
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

EVALUATING LANGUAGES FOR BIOINFORMATICS:
PERFORMANCE, EXPRESSIVENESS AND ENERGY

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

RANDY J. RAY
Norman, Oklahoma

2022

EVALUATING LANGUAGES FOR BIOINFORMATICS:
PERFORMANCE, EXPRESSIVENESS AND ENERGY

A THESIS APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY THE COMMITTEE CONSISTING OF

Dr. Sridhar Radhakrishnan, Chair

Dr. Christan Grant

Dr. Le Gruenwald

© Copyright by RANDY J. RAY 2022
All Rights Reserved.

Acknowledgments

This effort would have never been possible without the support and encouragement of many

others.

Firstly, I would like to thank my adviser and the chair of the thesis committee, Dr. Sridhar

Radhakrishnan. He was the first point of contact when I initially became interested in the

Master’s program at OU and had me excited about the potential from the very start. I would

also like to thank the remaining members of the committee, Dr. Christan Grant and Dr. Le

Gruenwald, for their role in this and for the courses I took from them.

Secondly, I would like to thank the members of the C++ and Rust communities on Reddit.

Of the languages used in this research, these were the least-familiar to me and the ones I

sometimes struggled with. Without the ready answers to my many questions, I would have

had a much more difficult time getting the final results that I did. I would like to especially

thank Andrew Gallant of the Rust community for his extensive advice and help with Rust in

general and several of the programs in particular.

Next, I would like to thank my mother, whose words of support and encouragement often

came at truly opportune times.

I would next like to thank my father, who passed away before I could begin this program

but who would have been exceedingly proud of what I have been able to accomplish. Without

his support, I would have barely managed to finish my undergraduate years at OU, let alone

been in a position to return for a higher degree later in life.

Lastly, and most importantly, I thank my dear wife Eugenie. I truly believe that, without

her help and support, I would not have gotten this far. She was my steady support, my

cheerleader, my proofreader, my copy-editor, my sounding board for ideas, my rubber duck,

and my project manager. But most of all, she was my partner. She kept me focused and

kept me moving forward, even in the times I sat at our dining table and doubted my ability

to finish this effort.

She never lost faith or confidence in me, and for that (among many many reasons) I

dedicate this work to her.

iv

Abstract

One of the fastest growing concerns in the technology sector is the increased demand for

power in the world’s data centers. Global data center electricity use in 2021 was estimated as

between 220 and 320 terawatt-hours (TWh), as much as 1.3% of global electricity demand.

As the data center industry continues to expand, so too will power usage, and therefore the

need for increased energy efficiency in software development.

This thesis introduces a methodology that evaluates a set of programming languages

based on three key metrics: performance, expressiveness, and energy use, demonstrating a

fair consideration of each language’s strengths and weaknesses. The framework presented

creates a collection of string-matching algorithms used on DNA sequences to demonstrate

the capabilities of each language, and draw out their distinctiveness.

DNA sequencing was chosen due to its growing uses and applications as technology evolves

and makes such sequencing faster and less expensive. This in turn has lead to a growing

percentage of compute-time being spent on this field. Using the methodology presented here

it will be shown that using a newer language, like Rust, has advantages that help it balance

speed, ease of use, and power consumption when used for advanced scientific computing.

A key part of this work introduces a novel approximate-matching algorithm to aid in this

evaluation process. This new algorithm differs from current algorithms in use, in its ability to

hold the gap between nucleotides to a specific maximum while allowing other gaps to exist.

It will offer an alternative technique to other current approximate-matching algorithms and

hopes to offer researchers another tool to consider for sequence-matching problems.

The expectation is that this research will show how testing and evaluating via performance,

expressiveness and energy use metrics allows for rating and ranking programming languages

in a consistent and reproducible manner. This will enable developers to make educated

choices when selecting a language for a project. The methods described here will be applicable

to other languages as well, given similar data to work with. This research will benefit the

programming field by providing methods and techniques that can be used in the language

selection process, particularly when energy efficiency is as important as overall performance.

v

Contents

List of Figures viii

List of Tables ix

Source Code Listings x

1 Introduction 1
1.1 String Matching . 1
1.2 DNA Strings . 2
1.3 Comparison Bases . 2

2 Motivations and Prior Work 3
2.1 Programming Languages . 3
2.2 Performance, Expressiveness, Energy . 4
2.3 Prior Work . 6

3 Selected Algorithms 7
3.1 Knuth, Morris, and Pratt . 7
3.2 Boyer and Moore . 9
3.3 Bitap . 11
3.4 Aho and Corasick . 13
3.5 Approximate Matching with Gaps . 15

3.5.1 Creation of the DFA . 18
3.5.2 Matching with the DFA . 20
3.5.3 Example . 21

3.6 A Regular Expression Variant . 22

4 Details of the Experiments 23
4.1 Definitions and Measurements . 23

4.1.1 SLOC (Source Lines Of Code) . 23
4.1.2 Language Conciseness Through Compression 24
4.1.3 Cyclomatic Complexity . 24
4.1.4 RAPL (Running Average Power Limit) 26
4.1.5 Summary of Metrics . 27

4.2 Experiment Harness . 28
4.3 Languages . 29

4.3.1 C . 29
4.3.2 C++ . 30
4.3.3 Perl . 31
4.3.4 Python . 32
4.3.5 Rust . 33
4.3.6 Languages Not Used . 34

4.4 General Implementation of the Algorithms 35
4.4.1 Input modules . 35

vi

4.4.2 Runner modules . 35
4.4.3 Algorithm modules . 36

4.5 Algorithm Implementation Details . 37
4.5.1 Knuth, Morris, and Pratt . 37
4.5.2 Boyer and Moore . 38
4.5.3 Bitap . 39
4.5.4 Aho and Corasick . 39
4.5.5 Approximate Matching by DFA with Gaps 41
4.5.6 Regular Expressions Variant . 42

4.6 Initial Observations on Complexity . 43
4.7 Optimizations . 45
4.8 Experimental Data . 46

4.8.1 Method of Generation . 46
4.8.2 Shape of the Data Used . 46

4.9 Testing Platform . 47
4.9.1 Hardware Specifications . 47
4.9.2 Operating System and Configuration 47
4.9.3 Compilers and Other Tools . 48

4.10 Resources . 48

5 Results and Analysis 49
5.1 Results from the Experiments . 50

5.1.1 Scope of the Experiments . 50
5.1.2 Outliers and the Interpreted Languages 50

5.2 Performance Comparisons . 51
5.2.1 Adjusting for Perl and Python . 51
5.2.2 Collected Performance Results . 53

5.3 Expressiveness Comparisons . 56
5.3.1 Source Lines of Code . 57
5.3.2 Cyclomatic Complexity . 59
5.3.3 Conciseness . 59
5.3.4 Combining the Expressiveness Metrics 60

5.4 Energy Usage Comparisons . 62
5.5 Combining the Bases . 63
5.6 Confidence Intervals of the Data . 66
5.7 Final Rankings . 68

6 Conclusions 70

References 71

A Gap Algorithm Additional Tables 74
A.1 DFA-Gap Algorithm Tables . 74

A.1.1 DFA-Gap Run-times . 74
A.1.2 DFA-Gap Energy Usage . 74

vii

A.2 Regexp-Gap Algorithm Tables . 74
A.2.1 Regexp-Gap Run-times . 75
A.2.2 Regexp-Gap Energy Usage . 78

B Gap Algorithm Additional Graphs 80
B.1 DFA-Gap Run-time Progression . 80
B.2 Regexp-Gap Run-time Progression . 81

C Detailed Results 83

D Confidence Interval Data 85
D.1 Runtime Confidence Intervals . 85
D.2 Energy Usage Confidence Intervals . 85

E Software Sources 92

List of Figures

1 DNA and the four bases . 2
2 Projected energy demands through 2030 . 5
3 Example of Knuth-Morris-Pratt algorithm 8
4 Knuth-Morris-Pratt next-table . 8
5 Boyer-Moore delta1 table . 10
6 Boyer-Moore delta2 table . 10
7 Bitap shift positions vector . 12
8 Bitap matching process . 12
9 Aho-Corasick goto function . 14
10 Aho-Corasick failure function . 14
11 Aho-Corasick output function . 15
12 Example of Aho-Corasick state progression 15
13 DFA-Gap finite automaton . 18
14 DFA for the pattern CGAG . 21
15 Cyclomatic graph . 25
16 Flow graph of the naive algorithm . 43
17 Flow of the Python make next table function 44
18 Flow of the C++ make next table function 44
19 Bar charts of DFA vs. Regexp run-times for Perl and Python 52
20 Bar charts of DFA vs. Regexp run-times for the compiled languages 53
21 Knuth-Morris-Pratt run-times . 55
22 Boyer-Moore run-times . 55
23 Bitap run-times . 55
24 Aho-Corasick run-times . 55
25 DFA-Gap run-times . 56
26 Regexp-Gap run-times . 56
27 Calculated expressiveness as vectors . 62

viii

28 Energy/second, by algorithm . 65
29 Total energy by language . 66
30 Plots of run-times for DFA-Gap by values of k 80
31 Plots of run-times for Regexp-Gap by values of k 81

List of Tables

1 Hardware specifications of the test platform 48
2 Specifications of software tools used . 49
3 Experiment iterations by language and algorithm 50
4 Comparative run-times by algorithm . 54
5 Comparison of SLOC by language . 57
6 Comparison of complexity by language . 59
7 Comparison of compressibility by language 60
8 Scoring of the cyclomatic complexity results 61
9 Calculated expressiveness score . 61
10 Calculated expressiveness score, 2-axis . 62
11 Comparative energy usage over time by algorithm 64
12 Final scores for totaled run-time and energy, by language 65
13 Final scores for all combined metrics, by language 67
14 Runtime Confidence Intervals for three full sets 67
15 Energy Confidence Intervals for three full sets 68
16 Final scores for all combined metrics, by distinct language 68
17 Comparative run-times of DFA-Gap by value of k 75
18 Comparative energy usage by DFA-Gap by value of k 76
19 Comparative run-times of Regexp-Gap by value of k 77
20 Comparative energy usage by Regexp-Gap by value of k 78
21 Full data for table 13a: final scores, by scale with complexity data 83
22 Full data for table 13b: final scores, by scale without complexity data 83
23 Full data for table 13c: final scores, by rank with complexity data 84
24 Full data for table 13d: final scores, by rank without complexity data 84
25 Full data for table 16a: distinct languages, by rank with complexity data . . 84
26 Full data for table 16b: distinct languages, by rank without complexity data 84
27 Runtime Confidence Intervals for Knuth-Morris-Pratt 85
28 Runtime Confidence Intervals for Boyer-Moore 86
29 Runtime Confidence Intervals for Bitap . 86
30 Runtime Confidence Intervals for Aho-Corasick 87
31 Runtime Confidence Intervals for DFA-Gap (k=3) 87
32 Runtime Confidence Intervals for Regexp-Gap (k=3) 88
33 Energy usage Confidence Intervals for Knuth-Morris-Pratt 88
34 Energy usage Confidence Intervals for Boyer-Moore 89
35 Energy usage Confidence Intervals for Bitap 89
36 Energy usage Confidence Intervals for Aho-Corasick 90
37 Energy usage Confidence Intervals for DFA-Gap (k=3) 90

ix

38 Energy usage Confidence Intervals for Regexp-Gap (k=3) 91
39 Sources for the additional software tools used in this research 92

Source Code Listings

1 Python example of complexity . 25
2 C naive implementation . 30
3 C++ naive implementation . 31
4 Perl naive implementation . 32
5 Python naive implementation . 32
6 Rust naive implementation . 34
7 Bitap main loop in Rust . 39
8 C/C++ DFA-Gap main loop . 41
9 C unpacking of pattern data (Aho-Corasick) 58
10 Rust unpacking of pattern data (Aho-Corasick) 58

x

1 Introduction

When evaluating a programming language for use on a project, programmers are faced

with an ever-growing array of choices. These choices range from long-lived, well-established

languages such as C or Fortran, to the very latest offerings such as Julia or Swift. Selecting a

language is a process that is generally rooted in a combination of factors: suitability to the

target platform, performance, expressiveness, and (often most importantly) the programmer’s

familiarity and comfort with the language.

This thesis will be a comparison of the relative strengths of five different programming

languages when applied to five different algorithms. To explore this, the problem of large-scale

string matching will be examined with a focus on matching DNA-like strings.

1.1 String Matching

The topic of string matching has long been a popular area of research in computer science.

Before the paper by Knuth, Morris and Pratt in 1977 [22] there was already considerable

work being done. In the same year, Boyer and Moore [12] published an improvement over

the Knuth-Morris-Pratt algorithm with enhancements such as starting the match from the

tail of the pattern rather than the head, and allowing for greater right-ward jumps through

the string being searched. Even earlier, a 1975 paper by Aho and Corasick [2] described a

method of searching for multiple patterns simultaneously in a given target string, trading a

longer preparation time for the benefit of a construct that could be used over and over on

different target strings.

String matching algorithms take many different forms, from simple indexing-based to

suffix trees, character comparisons to bit vector operations, and serial to massively-parallel

driven by the latest in GPU advances. A search through the Google Scholar service during

the preparation of this paper counted nearly 60,000 results matched across diverse disciplines

that employ string matching as part of their algorithmic problem-solving processes.

But matching strings means extensive reading and manipulation of strings. These strings

are blocks of allocated memory, which can lead to program errors and vulnerabilities. A large

percentage of security vulnerabilities discovered in programs are traced back to memory-

related issues; in [17], Google software engineers are quoted as attributing roughly 70%

of serious security bugs in Chrome to memory management and safety bugs. The article

goes on to report that analysis from Microsoft echoes this number. As such, a process

to write programs that are more stable and secure must include careful consideration of

memory-related challenges.

1

1.2 DNA Strings

For this study, string matching will be applied to the problem of finding sub-sequences within

strings created to emulate DNA (Deoxyribonucleic Acid) sequences. DNA sequence strings

have interesting properties, in that they can be extremely long but at the same time the

alphabet is limited to just four characters (“A”, “T”, “C”, and “G”), called “bases”.

Figure 1: DNA and the four bases

In [20] Heather and Chain say, “It is hard to overstate the importance of DNA sequencing

to biological research”. Today’s researchers use ever-increasing computing resources to process

this data faster and in a more complete fashion. String-matching algorithms, mathematical

models and other tools have become vital to these research fields, as the size and quantity of

data produced by sequencing has also grown. In just the two decades since the completion

of the Human Genome Project, current sequencer technology has advanced to the point of

being capable of producing as much as a terabyte of data per day [13].

1.3 Comparison Bases

Implementations of the selected algorithms will be developed in five languages: C, C++,

Rust, Perl, and Python. Each language’s implementations will be evaluated against the

others on three bases:

1. Performance: Run-times for each solution will be gathered using existing timer

mechanisms. Time-measurements will be somewhat coarse, as overhead operations such

as I/O will necessarily be included in the times.

2. Expressiveness: Each solution will be measured on several source-level metrics in an

effort to evaluate the expressiveness of the code.

2

3. Energy efficiency: Energy usage will be measured for each solution using the Running

Average Power Limit (RAPL) tools available on Intel processors. RAPL will be outlined

in greater detail in section 4.1.4.

These three bases cover modern concerns in software development: the general performance

of an application, the readability/maintainability of the application, and the power consump-

tion of the system running the application. Where the first two criteria are well-known and

common, the last has been chosen based on steadily-growing concern over power consumption

in the data center industry and in the mobile computing field [28].

2 Motivations and Prior Work

This research began initially as an effort to demonstrate the suitability of the Rust programming

language for the bioinformatics field. An exploration of the Rust-Bio project [23] led to

finding the SeqAn1 project for C++. Further investigation led to an understanding of the

ongoing popularity of languages like Perl and Python in this area, as well. It was decided

that, rather than focus specifically on Rust and its potential, this effort would instead pursue

an understanding of the relative power of a selected set of languages on the metrics described.

It is believed that these three measurements can evaluate the languages with enough

clarity that a programmer could make an informed choice as to which would better meet

their needs.

2.1 Programming Languages

Programming languages have a long history. The first commercially-available compiled

language was FORTRAN, first appearing in 1956. But there were languages before FORTRAN,

languages that were highly specialized and often relied on obscure syntax. Languages evolve

and new languages emerge as the applications of computing and the needs of software grow

and expand. Some languages, such as C and later versions of Fortran, persist even as new

languages intended to replace them fall out of favor and die off. When examining what makes

a language successful, it is necessary to look at multiple factors:

• How well does it perform? How fast are the programs written in the language?

• What aspects of problem-solving are made easier by the language? What aspects are

made harder?

1SeqAn: https://www.seqan.de/

3

https://www.seqan.de/

• How difficult is it to develop software in the language? How difficult is it to maintain?

A comparison of languages is not only predicated on their speed but also on readability,

expressiveness, and capability. A language must be able to perform, but it must also be

understandable. Jokes about the relative readability and maintainability of different languages

date back to the APL language if not earlier than that. Setting aside endeavors such as

obfuscated code competitions, some languages are simply harder to read than their peers. Perl

and Python are often compared in this regard, for example. Perl’s syntax relies heavily on

the use of non-alphabetic symbols (referred to as “sigils”) in using and referencing variables.

Contrast this with Python’s comparatively clean syntax, which is closer in style to that of C

and other similar languages.

A full treatment on the discipline of programming language design is outside the scope

of this writing. Instead, issues of the more aesthetics-oriented language differences will

be addressed by examining some static aspects of the code, aspects that are completely

independent of the running of the programs themselves.

2.2 Performance, Expressiveness, Energy

The experiments that will be described in this paper were designed to focus on a trio of

aspects of concern to modern software developers: how well the code performs, how easy it is

to read and maintain the code, and (more recently) how the code ranks in terms of energy

efficiency.

The overall performance of programs is an issue often discussed when languages are

compared directly. Languages such as C and C++ offer high performance, while interpreted

languages like Perl and Python have comparatively poor performance. And yet, Python holds

great popularity in many sub-fields such as data science, machine learning, data visualization,

and task automation. It leads to the question: why would a language so much slower would

be so popular?

While there are many varied reasons why people developing software like or dislike a given

language, certain aspects often rise up in conversations. These aspects include the friendliness

of the language, the ease of use it offers, and the readability of the language. Aspects like

this are sometimes referred to as the expressiveness of a language: the breadth of ideas that

can be represented in that language, and the degree to which they can be understood and

communicated.

Expressiveness can be a significant factor in language selection and use. In [9], Berkholz

looks at measuring expressiveness by looking at how many lines of code change in an average

version control commit for projects written in a range of languages. He found functional

4

languages such as Lisp and Haskell to be the most expressive, and domain-specific languages

to be biased towards high levels of expressiveness.

In addition to performance and expressiveness, the energy usage of software is rapidly

becoming more important as data-centers try to reduce carbon footprints and developers

target battery-driven mobile devices.

Figure 2: Projected energy demands through 2030 (original source [19])

In [19], the author reports that the U.S. data center industry alone “consumed around

196 to 400 terawatt-hours (TWh)” in 2020. And as their graph above predicts, this could

become significantly higher by 2030. But in [24] the authors point out that actual server

energy use is on average only 43% of data center usage. And yet, if accurate, this means that

server energy could account for anywhere from 84 to 172 TWh. Even a small reduction in

server energy could have an impact.

In [28], Pereira, et al did an extensive analysis of energy efficiency at the programming

language level. Upon seeing the results and the methods used, it became clear that this

should be used with the previous two metrics to evaluate a set of languages in even broader

terms.

5

2.3 Prior Work

Some of the papers that informed this research include:

Rahate and Chandak [30] performed a study focused on algorithm performance similar to

what is planned here. From this paper, it was determined that there should be at least five

algorithms under consideration and that algorithms such as Knuth-Morris-Pratt [22] would

make good candidates.

In [15], Chen and Nguyen describe an approach to string matching over DNA data with

k differences. Their technique was based primarily on edit distance, and lent ideas to the

development of the k-gap approximate-matching algorithm that will be described in 3.5.

Neamatollahi, et al [26] describe three pattern matching algorithms that are specifically

targeted at searches on large DNA sequences. While the first is a more traditional character-

based matching algorithm, the second and third take advantage of aspects of the CPU such

as word-width to speed up comparisons.

The concept of multiple-pattern-matching for exact matches is explored by Bhuka and

Somayajulu in [10]. Their approach is based on the use of pair indexing for both the sequence

and the pattern. This paper gave weight to the idea of multi-pattern matching and led to

the decision to take the Aho & Corasick algorithm [2] as one of the evaluation algorithms.

In [16], Cheng, et al describe a novel data structure and use it in two new parallel

approximate matching algorithms. Ultimately, this was not used directly as the multiple-

machine clusters would have greatly increased the complexity of taking energy usage

measurements.

Ahmed, et al [1] presents an efficient implementation for maximal exact matching (MEM)

seeds in long DNA reads, using GPU computing. While the algorithm itself appeared very

sound, adding a MEM algorithm to the experiments was not practical in general. Additionally,

CUDA computing was not available to all five of the chosen languages.

Xylogiannopoulos [36] describes a novel methodology for exact string matching based on

a pipeline of data structures and algorithms. This approach would have been beyond the

scope of the goals of this paper, as the focus here is on using basic individual algorithms.

Alazzam and Sharieh [3] developed a parallel n-gram approach to approximate matching.

As a parallel algorithm, it would not have been applicable equally across the selected languages

as some (such as Python) have limitations on multi-threaded operation.

6

3 Selected Algorithms

Guided by [30], five algorithms in total were chosen to be used in providing the basis for

evaluating the languages under scrutiny. Of the five, four are exact-matching algorithms and

one is an approximate-matching algorithm. One algorithm matches multiple patterns in a

single examination of a sequence, while the remaining algorithms match only single patterns.

In this section, these algorithms are introduced and the first four briefly explained. The

fifth algorithm will receive a more in-depth treatment due to it being a new approach. An

understanding of the underlying mechanics of the algorithms will be helpful when later

evaluating their implementations.

During the process of running experiments and analyzing the results, it was decided to

add a variation of the fifth algorithm to the existing set. As a variation, it is not covered

in the same depth as the fifth and original algorithm is. Instead, it is dealt with in greater

detail in section 4.5.6.

3.1 Knuth, Morris, and Pratt

The Knuth-Morris-Pratt [22] algorithm is one of the foundational algorithms in the area of

string matching and text searching. This was chosen primarily for historical significance, but

also for ease of implementation. Implementations of this algorithm are still being written, as

recently as the Rust-Bio project [23].

Knuth-Morris-Pratt is an exact matching algorithm, meaning that it matches the desired

pattern exactly or not at all. It finds all instances of the pattern within the target string,

including overlapping instances, in time-complexity linear to the sum of the pattern length

and the target length.

Generally when matching, the pattern is aligned with positions in the target string.

Shifting is done when a character mismatch is found between an index in the target and the

corresponding index in the pattern. Where a naive implementation might shift the pattern

by one place after each failed match, resulting in a time complexity approaching O(mn), the

Knuth-Morris-Pratt approach is built on the concept of an auxiliary table (referred to as the

“next” table) that instructs the matching algorithm on how much to shift the pattern over the

target stream. Based on repetition within the pattern itself, the table may call for a shift of

the pattern by more than one character for a given mismatch.

The computation of this table is shown in the paper to require O(m) steps, and the

process of matching the pattern to the target takes at most an additional 2n steps. This is

due to the fact that, at each step of the matching process, only one of the text pointer or the

pattern pointer are moved (each of which can only move n times at most). This results in a

7

Figure 3: Example of Knuth-Morris-Pratt (original source [32])

worst-case run-time bounded by O(m+ n).

As an example, consider a search for the pattern “CTAGC” in a sequence that starts with

“CGCCTAGCG”. The first step is to compute the “next” table according to the algorithm,

shown in figure 4.

j 0 1 2 3 4 5

next(j) -1 0 0 0 -1 1

Figure 4: Knuth-Morris-Pratt next-table

With the table in hand, the process moves to matching. The matching algorithm goes

through the following steps:

1. i and j both initialize to 0

2. p0 = s0, so next is not consulted

3. i and j increment, both to 1 and 1

4. p1 ̸= s1, so i = next[1] and becomes 0

5. p0 ̸= s1, so i = next[0] and becomes -1

6. i and j increment, to 0 and 2 respectively

8

7. p0 = s2, so next is not consulted

8. i and j increment

9. p1 ̸= s3, so i = next[1] and becomes 0

10. p0 = s3, so next is not consulted

11. i and j increment

12. pi continues to match sj as both variables increment. When i = 5, the algorithm detects

a match.

Here, the Knuth-Morris-Pratt algorithm has found the match in 10 character comparisons,

5 of which were required to verify the full match.

3.2 Boyer and Moore

In the same year that Knuth, Morris and Pratt published their paper, Boyer and Moore

published as well [12]. This algorithm is also an exact matching approach, that is based

on the research of Knuth, et al. The Boyer-Moore performance improvements are based on

searching from the end of the pattern rather than the beginning, and computing two tables

to use in optimizing the jumps through the sequence string when mismatches are discovered.

This algorithm was chosen as an example of doing refinement and improvement of another

sample algorithm. It shows a modest performance improvement can be had in exchange for a

little more pre-processing.

Boyer and Moore postulated that, “more information is gained by matching the pattern

from the right than from the left.” For example: If the target character that corresponds to

the current location of the last character from the pattern is not only a mismatch but also

does not appear in the pattern at all, the pattern may then be shifted right by its full length.

They refer to this algorithm as being “usually sublinear,” meaning that when finding the

location of the pattern within the target the number of compared characters is usually less

than i+m− 1 (where m is the pattern length and i is the position within the target where

the match of the pattern begins).

The first of the two tables is the simplest to compute. It is the size of the alphabet of

the pattern and sequence2, and it tracks the number of positions by which the pattern can

be moved down the sequence without additional checking for matches. Boyer and Moore

2In these implementations, to avoid constantly translating the four characters into values between 0 and 3,
the alphabet-size was set to 128 for convenience.

9

define each entry in this table as being m (the pattern’s length) when the character does not

appear in the pattern at all, and m− i otherwise (where i is the right-most index within the

pattern where the character does occur). Using the same example pattern and sequence as in

the previous section, the first table (referred to as delta1 in the paper and bad char in the

implementations) is shown in figure 5. Only the entries for the four characters that appear in

patterns are shown.

A C G T

delta1 2 4 1 3

Figure 5: Boyer-Moore delta1 table

The second table (referred to as delta2 in the paper and good suffix in the implemen-

tations) is more complex to calculate, as it first requires calculation of suffixes within the

pattern. In the paper, it is described as the distance that the pattern can be slid down in

order to align the discovered sub-match (in the target) with the last m− j characters of the

pattern (where j is the index within delta2), plus the additional distance that the pointer

within the target must be moved so as to restart the matching process at the right end of the

pattern. This table is shown in figure 6.

j 0 1 2 3 4

delta2 4 4 4 4 1

Figure 6: Boyer-Moore delta2 table

When using the two tables to select the amount to shift, it is possible that the delta1

table’s value may be negative. Because of this a max operator is applied to the two potential

values and the largest possible shift is chosen. With both tables computed, the matching

process begins with the pattern aligned to the starting character of the target string. The

algorithm then goes through the following steps (where m is the pattern length and n is the

sequence length):

1. j (the pointer within the sequence) initializes to 0

2. i (the pointer within the pattern) is set to m− 1 (4)

3. p4 ̸= s4, so the tables are consulted

4. delta2(4) is 1, and (delta1(T)−m+ 1 + i) = 3

10

5. j advances by 3

6. i is set to m− 1 (4)

7. p4 = s7, so i is decremented

8. pi continues to match si+j until i becomes -1

9. A match is recorded and j advances by delta2(0), to 7

While the Knuth-Morris-Pratt algorithm had made 10 character comparisons to find the

match, Boyer-Moore makes only 6, 5 of which were required to verify the match.

3.3 Bitap

The Bitap algorithm (sometimes known as “Shift-Or”, or “Shift-Add”) was initially developed

by Bálint Dömölki in 1964. In 1989 it was re-invented by Ricardo Baeza-Yates and Gaston H.

Gonnet, and published in [6] in 1992. Here, it has been chosen for the distinctive approach

when compared to the other algorithms. Both the pattern data and the target sequence are

treated as streams of bits, rather than comparing characters directly.

In terms of time complexity, the algorithm is on the same terms as the previous ones,

having a preprocessing time of O(m + σ) (the length of the pattern plus the size of the

alphabet) and a running time of O(n). However, the operations it performs are all bit-oriented:

shifts, complements, bitwise-and and bitwise-or. This resulted in this algorithm running

significantly faster than either of Knuth-Morris-Pratt or Boyer-Moore on the experiment

input data.

The structure of the algorithm is based on encoding the pattern in a vector of bitmaps.

The vector has length equal to the alphabet size, and each element of the vector is a bit-field

of width W , where W is the size in bits of an unsigned integer. W also limits the length

of the pattern in this implementation, though it is possible to implement the algorithm for

longer patterns.

The vector is initialized in the preprocessing phase first to an all-1’s value in each slot,

and then modified through a single pass over the pattern. For each character in the pattern,

the slot corresponding to that character has the bit that corresponds to the pattern position

flipped to 0. The resulting vector fully encodes the pattern. Using the example pattern from

the previous two algorithms (“CTAGC”), imagine that the elements of the vector (S) are

exactly as wide as the pattern (5 bits) and that there are only the four elements corresponding

to the restricted alphabet of the pattern. This is shown in figure 7.

11

S(A) = 11011

S(C) = 01110

S(G) = 10111

S(T) = 11101

Figure 7: Bitap shift positions vector

Here, it is clear that the letter “C” appears twice in the pattern as there are two 0-values

in S(C). Each of the other three letters appear just once. Examining the bits of each S-value

shows exactly where each letter appears in the pattern.

During the process of computing the S vector, a “limit” value is also calculated: it starts

out as 0, and has a number of bits set equal to the full width of the pattern. At the end of

the loop that calculates S, the value of limit is shifted to the right by one bit, then subjected

to a bit-complement operation. The result is a value that can be directly used in comparison,

when determining if a match has been found.

The process of searching for a match begins with a state value of W bit-width, set to all

1’s. The target string is read one character at a time. For each iteration of this loop, state is

shifted to the left one bit (introducing a 0) and then or’d with the S value of the character

under the index. If, after this operation (the “shift-or”), the value of state is less than the

value of limit then a match has been found and will be reported.

j sj S(sj) state result

11111

0 C 01110 11110 11110

1 G 10111 11100 11111

2 C 01110 11110 11110

3 C 01110 11100 11110

4 T 11101 11100 11101

5 A 11011 11010 11011

6 G 10111 10110 10111

7 C 01110 01110 01110

8 G 10111 ...

Figure 8: Bitap matching process

12

Figure 8 shows the process of matching the example pattern to the same sequence used

in previous algorithm examples. The j column indicates the index of the character in the

sequence, sj is the character at j, and S(sj) is the S-value for that character. The state

column shows the value of that variable at each iteration, while the “result” column shows

the value of state after the or-operation. Not shown is the limit value, which in this example

is 10000 (16 decimal). On the row where j = 7, we see that the high bit of state is a 0 for the

first time. This signals a match (state < limit), and the matching index is j −m+ 1, or 3.

In this example the Bitap algorithm found the match after 8 rounds of the shift-or operation.

No direct character-level comparisons were made, nor were any equality comparisons made.

The process of finding the match involved only the two bit-level operations and a single

“less-than” comparison for each iteration of the main loop.

3.4 Aho and Corasick

Alfred V. Aho and Margaret J. Corasick published their algorithm for searching multiple

patterns at once in 1975 [2]. In their algorithm, a finite number of patterns are merged into

a single deterministic finite automaton (DFA) which can then be applied over any number of

target strings. The DFA is capable of finding all locations of all patterns in the set, with

overlapping, in a single pass through the target string. This makes the algorithm significantly

faster than the others for the simple reason that Aho-Corasick scans each target string once,

regardless of the number of patterns. By contrast, each of the single-pattern algorithms scans

the target string once per pattern. The choice of this algorithm was driven by an interest

in comparing a multi-pattern algorithm to the single-pattern options, and an interest in

exploring the use of a finite automaton for the matching process. This algorithm would also

help inspire the approximate-matching algorithm introduced later.

Aho and Corasick designed the pattern matching machine as a collection of three functions:

• A “goto” function g, which maps transitions from one state to the next based on the

character being examined

• A “failure” function f , which maps a state into another state whenever g reports that

there is no transition for the current state and current character

• An “output” function output, which maps states to sets of patterns matched at the

specific state

Construction of these three functions is accomplished through two supporting algorithms.

The first fully constructs g and partially computes output. The second fully constructs f

13

and completes the computation of output. The first algorithm takes only the set of patterns

(referred to there as K) as input, while the second algorithm takes the resulting g and output

from the first as input.

For an example, let K be the list {ACTG, CTG, AAGT}. Constructing g by the

algorithm given in the paper yields the DFA given by the figures 9 through 11.

0 1 2 3 4

8 9 10

65 7

G,T

A

C

C

A

T G

T G

G T

Figure 9: Aho-Corasick goto function

Starting with figure 9, the goto function g provides the finite-state machine that lays

out the transitions between states based on the character under consideration. Any state

that does not have a transition for a given character is assumed to “fail” on that character,

which is where the failure function f comes into use. While it is given in the algorithm that

there are no failure transitions for state 0, this is made explicit in the figure by including a

self-referencing transition for “G” and “T”.

i 1 2 3 4 5 6 7 8 9 10

f(i) 0 5 6 7 0 0 0 1 0 0

Figure 10: Aho-Corasick failure function

In figure 10, the failure function f shows how the processing of the DFA may jump around

to implement a form of back-tracking. State 2 will move to state 5 on a failure transition,

reflecting that the character previous to the state (“C”) could instead be the start of matching

the “CTG” pattern. Because there are no failing transitions in state 0, that state is not

represented in the figure.

In figure 11, the output function is represented as an indexed array of sets. Most states

(including state 0) have the empty set as output. The non-empty sets represent the found

patterns by their index in the original list. State 10 has only a value of 2, representing the

pattern “AAGT”. Of note is state 4, whose set includes both the index 0 and the index 1.

14

i 0 1 2 3 4 5 6 7 8 9 10

output(i) ∅ ∅ ∅ ∅ {0, 1} ∅ ∅ {1} ∅ ∅ {2}

Figure 11: Aho-Corasick output function

This reflects the fact that the three characters of pattern 1 overlap the last three characters

of pattern 0.

To illustrate the process of this algorithm, consider the target string that begins with the

sequence “AACTG...”. Figure 12 shows the progression of states as the pointer advances

through the first five characters.

A A C T G ...

0 1 8 2 3 4

1

Figure 12: Example of Aho-Corasick state progression

Starting at the 0 state, the first “A” moves the DFA to state 1 after which the second “A”

moves it to state 8. From 8, the character “C” is a failure transition, so the value of f(8) is

read. The value is 1, so the DFA immediately moves to state 1 and looks for a transition on

“C”. It exists, and the DFA moves to states 2, 3 and 4 in turn. Upon reaching state 4 the

value of output(4) is found to not be the empty set, so the machine signals a match of the

patterns “ACTG” and “CTG”.

Here, the Aho-Corasick algorithm has positively identified the presence of two of the three

patterns encoded by the DFA. Only 5 characters from the target string were processed, and

because the DFA indexes by the ordinal values of the characters no direct comparisons were

made. Further, no back-tracking was required to find the second pattern.

3.5 Approximate Matching with Gaps

For the fifth algorithm in the suite of experiments, it was decided to implement an approximate-

matching algorithm. In this case, the algorithm chosen is a new algorithm that takes a

different approach to approximate-matching: building a DFA with additional states that

allow for measured gaps between the characters of the pattern. This algorithm was chosen

and developed out of an interest in exploring approximate-matching and furthering the DFA

concepts from the Aho-Corasick algorithm.

15

The idea of using a DFA to represent the pattern is inspired primarily by [2] and [7].

Becchi and Crowley, in particular, address the problem of representing the concept of counting

states in an extended definition of a finite automaton. In their work, they put forward a means

of having special states that track the number of times they’ve been entered in sequence,

only allowing exit from the state when the given number (count) of visits is satisfied.

From this, a different type of approximate-matching can be pictured: one that allows for

well-defined, finite “gaps” between elements of the pattern being matched. Given a value k

that is a positive integer, gaps that are up to k characters in length can be tolerated while

still regarding the pattern as matching a point in the target sequence. And when k = 0, the

approach becomes the naive exact-matching approach that is of time-complexity O(mn).

Current algorithms for approximate matching in DNA sequences use a variety of approaches,

such as edit distance. But methods based on edit distance can result in all changes or

differences being clumped together as opposed to distributed across the pattern in a more

balanced fashion. For example, given the same “CTAGC” pattern used for the previous

single-pattern algorithms and k = 3 this algorithm would allow as many as 12 additions to

the pattern in order to match a position in the sequence. Simply allowing an edit distance of

12 in a different algorithm could potentially lead to 12 additions being made between just two

of the pattern characters. The algorithm described here is designed to prevent such uneven

distribution of the gap letters in the matched segment of the sequence.

The basis of the algorithm is the notion that such an approximate match as described here

can be expressed in terms of a regular expression that supports the specification of ranges

of matches for a given class or symbol in the expression. Such a specification is generally

encoded as {a, b} in an expression, where a and b are integers and b ≥ a. Most compatible

engines support several variant forms of this:

{a}: matches exactly a occurrences

{a, }: matches at least a occurrences, with no upper limit

{, b}: matches at most b occurrences, with as few as zero

{a, b}: matches at least a occurrences and at most b occurrences

Using the fourth construct and the “CTAGC” pattern, an example regular expression for

a value of k = 3 could look like:

C.{0, 3}T.{0, 3}A.{0, 3}G.{0, 3}C

16

However, this not correct because the dot (“.”) matches all characters. This is not

desirable, as any “T” encountered after the initial “C” should move to that part of the

pattern rather than possibly being subsumed by the dot. Additionally, in a general regular

expression engine the dot will match all characters, including those not part of the DNA

alphabet. Restricting the counting-states to just the alphabet of the problem, and eliminating

the target letter from the gap consideration gives us:

C[ACG]{0, 3}T[CGT]{0, 3}A[ACT]{0, 3}G[AGT]{0, 3}C

This, given that k is known at the time of the construction, can be readily transformed

into a DFA.

As an initial naive approach to the algorithm, the constructed DFA emulates the counting-

states by creating k additional states for each of the first m − 1 characters of the pattern

being searched for. It first creates states 0 and 1, representing the initial state and the

the state reached by encountering the first character of the pattern (p0). These two states

constitute the beginning of the “trunk” of the DFA. Then the algorithm loops from 1 to

m− 1, performing the following steps for each loop iteration:

1. A new state is created on the trunk (“new state”)

2. The previous head of the trunk is linked to the new state by a transition on pi

3. The previous head is recorded in a temporary variable (“last state”)

4. A second loop runs from 1 to k that creates the branch states and their transitions to

new state

5. The head of the trunk becomes new state

6. The value of new state is advanced by k

At the end of the outer loop, the head of the trunk is recorded as the (sole) acceptance

state for the DFA, and state 0 is recorded as the starting state.

This DFA (using the example pattern and k = 3) is illustrated in figure 13. In this

diagram, the branches alternate between left and right of the trunk so as to allow the labels

of the transitions to be more clearly readable. The numbering of the states reflects their

order of creation, as detailed above and as will be outlined later in algorithm 1.

In this DFA, the number of states needed (N) can be easily calculated as a function of m

and k:

17

0

1

2

3 4 5

6

789

10

11 12 13

14

151617

C

T

A,C,G

A

C,G,T

A,C,G

T

A,C,G

T

T

G

A,C,T

C,G,T

A

C,G,T

A

A

C

A,G,T

A,C,T

G

A,C,T

G

G

A,G,T

C

A,G,T

C

C

Figure 13: DFA-Gap finite automaton

N = 1 +m+ k(m− 1)

Thus, for a given pattern of length m, the size of the DFA grows linearly with k. If the

DFA is built using counting states (per [7]), then the value of k will have no influence on the

number of states, which will then be 2m.

3.5.1 Creation of the DFA

Dividing the DFA-Gap process into two parts, the first part is the creation of the automaton

itself. This is outlined in algorithm 1.

Lines 1–6 initialize the elements. The body of the outer for-loop runs from line 8 to line

19, and is primarily concerned with extending the trunk of the DFA. The inner for-loop, lines

13–16, builds one branch connected to the state that was the head of the trunk prior to lines

8–10. After the outer loop completes, lines 21–23 assign A (the set of acceptance states) and

q0 (the starting state) and return a 3-element tuple of these values along with the transition

18

Algorithm 1: CreateDFA

Input :P , the pattern to match (p0 ... pm−1)
Σ, the alphabet ({ A,C,G, T })
k, the maximum gap allowed between characters of P

Output :The finite automaton M = (q0, A, δ), where q0 is the starting state, A is
the set of accepting states (A ̸= ∅), and δ is the transition function

1 δ ← empty list
2 CreateState(δ,0)
3 δ(0, p0) ← 1
4 CreateState(δ,1)
5 state ← 1
6 new state ← 1
7 for i← 1 to m− 1 do
8 new state ← new state+ 1
9 CreateState(δ,new state)

10 δ(state, pi) ← new state
11 last state ← state
12 for j ← 1 to k do
13 CreateState(δ,new state+ j)
14 δ(new state+ j, pi) ← new state
15 δ(last state,Σ− pi) ← new state+ j
16 last state ← new state+ j

17 end
18 state ← new state
19 new state ← new state+ k

20 end
21 A ← state
22 q0 ← 0
23 return (q0, A, δ)

function δ itself. This tuple represents what the next part of the algorithm requires in order

to perform the matching process.

Lines 2, 4, 9, and 13 reference a process that was not explicitly defined: CreateState().

The implementation of this would be dependent on the approach to the algorithm as a whole.

In these examples, it is assumed that this process creates one complete state representation

with all transitions initialized to the failure value. This allows the default transition to be a

failure unless explicitly updated by the algorithm.

19

3.5.2 Matching with the DFA

The second part of the process is to use the DFA in the matching process. This is outlined in

algorithm 2.

Algorithm 2: FindPatternWithGaps

Input :P , the pattern to match (p0 ... pm−1)
S, the sequence to search within (s0 ... sn−1)
Σ, the alphabet ({ A,C,G, T })
k, the maximum gap allowed between characters of P

Output :A list of tuples (i, S ′), where i is the starting index of the match and S ′ is
the full matched substring

1 matches ← empty list
2 (q0, A, δ) ← CreateDFA(P ,Σ,k)
3 end ← length(S) - length(P)
4 for i← 0 to end do
5 state ← q0
6 ch ← 0
7 while δ(state, s

i+ch) ̸= failure do

8 state ← δ(state, s
i+ch)

9 ch ← ch+ 1

10 end
11 if state ∈ A then
12 S’ ← S[i .. (i+ ch− 1)]
13 append(matches,(i, S ′))

14 end

15 end
16 return matches

Here, lines 1–3 again are simple initialization. This includes a call to the previous

algorithm to obtain the DFA elements that are needed for the process. The outer loop is

a standard for-loop that iterates over the range of characters in the target sequence S that

can be candidates for the first character in a match. The process of traversing the DFA

in search of a match is done in the while-loop. Here, there are only two statements: an

advancement of the state value, and incrementing the ch value. When the δ function finds

that the combination of state and si+ch results in a failure state, the while-loop exits.

When the while-loop exits, if the value of state is a member of the set A then a match

has been found. Recall that A will have only one element, so this comparison can be reduced

to a simple equality comparison. The designated list matches collects each found instance as

a tuple of the index i within S and the complete matched string with gap characters.

20

3.5.3 Example

Using a smaller example pattern of “CGAG” and a value of k = 1, the DFA shown in figure 14

is built. For demonstration purposes, the sequence “CCGAAGC” will be used to search

within.

0

1

2

3

4

5

6

7

C

G

A,C,T

A

C,G,T

G

G

A,C,T

A

G

Figure 14: DFA for the pattern CGAG

Following algorithm 2, the following steps take place:

1. Loop starts at i = 0

2. state = 0, ch = 0

3. δ(0, C) is read, transitions to state = 1, ch increments to 1

4. δ(1, C) is read, transitions to state = 3, ch increments to 2

5. δ(3, G) is read, failure detected

6. state is not in A, so loop advances and i = 1

7. state and ch each reset to 0

8. δ(0, C) is read, transitions to state = 1, ch increments to 1

9. δ(1, G) is read, transitions to state = 2, ch increments to 2

21

10. δ(2, A) is read, transitions to state = 4, ch increments to 3

11. δ(4, A) is read, transitions to state = 7, ch increments to 4

12. δ(7, G) is read, transitions to state = 6, ch increments to 5

13. δ(6, C) is read, failure detected

14. state is in A, so a tuple of (1, “CGAAG”) is saved on matches

At this point the loop would resume with i = 2, but this sufficiently illustrates the process.

A total of 9 state transitions were made, resulting in the location of a match 5 characters in

size. At the reading of each state transition only one character look-up was required since

the δ function initializes each new state to default all transitions to the failure value.

3.6 A Regular Expression Variant

Experimentation with the DFA-Gap algorithm led to some speculation as to whether the

performance might be better if the search were performed by means of an actual regular

expression in place of a specialized DFA. The general focus of the algorithm remained the same,

the only difference being the use of a regular expression engine in place of the automatically-

generated automaton. Implementing this variant was chosen to allow comparison of the

DFA-based approach to an established regular expression library.

The requirements of using a regular expression were summarized as:

1. The complexity of generating the regular expression should not exceed the complexity

of generating the DFA

2. The regular expression must process the target sequence in a single pass through, as

does the DFA-Gap algorithm

3. The regular expression must be capable of identifying both the starting position of each

match and either the length or the content of the matching substring

4. The regular expression must find all matching substrings, including overlapping matches

The first requirement could be further expressed as constraining the time-complexity

of the set-up to O(m), linear in the length of the pattern. The DFA creation stage of the

original algorithm required k additional steps for m− 1 instances of the main loop. Because k

is a constant in this algorithm, the complexity of that part of the original algorithm was only

22

bounded by O(2m) rather than being polynomial. A complexity of O(m) would, therefore,

hint at a simpler variation of the algorithm.

The second requirement might be mistaken for constraining the time-complexity of search

to O(n), but this is not the case. As an approximate-matching algorithm, there would

necessarily be some back-tracking through the target sequence when it has been determined

that a candidate position is not the start of a matching substring. Instead, the goal was to

try to keep the complexity close to O((m+ k)n).

Requirement 3 dictated the need for the chosen regular expression engines to either capture

and return matches, or to positively identify the ending-point as well as the starting-point of

each match. This was simple to achieve, as match-capturing is a standard feature of regular

expression engines.

The last requirement proved the most critical of the set. Because of the second requirement

constraining the search process to a single pass, it would be necessary to construct an

expression that could match parts of the target string without consuming them and removing

them from future consideration. This is covered in greater detail in section 4.5.6, but this

requirement ended up disqualifying two different engines (one for C/C++, the other for Rust)

from usage during the implementation and testing of the algorithm.

4 Details of the Experiments

To gather the desired measurements the experiments were executed in the chosen languages (C,

C++, Rust, Perl, Python), with the algorithm implementations being run under a “harness”

application that measured various memory, performance, and energy metrics. Additional

tools were used to examine the programs for memory leaks, as well as measure aspects of the

source code itself.

4.1 Definitions and Measurements

To begin, some concepts will be introduced and terms defined.

4.1.1 SLOC (Source Lines Of Code)

The Source Lines Of Code, or SLOC, measurement attempts to evaluate the conciseness

of the source code to a program. It generally distinguishes between physical lines of text,

comments, and actual source lines.

As a metric of code quality or developer productivity, SLOC is not without some

controversy. In [4] the authors point out that measuring lines of code can be very diverse in

23

its execution, and often not clear in its purpose. Nguyen, et al [27] put forward the basis

for an unambiguous standard guide to counting, and describe its use with the support of

a configurable counting tool. Here, the purpose of measuring SLOC will be simple and

restricted in scope: it will only be used as a comparison of the implementation of identical

algorithms in different languages.

For the purpose of evaluating expressiveness, the SLOC measurements were limited to

just the count of actual “source” lines as reported by the tool that was eventually chosen for

this metric, sloc3.

4.1.2 Language Conciseness Through Compression

In [8], Bergmans, et al describe a technique of measuring the conciseness of programming

languages through a process of pre-processing and compressing the source code of a large

number of multi-language projects of differing sizes. The higher the compression ratio of the

files in a given language, the less concise it is considered to be. The authors hypothesized

that this is because a higher compression ratio implies a greater degree of code-redundancy

necessary to express the purposes of the program.

Given that none of the experiment source files are of significant length, this metric was

applied at the language level, looking at all files for each language in per-language archive

files. It was also modified to accomodate the smaller sample size, as will be explained further

in a later section.

4.1.3 Cyclomatic Complexity

Thomas McCabe introduced the concept of cyclomatic complexity in 1976 [25]. In the most

simple terms, it measures the number of paths through a program or function. Sometimes

referred to as “McCabe Complexity”, the value is based on measurement of control structures

such as conditional statements, loops and similar means of changing the path of execution

through the program or function being measured.

In the following combination of listing 1 and figure 15, a small Python function is

accompanied by a directed graph illustrating the cyclomatic complexity of the function.

The function itself is not very complex: it simply counts the number of “1” bits in the

given integer number. The corresponding graph has 5 nodes and 6 edges. McCabe gives his

formula for calculating the complexity from a graph representation as:

v = e− n+ 2p

3This and other referenced software tools are summarized in table 39.

24

Listing 1: Python example of complexity

1 def count_bits(n):

2 bits = 0

3

4 while n != 0:

5 if n % 2 == 1:

6 bits += 1

7

8 n //= 2

9

10 return bits

Figure 15: Cyclomatic graph

where v is the cyclomatic complexity, e and n represent the number of edges and nodes

in the graph, and p is the number of connected components. In this example, p = 1 and thus

v = 3.

McCabe gives examples of the control graphs for some typical constructs: a sequence

control, an if-then-else control, a while control, and an until control. Each of the first three

are demonstrated in this example: the edge from node 1 to node 2 is a sequence control, the

edges between nodes 2, 3 and 5 represent a while control, and the edges from 3 to 4 and 2

represent an if-then-else control.

Thus, the graph nodes correspond to the following lines in the function:

1. The entry-point of the function at line 1

2. The while-loop at line 4

3. The if-conditional at line 5

4. The “true” branch of the conditional at line 6

5. The exit/return from the function at line 10

Measuring the complexity in a consistent way is important when comparing different

languages. A tool called lizard was used for all languages except Perl (which was not

supported by the tool) and Rust (which exhibited bugs when the data for the Aho-Corasick

implementation was reviewed). To gather the metrics for the Perl code a second tool, called

countperl, was used. For Rust, a tool called rust-code-analysis-cli from the Mozilla

project was used. This tool provided greater depth and detail into the Rust code than lizard

had, and did not exhibit the bugs noticed in the data for the Aho-Corasick source code.

25

It is not clear if the techniques for measuring Perl and Rust were completely identical

to the techniques used by lizard for the other languages, so this is noted in the results in

section 5.3.2.

4.1.4 RAPL (Running Average Power Limit)

The Running Average Power Limit (RAPL) measurement system was introduced by Intel

into their CPU products starting with the Sandybridge family of processors [21]. The system

allows measuring energy over several areas:

Package: The full (socketed) processor package, which may contain multiple cores.

Power-Plane 0: The domain that encompasses the combined cores within the package.

This reading will cover all cores within the CPU of the package.

Power-Plane 1: Sometimes referred to as “uncore”, this domain generally covers the

integrated GPU (if present).

DRAM: The domain for the DRAM memory that the CPU is managing, whose energy

usage is separate from the package.

Psys: The domain that covers the entire system-on-chip energy usage. This would include

the package and DRAM values, as well as other system-level energy consumption.

A computer system may have more than one package, and the RAPL interface includes

methods for determining the number of packages and gathering the energy readings for each

package separately. However, it is not possible to measure a package’s energy usage at the

level of an individual core.

Reading the RAPL data is done through the model-specific registers (MSR) interface, as

detailed in [18, Chapter 14]. The method involves reading several registers to determine the

number of packages the system has, then determining the scaling factors for each of time

units (expressed in seconds), power units (Watts), and energy units (Joules). The scaling

factors are stored in a single register referred to as MSR RAPL POWER UNIT, as groups of bits

within the register. Each scaling factor is a 4-bit (5-bit in the case of energy units) value

used to compute a fractional floating-point number (where b represents the value of the n-bit

factor):

S =
1

2b

26

In the case of the energy units factor, the value of b on the test platform was 01110b (14),

and S = 61.04 µJ.

Obtaining the data during run-time from RAPL required reading from of a series of

read-only registers within the MSR and scaling the values obtained by the appropriate value

of S for the units. For example, reading the Power-Plane 0 (CPU) energy value uses the

MSR PP0 ENERGY STATUS register. The value obtained from reading this register is 64 bits

in width, though only the initial 32 bits hold energy data (the high 32 bits are reserved by

Intel). The value read is masked to remove any high bits, then multiplied by the energy units

scale factor to produce a value in Joules.

An issue with the RAPL system was encountered during runs of the experiments: because

the value of the energy registers is 32 bits in size, it wraps around to 0 when the maximum

value is reached. This caused occasional anomalous readings in cases where the register would

reset between the initial reading and the final reading, resulting in a negative overall value.

The program that processed the output from the experiments was adjusted to recognize such

values and adjust them by applying a constant value computed as C = S × 232, where S is

the scaling factor for that value’s type (Package, DRAM, etc.).

Adding the appropriate constant for the type of value that was anomalous dealt with the

issue and ensured that all iterations of each algorithm and each language would be usable for

the analysis of the results.

4.1.5 Summary of Metrics

For each execution of a program comprising an experiment, the following data was gathered:

Total Program Run-time: The complete run-time of the program, as measured by the

harness program. Unlike the next metric, this would include program initialization

time, the input/output operations of loading the data to be processed, etc. This is

measured in floating-point seconds with micro-second resolution.

Algorithm Run-Time: The time spent specifically within running the algorithm itself over

the complete set of test data. This is measured solely on the processing of data, and

does not include I/O, set-up of the environment, or post-algorithm steps such as freeing

of memory. Also measured in micro-second resolution.

Maximum Memory Usage: The largest amount of memory allocated for the running

program throughout the course of its execution, in megabytes. This represents the

largest size to which the program grew during the run.

27

Power-Plane 0 (CPU) Energy Usage: The energy consumed by the CPU cores during

the execution of the program. Measured over the full lifespan of the program, not just

the algorithm itself. Measured in Joules.

DRAM Energy Usage: The energy consumed by the DRAM during the full lifespan of

the program. Measured in Joules.

Full (Package) Energy Usage: The energy consumed by the full (socketed) package,

which includes the CPU cores’ energy but not the DRAM energy. Also measured

in Joules.

The Power-Plane 1 (GPU) RAPL values were excluded because the testing machine’s

package did not have an integrated GPU. Additionally, the Psys values were excluded because

they were deemed unnecessary in the context of having the package, CPU and DRAM values.

Independent of the per-program metrics, additional measurements of code expressiveness

were made on each of the source files:

Source Lines Of Code: The measured lines of code in the implementation of the program,

using a tool (sloc) designed to measure these values using consistent standards across

the different programming languages.

Cyclomatic Complexity: The measured complexity of the code, including both the average

complexity for the file and specific complexities for those functions that directly

correspond to each other across the different implementations.

Conciseness Through Compression: Using the same tools as were used in the research

in [8] (cloc for removing code comments and xz for data compression), archives of each

language’s code were compared to each other.

These processes are explained in more detail in section 5.3.3, along with the results.

4.2 Experiment Harness

The harness that was developed for managing the execution of the experiment programs

was based on the code developed by Pereira, et al [28] and made available via their GitHub

repository4. Their code was adapted and heavily modified to allow for some command-line

options controlling features such as the number of iterations each experiment would be run,

verbosity of output, etc. It was enhanced to record maximum memory usage and to work

with the specific computer selected to be the testing platform.

4https://github.com/greensoftwarelab/Energy-Languages

28

https://github.com/greensoftwarelab/Energy-Languages

4.3 Languages

The languages used were chosen for their commonalities as well as their differences:

• Three of the languages (C, C++, Rust) are compiled to machine code and were chosen

for performance first and foremost. The remaining two (Perl and Python) are interpreted

(“scripting”) languages which are highly regarded for speed of development and rapid

prototyping, as well as being popular in bioinformatics computing.

• Each language is currently in widespread use across different disciplines of software

development.

• The languages showcase differing aspects the approach to memory management, as are

detailed below.

Each language section includes a sample of the language, implementing a naive (O(mn))

matching algorithm.

4.3.1 C

The C programming language is the oldest and most-established of the chosen languages.

Originally designed in the early 1970’s by Dennis Ritchie, it remains a very widely-used and

influential language since its first appearance in 1972. Since 1989, it has been standardized by

both ANSI (the American National Standards Institute) and by the International Organization

for Standardization (ISO). C was chosen because it is a foundational language in the history

of programming languages, and is still in wide use across many fields.

C relies on what is referred to as manual memory management, meaning that the

programmer is responsible for all allocation and freeing of dynamic memory. This approach

can often lead to several major classes of bugs when used incorrectly, such as memory safety

issues or memory leaks. Multiple pointers to the same region of memory can become “dangling

pointers” when one pointer frees the memory without the other pointers being invalidated

at the same time. Further attempts to use any of the other pointers can lead to memory

corruption or segmentation faults.

Memory management in C is done through a collection of functions in the C standard

library, including malloc, calloc, realloc, reallocarray, and free. While free returns

allocated memory to the heap, the other functions either allocate memory or change the size

of an existing block of allocated memory.

Experiments using the C language were run on three different compiler toolchains: the

GNU Compiler Collection (GCC), the LLVM Compiler Infrastructure (LLVM), and the

29

Intel® oneAPI Toolkit. This was done to show the subtle differences between programs

generated by these compilers, which are free and commonly-used. Due to the low-level

nature of C and the maturity of the compilers, C generally performed well at each algorithm

compared to other languages. Listing 2 shows a C implementation of the naive algorithm.

Listing 2: C naive implementation

1 int match(const char *pattern, const char *string, int **matches) {

2 int *saved_matches = NULL;

3 int found_matches = 0;

4 int m = strlen(pattern);

5 int n = strlen(string);

6

7 for (int i = 0; i <= n - m; i++) {

8 if (!strncmp((const char *)(string + i), pattern, m)) {

9 found_matches++;

10 saved_matches = realloc(saved_matches,

11 found_matches * sizeof(int));

12 saved_matches[found_matches - 1] = i;

13 }

14 }

15

16 **matches = saved_matches;

17 return found_matches;

18 }

4.3.2 C++

C++ was developed initially as an extension of C, by Bjarne Stroustrup while working

at AT&T Bell Labs. It first appeared in 1985 and was initially standardized in 1998. At

first envisioned as “C with Classes”, the language has been significantly expanded over the

years to include many more features while still maintaining low-level memory accessibility.

C++ attempts to offer more expressive, concise coding than C, with many of C’s memory-

management concerns dealt with automatically by class constructors and destructors. This

language was added to the experiments because of its current level of popularity in the

sciences, high-performance computing, and other fields. With the addition of C++, it would

be possible to compare it directly to C in terms of not just performance but expressiveness

and other metrics as well.

30

In C++, Stroustrup originated the programming idiom of resource acquisition is initiali-

zation [34] (RAII). Most dynamic memory is managed via class constructors and destructors,

though C++ also supports the malloc-based memory management mechanisms inherited

from C.

Experiments using the C++ language were also run on the same three compiler toolchains

as C: GCC, LLVM, and Intel. Listing 3 shows the naive algorithm implemented in C++.

Listing 3: C++ naive implementation

1 std::vector<int> match(std::string pattern, std::string string) {

2 std::vector<int> matches;

3 int m = pattern.length();

4 int n = string.length();

5

6 for (int i = 0; i <= n - m; i++) {

7 if (pattern == string.substr(i, m))

8 matches.push_back(i);

9 }

10

11 return matches;

12 }

4.3.3 Perl

Perl is an interpreted language developed by Larry Wall while working as a programmer at

Unisys. The first version, 1.0, was released on December 18, 1987. The current version as of

this writing is 5.36.0, released on May 28, 2022.

Perl’s reach grew tremendously with the introduction of the World Wide Web’s Common

Gateway Interface due to its native support for regular expressions and strong text-processing

capabilities. Initially developed as a general-purpose scripting language, Perl borrowed

features from languages such as C, Awk, Sed, and the sh shell. Perl also offers features

generally associated with functional programming, including first-class and higher order

functions, lexical closures, garbage collection, and list comprehensions. Perl was chosen for

the fact that it has a history with bioinformatics programming that reaches back to the

Human Genome Project [33], and continues to be popular for rapid development.

Perl is dynamically-typed and multi-paradigm in nature. It supports procedural as well

as object-oriented programming styles as well as metaprogramming. Its garbage collection

approach to memory management is based on reference counting.

31

A Perl implementation of the naive algorithm is given in listing 4.

Listing 4: Perl naive implementation

1 sub match {

2 my ($pattern, $string) = @_;

3

4 my $m = length $pattern;

5 my $n = length $string;

6 my @matches = ();

7

8 for my $i (0 .. ($n - $m)) {

9 if ($pattern = substr $string, $i, $m) {

10 push @matches, $i;

11 }

12 }

13

14 return \@matches;

15 }

4.3.4 Python

Python is another interpreted language, developed by Guido van Rossum while at Centrum

Wiskunde & Informatica in the late 1980’s and first released as version 0.9.0 in 1991. Like

Perl, it is also dynamically-typed and multi-paradigm in its nature. As a language, Python

consistently ranks high in user popularity on such measures as the TIOBE Programming

Community Index5. Python was added to the list of experiments due to this very high

overall popularity, as well as its presence in bioinformatics programming. It is noted for its

expressiveness and the ease with which applications can be quickly prototyped.

Python’s memory management is a combination of reference counting and a cycle-detecting

garbage collector. A Python implementation of the naive algorithm is given in listing 5.

Listing 5: Python naive implementation

1 def match(pattern, string):

2 m = len(pattern)

3 n = len(string)

4 matches = []

5TIOBE Index: https://www.tiobe.com/tiobe-index/

32

https://www.tiobe.com/tiobe-index/

5

6 for i in range(n - m + 1):

7 if pattern == string[i:(i + m)]:

8 matches.append(i)

9

10 return matches

4.3.5 Rust

Rust is the newest of the languages, having first appeared in 2010. Rust offers a promise of

expressiveness with greater safety in the areas of memory management and ownership. It

is a multi-paradigm, general-purpose language that draws from several previous languages

including C++, Haskell, and Standard ML. While often referred to as a systems programming

language, its usage is spreading rapidly to other areas including to some scientific programming

disciplines [29]. The language began in 2006 as a personal project of Graydon Hoare, an

employee of the Mozilla Corporation, with Mozilla beginning to sponsor the work in 2009

and officially announcing the project in 2010 [5]. The first pre-alpha numbered version of

the compiler was Rust 0.1, which was released in January of 2012. The current (as of this

writing) version of Rust is 1.65.0 and was released in November of 2022. Rust was chosen in

an interest to see how its performance would compare to the other compiled languages (C

and C++), and to see in which ways the increased memory safety and other features would

contribute to the development process.

An area where Rust is distinct from other C-based languages is in the way it manages

memory and tracks values on the stack and heap. Rust uses an ownership system [11,

Chapter 4], with the ability to specify lifetime information for reference types. There is no

automated garbage collection, and resources are managed through the same convention of

resource acquisition is initialization as in C++, with optional reference counting. Rust’s

design for memory safety does not permit null pointers, dangling pointers, or data races.

With languages such as C and C++, data ownership is handled largely through practice

and convention. An instance of a C++ std::string owns the buffer allocated for the storage

of the string data. Other variables may be created, though, that point to the same buffer or a

single character within it. These other interests in the content of the string buffer have their

own responsibility for noticing when the original string object is destroyed and the buffer

freed. After such point, the outside interests are each responsible for marking their references

as no longer valid.

In contrast, Rust integrates the concept of ownership directly into the language itself.

33

Compile-time checks enforce ownership and report violations. When the owner of a value

is “dropped” (Rust terminology for freeing) the owned value is dropped as well. While the

variables themselves are on the stack, the content is allocated on the heap. Variables own

their values, and the complex datatypes (structs, tuples, arrays, and vectors) own their

elements.

Listing 6 shows the naive algorithm as implemented in Rust. Note that the subroutine is

named slightly differently in this case, as match is a keyword in Rust.

Listing 6: Rust naive implementation

1 fn match_string(pattern: &str, string: &str) -> Vec<usize> {

2 let mut matches: Vec<int> = Vec::new();

3 let m = pattern.len();

4 let n = string.len();

5

6 for i in 0..=(n - m) {

7 if pattern == string[i..(i + m)] {

8 matches.push(i);

9 }

10 }

11

12 matches

13 }

4.3.6 Languages Not Used

There were several languages that were considered but ultimately not chosen for the

experiments. The Go language is a compiled language growing popularity in data centers. It

was set aside in favor of Rust due to the desire to only have one “young” language in the set,

so as to not distract from the research at hand. The Java language was also considered, but

was ultimately not chosen because the additional layer of the Java Virtual Machine might

have affected the efforts to gather accurate energy readings. Languages such as C# that are

designed for the .NET framework were passed on over concerns about full Linux usability.

Ultimately, it was decided that five languages would be a sufficient set with which to evaluate

the chosen metrics and the methodology itself.

34

4.4 General Implementation of the Algorithms

Each of the experiment programs providing an algorithm was implemented according to

a consistent structure, to better facilitate the direct comparison of the source code across

languages. This structure consists of three basic elements:

• An “input” module that encapsulates the loading of sequence, pattern, and answer data

• A “runner” module that provides the controlling loop of the program

• An “algorithm” module that provides the code specific to the algorithm being used as

a basis for the experiment

The input and runner modules were written once per language and re-used across all

algorithms.

4.4.1 Input modules

The input modules allow the main-loop modules (described next) to further abstract the

reading of the external data used in each experiment. Data is separated into three files: the

sequences file contains lines of randomly-generated target strings, the patterns file contains

the crafted patterns to search for within the sequences, and the answers file provides a

representation of the correct number of times each pattern should be found in each sequence.

This allows the runner modules to verify the results of each invocation of the algorithms

being evaluated. The nature of the data and its creation is further detailed in 4.8.

Each input module defines three routines, one for each of the data files. In most cases,

the reading of the pattern files was essentially identical to the sequence files and thus the

pattern routine simply calls the sequence routine.

The input modules are the first place in which the distinction in expressiveness and style

between the languages becomes apparent. Differences become immediately visible in just the

comparison of the C and C++ implementations, where the physical combined length of files

(in C and C++, the input modules also required accompanying header files) differs by over

40% in favor of C++. Python measures as being just over 20% of the size of the C code.

4.4.2 Runner modules

Each runner module utilizes the input module to read in the experiment data and loop over

it. In the single-pattern algorithms (which includes the approximate-matching algorithm),

this is a nesting of two loops: the outer loop iterates over the set of pattern strings and

the inner loop iterates over the set of sequence strings. Each iteration of the loop over the

35

sequence strings triggers one execution of the algorithm being evaluated. In the multi-pattern

algorithms, this is a single loop over the set of sequence strings, as the complete set of patterns

are pre-processed prior to the loop.

The runner records the time according to the system wall-clock when the algorithm

pre-processing begins, and the time when all loops and answer validation has completed.

Everything that is not input-related or related to reporting of results is recorded in this span

of time. At this point, the runner prints three lines to the standard-output stream. The lines

identify the language (including compiler variants for C and C++), the algorithm, and report

the time spent in the main loop. The runner is also responsible for handling the arguments

passed to the program as well as determining the exit-code of the program (to allow the

harness program to discern failing runs from successful runs).

4.4.3 Algorithm modules

The algorithm modules are at the heart of the experiments. To maintain consistency, each

algorithm module defines a minimum of two functions: an initialization routine and the

primary algorithm entry point.

The initialization routine is responsible for any pre-processing necessary for the pattern

string, and produces a collection of data elements that represent the pattern in the appropriate

internal structure. The exact nature and structure of this representation is language-dependent

as well as algorithm-dependent.

The algorithm entry point routine is the means by which each algorithm was applied to

the pattern and sequence under consideration. It receives the pattern representation produced

by the initialization routine and the sequence representation as parameters, and returns a

numerical value indicating how many times the pattern was successfully found within the

sequence. In the case of the multi-pattern algorithm implementation, the return value from

this routine is a vector of numbers with length equal to the number of patterns.

In addition to these two functions, each algorithm module defines all needed support code

for the initialization and entry point. In some cases (such as the C and Rust implementations

of the Aho-Corasick algorithm) this included minimal implementations of data structures

such as sets and simple queues.

Each algorithm module also provides the language-specific equivalent of a “main” function,

that function which is treated as the program entry-point by the operating system. Each

“main” function consists of a single call to the runner function provided by the runner module.

The call passes the two algorithm-specific functions as pointers (again, in a language-dependent

manner) to the runner, followed by the name of the algorithm and a representation of the

command-line arguments.

36

4.5 Algorithm Implementation Details

The different algorithms that were chosen are listed here in the order of their implementation.

Each of the algorithms was implemented first in C, as a baseline. These C implementations

were then used as templates for the other languages’ implementations. In addition to helping

to keep the implementations approximately similar and equal, this provided insight into

the differences that the features and expressiveness of the different languages made in the

development process itself.

Any inefficiencies observed in the experiments’ implementations are due to this decision.

4.5.1 Knuth, Morris, and Pratt

The C implementation of Knuth-Morris-Pratt was adapted from [14, Chapter 7]. Of note

is the discovery that the sample code quietly takes advantage of C’s use of a “null” byte

at the end of a string to stand in for the sentinel character that the algorithm appends to

the pattern string. While this optimization was also applicable to C++ (where strings are

represented by instances of the std::string class), each of the three remaining languages

were required to manually add a sentinel character to each pattern string prior to computing

the corresponding “next” table.

This being the first of the algorithms implemented, it is also where the means of passing

generic data from the initialization routines to the algorithm routines was developed. The

differences in these methods, particularly between the compiled languages, spoke strongly to

their relative expressiveness.

In the C implementation it was necessary to use a memory pointer of the type, void **.

This defines a dynamic list of dynamic pointers, but provides no information about each

individual pointer. It is left to the code to properly type-cast the values from this block

of memory. If the program is incorrect (such as getting the order of elements wrong) the

resulting typed pointers will likely trigger memory faults when dereferenced. This was also

the most-flexible of the compiled solutions and required no difference in implementation

between the different algorithms.

In C++ it was initially attempted to reuse the void ** approach that had been used in

C. This proved to be extremely difficult under the stricter compiler rules, and the decision

was made to use the std::variant class instead, which represents a type-safe union in the

C++ language. While the same variant type definition could have been used for both the

single-pattern and multi-pattern algorithms, it was decided to distinguish them for the sake

of readability. The type definitions were made in the file run.hpp, the header-file for the

runner module of C++. Unpacking a vector of the variant types brought further type-safety

37

in the form of a generically-typed function get<> in the standard library that was used to

extract the values to new objects of the correct type.

Rust had the language features that seemed the most clear and expressive in implementation:

enumeration and pattern-matching. In Rust, an enumeration type (enum) can optionally

assign data types to the elements of the enumeration. When an enumeration element is

instantiated it is provided an instance of that data when applicable. This lead to a system for

the Rust programs in which the initialization function for an algorithm created and returned

a vector of the enumeration type. The algorithm routines that received these types would

extract them from the vector using a pattern-matching6 construct that ensured the types of

each individual element of the vector received from the initialization function. The program

would raise a run-time exception if the given vector element was not of the expected type. In

contrast, Rust required the least-expressive approach to appending the sentinel value onto

the pattern string for the sake of creating the “next” table.

Given the dynamically-typed nature of data in Perl and Python, both of these implemen-

tations were simple lists of values returned without any extra effort at encoding. As with the

void ** approach the onus was on the program to unpack the elements in the correct order.

Trying to use a list or list-reference value as an ordinary scalar value would have caused a

run-time exception in either language.

4.5.2 Boyer and Moore

The C version of the basic algorithm was drawn from [14, Chapter 14]. Like Knuth-Morris-

Pratt, it requires a character at the end of the pattern for calculating the suffixes table. The

C and C++ implementations used the “null” string-terminating byte for this while the others

added it explicitly.

Starting the analysis with Rust in this case, one aspect became very clear in this algorithm’s

implementation: the need to regularly cast various numerical (particularly integer) types to

other types. Because of the larger amount of array-indexing in this algorithm, the number

of times an i32 (signed 32-bit integer) or u32 (unsigned) had to be cast to or from a usize

type (an unsigned type used for lengths and indexing) was significant. While this does lead

to fewer bugs in the code, at the same time it detracted from the conciseness and readability

of the Rust version.

Perl and Python were comparable in their conciseness and logical expression of this

algorithm. Python showed an advantage in the form of its native support for iterators as

a type and functions such as range that return these iterators. Operations like looping

6In the computer language sense, not to be confused with pattern-matching in strings.

38

backwards through a series of integers was clearer in the Python code than in the corresponding

Perl.

The C and C++ implementations are best compared to each other, as this is another

case where the C++ Standard Library classes lead to clearer code. Though there was less

difference in code-length, various mechanisms of C++ in areas such as argument-passing

meant less overhead and less ambiguity about pointers sent and received.

4.5.3 Bitap

The C version of Bitap was taken from [14, Chapter 5], where it is referred to as Shift-Or. The

design of the algorithm given there is clearly drawn from the Shift-Or algorithm illustrated

in [6]. The C++ version followed the C very closely with the only changes being the use of

the C++ standard classes for strings and vectors. Likewise, the Rust version of this algorithm

proved very simple and bore a reasonable resemblance to the C and C++.

Listing 7: Bitap main loop in Rust

1 for j in 0..n {

2 state = (state << 1) | s_positions[sequence[j] as usize];

3 if state < *lim {

4 matches += 1;

5 }

6 }

The Perl and Python implementations were also very similar to the compiled versions,

with the same exception that each language has arrays as first-class data types. The Python

version, however, did have one notable difference: due to Python’s integers being of arbitrary

size, it was not enough to take the bit-complement of 0 to get a “full” bit-field. In Python

this resulted in a value of -1, rather than the expected 2W − 1 (where W is the word-size

used within the algorithm). To force Python to treat these values as unsigned 64-bit, it

was necessary to declare a “mask” value equal to 2W − 1 and apply this to the result of

every logical bit-operation performed. This incurred a significant performance penalty on the

Python implementation, giving it the widest performance gap when compared against its

Perl counterpart.

4.5.4 Aho and Corasick

For the implementation of this algorithm, no existing code was consulted. Rather, the initial

C version was developed directly from the algorithm specification in the paper itself. The C

39

version required the most supporting code, as the algorithm calls for both queue and set data

structures. Additionally, the construction of the g and output functions required dynamic

re-sizing of lists. It was chosen to avoid this added complexity by generously estimating

the size needed for those lists and pre-allocating that amount. Constructing f did not

have this problem as the size was known at that point from having created the previous

arrays. Both queue and set data structures were implemented with just the minimally-

required functionality for each. For the queue, this was the operations create, delete, expand

(grow), enqueue, dequeue, and a test for whether the queue is empty. For the set, these

were insert, test-for-membership, and an implementation of a union operation. The set’s

structure was designed in a such a way that using the C calloc function was sufficient for

both creation and initialization, and free was sufficient for deletion and clean-up. That

said, these implementations did add to the number of dynamic memory allocations and

corresponding releases.

When implementing in C++, the C++ Standard Library was able to provide existing

classes for both set and queue implementations, greatly reducing the amount of supporting

code in this version. Though C++ vector types can dynamically grow, intermediate

experiments found that relying on this for the g and output function construction introduced a

slight performance penalty. As such, it was decided to replicate the C approach of estimating

the size of g and output and pre-allocating. Using C++ features, this also allowed for

immediate initialization of the vectors where the C arrays required explicit loops to initialize.

In the end, the difference between the two languages’ implementations was a factor of almost

2x in SLOC for the C code over the C++ code.

The Perl and Python implementations were both significantly shorter in length than the

C or C++, due largely to native support for resizable lists. For the queue data structure, the

Python code used the collections.deque class that is part of the Python core. Perl used

an ordinary list, as the language provides a built-in keyword for removing from the head of a

list in O(1) time. Both languages grew the g and output functions dynamically rather than

pre-allocating them. For the implementation of a set data structure, Python provides a set

type as a native data type. The Perl version initially used the native associative array type, a

common technique for emulating sets in Perl. This proved to be a slight performance penalty,

so it was later replaced with a simple list of integers that had duplicates removed as needed.

Lastly, the Rust implementation went through several iterations before reaching its final

form. The first version closely followed the C++ version: the use of resizable vectors through

the native Vec<> type, and implementations of set and queue from the standard Rust

library (std::collections::HashSet and std::collections::VecDeque, respectively).

This initial version severely under-performed in comparison to the other two compiled

40

languages. With help from the Rust community, it was determined that the two collection

classes were incurring large amounts of overhead. To address this, they were replaced with

simple implementations adapted from the C code. As with the Perl and Python versions,

the Vec<> type was allowed to handle the dynamic nature of the g and output functions. As

with C++, some intermediate experiments were performed that pre-allocated these vectors

based on estimates of needed space. But unlike with C++, it was found that at best the

performance remained the same, and in some runs was noticeably worse. As a result, the

pre-allocation was removed.

4.5.5 Approximate Matching by DFA with Gaps

As this algorithm was new material, it was difficult to anticipate what concerns and issues

would arise. Some aspects of each implementation were close in design to the Aho-Corasick

code due to the fact that both algorithms are centered around a DFA. All implementations

were based on the developed algorithms 1 and 2, from section 3.5.

Listing 8: C/C++ DFA-Gap main loop

1 for (int i = 0; i <= end; i++) {

2 int state = 0;

3 int ch = 0;

4 while ((i + ch) < n && dfa[state][sequence[i + ch]] != FAIL)

5 state = dfa[state][sequence[i + ch++]];

6

7 if (state == terminal)

8 matches++;

9 }

As was the case with some of the previous algorithms, the main differences between the

C and C++ implementations were in the use of C++ standard library classes in place of

manual memory management; their main loops were identical (listing 8). The availability of

a postfix-increment operator in these languages allowed the two statements of lines 8–9 in

algorithm 2 to be combined into a single statement. Unlike the Aho-Corasick DFA allocation,

this algorithm has a predictable number of states. This made allocation of the DFA much

more exact and clean in comparison.

The Rust version of this algorithm is largely identical in structure to the C and C++

versions. In terms of SLOC, it comes in longer than either of those, due primarily to the

number of lines used for pattern-matching in the processing of the pattern data structure

created by the initialization routine.

41

The Perl implementation suffered from some readability issues attributable to the ways in

which Perl handles slicing arrays that have been passed by reference rather than by value.

Perl also features a postfix-increment operator, allowing a savings of one line in the SLOC

score. In contrast, the Python implementation once again gained conciseness and readability

through its clear syntax around iterators and slightly cleaner syntax around treating strings

as arrays and applying slicing operations to them.

4.5.6 Regular Expressions Variant

The performance of the Perl and Python languages on the DFA-Gap algorithm led to some

critical thinking about how this algorithm might actually be implemented in those languages

in a real application. This, in turn, led to an extra experiment being written for each of these

two languages.

Both Perl and Python have native support for extended regular expressions as a part

of the language. When this is taken into account, it is found to be preferable to use the

implementation of the DFA as a regular expression. The regular expression engines in both

Perl and Python are implemented in compiled code and are thus much faster than the

hand-coded DFA implementations.

As will be shown in section 5.2.1, this had a very significant effect on the overall performance

of the gap algorithm for those two languages.

The key to meeting the four requirements in section 3.6, particularly the fourth requirement,

was a mechanism called positive-lookahead. This mechanism allows the engine to match the

pattern as a sequence ahead of the current point, without actually consuming any of the

matched characters. This was instrumental in finding overlapping matches.

Once this had been undertaken in Python and Perl, it was necessary to implement similar

experiments for the compiled languages. In the case of C++, a class for regular expressions

had been part of the C++ Standard Library since the adoption of the C++11 standard.

C, as well, offered regular expression support in the form of the POSIX regular expressions

functions included as part of the C standard library. Rust, though, did not have built-in

regular expression support.

It was decided to use the regex “crate”7 that was available for Rust, while using the

native regular expression support in C and C++. This exposed problems: The C and C++

engines proved to be exceedingly slow, and unable to properly identify the matched substrings.

Additionally, Rust’s regex package did not support the positive-lookahead feature of regular

expressions that was necessary to prevent making multiple passes over the target string.

7A “crate” is the term used in the Rust community for a packaged library or extension.

42

The solution came in the form of the Perl-Compatible Regular Expressions engine. As

the name hints, the engine provides support for the various extensions to regular expression

syntax introduced by Perl (as well as other languages and dialects). In particular, PCRE

supports both positive-lookahead and capturing within the lookahead. Lastly, while written

for the C language it was possible to use this engine in both C++ and Rust through wrapper

libraries.

As the results will show, the effectiveness of regular expressions varied across the languages.

4.6 Initial Observations on Complexity

At this point, some initial observations could be made about the complexity measurements

of some of the code. In the code examples given throughout section 4.3, all implementations

of the naive algorithm had the same cyclomatic complexity value of 3. All also produced

the same directed flow graph, shown in figure 16. In this graph, nodes 1 and 6 represent the

entry and exit to the function. Node 2 represents the for-loop, and node 3 represents the

if-else conditional block.

1

2

3 4

5

6

Figure 16: Flow graph of the naive algorithm

Part of the reason for this is that the complexity measurement does not take into account

calls to functions. This is by intent, as factoring out content to a separate function is

part of the process of managing complexity. In the cases of C and C++, both utilized

library functions: strncmp in C and substr in C++. In contrast, the use of substr in

Perl is a keyword of the language. Python and Rust skip this entirely by virtue of having

array-slicing be a core language feature, along with the ability to compare slices directly.

Had the complexity-measuring tools taken the library calls into account, that would have

43

changed the graph for those languages from one connected component to two, and resulted

in a higher overall complexity score.

Compare this to the make next table functions defined in the implementations of Knuth-

Morris-Pratt. The complexity tool found the Python version to have a score of 6 while the C

and C++ versions both scored 5. The reason for the distinction is that C and C++ allocated

the array variable next table prior to the function call and passed it as a parameter. By

contrast, in Python next table was created within the function. The loop used to create it is

the source of the extra point of complexity. Figures 17 and 18 illustrate these slightly-different

flow graphs. In figure 17, states 2 and 3 represent the extra for-loop that introduces the extra

point of complexity.

1

2

3

4

5

6

7 8

9

10

Figure 17: Flow of the Python
make next table function

1

2

3

4

5 6

7

8

Figure 18: Flow of the C++
make next table function

The resulting complexity of the various implementations is explored in more depth in

section 5.3.2.

44

4.7 Optimizations

Over the course of the development of the experiments in each language, the need became

clear for some basic optimizations. In every case, any optimization was applied consistently

across all languages. Some examples of optimizations include:

Data Preprocessing: While the C and C++ languages were able to seamlessly use individual

characters from the strings as array indices, Rust and the interpreted languages were

not. Based on an assumption that production-targeted code would apply any similar

preprocessing, the strings were converted to forms directly usable by the other languages.

In the case of Rust, this was a conversion of strings to arrays of unsigned 8-bit integers.

In the case of Python, it was a direct mapping of strings (which are already treated

as sequences by Python) into the ordinal values of each character. Perl required the

most preprocessing, with strings first being converted to arrays of individual characters

before being mapped to their ordinal values.

Pattern Preprocessing: To bring down the running times of the interpreted languages’

experiments, a mechanism for preprocessing patterns was developed that allowed for

each pattern to be processed only once prior to being applied to all sequences. Without

this, some instances of the Knuth-Morris-Pratt algorithm (for example) took close to

an hour to complete. Once the structure of this was established, it was also applied to

the compiled languages as well.

Minimizing Type-Casting: In the case of Rust’s strong typing, it was necessary to

frequently cast integer values into Rust’s usize type for use as array indices. Though

this would have had little or no effect on run-time, the decision was made in some cases

to declare a cast version of the integer value to help in the overall readability of the

code.

Compiler Options: For the three compiled languages, consistent choices of compiler options

for optimization were applied. For the C and C++ code, the same options were used

for both languages. For the Rust code, the cargo utility was run with an option that

instructed the compiler to build optimized code instead of debug-instrumented code.

These were not applicable to the Perl and Python code, as both of those are interpreted

languages.

All code-optimization steps were designed to be done inside the timing window of the

runner module, and contributed to the reported algorithm run-time.

45

4.8 Experimental Data

The data used for the experiments was generated in a random fashion. It was specifically

created to emulate basic DNA data, while keeping the size of the data manageable from the

perspective of the programs that would be run.

4.8.1 Method of Generation

Data generation was handled by a Python script written to allow almost all parameters of

the resulting data to be tuned. The script’s options included a seed value for the random

number generator, which allowed for consistent generation of the data once the parameters

were tuned to satisfaction.

Sequence generation was a straightforward process of determining a length from the

provided base length and variance values. The standard random number generator provided

by Python was then used to draw the sequence of n letters from the set of valid characters.

To ensure that algorithms would be as thoroughly exercised as possible, each candidate

pattern was tested before acceptance. The requirement for acceptance was that it match

a minimum threshold (0.10%) of the full set of sequences. Generation of the patterns was

done by first selecting the pattern length from the specified range, then extracting a sequence

of that length from a random location in a candidate sequence. Candidate sequences were

chosen by selecting every ith sequence from the full list (starting with the first sequence),

with i being the total number of sequences divided by the total number of patterns being

generated.

For the approximate-matching algorithm, the same set of patterns was used since they

were already known to meet the minimum-matching criteria. For this algorithm, a k value of

0 would lead to the same set of matches as an exact-matching algorithm would find.

4.8.2 Shape of the Data Used

The data set selected for these experiments consisted of the following:

• 100,000 sequence strings of length ranging from 1,008 to 1,040 characters (1, 024± 16).

The number of patterns and their length was chosen to provide sufficient data to

extensively exercise each algorithm implementation.

• 100 pattern strings of length ranging from 8 to 10 characters (9 ± 1). The length

was adjusted several times through command-line parameters to the data-generation

utility until a size was found for which the generated patterns would reliably meet the

46

minimum threshold for sequences matched. The matching percentage over the 100

patterns ranged from 0.10% to 1.62%, with an average of 0.76%.

• A full set of correct counts of each pattern’s occurrences in each sequence, as would

be found by an exact-matching algorithm. This was established using a backtracking

regular expression search for each of the selected patterns over each of the generated

sequences. The regular expression was designed to properly include overlapping pattern

occurrences.

• An additional set of answer-files were generated for the approximate-matching algorithm,

for values of k ranging from 1 to 5. These, too, were generated using crafted regular

expressions that would detect overlapping occurrences of the patterns.

A smaller data set was also generated for the purpose of testing and validation of the

programs prior to full experiment runs.

The size of the data set was chosen after some preliminary experiments showed this size

to be large-enough to rigorously exercise the algorithms while still running in reasonable time

overall. This allowed for the experiments to be run repeatedly as the code itself evolved.

4.9 Testing Platform

The experiments were run on a dedicated machine running a version of the Linux operating

system. The set of installed software was kept minimal to reduce the chance of background

processes influencing the readings of general energy usage during the runs of experiments.

4.9.1 Hardware Specifications

The machine used for the experiments was an Intel-brand NUC7i5BNH i5-7260U, an ultra-

compact device referred to by Intel as a “Next Unit of Computing” (NUC). The machine

features the following specifications:

The CPU is dual-core, with hyperthreading cores, for a total of 4 computational cores.

This did not affect the experiments as none of the code was written to be multi-threaded.

4.9.2 Operating System and Configuration

The NUC was cleaned of the vendor-installed operating system. Linux was installed on it

using the minimal server edition of Ubuntu Linux 22.04.1. All unnecessary packages and

software services were either disabled or removed completely.

47

Processor Intel® Core™ i5-7260U Processor
Processor Base Frequency 2.20 GHz
Max Turbo Frequency 3.40 GHz
Memory Type DDR4-2133 1.2V SO-DIMM
Installed Memory 8 GB
Internal Drive Form Factor M.2 and 2.5”
Installed Storage 120 GB M.2 SSD

Table 1: Hardware specifications of the test platform

The development software (see next section) was then installed. This included the Linux

version of the “Homebrew” package manager. Homebrew was specifically used to install

the latest version of the LLVM Compiler Infrastructure, to allow all experiment code to

be compiled directly on the NUC (rather than copying executable files built on a different

machine). The Python and Perl interpreters that were used were also provided by Homebrew,

as were the majority of the tools used for developing, testing, and evaluating the experiments

on the development platform. The Rust language toolchain was installed and managed using

the “Rustup” management software. Core software development packages from Ubuntu were

also installed at this time.

4.9.3 Compilers and Other Tools

Table 2 lists the primary software tools and packages that were used in the creation and

execution of the experiments, with the source from which they were obtained. The double

line after the Python details indicates that the remaining tools were used on the development

machine only, not on the experiments platform. These tools were used in the testing and

evaluation of the experiments code separately from running experiments on the NUC.

The tools used for the experiments themselves do include the GNU Make tool, as it was

the driver for automating the running of the full range of experiments on a regular basis.

4.10 Resources

All source code for all experiment programs, as well as the harness utility described and the

Python utilities used for data generation and processing of results, is available on the GitHub

platform [31].

48

Tool Version Source

GNU Make 4.3 Ubuntu 22.04
GCC 11.2.0 Ubuntu 22.04
LLVM 15.0.3 Homebrew
Intel® oneAPI Compiler 2022.2.0 Intel
Rust 1.65.0 Rustup Manager
Perl 5.36.0 Homebrew
Python 3.10.8 Homebrew
PCRE2 10.39 Ubuntu 22.04

Valgrind 3.20.0 Homebrew
sloc 0.2.1 Homebrew
perf 5.15.53 Ubuntu 22.04
cloc 1.94 Homebrew
xz 5.2.7 Homebrew
lizard 1.17.10 Homebrew
countperl 1.0.1 Ubuntu 22.04
rust-code-analysis-cli 0.0.23 GitHub

Table 2: Specifications of software tools used

5 Results and Analysis

During the experiment programs’ development, an automation mechanism was developed

based on the GNU Make tool. This mechanism allowed for the repeated running of the

experiments suite while also providing control over aspects such as the number of repetitions

and grouping of the algorithms.

The basis for the mechanism was a series of additional rules added to the already-present

“Makefile” files that had been developed for the building of each language’s set of programs.

A single target-rule, “experiments”, would recursively descend into each language-specific

directory and trigger all algorithms in sequence. Each algorithm ran a specified number of

times, and in most cases the initial run was discarded. This was to prevent the possibility of

the data input files being in the disk device’s cache, skewing the timing and energy readings

with regards to later runs. All non-error output from the experiments was captured by the

harness program and streamed to a single text file.

The format chosen for the file of results was YAML, due to the ready availability of

parsing libraries. YAML had an advantage over other formats such as CSV (comma-separated

values) in that it allowed the flexibility of complex nested data were it to be necessary, while

also being emitted in a streaming fashion. This greatly reduced the potential for output to

be corrupted between algorithm executions.

49

5.1 Results from the Experiments

The automated suite of experiments was run numerous times over the course of this research.

The final run from which the analysis and conclusions here are drawn is preserved in the

same repository on the GitHub platform [31] as all the other files related to this research.

The file of raw experiments data is named “experiments-data-20221111.yml”. The final,

full run of experiments took approximately 95 hours and 15 minutes to complete on the NUC

device described in section 4.9.

5.1.1 Scope of the Experiments

The final run of the experiments generated a total of 1,190 data-points taken from runs

of the 30 programs. The set of programs below includes the regular expression variant of

the DFA-Gap algorithm, as described in 4.5.6. Table 3 shows the number of runs on a

per-language, per-algorithm basis.

Language
Knuth-
Morris-
Pratt

Boyer-
Moore

Bitap
Aho-

Corasick
DFA-
Gap

Regexp-
Gap

C (GCC) 25 25 25 25 5 5
C (LLVM) 25 25 25 25 5 5
C (Intel) 25 25 25 25 5 5

C++ (GCC) 25 25 25 25 5 5
C++ (LLVM) 25 25 25 25 5 5
C++ (Intel) 25 25 25 25 5 5

Rust 25 25 25 25 5 5
Perl 5 5 5 25 3 3

Python 5 5 5 25 3 3

Table 3: Experiment iterations by language and algorithm

For all numbers 10 and greater, there was an additional “priming” run (as described above)

to ensure that disk cache status did not play into the values for full run-time or package-level

energy usage. Note also that the DFA-Gap and Regexp-Gap columns are stand-ins for 5 such

columns each (for the values of k from 1 to 5). Each value of k was run for the same number

of iterations.

5.1.2 Outliers and the Interpreted Languages

While it was known that the interpreted languages (Python and Perl) would be slower

than the compiled languages, the reality of the results was surprising: as will be shown in

50

section 5.2, below, the interpreted languages were in some cases more than 150 times slower

than the fastest compiled program on the same algorithm.

This discovery required adjusting the automated experiments, to reduce the number of

iterations for both interpreted languages. The Knuth-Morris-Pratt, Boyer-Moore, and Bitap

algorithms were all reduced to 5 iterations each, for these languages. The Aho-Corasick

algorithm ran in a more reasonable length of time and was left at 25 iterations, the same

number as were run for the compiled languages.

For the DFA-Gap algorithm, both compiled and interpreted languages had to be reduced

in terms of iterations given that approximate-matching algorithms are in general slower than

their exact-matching counterparts. The compiled languages ran 5 iterations of this algorithm

for values of k ranging from 1 to 5, whereas the interpreted languages were necessarily limited

to 3 iterations for the same values of k. When the regular expressions variant of the algorithm

was added, it too was run for 5 and 3 iterations over the languages.

5.2 Performance Comparisons

The first of the three measures of the languages’ suitability was chosen to be the overall

performance. This was chosen for first consideration as this is the metric that most developers

notice first: how long did it take the program to complete? Run-time measurement was

also the easiest of the metrics to gather, both in terms of total program execution and in

wall-clock time specifically spent in the algorithms themselves.

It was in the measuring of performance that it first became clear what a stark difference

there was between the interpreted and compiled languages. One can forget the extent of this

gap when working with interpreted languages in-depth for long periods of time. The Perl

and Python performance numbers were so large in many cases that they had to be omitted

from charts to preserve clarity, even when put to logarithmic scaling.

5.2.1 Adjusting for Perl and Python

Early examination of the performance results for Perl and Python (section 4.5.6) had shown

that the custom-built DFAs were strongly out-performed by using those languages’ native

support for regular expressions. Looking at these results separately from the rest of the

experiments, the difference was considerable as is shown in figure 19.

Not only were the run-times themselves higher for the DFA implementations, but the

growth in run-time as k increases was more pronounced for the DFA implementations than

for the regular expression implementations. Note that while Perl’s DFA was outperformed by

Python’s for the first two values of k, at k = 3 it was slightly lower and was steadily improving

51

Figure 19: Bar charts of DFA vs. Regexp run-times for Perl and Python

over Python for both k = 4 and k = 5. However, in the regular expression implementation

Python remained the better performer consistently.

This had led to a significant question during development regarding the measurement of

performance for the algorithms: should the Perl and Python manually-coded DFA implemen-

tations be replaced by the regular expression implementations? It is highly unlikely that an

experienced programmer in either of these two languages would choose to create the DFA

manually when they could instead create a regular expression based on the pattern and a

given value of k, in any case. When the performance is so drastically disparate it seems even

less likely.

It was decided instead to implement the regular expression version of the experiment for

the remaining three languages and include this in the final results and analysis. Figure 20

shows the run-time differences for these languages.

In these charts, the C and C++ values are averaged from the three toolchains. Examination

of the complete run-time tables for DFA-Gap (17f) and Regexp-Gap (19f) showed that each

toolchains’ run-times were extremely close to each other. This is understandable, as the

majority of the work in these cases would have been done by the PCRE2 library itself which

is identical across the different toolchain executables.

52

Figure 20: Bar charts of DFA vs. Regexp run-times for the compiled languages

While regular expressions improved the performance of both Perl and Python dramatically,

it did the reverse for the compiled languages. While C++ showed to be faster than C when

using regular expressions and Rust faster still, as can be seen in figure 20 the use of regular

expressions by the compiled languages took more time than the hand-crafted DFAs.

5.2.2 Collected Performance Results

After the decision was made to implement the regular expression variant throughout,

processing of the full performance results was done. The collection of sub-tables in table 4

shows the comparative performance of the languages on each of the algorithms. The time

measurements are based on the algorithm run-time as opposed to the total run-time. In

each table, the fastest language is listed first with the remaining ones following in order of

performance. Run times are scaled by the fastest time. This has the result of showing each

slower language’s time as a percentage over the fastest. To obtain the run-time values used in

the tables and charts, the mean run-times for each individual experiment were added together

to represent each distinct language.

The DFA-Gap and Regexp algorithms are shown for just k = 3. However, there was some

fluctuation in the ranking of the languages as k went from 1 to 5. For the calculation of the

53

(a) Knuth-Morris-Pratt

Language Runtime Score

C (LLVM) 44.52 1.0000
Rust 50.28 1.1293
C++ (LLVM) 50.65 1.1377
C (Intel) 50.76 1.1402
C++ (Intel) 55.23 1.2406
C (GCC) 58.53 1.3146
C++ (GCC) 59.44 1.3350
Perl 1715.18 38.5237
Python 1847.06 41.4858

(b) Boyer-Moore

Language Runtime Score

C (Intel) 20.66 1.0000
C++ (Intel) 21.71 1.0508
C (GCC) 22.03 1.0664
Rust 22.68 1.0977
C++ (LLVM) 23.58 1.1413
C (LLVM) 23.86 1.1549
C++ (GCC) 24.44 1.1831
Perl 969.77 46.9470
Python 1052.63 50.9587

(c) Bitap

Language Runtime Score

C (Intel) 7.55 1.0000
C (GCC) 7.60 1.0068
C++ (Intel) 7.91 1.0475
C (LLVM) 8.47 1.1219
Rust 8.57 1.1350
C++ (GCC) 8.77 1.1616
C++ (LLVM) 9.35 1.2381
Perl 1173.06 155.3435
Python 1456.88 192.9283

(d) Aho-Corasick

Language Runtime Score

C (LLVM) 1.14 1.0000
C (Intel) 1.20 1.0443
C (GCC) 1.22 1.0644
C++ (GCC) 1.32 1.1519
C++ (LLVM) 1.33 1.1600
Rust 1.35 1.1816
C++ (Intel) 1.37 1.1988
Python 22.55 19.7040
Perl 45.10 39.4041

(e) DFA-Gap (k=3)

Language Runtime Score

C (GCC) 100.45 1.0000
C (LLVM) 107.97 1.0749
C (Intel) 116.13 1.1561
C++ (GCC) 123.25 1.2270
C++ (LLVM) 133.10 1.3250
C++ (Intel) 135.04 1.3443
Rust 177.11 1.7632
Perl 5647.35 56.2209
Python 5770.18 57.4437

(f) Regexp-Gap (k=3)

Language Runtime Score

Rust 261.48 1.0000
C++ (LLVM) 307.16 1.1747
C++ (GCC) 307.32 1.1753
C++ (Intel) 308.40 1.1794
C (Intel) 336.54 1.2871
C (GCC) 336.67 1.2876
C (LLVM) 337.00 1.2888
Python 454.93 1.7398
Perl 1045.03 3.9966

Table 4: Comparative run-times by algorithm

metric of performance, all values of k for both of these algorithms will be used.

The set of charts in figures 21 to 26 illustrate the run-times by language for each of the

six algorithms. Note that all of these except figure 26 omit the Perl and Python languages

due to their extreme differences in the scale of running-time8.

8As was mentioned, a logarithmic scale was also tried but the Perl/Python values were still too far from

54

Figure 21: KMP run-times Figure 22: BM run-times

Starting with the Knuth-Morris-Pratt (21) and Boyer-Moore (22) algorithms which have

a passing relation to each other, the red lines indicate the fastest run-time and are meant to

show the difference in the other languages’ finish-time. In the Knuth-Morris-Pratt results,

of interest is the fact that both C and C++ compiled by the LLVM toolchain strongly

out-performed the GCC and Intel toolchains. This was the only algorithm in which LLVM

controlled the performance for both languages. In Boyer-Moore, the Intel toolchain took the

top spot with C, and the second spot with C++. Though this is not the only algorithm for

which a C++ experiment placed second, this is the highest that C++ placed throughout all

algorithms.

Figure 23: Bitap run-times Figure 24: AC run-times

In the Bitap results shown in figure 23, the LLVM toolchain actually produced the slowest

times within the C and C++ groups in this case. In the Aho-Corasick results (figure 24)

LLVM once again produced the fastest code for the C version of the experiment. The

Aho-Corasick run-times also highlight the overall speed of this algorithm, enabled by the

ability to test all patterns in a single pass through each target sequence.

the norm (particularly in the Bitap results).

55

Figure 25: DFA run-times Figure 26: Regexp run-times

For the DFA and regular expression versions of the gap algorithm, figures 25 and 26,

different styles of charts were drawn. As both of these experiments ran for five different

values of the k parameter, the charts are designed to show all five run-times for each language

as a stack.

The DFA experiments follow an almost expected trajectory, with C being faster than C++

and C++ faster than Rust. However, the regular expression experiments show an exactly

opposite trend, with Rust being the fastest of the languages. Figure 26 also includes results

for the Perl and Python languages, as this experiment gave results for them that could be

comfortably included.

Full tables of run-times scores for all values of k in both DFA-Gap and Regexp-Gap

experiments can be found in section A. A short analysis of the relative size of the run-times

themselves is done in section B, as those details are less directly relevant to the collected

performance calculations.

5.3 Expressiveness Comparisons

Expressiveness was generally the most-challenging of the metrics to measure and evaluate.

Even the most concrete, numerical measurements of code such as SLOC and complexity are

subject to some debate and dissent. In these aspects of the research, measurement was taken

through a range of open-source tools and the results tracked closely with expectation; the

interpreted languages showed the strongest scores on the three expressiveness sub-metrics.

However, much of what was measured for this metric was also dependent upon the skill

shown in the writing of the programs. Familiarity with the different languages varied, from

significant experience in C and Perl to relative newness with regards to Rust. It is not

possible to say whether someone more expert in the Rust language, for example, could have

implemented the chosen algorithms with more efficiency and better expressiveness metrics.

56

Additionally, the complexity component of this metric had been cast in some doubt by

the inability to use a single tool for all languages involved. This is shown in section 5.7 to

have not influenced the final rankings.

In comparing expressiveness, it is useful to look at all three of the chosen comparative

measures in an aggregated fashion. First, the individual numbers will be examined. As

with the previous two bases, tables will show the numbers comparing the languages. Unlike

the previous sections, the numbers shown will be for the combined files of all algorithm

modules, as well as runner modules and input modules. For each language the source code

was combined in a way that facilitated each of the metrics:

SLOC: Total SLOC values for each language’s files were combined. In the case of C and

C++, this includes relevant lines from the header files for the runner and input modules.

Complexity: Each file’s cyclomatic complexity values were computed on a per-function

basis. Each module’s function scores were averaged, and all modules’ averages for a

given language were summed together.

Conciseness: Using a method adapted from Bergmans, et al [8], each source code file for

a given language was stripped of comments and then merged into a sort of “archive”

using the standard “cat” command available on Linux. Each such resulting file was

then compressed with the “xz” compression utility and the compression ratio recorded.

5.3.1 Source Lines of Code

In table 5, the SLOC totals are shown in three sub-tables: only the algorithm implementations,

then the framework totals, and finally the combined totals of all lines.

(a) Algorithm lines

Language Code Score
Python 272 1.0000
Perl 376 1.3824
C++ 403 1.4816
C 528 1.9412

Rust 543 1.9963

(b) Framework lines

Language Support Score
Python 148 1.0000
Perl 211 1.4257
C++ 269 1.8176
Rust 272 1.8378
C 353 2.3851

(c) Total of lines

Language All Score
Python 420 1.0000
Perl 587 1.3976
C++ 672 1.6000
Rust 815 1.9405
C 881 2.0976

Table 5: Comparison of SLOC by language

Here Python is the clear leader, with Perl being 40% larger in table 5c. C++ maintains the

third-place ranking across all three sub-tables, and Rust edges out C in both the framework

measurement and the total lines measurement. Rust’s score in table 5a likely suffered from

57

the necessary mechanism that was used to pass and unpack pattern representation between

a given algorithm’s initialization function and the algorithm function itself. Compare the

listings, below.

Listing 9: C unpacking of pattern data (Aho-Corasick)

1 int *pattern_count = (int *)pat_data[0];

2 int *goto_fn = (int *)pat_data[1];

3 int *failure_fn = (int *)pat_data[2];

4 Set *output_fn = (Set *)pat_data[3];

Listing 10: Rust unpacking of pattern data (Aho-Corasick)

1 let pattern_count = match &pat_data[0] {

2 MultiPatternData::PatternCount(val) => val,

3 _ => panic!("Incorrect value at pat_data slot 0"),

4 };

5 let goto_fn = match &pat_data[1] {

6 MultiPatternData::PatternIntVecVec(val) => val,

7 _ => panic!("Incorrect value at pat_data slot 1"),

8 };

9 let failure_fn = match &pat_data[2] {

10 MultiPatternData::PatternUsizeVec(val) => val,

11 _ => panic!("Incorrect value at pat_data slot 2"),

12 };

13 let output_fn = match &pat_data[3] {

14 MultiPatternData::PatternTypeVec(val) => val,

15 _ => panic!("Incorrect value at pat_data slot 3"),

16 };

In this area, C and C++ each needed only one line per element passed (listing 9),

while Rust required four9 (listing 10). This is a 12-line difference in just the Aho-Corasick

implementation, so it can be understood how this could propagate through the other algorithm

implementations.

By further comparison: both Python and Perl, having the native ability to pass arrays of

differing types, needed only one line to unpack the pattern representations.

9One of which was a closing-brace with a semicolon and might not have been counted by the sloc tool.

58

5.3.2 Cyclomatic Complexity

Table 6 shows a similar break-down of the cyclomatic complexity measurements: algorithms,

framework, and combined total.

(a) Algorithms complexity

Language Total Avg
Python 76 19.57
C++ 81 16.83
Perl 106 26.97
C 114 18.30

Rust 132 17.97

(b) Framework complexity

Language Total Avg
C++ 43 10.75
Python 47 9.90
Rust 58 5.43
Perl 61 12.90
C 76 19.00

(c) Total complexity

Language Total Avg
Python 123 29.47
C++ 124 27.58
Perl 167 39.87
C 190 37.30

Rust 190 23.40

Table 6: Comparison of complexity by language

Unlike the SLOC measurements, however, there is greater variation in the rankings of the

languages. Here the contest between the first and second rankings was between Python and

C++. Rust placed last in the measure of the algorithm code, possibly due to the same issue

of excess lines around the unpacking of pattern data. Rust did rank third in the framework

table 6b where it also had a significantly lower average value than C++ or Python. Even as

Rust ended tied for the fourth rank in the total table, its totaled average complexity was still

the lowest of the five.

It is important here to note again that it was necessary to use different tools to calculate

the complexity of the Perl and Rust code. The lizard tool did not support Perl at all, and

examination of the Rust results showed some bugs in the handling of Rust. Because of this,

it is not possible to say with certainty that the relative comparisons of complexity between

the five languages are completely sound.

5.3.3 Conciseness

Conciseness proved to be a difficult concept to quantify. The approach taken in [8] was

designed around a significantly larger database of source code, but as the results from that

paper were compelling, it led to the adaptation of a variation of that methodology here.

The steps for deriving this measurement were:

1. A clean copy of all source code was made into a series of directories named by language

2. All comments and blank lines were removed by the cloc tool

3. Each individual language directory had all text files concatenated into a single file

59

4. Each of these text files were compressed with xv and the compression ratio recorded

A key difference between [8] and here is the limited scope of the data being analyzed;

since there is essentially just one “project” being put to scrutiny, the results are sensitive to

the fact that some of the files were smaller in size to begin with. Initially the technique in [8]

was followed exactly, and involved using the standard tar utility to create the archives of

each language. But when put into practice it was found that the metadata overhead of a tar

archive was more than the size of the actual data in some cases.

Further, in their paper, Bergmans and their team had removed most smaller examples of

code for each language from the final measurements. This was not an option here given the

limited size and number of the samples. For this reason the decision was made to focus the

compression on the text content only, by applying concatenation to the stripped versions of

the source files and compressing the results of this process.

In table 7, the results are shown.

Language Ratio Score
Python 78.50% 1.0000
Perl 80.50% 1.0255
C 80.60% 1.0268
Rust 80.80% 1.0293
C++ 81.00% 1.0318

Table 7: Comparison of compressibility by language

The ranking of Python and Perl as the first two is expected. However, the placing of C

ahead of both Rust and C++ came as a surprise given the presence of highly-repetitive calls

to library routines for the manual memory management. However, C and Rust both likely

benefited from the need for additional support code in the Aho-Corasick algorithm which

could have brought the compression ratio slightly further down.

5.3.4 Combining the Expressiveness Metrics

At this point the next step was to derive a single measurement of expressiveness from the

three measurements taken. For this, it would be needed to have “score” values for cyclomatic

complexity that were in line with the scores computed for SLOC and conciseness. These

values were computed from table 6c and are shown in table 8.

Here, the score shows a virtual tie for first position between C++ and Python. Their gap

is just one point (less than 1%), while the next gap is 43 (an increase of almost 35%).

60

Language Total Score
Python 123 1.0000
C++ 124 1.0081
Perl 167 1.3577
C 190 1.5447
Rust 190 1.5447

Table 8: Scoring of the cyclomatic complexity results

Now it would be possible to utilize the three expressiveness metrics to calculate a single

value for each language. The following values would be combined into a series of 3-element

vectors for each language:

• The SLOC scores from table 5c, the total of lines

• The cyclomatic scores from table 8

• The conciseness scores from table 7

The vectors were normalized into unit vectors. Then the vectors’ lengths were calculated

and scaled by the lowest value, giving the values in table 9:

Language SLOC Complexity Compression Score

Python 1.0000 1.0000 1.0000 1.0000
C++ 1.6000 1.0081 1.0318 1.1565
Perl 1.3976 1.3577 1.0255 1.2109
Rust 1.9405 1.5447 1.0293 1.4086
C 2.0976 1.5447 1.0268 1.4503

Table 9: Calculated expressiveness score

It was not a surprise that Python ended up ranked as the most-expressive of the five

contenders, as it had led the group in all three expressiveness metrics. The ranking of C++

ahead of Perl by just over 5 percentage points was more of a surprise, while the presence of

C at the bottom was not surprising.

Figure 27 illustrates the expressiveness values as vectors anchored at the origin. Judging

the length of the vectors helps to show the difference between Python in the 1st position and

C in the 5th.

Because of the possibly-inconsistent nature of the complexity data, it was decided to

derive a second score based on just the SLOC and compression scores. All other calculation

steps were the same. This resulted in table 10.

61

Figure 27: Calculated expressiveness as vectors

Here, the results more closely tracked with expectations: Python and Perl head the list

while C++ and Rust take the next two places. As has been mentioned, it is possible that

Rust suffered in the measurements due to the data-unpacking mechanism required by the

framework.

5.4 Energy Usage Comparisons

In this section the energy usage results are examined. Table 11 shows the comparative energy

usage over time (Joules per second) for each algorithm with the same scaling methodology

applied as was used for the performance tables. The tables here use the “Package” and

Language SLOC Compression Score

Python 1.0000 1.0000 1.0000
Perl 1.3976 1.0255 1.1406
C++ 1.6000 1.0318 1.2159
Rust 1.9405 1.0293 1.3446
C 2.0976 1.0268 1.4070

Table 10: Calculated expressiveness score, 2-axis

62

“DRAM” energy values combined together, divided by total run-time.

In regards to energy usage, the only significant barrier to overcome was ensuring that

the machine used to run the experiments would be sufficiently isolated so as to have the

least amount of interference possible from other running processes. The nature of the RAPL

system of measuring power consumption also required that the experiments be run with

super-user access levels. This amplified the need for the code to be as safe as possible, even

though the testing machine was not made accessible to the general internet.

RAPL posed other challenges to use, such as the previously-mentioned 32-bit limitation

in the registers used for tracking the energy usage. But this was overcome, and the RAPL

system ended up proving robust-enough to handle measuring programs whose run-times

ranged from barely one second to nearly three hours.

The language exhibiting the lowest energy usage is listed first, with the rest ranked behind

it. The DFA-Gap and Regexp algorithms are again represented by k = 3, and again the

rankings of the languages varied with k.

These results are further illustrated by figure 28. In this collection of bar-charts, the

Rust language (represented by the pink bars) can be seen to be the lowest value in the

Knuth-Morris-Pratt and DFA-Gap instances. In fact, Rust scored the lowest energy usage

for all five variations of the DFA-Gap algorithm, making it the most-efficient language for 6

of the 14 distinct groups of experiments. Here, Perl and Python are included because the

per-second measurements normalize their higher energy usage.

The fact that Rust was the overall best performer in terms of energy usage is underscored

by the chart in figure 29. In this chart, the value for each language as shown is the total of

the mean values from all 14 experiments. Here, the Perl and Python languages have been

removed again due to the fact that their longer run-times lead to energy numbers well out of

scale with respect to the compiled languages. The red horizontal line shows the total usage

by Rust and illustrates the differences with C and C++ across all three of their toolchains.

As with the run-times score tables, full tables of energy scores for all values of k in both

DFA-Gap and Regexp-Gap experiments can be found in section A.

5.5 Combining the Bases

With three distinct measurements available for combination and analysis, the first step was

to derive a single set of scores for the run-time basis and the energy-used basis, combining the

values from all 14 groups of experiments into single values. For this, values were simply added

together then scaled by the minimum value as has been done before. The total run-time

table 12a shows these values, derived from the algorithm-only run-time metric. In table 12b,

63

(a) Knuth-Morris-Pratt

Language Energy Score

Rust 8.29 1.0000
C (GCC) 8.63 1.0403
C (LLVM) 8.92 1.0756
C (Intel) 8.94 1.0786
C++ (GCC) 9.11 1.0983
C++ (LLVM) 9.15 1.1033
C++ (Intel) 9.20 1.1102
Python 9.66 1.1651
Perl 10.74 1.2957

(b) Boyer-Moore

Language Energy Score

C++ (GCC) 8.45 1.0000
C++ (LLVM) 8.55 1.0115
Rust 8.73 1.0331
C (GCC) 8.75 1.0358
C++ (Intel) 9.08 1.0747
C (LLVM) 9.22 1.0918
C (Intel) 9.72 1.1501
Python 10.97 1.2985
Perl 11.07 1.3103

(c) Bitap

Language Energy Score

C++ (LLVM) 8.95 1.0000
C (Intel) 9.00 1.0049
Rust 9.02 1.0077
C (LLVM) 9.04 1.0101
C++ (Intel) 9.35 1.0440
Python 9.67 1.0799
C++ (GCC) 9.72 1.0854
C (GCC) 9.75 1.0897
Perl 10.98 1.2268

(d) Aho-Corasick

Language Energy Score

C++ (LLVM) 9.28 1.0000
C (Intel) 9.56 1.0303
C (GCC) 9.58 1.0332
C (LLVM) 9.69 1.0448
C++ (Intel) 9.71 1.0471
C++ (GCC) 10.03 1.0813
Rust 10.15 1.0939
Perl 10.43 1.1248
Python 10.89 1.1736

(e) DFA-Gap (k=3)

Language Energy Score

Rust 7.35 1.0000
C++ (LLVM) 8.53 1.1603
C (LLVM) 8.68 1.1812
C++ (Intel) 8.87 1.2078
C (Intel) 8.99 1.2231
C (GCC) 9.08 1.2352
C++ (GCC) 9.18 1.2497
Python 9.65 1.3140
Perl 10.21 1.3897

(f) Regexp-Gap (k=3)

Language Energy Score

C (Intel) 10.15 1.0000
C (GCC) 10.21 1.0055
C (LLVM) 10.25 1.0094
C++ (LLVM) 10.59 1.0428
C++ (GCC) 10.62 1.0460
C++ (Intel) 10.63 1.0473
Perl 10.67 1.0513
Rust 10.72 1.0561
Python 10.78 1.0618

Table 11: Comparative energy usage over time by algorithm

the same is done with the combination of the “Package” and “DRAM” energy metrics.

From here came a question in two parts: Should the final scoring be based on the languages’

scores for these bases or based on the language rankings? And secondly, should the cyclomatic

complexity data be included in the expressiveness basis or not?

While the question regarding the complexity data has already been discussed, it still

64

Figure 28: Energy/second, by algorithm

(a) Scores for total run-time

Language Runtime Score

Rust 2321.58 1.0000
C++ (GCC) 2451.74 1.0561
C++ (LLVM) 2482.64 1.0694
C++ (Intel) 2499.37 1.0766
C (GCC) 2541.39 1.0947
C (LLVM) 2566.72 1.1056
C (Intel) 2606.27 1.1226
Python 36503.46 15.7236
Perl 38234.67 16.4693

(b) Scores for total energy usage

Language Energy Score

Rust 21756.11 1.0000
C++ (LLVM) 24691.83 1.1349
C++ (GCC) 24878.42 1.1435
C (LLVM) 25074.22 1.1525
C (GCC) 25115.48 1.1544
C++ (Intel) 25130.75 1.1551
C (Intel) 25528.86 1.1734
Python 357076.12 16.4127
Perl 392680.44 18.0492

Table 12: Final scores for totaled run-time and energy, by language

remained to be seen whether it would affect the final rankings. More than this, however,

was the question of whether to simply apply the ranking of each language to determine final

placement. Doing so might create a stronger distinction between adjacent languages than the

scores themselves would. On the other hand, using the scores would retain the subtlety in

the differences between languages.

65

Figure 29: Total energy by language

The decision was made to examine all combinations of these two variables. Table 13

shows the four sub-tables that result from this analysis. As can be seen from comparing 13a

with 13b, and 13c with 13d, the cyclomatic complexity values did not affect the respective

rankings at all: both pairs of tables have identical placement for their 9 rows. Comparing

column-wise (13a with 13c, and 13b with 13d), it can be seen that using the rank in place of

scores lead to a slight difference in final ranking. Specifically, Rust and Python each moved

up one place under a ranking basis. More significant, though, is how the different approaches

affected the changes in scores.

Comparing the two sub-tables that include complexity values, it can be seen that the

difference between the top (GCC C++) and bottom (Perl) is slightly higher in 13a than in

13c. This difference is even more pronounced in the two non-complexity tables.

5.6 Confidence Intervals of the Data

The data used thus far is from the first of three complete series of experiments. In order

to establish a level of confidence in the consistency of the results, confidence intervals were

calculated over both the algorithmic run-times and the energy usage data. These are shown

66

(a) Score by scale, with complexity

Language Score

C++ (GCC) 1.0000
C++ (LLVM) 1.0001
C++ (Intel) 1.0007
Rust 1.2058
C (GCC) 1.2446
C (LLVM) 1.2447
C (Intel) 1.2454
Python 3.2200
Perl 3.4881

(b) Score by scale, no complexity

Language Score

C++ (GCC) 1.0000
C++ (LLVM) 1.0001
C++ (Intel) 1.0006
Rust 1.0987
C (GCC) 1.1521
C (LLVM) 1.1523
C (Intel) 1.1529
Python 3.0424
Perl 3.2800

(c) Score by ranks, with complexity

Language Score

C++ (GCC) 1.0000
C++ (LLVM) 1.0000
Rust 1.4951
C++ (Intel) 1.8150
C (GCC) 2.4132
C (LLVM) 2.4375
Python 2.7547
C (Intel) 2.9406
Perl 3.3166

(d) Score by ranks, no complexity

Language Score

C++ (GCC) 1.0000
C++ (LLVM) 1.0000
Rust 1.3143
C++ (Intel) 1.6652
C (GCC) 2.1213
C (LLVM) 2.1426
Python 2.4215
C (Intel) 2.5849
Perl 2.7469

Table 13: Final scores for all combined metrics, by language

in table 14 and table 15.

90%
Confidence

95%
Confidence

99%
Confidence

Language Low High Low High Low High

C (GCC) 2538.5359 2541.6513 2537.7982 2542.3889 2534.7990 2545.3882
C (LLVM) 2565.3070 2568.7560 2564.4905 2569.5725 2561.1701 2572.8929
C (Intel) 2605.8051 2609.7787 2604.8643 2610.7195 2601.0389 2614.5449

C++ (GCC) 2450.6925 2453.9782 2449.9146 2454.7562 2446.7514 2457.9194
C++ (LLVM) 2478.0164 2497.5892 2473.3824 2502.2233 2454.5395 2521.0661
C++ (Intel) 2498.1748 2501.3544 2497.4220 2502.1072 2494.3610 2505.1682

Rust 2321.1177 2326.7827 2319.7765 2328.1239 2314.3228 2333.5776

Table 14: Runtime Confidence Intervals for three full sets

Here, the tables show confidence intervals for confidence levels of 90%, 95%, and 99%.

These scores are based on a small initial sample size (three full series), but help to illustrate

67

90%
Confidence

95%
Confidence

99%
Confidence

Language Low High Low High Low High

C (GCC) 24952.2957 25133.7104 24909.3441 25176.6620 24734.6946 25351.3116
C (LLVM) 24738.0532 25197.9702 24629.1636 25306.8598 24186.3975 25749.6258
C (Intel) 25146.0938 25723.7357 25009.3317 25860.4978 24453.2309 26416.5986

C++ (GCC) 24735.6095 24967.0474 24680.8144 25021.8425 24458.0071 25244.6499
C++ (LLVM) 24677.9807 24840.8262 24639.4255 24879.3814 24482.6528 25036.1542
C++ (Intel) 24957.4676 25235.4800 24891.6456 25301.3020 24624.0007 25568.9469

Rust 21561.4820 21826.3583 21498.7701 21889.0702 21243.7714 22144.0689

Table 15: Energy Confidence Intervals for three full sets

a strong level of consistency between these samples.

Section D contains collected tables of confidence interval values broken down by algorithm.

These are also divided into algorithmic run-time and energy usage tables.

5.7 Final Rankings

In table 16 the five distinct languages are shown with their ordering and score based on

ranking, both with and without the complexity metrics. In the end, the measurements taken

and evaluated began to resemble the concept of a triathlon.

(a) Distinct by ranks, with complexity

Language Score

C++ 1.0000
Rust 1.2247
Python 1.6583
C 1.8930
Perl 2.2174

(b) Distinct by ranks, no complexity

Language Score

C++ 1.0000
Rust 1.0290
Python 1.3933
C 1.5904
Perl 1.7823

Table 16: Final scores for all combined metrics, by distinct language

In performance, Rust outperformed C++ by a 5.6% margin and Rust’s performance

numbers were steady and reliable across all algorithms. In terms of energy usage, Rust was

top-ranked in almost half of the algorithms and variations, also leading C++ in the final

energy ranking by 13.5%. The measure of expressiveness is the only area in which Rust

was not in the top place, and it was only by virtue of this metric that C++ edged out

Rust in the final rankings. They swap places because of the percentage-points of difference

in expressiveness: 34 percentage-points with complexity and 12 points without. Without

68

complexity, Rust was only 2.9% behind C++ in the final ranking. While Rust came in

4th in all three expressiveness scores, C++ came in 3rd (SLOC), 2nd (complexity), and 5th

(conciseness). However, both came in behind Python in general and behind Perl as well when

complexity was not considered.

C++, being a more mature language, has the benefit of a more-established standard

library that contributed to a better expressiveness score. Rust has the opportunity to improve

as the language further evolves. New features and broader utilization will bring in greater

clarity and consistency to Rust, which should improve all aspects of expressiveness.

An earlier incarnation of this work had focused on the security benefits of the Rust

language. Recently, ZDNet published an article [35] about the National Security Agency’s

recommendation for developers to consider switching to programming languages that feature

greater memory safety. While memory safety was not a focus of this research, it is noteworthy

that Rust is considered to be the safest of the group in this regard. All of the experiments

written in compiled languages were tested with Valgrind, being refined and debugged until

Valgrind reported detecting no memory-related errors10. Of the compiled languages, only

Rust never exhibited any memory errors.

With this, it becomes more understandable why Perkel [29] found so many in the sciences

turning to Rust as their choice of a performance-oriented language. Though the youngest of

the languages evaluated here, Rust has quickly grown to showing great potential for a wide

range of applications.

Considering the growing demand for power in the world’s data centers, as programmers

become more focused on providing energy-efficient code, it is clear that a newer language–

Rust– is immediately available to meet this need.

10Perl and Python were not tested with Valgrind, as they are built on bytecode interpreters.

69

6 Conclusions

In choosing performance, expressiveness and energy use as the three metrics to measure on,

the goal was to provide an environment in which any of the five languages would have the

chance to stand out. The results of this research can be considered successful: each of the

five languages managed to be at least as high as the 2nd position in at least one metrics table.

The methodology itself was demonstrated to evaluate disparate languages in a fair manner,

even when some measurements were significantly disproportionate.

In the changing landscape of priorities, where security and power usage become as

important as performance, Rust can be recommended for this field of computing not only for

its approach to memory safety, but also on the merits of raw performance and lower energy

consumption. The methodology developed and demonstrated here showed a difference of

nearly 14% between Rust and the next-lowest energy usage score. That level of difference in

energy efficiency has real-world implications that cannot be ignored.

Additionally, the novel DFA-Gap algorithm was shown to be effective at approximate-

matching while also being simple to implement. When directly compared to the use of an

existing regular expression engine, it consistently performed better for the non-interpreted

languages.

The DFA-Gap algorithm has shown that it can be applied in cases where an edit distance-

based algorithm yields unsatisfactory results. Sequence alignments can be computed with

more control over the gaps between nucleotides. With the distinction of its approach to

defining and constraining gaps, it can be further developed as an additional tool for researchers

to use. Future work can also include greater analysis of and experimentation with the novel

algorithm; based on the structure of Aho-Corasick it is very possible that the algorithm can

be extended to multiple-pattern matching, as well.

Presented with a larger dataset, how would these metrics change? A greater selection

of source code files could lead to more precision in the expressiveness measurements, while

more data points would have a similar effect on the scores for energy usage and performance.

Where memory safety was only briefly addressed here, additional work and research could

add consideration of memory management and memory issues to the metrics. This could take

the form of an additional facet of expressiveness, or even become its own metric. It could

be possible to refine the methodology in ways that weigh the different metrics as opposed

to treating them equally. It might then be further refined in new ways that would allow

someone to choose the weights of the various metrics based on their specific needs and goals.

In the end, where energy efficiency is as important as performance, this methodology has

shown its ability to clearly evaluate the suitability of a programming language.

70

References

[1] Nauman Ahmed, Koen Bertels, and Zaid Al-Ars. Efficient gpu acceleration for computing
maximal exact matches in long dna reads. In Proceedings of the 2020 10th International
Conference on Bioscience, Biochemistry and Bioinformatics, pages 28–34, 2020.

[2] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: An aid to
bibliographic search. Communications of the ACM, 18(6):333—340, June 1975. URL:
https://doi.org/10.1145/360825.360855.

[3] Hadeel Alazzam and Ahmad Sharieh. Parallel dna sequence approximate matching with
multi-length sequence aware approach. Int J Comput Appl, 975:8887, 2018.

[4] Kalev Alpernas, Yotam M. Y. Feldman, and Hila Peleg. The wonderful wizard of loc.
Onward! 2020: Proceedings of the 2020 ACM SIGPLAN International Symposium, pages
146–156, November 2020. URL: https://doi.org/10.1145/3426428.3426921.

[5] Matt Asay. Rust, not Firefox, is Mozilla’s greatest industry contribution.
https://www.techrepublic.com/article/rust-not-firefox-is-mozillas-

greatest-industry-contribution/. Published: April 2021.

[6] Ricardo Baeza-Yates and Gaston H. Gonnet. A new approach to text searching.
Communications of the ACM, 35(10):74–82, October 1992. URL: https://doi.org/10.
1145/135239.135243.

[7] Michela Becchi and Patrick Crowley. Extending finite automata to efficiently match perl-
compatible regular expressions. In Proceedings of the 2008 ACM CoNEXT Conference,
number 25 in CoNEXT ’08, pages 1–12. Association for Computing Machinery, December
2008. URL: https://doi.org/10.1145/1544012.1544037.

[8] Lodewijk Bergmans, Xander Schrijen, Edwin Ouwehand, and Magiel Bruntink. Measuring
source code conciseness across programming languages using compression. In 2021
IEEE 21st International Working Conference on Source Code Analysis and Manipulation
(SCAM), pages 47–57. IEEE, 2021. URL: https://doi.org/10.1109/SCAM52516.2021.
00015.

[9] Donnie Berkholz. Programming languages ranked by expressiveness. https:

//redmonk.com/dberkholz/2013/03/25/programming-languages-ranked-by-

expressiveness/. Published: March 2013.

[10] Raju Bhukya and DVLN Somayajulu. Exact multiple pattern matching algorithm
using dna sequence and pattern pair. International Journal of Computer Applications,
17(8):32–38, March 2011. URL: https://doi.org/10.5120/2239-2862.

[11] Jim Blandy, Jason Orendorff, and Leonora F. S. Tindall. Programming Rust. O’Reilly
Media, Inc., 2 edition, 2021.

71

https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/3426428.3426921
https://www.techrepublic.com/article/rust-not-firefox-is-mozillas-greatest-industry-contribution/
https://www.techrepublic.com/article/rust-not-firefox-is-mozillas-greatest-industry-contribution/
https://doi.org/10.1145/135239.135243
https://doi.org/10.1145/135239.135243
https://doi.org/10.1145/1544012.1544037
https://doi.org/10.1109/SCAM52516.2021.00015
https://doi.org/10.1109/SCAM52516.2021.00015
https://redmonk.com/dberkholz/2013/03/25/programming-languages-ranked-by-expressiveness/
https://redmonk.com/dberkholz/2013/03/25/programming-languages-ranked-by-expressiveness/
https://redmonk.com/dberkholz/2013/03/25/programming-languages-ranked-by-expressiveness/
https://doi.org/10.5120/2239-2862

[12] Robert S. Boyer and J. Strother Moore. A fast string searching algorithm.
Communications of the ACM, 20(10):762–772, October 1977. URL: https://doi.org/
10.1145/359842.359859.

[13] Alex Cabral. The computer science behind dna sequencing. https://sitn.hms.harvard.
edu/flash/2019/the-computer-science-behind-dna-sequencing/. Published:
April 2019.

[14] Christian Charras and Thierry Lecroq. Handbook of Exact String Matching Algorithms.
College Publications, 2004.

[15] Yangjun Chen and Hoang Hai Nguyen. On the string matching with k differences in
dna databases. Proceedings of the VLDB Endowment, 14(6):903–915, 2021.

[16] Lok-Lam Cheng, David W Cheung, and Siu-Ming Yiu. Approximate string matching in
dna sequences. In Eighth International Conference on Database Systems for Advanced
Applications, 2003.(DASFAA 2003). Proceedings., pages 303–310. IEEE, 2003.

[17] Catalin Cimpanu. Chrome: 70https://www.zdnet.com/article/chrome-70-of-all-
security-bugs-are-memory-safety-issues/. Published: May 2020.

[18] Intel Corp. Intel® 64 and IA-32 Architectures Software Developer Manual,
volume Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4. Intel,
2022. URL: https://www.intel.com/content/www/us/en/developer/articles/

technical/intel-sdm.html.

[19] Clarissa Garcia. The real amount of energy a data center uses. https://www.akcp.

com/blog/the-real-amount-of-energy-a-data-center-use/. Published: February,
2022.

[20] James M. Heather and Benjamin Chain. The sequence of sequencers: The history of
sequencing dna. Genomics, 107(1):1–8, January 2016. URL: https://doi.org/10.
1016/j.ygeno.2015.11.003.

[21] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurminen, and Zhonghong Ou.
Rapl in action: Experiences in using rapl for power measurements. ACM Transactions
on Modeling and Performance Evaluation of Computing Systems, 3(2):1–26, June 2018.
URL: https://doi.org/10.1145/3177754.

[22] Donald E. Knuth, Jr. James H. Morris, and Vaughan R. Pratt. Fast pattern matching
in strings. SIAM Journal on Computing, 6(3):323–350, 1977. URL: https://doi.org/
10.1137/0206024.

[23] Johannes Köster. Rust-bio: a fast and safe bioinformatics library. Bioinformatics,
32(3):444–446, February 2016. URL: https://doi.org/10.1093/bioinformatics/
btv573.

72

https://doi.org/10.1145/359842.359859
https://doi.org/10.1145/359842.359859
https://sitn.hms.harvard.edu/flash/2019/the-computer-science-behind-dna-sequencing/
https://sitn.hms.harvard.edu/flash/2019/the-computer-science-behind-dna-sequencing/
https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-safety-issues/
https://www.zdnet.com/article/chrome-70-of-all-security-bugs-are-memory-safety-issues/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.akcp.com/blog/the-real-amount-of-energy-a-data-center-use/
https://www.akcp.com/blog/the-real-amount-of-energy-a-data-center-use/
https://doi.org/10.1016/j.ygeno.2015.11.003
https://doi.org/10.1016/j.ygeno.2015.11.003
https://doi.org/10.1145/3177754
https://doi.org/10.1137/0206024
https://doi.org/10.1137/0206024
https://doi.org/10.1093/bioinformatics/btv573
https://doi.org/10.1093/bioinformatics/btv573

[24] Eric Masanet and Nuoa Lei. How much energy do data centers really
use? https://energyinnovation.org/2020/03/17/how-much-energy-do-data-

centers-really-use/. Published: March 17, 2020.

[25] Thomas J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
SE-2(4):308–320, December 1976. URL: https://doi.org/10.1109/TSE.1976.233837.

[26] Peyman Neamatollahi, Montassir Hadi, and Mahmoud Naghibzadeh. Simple and efficient
pattern matching algorithms for biological sequences. IEEE Access, 8:23838–23846,
January 2020. URL: https://doi.org/10.1109/ACCESS.2020.2969038.

[27] Vu Nguyen, Sophia Deeds-Rubi, Thomas Tan, and Barry Boehm. A sloc counting
standard. In Cocomo ii forum, pages 1–16, 2007.

[28] Rui Pereira, Marco Couto, Francisco Ribeiro, Rui Rua, Jácome Cunha, João Paulo
Fernandes, and João Saraiva. Energy efficiency across programming languages: How
do energy, time, and memory relate? In Proceedings of the 10th ACM SIGPLAN
International Conference on Software Language Engineering, SLE 2017, pages 256–267.
Association for Computing Machinery, 2017.

[29] Jeffrey M. Perkel. Why scientists are turning to rust. Nature, 588:185–186, December
2020. URL: https://doi.org/10.1038/d41586-020-03382-2.

[30] Pooja Manisha Rahate and M. B. Chandak. Comparative study of string matching
algorithms for dna dataset. International Journal of Computer Sciences and Engineering,
6(5):1067–1074, May 2018. URL: https://doi.org/10.26438/ijcse/v6i5.10671074.

[31] Randy J. Ray. Evaluating languages for bioinformatics: Energy, expressiveness
and performance. https://github.com/rjray/mscs-thesis-project. Published:
November 2022.

[32] Stayam Shandilya. Knuth-morris-pratt algorithm - understanding it my way. https://i-
satyam.blogspot.com/2015/12/knuth-morris-pratt-algorithm.html. Published:
December 10, 2015.

[33] Lincoln Stein. How perl saved the human genome project. https://bioperl.org/

articles/How_Perl_saved_human_genome.html. Published: September, 1996.

[34] Bjarne Stroustrup. The Design and Evolution of C++. Addison Wesley, 1994. URL:
https://www.stroustrup.com/dne.html.

[35] Liam Tung. Nsa to developers: Think about switching from c and c++ to
a memory safe programming language. https://www.zdnet.com/article/nsa-

to-developers-think-about-switching-from-c-and-c-to-a-memory-safe-

programming-language/. Published: Novemmber 11, 2022.

[36] Konstantinos F. Xylogiannopoulos. Exhaustive exact string matching: the analysis of
the full human genome. In 2019 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining (ASONAM), pages 801–808. IEEE, 2019.

73

https://energyinnovation.org/2020/03/17/how-much-energy-do-data-centers-really-use/
https://energyinnovation.org/2020/03/17/how-much-energy-do-data-centers-really-use/
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1109/ACCESS.2020.2969038
https://doi.org/10.1038/d41586-020-03382-2
https://doi.org/10.26438/ijcse/v6i5.10671074
https://github.com/rjray/mscs-thesis-project
https://i-satyam.blogspot.com/2015/12/knuth-morris-pratt-algorithm.html
https://i-satyam.blogspot.com/2015/12/knuth-morris-pratt-algorithm.html
https://bioperl.org/articles/How_Perl_saved_human_genome.html
https://bioperl.org/articles/How_Perl_saved_human_genome.html
https://www.stroustrup.com/dne.html
https://www.zdnet.com/article/nsa-to-developers-think-about-switching-from-c-and-c-to-a-memory-safe-programming-language/
https://www.zdnet.com/article/nsa-to-developers-think-about-switching-from-c-and-c-to-a-memory-safe-programming-language/
https://www.zdnet.com/article/nsa-to-developers-think-about-switching-from-c-and-c-to-a-memory-safe-programming-language/

A Gap Algorithm Additional Tables

In this appendix is a collection of tables that provide more information on the experiments

that were run using the DFA-Gap algorithm and the regular expression variant.

A.1 DFA-Gap Algorithm Tables

The following two collections of tables show the full range of results for run-times and for

energy usage over time, for the DFA-Gap algorithm on all values of k for which it was run.

A.1.1 DFA-Gap Run-times

In table 17 the different rankings by run-time are shown for the DFA-Gap algorithm. The

sixth sub-table, table 17f, shows the score resulting from summing all the values from k = 1

to k = 5 and then scoring them.

This last sub-table acts as an averaging of the results for the different values of k.

Interesting in these results are that the different compilers for each of C and C++ appear in

the same order of ranking for those languages. Rust’s combined performance here was over

69% slower than the fastest, but what is interesting about the performance of Rust is the

notable drop in performance for values of k greater than 1. At k = 1, Rust was only 50.6%

slower than the GCC’s C version. But at k = 3 it was 76.3%.

Also of interest is how Perl closed the gap on Python as k grew. At k = 4 they were

within 0.07% of each other and at k = 5 Perl had outperformed Python.

A.1.2 DFA-Gap Energy Usage

Here, in table 18, the DFA-Gap energy usage rankings are displayed for the range of k values

as well as a combined-values score table.

In a result similar to the run-times tables, one language holds the top spot for all values

of k: Rust. This is an interesting observation, as Rust had consistently scored seventh in

run-time performance for these same experiments. This shows that Rust was using energy

more efficiently overall, despite needing more time to produce the results. This has already

been shown in figure 29, in section 5.4.

A.2 Regexp-Gap Algorithm Tables

These tables show the full range of results for run-times and for energy usage over time, for

the Regexp-Gap algorithm on all values of k for which it was run.

74

(a) k = 1

Language Runtime Score

C (GCC) 69.49 1.0000
C (LLVM) 70.13 1.0092
C++ (GCC) 75.72 1.0896
C++ (LLVM) 77.95 1.1218
C (Intel) 81.65 1.1750
C++ (Intel) 86.37 1.2430
Rust 104.66 1.5061
Python 3213.17 46.2405
Perl 3483.84 50.1357

(b) k = 2

Language Runtime Score

C (GCC) 83.52 1.0000
C (LLVM) 89.17 1.0677
C++ (GCC) 97.42 1.1665
C (Intel) 99.83 1.1953
C++ (LLVM) 104.92 1.2563
C++ (Intel) 108.28 1.2965
Rust 146.35 1.7523
Python 4335.62 51.9134
Perl 4422.84 52.9577

(c) k = 3

Language Runtime Score

C (GCC) 100.45 1.0000
C (LLVM) 107.97 1.0749
C (Intel) 116.13 1.1561
C++ (GCC) 123.25 1.2270
C++ (LLVM) 133.10 1.3250
C++ (Intel) 135.04 1.3443
Rust 177.11 1.7632
Perl 5647.35 56.2209
Python 5770.18 57.4437

(d) k = 4

Language Runtime Score

C (GCC) 119.46 1.0000
C (LLVM) 130.30 1.0907
C (Intel) 137.39 1.1501
C++ (GCC) 151.35 1.2670
C++ (Intel) 162.98 1.3643
C++ (LLVM) 164.51 1.3771
Rust 206.29 1.7268
Perl 6941.50 58.1072
Python 7361.39 61.6221

(e) k = 5

Language Runtime Score

C (GCC) 140.60 1.0000
C (LLVM) 151.92 1.0805
C (Intel) 155.26 1.1043
C++ (GCC) 183.42 1.3045
C++ (Intel) 191.17 1.3597
C++ (LLVM) 193.67 1.3775
Rust 235.66 1.6761
Perl 8354.58 59.4222
Python 9018.86 64.1469

(f) Combined k

Language Runtime Score

C (GCC) 513.51 1.0000
C (LLVM) 549.48 1.0700
C (Intel) 590.26 1.1495
C++ (GCC) 631.15 1.2291
C++ (LLVM) 674.15 1.3128
C++ (Intel) 683.84 1.3317
Rust 870.06 1.6943
Perl 28850.11 56.1820
Python 29699.22 57.8356

Table 17: Comparative run-times of DFA-Gap by value of k

A.2.1 Regexp-Gap Run-times

Table 19 lays out the run-times of the regular expression variant of the gap algorithm. As

with the corresponding collection of tables for the DFA-Gap experiments, a single language

dominates the top ranking for all values of k. This time, however, the language was Rust.

Also of interest is the fact that C++ in all three toolchain variants outperformed all variants

75

(a) k = 1

Language Energy Score

Rust 7.94 1.0000
C (LLVM) 8.78 1.1054
C (GCC) 8.87 1.1171
C++ (LLVM) 8.88 1.1189
C++ (Intel) 8.98 1.1316
C++ (GCC) 9.12 1.1483
C (Intel) 9.19 1.1569
Python 9.66 1.2171
Perl 10.78 1.3575

(b) k = 2

Language Energy Score

Rust 7.69 1.0000
C (LLVM) 8.73 1.1359
C++ (LLVM) 8.81 1.1459
C++ (Intel) 9.01 1.1718
C (GCC) 9.04 1.1760
C (Intel) 9.09 1.1819
C++ (GCC) 9.25 1.2032
Python 9.74 1.2666
Perl 10.78 1.4023

(c) k = 3

Language Energy Score

Rust 7.35 1.0000
C++ (LLVM) 8.53 1.1603
C (LLVM) 8.68 1.1812
C++ (Intel) 8.87 1.2078
C (Intel) 8.99 1.2231
C (GCC) 9.08 1.2352
C++ (GCC) 9.18 1.2497
Python 9.65 1.3140
Perl 10.21 1.3897

(d) k = 4

Language Energy Score

Rust 7.13 1.0000
C++ (LLVM) 8.21 1.1515
C (LLVM) 8.54 1.1977
C++ (Intel) 8.67 1.2155
C (Intel) 8.76 1.2287
C++ (GCC) 8.96 1.2565
C (GCC) 9.08 1.2735
Python 9.66 1.3548
Perl 9.69 1.3595

(e) k = 5

Language Energy Score

Rust 7.08 1.0000
C++ (LLVM) 7.90 1.1150
C (LLVM) 8.38 1.1830
C++ (Intel) 8.45 1.1923
C (Intel) 8.55 1.2066
C++ (GCC) 8.80 1.2421
C (GCC) 9.03 1.2752
Python 9.64 1.3607
Perl 9.72 1.3715

(f) Combined k

Language Energy Score

Rust 37.19 1.0000
C++ (LLVM) 42.33 1.1382
C (LLVM) 43.11 1.1592
C++ (Intel) 43.98 1.1826
C (Intel) 44.57 1.1984
C (GCC) 45.10 1.2127
C++ (GCC) 45.31 1.2183
Python 48.36 1.3002
Perl 51.18 1.3762

Table 18: Comparative energy usage by DFA-Gap by value of k

of C.

What makes this of such interest is that fact that all three compiled languages were using

the same regular expression engine, PCRE2. As PCRE2 is written in C, one might expect the

C versions of this experiment to perform the best. Rust and C++ were both using wrappers

around the C interface, yet performed better.

76

(a) k = 1

Language Runtime Score

Rust 177.14 1.0000
C++ (Intel) 179.24 1.0119
C++ (GCC) 179.92 1.0157
C++ (LLVM) 180.14 1.0170
C (GCC) 185.43 1.0468
C (Intel) 185.56 1.0475
C (LLVM) 186.05 1.0503
Python 280.86 1.5856
Perl 709.58 4.0058

(b) k = 2

Language Runtime Score

Rust 213.93 1.0000
C++ (Intel) 225.38 1.0535
C++ (LLVM) 226.29 1.0578
C++ (GCC) 226.63 1.0594
C (Intel) 238.24 1.1136
C (GCC) 238.28 1.1138
C (LLVM) 238.53 1.1150
Python 348.87 1.6308
Perl 850.86 3.9773

(c) k = 3

Language Runtime Score

Rust 261.48 1.0000
C++ (LLVM) 307.16 1.1747
C++ (GCC) 307.32 1.1753
C++ (Intel) 308.40 1.1794
C (Intel) 336.54 1.2871
C (GCC) 336.67 1.2876
C (LLVM) 337.00 1.2888
Python 454.93 1.7398
Perl 1045.03 3.9966

(d) k = 4

Language Runtime Score

Rust 322.26 1.0000
C++ (LLVM) 427.24 1.3258
C++ (GCC) 429.11 1.3316
C++ (Intel) 430.85 1.3370
C (Intel) 488.60 1.5162
C (LLVM) 488.88 1.5170
C (GCC) 491.07 1.5238
Python 596.54 1.8511
Perl 1293.45 4.0137

(e) k = 5

Language Runtime Score

Rust 393.83 1.0000
C++ (LLVM) 582.75 1.4797
C++ (GCC) 583.64 1.4820
C++ (Intel) 585.44 1.4865
C (Intel) 686.90 1.7442
C (GCC) 687.05 1.7445
C (LLVM) 688.79 1.7489
Python 743.90 1.8889
Perl 1582.51 4.0183

(f) Combined k

Language Runtime Score

Rust 1368.63 1.0000
C++ (LLVM) 1723.58 1.2593
C++ (GCC) 1726.63 1.2616
C++ (Intel) 1729.31 1.2635
C (Intel) 1935.84 1.4144
C (GCC) 1938.50 1.4164
C (LLVM) 1939.25 1.4169
Python 2425.10 1.7719
Perl 5481.44 4.0050

Table 19: Comparative run-times of Regexp-Gap by value of k

Also worthy of note is the relative closeness of the Perl and Python run-times to the

compiled language values. This was less surprising, given that both languages’ communities

have invested time in the performance of their respective regular expression engines. While

Perl was still nearly 4x the run-time of Rust in table 19f, that is a great difference over the

56x difference against GCC’s C in table 17f.

77

A.2.2 Regexp-Gap Energy Usage

Lastly, table 20 presents the energy usage score for the regular expression variant experiments.

Of all the energy comparisons, these are the closest in relation to each other. This would

indicate that the regular expression engines of Perl and Python, as well as PCRE2, bore the

considerable majority of the work in these experiment runs.

(a) k = 1

Language Energy Score

Perl 10.76 1.0000
C (LLVM) 10.82 1.0056
C (Intel) 10.82 1.0057
C (GCC) 10.84 1.0078
C++ (Intel) 10.86 1.0093
C++ (LLVM) 10.87 1.0102
C++ (GCC) 10.90 1.0134
Python 11.00 1.0228
Rust 11.02 1.0247

(b) k = 2

Language Energy Score

C (Intel) 10.59 1.0000
C (LLVM) 10.63 1.0039
Perl 10.66 1.0063
C (GCC) 10.67 1.0071
C++ (Intel) 10.75 1.0153
C++ (GCC) 10.78 1.0176
C++ (LLVM) 10.78 1.0178
Rust 10.80 1.0194
Python 10.91 1.0302

(c) k = 3

Language Energy Score

C (Intel) 10.15 1.0000
C (GCC) 10.21 1.0055
C (LLVM) 10.25 1.0094
C++ (LLVM) 10.59 1.0428
C++ (GCC) 10.62 1.0460
C++ (Intel) 10.63 1.0473
Perl 10.67 1.0513
Rust 10.72 1.0561
Python 10.78 1.0618

(d) k = 4

Language Energy Score

C (Intel) 9.96 1.0000
C (LLVM) 9.97 1.0012
C (GCC) 10.00 1.0047
C++ (GCC) 10.50 1.0544
C++ (Intel) 10.52 1.0567
C++ (LLVM) 10.52 1.0569
Rust 10.60 1.0647
Perl 10.61 1.0653
Python 10.69 1.0733

(e) k = 5

Language Energy Score

C (Intel) 9.75 1.0000
C (LLVM) 9.76 1.0012
C (GCC) 9.81 1.0060
C++ (Intel) 10.45 1.0716
C++ (LLVM) 10.46 1.0722
C++ (GCC) 10.46 1.0725
Rust 10.49 1.0751
Perl 10.55 1.0817
Python 10.68 1.0955

(f) Combined k

Language Energy Score

C (Intel) 51.27 1.0000
C (LLVM) 51.43 1.0031
C (GCC) 51.53 1.0051
C++ (LLVM) 53.22 1.0379
C++ (Intel) 53.22 1.0379
Perl 53.25 1.0385
C++ (GCC) 53.26 1.0387
Rust 53.63 1.0460
Python 54.07 1.0545

Table 20: Comparative energy usage by Regexp-Gap by value of k

78

Noteworthy results here include the presence of Perl in the first position for k = 1, and

never placing lower than fourth. Rust, which had shown strong energy performance for the

DFA-Gap experiments, here places last three of the five values of k. However, it is almost

always within a 1% difference of the language just ahead of it. This was the case with all of

the scoring tables in this grouping; gaps between adjacent scores were rarely more than 1%

in difference and sometimes as little as 0.12%.

79

B Gap Algorithm Additional Graphs

In this appendix the run-time performance of the DFA-Gap algorithm and the regular

expression variant will be explored further. The values for Perl and Python are omitted from

these graphs due to their out-sized values.

B.1 DFA-Gap Run-time Progression

Figure 25 showed the run-times for the DFA version, with each language “stacking” their

times for side-by-side comparison. Here, the increase in run-time as k increases is plotted as

a different view of that data.

Figure 30: Plots of run-times for DFA-Gap by values of k

The seven plots are all distinguishable from each other, with the GCC C line (blue) being

the lowest and the Rust (pink) line the highest. Between these two, the remaining C varieties

and all three C++ varieties have very similar slopes (except for Intel C, green, which is

increasing more slowly than the others, and might potentially cross the GCC C line around

k = 7 were the experiments taken that far).

What is most interesting in this set of plots is that each plot itself is functionally linear.

The initial impression of this algorithm was that it would most likely show a time-complexity

80

close to O((m+ k)n), and indeed in section 3.6 a stated goal of the regular expression variant

was to keep within that range. Given that the experiment data was very uniform in both the

sequence lengths (“n”) and the pattern lengths (“m”), it is hard to extrapolate from this

data whether this complexity estimate is accurate.

Further study of this algorithm that includes greater variety in pattern-length and

sequence-length would be of great benefit to determining whether the complexity is truly

O((m+ k)n), closer to the basic O(mn), or something closer to O(kmn).

B.2 Regexp-Gap Run-time Progression

For the regular expression version, figure 26 originally showed the stacked impression of the

run-times by language. The following graph shows the same data as above, with each line

representing a language and the values growing to the right with increasing k.

Figure 31: Plots of run-times for Regexp-Gap by values of k

In this set of plots the performance of Rust is clear as the bottom-most (pink) line. What

appears to be two additional lines, however, is actually two groups of nearly-identical times.

The top-most plot is actually the lines for LLVM C and Intel C almost completely overlapping.

And the middle line is the overlapping of GCC C and all three C++ varieties.

81

This is actually rather expected in terms of results, as all of these experiments were just

basic wrappers around the PCRE2 engine. It is the performance of Rust that is the most

noteworthy, as it appears at first glance to be almost linear while the C and C++ plots are

clearly parabolic. However, the Rust curve does follow a very shallow quadratic polynomial

path.

Further study here could also focus on varying lengths of sequences and patterns, but

also look into how the value of k influences the curve itself.

82

C Detailed Results

This appendix provides extended versions of the tables from the collections in table 13 and

table 16.

Language Runtime Expressiveness Energy
Unit vector

length
Score

C++ (GCC) 1.0561 1.1565 1.1435 0.3079 1.0000
C++ (LLVM) 1.0694 1.1565 1.1349 0.3080 1.0001
C++ (Intel) 1.0766 1.1565 1.1551 0.3081 1.0007
Rust 1.0000 1.4086 1.0000 0.3713 1.2058
C (GCC) 1.0947 1.4503 1.1544 0.3832 1.2446
C (LLVM) 1.1056 1.4503 1.1525 0.3833 1.2447
C (Intel) 1.1226 1.4503 1.1734 0.3835 1.2454
Python 15.7236 1.0000 16.4127 0.9915 3.2200
Perl 16.4693 1.2109 18.0492 1.0741 3.4881

Table 21: Full data for table 13a: final scores, by scale with complexity data

Language Runtime Expressiveness Energy
Unit vector

length
Score

C++ (GCC) 1.0561 1.2159 1.1435 0.3261 1.0000
C++ (LLVM) 1.0694 1.2159 1.1349 0.3262 1.0001
C++ (Intel) 1.0766 1.2159 1.1551 0.3263 1.0006
Rust 1.0000 1.3446 1.0000 0.3583 1.0987
C (GCC) 1.0947 1.4070 1.1544 0.3757 1.1521
C (LLVM) 1.1056 1.4070 1.1525 0.3758 1.1523
C (Intel) 1.1226 1.4070 1.1734 0.3760 1.1529
Python 15.7236 1.0000 16.4127 0.9922 3.0424
Perl 16.4693 1.1406 18.0492 1.0697 3.2800

Table 22: Full data for table 13b: final scores, by scale without complexity data

83

Language Runtime Expressiveness Energy
Unit vector

length
Score

C++ (GCC) 2 2 3 4.1231 1.0000
C++ (LLVM) 3 2 2 4.1231 1.0000
Rust 1 6 1 6.1644 1.4951
C++ (Intel) 4 2 6 7.4833 1.8150
C (GCC) 5 7 5 9.9499 2.4132
C (LLVM) 6 7 4 10.0499 2.4375
Python 8 1 8 11.3578 2.7547
C (Intel) 7 7 7 12.1244 2.9406
Perl 9 5 9 13.6748 3.3166

Table 23: Full data for table 13c: final scores, by rank with complexity data

Language Runtime Expressiveness Energy
Unit vector

length
Score

C++ (GCC) 2 3 3 4.6904 1.0000
C++ (LLVM) 3 3 2 4.6904 1.0000
Rust 1 6 1 6.1644 1.3143
C++ (Intel) 4 3 6 7.8102 1.6652
C (GCC) 5 7 5 9.9499 2.1213
C (LLVM) 6 7 4 10.0499 2.1426
Python 8 1 8 11.3578 2.4215
C (Intel) 7 7 7 12.1244 2.5849
Perl 9 2 9 12.8841 2.7469

Table 24: Full data for table 13d: final scores, by rank without complexity data

Language Runtime Expressiveness Energy Vector length Score

C++ 2 2 2 3.4641 1.0000
Rust 1 4 1 4.2426 1.2247
Python 4 1 4 5.7446 1.6583
C 3 5 3 6.5574 1.8930
Perl 5 3 5 7.6811 2.2174

Table 25: Full data for table 16a: distinct languages, by rank with complexity data

Language Runtime Expressiveness Energy Vector length Score

C++ 2 3 2 4.1231 1.0000
Rust 1 4 1 4.2426 1.0290
Python 4 1 4 5.7446 1.3933
C 3 5 3 6.5574 1.5904
Perl 5 2 5 7.3485 1.7823

Table 26: Full data for table 16b: distinct languages, by rank without complexity data

84

D Confidence Interval Data

This appendix provides the collected tables for the Confidence Intervals over run-time

(algorithmic run-time, not total run-time) and energy usage. Due to their oversized values

for these metrics, the Perl and Python languages have been excluded from these tables.

D.1 Runtime Confidence Intervals

These six tables (27 to 32) cover the run-time values. Tables are for the four exact-matching

algorithms and for the two approximate-matching algorithms at values of k = 3. The tables

for the other values of k follow a similar pattern and are omitted for brevity.

90%
Confidence

95%
Confidence

99%
Confidence

Language Low High Low High Low High

C (GCC)
(N=75)

58.5199 58.5412 58.5178 58.5433 58.5137 58.5475

C (LLVM)
(N=75)

44.4738 44.5014 44.4711 44.5041 44.4657 44.5095

C (Intel)
(N=75)

50.7623 50.7656 50.7620 50.7659 50.7614 50.7666

C++ (GCC)
(N=75)

59.4358 59.4430 59.4350 59.4437 59.4336 59.4451

C++ (LLVM)
(N=75)

50.6489 50.6556 50.6482 50.6563 50.6469 50.6576

C++ (Intel)
(N=75)

55.2293 55.2341 55.2288 55.2346 55.2279 55.2355

Rust
(N=75)

50.2715 50.2967 50.2691 50.2992 50.2641 50.3041

Table 27: Runtime Confidence Intervals for Knuth-Morris-Pratt

D.2 Energy Usage Confidence Intervals

These six tables (33 to 38) cover the energy usage values. They are in an identical order

and arrangement as the tables in the previous section. As with the previous section, only

DFA-Gap and Regexp-Gap tables for k = 3, in the interest of brevity.

85

90%
Confidence

95%
Confidence

99%
Confidence

Language Low High Low High Low High

C (GCC)
(N=75)

22.0298 22.0307 22.0297 22.0308 22.0295 22.0310

C (LLVM)
(N=75)

23.8557 23.8650 23.8548 23.8659 23.8530 23.8677

C (Intel)
(N=75)

20.6545 20.6567 20.6543 20.6569 20.6539 20.6574

C++ (GCC)
(N=75)

24.4363 24.4404 24.4359 24.4408 24.4351 24.4416

C++ (LLVM)
(N=75)

23.5711 23.5810 23.5701 23.5819 23.5682 23.5839

C++ (Intel)
(N=75)

21.7048 21.7126 21.7040 21.7134 21.7025 21.7149

Rust
(N=75)

22.6714 22.6761 22.6709 22.6765 22.6700 22.6775

Table 28: Runtime Confidence Intervals for Boyer-Moore

90%
Confidence

95%
Confidence

99%
Confidence

Language Low High Low High Low High

C (GCC)
(N=75)

7.6031 7.6037 7.6030 7.6037 7.6029 7.6038

C (LLVM)
(N=75)

8.4719 8.4731 8.4718 8.4732 8.4715 8.4735

C (Intel)
(N=75)

7.5508 7.5522 7.5507 7.5523 7.5504 7.5526

C++ (GCC)
(N=75)

8.7740 8.7782 8.7736 8.7786 8.7728 8.7794

C++ (LLVM)
(N=75)

9.3487 9.3524 9.3483 9.3528 9.3476 9.3535

C++ (Intel)
(N=75)

7.9083 7.9104 7.9081 7.9107 7.9077 7.9111

Rust
(N=75)

8.5709 8.5713 8.5709 8.5713 8.5708 8.5713

Table 29: Runtime Confidence Intervals for Bitap

86

90%
Confidence

95%
Confidence

99%
Confidence

Language Low High Low High Low High

C (GCC)
(N=75)

1.2186 1.2196 1.2185 1.2197 1.2183 1.2199

C (LLVM)
(N=75)

1.1452 1.1476 1.1450 1.1478 1.1445 1.1483

C (Intel)
(N=75)

1.1965 1.1980 1.1963 1.1982 1.1960 1.1985

C++ (GCC)
(N=75)

1.3198 1.3234 1.3195 1.3238 1.3187 1.3245

C++ (LLVM)
(N=75)

1.3298 1.3329 1.3294 1.3332 1.3288 1.3339

C++ (Intel)
(N=75)

1.3743 1.3774 1.3740 1.3777 1.3734 1.3783

Rust
(N=75)

1.3516 1.3538 1.3514 1.3540 1.3510 1.3544

Table 30: Runtime Confidence Intervals for Aho-Corasick

90%
Confidence

95%
Confidence

99%
Confidence

Language Low High Low High Low High

C (GCC)
(N=15)

100.4383 100.4554 100.4364 100.4572 100.4324 100.4613

C (LLVM)
(N=15)

107.9646 108.0039 107.9604 108.0082 107.9511 108.0175

C (Intel)
(N=15)

116.0376 116.5400 115.9829 116.5947 115.8642 116.7134

C++ (GCC)
(N=15)

123.2406 123.2597 123.2385 123.2617 123.2340 123.2662

C++ (LLVM)
(N=15)

133.0950 133.1134 133.0930 133.1154 133.0886 133.1197

C++ (Intel)
(N=15)

134.6135 135.2144 134.5480 135.2798 134.4061 135.4218

Rust
(N=15)

177.1153 177.1233 177.1144 177.1242 177.1125 177.1261

Table 31: Runtime Confidence Intervals for DFA-Gap (k=3)

87

90%
Confidence

95%
Confidence

99%
Confidence

Language Low High Low High Low High

C (GCC)
(N=15)

336.6617 337.0433 336.6202 337.0848 336.5300 337.1749

C (LLVM)
(N=15)

336.6804 338.4083 336.4923 338.5964 336.0842 339.0045

C (Intel)
(N=15)

336.5643 337.7088 336.4397 337.8334 336.1694 338.1037

C++ (GCC)
(N=15)

307.2493 308.2168 307.1440 308.3221 306.9155 308.5507

C++ (LLVM)
(N=15)

306.5675 307.9751 306.4143 308.1283 306.0818 308.4608

C++ (Intel)
(N=15)

306.8805 309.1845 306.6297 309.4354 306.0855 309.9796

Rust
(N=15)

261.5877 262.1728 261.5240 262.2365 261.3858 262.3747

Table 32: Runtime Confidence Intervals for Regexp-Gap (k=3)

90%
Confidence

95%
Confidence

99%
Confidence

Language Low High Low High Low High

C (GCC)
(N=75)

504.1535 506.4177 503.9314 506.6398 503.4887 507.0825

C (LLVM)
(N=75)

399.6036 400.1013 399.5548 400.1501 399.4575 400.2474

C (Intel)
(N=75)

456.3616 456.9361 456.3052 456.9925 456.1929 457.1048

C++ (GCC)
(N=75)

539.4094 541.3534 539.2186 541.5441 538.8385 541.9242

C++ (LLVM)
(N=75)

462.5973 464.4357 462.4169 464.6161 462.0574 464.9755

C++ (Intel)
(N=75)

509.2119 511.1073 509.0259 511.2933 508.6553 511.6639

Rust
(N=75)

413.3816 415.3570 413.1878 415.5508 412.8015 415.9370

Table 33: Energy usage Confidence Intervals for Knuth-Morris-Pratt

88

90%
Confidence

95%
Confidence

99%
Confidence

Language Low High Low High Low High

C (GCC)
(N=75)

195.1627 195.4984 195.1298 195.5313 195.0641 195.5969

C (LLVM)
(N=75)

222.4456 223.7399 222.3186 223.8669 222.0656 224.1200

C (Intel)
(N=75)

202.8090 203.2776 202.7630 203.3236 202.6714 203.4153

C++ (GCC)
(N=75)

206.1264 207.0940 206.0314 207.1889 205.8422 207.3781

C++ (LLVM)
(N=75)

203.4346 204.5010 203.3300 204.6056 203.1215 204.8141

C++ (Intel)
(N=75)

199.1852 200.0757 199.0978 200.1631 198.9237 200.3372

Rust
(N=75)

193.9497 197.5705 193.5945 197.9258 192.8865 198.6337

Table 34: Energy usage Confidence Intervals for Boyer-Moore

90%
Confidence

95%
Confidence

99%
Confidence

Language Low High Low High Low High

C (GCC)
(N=75)

77.3652 77.4897 77.3530 77.5019 77.3287 77.5263

C (LLVM)
(N=75)

79.6391 79.7242 79.6307 79.7326 79.6141 79.7492

C (Intel)
(N=75)

71.0230 71.1407 71.0114 71.1523 70.9884 71.1753

C++ (GCC)
(N=75)

88.6004 88.8587 88.5750 88.8840 88.5245 88.9345

C++ (LLVM)
(N=75)

86.6609 87.1298 86.6149 87.1758 86.5233 87.2674

C++ (Intel)
(N=75)

77.2181 77.5268 77.1878 77.5571 77.1275 77.6175

Rust
(N=75)

79.2323 79.5728 79.1989 79.6062 79.1324 79.6727

Table 35: Energy usage Confidence Intervals for Bitap

89

90%
Confidence

95%
Confidence

99%
Confidence

Language Low High Low High Low High

C (GCC)
(N=75)

15.0794 15.0956 15.0778 15.0972 15.0746 15.1003

C (LLVM)
(N=75)

14.5351 14.5637 14.5323 14.5665 14.5268 14.5721

C (Intel)
(N=75)

14.7780 14.8519 14.7707 14.8592 14.7563 14.8736

C++ (GCC)
(N=75)

17.3615 17.4209 17.3556 17.4267 17.3440 17.4383

C++ (LLVM)
(N=75)

16.0876 16.1489 16.0816 16.1549 16.0696 16.1669

C++ (Intel)
(N=75)

17.2464 17.3032 17.2408 17.3088 17.2297 17.3199

Rust
(N=75)

16.7343 16.7839 16.7294 16.7887 16.7197 16.7984

Table 36: Energy usage Confidence Intervals for Aho-Corasick

90%
Confidence

95%
Confidence

99%
Confidence

Language Low High Low High Low High

C (GCC)
(N=15)

914.1369 915.6823 913.9687 915.8506 913.6037 916.2156

C (LLVM)
(N=15)

924.4531 933.7322 923.4429 934.7423 921.2512 936.9341

C (Intel)
(N=15)

1019.3684 1107.5223 1009.7719 1117.1188 988.9496 1137.9411

C++ (GCC)
(N=15)

1121.9054 1131.6509 1120.8445 1132.7119 1118.5425 1135.0138

C++ (LLVM)
(N=15)

1138.9209 1140.1330 1138.7890 1140.2649 1138.5027 1140.5512

C++ (Intel)
(N=15)

1198.9172 1204.1993 1198.3421 1204.7744 1197.0945 1206.0220

Rust
(N=15)

1292.5809 1301.4053 1291.6202 1302.3659 1289.5359 1304.4503

Table 37: Energy usage Confidence Intervals for DFA-Gap (k=3)

90

90%
Confidence

95%
Confidence

99%
Confidence

Language Low High Low High Low High

C (GCC)
(N=15)

3436.9382 3449.5453 3435.5657 3450.9177 3432.5879 3453.8956

C (LLVM)
(N=15)

3439.5765 3464.4148 3436.8726 3467.1187 3431.0057 3472.9856

C (Intel)
(N=15)

3420.4098 3437.2470 3418.5768 3439.0799 3414.5998 3443.0570

C++ (GCC)
(N=15)

3258.8254 3277.2708 3256.8174 3279.2788 3252.4605 3283.6357

C++ (LLVM)
(N=15)

3246.4145 3271.7040 3243.6615 3274.4571 3237.6880 3280.4305

C++ (Intel)
(N=15)

3254.7434 3286.9473 3251.2377 3290.4530 3243.6310 3298.0597

Rust
(N=15)

2797.6445 2810.0303 2796.2962 2811.3786 2793.3706 2814.3042

Table 38: Energy usage Confidence Intervals for Regexp-Gap (k=3)

91

E Software Sources

This paper has referred to a number of software tools and utilities. Some of these are standard

features of a UNIX/Linux operating system, but many must be installed from external sources.

This appendix is meant to provide sources for these additional tools.

Application or tool Location

Homebrew https://brew.sh/

PCRE2 https://www.pcre.org/

PCRE2 for Rust https://crates.io/crates/pcre2

Rust https://www.rust-lang.org/

Rustup https://rustup.rs/

Valgrind https://valgrind.org/

YAML https://yaml.org/

cloc https://github.com/AlDanial/cloc/

countperl https://metacpan.org/dist/Perl-Metrics-Simple

jPCRE2 https://github.com/jpcre2/jpcre2

lizard https://github.com/terryyin/lizard

rust-code-analysis-cli https://github.com/mozilla/rust-code-analysis/

sloc https://github.com/flosse/sloc

xz https://tukaani.org/xz/

Table 39: Sources for the additional software tools used in this research

92

https://brew.sh/
https://www.pcre.org/
https://crates.io/crates/pcre2
https://www.rust-lang.org/
https://rustup.rs/
https://valgrind.org/
https://yaml.org/
https://github.com/AlDanial/cloc/
https://metacpan.org/dist/Perl-Metrics-Simple
https://github.com/jpcre2/jpcre2
https://github.com/terryyin/lizard
https://github.com/mozilla/rust-code-analysis/
https://github.com/flosse/sloc
https://tukaani.org/xz/

	List of Figures
	List of Tables
	Source Code Listings
	1 Introduction
	1.1 String Matching
	1.2 DNA Strings
	1.3 Comparison Bases

	2 Motivations and Prior Work
	2.1 Programming Languages
	2.2 Performance, Expressiveness, Energy
	2.3 Prior Work

	3 Selected Algorithms
	3.1 Knuth, Morris, and Pratt
	3.2 Boyer and Moore
	3.3 Bitap
	3.4 Aho and Corasick
	3.5 Approximate Matching with Gaps
	3.5.1 Creation of the DFA
	3.5.2 Matching with the DFA
	3.5.3 Example

	3.6 A Regular Expression Variant

	4 Details of the Experiments
	4.1 Definitions and Measurements
	4.1.1 SLOC (Source Lines Of Code)
	4.1.2 Language Conciseness Through Compression
	4.1.3 Cyclomatic Complexity
	4.1.4 RAPL (Running Average Power Limit)
	4.1.5 Summary of Metrics

	4.2 Experiment Harness
	4.3 Languages
	4.3.1 C
	4.3.2 C++
	4.3.3 Perl
	4.3.4 Python
	4.3.5 Rust
	4.3.6 Languages Not Used

	4.4 General Implementation of the Algorithms
	4.4.1 Input modules
	4.4.2 Runner modules
	4.4.3 Algorithm modules

	4.5 Algorithm Implementation Details
	4.5.1 Knuth, Morris, and Pratt
	4.5.2 Boyer and Moore
	4.5.3 Bitap
	4.5.4 Aho and Corasick
	4.5.5 Approximate Matching by DFA with Gaps
	4.5.6 Regular Expressions Variant

	4.6 Initial Observations on Complexity
	4.7 Optimizations
	4.8 Experimental Data
	4.8.1 Method of Generation
	4.8.2 Shape of the Data Used

	4.9 Testing Platform
	4.9.1 Hardware Specifications
	4.9.2 Operating System and Configuration
	4.9.3 Compilers and Other Tools

	4.10 Resources

	5 Results and Analysis
	5.1 Results from the Experiments
	5.1.1 Scope of the Experiments
	5.1.2 Outliers and the Interpreted Languages

	5.2 Performance Comparisons
	5.2.1 Adjusting for Perl and Python
	5.2.2 Collected Performance Results

	5.3 Expressiveness Comparisons
	5.3.1 Source Lines of Code
	5.3.2 Cyclomatic Complexity
	5.3.3 Conciseness
	5.3.4 Combining the Expressiveness Metrics

	5.4 Energy Usage Comparisons
	5.5 Combining the Bases
	5.6 Confidence Intervals of the Data
	5.7 Final Rankings

	6 Conclusions
	References
	A Gap Algorithm Additional Tables
	A.1 DFA-Gap Algorithm Tables
	A.1.1 DFA-Gap Run-times
	A.1.2 DFA-Gap Energy Usage

	A.2 Regexp-Gap Algorithm Tables
	A.2.1 Regexp-Gap Run-times
	A.2.2 Regexp-Gap Energy Usage

	B Gap Algorithm Additional Graphs
	B.1 DFA-Gap Run-time Progression
	B.2 Regexp-Gap Run-time Progression

	C Detailed Results
	D Confidence Interval Data
	D.1 Runtime Confidence Intervals
	D.2 Energy Usage Confidence Intervals

	E Software Sources

