
 

 

UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

A DATA-DRIVEN APPROACH FOR THE EVALUATION OF SEISMICITY RISKS 

ASSOCIATED WITH CO2 INJECTION 

 

A THESIS 

SUBMITTED TO THE GRADUATE FACULTY 

in partial fulfillment of the requirements for the 

Degree of 

MASTER OF SCIENCE 

By 

 

KAREN IFEOMA OCHIE 

Norman, Oklahoma 

2022 



 

 

A DATA-DRIVEN APPROACH FOR THE EVALUATION OF SEISMICITY RISKS 

ASSOCIATED WITH CO2 INJECTION 

A THESIS APPROVED FOR THE 

MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING 

 

 

 

 

 

 

BY THE COMMITTEE CONSISTING OF 

 

 

 
 

 

 

 

 

Dr. Rouzbeh Moghanloo, Chair 

 

  

 

Dr. Hamidreza Karami, Co-Chair 

 

  

 

Dr. Jeffery Burghardt, Co-Chair 

 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by KAREN IFEOMA OCHIE 2022 

All Rights Reserved.



iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to my mother, who encouraged me to pursue graduate school. 

  



v 

 

ACKNOWLEDGEMENT 

I would like to thank my advisor, Dr. Rouzbeh Moghanloo, for his constant support and tutelage. 

I am also grateful to Dr Hamidreza Karami and Dr. Jeffery Burghardt, for their time and support 

invested in me completing this thesis. I am also grateful to my team members on the Carbon 

Utilization and Storage Partnership (CUSP), working with them was very insightful and value 

adding.  

I would also like to thank all the professors I assisted in teaching, Dr Chandra Rai, Dr Runar 

Nygaard and Dr Reza Zulfiquar, I enjoyed working with you and you made my stay worthwhile. 

I am also grateful to the Mewbourne Department of Petroleum Engineering, Francey Freeman, 

Sonya Grant, Katie Shapiro and Dominique Pittenger for making my leadership roles stress-free. 

To all the student organizations I worked with, you made my graduate school journey fun, thank 

you. 

Finally, I would like to thank my parents: Chief and Mrs. Augustine Ochie, and my siblings: 

Samuel, Marypeace and Miracle for their unconditional love and care during my graduate school 

journey. To my partner, Chinedu Nwosu, my friends, and members of the Nigerian OU 

community, my journey would not have been complete without your contributions, I am indeed 

grateful.  

 

  



vi 

 

Table of Contents 

ACKNOWLEDGEMENT .............................................................................................................. v 

LIST OF FIGURES ....................................................................................................................... ix 

LIST OF TABLES ........................................................................................................................ xii 

ABSTRACT ................................................................................................................................. xiii 

CHAPTER 1: Introduction ............................................................................................................. 1 

1.1 Problem Statement ................................................................................................................ 1 

1.2 Objectives ............................................................................................................................. 5 

1.3 Scope of the Thesis ............................................................................................................... 6 

1.4 Working Hypothesis ............................................................................................................. 6 

1.5 Organization of the Thesis .................................................................................................... 6 

CHAPTER 2: Literature Review .................................................................................................... 7 

2.1 Geologic Carbon Sequestration ............................................................................................ 7 

2.1.1 Storage in Aquifers ........................................................................................................ 8 

2.1.2 Storage in Hydrocarbon Reservoirs ............................................................................... 8 

2.1.3 Storage in Coal Bed ....................................................................................................... 9 

2.1.4 Storage in Shales ............................................................................................................ 9 

2.2 Geomechanical Risk ........................................................................................................... 10 



vii 

 

2.3 Methods for Determining Geomechanical Risk ................................................................. 12 

CHAPTER 3: Methodology .......................................................................................................... 16 

3.1 State of Stress Analysis ....................................................................................................... 16 

3.2 Model Formulation ............................................................................................................. 18 

3.3 Bayesian Model .................................................................................................................. 22 

3.3.1 Applications of Bayesian Model .................................................................................. 23 

3.3.2 Bayesian Model in Stress Determination ................................................................ 24 

3.4 Data Requirements .............................................................................................................. 26 

3.4.1 Reservoir properties ..................................................................................................... 26 

3.4.2 Regional Stress Info Parameters .................................................................................. 27 

3.4.3 Stress Measurement Parameters .................................................................................. 28 

3.5 Introduction to Area of Study ............................................................................................. 28 

3.6 Seismicity in Area of Study ................................................................................................ 34 

3.6.1 Wastewater Disposal .................................................................................................... 34 

3.6.2 Hydraulic Fracturing .................................................................................................... 35 

3.6.3 Data .............................................................................................................................. 36 



viii 

 

3.6.4 Cluster Analysis ........................................................................................................... 36 

CHAPTER 4: Results and Discussion .......................................................................................... 39 

4.1 Introduction ......................................................................................................................... 39 

4.2 Seismicity in Area ............................................................................................................... 39 

4.3 Probability Model ............................................................................................................... 47 

4.4 Sensitivity Analysis ............................................................................................................ 50 

4.5 Site Specific Stress Data ..................................................................................................... 59 

CHAPTER 5: Conclusion ............................................................................................................. 65 

References ..................................................................................................................................... 66 

NOMENCLEATURE ................................................................................................................... 76 

APPENDIX ................................................................................................................................... 77 

SOSAT ...................................................................................................................................... 77 

 

  



ix 

 

LIST OF FIGURES 

Figure 1: Energy Consumption in the World. Data source: (BP Statistical Review of World 

Energy , 2021) ................................................................................................................................. 1 

Figure 2: Annual Emissions of CO2 from Fossil Fuels. Data source (Global Change Data Lab, 

2022) ............................................................................................................................................... 2 

Figure 3: Bayesian Approach in Essence. Adapted from (Nelidov, 2021) ..................................... 5 

Figure 4: Overview of Geologic Carbon Sequestration. Modified from (Intergovernmental Panel 

on Climate Change, 2005) .............................................................................................................. 7 

Figure 5: Different CO2 trapping mechanisms in geological storage sites .................................. 10 

Figure 6: Geomechanical risks associated with GCS in deep sedimentary rock rocks. Modified 

from (Ringrose, et al., 2013) ......................................................................................................... 12 

Figure 7: Principal Stresses. Modified from (Espinoza, 2020) ..................................................... 16 

Figure 8: Different Stress Regimes. Modified from  (Jaffar & Abdulnaby, 2018) ...................... 17 

Figure 9: Stress polygon approach for in situ stress determination in SOSAT. Modified from 

(Appriou, 2019)............................................................................................................................. 19 

Figure 10:An example of inputs and outputs of a Bayesian network (Wikipedia, 2022) ............. 23 

Figure 11: Stress as Joint Probabilities. Modified from (Burghardt, SOSAT, 2021) ................... 26 

Figure 12: Map of Arbuckle Group. Modified from (Birdie, et al., Assessing Induced Seismicity 

Risk at the Wellington Geologic Sequestration Site, 2022) ......................................................... 29 

Figure 13: Location of Disposal Wells ......................................................................................... 30 

Figure 14: Clustering algorithms. Modified from (Wikipedia, Cluster analysis, 2022) ............... 37 

Figure 15: Seismic Events in Catalogue ....................................................................................... 40 

Figure 16: Missingness map for seismic data showing attributes with more than 20% missing 

value .............................................................................................................................................. 40 

Figure 17: Number of seismic events from 1975 to 2018 ............................................................ 41 



x 

 

Figure 18: K for Clustering Earthquakes ...................................................................................... 42 

Figure 19: Cluster analysis of seismic events ............................................................................... 43 

Figure 20: Injection wells in catalogue ......................................................................................... 44 

Figure 21: Missingness map for seismic data showing attributes with more than 20% missing 

value .............................................................................................................................................. 45 

Figure 22: K for Clustering Wells ................................................................................................ 45 

Figure 23: Cluster analysis of seismic events vs injection wells .................................................. 46 

Figure 24: Probability plot of the friction coefficient ................................................................... 47 

Figure 25: Assumption that all stresses are normal and have equal probabilities ........................ 48 

Figure 26: Probability distribution of regional stress state information ....................................... 48 

Figure 27: Posterior stress distribution plot .................................................................................. 49 

Figure 28: Probability of inducing seismicity on a critically oriented fault ................................. 50 

Figure 29: μ = 0.6, max Γh = 0.7 .................................................................................................. 51 

Figure 30: μ = 0.7, max Γh = 0.7 .................................................................................................. 51 

Figure 31: μ = 0.8, max Γh = 0.7 .................................................................................................. 51 

Figure 32: μ = 0.6, max Γh = 0.8 .................................................................................................. 52 

Figure 33: μ = 0.7, max Γh = 0.8 .................................................................................................. 52 

Figure 34: μ = 0.8, max Γh = 0.8 .................................................................................................. 53 

Figure 35: μ = 0.7, max Γh = 0.8, NF = 5 ..................................................................................... 53 

Figure 36: μ = 0.6, max Γh = 0.7 .................................................................................................. 54 

Figure 37: μ = 0.7, max Γh = 0.7 .................................................................................................. 54 

Figure 38: μ = 0.8, max Γh = 0.7 .................................................................................................. 54 

Figure 39: Depth of 1335 ft .......................................................................................................... 57 

Figure 40: Depth of 7570 ft .......................................................................................................... 57 



xi 

 

Figure 41: Overburden gradient of 1.02psi/ft ............................................................................... 58 

Figure 42: Overburden gradient of 1.24psi/ft ............................................................................... 58 

Figure 43: Comparison of overburden gradient ............................................................................ 58 

Figure 44: Map of Wellington Site in Arbuckle formation. Modified from (Birdie, et al., 

Assessing Induced Seismicity Risk at the Wellington Geologic Sequestration Site, 2022) ......... 59 

Figure 45: 8000ft Long Fault in Wellington Site. Modified from (Birdie, et al., Assessing 

Induced Seismicity Risk at the Wellington Geologic Sequestration Site, 2022) .......................... 60 

Figure 46:Posterior stress distribution plot ................................................................................... 63 

Figure 47: Probability of Fault Activation with Site Specific Stress Data ................................... 63 

Figure 48: Environment Variables ................................................................................................ 78 

Figure 49: Updating JAVA_HOME and JRE_HOME ................................................................. 79 

Figure 50: Notice to Users ............................................................................................................ 80 

Figure 51: SOSAT Main Page ...................................................................................................... 81 

Figure 52: Enter Parameters in SOSAT ........................................................................................ 82 

Figure 53: Including file directory ................................................................................................ 83 

Figure 54: Running analysis ......................................................................................................... 84 

 

  



xii 

 

LIST OF TABLES 

Table 1: Estimation of Seismicity Risks ....................................................................................... 14 

Table 2: Arbuckle core results (Daneshfar, Hughes, & Civan, 2009) .......................................... 29 

Table 3: Disposal Wells Completion Data (Daneshfar, Hughes, & Civan, 2009) ........................ 31 

Table 4: Reservoir Properties........................................................................................................ 32 

Table 5: Regional Stress Info Parameters ..................................................................................... 32 

Table 6: Stress Measurement Parameters ..................................................................................... 33 

Table 7: Sensitivity Analysis Summary ........................................................................................ 55 

Table 8: Reservoir Parameters Sensitivity Summary ................................................................... 56 

Table 9: Site Reservoir properties................................................................................................. 60 

Table 10: Site Regional Stress Info Parameters ............................................................................ 61 

Table 11: Site  Stress Measurement Parameters ........................................................................... 62 

  



xiii 

 

ABSTRACT  

This work examined the application of Bayes’ theorem in evaluating the risk of induced 

seismicity associated with CO2 sequestration in the Arbuckle Group, which extends across the 

southern Mid-Continent of the US. Geological storage can effectively contribute to reducing 

emission of CO2, otherwise released into the atmosphere, achieving the climate goals committed 

in the 2021 United Nations Climate Change Conference (COP26). However, concerns about 

risks associated with CO2 injection along with economic challenges of infrastructure required to 

execute the Carbon Capture Utilization and Storage projects stand against full realization of 

remarkable potentials. The main goal is usually for CO2 to be stored over geologic time; hence, 

geomechanical risks such as the seismicity in the field or potential CO2 leakage through seals 

cannot be ignored and is considered as one of the requirements to determine success of the 

project.   

This work elaborated on the risk of potential seismic events that can impact the longevity and 

success of projects. Accurate risk estimation is key for environmental, economic, and safety 

concerns and is also one of the requirements to get class VI permits from the US Environmental 

Protection Agency. The increase of fluid injection in the Arbuckle Group and how it has 

increased seismicity risks was first demonstrated, and then utilizing the Bayesian approach, a 

statistical model where a random probability distribution is used to represent uncertainties within 

the model, including both input/output parameters to evaluate the seismicity risks was used to 

estimate these risks. Using the Arbuckle Group as a case study, established physics-based 

models of the system and the details from past observed/monitored failures was utilized to 

evaluate future risk potential for the area.  In this approach, the current probability for the state of 



xiv 

 

stress for the area under investigation was established, then the evolution in the state of stress 

was monitored. The stress state probability distribution was calculated to evaluate the probability 

of activating a critically oriented fault over a range of specified pore pressures.  

The results suggest seismicity risk is directly a function of fluid injection and that the probability 

of inducing seismicity in the formation can be estimated. Based on the modelling results, at 

initial injection pressures there is a 24% risk of introducing seismicity in the Arbuckle Group 

when a critically oriented fault exists. Based on these results, sensitivity analysis was conducted 

to determine the features that can impact the risk level. Introducing the stress state constraints 

from the Arbuckle Group in Kansas State, the risk of seismicity reduced to 12%. 

Considering the results from this work, operators can optimize the site screening and collect 

additional data to constrain inherent uncertainties in geomechanical risk evaluation and make 

informed decisions during operations. The result from this work shows that geological storage of 

CO2 with attention to seismicity risks in the Arbuckle formation can be a feasible safe strategy 

towards achieving climate goals in selected areas and there is value of information in obtaining 

stress data in these areas. 
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CHAPTER 1: Introduction 

1.1 Problem Statement 

There are many ways to ensure the world’s energy needs are met while attempting to attain the 

world’s energy sustainability goals, such as geothermal energy, hydropower, wind energy, solar 

energy, and so on. As shown in the figure below, there has generally been an increasing trend in 

the world’s energy demand and consumption. This increase has also translated to an increase in 

sustainable energy. Despite this drive to move from an energy mix predominantly dominated by 

fossil fuels to these sustainable alternatives, fossil fuels still account for the bulk of the energy 

mix. 

 

Figure 1: Energy Consumption in the World. Data source: (BP Statistical Review of World 

Energy , 2021)  
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Producing energy from fossil fuels is accompanied by carbon emissions into the atmosphere. 

Carbon emissions have been on a rapid increase in the past decade, as shown in the figure below, 

hence, there has been an interest in carbon sequestration, where the carbon released from fossil 

fuels is injected into the ground for storage over geologic time.  

 

Figure 2: Annual Emissions of CO2 from Fossil Fuels. Data source (Global Change Data Lab, 

2022)  

Geologic carbon sequestration works on the principle of capturing CO2 from the atmosphere and 

storing it, so it is being prevented from being emitted back into the atmosphere. In the 

conventional oil and gas industry, this technology has been used to improve productivity, known 

as enhanced oil recovery (EOR) (Battelle, 2018). It has however currently gained more 

popularity as the capturing and storing of carbon dioxide (CO2) can effectively decrease 

greenhouse gases emissions into the atmosphere – as CO2 is one of the most common greenhouse 
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gases – while achieving the energy and climate goals committed at the 2021 United Nations 

Climate Change Conference (COP26). Asides from EOR, captured CO2 can also be used in gas 

processing to clean natural gas and power plants also CO2 capture to reduce carbon emissions. 

Injection into the formation has been shown to cause induced seismicity risks in the formation 

for storage and surrounding formations. Different applications in the traditional hydrocarbon 

industry have historically been interested in determining the extent of seismicity risks in geologic 

formations particularly as hydrocarbon investigation ventured into deeper terrains with more 

challenges (Burghardt, Geomechanical Risk Assessment for, 2018). Since the 1990s when 

geomechanical risks in geologic carbon storage (GCS) picked up interest, research showed that 

there is substantial geomechanical changes with change in injection pressures (Rutqvist, 2012), 

(Bissell, et al., 2011), (Verdon, Kendall, White, & Angus, 2011), (Zhou, Birkholzer, Mehnert, 

Lin, & Zhang, 2010). According to (Ajayi, Gomes, & Bera, 2019), storing CO2 in geologic 

formations entails that the formation must be suitable for storage and the injected plume has to 

be monitored consistently over time to ensure that there is proper containment. 

In geologic carbon sequestration, where geomechanical risks have as much significance as 

resource-related risks, with risks historically increasing in importance with time and being of 

long-term impact, there is need to have more certainty in the risk assessments, especially as the 

main goal in carbon sequestration is typically for CO2 to be stored over geologic time. 

Geomechanical risks such as the seismicity in the field or potential CO2 leakage through seals 

can therefore not be ignored and are considered as part of the requirements for project feasibility 

determination. 
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Quantifying the risks for geologic carbon sequestration – such as the risk of seismicity with a 

high degree of certainty is not just necessary for accuracy but is also a key safety, environmental, 

and economic concern. It is also one of the requirements to get class VI permits from the US 

(United States) Environmental Protection Agency (EPA, Geologic Sequenstration of Carbon 

Dioxide. Underground Injection Control (UIC) Program Class VI Implementaion Manual for 

UIC Program Directors, 2018). Significant seismic activities and how they affect the feasibility 

of CO2 storage, as well as the reception of CO2 sequestration by the general public has recently 

been of concern. In the past, projects in the Netherlands and Germany have been required to be 

postponed on account of concerns regarding risks to the public such as possible seismic tremors, 

spillage and leakage, and effect on property (Rutqvist, 2012). Subsequently, large-scale GCS 

must be created with consideration, and geomechanics is a key part of risk examinations in 

geologic carbon sequestration sites. In this research, the increase of seismicity risks in the 

Arbuckle Group is demonstrated and then a Bayesian approach is used to evaluate these 

seismicity risks.  

Risk is a combination of the probability of an adverse event occurring and the severity of that 

event. Since the level of risk could come from events of different severity, it is important to 

quantify the uncertainties in risk evaluation. The Bayesian approach is a statistical model where 

the uncertainty (both output and input/parameters) in the model is represented as a probability 

distribution, and this can be used to quantify the seismicity risks and improve risk assessment. 

Using the Arbuckle Group as the area of study, data from established physics-based models of 

the system and the details from past observed/monitored failures as shown in figure 3, was 

utilized to evaluate future risk potential for the area. In this approach, the current probability for 



5 

 

the state of stress for the area under investigation was established, then the evolution of the state 

of stress owing to subsurface fluid injection. The state of stress probability distribution is then 

calculated to estimate the probability of activating a critically oriented fault. 

 
Figure 3: Bayesian Approach in Essence. Adapted from (Nelidov, 2021) 

1.2 Objectives 

This study has the following main objectives:  

• Demonstrate the need to estimate seismicity risk in CO2 sequestration using a data-driven 

approach 

• Quantitatively estimate induced seismicity risk when injecting into the Arbuckle Group 
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1.3 Scope of the Thesis 

The scope of this thesis is to demonstrate how fluid injection has increased seismicity risks in the 

Arbuckle Group which extends across the southern Mid-Continent of the US, and how these 

risks of induced seismicity associated with CO2 sequestration can be quantified.  

1.4 Working Hypothesis 

The working hypothesis is that using Bayes’ theorem can assist in evaluating the risk of induced 

seismicity. 

1.5 Organization of the Thesis 

This thesis is sub-divided into five chapters: 

• Chapter 1: Introduction to the concept, including the objective of the thesis, scope of the 

thesis, and organization of the thesis 

• Chapter 2: Literature review on carbon sequestration and the importance of determining 

seismicity risks 

• Chapter 3: Explains the proposed methodology for determining seismicity risks 

• Chapter 4: Explains the results obtained from the modeling and its interpretation 

• Chapter 5: The conclusion of the study 
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CHAPTER 2: Literature Review 

2.1 Geologic Carbon Sequestration 

Geologic Carbon Sequestration (GSC) is storing captured carbon in a geologic formation over 

geologic time – over thousands of years (International Energy Agency, 2016). The technology 

had initially been implemented since the 1920’s in the separation of CO2 from saleable methane 

gas in natural gas reservoirs (IEAGHG, 2022). This concept gained more popularity in the 

1970’s when captured CO2 was injected in an oil field in Texas to boost productivity from the 

formation and was called enhanced oil recovery (EOR) in the conventional oil and gas industry 

(Battelle, 2018). However, it has currently gained more popularity as it can effectively decrease 

greenhouse gases emissions. The types of geologic formation for CO2 sequestration are broadly 

classified into depleted oil and gas reservoirs, saline aquifers, unmineable coal beds and shales 

shown in figure 4 below. The kind of seismicity risks encountered in the geologic formation are 

highly dependent on the type of formation. 

 
Figure 4: Overview of Geologic Carbon Sequestration. Modified from (Intergovernmental Panel 

on Climate Change, 2005) 
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2.1.1 Storage in Aquifers 

Saline aquifers have been identified as one of the most promising geologic storage sites for the 

storage of CO2. The main goal in any CO2 sequestration project is typically for the CO2 to be 

stored for a long period of time. Hence, monitoring the CO2 plume when storing the CO2 in 

aquifers is particularly important because the injected CO2 has a propensity for migrating 

upwards since it is less dense than the water in the aquifer (Barrufet, Bacquet, & Falcone, 2010). 

Brine migration and stress changes due to pressure increase from sequestration are key 

challenges when storing CO2 in aquifers. Stress changes can result in fault reactivation, increased 

seismicity, formation or caprock fracturing, or surface uplifting (Bandilla, Celia, Birkholzer, 

Cihan, & Leister, 2015). This means that geomechanical risks such as seismicity in the field or 

potential CO2 leakage through seals must be considered. 

2.1.2 Storage in Hydrocarbon Reservoirs 

Over the years, hydrocarbon reservoirs have shown exciting potential as geologic sites for CO2 

storage, especially as they have stored hydrocarbons for prolonged periods of geologic time. This 

is important because their past exploration, exploitation, and production, knowledge of their 

architecture and properties can be leveraged for CO2 storage projects (Chidambaram, Tewari, 

Ali, Tan, & PETRONAS, 2021). Since producing hydrocarbons contributes to increasing CO2 

emissions, planning for sequestration is beneficial for climate goals. Storage in hydrocarbon 

reservoirs can be of two forms. It can be stored via EOR, which is more popular as it generates 

revenue upon implementation and has been practiced before CO2 sequestration even became a 

solution for excessive CO2 emission. The second form is storage in depleted reservoirs which is a 

relatively more recent technology. 
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2.1.3 Storage in Coal Bed 

CO2 sequestration in unmineable coal seams is of interest because of the concurrent recovery of 

methane while storing the CO2 (Gorucu, et al., 2005). This results in decreasing atmospheric CO2 

concentrations while reducing the associated costs of handling CO2 during methane production. 

Producing methane is also a source of CO2 emissions, hence planning for sequestration is also 

beneficial to the environment. To study CO2 storage capacity in coalbed reservoirs, adsorption 

and desorption experiments of coal rocks from different regions and coal ranks need to be 

conducted (Jiang, Dou, Shen, & Sun, 2015). 

2.1.4 Storage in Shales  

Storing CO2 in shales is not as popular despite them being abundant, as they typically have 

extremely low permeability, and the field implementation is not as developed as other geologic 

storage sites. (Fakher, Abdelaal, Elgahawy, & El-Tonbary, 2020) and (Fakher & Imqam, 2020) 

demonstrated the advantage of using shales to store CO2 by considering the main mechanism for 

storage to be absorption, and they showed the absorption capacities of different shale plays at 

different thermodynamic conditions.  

Each of the geologic sites has different trapping mechanisms. A trapping mechanism and the 

geologic site properties would determine the type of deformation that might be encountered and 

overall, the efficiency of the sequestration. Trapping mechanisms can be generally classified as 

physical or geochemical, as shown in the figure below. Physical trapping mechanisms can either 

be when structural or stratigraphic traps entrap mobile CO2 or when CO2 becomes trapped in 

pore spaces due to its lack of mobility at irreducible saturations (Bachu, 2008), (Benson & Cole, 
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2008). Geochemical trapping involves the dissolution of CO2 in in-situ fluids. This can be 

because of the solubility of the fluids or ions in the fluids entrapping the CO2. Aside from 

reaction with in-situ fluids, geochemical tapping can also occur when the CO2 reacts with the 

matrix of the formation. This is called mineral trapping. During CO2 injection, geomechanics is 

most related to physical trapping, hence the seismicity risk is associated with physical trapping. 

 

Figure 5: Different CO2 trapping mechanisms in geological storage sites 

2.2 Geomechanical Risk 

Risk is the probability of occurrence and magnitude of consequence of an unwanted accident. It 

is a combination of the probability of an adverse event occurring and the severity of that event. 

Under this concept a given level of risk could come from events of different severity, but the 

more severe the event the lower the probability of its occurrence would be. In geologic 

subsurface sequestration activities, achieving zero geomechanical risk is nearly impossible, 

majorly due to the limited direct access to the deep subsurface via boreholes and the inherent 

heterogeneity of geology, hence it is incredibly significant to be able to estimate the probabilities 
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of the state of stress associated with these activities as well as other geomechanical parameters 

that can contribute to the risk of sequestration. 

The Environmental Protection Agency (EPA) has some well-laid out guidelines regarding the 

risks associated with CO2 injection. The Class VI permit regulations (EPA, Subpart UU – 

Injection of Carbon Dioxide, 2021) require that an operator should submit relevant information 

on stress, and in situ fluid pressures, fractures, rock strength and ductility. They should also 

demonstrate that the proposed injection pressures and volumes into the formation would not 

initiate or propagate faults or fractures (EPA, Subpart UU – Injection of Carbon Dioxide, 2021). 

The fracture pressure should exceed the injection pressure, that is, the injection pressure should 

not be more than 90% of formation fracture pressure, such as in (Chiaramonte, Zoback, 

Friedmann, & Stamp, 2008) and (Zoback, et al., 2003). Hence, direct in situ formation testing, 

hydraulic fracture tests, borehole breakouts, and drilling induced fractures tests (DIFT) should be 

applied to evaluate the complete stress tensor hence, determining the magnitudes of the principal 

minimum horizontal stress and principal maximum horizontal stress with considerable accuracy.  

(Ringrose, et al., 2013) explained the geomechanical risks associated with geologic carbon 

sequestration as shown in figure 6 below. They highlight that changes in the formation can occur 

beyond the point of injection and even the CO2 plume. It can be observed that changes in the 

temperature and pressure in the area of injection can cause changes in the stress and mechanical 

strain patterns, and fault activation around the area of injection. Beyond this area, stress and 

strain changes can also occur and these can affect faults, resulting in seismic events. 

Based on these highlighted geomechanical risks, it is apparent that accounting for these risks has 

a significant part to play when selecting a site for carbon sequestration. At the early stages of 
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carbon sequestration projects, risk assessments is usually performed to determine if the site is fit 

for selection (Stauffer, Viswanathan, Pawar, & Guthrie, 2009); (Oldenburg, Bryant, & Nicot, 

2009). In such an analysis, the risks involved is not just limited to seismicity risks but also 

captures other events such as CO2 leakage into the formation, CO2 migration and buoyancy 

effects, contamination of groundwater table and aquifers due to carbon sequestration, 

deformation of surrounding formation and overlying seals, localized deformation around the 

point of injection, well damage due to injection CO2, migration to surface via faults or leaky 

pathways, and so on.  

 

Figure 6: Geomechanical risks associated with GCS in deep sedimentary rock rocks. Modified 

from (Ringrose, et al., 2013) 

2.3 Methods for Determining Geomechanical Risk 

There are several methods available to obtain the magnitudes and directions of geomechanical 

parameters, however when utilizing these parameters to quantify or estimate the geomechanical 

risk, the scope becomes narrower. Several research projects have been conducted to calculate the 

geomechanical risk implications of a project, and they are broadly divided into simulation 

methods and analytical methods. 
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In the empirical method, it entails obtaining a document known as a risk register, estimating the 

risks involved in executing the project, and then determining the expected impact of the risk. The 

challenge with this technique is that it requires the knowledge of the subject matter experts, and 

the success of the project is heavily dependent on their capacity. The value obtained from this 

technique is dependent on the sequestration project hence there is still need to capture 

uncertainties before the project commences (White, Foxall, C. Bachmann, & Daley, 2015). 

In the simulation method, hydro-mechanical models are applied to simulate the required pressure 

to induce seismicity risks (White, Foxall, C. Bachmann, & Daley, 2015). It is however important 

to account for the uncertainties in the model. A popular technique known as Monte Carlo 

simulation can be used to determine these uncertainties. The Monte Carlo simulation obtains the 

likelihood of a range of results using a repeated random sampling. While this simulation is easy 

to implement, it also requires that the samples are uncorrelated, random, and independent on 

each other (Burghardt & Appriou, State of Stress Uncertainty Quantification and Geomechanical 

Risk Analysis for Subsurface Engineering, 2021). The limitation with this approach is that if the 

stress state is being constrained by frictional faults, known as the stress polygon approach, it is 

defined by the principal stresses’ ratio (Burghardt & Appriou, State of Stress Uncertainty 

Quantification and Geomechanical Risk Analysis for Subsurface Engineering, 2021). This means 

that the geomechanical properties such as the principal minimum horizontal stress and the 

principal maximum horizontal stress are related to each other, hence the inherent assumption that 

the samples in the Monte Carlo simulation need to be unrelated and random no longer holds.  

(Burghardt & Appriou, State of Stress Uncertainty Quantification and Geomechanical Risk 

Analysis for Subsurface Engineering, 2021) presented a solution to this limitation by using the 
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Bayesian approach. Here, they were able to represent the samples as a stress polygon approach 

utilizing a joint probability of the principal minimum horizontal stress and the principal 

maximum horizontal stress. They officially implemented this approach in a tool known as the 

State of Stress Analysis Tool (SOSAT). It was implemented as part of the National Risk 

Assessment Partnership (NRAP), a funded project the US (United States) Department of 

Energy’s Office of Fossil Energy. 

Table 1: Estimation of Seismicity Risks 

Method Approach Limitation 

Empirical 

Analysis 

It entails estimating the risks 

involved in executing the project, 

and then determining the 

expected impact of the risk by 

SMEs. 

The value obtained relies on values 

after and during injection.  (White, 

Foxall, C. Bachmann, & Daley, 2015) 

Capturing uncertainties before the 

project commences still required. 

Monte Carlo 

Simulation 

Obtains the likelihood of a range 

of results using a repeated 

random sampling. While this 

simulation is easy to implement, 

it also requires that the samples 

are uncorrelated, random, and 

independent on each other. 

If stress state is constrained by 

frictional faults, it is defined by the 

principal stresses’ ratio (Burghardt & 

Appriou, 2021), hence, geomechanical 

properties such as σh and σH are 

related to each other. The inherent 

assumption that the samples need to 

be unrelated and random no longer 

holds.  
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State of Stress 

Analysis 

(Burghardt & Appriou, State of 

Stress Uncertainty Quantification 

and Geomechanical Risk 

Analysis for Subsurface 

Engineering, 2021) presented a 

solution to this limitation by 

using the Bayesian approach. 

Generates the stress state for a single 

point. 
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CHAPTER 3: Methodology 

3.1 State of Stress Analysis 

It has been established that the injecting CO2 in geologic formations is accompanied by an 

increase in pore pressure which would contribute to a change in the state of stress. This could 

potentially influence the geomechanical risks due to induced seismicity and migration of fluid. 

To mitigate these risks, understanding the behavior of in-situ stresses over geologic time is very 

important.  

In the formation, three orthogonal principal stresses which are perpendicular to each other are 

used to define the stresses in the formation. The vertical stress is a function of the mass density 

of the overburden of the formation and its true vertical depth. It can be a principal stress, but this 

is not always the case. Once the vertical stress has been established as a principal stress, the 

remaining stresses are the minimum horizontal stress and the maximum horizontal stress.  

 
Figure 7: Principal Stresses. Modified from (Espinoza, 2020) 

Depending on the relative magnitudes of each principal stress, there are three different types of 

fault regimes which can result: 
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1. Normal faulting (NF) is when the largest principal stress is the vertical stress, and the 

minimum principal stress is horizontal. Normal faulting regimes are common in passive 

or extensional environments (Espinoza, 2020).  

2. Strike-slip faulting (SS) faulting is a regime where both the maximum and minimum 

principal stresses are in the horizontal plane, which is common in regions with tectonic 

shearing (Espinoza, 2020). The max horizontal stress is greater than the vertical stress 

which is greater than the minimum horizontal stress. 

3. Thrust faulting (TF) is the scenario where the maximum principal stress is in the 

horizontal direction and the minimum principal stress is the vertical stress. This is 

common in tectonically compressive regions (Espinoza, 2020). 

 

Figure 8: Different Stress Regimes. Modified from (Jaffar & Abdulnaby, 2018) 

 

Recall that if the stress state is being constrained by frictional faults, it is defined by the principal 

stresses’ ratio hence the minimum horizontal stress and maximum horizontal stress are related 

and cannot be modelled as statistically independent. To account for this, the stress polygon 

approach is used to capture this relationship.  This approach has an assumption that the state of 
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stress for any pore pressure or true vertical depth has a frictional strength limitation due to the 

faults with critical orientation to stress field and already existing fractures. 

3.2 Model Formulation 

Despite the necessity of understanding the behavior of in-situ stresses over geologic time to 

mitigate these seismicity risks, it is however, not always feasible as site specific stress 

measurements are not readily available and there is significant uncertainty in the stress state. 

Incorporating the stress polygon approach and of Thiercelin and Plumb’s 1D tectonic-elastic 

approach, (Burghardt, SOSAT, 2021) developed a method for estimating the state of stress for a 

given location subsurface called the State of Stress Analysis Tool (SOSAT). 

According to (Burghardt & Appriou, State of Stress Uncertainty Quantification and 

Geomechanical Risk Analysis for Subsurface Engineering, 2021) described that for slip to occur 

in a fault, it is defined by the relation: 

𝑆1 −  𝑃𝑝

𝑆3 −  𝑃𝑝
= [(𝜇2 + 1)

1
2 +  𝜇]2                                                                                                                     (1) 

Where: 

S1 = greatest principal stress 

𝑃𝑝 = is the pore pressure 

S2 = least principal stress 

𝜇 = coefficient of friction 

For the different stress regimes, this equation assumes the Anderson’s theory of faulting in the 

limitation on the ratio of stress differences as illustrated in the figure below (Appriou, 2019). 



19 

 

According to (Zoback, et al., 2003), the stress polygon approach assumes that given a specified 

pore pressure and coefficient of friction, the stress at which shear failure occurs must be greater 

than the difference in stress magnitudes (Appriou, 2019).  

 
Figure 9: Stress polygon approach for in situ stress determination in SOSAT. Modified from 

(Appriou, 2019) 

1. If Sv is the greatest stress and Sh is the least stress, Sv > Shmax > Shmin, then the 

differential stress magnitude is affected by the normal faulting regime. 

Equation 1 becomes modified to, 

𝜎1

𝜎3
=  

𝑆𝑣 −  𝑃𝑝

𝑆ℎ𝑚𝑖𝑛 −  𝑃𝑝
≤ [(𝜇2 + 1)

1
2 +  𝜇]2                                                                                     (2) 
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2. If Shmax is the greatest stress and Shmin is the least stress, Shmax > Sv > Shmin, then 

the differential stress magnitude is affected by the strike-slip faulting regime.  

Equation 1 becomes modified to, 

𝜎1

𝜎3
=  

𝑆ℎ𝑚𝑎𝑥 −  𝑃𝑝

𝑆ℎ𝑚𝑖𝑛 −  𝑃𝑝
≤ [(𝜇2 + 1)

1
2 +  𝜇]2                                                                                   (3) 

3. If Sv is the least stress, Shmax > Shmin > Sv, then then the differential stress magnitude 

is affected by the thrust faulting regime.  

Equation 1 becomes modified to, 

𝜎1

𝜎3
=  

𝑆ℎ𝑚𝑎𝑥 − 𝑃𝑝

𝑆𝑣 −  𝑃𝑝
≤ [(𝜇2 + 1)

1
2 +  𝜇]2                                                                                 (4) 

The next portion of the model development is the 1D tectonic-elastic model proposed by 

Thiercelin and Plumb in 1994 (Appriou, 2019). The approach assumes the of the three principal 

stresses, one is vertical, occurring at a particular true vertical depth and with a specific 

overburden weight, represented by the equation below, 

𝑆𝑣 =  ∫ 𝜌(𝑧)𝑔𝑑𝑧                                               
𝑧

0

                                                                                      (5) 

The horizontal principal stresses can then be calculated using the linear poroelasticity 

equations for horizontal stresses as shown below, 

𝑆ℎ𝑚𝑖𝑛 =   
𝐸ℎ

𝐸𝑣
 

𝑣ℎℎ

1 −  𝑣𝑣ℎ
(𝑆𝑣 −  𝛼𝑣𝑃𝑝) +  

𝐸ℎ

1 −  𝑣ℎℎ
2

(𝜀𝐻 + 𝑣ℎℎ𝜀𝐻) +  𝛼ℎ𝑃𝑝                                     (6) 

 

𝑆ℎ𝑚𝑎𝑥 =   
𝐸ℎ

𝐸𝑣
 

𝑣ℎℎ

1 −  𝑣𝑣ℎ
(𝑆𝑣 −  𝛼𝑣𝑃𝑝) +  

𝐸ℎ

1 −  𝑣ℎℎ
2

(𝜀𝐻 + 𝑣ℎℎ𝜀𝐻) +  𝛼ℎ𝑃𝑝                                     (7) 
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Where:  

𝐸ℎ = horizontal Young’s modulus 

𝐸𝑣 = vertical Young’s modulus 

𝑣ℎℎ = horizontal-horizontal Poisson’s ratio 

𝑣𝑣ℎ = vertical-horizontal Poisson’s ratio 

𝛼ℎ = horizontal component of the Biot coefficient tensor 

𝛼𝑣 = vertical component of the Biot coefficient tensor 

𝜀𝐻 = maximum horizontal strain 

𝜀ℎ = minimum horizontal strain. 

Based on these highlighted equations, the stress state is dependent on the overburden weight, the 

poroelastic properties, and the horizontal strain (Appriou, 2019). Incorporating this with the 

stress polygon and Bayesian approach to account for uncertainty, SOSAT was developed. It is a 

publicly available, open-source tool created as part of the NRAP project to assist with 

performing geomechanical risk analysis using the Bayesian model and commonly available data. 

The tool presented the stress polygon approach utilizing a joint probability of the principal 

minimum horizontal stress and the principal maximum horizontal stress. The tool allows the user 

to specify the probability distributions for relevant parameters (Burghardt & Appriou, State of 

Stress Uncertainty Quantification and Geomechanical Risk Analysis for Subsurface Engineering, 

2021) in assessing seismicity risks.  

During site screening for Geologic Carbon Sequestration projects, the tool can add value by 

identifying the additional data required that would better define or constrain the uncertainties in 

the geomechanical risk quantification, enabling operators to make appraised operational 
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decisions, build stakeholder engagement and confidence, and understand and manage 

geomechanical risks better (Burghardt & Appriou, State of Stress Uncertainty Quantification and 

Geomechanical Risk Analysis for Subsurface Engineering, 2021).  

To address the challenge of the analytical method, a Bayesian method is used to account for the 

uncertainty in the input parameters and to generate the probability of activating a critically 

oriented fault over a range of input parameters. 

3.3 Bayesian Model 

The Bayesian approach is a statistical model which uses a random probability distribution to 

represent the uncertainties in the model. This includes both input/output parameters and is used 

for risk evaluation in this work. It is based on the Bayes’ theorem which is a data analysis 

approach where the information in observed data is used to update the available knowledge about 

parameters in a statistical model. In the Bayesian workflow, there are three main steps shown in 

figure 10. The first is obtaining accessible prior knowledge of the statistical model parameter. 

This is done through the prior distribution and can be from physical models, expert belief, or 

previous empirical data. The next is then determining the probability function using the newly 

observed data. The last step involves merging these two steps to create a posterior distribution, 

which shows the updated knowledge, which balances the prior knowledge with new data, and 

can then be used for inferences and making predictions.  
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Figure 10:An example of inputs and outputs of a Bayesian network 

3.3.1 Applications of Bayesian Model 

Bayesian inference performs well with sparse data, and the results of the model can be easily 

interpreted and is easily understandable. This makes it a preferred method because it is simple to 

use the current knowledge of the world with a relatively small or unclean data set to predict the 

outlook of the world. Based on this, there have been several applications of the Bayesian Model. 

In business and commerce, Bayesian Models are commonly used for pricing decisions and in 

new product development (Open Data Science, 2021). It can be used to determine prices of 

goods based on the market size and share, and wholesale and retail prices – field data. It can also 

be used to evaluate the risk of a project based on the uncertainties involved (Coyle, 2018). It can 

also be used for product ranking and customized user experience in online shopping. 

In the marketing sector, organizations use past marketing campaigns and data to improve 

existing ones and create new ones. They also use it for targeted marketing like customized emails 
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and website and graphic designs based on user engagement (Open Data Science, 2021). The 

stock markets also use Bayesian networks to forecast future stock trends based on current and 

previous trends. 

In the field of science, Bayesian deep learning can be used for weather forecasting, however, this 

is still recent research. Researchers have also used it to identify the underlying risk of diseases. 

They use it to consider group and individual risk factors, and variables that enhance disease 

spread (Open Data Science, 2021). Doctors also use this approach in diagnosing patients by 

looking at their medical history, family history, lifestyle and so on. 

In summary, Bayesian models are best applied where there is noisy and heterogeneous data. It 

can be applied where better understanding of the uncertainties is required (Coyle, 2018). 

3.3.2 Bayesian Model in Stress Determination 

In-situ stress uncertainty can be classified as either parametric uncertainty or model form 

uncertainty. Parametric uncertainty is due to the uncertainty in the model parameters while 

model form is due to the approach of modeling for describing the physics of the system that 

causes stress. Both are important and make up the total uncertainty, which is a risk analysis 

input. To minimize model form uncertainty, the parametric uncertainty should however be 

quantified. This is because determining which model best fits the data is the only way to address 

the model form uncertainty. The shortcoming with this technique is that choosing a model that 

fits the data best would benefit models with the highest parameter count, regardless of the 

physics behind the data. Also, the statistical difference between the different models is not 

considered. Using a Bayesian model addresses these limitations as each model selection and 
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associated assumptions are considered as competing hypotheses for testing. Since model 

selections with unbound parameters will have larger uncertainties, this technique clearly benefits 

simpler model selections unlike the deterministic approach, which benefits more complicated 

models.  

Oftentimes, there is a correlation between the two horizontal principal stresses. This means that 

treating them as independent properties is not representative, hence, they should statistically be 

considered a joint probability distribution (of magnitude and direction), shown in the figure 

below. The Bayesian relationship is represented in equation 1 below: 

 

 

Where: 

𝑃(𝜎𝐻 , 𝜎ℎ|𝐷) = Posterior distribution: the probability of (σH,σh) after the observation  

P(D|σH, σh) = Likelihood: how likely would the observation be for a given value of (σH,σh) 

P(σH, σh) = Prior distribution: probability of a given value (σH,σh) given everything else we 

knew before the observation 

Applying the Bayesian model, the posterior joint probability distribution of the current stress 

state is first computed. Using random samples from this posterior distribution, the probability for 

a critically oriented fault to be activated is then computed in a neighborhood of different pore 

pressures, to evaluate how the stress is expected to change with pore pressure. The next step is to 

𝑃(𝜎𝐻 , 𝜎ℎ|𝐷) =
𝑃(𝐷|𝜎𝐻 , 𝜎ℎ)𝑃(𝜎𝐻,𝜎ℎ)

𝑃(𝐷)
     

                           (1)  
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quantify the certainty of current stress state by evaluating the probability for a critically oriented 

fault to be activated is then estimated for a neighborhood of different pore pressures using the 

pre-determined state of stress probability distributions as an input. 

 
Figure 11: Stress as Joint Probabilities. Modified from (Burghardt, SOSAT, 2021) 

3.4 Data Requirements 

The main parameters required are the reservoir properties, the regional stress information, and 

the stress measurement parameters. 

3.4.1 Reservoir properties 

Reservoir Depth: this parameter is the true vertical depth (TVD) of this location. 

Pore pressure gradient: the expected pore pressure at this depth, divided by the TVD. 

Average overburden density: it is the average density of the formations overlying the depth of 

interest. Ideally this would be calculated using density logs all the way to the surface. In cases 

where density logs are available, but do not extend to the surface, there are methods for 

extrapolating it in a reasonable way. In cases where density logs are not available, then a 
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reasonable average value can be used with knowledge of the lithology of the overlying 

formations, or from nearby wells where density logs are available. 

Maximum injection pressure: this is the maximum pore pressure that will be used in the fault 

activation probability calculations. This parameter is expressed in terms of the total gauge 

pressure, not as an overpressure relative to the initial formation pressure. 

Median friction coefficient and Standard Deviation of logarithm of fault friction 

coefficient: frictional properties of specific faults and fractures existing at a given site is 

generally not feasible to collect, hence significant uncertainty remains in which frictional 

properties should be used. SOSAT uses a lognormal distribution for the friction coefficient. 

Fictional properties have been measured in the laboratory, and inferred from field data, for a 

wide variety of rock and interface types. These data show that a typical value of the friction 

coefficient is 0.6–0.7, but occasionally values much lower or greater than this have been 

measured. The default values in the SOSAT are 0.7 for the median of the friction coefficient, and 

0.15 for the standard deviation of the logarithm of the friction coefficient. 

Maximum possible friction coefficient: according to the (Burghardt, Geomechanical Risk 

Assessment for, 2018)’s knowledge friction coefficients in excess of about 1.5 have not been 

observed with any rock types. 

3.4.2 Regional Stress Info Parameters 

Normal faulting weight, Strike-slip faulting weight and Thrust faulting weight: The three 

weights are relative in the sense that their absolute magnitude does not matter, only their relative 

magnitudes.  
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K-thrust and K-SS: these are logistic function parameters that control the shape of the transition 

between the different faulting regimes. A larger value means the regime would transition 

abruptly. 

3.4.3 Stress Measurement Parameters 

Mean of the minimum principal stress measurement and Standard deviation of the 

minimum principal stress measurement: Stress measurements based on mini-frac or extended 

leak-off (XLOT) tests typically use a set of assumptions about the induced fracture geometry and 

behavior. Most commonly, it is assumed that the fracture is planar and opens under pure tensile 

opening and that leaks off into the formation follows a relatively simple functional relationship 

that is independent of pressure. A normal distribution is used to represent the mean and standard 

deviation. 

3.5 Introduction to Area of Study 

The Arbuckle Group underlays most of Oklahoma, Kansas, and adjacent states and was 

deposited during the Middle Cambrian to Late Ordovician period (Ching & Friedman, 2000).  

The lithology is mostly sandstone, limestone, and dolomite with dolomitic shale (Rottmann, 

2018). The Oklahoma Geological Survey provided access to cores from the group and when one 

core with its in-situ location located near many of the disposal wells was studied by (Daneshfar, 

Hughes, & Civan, 2009) at the University of Oklahoma to analyze its composition. About 90% 

of the core was dolomite with the remaining indicating calcite, illite, quartz, and pyrite as listed 

in Table 1 below. 
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Figure 12: Map of Arbuckle Group. Modified from (Birdie, et al., Assessing Induced Seismicity 

Risk at the Wellington Geologic Sequestration Site, 2022) 

 

Table 2: Arbuckle core results (Daneshfar, Hughes, & Civan, 2009) 

 

Considering existing disposal wells for this analysis, the data was used to simulate CO2 

sequestration into the Arbuckle Group. Most of these wells were close to power plants, providing 

a room to minimize transportation costs during sequestration. The location of these wells is 

shown below and the summary data for these wells are shown in Table 2 below. The depth of 

completion for the wells was in the range of 1335 ft – 7570 ft. Permeability and average porosity 

in the range of 10 – 60 millidarcy, and between 7% – 18% respectively. The average property for 
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CO2 sequestration across the Arbuckle Group is then presented in Table 3 below and this was 

used as the base case for modelling. 

 
Figure 13: Location of Disposal Wells 
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Table 3: Disposal Wells Completion Data (Daneshfar, Hughes, & Civan, 2009)
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Table 4: Reservoir Properties 

Parameter Values Method 

Reservoir Depth 5034 ft Average depth for all disposal wells 

Pore pressure gradient 0.178psi/ft Average pressure gradient for all disposal 

wells 

Average overburden density 2.58g/cm3 From density log of Arbuckle formation, 

compared with knowledge of lithology of 

area 

Maximum injection pressure 2718 psi Average fracture gradient in Arbuckle 

formation = 0.6 psi/ft from step rate test by 

(Birdie, Holubnyak, Watney, & 

Hollenbach, Methodology for Constructing 

Reservoir Maximum Pore Pressure Maps 

to Meet Class VI Constraints and Prevent 

Earthquakes, 2022) 

According UIC Class IV Requirements, 

the injection pressure should be less than 

90% of formation fracture gradient 

0.6 * 0.9 * Average Depth 

Median friction coefficient  0.7 default values in the SOSAT  

Standard Deviation of 

logarithm of fault friction 

coefficient 

0.15 default values in the SOSAT  

Maximum possible friction 

coefficient 

1.0 Obtained from Literature by (Schulz, 

Müller, Röckel, & Schilling, 2020). 

 

Table 5: Regional Stress Info Parameters 

Parameter Values Method 



33 

 

Normal faulting weight 3 Stress orientations in the Arbuckle Group 

show SS in S-Oklahoma, and SS and NF in 

N-Oklahoma according to (Schulz, Müller, 

Röckel, & Schilling, 2020). Based on 

these, weighted values were assigned 

referenced from (Appriou, 2019). 

Strike-slip faulting weight  15 Stress orientations in the Arbuckle Group 

show SS in S-Oklahoma, and SS and NF in 

N-Oklahoma according to (Schulz, Müller, 

Röckel, & Schilling, 2020). Based on 

these, weighted values were assigned 

referenced from (Appriou, 2019). 

Thrust faulting weight 0.1 Stress orientations in the Arbuckle Group 

show SS in S-Oklahoma, and SS and NF in 

N-Oklahoma according to (Schulz, Müller, 

Röckel, & Schilling, 2020). Based on 

these, weighted values were assigned 

referenced from (Appriou, 2019). 

K-thrust 100 default values in the SOSAT  

K-SS 100 default values in the SOSAT  

 

Table 6: Stress Measurement Parameters 

Parameter Values Method 

Mean of the minimum 

principal stress measurement  

2870 psi Injection pressures from mini frac tests of 

15 wells were analyzed by (Schulz, Müller, 

Röckel, & Schilling, 2020). The average 

Sh gradient was 0.5525938 psi/ft. 

Standard deviation of 

minimum principal stress 

measurement 

220 psi default values in the SOSAT  

Minimum value of stress path 

coefficient 

0.4 default values in the SOSAT  
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Minimum value of stress path 

coefficient 

0.7 default values in the SOSAT  

 

3.6 Seismicity in Area of Study 

Areas in north central Oklahoma have experienced secondary seismicity due to injection since 

around 2009. Currently in the Arbuckle Group, induced seismicity is caused by two major 

reasons: wastewater disposal and hydraulic fracturing. 

3.6.1 Wastewater Disposal  

Due to the prolific nature of the oil and gas industry in Oklahoma, there is a multitude of wells 

and with this, a similar trend with produced water. This produced water, also called wastewater, 

exists underground in the rock formations, and accompanies hydrocarbon production to surface. 

Under the Underground Injection Control (UIC) program, which is monitored by the United 

States Environmental Protection Agency (EPA), Class II injection wells are used for water 

disposal of hydraulic fracturing fluids and produced water disposal. These account for under 

10% by volume but are still a major cause of earthquakes in the Arbuckle Group because there is 

direct pressurization of the fluid in already existing faults and increase in stress in surrounding 

formations (Oklahoma Corporation Comission, 2021).  

Seismicity may result from wastewater disposal into geologic formations. These activities have 

been observed to induce earthquakes at distances greater than10 km from the disposal site as a 

result of direct increase in pore (Rubinstein & Mahani, 2015). More recent research has shown 

that other factors such as poro-elastic stress transfer, can even result in magnitudes reaching up 
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to 30 km from the site of disposal or injection Goebel, 2018). Different studies have been 

conducted to determine if there is a relationship between Class II disposal wells and seismicity 

(Weingarten, Ge, Godt, Bekins, & Rubinstein, 2015); (Skoumal, Ries, Brudzinski, Barbour, & 

Currie, 2018); (Kolawole, et al., 2019). According to these studies, there are two major sources 

of fault re-activation, the increase in direct pore pressure in fault zones (McGarr & Barbour, 

2017) and the pore-elastic stress changes due to proximity of faults. The Arbuckle Group lies 

directly above a highly fractured crystalline basement rock. According to recent research, 

increase in pore pressure from the point of injection and regional stress state changes across 

central and northern Oklahoma are the major source of induced seismicity in these areas (Walsh 

& Zoback, 2015); (Snee & Zoback, 2020).  

3.6.2 Hydraulic Fracturing  

Hydraulic fracturing is the process of injecting fluid into the formation, at pressures higher than 

in fracture pressure of the formation, in order to fracture the rock and allow flow of 

hydrocarbons. This has been used to improve productivity in Oklahoma for more than sixty 

years. Hydraulic fracturing also results in direct pressurization of the fluid in already existing 

fractures and faults and poroelastic stress transfer. 

Earthquakes caused by hydraulic fracturing are usually local and often less than about 16400 ft 

from the point of injection. It is also less common than the regional stress changes from water 

injection in Class II UIC wells (Oklahoma Corporation Comission, 2021). This is because less 

than 10% of Oklahoma's cumulative disposed fluids are from HF on average (Murray, 2013). 

Recent studies show that about 7% of hydraulic fracturing wells that were completed from late 

2016 to middle of 2019 ensued earthquakes with magnitude greater than 2 (M2.0+) (Shemeta J. 
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E., Brooks, & Lord, 2019). The seismicity that is induced by hydraulic fracturing is very variable 

and highly depends on the geology of the subsurface, hence, pre-existing fracture systems and 

faults are a major factor.  

3.6.3 Data  

Previous studies have some to a consensus that wastewater injection into the Arbuckle Group, 

one of the deepest formations in Oklahoma state, translates to a high probability of induced 

seismicity with large magnitudes (Walsh & Zoback, 2015).  Before 2009, the magnitude of 

earthquakes in the Arbuckle Group were less than M3.0+ earthquake yearly. In about 2015, the 

state of Oklahoma reached a peak where there were more than 900 earthquakes with magnitudes 

greater than M3.0+. After this, seismicity in Oklahoma has continued to decline mostly due to 

the intentional efforts implemented by the Oklahoma Corporation Commission (OCC) and 

potential stakeholders year after year such installing more seismicity monitors. Recent data has 

shown that in December 2020 Oklahoma recorded 37 magnitudes M3.0+ earthquakes (Oklahoma 

Corporation Comission, 2021).  

Injection CO2, although a lighter fluid than produced water, it is still capable of introducing this 

behavior, hence, it is important to understand the existing seismicity in the area of study and then 

predict the probability of seismicity during CO2 sequestration. 

3.6.4 Cluster Analysis 

Cluster analysis was used to demonstrate the seismicity in the area using two datasets. The first 

dataset included the records of Oklahoma’s active saltwater injection wells as of September 2017 

which was gathered from Oklahoma Corporate Commission. The second dataset was a list of all 
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the earthquakes in the Arbuckle Group since 1977 and was gathered from the United States 

Geological Survey. Clustering is an approach where a set of parameters of a particular attribute 

are grouped based on the similarity the object has to each other as opposed to the similarity with 

other parameters in a different cluster. Aside from being an important part of exploratory data 

analysis and statistical data analysis, it is also an approach to unsupervised machine learning. It 

has been used in many applications such as bioinformatics, data compression, pattern 

recognition, information retrieval, and computer graphics (Wikipedia, Cluster analysis, 2022). 

There are different clustering techniques, but for this work the K-Means algorithm which is a 

partitional clustering technique. K-Means partitions the data into k distinct clusters where each 

data point in the data belongs to the cluster that has the cluster centroid or closest mean to it 

(Wikipedia, Cluster analysis, 2022). 

 
Figure 14: Clustering algorithms. Modified from (Wikipedia, Cluster analysis, 2022) 
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K-Means is a very common unsupervised clustering algorithm because it is very intuitive and 

simple to use. It is an unsupervised clustering algorithm because the number of clusters present 

in the data, similar data points or dissimilar data points are not known. Based on the algorithm, 

the clusters containing points similar to other points are grouped within the same cluster and 

dissimilar datapoints grouped in other clusters. 
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CHAPTER 4: Results and Discussion 

4.1 Introduction 

The result in this chapter first shows the trend in the seismicity of the area. A Bayesian technique 

is then used to show a probability model of activating a critically oriented fault in the Arbuckle 

Group based on available data. 

4.2 Seismicity in Area 

The plot below shows the seismic events around the Arbuckle Group. The seismic events were 

obtained from the US Geological Survey. They were distributed around the Arbuckle group and 

had attributes like the location, longitude and latitude of the event, the depth of seismic event, the 

magnitude, and the source. From the plot most of the events are below M4.0 in magnitude. The 

bulk of the seismicity events are also concentrated around central Oklahoma. To further utilize 

the data appropriately, several data cleaning techniques were employed. To handle the missing 

data in the dataset, all the rows with more than 20% missing values as shown in missingness map 

below were all dropped. The remaining missing values for the attributes like the horizontal error 

and depth error were computed using the average of the other properties. This did not skew the 

dataset as the location which was the attribute clustered did not any have missing values. 
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Figure 15: Seismic Events in Catalogue 

 

 
Figure 16: Missingness map for seismic data showing attributes with more than 20% missing 

value 
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After performing the data cleaning, the data was then explored to understand the seismicity in the 

area. The figure below shows the number of seismic events from 1975 to date. From the plot, it 

is observed that the seismicity increased significantly after 2008. Higher magnitudes were also 

attained after this time. 

 
Figure 17: Number of seismic events from 1975 to 2018 

After this, the earthquakes were then grouped into clusters based on their location, and the goal 

was to see if these clusters matched the clusters of injection wells around the Arbuckle group. 

The first step was to determine the number of optimal clusters (k) for clustering the earthquakes. 

Clusters should be between 10 and 20 based on the different locations of the earthquakes. 
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Figure 18: K for Clustering Earthquakes 

The clusters of earthquakes identified from the data are shown in the figure below. These clusters 

would then be compared to the clusters obtained in the injection data to check for a relationship. 
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Figure 19: Cluster analysis of seismic events 

Injection Data 

The injection wells were obtained from the Oklahoma Corporation Commission. They were 

distributed around Oklahoma and contained attributes such as the well location and 

identification, the injection pressures and volumes, and so on. 
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Figure 20: Injection wells in catalogue 

The first step in the injection data is to clean the data, by checking for missing data, imputing it, 

as well as handling possible outliers. Here, unknown attributes highlighted below were dropped. 

The remaining missing values for the attributes like the volume in bbls and pressure in psi were 

computed using the average of the other properties. This did not skew the dataset as the location 

which was the attribute clustered did not any have missing values. 
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Figure 21: Missingness map for seismic data showing attributes with more than 20% missing 

value 

After this, the injection wells were then grouped in clusters, and the goal was to see if these 

clusters matched the clusters of seismicity obtained above. The first step was to determine the 

number of optimal clusters (k) for clustering the wells. Clusters should be between 10 and 20 

based on the different locations of the injection wells. 

 

Figure 22: K for Clustering Wells 
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Comparing the clusters for the seismicity events to the cluster of the injection wells, there is a 

direct relationship as shown in the figure below. The cluster analysis shows there is an overlap 

between areas with injection wells and seismic events. This emphasizes that injecting fluid into 

the Arbuckle Group has a causation on the seismicity events. To achieve optimal carbon 

sequestration, which is the injection of CO2 into the formation, there is need to determine the 

probability of inducing seismicity by activating a critically oriented fault. 

 
Figure 23: Cluster analysis of seismic events vs injection wells 
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4.3 Probability Model 

After implementing the Bayesian model with the aid of the SOSAT tool, the figure below shows 

the probability plot of the friction coefficient, which serves as an input to calculating the risk of 

failure. For the model a lognormal distribution with a mean of 0.7 and standard deviation of 0.15 

was chosen for the probability plot of the friction coefficient, which serves as an input to 

calculating the risk of failure. For each additional scenario run in the sensitivity analysis, the 

shape of this plot would change. The sensitivity analysis is done to identify the different features 

that have multiple predictor dependence on the geomechanical risk. 

 
Figure 24: Probability plot of the friction coefficient 

The analysis then begins with the posterior assumption that all the states of stress where the 

maximum horizontal stress is greater than the minimum horizontal stress (𝜎H > 𝜎ℎ), with both of 

them being compressive has an equal probability, as distribution shown in the figure below.  
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Figure 25: Assumption that all stresses are normal and have equal probabilities 

The probability distribution of regional stress state information reflects that the region is mostly 

Strike Slip and Normal Faulting. 

 
Figure 26: Probability distribution of regional stress state information 

The frictional constraint which asserts that the stress cannot be larger than the frictional strength 

of pervasive faults and fractures is shown below. The plot shows that the minimum horizontal 

stress is better constrained than the maximum horizontal stress, there is considerable uncertainty 
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in the maximum horizontal stress, hence the assumption that both stress state holds equal 

probability no longer holds. The degree of uncertainty in the maximum horizontal stress ranges 

from 39MPa to 67 MPa. The shape of this plot can also change for each additional scenario run 

in the sensitivity analysis, based on the different conditions defined. 

 

 
Figure 27: Posterior stress distribution plot 

The next plot shows the risk or probability of activating a critically oriented fault or the shear 

failure probability for the given reservoir base case parameters. The results show that there is a 

24% probability that it is critically stressed at initial pressures, and this increases up to 63% 

when the defined maximum injection pressure is attained. 
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Figure 28: Probability of inducing seismicity on a critically oriented fault 

4.4 Sensitivity Analysis 

Sensitivity analysis was carried out on the parameters set as default in SOSAT to understand 

how they affected the risk of seismicity. The friction coefficient (μ) and maximum stress path 

coefficient (max Γh) were sensitized on. 

Strike-slip and normal faulting regime 

A strike-slip and normal faulting regime was first considered in figures 29 to 35. A lower friction 

coefficient resulted in a lower uncertainty range in maximum horizontal stresses, but higher risk 

of seismicity risk as shown in figures 29 to 31. Decreasing the coefficient of friction increases 

the probability of inducing shear failure.  
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  Figure 29: μ = 0.6, max Γh = 0.7 

 

 
Figure 30: μ = 0.7, max Γh = 0.7 

 
Figure 31: μ = 0.8, max Γh = 0.7 
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Similarly, the range of values determined for the stress path coefficient (max Γh) has a 

significant effect on the probability of fault activation – comparing figures 29 and 32, 30 and 33, 

and 31 and 34 – but not on the uncertainties observed in the maximum horizontal stresses. 

 
Figure 32: μ = 0.6, max Γh = 0.8 

 
Figure 33: μ = 0.7, max Γh = 0.8 
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Figure 34: μ = 0.8, max Γh = 0.8 

 

 
Figure 35: μ = 0.7, max Γh = 0.8, NF = 5 

Pure strike-slip regime 

The next regime considered was a pure strike-slip regime in figures 36 to 38. The results show 

that the chosen regional stress state has an effect on the risk of seismicity. Seismicity risk was 

higher in the pure strike-slip regime in comparison to the strike-slip faulting with normal faulting 

regime.  
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Figure 36: μ = 0.6, max Γh = 0.7 

 

 
Figure 37: μ = 0.7, max Γh = 0.7 

 
Figure 38: μ = 0.8, max Γh = 0.7 
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Comparing the performance of the different models, the model closest to reality from data 

obtained from (Birdie, et al., Assessing Induced Seismicity Risk at the Wellington Geologic 

Sequestration Site, 2022) was chosen as highlighted in the table below for further analysis. 

Table 7: Sensitivity Analysis Summary 

Case 

name 

Definition NF SS TF μ σ minΓh maxΓh prob 

SNA Strike Slip + Normal 

Faulting 

3 10 0.1 0.7 0.15 0.4 0.7 0.24 

SNB Strike Slip + Normal 

Faulting 

3 10 0.1 0.6 0.15 0.4 0.7 0.26 

SNC Strike Slip + Normal 

Faulting 

3 10 0.1 0.8 0.15 0.4 0.7 0.2 

SND Strike Slip + Normal 

Faulting 

3 10 0.1 0.7 0.15 0.4 0.8 0.23 

SNE Strike Slip + Normal 

Faulting 

3 10 0.1 0.6 0.15 0.4 0.8 0.26 

SNF Strike Slip + Normal 

Faulting 

3 10 0.1 0.8 0.15 0.4 0.8 0.21 

SNG Strike Slip + Normal 

Faulting 

5 10 0.1 0.8 0.15 0.4 0.8 0.18 

SSA Strike Slip 0.1 15 0.1 0.7 0.15 0.4 0.7 0.28 

SSB Strike Slip 0.1 15 0.1 0.6 0.15 0.4 0.7 0.35 

SSC Strike Slip 0.1 15 0.1 0.8 0.15 0.4 0.7 0.245 

SSD Strike Slip 0.1 15 0.1 0.7 0.15 0.4 0.8 0.28 

SSE Strike Slip 0.1 15 0.1 0.6 0.15 0.4 0.8 0.34 

SSF Strike Slip 0.1 15 0.1 0.8 0.15 0.4 0.8 0.24 

SSG Strike Slip 5 15 0.1 0.8 0.15 0.4 0.8 0.2 

 

Different reservoir properties shown in table 8 below, were also applied to see how they affect 

the seismicity risk. 
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Table 8: Reservoir Parameters Sensitivity Summary 

Depth (ft) Overburden 

gradient (g/cm3) 

Max Injection 

Pressure (psi) 

Pore pressure 

gradient (psi/ft) 

Mean of Min 

Principal Stress 

(psi) 

5034 2.58 2718.36 0.17586 2870 

1358 2.58 2718.36 0.366819 750 

9078 2.58 2718.36 0.242344 5016 

5034 2.37 2718.36 0.17586 2870 

5034 2.87 2718.36 0.17586 2870 

The first parameter sensitized on was the depth. A range of depths from the disposal wells across 

the Arbuckle formation shown in table 3 was sensitized to evaluate how variation in depth 

affected seismicity risks. The bottom range chosen was 1358ft shown in figure 39 and the top 

range was 9078ft shown in figure 40. From the results in the plots, at deeper depth there is a 

smaller incremental change in risk with increase in depth. Observing the data distribution in table 

3, most wells are not very deep and are around the average case of the base case. This suggests 

depth should be a consideration when designing GCS projects in the Arbuckle formation so as to 

minimize changes in induced risk with pressure. 
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Figure 39: Depth of 1335 ft 

 
Figure 40: Depth of 7570 ft 

The final analysis for this work is conducted on the overburden gradient. From the plots below, 

an increase in the overburden gradient slightly reduced the seismicity risks in comparison to the 

other reservoir properties. Overburden gradient of 1.02psi/ft and 1.24psi/ft were considered in 

this analysis. 
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Figure 41: Overburden gradient of 1.02psi/ft 

 
Figure 42: Overburden gradient of 1.24psi/ft 

 

Figure 43: Comparison of overburden gradient 
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Based on these results, it is observed that the minimum injection pressure had a multiple 

predictor dependence on the risk level observed in the formation.  

4.5 Site Specific Stress Data 

Site specific stress data obtained from the Arbuckle Group in Kansas state was tested on the 

methodology. The data was taken from a pilot project at the Wellington site in south-central 

Kansas sponsored by the Department of Energy (DOE). The Data was obtained from (Birdie, et 

al., Assessing Induced Seismicity Risk at the Wellington Geologic Sequestration Site, 2022).  

 

Figure 44: Map of Wellington Site in the Arbuckle Group. Modified from (Birdie, et al., 

Assessing Induced Seismicity Risk at the Wellington Geologic Sequestration Site, 2022) 

Kansas was historically considered a seismically benign region, however, there has been an 

increasing number of earthquakes since 2014. This is due to an increase in the quantity of water 

disposal in the Arbuckle aquifer as a result of the oil and gas operations in the area. To 

commence CO2 injection at the Wellington site, the US EPA, as part of the permitting process, 
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required an analysis to show that the injection of CO2 into the formation would not induce 

seismicity. This became particularly eminent when an 8,00ft long fault was found near the 

injection site (Birdie, et al., Assessing Induced Seismicity Risk at the Wellington Geologic 

Sequestration Site, 2022).  

 

 
Figure 45: 8000ft Long Fault in Wellington Site. Modified from (Birdie, et al., Assessing Induced 

Seismicity Risk at the Wellington Geologic Sequestration Site, 2022) 

 

The data for the model is shown in the tables below. 

Table 9: Site Reservoir properties 

Parameter Values Method 

Reservoir Depth  4980ft Injection depth 

Pore pressure gradient 0.42psi/ft Measured pressure gradient at KGS 1-

32 and KGS 1-28 
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Average overburden 

density 

1.12psi/ft From density log of Arbuckle 

formation, compared with knowledge 

of lithology of area 

Maximum injection 

pressure 

2690 psi Average fracture gradient in Arbuckle 

formation = 0.6 psi/ft 

According UIC Class IV Requirements, 

the injection pressure should be less 

than 90% of formation gradient 

0.6 * 0.9 * Average Depth 

Median friction coefficient  0.8 derived from 3-D stress 

analysis tress envelope 

Standard Deviation of 

logarithm of fault friction 

coefficient 

0.15 default values in the SOSAT  

Maximum possible friction 

coefficient 

1.0 Obtained from Literature by Schulz et 

al. 

 

Table 10: Site Regional Stress Info Parameters 

Parameter Values Method 

Normal faulting weight 0.1 Stress orientations from regional fault 

in Kansas and Drilling induced 

fractures from well logs at the 

Wellington site show SS orientation 

(Birdie, et al., Assessing Induced 

Seismicity Risk at the Wellington 

Geologic Sequestration Site, 2022). 

Based on these weighted values were 

assigned. 

Strike-slip faulting weight  15 Wellington site show SS orientation. 

Based on these weighted values were 

assigned. (Birdie, et al., Assessing 

Induced Seismicity Risk at the 

Wellington Geologic Sequestration 

Site, 2022). Based on these weighted 

values were assigned. 
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Thrust faulting weight 0.1 Wellington site show SS orientation. 

Based on these weighted values were 

assigned. (Birdie, et al., Assessing 

Induced Seismicity Risk at the 

Wellington Geologic Sequestration 

Site, 2022). Based on these weighted 

values were assigned. 

K-thrust 100 default values in the SOSAT  

K-SS 100 default values in the SOSAT  

 

Table 11: Site Stress Measurement Parameters 

Parameter Values Method 

Mean of the minimum 

principal stress 

measurement  

2887 psi A pulse test, which is a variant of a leak-

off test was conducted (Birdie, et al., 

Assessing Induced Seismicity Risk at 

the Wellington Geologic Sequestration 

Site, 2022) 

Standard deviation of 

minimum principal stress 

measurement 

220 psi default values in the SOSAT  

Minimum value of stress 

path coefficient 

0.4 default values in the SOSAT  

Minimum value of stress 

path coefficient 

0.7 default values in the SOSAT  

Introducing these stress state constraints from the Arbuckle formation in Kansas State, the risk of 

seismicity reduced to 12% as shown in figure 47 below. The uncertainty in the maximum 
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horizontal stress ranges from 40 – 48 psi shown in figure 46, indicating that the stress state is 

better constrained. This shows that the geological storage of CO2 at reduced rates in the Arbuckle 

formation can be a feasible safe strategy towards achieving climate goals in selected areas and 

there is value of information in obtaining stress data in these areas.  

 
Figure 46:Posterior stress distribution plot 

 

Figure 47: Probability of Fault Activation with Site Specific Stress Data 
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Future work 

Future area of this research entails obtaining site-specific stress data from Oklahoma to reduce 

uncertainties in maximum horizontal stresses.  
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CHAPTER 5: Conclusion 

The data analysis shows that there is a relationship between the injection of fluid into Arbuckle 

Group and seismicity, hence, to commence sequestration in the formation, there is need to 

understand the probability of introducing seismicity in the formation. 

The results suggest that we can estimate the probability of inducing seismicity in the formation. 

Based on our modelling results, at initial injection pressures there is risk of introducing 

seismicity in the Arbuckle Group, due to the stress state being poorly constrained. Sensitivity 

analysis determined that the stress regimes, coefficient of friction and stress path had an effect on 

the shear failure. In most cases analyzed the risk of induced seismicity by injection is still greater 

than 20% due to the stress state being poorly constrained. Introducing site specific stress from 

the Arbuckle formation in Kansas State, introduces defined stress state constraints to the model 

hence reducing risk of seismicity to 12%. Prospect operators and industry stakeholders in the 

region can enhance their site screening criteria and collect additional data to constrain inherent 

uncertainties in evaluation of geomechanical risks. Using commonly available data, the Bayesian 

models which are data-driven can be used for geomechanical risk analysis. This provides value 

when screening sites and characterizing for GCS, especially when stress data is available. It 

enables operators to minimize seismicity risks and enables optimized decision-making during 

operations. The result from this work shows that geological storage of with attention to 

seismicity risks the Arbuckle Group can be a feasible safe strategy towards achieving climate 

goals in selected areas and there is value of information in obtaining stress data in these areas. 
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NOMENCLEATURE 

𝜎h   principal minimum horizontal stress 

𝜎𝐻   principal maximum horizontal stress  

𝜎v    principal vertical stress 

μ  friction coefficient 

Γh  stress path coefficient 

CO2   Carbon dioxide  

COP26  United Nations Climate Change Conference 

CUSP  Carbon, Utilization, Storage Partnership 

EOR   Enhanced Oil Recovery 

GCS   Geological Carbon Storage 

MPa   Megapascals  

Psi  Pound square inch 

Shmin   principal minimum horizontal stress 

S𝐻max  principal maximum horizontal stress  

SOSAT  State of Stress Analysis Tool 

Sv    principal vertical stress 

 

  

  



77 

 

APPENDIX  

SOSAT 

Hardware requirements 

• 64-bits Windows Operating System 

• Space is not a major constraint 

Software requirements 

• Java Runtime Environment (JRE) – 8 or a later version 

• Steps to download included below 

Installation 

• SOSAT version 1.0 is available at the National Energy Technology Laboratory (NETL) 

Energy Data Exchange (EDX) platform for download  

• First step is to sign into EDX https://edx.netl.doe.gov/ 

• You might need access from NETL to be able to sign in 

• After signing in, navigate to the zipped folder SOSAT folder at 

https://edx.netl.doe.gov/dataset/sosat-state-of-stress-analysis-tool-v2019-07-1-0 

• Then download the zipped folder named nrap-sosat-v2019.07-1.0.zip to the hard drive of 

your  

• Extract the files from the folder in preparation for installation 

https://edx.netl.doe.gov/
https://edx.netl.doe.gov/dataset/sosat-state-of-stress-analysis-tool-v2019-07-1-0
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• Download Java Runtime Environment (JRE) 8 or a later version. If you have JRE already 

on your computer skip the next couple of steps. 

• Navigate to https://www.oracle.com/java/technologies/downloads/  

• Scroll down to Java SE Development Kit 

• Select the operating system, SOSAT has been designed to run on Windows 

• SOSAT requires a 64-bit environment so select the x64 Installer 

• If you had java before, ensure your JAVA-HOME is set to the version 8 runtime 

environment 

• To do this, in your PC search bar, search for environment variables 

 

Figure 48: Environment Variables 

https://www.oracle.com/java/technologies/downloads/
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• Select Environment Variables as highlighted above 

• Ensure the JAVA_HOME and JRE_HOME are set to the java 8 runtime environment as 

shown below. 

 

Figure 49: Updating JAVA_HOME and JRE_HOME 

• After downloading and installing Java, go back to your SOSAT downloaded folder 

• Click on the application.bat file in the folder and run 

• If the JAVA_HOME and JRE_HOME are not set to the right version, SOSAT would run 

into an error and the main page would not appear. Circle back to previous steps and 

ensure these are set up well 

• After installation, you would receive a Notice to User, acknowledge this and you would 

be redirected to the SOSAT Main Page shown below 
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Figure 50: Notice to Users 
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Figure 51: SOSAT Main Page 

• The next step is to click on enter parameters in the tab shown below to enter the required 

parameters as defined in chapter 2 of this report 
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Figure 52: Enter Parameters in SOSAT 

• Enter the reservoir properties, regional stress information, stress measurement 

information and the calculate and plot 

• In the calculation and plot tab, don’t forget to specify the directory where the plots would 

be stored as shown below. 
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Figure 53: Including file directory 

• After clicking save, you would be directed to the Min Page where you click generate 

and this would launch the analysis routine as shown below 
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Figure 54: Running analysis 

 

 

 

 

 

 

 


