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Abstract

Ground Based Augmentation Systems (GBAS) are used to augment Global Posi-

tioning Systems (GPS) signals to make the position solutions significantly more

accurate and precise. The systems have been studied and demonstrated before,

however, they would typically use dedicated GPS receivers. These receivers are

typically expensive and lack the ability to be customized for different situations.

This thesis attempts to use a software-defined radio (SDR) using a software called

Global Navigation Satellite Systems-Software Defined Receiver (GNSS-SDR) to

replace these dedicated GPS receivers. Doing this requires multiple GNSS-SDR

receivers to output the data in real-time to a central GBAS computer for real-

time computations. This is done using the User Datagram Protocol (UDP) output

functionality of the GNSS-SDR software. The output then needs to be received on

the GBAS computer and decoded. A novel method for decoding the Google Pro-

tocol Buffer encoded UDP messages is used for efficient LabVIEW decoding. The

outputs are then tested using an existing Closed-Loop Ground Based Augmenta-

tion System (CL-GBAS) program. An analysis of the raw pseudorange values of

two different SDRs and certified GPS receivers is then performed. The research

performed in thesis will ideally be used as a stepping stone for more thorough

analysis of different SDRs and the GNSS-SDR program in an attempt to make

SDRs an effective receiver for GBAS purposes.
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Chapter 1

Introduction

1.1 Motivations of the Thesis

Most modern GPS receivers only output positional data like the latitude, longi-

tude, and altitude, which is sufficient for the majority of the users. However, high

precision applications, like in the Local Area Augmentation System (LAAS) used

for landing planes, the raw data from the satellite is required so that the accuracy

can be improved to a level beyond what a single receiver can achieve. Modern

receivers that can output this raw data are either very expensive or not available

for public use. Thus, using low-cost Software-Defined-Radios (SDR), such as the

Great Scott Gadgets’ HackRF One equipped with the NooElec Tiny TCXO is

explored. This software-defined radio is controlled by a computer running open-

source software called Global Navigation Satellite System-Software Defined Re-

ceiver, or simply, GNSS-SDR [5]. Since the software is open source, it can be

studied, fixed, and customized to fit the exact needs of the user. In this case, the

software does indeed output the raw data required for the LAAS algorithms.

This thesis presents a comparison of the HackRF One results with the results

of a GPS receiver that is certified to work with LAAS. The HackRF One (and
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other SDRs) results will be compared to the same receivers previously used for the

OU LAAS, the Thales GG12. When comparing the receivers, the raw pseudorange

data and the positional data will be compared side-by-side. The raw data will also

be processed through the algorithms previously developed for the OU CL-GBAS

system as described in [4], [6], and [7].

This thesis explores the feasibility of using a low-cost Software-Defined Radio

(SDR) as an alternative for expensive and certified GPS receivers for use in local

area augmentation systems (LAAS). In particular, this thesis aims to replace the

old receivers used in the CL-GBAS system at the University of Oklahoma (OU),

with the use of SDR technologies.

1.2 Organization of the Thesis

Chapter 2 covers the background of GPS navigation and introduction of GNSS

augmentation, such as GBAS/LAAS.

Chapter 3 gives a background into SDRs, GNSS-SDR, and a description of the

testing setup. This chapter describes how the GNSS-SDR software communicates

and interfaces with the SDR and how to output that data in real time. It describes

how the data is received, decoded, and sent to the main programming work station.

In chapter 4, an analysis of the pseudorange data of the HackRF One alongside

a certified GPS receiver is shown. In this chapter, the debugging processes and

attempts to fix issues are discussed in detail.

Chapter 5 contains the final summary of the thesis research and also discusses

the potential work for future research and improvements.
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Chapter 2

Theory and System Architecture

2.1 Basic Principles of GNSS Navigation

GPS uses the concept of satellite ranging. This is a method of determining the

position of a receiver by measuring the distance from the receiver to multiple

satellites. The distance from the satellite to the receiver is measured indirectly by

measuring the time it takes for the GPS satellite message to send to the receiver.

This difference in time can be multiplied by the speed of light, c (299,792,458 m/s),

to give the distance in meters. Since this measures the distance to the satellite

but does not account for all the known errors, it is called the pseudorange.

The pseudorange, a value calculated by the receiver, is susceptible to many

errors. These errors include multipath, where signals reflect off of buildings and

other objects, solar storms, where the waves get distorted when the Sun emits

more charged particles, and even imprecise internal clocks on the receivers. These

errors can lead to significantly incorrect position solutions. Thus, it is important

that these errors are minimized and the pseudorange is corrected.

When the receiver calculates the pseudorange to a particular satellite, it can

map out a sphere around that particular satellite whose radius is equal to the
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pseudorange. This is because the direction of the signal cannot be determined,

but the distance (pseudorange) is reasonably well known. The center of this sphere

is a well known location since the location and motion of the satellite are well-

known values. This is due to the very accurate position measurements taken from

observation sites as well as the use of Kepler’s and Newton’s Laws to accurately

predict the position of the satellite. So, the receiver is somewhere located on

the surface of that sphere, as seen in Figure 2.1. When a second pseudorange is

calculated, one can similarly draw a sphere around that satellite. Since the receiver

has to be on the surface of the sphere around the first satellite and it also has to

be on the surface of the sphere around the second satellite, it is necessary to look

at where these two spheres intersect. The intersection of these two overlapping

spheres is a circle. This refines the position of the receiver to a circle which is

shown in Figure 2.2. Using a third satellite and thus a third pseudorange adds

another sphere whose intersection with the other two spheres yields two points.

One of these two points lies on the surface of the Earth while the other does not.

The one not on the surface of the Earth can be discarded as an extraneous solution

(Figure 2.3). Thus, using the pseudorange from just three satellites, the rough

position of the receiver can be determined. However, using just three satellites is

not enough for the accuracy we have become accustomed to.

A fourth satellite is also required which is used to eliminate the clock error.

Typically, three spheres will be able to intersect, but when adding a 4th sphere,

the spheres might not intersect. However, the receiver can use this information to

determine what the clock error is, allowing the four (or more) spheres to intersect

[8]. All pseudoranges will then be corrected and the position can be accurately

determined. This algorithm alone can calculate the position of a receiver to within

4



about 7 meters 95% of the time [1], [9].

Figure 2.1: The sphere around a GPS satellite whose radius is the pseudorange

determined by the receiver. With just one satellite’s data, the receiver’s location

could be anywhere on that sphere.

Although GPS has many obvious applications in the world, one industry that

uses GPS signals is the aviation industry. Prior to 1994 [10], airplanes primarily

used the Instrument Landing System (ILS) as a means for navigating to a runway

of an airport in less than ideal conditions. The ILS, a system developed around

WWII, contains two main components, the localizer and the glide slope. The

localizer sends out directional radio waves which the plane can pick up so that

5



Figure 2.2: When a second satellite, thus a second sphere is added, the receiver

must be on the intersection of these two spheres, the circle shown in blue.

6



Figure 2.3: When a third satellite is added. The spheres’ intersection becomes

two points on the same circle above, shown as the black dots above. One of these

will be on the surface of the Earth, the other is an extraneous solution.
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the plane can get aligned left/right (horizontally) with the center of the runway.

The glide slope is similar except that it is used to guide the plane vertically to the

runway in a stable approach. These systems work well in a majority of scenarios,

but have several drawbacks. Some of these drawbacks include the need for an ILS

on each runway, reverse sensing when approaching the runway from the “back

course” direction, and signal interference. Thus, the need for cheaper and more

reliable systems has risen.

GPS is a good alternative to the ILS because it is cheap and independent of the

technology at the airport. However, GPS is subject to many issues in accuracy.

These issues are due to things like signal multipath errors, signal distortion due

to solar storms, signal distortion due to thunderstorms, and other things. Even in

the best case scenario, GPS receivers are typically only reliable to within around

5 meters 95% of the time [9]..

Although standard GPS is not extremely accurate, there are ways to improve

the resulting position, sometimes referred to as the position solution, or just so-

lution. One of these methods, which is very effective, is called differential GPS

(DGPS). Differential GPS works by having at least two antennas within close

proximity where one has a well-known location. When the current position solu-

tion is calculated for the known antenna, the algorithm checks to see how far it is

from the true location of that antenna, thus determining the error. This error is

then converted into a correction that is sent to the other antenna, and the resulting

position solution of the second antenna is vastly improved as demonstrated, even

with a low-cost DGPS, in [11]. This is valid only when the antennas are nearby,

as it assumes the effects due to the atmosphere are similar and can be corrected

in the same way. One downside to this technique is that it requires a nearby and

well-surveyed antenna with a receiver that can send real-time adjustments to the
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other antenna’s receiver. However, for antennas at an airport, this is not an issue,

making it ideal for aviation.

Another method used to improve the accuracy of GPS is to use more than just

four satellites. Due to the physics of the atmosphere, satellites lower in the sky

toward the horizon typically result in less accurate position solutions. This is due

to the fact that signal sent by the satellite must travel through significantly more

air molecules than one directly overhead. This results in lower signal strength

and higher amounts of noise. This reduces the overall signal-to-noise ratio (SNR).

Thus, it is ideal if the receiver can choose more satellites to calculate the position

solution, or better yet, select which satellites it wants to use. One such application

of this method is called Receiver Autonomous Integrity Monitoring (RAIM). This

is a system which allows a receiver to detect poor signal from any particular

satellite. If there are more than four satellites available, some receivers can choose

to exclude any satellites which the RAIM determines to be faulty. This combined

system is called fault detection and exclusion (FDE).

Most GPS receivers typically use a single frequency, however, using more than

one frequency (dual/multi-band) can be very beneficial. With the use of two sep-

arate frequencies, the effects of signal multipathing and some atmospheric effects

can be significantly reduced as seen in [12], [13], [14]. These techniques have been

implemented and shown to improve the position solutions in GNSS-SDR as seen

in [15]. Further discussion on the advantages of multi-band GNSS receivers can

be found in [16].

Since GPS has shown the ability to have its accuracy drastically improved,

systems utilizing correction methods that were previously described have been

created for use in the aviation industry. One type of system is called space-

based augmentation system (SBAS). These systems typically use geostationary
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satellites to help provide corrections to a particular area on the globe. One such

implementation of SBAS is called wide-area augmentation system (WAAS). As

the name suggests, this system provides GPS correction data for a very wide-

area. Currently WAAS is available to all of North America. Since it covers

such a large area, WAAS typically only provides marginal improvements to the

position solution, around a 1.6m nominal vertical accuracy as seen in the WAAS

performance standard in [17].

Another very effective system for computing and transmitting GPS correc-

tion data is the ground-based augmentation system (GBAS), also referred to as

local-area augmentation system (LAAS). GBAS implements differential GPS tech-

niques with multiple antennas to send correction data over very-high frequency

(VHF) data broadcasters (VDB). These corrections can be received by special re-

ceivers on aircraft called multi-mode receivers (MMR). This system is illustrated

in Figure 2.5. These GBAS landing systems have many advantages over the ILS

including simplicity, annual maintenance and operational costs, and the ability to

service multiple runways with one system. These advantages are discussed and

highlighted in a case study of Viseu Airfield in [18]. Another article in [19] shows

how ILS was outperformed by GBAS.

“GBAS was developed to provide the required accuracy, availability, integrity,

coverage, and continuity to initially support CAT I precision approaches and

eventually CAT II and III precision approaches. Unlike current ILS, a single

GBAS ground station provides precision approach capability to all runway ends

at an airport [20].” As stated above in the 2021 Federal Radionavigation Plan,

GBAS is currently in use but only for CAT I precision approaches, the exact

specifications of which are described in [21]. More research and demonstration of
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better systems can lead to approval of higher precision approaches. The different

types of precision approaches are shown in Figure 2.4, and are described in [22].

Figure 2.4: The precision approach requirements for different categorical levels.

The traditional way that a GBAS would compute the corrections is by model-

ing the atmospheric conditions and using statistics to approximate the effects of

the atmosphere and any other issues. This approach is good for the most common

errors seen in GPS, but is not an accurate way to accurately model all possible

effects, which depend not only on location but also time. Two example of these

effects are unpredictable weather and solar storms.

A second technique for a GBAS to compute corrections is by using a closed-loop

feedback system. Referred to as a closed-loop GBAS (CL-GBAS), this method

works by using a well-surveyed antenna and seeing if the solution from the GBAS

accurately matches the location of this extra monitoring antenna that was not used

in the GBAS position solution. Instead of attempting to correct for all the different

atmospheric effects, the closed-loop system adjusts its corrections so that the

computed position of the well-surveyed antenna and the actual surveyed position

are within some tolerance. Thus, if the computed position for the well-surveyed

antenna is accurate, then there is an increased confidence that the corrections are

accurate and can be sent to airplanes in the area. This system was successfully

theorized and demonstrated in [4].
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Figure 2.5: GBAS Architecture image from the FAA website [1].
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GPS is just one of many different satellite systems. Although it was the first,

there are now at least 4 other Global Navigation Satellite Systems (GNSS) in

the sky. These include the Russian GLONASS system, the European GALILEO

system, the Chinese BEIDOU system, the Indian IRNSS system, and the Japanese

QZSS system [23]. Some systems have been shown to have improvements over

others, which can result in more accurate positions. In particular, GALILEO’s

message structure has been shown to have some advantages over the GPS message

structure [24].
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Chapter 3

GNSS-SDR: GNSS Implementation in Software

Defined Radio

3.1 Software-Defined Radio (SDR)

Software Defined Radio (SDR) is an architecture for a radio frequency (RF) re-

ceiver in which the bulk of the processing is done digitally via software and not by

the actual hardware. This design simplifies the hardware requirements and allows

for the signal processing to be done via the software. This allows changes/fixes

with a particular receiver to be fixed without needing to replace the entire radio

unlike with traditional radios. With the software controlling the signal processing,

it is possible for a single receiver to work within a large range of frequencies. The

HackRF One, an open-source SDR by Great Scott Gadgets can be used within

the 1 MHz to 6 GHz range. With traditional radios, this amount of wide-band

capability would require an expensive and dedicated radio. These radios are much

more expensive than the HackRF One which typically retails around $350.

Unlike traditional radios, the hardware on the SDR is simplified. Traditional

radios, which typically use the superheterodyne technique, have several hardware
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components. These components include multiple amplifiers, filters, a demodula-

tor, and a local oscillator. With all these components, the radios can be more com-

plicated to manufacture, more delicate, and thus more expensive overall. SDRs

use an RF filter to choose the desired frequency, and then convert those analog

signals to a digital signal using an analog to digital convert (ADC). This ADC

allows the signal to be further processed using digital techniques on a computer.

Having the ability to choose a desired frequency over a very broad range is a major

advantage of the SDR. The SDR will then have its software take over to further

analyze the signal. The software here also holds an advantage because it can be

very easily manipulated and bugs can be easily fixed. Thus, with the rapidly im-

proving digital circuitry, software enhancements, and extreme flexibility, the SDR

holds an enormous advantage over traditional radios.

3.2 Great Scott Gadget’s HackRF One

The HackRF One, shown in Figure 3.1, is a commercial and open-source SDR

originally made by Great Scott Gadgets. This SDR was initially researched and

thought to be one of the most cost-effective solutions for a customizable and

accurate GPS receiver for GBAS in a graduate special studies course by Gus

Azevedo in [25]. It has the capability of operating between 1 MHz and 6 GHz,

making it ideal for working with typical GPS frequencies (1.57542 GHz). This

SDR is rather inexpensive as the retail cost is around $350, which is ideal for

testing the capabilities of GNSS-SDR and GBAS. Typically, GPS signal processing

and satellite tracking requires very accurate internal clocks on the order of 1 part-

per-million (ppm). Unfortunately, the HackRF One has a lower quality internal

clock with a precision of about 20 ppm at 10 MHz. Trying to use the stock HackRF
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One as a GPS receiver with the GNSS-SDR software directly will result in failure

to lock onto any satellites. The error message shown when using it is the common

“Loss of lock in channel ...” message. The software is never able to achieve bit

synchronization with the satellite and thus will not output a position solution or

any related satellite data. However, an external oscillator can be added to the

HackRF One which will vastly improve its performance. Then GNSS-SDR can

successfully lock onto the satellites and compute a position solution reliably.

Figure 3.1: Great Scott Gadget’s HackRF One. Image from their website [2].

For this project, the external oscillator used was NooElec’s Tiny TCXO, whose

information can be found in [26]. This oscillator has a precision of 0.5ppm at 10

MHz, which is 40 times more precise than the HackRF One’s default clock. The

Tiny TCXO is a small chip which plugs directly into the HackRF One circuit

board. This is a very convenient upgrade, although the case of the stock HackRF

One is too small for the Tiny TCXO chip to fit in. The HackRF One also has
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an SMA connector for which an external oscillator can be plugged into instead

of having to plug it directly into the circuit board. There is also another SMA

connector which will send out the clock signal from the HackRF One, allowing

multiple devices to be synchronized using the exact same clock signal.

3.3 Ettus Research’s USRP E310

To help compare the results of the HackRF One, a more expensive and higher

quality SDR was also used. The Ettus Research’s USRP E310 SDR, seen in

Figure 3.2 is a much more expensive SDR which outputs data via an Ethernet

cable instead of a serial cable, which poses new challenges. However, the high

quality internal components of this receiver will help serve as a valid comparison

against the more affordable HackRF One.

3.4 GNSS-SDR

GNSS-SDR, which stands for Global Navigation Satellite Systems Software De-

fined Receiver, is an open-source software program that integrates with software

defined radios (SDRs) and processes the signals. It can use the SDR to acquire

signals from satellites, lock onto the signals, and then begin computing naviga-

tional solutions. This software can work with a wide variety of receivers that

connect typically via USB or Ethernet. GNSS-SDR offers a lot of customizing

options for the user. In the configuration file, the user can change many different

settings such as sample rate, frequency, max number of satellites, and how/where

to output the data. These many customizable settings make GNSS-SDR a very

useful tool for a wide variety of applications. For GBAS, GNSS-SDR can control

an inexpensive receiver, output the raw data in real-time, and also output the
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Figure 3.2: Ettus Research’s USRP E310. Image from their website [3]
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ephemeris data for each satellite, making it a viable alternative to a traditional

GPS receiver.

GNSS-SDR, while able to run on Windows in some cases, is typically ran

on a Linux machine. This requires the user to clone the open-source software,

checkout the latest version using Git, build the software, and then install the

program, in order to get the most up-to-date changes. Detailed steps for GNSS-

SDR installation are shown in Appendix B. Once GNSS-SDR has been installed,

the user must edit the configuration file in order to fit their system. This requires

knowing which satellites to use, which frequency to listen on, what to do with

the output data, and most importantly, what kind of SDR is being used and how

to connect to it. The configuration file used for the GBAS tests in this thesis is

shown in Appendix E.

The typical workflow of GNSS-SDR is as follows: the software connects to the

SDR via whichever means are defined in the configuration file, and then it has the

receiver open a port on the desired frequency. In this work, the frequency used

is 1575.42 MHz, the GPS L1 band. At this point, the SDR, which is connected

to a GPS antenna, begins listening to that frequency, and down converts the

messages and outputs them at a lower frequency to GNSS-SDR. At this point,

GNSS-SDR takes these down converted raw satellite messages and begins to sort

them into different channels for each different satellite. Once in a specific channel,

the software will begin to acquire the signals and eventually begin to lock onto

the satellite. This requires several satellite messages and takes a lot of computing

power. Since this is an intensive process, the configuration file can be configured

to make only one channel acquire and begin tracking a satellite before the next

channel begins. Thus, GNSS-SDR can be optimized to run on slower PCs like a

Raspberry Pi.
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After the GNSS-SDR has a lock on and is tracking more than 4 different satel-

lites, each on a different channel, the software can start taking the navigational

data from the satellites and use them to begin computing a position solution. Once

a solution has been found, the software will begin outputting the positional data

and sending time, location, and GPS satellite information in the format specified

in the configuration file.

3.5 Initial Evaluation of GNSS-SNR

Once the GNSS-SDR software has been properly configured with an SDR that is

connected to a working antenna, the software will begin working rapidly. Typ-

ically, depending on the configuration settings, computer processor speed, and

current satellite constellation, the receiver can get a position solution in anywhere

between 45 seconds and a few minutes. From experience, the position accuracy

improves after about a minute, and the resulting position is typically very accu-

rate within a few meters. A plot of the position of the antenna compared to the

surveyed location was generated from a few minutes of data using the HackRF

One, the USRP E310, and the GG12s, as seen in Figure 3.3. As can be seen in

the graph, all of the receivers were within +/- 5m of the true antenna location.

One thing to consider is that the GG12s have a very precise location amongst all

three of them, while the GNSS-SDR results varied significantly more. The results

of the GNSS-SDR receivers shown here are similar to the ones found in a paper

written by some of the creators of GNSS-SDR [27]. Another paper discussing

the performance of GNSS-SDR using low-cost receivers in a difficult environment,

found that the GNSS-SDR software’s customizability made it an extremely useful

tool even though it was often limited by the internal clock of the SDR [28].
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Figure 3.3: The East-North-Up (ENU) coordinates of the antenna location taken

from different receivers at the same time. The HackRF One and the USRP E310

are very spread out while the three GG12s have very precise positions all stacked

on top of each other at the upper left.

21



3.6 Receiving GBAS Data from GNSS-SDR

GNSS-SDR collects a vast amount of GPS data when running. Depending on

how the configuration is setup, the software can output the data in several for-

mats. Usually, the software outputs data to many different files. For this work,

the chosen method for data output is over UDP, which is delivered over the IP

protocol. This method was chosen because the desired raw data for the GBAS

algorithm was already available for live output using this method. Other meth-

ods that output data live did not output the raw pseudorange and phase data

that are required. This UDP streaming method can be achieved by connecting

two PCs either by Ethernet, Wi-Fi, or through a virtual machine and editing the

GNSS-SDR configuration file. This allows data to be transferred at large rates

and in one direction. For the base station at OU, the base station computer and

the reference station computers were connected using Ethernet cables and a net-

work switch. Information on how the computers are networked can be found in

Appendix E. When outputting through UDP, GNSS-SDR encodes the data using

the Google Protocol Buffer (Protobuf) standard [29]. This is important because

this information will be used to properly decode the data in LabVIEW.

The first step in receiving the proper data is to output the data from GNSS-

SDR with the desired parameters. The GNSS-SDR configuration settings to en-

able UDP streaming of data are shown below.

PVT.enable monitor=true

PVT.enable protobuf=true

PVT.monitor client addresses=10.10.10.1 127.0.0.1

PVT.monitor udp port=1112

PVT.enable monitor ephemeris=true

PVT.monitor ephemeris client addresses=10.10.10.1 127.0.0.1
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PVT.monitor ephemeris udp port=1113

;######### MONITOR CONFIG ############

Monitor.enable monitor=true

Monitor.enable protobuf=true

Monitor.decimation factor=1

Monitor.client addresses=10.10.10.1 127.0.0.1

Monitor.udp port=1111

These lines in the configuration file control whether there is data outputting over

UDP, where it is sending the data, and what port it is sending the data over.

When running multiple receivers, the ports will need to be changed to be unique

so that each receiver’s output can be differentiated from each other in LabVIEW.

The 127.0.0.1 address just means that it is sending the data to itself, while the

10.10.10.1 is the IP address of the base station computer. It is important that

the data is being sent to itself so that the GNSS-SDR-Monitor software, which is

useful for debugging, will run properly, which is discussed in the next section.

3.7 Running the GNSS-SDR-Monitor Software

Now that the data is properly outputting data over UDP, the GNSS-SDR-Monitor

software can now be used. The installation and execution instructions can be

found on the project GitHub in [30]. After the program runs for a while, satellites

should populate in the bottom section of the screen and then a position point

should appear on the map as seen below in Figure 3.4. This can be done opening

another terminal after the main software has started and running the following
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command:

“sudo /home/gbas/work/gnss-sdr-monitor/build/src/gnss-sdr-monitor”.

Figure 3.4: GNSS-SDR-Monitor showing the data from the “parking lot” antenna.

If the monitor software does not appear to work, double check that the con-

figuration file is correct. Also, check that the ports in the monitor software itself

are correct by editing the preferences.
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3.8 Receiving GNSS-SDR Stream Data in

LabVIEW

Since the data is sent over UDP from one PC, the other PC can receive it by

listening to UDP messages over the specific port that it is being sent on. This can

be done easily in LabVIEW by modifying the example “Simple UDP Receiver.vi”

example as seen in Figure 3.5. Once the message is received, it is parsed using

the string to byte array function. Now the received messaged is converted from

an ASCII string, which is unreadable, to an array of 8-bit numbers which range

from 0-255. These 8-bit numbers are also referred to as bytes. Once converted to

bytes, the live data is much easier to work with.

Figure 3.5: UDP Receiver which receives and properly handles the data within

the message. This code is modified from the UDP Simple Receiver.vi example

LabVIEW code.
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After the string message is converted to a byte array, it needs to be decoded.

The first step to decoding the data is to first understand how it was encoded.

Encoding is done in the GNSS-SDR software using a relatively new method called

Google Protocol Buffers or “protobufs” for short. Using this protobuf method

allows for extreme lossless compression of the data. This is ideal for software

that needs to output large amounts of data quickly. Since there is very little

LabVIEW support for Google protobufs, the data needed to be decoded manually.

Eventually, two designs were created to decode the data using LabVIEW. One

method required learning another programming language and integrating it into

LabVIEW while the other was done using more manual techniques. In the end,

the first method was extremely slow, not able to keep up with the incoming data,

while the manual method worked incredibly well, easily able to keep up with the

incoming data. These two methods are explained in more detail in the following

two sections.

3.8.1 Decoding Method 1: Using Python in LabVIEW

The first method attempted was to create a Python script that could properly

decode the message. This required saving an example protobuf message from the

UDP Receiver LabVIEW code. Once a sample message had been acquired, the

Python script could be executed to decode the message into its proper data values.

The first stumbling block reached on this method was the actual creation of

the protobuf decoding script. This required watching several videos, reading lots

of documentation, and using trial and error. According to the Google protobuf

documentation website [29], one should be able to easily compile a Python (or

any of the other supported languages) script using their downloadable software.
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After compiling the Python script, it was successfully tested with a sample

protobuf message. The script was able to properly decode and parse the data

values from the encoded protobuf message. Now, the next step was to run this

script using the test data in LabVIEW. Python scripts can be ran in two different

ways in LabVIEW. One way is to run a command in the command prompt, but

unfortunately it never properly work. The second way is to use a Python node

in LabVIEW, similar to the MathScript node in LabVIEW. This was very user

friendly and was very simple to implement in LabVIEW. After testing some ex-

tremely basic scripts, it was then able to be successfully tested using the sample

protobuf message from before. The sample decoding LabVIEW block diagram

that worked for this is shown below in Figure 3.6. Now that it worked in Lab-

VIEW, the next goal was to test it again using live data.

When testing the python decoder on live data, it appeared to slow the com-

puter down. In order to narrow down the issue, the obvious step was to time how

long it took a message to get decoded. The average result after several minutes of

decoding was that it took this python script 0.25 seconds on average to decode a

single message. This was extremely slow, so some code changes were implemented

to attempt to optimize the code. The only thing that really helped was to not

open and close the Python session each time a message was decoded. This change

did indeed speed up the code, however the average message decode time went

down to about 0.20 seconds per message. Now this might seem fast, however, it

is important to realize that there were 32 data channels, and each had its own

message being sent every 20ms. Now, even though maybe just 10 of these chan-

nels might be sending useful data, that still leaves 500 messages to decode each

second. So, the GBAS PC is receiving 500 useful messages each second, but was

only able to decode 5 of them every second using this method. This method is
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much too slow to be useful. It was also noticed that the code would fail occasion-

ally. After much troubleshooting, it was discovered that if the satellite PRN was

greater than 9 (double-digits), then the decoder would fail. Thus, although this

may be a preferred method since it used the Google protobuf decoder compiler,

using the compiled Python decoding script was not useful for this work, especially

in LabVIEW.

Figure 3.6: Python Protobuf Parser/Decoder in LabVIEW.

3.8.2 Decoding Method 2: Manual Decoding in LabVIEW

Since the Python script method was unusable, it was decided to decode the pro-

tobuf messages manually in LabVIEW. To begin this, an analysis of the array of

bytes changing while the UDP receiver was running live was conducted. Although

most of the numbers were changing too fast to comprehend anything, some of the

numbers remained constant. Further analysis was performed that used those num-

bers to establish a pattern. Each of the “constant” bytes were increasing by about

8 as it went down the array of bytes. This was curious, leading to more research

into the exact encoding method in the Google Protobuf documentation.
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In simplifed terms, the protobuf messages are encoded in the following manner.

A “.proto” file is required to properly encode a set of values. In this .proto file,

one will find a list of key-pair values. Each key is defined with a name and a

data type. This key-value pair is important, because in the encoded message,

the first byte is usually the key value, which determines what the following data

is representing. For a double, the next 8 bytes would be the exact value of the

parameter. So, for the very first data point, a 1 is expected, since that is the first

one to be sent. However, it is found that the first leading byte is an 8. This is

because the number is left-shifted by 3. This means, the binary digit 0000 0001

(1) has every value shifted left by 3, meaning it gets encoded to 0000 1000 (8).

This makes the key for the second data value 0001 0000 (16), and the third would

be 0001 1000 (24). Thus, to find a specific parameter, one would find the name

on the .proto file, look at its mapped value, and then multiply it by 8. Then look

for that value in the encoded message. Now depending on the data type, add

1 or 2 after multiplying by 8. After a key value is encoded, the actual value of

that parameter is encoded right after the key value. The length of the rest of it

is dependent on the data type of the parameter. After the key is larger than 16,

the key value is encoded in the same manner, but the next byte is a 1, then the

encoded parameter value follows.

For example, in the gnss synchro.proto file, the double-precision floating point

“pseudorange m” key is mapped to the value of 22. So, in the encoded message,

one is looking for 8×22 +1 = 177 (add 1 since the value is a double). Once 177

is found, the next byte should be a 1, and then the next 8 bytes are the actual

value of the pseudorange in meters.

With a proper understanding of how the encoding worked, the message could

be decoded. This was as simple as doing a search for a particular value, taking
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Figure 3.7: GNSS Synchro.proto file.
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the next 8 values, and then decoding it. However, there was a problem with this

method. If there happened to be the exact value in multiple places in the encoded

message, it would completely ruin the message. Thus, like in the above example,

if looking for the value 177, it may occur several times in the message. The code

needs to know that the 177 found is the exact one referring to the key value 22.

After analyzing the problem, a method was created with the idea of checking for

nearby known values to verify it is the right data point. For example, with 177,

the code will check that the next byte value is 1 and the 9th next byte value is 185.

This makes the code extremely robust as the probability of this set of numbers

occurring in this exact format anywhere else in the message is extremely unlikely.

Once the correct key is found, one can get the decoded value by taking the next 8

bytes, reversing their order (from little endian to big endian) and then flattening

them to a float value using the flatten function in LabVIEW. Some data types,

like the PRN (a uint32), did not require this extra step of flattening.

Overall, this manual decoding method is extremely robust and fast. It is able

to easily keep up with the 500+ messages per second. It is also able easily parse

the data, even if the PRN number is greater than 9, which couldn’t be done with

the first method.

To receive the data in LabVIEW, ensure LabVIEW is not blocked by the Win-

dows Firewall. To do this, requires using admin privileges, opening the Firewall,

and adding LabVIEW to the allowed programs list. Next, run the programs cre-

ated in this work in LabVIEW. When running the program, make sure to have

the correct port selected. If it is not, the program will not function properly. If

changing ports, make sure to restart the program by selecting the “Stop” button

on the Front Panel. Do not use the abort button, as this is bad LabVIEW practice

and can cause an assortment of other issues.
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Figure 3.8: GNSS Synchro Protobuf Converter. This LabVIEW code decodes and

parses the PRN, SNR, pseudorange, phase, and receive (rx) time of each satellite.

As can be seen in each for loop, there are two extra checks to ensure the index of

the value in the array is the proper one.
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3.9 Synchronization of GNSS-SDR UDP Output

Since the original GBAS program from [4] used the Thales GG12 GPS receivers

(specs found in [31]), which output data every half second, the GNSS-SDR soft-

ware must also output at that rate. Luckily, the GNSS-SDR configuration file

comes with a simple parameter called “Monitor.decimation factor” which defaults

to 1 if not specified. Since the software outputs every 20 ms, a decimation factor

of 25 would output 2 messages per second, the same rate as the GG12s. Unfor-

tunately, when changing the decimation factor to anything but 1, the program

stopped sending message reliably. With a decimation factor of 2, the messages

would arrive randomly about every 2 minutes apart. It appeared the open-source

GNSS-SDR software had a bug and thus it was pursued further.

With limited background knowledge in C programming, perusing the source

code can be a challenge. However, after a bit of searching, it was determined the

error had to be caused in the file “src/core/monitor/gnss synchro monitor.cc”

which was the file determining when to stream the data. After studying the code

it was determined that a particular line which contains a consume command to

be the cause of the issue. Instead of being after the loop where it is ran every

time, it needs to only be run when the decimation value is reached inside the if

statement. Testing the software changes showed that this fixed it. The exact code

changes can be seen in Figure 3.9.

The following changes were submitted to the GNSS-SDR GitHub project. The

team accepted them and added them to the newest version of the software.

After running the software with the decimation factor set to 25, it was imme-

diately noticed that the receive (RX) times between multiple receivers were not

the same. For example, the HackRF One attached to the parking lot antenna

(C in Figure C.1) would output data whose “rxtime” parameter ended with 0.26
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Figure 3.9: Changes made in the gnss synchro monitor.cc file. Green lines show

added lines where red lines show removed lines.

and 0.76 every time a message was sent while the another HackRF One attached

to the same antenna was outputting messages with an “rxtime” ending with 0.47

and 0.97 each time. After studying the GG12s, it was noticed that each one out-

put with “rxtime” ending in 0.00 and 0.50 each message. This was a problem

as one of the goals of this thesis is to run the GG12s and SDRs simultaneously.

Using different receive time values would not only break the algorithms in Davis’s

original code in [4], but would be meaningless to the GG12s.

At this point, it was back to the GNSS-SDR source code looking for a way

to force the data being output to come in at intervals of 0.00 and 0.50 seconds

only. Luckily, this was a rather simple fix in the same file that the above change

was made. Instead of having the code check for just the decimation factor, one

could simply have it check to see if the receive time ended in .00 or .50. So, as

a proof of concept and not by using proper coding standards, the if statement

checking the decimation factor was simply subverted using an if(true) statement

before it as seen in Figure 3.10. The new code includes multiplying the current

RX time by 100, to allow for an easy application of modulo 50. Checking to see

if this result equals zero implies the RX time ended with .00 or .50. Thus, this
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code synchronizes the outputs of the data to be sent every half-second at 0 and

500 milliseconds, matching the GG12s.

Figure 3.10: The highlighted section shows the new code added.

3.10 Integrating the GNSS-SDR Receiver into

the CL-GBAS Base Station Program

Currently, the CL-GBAS program used in [4] is relatively dated and was only

designed to work with the Thales GG12s. Thus, getting a comparison between

the SDRs and the GG12s requires the SDRs to be integrated into the program.

For our comparisons, the almanac data as well as the ephemeris data is acquired
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by the GG12s for both the SDRs and GG12s. Only the raw data from the SDRs,

which contains the pseudorange and phase for each satellite, is used. This is done

because the alamanac and ephemeris data are received directly from the satellites

and should be the exact same for all receivers. Also, it should be noted that the

UDP output of the almanac data is not currently supported in GNSS-SDR.

The first step to get the old program to work with GNSS-SDR receivers is to

create a software driver that can take the GNSS-SDR outputs and convert the

desired data into the same format as the GG12s. The code to perform this task

is shown in Figures 3.11 and 3.12. The framework for this GNSS-SDR driver was

originally designed and described in [32].

Figure 3.11: This code shows the new GNSS SDR Driver Code. Here the data is

received and placed into a map of values.

Once the data has been properly formatted it is sent into the main CL-GBAS

program shown in Figure 3.13. After attempting to run the program, it was found

36



Figure 3.12: This section of the GNSS SDR Driver code shows where the pseudo-

range is corrected using the proper clock bias.

that not all of the GNSS-SDR data would arrive at the same time. This required

more code to be written to ensure strict synchronization between the individual

GNSS-SDR receivers. The code created for this task is shown in Figures 3.14 and

3.15.

Finally, after proper formatting and synchronization of the GNSS-SDR re-

ceivers, the program began to work and calculate vertical error results. It was

noted that the results were not consistent and would sporadically jump. How-

ever, it always appeared that the number of satellites used was typically a direct

cause of the poor results. Thus, the vertical error was logged using the data log-

ger shown in Figure 3.16. This allowed for further post-processing analysis of the

acquired data. After logging the data for approximately 45 minutes, the data was

analyzed in MATLAB. It was found that in the 45 minute long test, only 758 out

of 2,733 samples had more than 4 valid satellites. Thus, only approximately 28%
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Figure 3.13: This section of code shows where the GNSS-SDR Drivers are config-

ured and how they output into the main GBAS Program developed in [4].

of the time, or 12 minutes, were the results valid. When the results were valid, the

vertical error (VE) shown in Figure 3.17 has very good results. Had the B-values

been better and more satellites were being used in the solution, the vertical error

would likely be much smaller. The code used to generate this plot is found in

Appendix K.

Upon further inspection of the HackRF One values going through the modified

CL-GBAS program, it was noticed that a lot of the values were rejected, resulting

in a lack of valid satellites being used. This happened because the B-Values for

the particular satellites were too large. The B-Values represent the errors that

cannot be corrected in each receiver. These are values that are not correlated

between receivers and can be caused by things like multipath, receiver noise issues,

and hardware failure. They are the difference between broadcasted pseudorange

corrections and the corrections obtained without the receiver in question [33].
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Figure 3.14: This section shows how the GNSS-SDR outputs need to be synchro-

nized with each other to be sent to the GBAS program.
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Figure 3.15: This code section again shows how the GNSS-SDR outputs need to

be synchronized with each other to be sent to the CL-GBAS program. This time,

it shows what happens every other time this case statement is ran.
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Figure 3.16: This plot shows the non-rejected vertical error experimental data

with a best fit curve overlaid on top of it. The standard deviation and mean

values are displayed as well.
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Figure 3.17: This plot shows the probability distribution function of the non-

rejected vertical error experimental data with a best fit curve overlaid on top of

it. The standard deviation and mean values are displayed as well.
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The B-Values in the CL-GBAS are calculated as follows as described in [4].

The initial pseudorange correction per satellite is taken as the average of the

carrier smoothed and receiver clock adjusted pseudorange corrections from each

of the reference stations. The B-Value for a given reference station is calculated

by subtracting this initial pseudorange correction by the average carrier smoothed

and receiver clock adjusted pseudorange corrections of the reference stations with-

out including the reference station in question. If this B-Value is higher than the

set B-Value limit, then the non-correctable errors from this particular reference

station are too large and the corrections for this satellite and this reference station

are set to 0. If there are ever any satellites with less than three non-zero carrier

smoothed and receiver clock adjusted pseudorange corrections, then that satellite

cannot be used in the final solution. Since there were only three reference stations

being used in this particular test, when any one of the reference stations had too

large of a B-Value, it would result in a correction of 0 and thus the entire satellite

could not be used in the final solution. Thus, it would have been more benefi-

cial if four reference stations were used. These large B-Values are likely caused

by sporadic pseudorange values which are further investigated in the following

chapter.
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Chapter 4

Evaluating Pseudorange from GNSS-SDR

4.1 Concept and Algorithm

The distance from the satellite to the antenna which is calculated by the receiver

is referred to as the pseudorange. This is called the pseudorange because it is

not an exact measurement of the distance, but actually the distance plus the

many sources of errors in the measurement. When the satellite sends a navigation

message, it includes the exact time which the message was transmitted. The

receiver also keeps track of the time at which it received that message. The

difference of this time is the time it took for the message to travel from the

satellite to the receiver. Using a predetermined value of the speed of light through

the atmosphere, one can multiply it by the travel time of the message to get the

distance from the satellite to the receiver.

The pseudorange calculation on GNSS-SDR is interesting as GNSS-SDR cal-

culates them all relative to a specific satellite with the most recent TOW (time of

week) [34].
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4.2 Pseudorange Comparison of SDRs and GG12s

4.2.1 Initial Tests

One of the first tests to verify if the HackRF Ones are suitable for GBAS purposes

was to test the pseudorange outputs and compare it to the GG12s’ outputs, simul-

taneously using the same antenna. To do this, one GG12 and three HackRF Ones

using GNSS-SDR were connected to the same antenna using powered GPS split-

ters. The data coming from each of the receivers for over 24 hours was logged,

using two LabVIEW logging programs. This gave a lot of sampling points for

every GPS satellite for all four receivers. The logged data, which was originally

already programmed, output the data in a particular format. This format required

the logged data to be ran through another program which would then weave the

data together, eventually applying the clock offsets, and outputting the data in

a single master spreadsheet, who had 256 columns of data. One column for each

of the 32 possible satellites, per eight possible receivers in the system (only seven

were used). This additional program, written in LabVIEW, is shown in Figures

4.1, 4.2, and 4.3. The resulting file output of the combining files program is shown

below in Figure 4.4.

The pseudorange values were then graphed them with respect to time. The

initial results of a single satellite are seen in Figure 4.5. The MATLAB code used

to generate these plots is included in the appendix.

As can be seen, the pseudoranges from the HackRF Ones are not close to

the level of the certified GPS receiver. Some are over 3000 kilometers distance

greater. However, they seem to have very similar shapes which seems to hint that

there is a systematic issue going on. After scanning the algorithms for a while,

it was seen that the code outputs a variable called “user clk offset” in a different
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Figure 4.1: Examples of data logged from the GG12s. It then outputs the data

into a properly formatted map to synchronize the GNSS-SDR receivers.
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Figure 4.2: Application of the receiver clock offset from a separate file log file for

the GNSS-SDR to correct the pseudorange values.
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Figure 4.3: Output map from the logged GG12s is synchronized with the GNSS-

SDR receiver logged data. This allows the data to be precisely lined up based on

the data’s receive time value across all of the different receivers.
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Figure 4.4: A sample of the format of the master spreadsheet generated in the

above LabVIEW programs. This image demonstrates how the table is structured

and that not all satellites have data. This screenshot only shows 7 of the 256 total

columns in the file.
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Figure 4.5: Pseudoranges generated from three HackRF Ones and one GG12.
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UDP stream than the pseudorange. Multiplying this offset value by the speed of

light and subtracting the product from the corresponding pseudorange with the

same receive time results in a value that is substantially closer to the GG12s’

pseudorange.

One issue associated with the offsets being sent out by the GNSS-SDR software

is that they are sent using a different UDP stream than the other data and are not

exactly synchronized with it. This means that while the GNSS-SDR pseduorange

data is being sent twice a second with receive times at every 0 and 500 millisecond

mark, the offset data is getting sent for completely different receive times. This

makes the offset data not useful as they cannot be matched up one-to-one. A quick

solution to this is found back in the GNSS-SDR source code. In one particular

file, a check, similar to the check made in chapter three, can be applied to force

the output to be synchronized to every 0 and 500 milliseconds. The code changes

are shown in Figure 4.6.

Figure 4.6: GNSS-SDR code change to force the output to be sent at every 0 and

500 millisecond mark is highlighted above.

After successfully synchronizing the clock offset and pseudorange data, the

pseudorange values can now be corrected. The results of the clock bias-corrected

pseudoranges are shown below in Figure 4.7.
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Figure 4.7: Pseudorange plots of four HackRF Ones and three GG12s after clock

offsets have been applied.
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The clock bias is the calculated difference in time between the GPS and satellite

clocks. All GPS receivers have a difference in internal clock time. It would appear

that these biases are automatically removed from the GG12s but are not removed

in the GNSS-SDR software. This offset must be applied during the real-time

algorithms in order for the GBAS to be effective. In GNSS-SDR, the RTKLIB is

used to compute the position solution. In the process of computing the position,

the RTKLIB software also calculates the clock bias of the receiver. The calculation

for the clock bias is dependent on which type of positioning mode is configured

in the GNSS-SDR configuration file. For the tests shown here, the static Precise

Point Positioning (PPP) positioning mode is used. The exact calculations for this

method can be found in the RTKLIB manual [35].

In Figure 4.8, the pseudorange values of each receiver are subtracted from the

average GG12 pseduorange value. This results in a much simpler graph than the

data in Figure 4.7. One interesting thing to note is that the pseudoranges of the

HackRF Ones differ from the average GG12 value by +/-30m and it appears that

the HackRF One pseudoranges have a periodic nature to them as they appear

to oscillate relative to the average GG12 value. The fact that it is oscillatory is

important as it may be something that can be optimized using filtering techniques

in the future.

To determine if the low-cost SDRs were the problem, the Ettus Research USRP

E310 SDR was used alongside the HackRF Ones and GG12s in the pseudorange

test. This USRP is an expensive software-defined radio and has many performance

improvements over the HackRF One. Getting this SDR to work with the GNSS-

SDR software was a considerable challenge and was eventually solved. The details

of the integration of the USRP into the system are included in Appendix F. For

the same comparison as above but on a different day with different satellites, the
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Figure 4.8: Four HackRF Ones’ and three GG12s’ pseudoranges are plotted

against the average GG12 pseudorange for the given satellite.
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resulting graph in Figure 4.9 was generated. As can be seen, the HackRF Ones

still maintain their oscillating pseudorange values while the E310’s values are quite

sporadic with values in similar ranges to the HackRF Ones. There appears to be

no obvious oscillation, but it seems like the E310 may benefit from GNSS-SDR’s

built-in smoothed pseudorange calculations.

Figure 4.9: The USRP E310, three HackRF Ones’ and three GG12s’ pseudoranges

are plotted against the average GG12 pseudorange for the given satellite PRN21.

A second set of data was collected after attempting to improve upon the orig-

inal results with the E310. This time, GNSS-SDR’s pseudorange smoothing was

enabled, whose algorithm is described in [36]. As can be seen in Figure 4.10, the

E310 pseudorange values are significantly smoother. These results are encourag-

ing because they do not appear to show any oscillations like the HackRF Ones.

55



It should be noted that the E310 results could likely be improved upon if the

GNSS-SDR configuration parameters are carefully tuned.

Another issue that was discovered is that the network switch in the testing

setup was not adequate and lead to frequent loss of lock on satellites. This was

discovered by directly connecting the E310 to the Intel NUC host computer. How-

ever, in this setup, the GNSS-SDR had no way of communicating to the base

station computer since it was not connected through the network switch. It may

be possible to increase the kernel and NIC buffer size on the Intel NUC, and that

may solve this issue altogether, or simply a better network setup with better ca-

bles and a network switch with higher throughput. All this being said, it may not

improve the accuracy of the E310, but it will certainly make it more reliable.

While testing the data, a plot of just the clock errors for the HackRF One was

produced. After zooming in on the graph, “jumps” in the clock error became im-

mediately evident. This plot is shown in Figure 4.11. After carefully analyzing the

clock error graph, it appeared that these “jumps” in the error occurred at about

the same time that the pseudorange values did. Next, a second plot, Figure 4.12

was generated overlaying the two graphs with the same receive times. It becomes

clear that the time when clock error “jumps” and the time when pseudorange

values “jumps” are closely related. Next, the clock error for the E310 is plotted in

Figure 4.13. Unlike the HackRF One, the USRP E310 does not have any jumps

in its clock error plots. This shows that the E310, which has non-oscillating pseu-

dorange values, is likely to have better results in a GBAS setup than the HackRF

One using GNSS-SDR.
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Figure 4.10: The USRP E310, three HackRF Ones’ and three GG12s’ pseudor-

anges are plotted against the average GG12 pseudorange for the given satellite

PRN8. The pseudoranges from the E310 has much smoother values.
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Figure 4.11: The clock error corresponding to the HackRF 4 in the graph above.

As can be seen, there are consistent jumps in the clock error.
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Figure 4.12: The clock error of the HackRF One overlaid with its previous pseu-

dorange values to improve clarity. It can be clearly seen that the clock error and

the pseudorange values are correlated.
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Figure 4.13: The clock error of the USRP E310. Contrary to the HackRF One’s

clock error above, there are no noticeable jumps.
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Chapter 5

Summary and Conclusions

5.1 Summary

This thesis describes the application of using low-cost software-defined radios using

the GNSS-SDR software for a ground-based augmentation system. The GNSS-

SDR software can produce very accurate positional data on its own, but the

performance demand greatly increases when using it for a GBAS. Getting the

HackRF One with GNSS-SDR to run through the GBAS program required a sub-

stantial amount of software debugging and changes to reach the point where the

data being streamed into the base station computer was formatted and synchro-

nized correctly to produce a successful result. These changes include debugging

the GNSS-SDR source code, changing the configuration file for GNSS-SDR, and

correcting the navigation data using data from multiple UDP streams after the

data is received at the GBAS station.

Although the HackRF Ones suffered from a lack of reliability in the GBAS

program, they were indeed able to produce a good user position vertical error,

but only when there were sufficient usable satellites in the CL-GBAS algorithm.

Our results showed that the vertical error produced was only a useful result about

61



28% of the time. The reason for the lack of reliability is likely the inconsistent and

jumping pseudorange values. These are likely caused by the lack of a high quality

internal oscillator within the HackRF One, even with a high quality external os-

cillator attached. These results confirm that inexpensive software-defined radios

could be used as receivers for a CL-GBAS, but the receivers will need signifi-

cant improvements to improve reliability and accuracy of the resulting CL-GBAS

corrections.

5.2 Contributions

The contributions of this thesis work include developing a method for retrieving

and decoding live data from GNSS-SDR using programs written in LabVIEW.

This method includes a unique way of quickly and reliably decoding Google Pro-

tocol Buffer messages, since there are no other supported ways to do this in Lab-

VIEW. Another contribution includes debugging the GNSS-SDR open-source code

and submitting a bug fix in the way that the data is output via UDP, which allows

users to properly apply a decimation factor to the output. Another contribution

is the unique way of acquiring and synchronizing the outputs from GNSS-SDR, so

that multiple receivers would output their data at the same receive times, allow-

ing for better consistency and the ability to run in a GBAS program. Since there

are no differences in the outputs from different SDRs through GNSS-SDR, any

SDR can be used, it is not limited to the HackRF One or the USRP E310. The

next contribution is the study and analysis of the pseudorange of the GNSS-SDR

SDRs and the Thales GG12s. Along with the pseudorange study was the study

of the vertical error produced by the GNSS-SDR receivers. The final contribution

is the creation of a complete lab setup which included the antennas, the network
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configuration, and the connection of many receivers allowing for consistent and

reliable tests to be ran.

5.3 Future Works

To improve the capabilities of software-defined radios (SDRs) in a ground-based

augmentation system, future work may include improving the GNSS-SDR firmware

and software to better synchronize the SDRs, while improving sending the infor-

mation from the reference station computer to the base station computer. Cur-

rently that data link sends the information over a network in the form of UDP

packets. It may be advantageous to send it over using different methods, such as

serial communications.

Another improvement would be to properly package the data with the reference

station computer so that the navigation messages can be sent over a long distance

using wireless communication links.

It would also simplify the base station programming if the GNSS-SDR program

sent the clock data offset with the pseudorange measurement. This would reduce

the complications found above where it was necessary to wait for the clock offset

data to come in before the navigational data so that the offset could be properly

applied. This could also be an avenue used to speed up the processing in the base

station codes. Additional analysis of the USRP E310 or other high-quality SDRs

is needed to help rule out any issues that may be with just the HackRF One.

If a better network switch is acquired, the USRP E310 can be tested within the

GBAS program as well. Lastly, the output and formatting of the GPS almanac

data through GNSS-SDR is needed to be developed so that the almanac data can

be acquired without a dedicated GPS receiver or the internet.
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Appendix A

List Of Acronyms and Abbreviations

ADC Analog to Digital Converter

CL-GBAS Closed-Loop Ground Based Augmentation Sys-

tem

DGPS Differential Global Positioning System

FAA Federal Aviation Administration

FDE Fault Detection and Inclusion

GB Gigabyte

GBAS Ground-Based Augmentation System

GNSS Global Navigation Satellite System

GNSS-SDR Global Navigation Satellite Systems Software-

Defined Receiver

GPS Global Positioning System

ILS Instrument Landing System

IP Internet Protocol

LAAS Local Area Augmentation System

MMR Multi-Mode Receiver

OU University of Oklahoma

PC Personal Computer

PM Phase Modulation

68



PRN Pseudorandom Noise

Protobufs Google Protocol Buffers

RAIM Receiver Autonomous Integrity Monitoring

RF Radio Frequency

SBAS Space-Based Augmentation System

SDR Software-Defined Radio

SNR Signal-to-Noise Ratio

TCP Transmission Control Protocol

TCXO Temperature Controlled/Compensated Crystal

Oscillator

Tx/Rx Transmit/Receive

UDP User Datagram Protocol

UHD USRP Hardware Driver

USRP Universal Software Radio Peripheral

VDB VHF Data Broadcaster

VE Vertical Error

VHF Very High Frequency

WAAS Wide Area Augmentation System
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Appendix B

Installing GNSS-SDR for GBAS

B.1 Installing Dual-Boot Ubuntu

In this section, I will go over how to properly install the GNSS-SDR software on
Ubuntu Linux in order for it to work with the HackRF One. Most of these steps
were taken from and can be found in [37]. The first step is to get an installation
of Ubuntu running on your computer.Ideally, the computer will only be running
the Ubuntu OS. However, it can be useful to run multiple operating systems
from one machine. From my own experience, running Ubuntu through a virtual
machine does not work well as stability issues begin to arise and the software does
not always run as expected. I was able to solve this on my current computer
by dual-booting Linux, that way the software can access the full power of your
computer.

To dual-boot Linux on a Windows 10 PC, it requires you to have enough
storage space on your hard drive, probably at least 50GB. Ideally, I set 200 GB
for my dual-boot partition. However, I will list the important steps below as well.
Consider backing up your hard drive before attempting the following steps.

1. Download the latest version of Ubuntu from their website.

2. Download Universal USB Installer

3. Create a bootable Linux thumb drive

4. While on windows, make sure there is an empty partition with at least 20GB,
(I used 20GB)

5. Restart your PC and select from “boot from removable disk”

6. (WARNING) You will need to create your own partition under installation
type to boot the device to. Do not select an option that deletes the rest of
your disk, this would not be ideal for a “dual-boot”.

(a) Create memory of type “Ext 4 journaling file system” called “/”. This
is the root directory. It should be at least 15GB.
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(b) Create a directory called “swap”. This should be twice the size of your
system’s RAM.

(c) Create a directory called /home for everything else. 20GB should be
fine here.

7. Once all three directories are created, click “install now” and follow the rest
of the directions.

Congratulations! You have now installed dual-boot Ubuntu. Every time you
start your computer, you will be prompted to select the operating system which
you wish to boot to. Tip: if you use “hibernate” when shutting down Windows
10, you can boot to Ubuntu, then restart and boot back into Windows 10 and
all your applications will still be running. Installing GNSS-SDR After you have
installed Ubuntu, you can start to install the GNSS-SDR software. To do this,
you will need to be connected to the internet. Once connected to the internet,
proceed with the following steps to install the software.

1. Open a terminal using Ctrl + Alt + T.

2. Run the following series of commands:

(a) sudo apt-get update

(b) sudo apt-get upgrade

(c) sudo apt-get install build-essential cmake git pkg-config libboost-dev
libboost-date-time-dev libboost-system-dev libboost-filesystem-dev
libboost-thread-dev libboost-chrono-dev libboost-serialization-dev
libboost-program-options-dev libboost-test-dev liblog4cpp5-dev
libuhd-dev gnuradio-dev gr-osmosdr libblas-dev liblapack-dev
libarmadillo-dev libgflags-dev libgoogle-glog-dev libhdf5-dev libgnutls-
openssl-dev libmatio-dev libpugixml-dev libpcap-dev libprotobuf-dev
protobuf-compiler libgtest-dev googletest python3-mako python3-six

(d) mkdir work (if not already created)

(e) cd work

(f) git clone https://github.com/gnss-sdr/gnss-sdr

(g) cd gnss-sdr/build

(h) git checkout next (this gives you the newest/updated “next” branch)

(i) cmake -DENABLE OSMOSDR=ON ../ (osmo sdr is required for the
HRF1)

(j) make (takes a long time)

(k) sudo make install

(l) sudo apt-get install hackrf

71



Congratulations! You have successfully installed the HackRF One and GNSS-SDR
software. To check that the HackRF One is detected and working properly, you can
run the “hackrf info” command in the terminal. Installing GNSS-SDR-Monitor
GNSS-SDR-Monitor is a helpful visual program to ensure that the GNSS-SDR
software is working properly as intended. It shows each satellite on each channel
and several pieces of data about each satellite. It also has a map showing the
position of the antenna. To install it, run the following commands (assuming
GNSS-SDR is already installed):

1. sudo apt install build-essential cmake git libboost-dev libboost-system-
dev libprotobuf-dev protobuf-compiler qtbase5-dev qtdeclarative5-dev
qtpositioning5-dev libqt5charts5-dev qml-module-qtquick2 qml-module-
qtquick-controls2 qml-module-qtquick-window2 qml-module-qtlocation
qml-module-qtpositioning qml-module-qtquick-layouts

2. cd work

3. git clone https://github.com/acebrianjuan/gnss-sdr-monitor

4. cd gnss-sdr-monitor/build

5. cmake ..

6. make

7. sudo make install

B.2 Running GNSS-SDR and Monitor

Now, to test the software. One will need a proper working antenna (grounded and
powered if necessary) connected to the HRF1’s antenna connector. Next, copy the
already created configuration file to the work directory. Then run the following
command in the terminal:

1. “gnss-sdr –config file=/home/gbas/work/hackrf GPS L1.conf”

Several lines of text should start to appear. Proper working of the software will
show several of the following lines after a given amount of time:

1. Tracking of GPS L1 C/A signal . . .

2. GPS L1 C/A tracking bit synchronization locked. . .

3. New GPS NAV message received. . .

4. Position at: . . .
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Figure B.1: GNSS window setup.
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Figure B.2: GNSS window with position data.

Refer to Figures B.1 and B.2 to see a screenshot of what the software looks
like in the command terminal.

If you see a lot of “Loss of Lock” messages, that generally means you do
not have a reliable lock on the satellite. This can result from faulty antenna
connection/setup or a slow PC. Make sure to check all wired connections going to
the antenna and that the antenna is getting the proper DC bias voltage sent to it
(if needed). If you see lots of “OOO. . . ” messages, that means you are receiving
messages but are unable to process them fast enough. This is a sign of a slower
PC and you may need to upgrade it. These “OOO. . . ” messages are a common
cause of “Loss of Lock” issues.
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Appendix C

Hardware Setup

C.1 Antennas

The hardware used in this work consists of four antennas on the rooftop of one
of the OU buildings at the local Max Westheimer Airport in Norman, Oklahoma.
The antenna labeled “D” in Figure C.1 is the original OU local monitor antenna
used in the early GBAS work found in [4], [6]. This antenna is a simple GPS
antenna and is seen in Figure C.2. The other three antennas are fully described
in [38] and [39], although the antennas have been stripped of their electrical com-
ponent boxes and their solar panels. This was done to lower their cross-sectional
area and was combined with several weather-proof sandbags weighing them down,
allowing the antennas to withstand several severe storms. An example of these
antennas, the “Parking Lot Antenna” labeled “C” in Figure C.1 is shown in Fig-
ure C.3. Using the given space on the rooftop, the antennas were spread out as
much as possible to get the best results, similarly described in [40].

C.2 Cables

LMR-400 coaxial cable, selected for its great combination of price and perfor-
mance, was ran from each antenna along the roof, down the side of the building,
through multiple walls, and into the GBAS room, shown in Figure C.4. At this
point, a type-N connector was attached on both ends of each cable. These cables
were then connected to their own active GPS splitter [41], as shown in Figure C.5.
Additional cables were ran from these splitters to the desired receivers.

C.3 Receivers and Computers

The cables from the antennas were ran into the GPS splitters and then from there
routed into the desired receivers. The GG12 receivers were connected to their
own custom breakout board and then connected to the main GBAS PC via serial
cables. The GNSS-SDR receivers were connected to their host PC either by USB
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(HackRF One) or via Ethernet (USRP E310). The host PCs were then connected
to a simple network switch via Ethernet, which also connected to the GBAS PC.
The entire setup can be seen in Figure C.7.

Figure C.1: Locations of the OU GBAS Reference Station Antennas.
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Figure C.2: The original OU GBAS local monitor antenna. This antenna is
labeled “D” in Figure C.1.

77



Figure C.3: The “Parking Lot Antenna” as labeled “A” in Figure C.1. Antennas
labeled “B” and “C” are the same type of antenna.
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Figure C.4: Cables from the antennas located on the roof running into the GBAS
room.
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Figure C.5: Cables from the walls run directly to these GPS Networking active
antenna splitters. In some instances, multiple 4x1 splitters are connected together
to allow up to 7 different receivers to use the same antenna, as seen in the pseu-
dorange testing in Chapter 4.
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Figure C.6: GBAS SDR Setup. Four Intel NUCs are seen with three HackRF
Ones and one USRP E310 on top of them.
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Figure C.7: GBAS Ground Base Station setup. Mounted on the back wall are the
GG12s connected to the GBAS PC via multiple serial to USB cables. The SDRs
are connected to their respective Intel NUCs at the lower left which are connected
via a network switch to the GBAS PC.
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Appendix D

HackRF One Configuration File

[GNSS-SDR]

;######### GLOBAL OPTIONS ##################

GNSS-SDR.internal_fs_sps=2000000

GNSS-SDR.telecommand_enabled=true

GNSS-SDR.telecommand_tcp_port=3333

;######### SIGNAL_SOURCE CONFIG ############

SignalSource.implementation=Osmosdr_Signal_Source

SignalSource.item_type=gr_complex

SignalSource.sampling_frequency=2000000

SignalSource.freq=1575420000

SignalSource.gain=40

SignalSource.rf_gain=40

SignalSource.if_gain=50

SignalSource.AGC_enabled=false

SignalSource.samples=0

SignalSource.repeat=false

;# Next line enables the internal HackRF One bias (3.3 VDC)

SignalSource.osmosdr_args=hackrf=0,bias=0

SignalSource.enable_throttle_control=false

SignalSource.dump=false

SignalSource.dump_filename=./signal_source.dat

;######### SIGNAL_CONDITIONER CONFIG ############

SignalConditioner.implementation=Signal_Conditioner

;######### DATA_TYPE_ADAPTER CONFIG ############

DataTypeAdapter.implementation=Pass_Through

;######### INPUT_FILTER CONFIG ############
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InputFilter.implementation=Freq_Xlating_Fir_Filter

InputFilter.decimation_factor=1

InputFilter.input_item_type=gr_complex

InputFilter.output_item_type=gr_complex

InputFilter.taps_item_type=float

InputFilter.number_of_taps=5

InputFilter.number_of_bands=2

InputFilter.band1_begin=0.0

InputFilter.band1_end=0.85

InputFilter.band2_begin=0.9

InputFilter.band2_end=1.0

InputFilter.ampl1_begin=1.0

InputFilter.ampl1_end=1.0

InputFilter.ampl2_begin=0.0

InputFilter.ampl2_end=0.0

InputFilter.band1_error=1.0

InputFilter.band2_error=1.0

InputFilter.filter_type=bandpass

InputFilter.grid_density=16

InputFilter.dump=false

InputFilter.dump_filename=../data/input_filter.dat

;######### RESAMPLER CONFIG ############

Resampler.implementation=Pass_Through

;######### CHANNELS GLOBAL CONFIG ############

Channels_1C.count=32

Channels.in_acquisition=1

Channel.signal=1c

;######### ACQUISITION GLOBAL CONFIG ############

Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition

Acquisition_1C.item_type=gr_complex

Acquisition_1C.coherent_integration_time_ms=1

Acquisition_1C.pfa=0.01

Acquisition_1C.doppler_max=30000

Acquisition_1C.doppler_step=150

Acquisition_1C.max_dwells=1

Acquisition_1C.dump=false

Acquisition_1C.dump_filename=./acq_dump.dat

;######### TRACKING GLOBAL CONFIG ############

Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking
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Tracking_1C.item_type=gr_complex

Tracking_1C.extend_correlation_symbols=10

Tracking_1C.early_late_space_chips=0.5

Tracking_1C.early_late_space_narrow_chips=0.15

Tracking_1C.pll_bw_hz=40

Tracking_1C.dll_bw_hz=2.0

Tracking_1C.pll_bw_narrow_hz=5.0

Tracking_1C.dll_bw_narrow_hz=1.50

Tracking_1C.fll_bw_hz=10

Tracking_1C.enable_fll_pull_in=true

Tracking_1C.enable_fll_steady_state=false

Tracking_1C.dump=false

Tracking_1C.dump_filename=tracking_ch_

;######### TELEMETRY DECODER GPS CONFIG ############

TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder

TelemetryDecoder_1C.dump=false

;######### OBSERVABLES CONFIG ############

Observables.implementation=Hybrid_Observables

Observables.dump=false

Observables.dump_filename=./observables.dat

Observables.enable_carrier_smoothing=true

;######### PVT CONFIG ############

PVT.implementation=RTKLIB_PVT

PVT.positioning_mode=PPP_Static

PVT.output_rate_ms=100

PVT.display_rate_ms=500

PVT.iono_model=Broadcast

PVT.trop_model=Saastamoinen

PVT.flag_rtcm_server=true

PVT.flag_rtcm_tty_port=false

PVT.rtcm_dump_devname=/dev/pts/1

PVT.rtcm_tcp_port=2101

PVT.rtcm_MT1019_rate_ms=5000

PVT.rtcm_MT1077_rate_ms=1000

PVT.rinex_version=2

PVT.output_enabled=true

PVT.enable_monitor=true

PVT.enable_protobuf=true

PVT.monitor_client_addresses=127.0.0.1_10.10.10.1

PVT.monitor_udp_port=1142
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PVT.enable_monitor_ephemeris=true

PVT.monitor_ephemeris_client_addresses=127.0.0.1_10.10.10.1

PVT.monitor_ephemeris_udp_port=1143

PVT.elevation_mask=0

;######### MONITOR CONFIG ############

Monitor.enable_monitor=true

Monitor.enable_protobuf=true

Monitor.decimation_factor=25

Monitor.client_addresses=127.0.0.1_10.10.10.1

Monitor.udp_port=1141
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Appendix E

GBAS Network Configuration

To properly send UDP messages from one PC to another, the PCs need to have
an established network connection. The simplest way to do this is by connecting
them by ethernet cables. The only issue with this is that you have to manually
configure the IP addresses so that the PCs actually see each other. You will need
to do this on both the Ubuntu and Windows 10 PC, so here are the steps to do
it:

Windows 10:

1. Click the Windows logo at the bottom right and type “control panel” and
select the result to open the Control Panel.

2. Click Network and Internet and then Networking and Sharing Center.

3. On the left side of the window, click “Change adapter settings”.

4. Double-click the Ethernet adapter to bring up its options.

5. In the scroll list, double-click “Internet Protocol Version 4 (TCP/IPv4)”.

6. Select “Use the following IP address” and enter the following as seen in
Figure E.1:

(a) IP address: 10.10.10.1

(b) Subnet Mask: 255.255.255.0

(c) Default gateway: 10.10.10.10

7. Click “OK” on every window to save the settings.

Ubuntu:

1. On the top right corner, click the network interface icon and choose “Wired
settings” in the dropdown box.
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2. Underneath “Wired”, choose the little gear icon to open the settings.

3. Click “Manual” for IPv4 Method and then enter the following as seen in
Figure E.1:

(a) Address: 10.10.10.2 (must be different from every other PC)

(b) Netmask: 255.255.255.0

(c) Gateway: 10.10.10.10

4. Click “Apply” to save the settings.

Figure E.1: Properly configuring the IP address on Windows 10.

To check that the computers are connected and configured properly, you can
open the command prompt (Windows) or terminal (Linux) and ping the other’s
IP address by entering “ping #.#.#.#”. For example, if I am on the computer
with IP address 10.10.10.2 and I want to check the connection to 10.10.10.1, then
I’d type “ping 10.10.10.1”. You should receive data back. Sometimes the ping
command on Windows needs to be allowed through. You can temporarily disable
the Firewall to check the ping commands are being sent and received between the
computers. Make sure to re-enable the Firewall afterwards.

Once done changing the IP addresses, these computers will not be able to
connect to the internet via ethernet cable. This is because their IP addresses
and gateways are not correct for connecting to the internet properly. To change
this back, follow the previous steps for changing the IPv4 settings but choose
automatic instead of manual. However, it is still possible to connect to the internet
through Wi-Fi after manually changing the IP settings. This is because the Wi-Fi
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Figure E.2: Properly configuring the IP address on Ubuntu.
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connection uses a different network adapter than the ethernet port and both can
run at the same time, although you may have to select the Wi-Fi as your active
connection.
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Appendix F

Setting Up the USRP E310 and GNSS-SDR

The starting point for several of the steps taken in this setup procedure starts with
the setup manual on the Ettus Research website in [42]. Although the website
had very detailed instructions, additional steps were required due to errors that
were encountered attempting to integrate the USRP E310 with the GNSS-SDR
software. The E310 is ran on a Ubuntu Linux operating system so that it would be
able to easily run alongside GNSS-SDR with no compatibility issues. The majority
of the following information is from the final paper written for an undergraduate
class research project in [43].

The first step in setting up the E310 is to build and install the UHD software
on the host computer controlling the E310. This requires opening the command
terminal and running the following commands:

1. sudo apt-get update

2. sudo apt-get upgrade

3. sudo apt-get -y install autoconf automake build-essential ccache cmake
cpufrequtils doxygen ethtool fort77 g++ gir1.2-gtk-3.0 git gobject-
introspection gpsd gpsd-clients inetutils-tools libasound2-dev libboost-all-
dev libcomedi-dev libcppunit-dev libfftw3-bin libfftw3-dev libfftw3-doc
libfontconfig1-dev libgmp-dev libgps-dev libgsl-dev liblog4cpp5-dev lib-
ncurses5 libncurses5-dev libpulse-dev libqt5opengl5-dev libqwt-qt5-dev
libsdl1.2-dev libtool libudev-dev libusb-1.0-0 libusb-1.0-0-dev libusb-dev
libxi-dev libxrender-dev libzmq3-dev libzmq5 ncurses-bin python3-
cheetah python3-click python3-click-plugins python3-click-threading
python3-dev python3-docutils python3-gi python3-gi-cairo python3-
gps python3-lxml python3-mako python3-numpy python3-numpy-dbg
python3-opengl python3-pyqt5 python3-requests python3-scipy python3-
setuptools python3-six python3-sphinx python3-yaml python3-zmq
python3-ruamel.yaml swig wget
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4. sudo apt-get install build-essential cmake git pkg-config libboost-
dev libboost-date-time-dev libboost-system-dev libboost-filesystem-
dev libboost-thread-dev libboost-chrono-dev libboost-serialization-dev
libboost-program-options-dev libboost-test-dev liblog4cpp5-dev libblas-dev
liblapack-dev libarmadillo-dev libgflags-dev libgoogle-glog-dev libhdf5-dev
libgnutls-openssl-dev libmatio-dev libpugixml-dev libpcap-dev libprotobuf-
dev protobuf-compiler libgtest-dev googletest python3-mako python3-six

5. git clone https://github.com/EttusResearch/uhd

6. cd uhd/host

7. git switch UHD-3.9.LTS

8. mkdir build

9. cd build

10. cmake -DENABLE E300=ON ../

11. sake

12. sake test

13. sudo make install

14. sudo ldconfig

At this point, if everything has been installed correctly, you should be able
to run the following command and get the version number of the UHD software
installed:

1. uhd find devices

The next major step is to flash the SD card with the correct image for E310.
This step requires downloading the correct driver for the E310, which can be
found online at the USRP website: https://files.ettus.com/e3xx\_images/

e3xx-release-4/ettus-e3xx-sg3/. The image used in this project is
“sdimage-gnuradio-demo.direct.xz”.

Once that image has been downloaded, the SD card must be flashed with the
image using whichever software tools are available. For this setup, we used the
tool Bmap-tool whose documentation can be found on the Ubuntu website in
[44]. The following commands will install bmap-tool and also flash the SD with
the downloaded image, which may take up to thirty minutes to complete.

1. sudo apt-get install -y bmap-tools
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2. sudo bmaptool copy sdimage-gnuradio-demo.direct.xz /dev/<SD DEVICE
NAME> –nobmap

After inserting the properly configured SD card into the E310, powering it
on, and connecting it the host PC via serial cable, it can be connected to and
configured. The following command from above should show the E310 which is
attached to the host PC.

1. uhd find devices

Now it is important to configure the E310 properly so that it will send its data
over the network to the host PC. To connect to it, run the following command in
the terminal (assuming /dev/tty/USB0 is the hardware location of the E310):

1. sudo screen /dev/ttyUSB0 115200

At this point, you may need to press the enter key, but eventually a new com-
mand prompt should appear asking for a username and password. The default
username is root. There is not a default password. At this point, run the following
commands to configure the E310’s network settings and to turn on the network
mode:

1. ifconfig eth0 10.10.10.4 netmask 255.255.255.0 up

2. usrp e3x0 network mode

This now has the E310 output over the IP address 10.10.10.4, which is desired
for the network setup for this project.

The last thing required is to ensure GNSS-SDR has been built using the proper
settings. To build.install it for the E310, ensure the following commands are ran:

1. cmake -DENABLE E300=ON ../

2. make

3. sudo make install

4. sudo ldconfig

Now just ensure the GNSS-SDR configuration file has been setup properly to
find the E310 which should be connected via Ethernet cable at the proper IP
address.
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Appendix G

USRP E310 Configuration File

[GNSS-SDR]

;######### GLOBAL OPTIONS ##################

GNSS-SDR.internal_fs_sps=1000000

GNSS-SDR.telecommand_enabled=true

GNSS-SDR.telecommand_tcp_port=3333

;######### SIGNAL_SOURCE CONFIG ############

SignalSource.implementation=UHD_Signal_Source

SignalSource.device_address= 10.10.10.103

SignalSource.item_type=cshort

SignalSource.sampling_frequency=1000000

SignalSource.freq=1575420000

SignalSource.gain=40

SignalSource.subdevice=A:A ; <- Can be A:0 or B:0

SignalSource.samples=0

;######### SIGNAL_CONDITIONER CONFIG ############

SignalConditioner.implementation=Signal_Conditioner

;######### DATA_TYPE_ADAPTER CONFIG ############

DataTypeAdapter.implementation=Pass_Through

DataTypeAdapter.item_type=cshort

;######### INPUT_FILTER CONFIG ############

InputFilter.implementation=Fir_Filter

InputFilter.input_item_type=cshort

InputFilter.output_item_type=gr_complex

InputFilter.taps_item_type=float

InputFilter.number_of_taps=11

InputFilter.number_of_bands=2
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InputFilter.band1_begin=0.0

InputFilter.band1_end=0.48

InputFilter.band2_begin=0.52

InputFilter.band2_end=1.0

InputFilter.ampl1_begin=1.0

InputFilter.ampl1_end=1.0

InputFilter.ampl2_begin=0.0

InputFilter.ampl2_end=0.0

InputFilter.band1_error=1.0

InputFilter.band2_error=1.0

InputFilter.filter_type=bandpass

InputFilter.grid_density=16

InputFilter.sampling_frequency=1000000

InputFilter.IF=0

;######### RESAMPLER CONFIG ############

Resampler.implementation=Pass_Through

;######### CHANNELS GLOBAL CONFIG ############

Channels_1C.count=16

Channels.in_acquisition=1

;######### ACQUISITION GLOBAL CONFIG ############

Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition

Acquisition_1C.item_type=gr_complex

Acquisition_1C.coherent_integration_time_ms=1

Acquisition_1C.pfa=0.01

Acquisition_1C.doppler_max=5000

Acquisition_1C.doppler_step=250

Acquisition_1C.max_dwells=1

Acquisition_1C.dump=false

Acquisition_1C.dump_filename=./acq_dump.dat

;######### TRACKING GLOBAL CONFIG ############

;Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking

;Tracking_1C.item_type=gr_complex

;Tracking_1C.extend_correlation_symbols=10

;Tracking_1C.early_late_space_chips=0.5

;Tracking_1C.early_late_space_narrow_chips=0.15
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;Tracking_1C.pll_bw_hz=40

;Tracking_1C.dll_bw_hz=2.0

;Tracking_1C.pll_bw_narrow_hz=5.0

;Tracking_1C.dll_bw_narrow_hz=1.50

;Tracking_1C.fll_bw_hz=10

;Tracking_1C.enable_fll_pull_in=true

;Tracking_1C.enable_fll_steady_state=false

;Tracking_1C.dump=false

;Tracking_1C.dump_filename=tracking_ch_

Tracking_1C.implementation=GPS_L1_CA_DLL_PLL_Tracking

Tracking_1C.item_type=gr_complex

Tracking_1C.pll_bw_hz=30.0;

Tracking_1C.dll_bw_hz=4.0;

Tracking_1C.order=3;

Tracking_1C.early_late_space_chips=0.5;

Tracking_1C.dump=false

Tracking_1C.dump_filename=./tracking_ch_

;######### TELEMETRY DECODER GPS CONFIG ############

TelemetryDecoder_1C.implementation=GPS_L1_CA_Telemetry_Decoder

;######### OBSERVABLES CONFIG ############

Observables.implementation=Hybrid_Observables

;;######### PVT CONFIG ############

PVT.implementation=RTKLIB_PVT

PVT.positioning_mode=PPP_Static

;PVT.enable_rx_clock_correction=true

PVT.output_rate_ms=100

PVT.display_rate_ms=500

PVT.iono_model=Broadcast

PVT.trop_model=Saastamoinen

PVT.flag_rtcm_server=true

PVT.flag_rtcm_tty_port=false

PVT.rtcm_dump_devname=/dev/pts/1

PVT.rtcm_tcp_port=2101

PVT.rtcm_MT1019_rate_ms=5000

PVT.rtcm_MT1077_rate_ms=1000

PVT.output_enabled=true

PVT.rinex_version=2

PVT.enable_monitor=true

PVT.enable_protobuf=true
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PVT.monitor_client_addresses=127.0.0.1_10.10.10.1

PVT.enable_monitor_ephemeris=true

PVT.monitor_ephemeris_client_addresses=127.0.0.1_10.10.10.1

PVT.monitor_ephemeris_udp_port=1133

PVT.elevation_mask=0

PVT.monitor_udp_port=1132

;######### MONITOR CONFIG ############

Monitor.enable_monitor=true

Monitor.enable_protobuf=true

Monitor.decimation_factor=25

Monitor.client_addresses=127.0.0.1_10.10.10.1

Monitor.udp_port=1131
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Appendix H

Combined Pseudorange Plots MATLAB Code

close all;

tbl = readtable("Combined File_20220826.csv");

tblArr = table2array(tbl);

x = tblArr(:,1);

FirstColumn_HRF3 = 2;

FirstColumn_HRF4 = FirstColumn_HRF3 + 32;

FirstColumn_HRF5 = FirstColumn_HRF4 + 32;

FirstColumn_HRF6 = FirstColumn_HRF5 + 32;

FirstColumn_GG1 = FirstColumn_HRF6 + 32;

FirstColumn_GG2 = FirstColumn_GG1 + 32;

FirstColumn_GG3 = FirstColumn_GG2 + 32;

FirstColumn_GG4 = FirstColumn_GG3 + 32;

% Index in the loop represents that satellite number: PRN<index>

for index = 1:32

GG_avg(:,index) = mean([tblArr(:,FirstColumn_GG1 + index - 1)

tblArr(:,FirstColumn_GG2 + index - 1)

tblArr(:,FirstColumn_GG3 + index - 1)

tblArr(:,FirstColumn_GG4 + index - 1)],2,"omitnan");

y1 = tblArr(:,FirstColumn_HRF3 + index - 1);

windowSize = 10;

b = (1/windowSize)*ones(1,windowSize);

y1 = y1 - GG_avg(:,index);

y2 = tblArr(:,FirstColumn_HRF4 + index - 1) - GG_avg(:,index);

y3 = tblArr(:,FirstColumn_HRF5 + index - 1) - GG_avg(:,index);

y4 = tblArr(:,FirstColumn_HRF6 + index - 1) - GG_avg(:,index);

y5 = tblArr(:,FirstColumn_GG1 + index - 1) - GG_avg(:,index);

y6 = tblArr(:,FirstColumn_GG2 + index - 1) - GG_avg(:,index);

y7 = tblArr(:,FirstColumn_GG3 + index - 1) - GG_avg(:,index);

y8 = tblArr(:,FirstColumn_GG4 + index - 1) - GG_avg(:,index);
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figure(index);

scatter(x,y1,’DisplayName’,’USRP E310’,’Marker’,’*’);

hold on;

scatter(x,y2,’DisplayName’,’HackRF 4’,’Marker’,’*’);

scatter(x,y3,’DisplayName’,’HackRF 5’,’Marker’,’*’);

scatter(x,y4,’DisplayName’,’HackRF 6’,’Marker’,’*’);

scatter(x,y5,’DisplayName’,’GG12 1’,’Marker’,’.’);

scatter(x,y6,’DisplayName’,’GG12 2’,’Marker’,’.’);

scatter(x,y7,’DisplayName’,’GG12 3’,’Marker’,’.’);

scatter(x,y8,’DisplayName’,’GG12 4’,’Marker’,’.’);

hold off;

legend(’Location’,’northeast’);

title([’Pseudorange for PRN ’, num2str(index)]);

xlabel(’Time (s)’);

ylabel(’Pseudorange (m)’);

ylim([-10,40]);

xlim([514800,514900]);

grid on;

end
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Appendix I

GG12 Logger LabVIEW Code
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Figure I.1: Front panel of the GG12 Logger. This program gives live output feed
to the controls in the front panel while also logging all of the GPS data to files.
Each channel can be customized and turned on/off during runtime.
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Figure I.2: The block diagram of the GG12 logger, showing only the code for the
first channel.
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Appendix J

GNSS-SDR Logger Code

The following LabVIEW screenshots show the code used to log the output from
GNSS-SDR. The code first reads the UDP message, decodes it, reformats it, and
then outputs the resulting data to a log file with the date, time, and receiver
number.
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Figure J.1: Front panel of the GNSS-SDR Logger. This program gives live output
feed to the indicators in the front panel while also logging all of the GPS data to
files.
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Figure J.2: Uppermost block diagram of the GNSS-SDR Logger. As can be seen,
each channel is broken into four identical sections to utilize existing code. Each
section runs the GNSS Synchro and GNSS Offset loggers.
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Figure J.3: This section reads the UDP messages from a specific port, parses the
data, and then logs it in a specific format to a file. There is another similar file
for parsing the GNSS Synchro data.
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Figure J.4: This code will parse the protobuf message for the desired values.
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Figure J.5: This program takes a given protobuf message and finds the index of
the desired data values within.

Figure J.6: This section uses the indexes found from the above program and
converts the specific protobuf values to the proper types. In this case, the program
converts the offset and receive time.

108



Appendix K

VE Plot MATLAB Code

%Grab data from imported log file

pcTime = GNSSSDROutputs.PCTime;

rxTime = GNSSSDROutputs.RXTime;

ve = GNSSSDROutputs.VE;

he = GNSSSDROutputs.HE;

sats = GNSSSDROutputs.SatellitesUsed;

bins = [-100000,x_pdf,100000];

x_output = [-14999:1:15000]

ve_real=[];

%this plot

for i=1:length(ve)

j=0;

v = ve(i);

if (sats(i)<4)

continue %Reject data not using at least 4 satellites.

end

if (isnan(v))

continue; %Reject NaN values.

end

ve_real = [ve_real v];

end

h=histogram(ve_real,60,’Normalization’,’pdf’);

%calculate pdf best-fit

pd = fitdist(ve_real’,"Normal");

x_pdf = [-40:0.1:40];

y = pdf(pd,x_pdf);

line(x_pdf,y, ’Color’,"red", ’LineWidth’, 2)
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title("GBAS VE PDF Using GNSS SDR");

xlabel("Vertical Error (m)");

ylabel("Density");

xlim([-20, 20]);

legend("Experimental Data","Best-Fit Curve",’’,’’,’’);

data = ve_real;

numBins = 60;

% Compute mean and standard deviation.

mu = mean(data)

sigma = std(data)

% Indicate those on the plot.

xline(mu, ’Color’, ’red’, ’LineWidth’, 2, ’LineStyle’, ’--’, ...

’HandleVisibility’,’off’);

xline(mu - sigma, ’Color’, ’black’, ’LineWidth’, 2, ’LineStyle’, ...

’--’, ’HandleVisibility’,’off’);

xline(mu + sigma, ’Color’, ’black’, ’LineWidth’, 2, ’LineStyle’, ...

’--’, ’HandleVisibility’,’off’);

sMean = sprintf(’ Mean = %.3f\n SD = %.3f’, mu, sigma);

% Position the text on the plot.

text(mu, .2, sMean, ’Color’, ’r’, ...

’FontWeight’, ’bold’, ’FontSize’, 12, ...

’EdgeColor’, ’b’);

sMean2= sprintf(’Histogram with %d bins. Mean = %.3f. , ...

SD = %.3f’ numBins, mu, sigma);
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