences are revealed in tropopause-relative analyses (Fig. 3.7, right). Most notably,

warm AACP storms have higher storm-relative wind speeds in the first 3 km above the
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tropopause, while storm-relative wind in cold AACP storms remains relatively weak

(below 15 m s−1) up to ∼4 km above tropopause level (Fig. 3.7, right). Although there

are somewhat larger overall differences between warm and cold AACP storm-relative

wind profiles within double tropopause environments, tropopause-relative analyses ex-

hibit similar above-tropopause features to that for all environments (Fig. 3.8). Given

that previous work indicates the necessity of storm-relative wind speeds ≥15 m s−1

to drive frequent gravity wave breaking and AACP development (e.g., Homeyer et al.,

2017; O’Neill et al., 2021, and references therein), these results suggest that AACP

development above the tropopause in cold AACP environments is unlikely.

To better assess the joint relationships between AACP storms and their environ-

ments, we examine the observed depth and detrainment levels of each storm here. Ab-

solute LMD altitudes are essentially identical in warm and cold AACP storms (Figs.

3.9a & 3.9c), commonly spanning altitudes from 9-12 km. However, tropopause-relative

analysis shows that LMD heights are significantly closer to the tropopause in warm

AACP storms than cold AACP storms (Figs. 3.9b & 3.9d), as expected based on the

environmental results discussed previously. 10-dBZ echo top altitudes in warm and

cold AACP storms also overlap considerably (Figs. 3.10a & 3.10c). Consistent with

LMD analyses, we find that tropopause-relative 10-dBZ echo top altitudes within warm

AACP storms are significantly higher than cold AACP storms, commonly reaching 4

km above the tropopause (Figs. 3.10b & 3.10d). Tropopause-relative 10-dBZ echo tops

within double tropopause environments follow similar patterns to the full distributions,

with slightly less overlap (Fig. 3.11).

Lastly, we assess the severity of each AACP storm population using severe weather

reports and MESH75. To adequately account for the different severe storm population
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sizes, storm lifetimes, and additional limitations in the report database, we compute

the number of severe weather reports for every 5 min that storms were within a pop-

ulation dense area (Table 3.1). Warm AACP storms produced approximately twice as

many severe wind and hail reports per 5 min than cold AACP storms and comparable

tornadoes. However, warm and cold AACP storms exhibit similar lifetimes with severe

MESH75 (Fig. 3.12). Given the extensively documented limitations of hail reports,

radar products, such as MESH75, are often viewed as equally reliable as severe hail

reports after appropriate methods have been implemented to the reports (e.g., Allen

and Tippett, 2015; Murillo and Homeyer, 2019; Allen et al., 2020; Murillo et al., 2021).

As such, these MESH75 results cast reasonable doubt on the reliability of the severe

hail report results.

AACP Storm Statistics Warm AACPs Cold AACPs

No. all storms 89 89

No. storms within population dense area at any
point

44 36

Mean storm time duration within population
dense area

100.2 min (63.1%) 83.7 min (51.4%)

No. all severe reports per 5min storm duration
(No. severe storms)

9.1 (31) 4.5 (23)

No. tornado reports per 5min storm duration
(No. tornadic storms)

0.6 (6) 0.7 (7)

No. severe wind reports per 5min storm dura-
tion (No. severe wind storms)

2.2 (16) 0.7 (8)

No. severe hail reports per 5min storm duration
(No. severe hail storms)

6.2 (30) 3.2 (19)

Table 3.1: Severe weather report statistics for warm and cold AACP storms.
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Hypothesis 1: Single vs. Double Tropopause
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Hypothesis 3: Optically Thick vs. Optically Thin AACP
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Figure 3.2: Conceptual illustrations of the 3 hypotheses proposed to explain the AACP
IR temperature differences that are the focus of this study. Hypothetical temperature
profiles, tropopause heights, and cloud positions are shown for warm (red) and cold
(blue) AACPs.
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Radar Tracks For All AACP Storms

Warm AACPs (n=89)
Cold AACPs (n=89)

Figure 3.3: Radar-based storm tracks for all warm (red) and cold (blue) AACP storms
analyzed in this study.
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Figure 3.4: Vertical profiles of environmental temperature for warm (red) and cold
(blue) AACPs in absolute altitude (left) and tropopause-relative altitude (right). Solid
curves indicate mean values at each level. The dots and dashed lines indicate the 10th

to 90th percentile range at each level.
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Figure 3.5: As in Fig. 3.4, but only for double tropopause cases.
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Figure 3.6: Frequency distributions of primary (left) and secondary (right) tropopause
heights for warm (red) and cold (blue) AACPs. Distributions that have significant
separation (based on the K-S test) feature bolded p-values in the key of each panel and
dotted lines within thicker curves.
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Figure 3.7: As in Fig. 3.4, but for storm-relative wind speed.
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Figure 3.8: As in Fig. 3.7, but only for double tropopause cases.
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Average LMD Heights For All AACP Storms
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Figure 3.9: Frequency distributions of average (a and b) and maximum (c and d)
level of maximum detrainment (LMD) heights for warm (red) and cold (blue) AACPs.
Distributions on the left show absolute heights, with tropopause-relative LMD heights
on the right. Distributions that have significant separation (based on the K-S test)
feature bolded p-values and dotted lines within thicker curves.
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Figure 3.10: As in Fig. 3.9, but for 10-dBZ echo top heights.
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Figure 3.11: As in Fig. 3.10 (right), but only for double tropopause cases.
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Figure 3.12: Frequency distributions of storm lifetime fractions with severe LDA-
filtered MESH75 for warm (red) and cold (blue) AACPs. Distributions that have
significant separation (based on the K-S test) feature bolded p-values and dotted lines
within thicker curves.
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Figure 3.13: A composite diagram summarizing the results of this study. Vertical pro-
files of environmental temperature (gray, top x-axis) and storm-relative wind speeds
(black, bottom x-axis) show the mean values for all warm (red) and cold (blue) AACPs,
as previously shown in Figs. 3.4 & 3.7, respectively. Dashed horizontal lines represent
mean tropopause altitudes for each AACP type. The gray shading indicates the al-
titude range that is most supportive of frequent gravity wave breaking (GWB), and
the purple shading represents the common altitude range of overshooting tops (10-dBZ
echo tops, from Fig. 3.10).
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3.2 Study no. 4: Stereoscopic Cloud Top Height

Retrievals for 31 May 2022

Introduced in Section 1.3, the last study is comprised of preliminary observational

analyses aiming to answer the two research questions: 1) How do stereoscopic cloud-

top height retrievals compare to radar-derived echo top products and in situ water

vapor measurements? and 2) What new information can be gained from stereoscopic

cloud-top height retrievals regarding AACPs?

3.2.1 Satellite observations

GOES-16 and GOES-17 platforms, both stationed over the equator, are longitudinally

separated at 75◦ W and 135◦ W, respectively, such that they can provide sufficiently

unique viewing angles for stereoscopy. Mesoscale domain observations from both satel-

lites used in this study, similar to that described in Section 3.1.1, include scans every

60 sec, VIS (0.64 µm band) and IR imagery (10.3 µm band) with 0.5 km and 2 km

horizontal resolution, respectively. Stereoscopic analyses performed here are limited to

daylight hours and simultaneous GOES-16 and -17 sampling within a mesoscale do-

main; thus, we obtain observations from NOAA (1994) and evaluate the period between

22 UTC 31 May through 01 UTC 1 June 2022, providing a 3-hr period for stereoscopy.

3.2.2 Radar observations

This study utilizes identical methods of GridRad creation (GridRad Version 4.2) and

echo top height calculations to that described in Section 3.1.2. We calculate echo top

altitude fields (following methods in Cooney et al. (2018) to ensure storm continuity)

for backward trajectory matching (described in Section 3.2.6). Echo top heights usually
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feature near-zero bias and an uncertainty of ±1 km (e.g., Homeyer and Bowman, 2022,

and references therein).

3.2.3 In Situ observations

All in situ observations presented here are preliminary from the DCOTSS field cam-

paign and therefore, not for public distribution. Water vapor measurements from the

most current version of the Harvard Water Vapor Herriott Hygrometer (HWV-HHH;

hereafter, HHH) instrument are used, in conjunction with backward trajectories (see

Section 3.2.6 for details), to validate stereo-derived cloud-top heights. Aboard the ER-

2, HHH consists of a tunable diode laser that directly detects absorption due to water

vapor (Weinstock et al., 1994; Sargent et al., 2013). Measurement accuracy and pre-

cision are determined through various in-flight and laboratory testing of independent

detection methods, with predicted ±10% accuracy and ±0.1 ppmv water vapor preci-

sion for 1 second observations in the lower stratosphere (Weinstock et al., 2009; Smith,

2012; Sargent et al., 2013). These observations use the Meteorological Measurement

System (MMS; on the NASA ER-2 Aircraft, 1990; Gaines et al., 1992) as a reference

for GPS position and time synchronization.

Due to their preliminary nature, there may be small errors related to bias correc-

tions, quality control methods yet to be performed, aircraft performance, or timing

offsets. While these errors might affect exact concentration values, their timing and

placements, the errors would likely have minimal impacts on the conclusions presented

here due to the larger physical and temporal scales of the associated phenomena.
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3.2.4 Environmental data

ERA5 fields used in this study, available at for Medium-Range Weather Forecasts

(2019), feature 37 vertical pressure levels on a 0.25◦ regular horizontal grid (re-gridded

from the 0.28125◦ native model grid (Hersbach et al., 2020)). Tropopause heights, as

similarly defined by the lapse rate definition in Section 3.1.3, environmental tempera-

ture and winds are used to generate the backwards trajectories (Bowman et al., 2013,

see Section 3.2.6 for details) for measurement attributions.

3.2.5 Severe weather reports

For a qualitative assessment of storm severity, the severe report dataset discussed in

Section 2.1.3 was also utilized, excluding the population-based filter given the limited

spatiotemporal domain.

3.2.6 Data synthesis and analysis techniques

The iterative-based stereoscopic algorithm and associated quality control methods de-

tailed in Young (2021) are used here, which leverage VIS satellite observations to derive

cloud-top heights. While IR-based methods for stereoscopic cloud top height retrievals

are possible, IR imagery is only used here for quality control. Briefly, the stereo algo-

rithm defines the minimum difference between the disparity value and parallax shift as

the cloud top height for each pixel. Disparity characterizes the pixel-by-pixel difference

(east-west offset) between each GOES-16 and -17 image, resulting in a value propor-

tional to the observed cloud-top height, while “parallax” is the satellite-observed dis-

placement of high-altitude objects, with displacements increasing as altitudes increase

(see Fig. 2.3 in Sandmæl (2017)).
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Next, water vapor enhancements are subjectively defined as at least 30 seconds of

increased water vapor above local background levels coincident with real-time GOES

and GridRad overshoot forecast trajectories (independent and unrelated to those calcu-

lated in this study and described below). Here, “local background levels” are defined as

low-variability trace gas concentrations at comparable altitudes surrounding the water

vapor enhancement along the flight track (as available). Isentropic trajectories are then

initialized at the time and location of the aircraft-sampled water vapor enhancements,

and advected by ERA5 wind fields backward for 12 hours using the TRAJ3D model

(Bowman, 1993; Bowman and Carrie, 2002; Bowman et al., 2013). Particle positions

are saved every 10 s along the trajectory path, with their approximate altitudes later

interpolated to the track location. To validate the stereo-derived cloud-top heights,

echo top and cloud top altitudes are also interpolated along each track. Lastly, the

relationship between the spatiotemporal distribution of severe weather reports in our

domain and cloud-top heights is assessed.

3.2.7 Results

The main objective for RF13 was to sample fresh outflow from ongoing overshoot-

ing convection over central and southwest Oklahoma. Convection initiated in west

Oklahoma at approximately 1930 UTC, but unfortunately, GOES-17 did not begin

observations in this region until 2200 UTC when AACP-production in multiple storms

was ongoing. With takeoff at 2259 UTC on 31 May 2022 and landing at 0407 UTC on

1 June 2022, the 5-hr flight first sampled convective outflow at various altitudes just

east of the ongoing convection (Fig. 3.14, right). After completing stacked, level legs

between P1 and P2, the ER-2 was then able to sample along the AACP axis between P2

and P3 following radar indications that the corresponding storm had collapsed. Near

P3 at around 0230 UTC, the ER-2 experienced moderate turbulence, which is unsafe
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for this aircraft and thus ascended until the turbulence subsided. The ER-2 ascended

from 51,000 ft (∼15.5 km) to 55,000 ft (∼16.8 km), turned back to P2, and was soon

able to safely descend to 51,500 ft for the level leg back to P2. Upon approaching P2,

the ER-2 ascended to a maximum altitude of 66,000 ft (∼20 km) and proceeded to

return to Salina.

During the period of AACP sampling between P2 and P3, four water vapor enhance-

ment features were identified (Figs. 3.14 & 3.15, segments enlarged or highlighted).

First, feature 09, between 02:07:22 - 02:25:47 UTC 1 June, contains most of the west-

ward P2-P3 leg, with water vapor enhancements measured throughout the 15.6–16.5

km layer. Next, feature 10 was observed within the 16–16.5 km layer during the de-

scent around P3 between 02:27:27 - 02:28:47 UTC 1 June. Then, feature 11 contains

the latter portion of the eastward P3-P2 leg between 02:31:27 - 02:39:32 UTC 1 June

at ∼15.7 km. Finally, feature 12 was observed at 17 km between 02:42:22 - 02:43:07

UTC 1 June during the final ascent. The storm targeted during the flight, located in

western OK (circled in Fig. 3.16), was ongoing with AACP production at 2200 UTC 31

May and dissipated between 0100–0130 UTC 1 June. This storm reached it’s maximum

strength around 2300 UTC 31 May, where it exhibited supercell characteristics and 30-

dBZ echo top heights of approximately 17 km (Figs. 3.16a & 3.16b). Simultaneously, a

clear and prominent AACP in both GOES-16 and GOES-17 VIS imagery (Figs. 3.16c

& 3.16d) was collocated with relatively warm brightness temperatures (Figs. 3.16e &

3.16f). As discussed in 3.1.6, this is most indicative of AACP presence above the local

tropopause altitude.

When evaluating swaths of maximum stereo-derived cloud-top heights, we find ap-

propriately differentiated storm-top features, including the satellite-observed updraft,

anvil, and AACP characteristics throughout the period (Fig. 3.17). It is important to

note that there are erroneous cloud-top heights along portions of the domain boundary
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(lower and upper left corners) that are disregarded for analysis. We focus on the cloud

features associated with the targeted storm, which exhibits maximum updraft cloud-

top heights of ∼21 km and AACP heights between 18–20 km. Updraft heights from

10-dBZ echo tops, however, indicate maximum altitudes of ∼18 km, with decreasing

maximum altitudes at increasing dBZ thresholds (as expected, Fig. 3.18). Although

updraft magnitudes differ, it appears that areas of relatively strong updrafts in echo

tops and cloud top heights are well correlated with severe weather reports (Figs. 3.17

& 3.18). While some discrepancy is anticipated between cloud-top height retrievals

and 10-dBZ echo top heights due to the different particle types/sizes observed with

each platform, a difference of 3 km warrants further investigation. Tropopause heights

near the storm range from 14–15.5 km (Fig. 3.19), producing typically observed (1–3

km) overshooting depths for 10-dBZ echo tops but excessive (5+ km) overshooting for

stereo-derived cloud tops. Upon broader inspection, there are additional issues with

stereo-derived cloud tops, as seen by the nonphysical, diagonal striping throughout the

analysis period. As such, we note that there are errors within the stereoscopy

algorithm that results in nonphysical features in the cloud-top height fields.

Next, trajectory analyses are used to spatially and temporally identify potential

sources (i.e., individual storms) for each water vapor feature. Through this, we are

able to provide greater insight into which storms were most likely contributing to

lower stratospheric water vapor enhancements. However, specific and confident storm

attributions are not possible here due to various errors associated with ERA5 winds

and, ultimately, trajectories. Specifically, wind field magnitudes and associated parti-

cle displacement derived from any reanalysis contain larger errors in the stratosphere

(compared to upper tropospheric winds) (Hersbach et al., 2020) and typically have

displacement errors of at least a few kilometers per day (Bowman et al., 2013). It

is also likely that hourly ERA5 analyses do not fully capture the large-scale flow in
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this region, which — combined with storm-scale flow perturbations not captured by

the reanalysis — can produce a misrepresentation of true pathways taken by sampled

material.

With these limitations in mind, we can evaluate trajectory locations and any as-

sociated cloud-top and echo top extrema potentially responsible for each water vapor

feature (Fig. 3.20a). Although the aforementioned storm (circled in Fig. 3.16) was the

desired sampling target for RF13, these analyses introduce the possibility that multi-

ple storms, or a different storm entirely, contributed to the water vapor enhancements

sampled during these segments. The clear presence of a broad AACP in VIS ema-

nating from the targeted storm’s updraft suggests that all four water vapor features

could have originated from the targeted storm. However, cloud-top heights along tra-

jectories for features 09–11 are maximized near the location of the targeted storm and

further upstream at the more southwestern storm at 2200 UTC 31 May (Fig. 3.20b),

indicating that either or both storms could be responsible for the observed water vapor

enhancement. Further, areas of ∼16.5 km 10-dBZ echo top maxima along trajectories

for features 09–11, consistent with the altitude range (15.6–16.5 km) of sampled water

vapor enhancements, are only present at the earlier times when the material is pro-

jected to be in the Texas panhandle, coincident with the southwestern storm at 2200

UTC 31 May (Fig. 3.20c). Higher thresholds of echo top heights follow similar, more

pronounced trends, providing a consistent indication that these features are more likely

to have originated from the southwestern storm as opposed to the targeted storm (Fig.

3.20, d–f). Trajectories from the last and highest water vapor enhancement, feature

12, exhibit stereo-derived cloud-top heights (∼16–18) consistent with the measured

enhancement at 17 km, but markedly lower echo top heights. When comparing instan-

taneous locations of echo top maxima throughout the period of trajectory integration,
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feature 12 trajectories were best correlated with the targeted storm, while features

09–11 were best correlated with the southwestern storm (not shown).

Overall, 10-dBZ echo-top height maxima provided the greatest consistency with

water vapor enhancement altitude maxima, with only feature 12 showing much lower

altitudes. On the other hand, stereo-derived cloud-top height maxima were only con-

sistent within feature 12 trajectories, overestimating water vapor enhancement altitude

maxima by ∼3–4 km for the remaining three features. These results suggest that for

this case, echo-top heights produce more reliable altitude estimates for AACP-driven

water vapor enhancements, given our confidence in the observed altitude ranges. How-

ever, it is important recall the obviously erroneous, nonphysical phenomena

in stereo-derived cloud-top heights; corrections to the stereo algorithm are

needed to properly assess consistency with sampled altitudes.
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Figure 3.14: Time-height curtain (left) and planar map (right) of the flight path and
corresponding water vapor measurements taken during RF13 on 31 May 2022. Points
of interest, P1 (black), P2 (purple), and P3 (gray) are overlaid in both panels. Por-
tions of the flight track outlined in black and enlarged indicate water vapor features
associated with AACP sampling. Dashed gray line in left panel represents the esti-
mated tropopause altitude from ERA5. The star in right panel indicates the location
of Salina, KS.
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Figure 3.15: GOES -16 0.64 µm channel 2 imagery valid at 0000 UTC 1 June 2022 (last
VIS image available where AACP is visible) with the along-AACP sampling portion of
the flight track overlaid in gray. Highlighted portions of the flight track indicate water
vapor features associated with AACP sampling.
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Figure 3.16: Maps of GridRad radar reflectivity at a constant altitude of 3 km AMSL
(a), GridRad 30-dBZ echo top altitudes (b), GOES -16 and GOES -17 VIS (c & d),
and IR (e & f) imagery, all valid at 2300 UTC 31 May 2022. The storm sampled by in
situ observations and its corresponding AACP are circled in each panel.

78



Stereo-Derived Cloud Top Heights

14 16 18 20 22 24
Altitude (km)

  

Figure 3.17: Maximum stereo-derived cloud-top altitudes accumulated throughout the
3-hr analysis period between 2200 UTC 31 May and 0100 UTC 1 June 2022. Severe hail,
wind, and tornado reports are shown as circles, squares, and upside-down triangles,
respectively.
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Figure 3.18: Same as Fig. 3.17, but for 10 dBZ (a), 20 dBZ (b), 30 dBZ (c), and 40
dBZ (d) GridRad echo top altitudes.
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Figure 3.19: Lapse rate tropopause altitudes derived from ERA5 temperature profiles
during the stereo analysis time frame: valid at 2200 UTC 31 May (a), 2300 UTC 31
May (b), 0000 UTC 1 June (c), and 0100 UTC 1 June (d).
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Flight Track Features & Trajectory Paths

Figure 3.20: Paths for all backward trajectories from initialization time, through 2200
UTC 31 May. In panel (a), each color represents individual water vapor features for
which trajectories were initialized; flight track segments of each feature are shown
in black and outlined by each respective feature color, with final trajectory locations
marked by white boxes. Values of cloud-top altitudes (b), 10 dBZ (c), 20 dBZ (d), 30
dBZ (e), and 40 dBZ (f) GridRad echo top altitudes interpolated to trajectory paths
are contoured. Dashed lines indicate portions of trajectory paths prior to 0100 UTC 1
June.
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Chapter 4

Conclusions

4.1 Summary of Findings

Study no. 1:

This study developed a new U.S. severe hail climatology based on 23 years of

ground-based radar observations and environmental characteristics from reanalysis

data in an effort to answer our three research questions: 1) How reliable is an radar-

only hail climatology when compared to a report-based method? 2) What additional

information (i.e., environmental variables) could improve accuracy of a radar climatol-

ogy? and 3) What new information can we learn about CONUS severe hail fall from a

long-term, well-calibrated, radar-based climatology? Our conclusions are as follows:

1. Hail climatologies based on radar observations alone are insufficient for repro-

ducing the broad characteristics of hail report distributions, and likely also true

hail fall distributions as well.

2. MESH configurations developed to represent a large number of reports are more

sensitive to marginal severe hail-producing storms. This results in large frequency

maxima across the SEUS, particularly during JJA, which likely indicate strong,

tropical summer convection that have similar ZH to continental hailstorms, but

lack environmental conditions necessary for severe hail occurrence.

83



3. PWAT and 0-6 km bulk wind shear show the best discrimination between correct

identifications and “false” detections of severe hail occurrence.

4. Performing LDA to filter out environments that are not favorable for severe

hail occurrence improves the agreement between radar climatology and report

climatology.

5. U.S. severe hail climatology based on well-calibrated radar and environmental

characteristics shows overall larger frequencies and one single hail frequency max-

ima through the Plains and Ozarks.

Study no. 2:

This study leveraged hundreds of supercell storms throughout 10 years of recent

NEXRAD WSR-88D data, facilitated by the GridRad-Severe record, to answer our two

research questions: 1) How useful are bulk environmental parameters for estimating

maximum hail size for supercell storms? and 2) Is any additional information gained

by leveraging full vertical distributions and storm motions? Our findings of the present

study include:

1. Bulk parameters evaluated in this study contribute little-to-no practical utility

for determining maximum hail size in supercell storms (Fig. 2.12).

2. Substantial overlap in the full environmental profiles remain, but differences in the

hail growth layer in most unstable parcel-environmental temperature difference

and storm-relative wind speeds are most evident (Fig. 2.13).

3. The storm-relative, storm-rotated hodograph analysis indicates increasing storm-

relative environmental wind speed perpendicular to storm motion above 2 km

AGL with increasing hail size (Fig. 2.15b).
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Study no. 3:

This study evaluated the UTLS environments and storm characteristics of 89 warm

and 89 cold AACP storms to answer two main research questions: 1) Why do some

AACPs exhibit a warm feature in IR imagery while others do not? and 2) What

observable storm and environment differences exist between warm and cold AACPs?

Our conclusions are as follows:

1. Warm AACPs frequently occur in low-tropopause, midlatitude environments,

while cold AACPs frequently occur in high-tropopause, tropical environments,

thus supporting Hypothesis 2.

2. Stratospheric AACP formation necessitates consistently strong storm-relative

winds within the lower stratosphere, which are observed in warm AACP en-

vironments but not in cold AACP environments.

3. Storm characteristics (LMD and echo top heights) are largely consistent between

warm and cold AACP storms.

Study no. 4:

This study leverages the recently developed stereoscopic cloud-top height retrieval

algorithm designed for modern GOES imagery from Young (2021) to answer the follow-

ing research questions: 1) How do stereoscopic cloud-top height retrievals compare to

radar-derived echo top products and in situ water vapor measurements? and 2) What

new information can be gained from stereoscopic cloud-top height retrievals regarding

AACPs? Our conclusions are as follows:

1. Existing errors in the stereo algorithm must be corrected in order to

accurately assess their representation of observations and to consider

potential new insights into AACPs. These stereo results should not
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be used for future reference, and later studies should instead reference

the most recent peer-reviewed publication containing the completed

study.

2. Stereo-derived cloud-top heights frequently overestimated the observed altitudes

of in situ water vapor enhancements by ∼3–4 km.

3. 10 dBZ echo-top heights produced the most consistent altitude range estimates

to those of observed water vapor enhancements.

4. AACPs observed by modern GOES VIS imagery can be sufficiently prominent

to be differentiated from other storm-top features.

4.2 Hail Occurrence Discussion

The hail studies discussed here have shown that environmental information can be help-

ful in identifying severe hail occurrence and estimating size. Though various methods

exist for using radar observations to identify likely areas of severe hail fall, they alone

do not provide enough information to accurately establish a severe hail climatology.

MESHWitt, the commonly used radar-derived parameter, was fit to only 147 reports,

which resulted in an unreliable relationship between hail size and SHI (See Fig.1̇3

of Murillo and Homeyer (2019)). The increased sensitivity of MESH75 and MESH95

to lower SHI values resulted in greater “false” detection in regions of deep, tropical

convection that were removed from the climatology via LDA of environmental param-

eters. Additionally, our analysis of hail-producing supercells found minor variations in

bulk metrics (particularly in MUCAPE; see Fig. 2.12) and in profiles of most unsta-

ble parcel−environment temperature differences and storm-relative wind speed (Figs.
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2.13d & 2.13e) between hail size categories, similar to prior storm environment analy-

ses. In particular, the greater separation in storm-relative, storm-rotated hodographs

is an encouraging finding and differs in nature from the storm-relative wind sensitivi-

ties explored in prior work (i.e., increasing storm-relative wind perpendicular to storm

motion at low levels or deep-layer wind shear parallel to storm motion; see, e.g., John-

son and Sugden, 2014; Dennis and Kumjian, 2017; Kumjian and Lombardo, 2020).

However, substantial differences in deep-layer shear for supercell storms with differing

maximum hail size were not found in Study no. 2.

As these studies necessitate the use of hail reports, they are still limited by the

need for more reliable and representative size reporting. Unlike the hail-producing

supercell study which leveraged population-filtered reports, the climatology developed

in Study no. 1 provided hail frequency information where reports did not exist. As such,

the uncertainty associated with “false” detection continues to be one of the greatest

challenges for objective severe hail identification, limiting the ability to accurately

measure the skill of any parameter, given the unknown number of hail occurrences left

unreported. However, certain techniques can be adopted to help minimize potential

bias, such as LDA, objective storm tracking, filtering hail reports, and excluding earlier,

less reliable time periods as was done in Study no. 2.

There are additional challenges associated with radar-derived products, including

the variable number of operational radars throughout the time period, potential erro-

neous radar scans missed during quality control, the unknown time- and space-varying

calibration biases of the radars, and the resolution of the radar observations. For ex-

ample, high MESH values could be spatially overestimated due to non-uniform beam

filling of high reflectivity, which was also discussed in Cintineo et al. (2012). However,

the overall observational record length, stability in radar data availability since 2006,

and reduction in spatial resolution are all aspects of the data that serve to mitigate
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these issues. It is worth noting that while the application of Gaussian smoothing to

re-gridded hail climatology might introduce additional errors, we found the results were

insensitive to such smoothing. Radar errors are also less impactful to the findings from

Study no. 2, given that the only radar parameters utilized are storm locations and mo-

tions. The radar-derived supercell characteristics are evaluated in the complementary

study by Homeyer et al. (2022).

As is typical for storm-environment studies utilizing reanalyses, uncertainty exists

around the degree to which these environments are accurately represented in reanaly-

ses. Recently, Taszarek et al. (2021) evaluated how MERRA-2 and ERA5 convective

parameters compared to those from observed soundings. While they did find that

MERRA-2 was overall less representative than ERA5 analyses, the two parameters

used for LDA (precipitable water and 0-6 bulk wind shear) were still well-represented.

Future work could instead use ERA5 for LDA to produce an updated U.S. hail cli-

matology with slightly greater confidence. As Taszarek et al. (2021) also found that

ERA5 underestimated parcel temperatures over the U.S., with mixed-layer profiles be-

ing less erroneous than most unstable profiles, future work could evaluate mixed-layer

parcels within spatiotemporal domains where such errors are minimized (see Taszarek

et al. (2021) for details). Despite the aforementioned caveats and broad environmental

overlap between supercell storms with varying hail size potential, diagnosed hodograph

differences from ERA5 near-storm environments can be applied to operations with min-

imal training. Such an application could provide forecasters with greater confidence

for the potential of individual storms to produce increasingly large hail.

The U.S. severe hail climatology established in Study no. 1 produces a solid founda-

tion that can be leveraged for a variety of applications, including its utility as a valida-

tion dataset, the ability to evaluate how hail events co-vary with climactic variability,

and the opportunity to apply similar LDA evaluations to improve model output-based
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hail proxy methods. Although we only utilized single-polarization observations to es-

tablish a U.S. severe hail climatology, the findings provide valuable information for

the next decade as a sufficient database of dual-polarization observations becomes es-

tablished. While the new MESH configurations performed well at severe hail sizes,

additional work and higher quality reports are needed to produce a more representa-

tive sub-severe and significantly severe hail climatology (Wendt and Jirak, 2021; Elmore

et al., 2022). A comprehensive environmental evaluation of other hail-producing storm

modes (e.g., multicell, quasi-linear convective systems, etc.) could also provide addi-

tional insight into environmental controls for hail production, and most importantly,

better capture sub-severe hail occurrence, given the frequent severe hail production in

supercell storms. Another immediate path could be similar analyses to those conducted

or proposed here using radar and environmental data from other countries/regions.

4.3 Overshooting Storm Top Discussion

Analysis of tropopause characteristics in warm and cold AACP storms reveal lower

tropopause heights, broad isothermal regions above, and more frequent double tropo-

pauses for warm AACPs compared to higher tropopause heights with inflection point

characteristics and infrequent double tropopauses for cold AACPs (Fig. 3.13). Similar

storm-relative wind profiles and 10-dBZ echo top altitudes for warm and cold AACP

storms, despite different tropopause-relative characteristics, suggest similar storm up-

drafts within different environments. We have high confidence that these warm AACPs

occur in the lower stratosphere, evidenced by ∼95% of warm AACP 10-dBZ echo tops

exceeding the tropopause, where sufficient dynamical support for AACP formation ex-

ists. Conversely, only ∼50% of cold AACP 10-dBZ echo tops exceed the tropopause,

suggesting that sustained AACP production, which is needed for Study no. 3 cases, in
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the lower stratosphere is unlikely. Given that there is also a lack of dynamical support

(strong storm-relative wind) for gravity wave breaking in the lower stratosphere of cold

AACP environments, when tropopause-overshooting did occur, it was likely intermit-

tent and unlikely to produce the observed sustained AACPs in the lower stratosphere

(Fig. 3.13). Thus, cold AACPs most likely reside in the upper troposphere (i.e. below

the tropopause) where sufficient storm-relative winds are present.

The aforementioned result that warm AACPs reside in the stratosphere and cold

AACPs reside in the troposphere has important implications for studies that aim to

assess the stratospheric water vapor impact of AACP-producing storms. While it is

still possible that Hypothesis 3 is also valid in some (or many) instances, it is likely

a minimal contribution to AACP IR characteristics in comparison to Hypothesis 2

given the clear differences in the storm-relative environments in warm and cold AACP

storms found in Study no. 3. Although the microphysical characteristics of warm and

cold AACPs were not evaluated, the work carried out in Study no. 4, as part of an

ongoing effort to investigate observations obtained during DCOTSS field operations,

presents a valuable first look at sampled AACP altitude ranges and associated micro-

physics. Given the unique objectives of and resources utilized for DCOTSS, mentioned

in Section 1.2, RF13 was the first flight of its kind, targeting very fresh convective out-

flow to sample trace gas and particle enhancements relative to the lower stratospheric

background. Such operations provide the necessary observations to validate new stereo

algorithms for cloud-top height retrievals.

While errors in the stereo algorithm are, at least in part, responsible for the incon-

sistencies between echo-top heights and stereo-derived cloud-top heights, discrepancy

to some extent is expected given the inherently different phenomena represented by

each parameter. Echo-top heights can only represent altitudes where precipitation-

sized hydrometeors are large enough to be observed by S-band radar, while stereo
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products can estimate the vertical extent of clouds consisting of much smaller parti-

cles. Thus, we do expect that stereo-derived heights will be in general higher

than echo-top heights, but the erroneous stereo algorithm limits our ability

to characterize the expected inconsistency.

As VIS is currently the foundation for AACP identification, these studies inherently

neglect AACPs during nighttime hours. As such, stereo-derived cloud-top heights

were only available prior to 0100 UTC 1 June, and with AACP-produced water vapor

enhancements observed after 0200 UTC 1 June, it was not possible to compare stereo-

derived heights and water vapor enhancements simultaneously. Since the targeted

storm collapsed during sunset, however, it is likely that the stereo analyses captured

all overshooting/AACP injections relevant to the sampled features. Nonetheless, we

do not expect there to be nighttime-dependent warm or cold AACP characteristics,

as the tropopause environments lack a substantial dependence on the diurnal cycle.

Although, there is still the possibility of missing relevant information about AACPs in

general between sunset and sunrise.

Additional limitations are presented by the inclusion of reanalysis environments,

particularly in the UTLS. Combined with infrequent sampling above 100 hPa, tropo-

pause-penetrating convection can introduce smaller-scale motions within the lower

stratospheric flow that, together, can create higher than expected reanalysis errors

in this layer (Hersbach et al., 2020). Such missing dynamics in the reanalysis wind

fields is most problematic to trajectory analysis. Insentropic trajectories utilized for

storm source attribution in Study no. 4, as opposed to fully 3-dimensional, are typi-

cally preferred in the UTLS, where diabatic heating rates are small and pressure vertical

coordinates are more easily influenced by small-scale motions. However, whether isen-

tropic or fully 3-dimensional, these trajectory analyses are susceptible to errors in the

stratospheric wind, given the greater presence and importance of storm-induced small
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scale motions not resolved by the reanalysis (Bowman et al., 2013). It is possible there

are “storm-specific” signatures in other trace gas measurements (e.g., surface pollu-

tants) measured by the ER-2 that could provide further evidence as to which storm(s)

contributed to each of the water vapor enhancement features. Conversely, it is unlikely

that these ERA5 wind errors substantially impact the conclusions on environment

differences from Study no. 3, because differences between the two AACP-producing

storm populations were only found for storm-relative winds, demonstrating the greater

dependence on storm motion than true environmental winds.

Brief evaluations of storm severity in these two studies found that many AACP-

producing storms featured severe reports of various types or radar indications of severe

weather (hail), consistent with prior work. While some apparent differences in storm

severity (hail and wind) were found using reports for warm and cold AACP storm

populations, with warm AACP storms being more prolific severe weather producers,

independent evaluation of storm characteristics from radar suggest that such differences

(at least for hail) are an artifact of the limited report data (compare Table 3.1 and Fig.

3.12). For Study no. 4, spatiotemporal distributions of severe weather reports were

broadly coincident with the highest echo-top and stereo-derived cloud top heights, of

which most storms produced an AACP at some point during their life (not shown).

Nonetheless, a more comprehensive and reliable report database (e.g., as in Blair et al.

(2017)) is needed to adequately capture storm severity and meaningful differences

between storms, particularly of warm and cold AACP-producing storms.

Finally, future assessments that can utilize the quality-controlled in situ measure-

ments, as those in Study no. 4 are only preliminary (see Section 3.2.3), will increase

confidence in the altitude range and water vapor enhancement magnitudes, especially

in conjunction with the corrected stereo algorithm. Once these improve-

ments/corrections have been completed, stereo analysis of the remaining DCOTSS
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flight, RF19 on 24 June 2022 (see Section 1.2), could then be appropriately carried

out. Additional confidence in stereo-derived altitudes is possible by combining IR-

based stereo analyses with VIS-only methods to produce cloud-top altitudes. Such

IR-based stereo algorithms would also provide nighttime cloud-top heights that are

impossible with VIS-only stereo methods.

4.4 Looking Forward

Together, the projects summarized here have increased our knowledge of AACPs, devel-

oped a variety of severe overshooting convective storm climatologies, and contributed

to our understanding of how these storms can influence UTLS composition and climate.

The DCOTSS field campaign produced the first documented opportunity to analyze in

situ observations of AACPs in conjunction with 1-minute stereoscopy and 5-m radar

observations. Additionally, we have demonstrated the challenges related to connecting

convectively-influenced air (i.e. AACPs) to it’s particular source (even in a relatively

isolated event) and to discriminating hail sizes from radar or environmental information

in a reliable, broadly applicable manner. As routine dual-polarization radar observa-

tions are collected over the next few years, it will soon be possible to assess their utility

for improving hail size estimation and climatology. While such a collection would likely

provide additional discrimination, severe weather climatologies built on trustworthy,

impact-based observations, such as insurance claim data, could be the most valuable for

assessing hazard magnitudes, risk, and damage. Although there are many unresolved

questions regarding AACPs, hail-producing and supercell storm climatologies estab-

lished here (and future, more representative iterations) could be adapted to advance our

understanding of AACP spatiotemporal variability. Nonetheless, the time-consuming,

manual process of AACP identification warrants the development of an automated
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detection method that would enable comprehensive evaluation of their characteristics,

frequency, and geographic distribution, particularly at night (likely not possible for

cold AACPs).
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