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ports a1 or a2 and is split by a 50/50 linear beam splitter BS1. The two
light beams accumulate a relative phase shift φ before entering another 50/50
linear beam splitter. The two light beams b1 and b2 leaving the interferometer
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Abstract

This thesis presents my research on spin-mixing and interferometry in an all-

optically generated spinor Bose-Einstein condensate (BEC) of sodium atoms. The

sodium atoms are loaded from a magneto-optical trap into a crossed optical dipole trap

and are subsequently evaporatively cooled down to quantum degeneracy by ramping

down the laser power. With our setup, we obtained nearly pure sodium BECs with

atoms number of approximately 20,000 to 40,000.

We study the spin-mixing dynamics in the F = 1 sodium spinor system. I present

experiments on a resonant coupling between spin and spatial degrees of freedom

beyond the single-mode approximation (SMA) during non-equilibrium dynamics in

our sodium spin-1 BEC. These quench-induced spin oscillation experiments rely on

microwave dressing of the F = 1 hyperfine states, where F denotes the total angular

momentum of the Na atoms. Our data show a slow baseline drift of the coherent spin

population oscillation between m = 0 and m = ±1 pairs when the effective quadratic

Zeeman shift q is tuned via microwave dressing to certain values. The baseline drifting

indicates spin dynamics beyond the SMA. Our data agree well with the recent theory

based on a q-dependent, resonant coupling between spin and spatial degrees of freedom.

We further explore these effects by scanning q around the point of maximum baseline

drift to map out this new resonance phenomenon as a function of q.

I also present the result of our spin-mixing atom interferometer experiments. We

experimentally demonstrate two new types of interferometry based on different initial

states: single-sided seeding and double-sided seeding interferometers. The entangled

probe states of the interferometers are generated via spin-exchange collisions in F = 1

spinor BECs, where two atoms with the magnetic quantum number mF = 0 collide

and change into a pair with mF = ±1. Our results show that our spin-mixing

interferometers beat the standard quantum limit with a metrological gain of 3.96 dB

xxii



in the single-sided atom interferometer with spin-mixing time t = 10 ms and 4.77

dB in the double-sided atom interferometer with spin-mixing time t = 8 ms. Our

research on spin-mixing interferometry is useful for future quantum technologies such

as quantum-enhanced microwave sensors, and quantum parametric amplifiers based

on spin-mixing. Our work paves the way for future light-pulse atom interferometry

experiments, which involve the coupling between the spin and momentum degrees of

freedom, and are useful for quantum-enhanced inertial sensing and gravimetry with

BECs.
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Chapter 1

Introduction

1.1 Background

Since the last century, scientists and researchers have pursued lower and lower

temperatures than one could ever achieve, and each advancement toward absolute

zero temperature has led to novel and rich physics. In June 1907, the Dutch physicist

and Nobel prize winner Heike Kamerlingh Onnes successfully liquefied helium and

achieved a temperature of ∼ 1.5 K, which was the lowest temperature at that time,

and this led to the discovery of a new state called superconductivity. In the following

years, superfluid helium-4 was discovered at the transition temperature of about 2.2 K.

In 1972, superfluidity in helium-3 was revealed by Lee, Richardson, and Osheroff at

the temperature of 2 mK [2, 3]. At one time, liquid helium was thought to define

the regime of cryogenic physics until the invention of the laser, which pushed cooling

techniques into a new era.

The idea of using a laser to cool atoms or ions was first introduced in 1975 by two

different research groups: Wineland and Dehmelt [4], and Hansh and Schawlow [5]. In

1978, Wineland, Drullinger, and Walls took the idea from Ashkin [6] and experimentally

demonstrated the cooling of atoms via radiation pressure and successfully cooled

magnesium ions below room temperature [7]. In 1982, William D. Phillips and

Harold Metcalf developed a Zeeman slower to effectively slow down sodium atoms

to 40 percent of their initial velocity [8]. In 1985, Steven Chu’s team at Bell Labs

succeeded in loading cold sodium atoms into an optical molasses and further lowered

the temperature to 240 µK [9]. Two years later, in 1987, E. L. Raab and co-workers

generated the first magneto-optical trap (MOT), which trapped ∼107 sodium atoms

for 2 min with a temperature below one millikelvin [10]. A year later, Claude Cohen-
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Tannoudji of the École Normale Supérieure in Paris and his colleagues cooled 4He

atoms down to a temperature of 2 µK based on velocity-selective optical pumping,

which broke the recoil limit [11]. In 1997, the Nobel Prize in Physics was awarded

jointly to Steven Chu, Claude Cohen-Tannoudji, and William D. Phillips for their

contributions to laser cooling and trapping.

The cold atomic gas generated with laser cooling and trapping techniques has a

temperature many orders of magnitude below the temperature of liquid helium. At

an extremely low temperature, the de Broglie wavelength of atoms in the gas becomes

comparable to or longer than the chemical bond, approaching the wavelength of the

cooling light, and some of the wave properties of matter are expected to happen,

such as resonances and interferences. As the temperature becomes even lower (below

1 µK), where the de Broglie wavelength becomes comparable to the interparticle

distance, the phase-space density of the atomic gas also becomes very high. When

the number of particles per cubic de Broglie wavelength equals a value of 1 or higher,

the atomic gas experiences a phase transition to form a Bose-Einstein condensate

(BEC) for bosonic species or a degenerate Fermi gas for fermionic species. A BEC

forms when a macroscopic number of the atoms in a bosonic atomic gas occupies

the lowest energy state of the trapping potential. The coherence and macroscopic

nature of this new type of matter wave have paved the way for many new fields of

physics and many fascinating research areas, such as many-body physics, precision

measurements, quantum information science, and quantum optics. The beauty of a

BEC is that it provides a highly controllable experimental platform to investigate

interactions among atoms and reveals quantum behavior on a macroscopic scale. On

the one hand, weak interactions in BECs lead to interesting non-linear physics such

as the generation of entanglement [12], quantum phase transitions in spin space [13],

domain formation [14], and BEC vortex experiments [15]. On the other hand, tuning
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a Feshbach resonance is a direct way to reach the strong interaction regime in dilute

and ultracold gases [16]. Related research includes forming various molecular BECs

from paired fermions and studying the BEC-BCS crossover region [17]. Another

interesting research field is investigating the BEC in an optical lattice. A quantum

phase transition from a superfluid to a Mott-insulating state is performed by loading

a BEC into an optical lattice and adjusting its potential depth [18]. Supersolids, a

state of matter that has a crystalline structure, like a solid, but can flow without

friction like a superfluid, has also been proven with BECs in optical lattices and

optical cavities [19, 20]. Besides this, since BECs are highly controllable, for example

the phase and amplitude of matter waves can be controlled, they have been recently

applied to generate new atom interferometry for high precision measurements [21].

The Cold Atom Laboratory of NASA has launched a BEC-based atom interferometer

into the International Space Station to study general relativity, searches for dark

energy and gravitational waves, and spacecraft navigation.

In addition to generating quantum degeneracy in an atomic gas, laser cooling

and trapping technologies are also shining new light on many other research fields.

For example, laser cooling and trapping of cold molecules has drawn considerable

interest and has many applications within quantum chemistry, many-body physics,

and fundamental physics. Several molecules such as strontium fluoride (SrF) [22],

calcium fluoride (CaF) [23, 24], and yttrium oxide (YO) [25] have been successfully

cooled down to realize their quantum degeneracy. Besides, cold atoms also connect

fundamental physics to real applications. Optical lattice clocks based on ytterbium

or strontium atoms have been shown to have better precision for timekeeping than

original atomic clocks [26, 27]. For inertial sensing, cold atom interferometers offer

a promising route towards the next generation of navigation systems. They can

effectively tackle the bias drifts of gyroscopes and accelerometers in long-term inertial
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navigation [28, 29]. Another ongoing research interest are Rydberg atoms, due to

their controllable long-range interaction [30], which are the foundation of today’s

neutral-atom quantum computers. This new generation of programmable neutral atom

quantum computers has recently matured enough that the technology has begun to

transfer from academic labs to startup companies. In addition, the Rydberg blockade

offers quantum optimization algorithms for solving the maximum independent set

mechanism, which is considered to be in the class of non-polynomial hard problems

if solved classically [31]. This technology has real industrial applications such as

antenna placement, 5G network optimization, incremental store placement, and many

more [32].

1.2 Thesis Summary

This thesis reports on research done using the first sodium spinor BEC ever made

at the University of Oklahoma, applying an all-optical approach. I present research

results on spin-mixing dynamics and atom interferometry in spin space with F=1

microwave-dressed antiferromagnetic spinor BECs.

After this introductory chapter, chapter two mainly focuses on the theory of

laser cooling and trapping techniques. Chapter three to chapter six describe how we

experimentally realized our sodium spinor BEC from the ground up. Since I spent

more than half of my Ph.D. research time on designing and building the apparatus, I

will explain, in detail, how the experiment works. Chapter three elaborates on our

ultra-high vacuum system with pressure in a range of low 10−11 Torr. Chapter four

presents the main experimental setup for cold atoms, including laser locking, Zeeman

slower setup, magneto-optical trap setup, imaging system, and the digital and analog

control systems. Chapter five describes our homemade versatile microwave system.

Chapter six illustrates how we load atoms into the optical dipole trap and how the
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evaporative cooling technique leads us to almost pure BECs with about 3×104 atoms

in the trap.

In chapter seven, we explore some interesting physics with our spinor BEC. We

study spin-exchange collision where two atoms in the magnetic sublevel m = 0 can

coherently and reversibly scatter into a pair of atoms in the m = +1 and m = −1

states and vice versa. We further explore the regime in which these dynamics can

be accurately explained within the single spatial mode approximation (SMA) and

when the approximation is violated. We map a new type of resonance between spin

and spatial degrees of freedom, which is not driven by quantum fluctuations, but

by the mean-field. In chapter eight, we switch gears to study one of the potential

applications of the spinor BEC, which is atom interferometry. We will mainly focus

on atom interferometry in spin space and investigate metrological gain by comparing

phase sensitivities to the standard quantum limit. Chapter nine is a summary and

future outlook, which includes a brief discussion of light-pulse interferometry, which

we plan to do in the future.

5



Chapter 2

Theory of Laser Cooling and Trapping

It is well known that light can exert a force on atoms immersed in the light field

to slow the atomic motion and manipulate atoms. This force can be divided into

two types: a dissipative, spontaneous force and a conservative, dipole force. The

spontaneous force relies on the atom absorbing or emitting a quantum of photon

momentum, whereas the dipole force, from the classical point of view, is the interaction

between the transition dipole and the light field. The two different types of light

force generated on atoms directly contribute to the laser cooling methods we use for

generating Bose-Einstein condensates in our experiments.

In this chapter, we review some instances of the two different types of light forces

and study the physics behind the key ingredients of laser cooling and trapping. The

discussion starts with laser cooling with resonant light, including Doppler and sub-

Doppler cooling, which leads directly to the magneto-optical trap (MOT). After that,

we review the cooling techniques using far-off resonance light, which includes the

optical dipole trap and evaporative cooling.

2.1 Laser Cooling with Near-resonant Light

Because light beams carry momentum, the scattering of light by an object produces

a force. The idea of using near-resonant laser light to cool atoms stems from the

fact that atomic absorption of light is more likely to happen when the frequency of

a photon is on resonance with the atomic transition. This type of radiation force is

velocity-dependent because of the velocity dependent Doppler shift, which shifts the

laser frequency seen by the atoms moving relative to the laboratory-fixed laser. Laser

cooling narrows the Doppler-broadened absorption lines by cooling the atomic gas,
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resulting in increased phase space density. Laser cooling of atoms in gases is a strong

dissipative process because of the momentum loss by the atoms during the absorption

of a plane light wave and re-emission of a spherical light wave.

2.1.1 Doppler Cooling

Photons have energy E = ~ω and momentum P = ~k (~ is the Plank constant

divided by 2π). When a moving atom absorbs a photon from a near-resonant light

field, the photon momentum ~k is transferred to the atom. At the same time, the

atom undergoes a transition to the excited state. After this primary momentum

kick from a photon due to absorption, the atom re-emits a photon and receives a

secondary momentum kick due to spontaneous emission. The primary momentum

kick due to absorption is directional. However, the secondary kick is in random

directions, and purely isotropic due to the spontaneous emission. Therefore over many

absorption-emission cycles, the contribution of the net momentum from the secondary

momentum kick is averaged out. In contrast, the primary momentum kicks all add

up. As a result, the net scattering force acts on the atom is in the direction of the

laser beam propagation. This force is also called radiation pressure.

To better understand how the Doppler effect plays a role in atom cooling, we first

illustrate a case for an atom at rest in a two-level system. The scattering force from

absorption followed by spontaneous emission can be written as [33]

Fsc = ~kγρee, (2.1)

where ρee is the probability for the atoms to be in the excited state, which can be

obtained by solving the two-level optical Bloch equation to be

ρee =
1

2

s0

1 + s0 + 4δ2/γ2
, (2.2)

where δ = ω−ω0 is the laser detuning with respect to the two-level atomic transition ω0,

γ is the spontaneous decay rate from the excited state, and the saturation parameter
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s0 = I/Is, where I is the laser beam intensity and I0 is the saturation intensity. The

scattering force becomes

Fsc = ~k
γ

2

s0

1 + s0 + 4δ2/γ2
. (2.3)

For a system at rest and with laser detuning δ = 0, when the laser beam intensity

I is small compared to the saturation intensity Is, the spontaneous force is small.

Increasing the laser intensity thus will increase the magnitude of the cooling force.

However, if the laser intensity is large, where s0 � 1, the cooling force saturates at

~kγ/2. Because of the saturation, the natural linewidth of the transition is broadened.

This phenomenon can be observed by experimentally scanning the frequency detuning.

This broadening is called the power-broadened linewidth of the transition.

In a moving frame, atoms with a certain velocity are most likely to absorb photons

with a certain detuning δ with respect to the atomic resonance frequency ω0 due to

the Doppler effect. For atoms moving with velocity v, the laser beam in the co-moving

frame has the Doppler-shifted frequency ω′ = ω−k ·v. If the laser beam is red-detuned

with respect to the atomic resonance, the atoms moving toward the beam see the

beam Doppler-shifted to the blue and closer to resonance than the atom moving

away from the light beam. Atoms will, therefore, mostly scatter photons from the

beams towards which they are propagating and less from the other beams. The atoms

experience a viscous force opposing their motion. The force is proportional to the

atom’s velocity. For two counter-propagating light beams with the same frequency,

intensity, and polarization, the net scattering force is the sum of the forces from each

beam. In one dimension, the net scattering force becomes Fs = F+ + F−, where

F± = ±~kγ
2

s0

1 + s0 + (2(δ ∓ k · v)/γ)2
, (2.4)

and therefore the sum of the two forces is

Fs
∼=

8~k2δs0

γ(1 + s0 + (2(δ/γ)2)
v ≡ −βv, (2.5)
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Figure 2.1: Optical damping force in one dimensional optical molasses with s0 = 2 and

δ = −γ. The blue dashed trace shows the force from the light beam which atoms move

toward, the red one is the force generated from the atoms moving along with the light

beam, and the black dashed trace is the sum of the two. The black solid line shows

the linear relation between the damping force and the velocity if the velocity is small

enough within the so-called capture velocity range.

where the higher-order terms with respect to velocity have been neglected. In a low

light intensity regime, the stimulated emission is neglected, and the net scattering

force and the velocity relation are illustrated in Figure 2.1. As Fig. 2.1 shows, the

force is negative for v > 0 and positive for v < 0, so the force decelerates atoms. We

also see the net scattering force Fs = −βv in one-dimension is linearly proportional

to velocity when the atoms are moving with small enough velocities, equivalent to

viscous damping, where the friction coefficient is β. This configuration damps the

motion of atoms just like that on a particle in a viscous fluid and is hence called the

optical molasses technique, similar to motion in honey [34]. In addition, we know
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from Fig. 2.1 that there are velocities for which the force cease to act like friction,

we call it capture velocity. Atoms that enter the optical molasses within the capture

velocity range can be cooled efficiently, atoms outside the range are not cooled. A

three-dimensional optical molasses is formed with three pairs of counter-propagating

beams intersecting each other, each pair of beams along one of the Cartesian axes. In

the overlap region of the beams, atoms can be cooled in three dimensions.

Figure 2.1 and Eq. (2.5) give an unphysical prediction that Doppler cooling is

able to cool the sample down to zero velocity. The heating from fluctuations in the

force has not been taken into account. The spontaneous emissions cause the atom

to perform a random walk in momentum space with discrete step size ~k, and their

kinetic energy changes by at least the recoil energy Er = ~2k2/2m. The competition

between the heating and cooling process determines the minimum temperature that

the Doppler cooling is able to reach, which defines as TD = ~γ/2kB [35], where kB is

Boltzmann’s constant and TD is also referred as the Doppler cooling limit. For 23Na,

the Doppler cooling limit is 240 µK.

2.1.2 Sub-Doppler Cooling

In 1988, William Phillip’s group used three pairs of counter-propagating laser beams

to cool down sodium atoms in three-dimensional optical molasses and surprisingly

found that the temperature of the atoms was much lower than the Doppler cooling

limit. The responsible mechanism for this sub-Doppler cooling was identified soon

by Jean Dalibard and Claude Cohen-Tannoudji. It is called Sisyphus cooling or

polarization gradient cooling [36], and experimentally realized by Steven Chu and

co-workers [37].

Polarization gradient cooling usually occurs when atoms have multiple degenerate

ground states (e.g. hyperfine structure and Zeemann sublevels). In the presence of a
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light field, ground states are split due to the AC Stark shift. For atoms moving in

a light field where the polarization varies in space, optical pumping will adjust the

atomic orientation in the ground state to the changing polarization of the light field in

a non-adiabatic process. This leads to a stronger viscous damping force experienced

by the atoms than in Doppler cooling. For Alkali atoms such as Rb and Na, the

atomic structures are much more complicated than a basic two-level system. They

can be cooled to temperatures of sub-Doppler limit, which is much lower than the

Doppler limit via more sophisticated processes. In this section, we mainly discuss two

types of polarization gradient cooling: linear ⊥ linear polarization gradient cooling

and σ+-σ− polarization gradient cooling in one dimension.

We use the simplest transition where the light field couples J = 1/2 and J = 3/2

states to show the polarization gradient cooling in linear ⊥ linear configuration. We

consider two orthogonal linearly polarized laser beams with the same intensity and

frequency that counter-propagate each other. The polarization of this light field varies

depending on the relative phase of the two laser beams and varies with position, as

shown in Fig. 2.2. Over half of a wavelength, the light polarization changes from

linear position at λ/8 to σ+ at λ/4, and back to linear at 3λ/8. Then the polarization

changes to σ− at λ/2, and the paths repeat. Light shifts play an important role in

this cooling mechanism. In the presence of the light field, the atomic ground state is

shifted towards lower energies for a laser tuning below resonance (δ < 0) and causes

a splitting of the degenerate ground state based on the coupling strength between

light and atoms. For the ground state J = 1/2, two magnetic sublevels m = 1/2

and m = −1/2 are split due to the light shift. On the one hand, the light shift for

magnetic sublevel m = 1/2 is stronger than that of the m = −1/2 when the light field

is purely σ+. On the other hand, the light shift for the magnetic sublevel m = −1/2 is

stronger when the light polarization is purely σ−. Polarization gradient cooling relies
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Figure 2.2: Polarization gradient cooling in lin ⊥ lin configuration. The electrical dipole

transition happens between two levels with angular momenta J = 1/2 and J ′ = 3/2,

where the manifolds in J ′ = 3/2 are not shown. The polarization changes from σ+ to

σ− over a distance of λ/4, and the light has elliptical or linear polarization between

these positions. Atoms starting at z = 0 in the m = −1/2 must climb the potential hill

as they approach the z = λ/4 where the light becomes pure σ+ polarization, and there

they are optically pumped to the m = 1/2 sublevel, this process repeats several times

until the kinetic energy is not enough for atoms to climb the hill anymore.
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on the absorption and re-emission of the photon to dissipate energy and, therefore,

cool atoms. When an atom is in the |J = 1/2,m = −1/2〉 ground state and moves

along the polarization gradient, the kinetic energy is converted to potential energy

while the atom is climbing the potential hill. The strongest coupling between light

and atom happens at the top of the hill at λ/4. Hence, atoms experience a pure

σ+ polarized light and are optically pumped, via excited states |J = 3/2,m = −1/2〉,

to the ground state |J = 1/2,m = 1/2〉, where the σ+ light is weakly coupled. The

spontaneous emission radiates the potential energy away from the light-atom system,

causing the system to lose energy. The same cycles repeat until the atoms do not

have enough kinetic energy to climb the hill. This cooling mechanism is also called

Sisyphus cooling, named after the Greek mythological character who was doomed by

the Greek gods to forever roll a large boulder to the top of a hill.

For σ+-σ− polarization gradient cooling, two counter-propagating beams with

opposite circular polarization create a light field where the polarization is linear

everywhere, but directions are rotated about the beam axis. In this configuration, the

polarization does not vary from linear to circular; therefore, no ”hills” or ”valleys” are

formed because there are no spatially dependent light shifts, and atoms are no longer

cooled by the Sisyphus effect. Instead, the net friction force generated is based on

motion-induced orientation in the atomic ground state, and it requires at least the

transition between ground state Jg = 1 to excited states Je = 2.

For atoms at rest in the light field, local linearly polarized light populates most

of the atoms in the m = 0 ground state, and the rest are equally shared in m = ±1

ground states. By contrast, in a moving frame, atoms experience a rotating linear

polarized light field, and this cause the population to re-distribute depending on the

velocity of atoms. For atoms traveling toward the laser beam with σ+ polarization,

|Jg = 1,m = 1〉 is most likely to be populated, and the σ+ light is scattered more
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efficiently than the σ− light because of the different Clebsch-Gordan coefficients. The

atoms that scatter σ+ light experience a momentum kick in the opposite direction of

the light, and this damps the motion of atoms. Similarly, atoms traveling toward the

σ− beam preferentially stay in the |Jg = 1,m = −1〉 state, scatter σ− light, and recoil

in the opposite direction. Overall the unbalanced radiation pressure generated from

the different scattering rates for atoms in m = ±1 states leads to a net force that

opposes atoms’ motion. It is also worth noting that the overall imbalance induced by

the atom motion is not due to the Doppler effect but to a difference of populations in

the ground state. As shown in Ref [36], this type of cooling mechanism achieves at

velocities much lower than those achievable via Doppler cooling alone.

2.2 Magneto-optical Trap

The optical molasses can cool an atomic gas down to the micro-Kelvin regime.

However, both Doppler and sub-Doppler cooling are velocity-dependent damping effects

and therefore do not localize the atoms. The optical molasses can be transformed into a

trap for atoms by applying an inhomogeneous magnetic field in addition to the optical

field. The magnetic field gradient-induced Zeeman effect creates a spatially dependent

shift of the laser-cooling transition frequency such that the velocity-dependent damping

force is transformed into a position-dependent restoring force. This trapping mechanism

combines a magnetic quadrupole field and an optical field named magneto-optical

trap (MOT). The first demonstration of a MOT was in 1987, and since then, various

types of MOT have been introduced, such as pyramid MOT [38], a 2-dimensional

(2D) MOT [39], and a surface MOT [40]. Here, we mainly focus on the widely used

three-dimensional MOT, which we apply in our BEC system.

The principle of the MOT in one dimension is illustrated in Fig. 2.3. We assume

the simplest case of an atomic transition between the hyperfine levels J = 0 and J ′ = 1.
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Figure 2.3: The mechanism of a magneto-optical trap in one dimension, illustrated for

an atom with an atomic transition between J = 0 and J ′ = 1. Two counter-propagating

beams of circularly-polarized light illuminate the atom in a magnetic field gradient. The

magnitude of Zeeman splitting between three magnetic sublevels depends on the atom’s

position. The restoring force from the laser beam and magnetic field gradient pushes

the atom back toward the center of the trap. The energy diagrams are not to scale.

A magnetic quadrupole field is applied such that there is a zero magnetic field at the

center of the z axis (z = 0) and the field increases in magnitude away from the center.

Two orthogonal circularly polarized lasers are counter-propagating, with frequency

detuned below the zero fields atomic resonance by δ. Because of the Zeemann shift,

three magnetic sublevels of J ′ = 1 (mJ = 0 and mJ = ±1), overlapped at z = 0, split

as the magnetic field increases away from the center. As shown in Fig. 2.3 for B > 0,

the mJ = 1 state is shifted up, whereas the mJ = −1 state is shifted down. The

polarization of the laser beam that is incident from the right is chosen to be σ−. The

mJ = −1 sublevel of the excited state is shifted closer to resonance, and due to the
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selection rule, ∆M = −1, only the σ− beam can be absorbed. Thus the atoms will

prefer to scatter σ− light at this position and be pushed toward z = 0. This process

generates a position-dependent restoring force due to the inhomogeneous magnetic

field. The restoring force tends to push atoms back to the center where the magnetic

field is zero. Similarly, for a σ+ laser beam propagating to the right in the B < 0

regime, the mJ = 1 state is shifted down and closer to resonance. Therefore atoms in

the mJ = 1 state will only scatter σ+ light. The resulting position-dependent restoring

force will also push the atoms back towards the center.

As illustrated in Fig. 2.3, after taking the Zeemann shift into account, the effective

detuning of the σ± beam in the MOT is ∆ = δ ∓ (k · v∓ µB/~), take this expression

into Eq. (2.4), the total force acting on an atom in the MOT is

FMOT = F+ + F−

=
~kγ

2

I/Is
1 + I/Is + (2δ − (k · v − µB/~)/γ)2

− ~kγ
2

I/Is
1 + I/Is + (2δ + (k · v + µB/~)/γ)2

,

(2.6)

where µ is the effective magnetic moment, and B is the position-dependent magnetic

field. After expanding the force in terms of the small Doppler and Zeemann shifts, we

obtain both a velocity and a position-dependent force

FMOT = −βv − κz, (2.7)

where β is the damping coefficient associated with the velocity, as explained before,

and κ is another damping coefficient caused by the Zeeman effect. In the MOT, the

restoring force appears in addition to the damping force of the optical molasses.

So far, the discussion has been limited to a 1D MOT. However, the scheme can be

easily extended to a 3D MOT using six laser beams instead of two. The schematic of

a typical three-dimensional MOT setup is shown in Fig. 2.4: A pair of anti-Helmholtz

coils is placed outside the vacuum chamber to generate a quadruple magnetic field.
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Figure 2.4: Schematic of the 3D MOT. Three orthogonal pairs of circularly polarized

laser beams intersect at the center where the magnetic field is zero. A pair of coils

with opposite currents generates a quadruple magnetic field. This setup traps and cools

atoms at the center of the configuration.

Three pairs of counter-propagating laser beams, perpendicular to each other, intersect

at the center of the vacuum chamber where the magnetic field is zero. σ+ and σ−

polarizations are generated by putting quarter wave plates along each beam path. The

MOT is a very robust trap since the power and polarization of laser beams do not need

to be precisely balanced. In some setups, a pair of counter-propagating beams can be

simply generated by one beam with its own mirrored retro-reflected beam. In this

setup, the circular polarization of the retro-reflected beams is enforced to be correct

at the expanse of the power imbalance between the incident and retro-reflected beams

due to losses from mirror reflection, atom absorption, etc. To compensate for this loss,
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we prepare six independent incident beams in our setup, which allows us to precisely

control both power and polarization for each beam to optimize the MOT shape and

number of atoms. Inside the MOT, densities exceeding 1011 cm−3 can be reached, and

hundreds of millions to billions of atoms can be accumulated within seconds. Atom

loss happens in the MOT due to background gas collisions and two-body loss, such as

the photoassociation of atom pairs. The repulsion between atoms that arises when an

atom absorbs a photon emitted by another atom (multiple scattering) keeps an upper

bound on the density.

For alkali atoms, the trapping schemes become more complicated due to the

multiplicity of the ground states. For example, in Na, F = 1 and F = 2 are two

hyperfine levels of the ground states. Usually, the MOT is generated using the F = 2

to F ′ = 3 transition. However, since the F ′ = 3 excited state is very close to the

F ′ = 2 excited states, there is a small probability of off-resonant excitation from F = 2

to F ′ = 2. Spontaneous emission will cause the atoms not only to decay to F = 2

state but also to F = 1 because of the selection rule ∆F = 0,±1. Since the hyperfine

splitting in the ground states is large, ∼ 1.7 GHz, the F = 1 state is decoupled from

the cooling beam. Atoms that decay in this way to the F = 1 state leave the cooling

cycle, leading to atom loss in the MOT. In order to compensate for the losses, another

laser beam is applied to pump atoms out of the F = 1 state. This “repumping” beam

overlaps with the MOT beam and couples the F = 1 to F ′ = 2 transition, will pump

the atoms back to the cooling cycle.

2.3 Optical Dipole Force

The optical dipole force is another type of force acting on atoms due to light. It

arises from the transition dipole induced by the oscillating electric field of the light.

The magnitude of the dipole force is related to the gradient of the light field and the
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detuning of the optical frequency. The blue or red shift with respect to the atomic

transition determines the sign of the force acting on the atom. Unlike the scattering

force we discussed earlier, the dipole force is a non-dissipative force that conserves

energy. There exists, in principle, no upper limit on the magnitude of the dipole force

since it is a function only of the field gradient and detuning.

2.3.1 Optical Dipole Trap

When an atom is placed into a light field, the oscillating electric field E will induce

an atomic dipole moment µ that oscillates at driving frequency ω. The interaction

potential of the induced dipole moment in the electric field can be written as

Udip = −µ · E. (2.8)

The dipole force is then the negative of the gradient of the potential,

F = −∇Udip. (2.9)

Unlike the radiation force, which is due to photon scattering, the mechanism of the

dipole force relies on the electric dipole interaction. Therefore, the frequency of the

light field can be far-detuned from resonance to minimize optical excitations and the

recoil associated with it. The magnitude of the optical dipole potential depends on the

laser intensity. A focused laser beam generates a position-dependent light intensity.

Atoms tend to be trapped where the intensity is the largest if the detuning is to the

red. Since atoms are trapped in the light field, they still experience a scattering force

that heats the atoms, especially where the laser intensity is large. Therefore the atoms

that are trapped in an optical dipole trap experience both the dipole potential, which

is

Udip(~r) = −3πc2

2ω3
0

(
Γ

ω0 − ωL
+

Γ

ω0 + ωL

)
I(~r), (2.10)
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and the scattering rate induced heating, which can be written as

Γscatt(~r) =
3πc2

2~ω3
0

(
ωL
ω0

)3(
Γ

ω0 − ωL
+

Γ

ω0 + ωL

)2

I(~r). (2.11)

Here, ω0 is the atomic resonance, ωL is the frequency of the laser beam, Γ is the

natural linewidth (2π×9.8 MHz for the D2 transition of 23Na), and I(~r) is the spatially

dependent beam intensity for a Gaussian laser beam I(~r) = I0e
−r2/ω2

0 . We define

∆ = ωL − ω0 and apply the rotating-wave approximation to eliminate the ωL + ω0

terms. We then obtain

Udip(~r) = −3πc2

2ω3
0

(
Γ

∆

)
I(~r) (2.12)

and

Γscatt(~r) =
3πc2

2~ω3
0

(
ωL
ω0

)3(
Γ

∆

)2

I(~r). (2.13)

These expressions tell us two important features of dipole trapping. First, the detuning

∆ can be tuned to either negative (red-detuned) or positive (blue-detuned), and both

of them can be used in atom trapping. A red-detuned beam will generate a negative

potential that will attract the atoms toward the light field. On the other hand, a

blue-detuned beam will generate a positive potential that pushes atoms away from the

light field. Therefore, dipole trap configurations are different for red or blue detuning.

Second, the dipole trap potential Udip(~r) is proportional to I(~r)/∆ while the scattering

rate Γscatt scales with I(~r)/∆2. Higher laser intensity and small ∆ can provide tighter

confinement for atoms. However, a small ∆ can also lead to a high scattering rate. As

a result, it is useful to apply a laser beam with a large detuning combined with a high

intensity to get stronger confinement and lower scattering rates in the optical dipole

trap.

In real optical dipole trapping experiments, the consequences of the optical dipole

potential acting on multi-level atoms could lead to more complicated situations because
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the optical dipole potential affects different atomic sub-levels differently. In a multi-

level system, the electric dipole moment ~µij = 〈ei| ~µ |gj〉 is known as the dipole matrix

element between ground and excited states. Therefore energy shifts also depend on

the coupling strength between specific sub-levels i and j of the electronic ground

and excited states, which relates to laser polarization and the electronic and nuclear

angular momenta involved.

For the alkali atoms that are used in most optical dipole trapping experiments,

spin-orbit coupling gives the hyperfine splitting in the excited states, which leads to

the well-known D line doublet 2S1/2 → 2P1/2 (D1 line) and 2S1/2 → 2P3/2 (D2 line). If

the laser detuning ∆ is comparable to the fine splitting frequency ∆FS, then Eq. (2.10)

becomes:

Udip(~r) = −πc
2

2

[
ΓD1

ω3
D1

(
1

ωD1 − ω
+

1

ωD1 + ω

)
+

2ΓD2

ω3
D2

(
1

ωD2 − ω
+

1

ωD2 + ω

)]
I(~r),

(2.14)

where ΓD1 and ΓD2 are the natural line widths of the D1 and D2 transition, respectively.

ωD1 and ωD2 are the D1 and D2 transition frequencies. For far-off resonance light,

which means ∆ � ∆FS, this double splitting and any polarization effects can be

ignored.

2.3.2 Evaporative Cooling

Even though sub-Doppler cooling can cool atoms to the µK temperature regime, the

resultant temperature is still limited by the heating caused by spontaneous emission.

The photons will always be scattered and the atoms will undergo recoil kicks. This

limit is called recoil limit and the recoil temperature is defined as Tr = (~k)2/mkB.

For Na, this temperature is ∼2.39 µK [41]. In order to generate a quantum degenerate

gas such as a BEC, the atomic gas needs to be cooled below the recoil limit. Therefore

other cooling schemes, different from laser cooling, have to be used. There are several
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ways to break the recoil limit, for example, Velocity-Selective Coherent Population

Trapping (VSCPT) [42], Raman cooling [43], and evaporative cooling.

Evaporative cooling was first demonstrated with magnetically trapped spin-polarized

hydrogen in 1986 [44] and was extended to alkali atoms later in 1995 [45]. Since this

mechanism does not involve density-limiting interactions with light, it turns out to be

one of the most common ways to cool the atoms below the recoil limit and greatly

increase the phase space density. Evaporative cooling has been demonstrated in both

magnetic traps and optical traps. In magnetic traps, a radio-frequency field is used to

remove hot atoms from a trapped spin state to a non-trapped spin state. In optical

dipole traps (ODTs), this is done by lowering the power of the laser beam. Compared

to a magnetic trap in which only atoms at weak-field-seeking states can be confined,

an ODT can simultaneously trap all spin components and thus can be applied to

generate spinor BECs for experiments involving two or more magnetic sublevels.

The mechanism behind evaporative cooling is based on the principle of remov-

ing atoms with higher-than-average kinetic energy from the trap, followed by re-

thermalization of the remaining atoms inside the trap. One way to think about

evaporative cooling is to consider cooling a cup of coffee. The hottest molecules of

the coffee are evaporated away from the cup, leaving the rest of them at a lower

temperature. After some hot atoms are removed from the trap, the remaining atoms

have much lower average energy and occupy a smaller volume at the bottom of the

trap, thereby increasing their density. In the ODT, the removal of hot atoms is done by

adiabatically lowering the depth of the trapping potential by lowering the dipole trap

beam intensity, as shown in Fig. 2.5. During this process, atoms with high average

energy are removed from the trap as the potential depth of the trap becomes lower

and lower. Then the collision-induced re-thermalization creates a new Boltzmann

distribution of atoms with a lower average temperature and reduces the sample volume,
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Figure 2.5: A schematic representation of atoms confined in a one-dimensional ODT.

By lowering the intensity of the dipole trap laser beam, the trap depth is reduced so

that energetic atoms (red) can leave the trap. After collisions between the remaining

atoms, a new Boltzmann distribution with a lower average temperature re-establishes

itself: atoms occupy a lower energy state with a lower temperature and an increased

phase-space density.

increasing the phase space density. The time scale of evaporative cooling usually lasts

for seconds. During forced evaporative cooling, a large fraction of atoms is removed

from the trap and the remaining atoms in the trap occupy a high phase-space density.

As a result, the temperature can go down to the nK regime, far below the recoil limit,

and quantum statistics become important [46] (see chapter six for more detail).
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Chapter 3

Vacuum System

In cold atom experiments, the number of atoms in a trap is limited by atom loss

processes. One-body loss, which is described as the interaction between the trapped

atoms and background, contributes to most of the atom loss when the background

pressure is high. One-body loss can be dramatically reduced by isolating atoms

from the environment. This is done by placing them in a vacuum. Building a well-

performing vacuum system is crucial for most cold atom experiments because it will

minimize the impacts of the background gas and prolong the lifetime of the trapped

atoms. For MOT or BEC, building an ultra-high vacuum (UHV) system or an extreme

high vacuum (XHV) system will be helpful to reach a lifetime to tens of seconds.

This chapter presents our vacuum system for generating a MOT and BEC. The

first section introduces the layout of our UHV system with a pressure in the 10−11 Torr

range. Section two discusses the installation, including cleaning, baking, and pumping.

The last section describes the standard procedure of maintaining the vacuum system,

including sodium refill and the nozzle clog cleaning procedure.

3.1 Overview of the Vacuum System

Our main experiment is carried out in a stainless steel ultra-high vacuum system

fits on a 4’ × 10’ non-magnetic optical table as shown in Fig. 3.1. Our apparatus is

divided into three main sections. The middle part is a Zeeman slower that connects

the oven part of the system, which is used for sodium atomic beam generation, and

the experimental chamber part, which is used for sodium gas cooling and trapping.

First, the hot sodium vapor is created inside a sodium oven chamber with the average

speed of atoms ∼ 1000 m/s. Two Varian classic style ion pumps and a differential
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Figure 3.1: CAD rendering of the UHV system consisting of the sodium oven, the

differential pumping chamber, the Zeeman slower, and the main chamber. In addition,

ion pumps, titanium sublimation pump, and a turbo pump (not shown in the figure)

are attached to the system to create and maintain UHV pressure.

pumping section are used in this area to maintain a low sodium background pressure

before the sodium atoms go to the main chamber. An atomic beam is formed by a

custom nozzle. Then, atoms are further slowed by a Zeeman slower to a speed which

can be effectively captured by the MOT in the main chamber.

3.1.1 Na Vapor Generation

The sodium oven chamber is made of a stainless steel 4.5” 6-way cross where the

sodium atomic beam is generated. A sodium reservoir is attached to the oven chamber,

which is made of a stainless steel cup filled with a 10-gram 99.95% pure, pre-scored
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Figure 3.2: a) The sodium reservoir is made of a stainless steel cup filled with sodium. A

nozzle is placed inside of the CF 1.33” tee that was mounted on the top of the reservoir.

b) A 11.4 cm long nozzle to direct the hot sodium vapor away from the sodium reservoir.

The 2.3 mm diameter hole is used to collimate the sodium vapor to create an atomic

beam. c) 3D rendering of the cold plate. The top of the cold plate is inside the oven

chamber to collect the hot sodium atoms. The thick copper feedthrough is in the air

connected to a water-cooled of six TEC elements, as shown in d).

glass, sodium ampoule. The sodium cup is a stainless steel 2.75” ConFlat (CF) flange

half nipple, custom welded with a cupped end. A reducing flange connects the sodium

reservoir to a 1.33” CF tee, where we insert our custom copper nozzle, as shown in

Fig. 3.2a and Fig. 3.2b.

The nozzle is 11.4 cm long with a ring that functions as a CF 1.33” copper gasket

connecting to the oven chamber. The front nozzle with a center hole of 2.3 mm

diameter is inserted into the oven chamber to collimate the atomic beam. Since the

ring of the nozzle is in direct contact with one end of the CF 1.33” tee, it can be

26



efficiently heated up from outside via a band heater. We use two band heaters as

flange heaters to heat the front and back of the nozzles. The temperature of the two

nozzles is 400 ◦C when running the experiment and is decreased to 375 ◦C and 250 ◦C,

respectively, when in standby mode. Note that the nozzle’s temperature must remain

high to prevent sodium from condensing and clogging the nozzle. We use a third band

heater to heat the sodium reservoir and stabilize the temperature close to 300 ◦C

to provide continuous and stable atomic flux when running the experiment. When

the experiment is not running, we decrease the temperature of the sodium reservoir

to 135 ◦C, so no sodium is wasted. All three band heaters’ temperatures are read

and precisely controlled by our PID-based temperature controller (Automation Direct

SL4848-CR). In order to keep our oven region insulated, a mineral wool insulation

material is used to keep the temperature high in the oven region and protect the

people in the lab from high-temperature hazards. One thing that needs to be pointed

out is that even though the oven and the nozzle are hot, in our setup the reduced

flange used to connect the reservoir and the tee is relatively cold. Therefore, a small

fraction of sodium gas will condense in this part. Over several years, it reacts with

the copper gasket, and can cause leaking. Therefore, after running the experiments

for some time, we decided to switch the copper gaskets to silver plated gaskets for

all flanges exposed to high temperature. This greatly improved the longevity of the

system.

A customized copper cold plate is placed inside the oven chamber. It is mounted

onto a copper feedthrough which is cooled to -12◦C using a water-cooled array of

six TEC elements (6* TEC1-12706) on a custom copper heatsink, as illustrated in

Fig. 3.2c and Fig. 3.2d. The cold plate acts to collect the hot sodium atoms at

large angles. It prevents the sodium background pressure from increasing in the oven

chamber. The nozzle is aligned with the center of the hole of the cold plate in order
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Figure 3.3: a) Photo of the UHV system, the Zeeman slower is marked in the picture.

b) Photo of oven chamber taken through the oven chamber’s viewport. The cold plate

has a central hole that is aligned with the front nozzle. A mechanical shutter behind

the cold plate can shut the atomic flux on or off. The yellow light is the fluorescence of

the sodium beam. c) The UHV chamber where cooling and trapping mechanisms occur.

to collimate the atomic beam, as shown in Fig. 3.3b. A pneumatic mechanical shutter

is placed between the cold plate and the front nozzle and can be remotely controlled

to turn the atomic beam on or off before it enters the differential pumping chamber

during experiments.
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The differential pumping chamber is made of a stainless steel 2.75” 6-way cross

which connects the oven chamber and the Zeeman slower. It is used to further reduce

the pressure via a custom differetial pumping tube made of stainless steel. A 50

liter/second ion pump is attached to one port of the 6-way cross to pump the chamber.

Another 2.75” 4-way cross is connected to one of the remaining ports of the 6-way

cross and an ion gauge is connected to read the vacuum pressure when the system

is baking. A pneumatic gate valve is installed at the end of the differential pumping

chamber, which can be manually switched off to protect the vacuum of the main

experimental chamber when the oven is exposed to air, for example when sodium

needs to be refilled. The pneumatic gate valve can also be automatically shut off via

the ion pump controller’s interlock. If the main chamber’s pressure is above the set

point, the gate valve will shut off automatically to prevent the chamber’s pressure from

increasing. Additionally, another two viewports used for viewing the atomic beam are

connected to the 6-way cross and the 4-way cross, respectively. These two viewports

enable us to perform a careful alignment of the Zeeman slowing and repumping beams.

3.1.2 Zeeman Slower Design

Our Zeeman slower is situated between the differential pumping chamber and the

main experimental chamber, as illustrated in Fig. 3.3a. The Zeeman slower consists of

a 1.33” CF, 42” long custom stainless steel nipple as its main body. 32 copper plates

which are used to dissipate the heat, are evenly mounted on a stainless steel tube that

surrounds the nipple and divide the body into small sections. Double-insulated copper

wire is wrapped around each section of the body to form copper coils used to generate

magnetic fields. The whole body of the Zeeman slower is oriented ∼ 20◦ above the

table surface so it can attach to one of the 1.33” CF ports of the main chamber. The

Zeeman slower’s function and design will be detailed in the next chapter.
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3.1.3 UHV Main Chamber

On the lower side of the Zeeman slower, which is shown in Fig. 3.3c, is the main

experimental chamber, where cooling and trapping occurs. For cold-atom and BEC

experiments, the background pressure of the experimental chamber should be as low

as possible to reduce one-body loss. Therefore we want our vacuum system to be

on the order of 10−11 Torr. The base pressure of the chamber is determined by the

gas load divided by the effective pumping speed. The effective pumping speed will

decrease as the pressure becomes lower, so it is essential to lower the gas load to reach

the UHV regime.

In an ideal leak-free system, the gas load is determined by the amount of gas entering

the chamber due to outgassing. Therefore, choosing materials with low outgassing

rates is crucial to reaching the UHV regime. We choose low outgassing materials such

as 304 stainless steel to build the main body of the UHV system, kodial glass for the

viewports, Kapton insulated UHV compatible coaxial wire and OFHC copper gaskets.

The UHV main chamber is a commercially available 8” extended-spherical octagon

made from non-magnetic stainless steel (Kimball Physics MCF800-ExtOct-G2C8A16)

with twenty-six CF ports. Furthermore, we installed two 8” CF kodial glass viewports

used for the two vertical MOT beams and top-down imaging beam, eight 2.75” CF

viewports on the side used for MOT cooling, MOT repumping beams, dipole trap

beams, and sideways imaging beams, and two 1.33” CF viewports for Zeeman slower

and Zeeman slower repumping beams. We also use two 1.33” CF ports for SMA

electrical feedthroughs to connect two homemade antennas inside the chamber. The

antennas are used for generating radio frequency pulses (kHz range) and microwave

pulse (GHz range), respectively. Baking is used to decrease the outgassing rate, which

will be discussed in detail in the next section.
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Figure 3.4: Pump setup for the main chamber. Two ion pumps are mounted to the

main chamber through two 2.7” CF ports, and a TSP is installed next to one of the

ion pumps. Two mini NEG pumps are mounted onto 1.33” CF ports with electrical

feedthroughs.

3.1.4 Pumping Mechanisms

Adding pumps increases the pumping speed, thus lowering the base pressure. Our

system uses two ion pumps, two non-evaporable getter (NEG) pumps, and a titanium

sublimation pump to reach the UHV regime. The setup is shown schematically in

Fig. 3.4.

Two ion pumps are mounted to the main chamber through two 2.75” CF ports.

Ion pumps use an electrical, ionizing discharge maintained under vacuum conditions

and chemically active metals, such as titanium. We apply 7.5 kV across the ion pump;

under a high electrical and magnetic field combination, ion pumps pump the system

by first ionizing the gas molecules and then attracting them with titanium cathode at

the pumping speed of 50 L/s. Ion pumps are designed to operate continuously in the

range between 10−4 to 10−8 Torr or below, so we keep them on at all time with the
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UHV regime. A standard ion pump is ideal for pumping oxygen and nitrogen. Once

atoms and molecules are pumped, they are permanently removed from the vacuum

system. Small atoms such as hydrogen and helium can be pumped efficiently at room

temperature. However, since some heavy noble gas, such as argon, is chemically

neutral, they must be pumped by burial and covered by sputtered material. In our

setup, we use a standard ion pump (Duniway Standard Diode Ion Pump) to pump

chemically active gas such as oxygen and nitrogen. In addition, we use a Galaxy-Diode

ion pump (Duniway Galaxy Diode Ion Pump) to pump noble gas such as argon.

In addition to the two ion pumps, two NEG pumps (SAES Getters Capacitorr

CF16 MK2) are mounted onto the two 1.33” CF ports of the UHV main chamber. The

NEG pump consists of a porous getter pump head and a CF16 support flange with an

electrical feedthrough. Compared to the ion pump, the size of the NEG pump is much

smaller, so the pump head can be directly put inside the vacuum chamber through

a short CF16 port. At the same time, it can still maintain a significant pumping

rate (20 L/s for H2) due to the relatively large surface area of the porous getter.

Additionally, the operation of the NEG pump does not rely on an external power

supply. Once activated, the NEG getter pumps can be operated at room temperature.

The activation of our NEG pumps is straightforward; they are powered using two DC

power supplies (XANTREX XFR 100-12) by connecting the wires to their electric

feedthrough. The first time activation was carried out with five Ampere current for

45 minutes. During activation, the NEG pump gets heated to promote the migration

of the surface bonded species into the bulk of the material, and the stored H2 is

partially released from the porous getter. At the end of activation, the released H2 is

reabsorbed when the NEG pump cools down and the chamber is at room temperature.

Usually, the NEG pump should be activated at the end of the baking with the vacuum

pressure less than 10−6 Torr. The NEG pump must be reactived once it is exposed
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to air or when its pumping speed falls below acceptable limits. The reactivation

procedure is similar to the first-time activation. However, if the reactivation is carried

out in a vacuum without air venting, the activation procedure can be performed with

less time and a smaller current. During activation, we activate our two NEG pumps

simultaneously. The ion pumps are turned off during NEG pump activation so the

ion pumps will not absorb the hydrogen emitted by the hot getter.

We also employ a titanium sublimation pump (TSP) next to one of the ion pumps.

Our TSP consists of a controller (Varian Sublimation Controller) and a TSP cartridge

which is made of a 4.5” CF flange and contains three titanium-molybdenum filaments.

New titanium (Ti) filaments or ones that have been up to air must be degassed before

activation. We apply 30 Amps for 6 minutes to degas the filaments before activating

them. Once degassing is finished, we set the current to 47 Amps for 1 minute with

30 minutes of cooling every cycle to activate the sublimation. During sublimation,

the TSP deposits a fresh layer of Ti onto the nearby surfaces. Since clean Ti is very

reactive, components of the residual gas in the chamber which collide with the coated

walls are likely to react and form a stable, solid product. Thus the gas pressure in the

chamber is reduced. After several activation cycles, we turn off the current and wait

for the system to cool down. Care has to be taken to avoid direct line of sight from

the TSP to any viewports to prevent coating the viewports.

In our system, we use both the NEG pump and the TSP. However, reconciling the

two different types of pumps can be difficult. Theoretically, TSP can deposit a clean

Ti surface during sublimation. On the other hand, the NEG pump gets heated and

releases the stored H2 during activation. Typically, all released H2 will be reabsorbed

as the NEG pump cools down. However, if a clean Ti surface is present, some H2 will

be pumped by the side surface. As a result, the Ti surface will be saturated with H2,

and instead of pumping, it becomes a source of releasing gas. Of course, the TSP
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can be flashed by generating a new layer of Ti. However, the filament heating up to

the necessary temperature will release active gases such as CO, which may partially

saturate the active NEG, slowing the NEG pumps down. Our setup minimizes the

effects by positioning the TSP relatively far away from the NEG pump.

We also use two standard 50 L/s ion pumps in the sodium generation section

to pump the differential pumping chamber and oven chamber, respectively. The

differential pumping chamber is a 2.75” 6-way cross with three viewports to give

optical access. The ion pump mounted on another port can pump the pressure down

to 10−9 Torr regime. The differential pumping chamber serves as an intermediate

chamber connecting the high vacuum area on one side and the UHV area on the

other. It provides a pressure gradient to prevent the main chamber from being directly

exposed to the relatively high pressure. The oven chamber usually operates at 10−8

Torr. The ion pump is mounted on a 4.5” CF flange right next to the oven chamber.

Since the oven chamber is directly connected to the sodium reservoir, a large amount

of sodium gas enters the chamber when the reservoir is hot, causing the sodium

background pressure to increase. The ion pump helps to keep the pressure from going

too high. However, after a long time of exposure to the sodium vapor, the remaining

sodium will poison the ion pump, causing the pressure to increase. While running the

experiment, keeping the ion pump warm at about 80◦C helps to sufficiently mitigate

this problem.

Apart from the ion pump, we also have a portable turbo pumping station (Pfeiffer

Vacuum HiCube 80 Eco) to pump our system mechanically. The turbo pumping

station is mounted on a 2.75” CF port via a long stainless steel bellows at the end of

the vacuum system. The turbo pumping station consists of a turbo pump (Horace

80) and a specially matched oil-free backing pump (MVP 015-2) that can pump the

system from the atmospheric pressure. Once it turns on, the backing pump starts to
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pump the system. The turbo pump turns on automatically after it meets a feasible

pressure and gradually increases its speed until the maximum setting is reached. This

process usually takes less than eight minutes. The vacuum system can be pumped

down below 10−8 Torr with the mechanical pumping station running at full speed.

The mechanical pump is only used to roughly pump the vacuum system while baking

or after breaking vacuum. We close the angle valve and disconnect the turbo pumping

station from the vacuum system while running experiments to minimize the vibration

noise from the mechanical pump.

3.2 Cleaning, Assembling, Baking and Pumping the UHV

Parts

3.2.1 UHV Components Cleaning

Cleaned surfaces are a prerequisite to achieve low pressure in the 10−11 Torr range.

All impurities must be removed from the surfaces, so they do not desorb under vacuum

conditions and produce gas loads or deposit on components. Cleaning vacuum parts is

an efficient way to remove the contaminants before installing the vacuum equipment.

Usually, vacuum components are inspected, cleaned, and packaged in the factory’s

cleaning room. Most of the contaminants have already been eliminated before shipping.

However, some contamination may be left over, such as residual oil and grease on the

surface of the vacuum surface, or small dust and particles. Typically, we clean and

rinse the vacuum parts via the following steps:

• Wash the vacuum components with hot deionized water and detergent to remove

the worst oils and dust. Then rinse with cleaned deionized water.

• Carefully immerse the components in a beaker with fresh acetone and clean them

in an ultrasonic bath for 20 minutes at room temperature. Repeat this procedure
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several times to completely remove the residual oil, grease, and detergent.

• Rinse the components with methanol and ultrasonically clean them in methanol

for another 20 minutes at room temperature to remove the residual acetone.

• Pour out the vacuum components onto clean Kimwipes to soak up methanol.

Then, carefully wrap them to prevent them from accumulating dust.

It is worth knowing that grease-free or powder-free gloves should be worn while

cleaning and handling the vacuum components to prevent contaminants such as finger-

prints and protect people from chemical hazards such as acetone and methanol. All

fragile vacuum components such as gate valves, ion gauges, and electrical feedthrough

should not be ultrasonically cleaned. Acetone should not be used to clean the compo-

nents made of rubber, like O-rings (which are not UHV compatible) and copper [47].

3.2.2 UHV Components Assembling

The assembling procedure can be straightforward, but extra caution must be

taken. It is required for at least two people to work together when assembling the

UHV components. Grease-free or powder-free gloves should be worn and frequently

changed while assembling parts. A copper gasket should be used whenever two CF

flanges are connected since it mechanically seals the space between the two CF flanges’

mating surfaces and prevents leakage into the vacuum while under compression. We

use silver-plated gaskets instead of regular copper gaskets when the components are

frequently exposed to high temperature and sodium. During the installation process,

gaskets should be aligned well and evenly placed onto the knife edge of the CF flange

before tightening with bolts. We use silver plated bolts and nuts to avoid using

anti-seize grease. Using a wrench with a torque-click limiter is a proper way to avoid

applying too much torque to break the bolt.
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3.2.3 UHV System Baking and Pumping

Pumping is the next step after assembling the vacuum components. However,

directly pumping at room temperature is inefficient to reach UHV regime because the

inner surface of the cleaned components may still contain a large number of residual

gases, such as adsorbed water molecules and traces of hydrocarbons. Baking while

pumping the UHV system can dramatically accelerate the molecules emanating from

the surface and reduce the time to reach the UHV pressure requirement. We start

the bakeout by covering all the vacuum components with one layer of aluminum foil,

followed by heating tape wrapped around the foil and covered with another layer

of aluminum foil. Two layers of aluminum foil distribute the heat evenly through

the surface of the vacuum parts. We take precautions to avoid hot spots due to

crossed-wrapping which might damage the system. While pumping on the system with

the turbo pump, the temperature of the heating tape should be increased smoothly to

the designated value. The maximum bakeout temperature should be determined based

on the material’s properties. For example, the baking temperature for pure stainless

steel vacuum parts can go as high as 400◦C. However, a standard glass viewport

can only withstand up to 200◦C, and an ion pump can be baked to 150◦C while

operating with the magnets on and to 450◦C with the magnets and cables removed.

Our complete bakeout procedure consists of the following steps and precaution:

• We use a bakeout temperature at 120◦C to degas water entirely. We make sure

there are no cold spots or hot spots on the components to prevent damage to

the components or inefficient baking.

• For the first-time baking, we turn on the turbo pump and its angle valve, and

bake both chamber and ion pumps for 24 hours with ion pumps turned off. we

keep the ion pumps’ temperature between 110◦C to 120◦C.
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• We then degas ion gauges and the TSP multiple times and note down the pressure.

The pressure increases because of the degassing and eventually decreases after

continuously baking and pumping.

• We pump for another 12 hours, or longer if needed, until the pressure reading

from the ion gauge no longer improves. Next, we activate the NEG pumps, as

mentioned before, followed by turning on the ion pumps. At this point, we close

the turbo pumping angle valve and continue pumping with the ion pumps while

still heating both the ion pumps and the chamber.

• We then switch off the ion pump heaters while we keep heating the chamber for

another 12 hours, so the ion pump start to pump the chamber effectively.

• We switch off the heaters on the main chamber and let the whole system cool

down. The vacuum chamber should reach the 10−10 to 10−11 Torr range with

this procedure.

• We activate the TSP if the pressure does not reach the designated value, to

further decrease the pressure.

It might take longer to bake the whole system because of the cold spot or leaks.

To find the leak, we spray methanol onto the suspect flanges to detect large leaks.

For small leaks, we spray helium gas onto the suspect flanges and use a residual gas

analyzer (RGA) to detect the target helium. We also use an RGA to keep tracking

the amount of gas that remains inside the vacuum system during baking and pumping

to analyze the composition of the remaining gas. The RGA data in Fig. 3.5 clearly

shows the composition of the gas and pressure changes after one day of baking and

pumping.
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Figure 3.5: The data from our RGA shows the vacuum chamber’s pressure as a function

of atomic mass. Different mass of atoms indicates the gas composition in the vacuum

chamber. The figure shows that the residual gas is made of H2, CH4, H2O, CO, N2, Ar,

and CO2. Figure (a) shows that all the gases were at a higher pressure on the first day

of baking and pumping; after one day, the pressure of each gas went down significantly

except H2, as shown in figure (b). Because H2 is a tiny molecule that can penetrate

through the chamber, the chamber must be continuously pumped by the ion pumps,

NEG pumps, or the TSP.
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3.3 Sodium Replacement and Vacuum Maintenance

3.3.1 System Venting

Venting is necessary when we break the vacuum to install new components, refill

sodium, or clean the nozzle. The turbo pumping station provides a venting function

to vent the turbo pump and vacuum chamber. In our system, venting starts after the

turbo pump is switched off and the turbo pump’s rotating speed ceases to zero. We

installed a venting valve (Flutventil Venting valve PM Z01 290 B) to the turbo pump

to limit the pressure rise rate to below the maximum set value when the turbo pump

shuts down or in the event of a power failure. It prevents the possible damage to the

pump’s rotor and magnetic bearing caused sudden pressure increase when the turbo

pump is tuned off.

Vacuum chambers should be vented with dry nitrogen instead of air to prevent

water vapor and other contaminates from depositing on the chamber walls. The OU

Physics department offers clean dry N2. We installed an air pressure regulator to

control the N2 backfill pressure just above one atmosphere so that there is a small

outthrow of N2 when a viewport is removed. This prevent dust and other contaminates

from entering the system.

3.3.2 Sodium Replacement

Sodium needs to be refilled every few years. We typically load the reservoir with 10

grams of ≥ 99.95 % pure sodium packaged in pre-scored glass ampoules. The sodium

replacement needs to be done in a clean environment with extra caution, and the

vacuum system should be vented with dry N2.

In order to pump the vacuum pressure from atmospheric pressure back to the UHV

regime quickly, we have developed a standard sodium change procedure. First, before

replacing the sodium, we ensure the pneumatic gate valve is closed to protect the
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main experimental chamber and Zeeman slower. The apparatus should be at room

temperature, including the temperature of the front nozzle, back nozzle, and reservoir,

as well as the cold plate and ion pumps. The TEC elements that control the cold plate

should be unplugged. It is crucial to wait until the cold plate temperature has finished

slowly rising to room temperature. Otherwise, water condensation will form on the

surface of the copper feedthrough inside the oven chamber and cause contamination.

Second, we connect the portable turbo pumping station and pump for 30 minutes

or until the reading of the rough gauge stays at its minimum value. We unwrapped

the insulators and aluminum foil around the reservoir and nozzles and clean them

with compressed air. Third, we turn off the turbo pump angle valve and let the dry

N2 fully vent the bellows connecting the turbo station. We then slowly open the

angle valve until a hissing sound appears, then fully open the valve and let the dry N2

fully vent the oven chamber. Fourth, we reload a new ampoule of sodium into a new

half-nipple reservoir to replace the old one as quickly as possible to avoid excessive

oxidation of the sodium metal. It should be pointed out that the glass ampoule of

sodium should be wiped with acetone and methanol several times before putting it

inside the reservoir to avoid contamination. At last, after this sodium change, we turn

on the turbo pump to pump the oven chamber for 1-2 days until the pressure reaches

the UHV regime.

3.3.3 Nozzle Cleaning

After running experiments for some time, the sodium atoms collected on the

cold plate grow and generate a tip that grows back towards the front nozzle. If this

happens, the sodium tip growth will block the atomic beam that comes out of the

front nozzle and cause a reduction of atoms in both MOT and BECs. To solve this

problem, we break the vacuum of the oven chamber by opening the 4.5” CF viewport
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mounted on the oven chamber. To clean the nozzle, we first keep the apparatus at

room temperature and vent the oven chamber with dry N2 just as we do for refilling

the sodium. Then, we start to remove the viewport after the dry N2 saturates the oven

chamber. After the oven chamber is fully open, one person should clean the viewport

with acetone and methanol, and the other should clean the nozzle and cold plate by

scraping with specific tools made of copper and stainless steel wires. Grease-free or

powder-free gloves should be worn during cleaning, and all tools should be cleaned

with acetone and methanol before being used in the vacuum chamber. A stainless

steel wire should be inserted into and removed from the nozzle opening to ensure the

nozzle is not clogged. After cleaning the nozzle and cold plate, we turn on the turbo

pump to pump the oven for 1-2 days until the pressure reaches the UHV regime.

3.3.4 UV LIAD

Ultraviolet light-induced atom desorption (UV LIAD) is a method to control the

alkali pressure in the vacuum chamber. It has been shown that alkaline metals atoms

like sodium that are adsorbed by the walls of a vacuum chamber can be desorbed by

irradiation with weak and incoherent UV light [48]. The effect of LIAD depends on

both intensity and wavelength of the light. In our setup, we applied this technique to

clean sodium atoms that form a film on some viewport surfaces which were directly

exposed to the flow of sodium. To obtain a feasible intensity and wavelength, we use

a 10W LED array (LED Engin LZ4-40B208-0000) with a wavelength centered at 400

nm. The LED array is driven by a regulated LED driver (Buckpuck 3021-D-I-700) at

700 mA and mounted on a heat sink with cooling fans, as shown in Fig. 3.6.
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Figure 3.6: Photo of a mounted UV LED array used for removing sodium atoms from

the viewport surfaces.
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Chapter 4

Laser Cooling and Trapping Setup

In this chapter, our laser cooling and trapping setup for all-optical generation of

Na spinor BECs is described. Section one presents our primary yellow laser system

for cooling and trapping sodium atoms and generating the MOT, including our FM-

modulated saturated absorption spectroscopy setup to lock the laser. Section two

presents our setup for the Zeeman slower. Section three shows the sodium MOT setup,

including laser cooling and repumping beams, water-cooling system, anti-Helmholtz

coils for generating a quadruple magnetic field, and bias coils. In section four, the

imaging system and imaging method are discussed in detail. The last section introduces

our computer control system and how we implement it in running experiments.

4.1 Main Laser System

Our yellow laser system used for sodium cooling, repumping, and imaging fits

on a 5’ × 10’ optical table, separated from the 4’ × 10’ optical table that holds

the vacuum system, as shown in Fig. 4.1. In our setup, the main light source is

a commercial second-harmonic generation system (TOPTICA TA-SHG PRO). It

generates infrared light at the wavelength of 1179 nm via an external cavity diode

laser (ECDL). The light is amplified by a tapered amplifier. The amplified light is

then frequency doubled in a bowtie cavity crystal setup into visible light at 589 nm

wavelength. The system can emit a continuous beam at a power of approximately

1 W over a tunable wavelength range of 589 ± 3 nm with instantaneous linewidth

on the order of a few kHz. The IR laser frequency in the ECDL before doubling is

monitored on an external wavelength meter, HighFinesse WS7, using a diagnostic

low-power signal. The wavelength meter delivers excellent absolute accuracy of 30
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MHz with a measurement speed of up to 500 Hz for pulsed and continuous lasers,

which allows us to monitor the laser frequency. In order to have long-term frequency

stability of about 1 MHz to meet our experimental requirements, we actively lock the

laser frequency through FM modulated saturated absorption spectroscopy.

Figure 4.1: The main optical system fits on a 5’ × 10’ optical table that generates

cooling, repumping and imaging beams. The main light source is generated from a

commercial SHG laser system (TOPTICA TA-SHG PRO), designed to operate at

wavelength λ ≈ 589 nm with a continuous output power of 1 W.

4.1.1 Saturated Absorption Spectroscopy

The saturated absorption spectroscopy (SAS) technique is commonly used to

determine the atomic transition frequencies in a Doppler-free way [49]. In regular

laser spectroscopy, only one laser beam propagates through a hot atomic vapor cell.

The hyperfine structure of the excited state manifold cannot be resolved due to the

45



large Doppler-broadening. Since atoms obey the Maxwell distribution of velocities

at a given temperature, the Doppler shift broadens the absorption profile by a few

hundred MHz to GHz, leading to a Doppler broadened spectrum much larger than

the hyperfine splitting of the excited state of a few tens of MHz.

Doppler-free SAS was developed to eliminate the Doppler broadening and thus

allows the splitting between energy levels of atoms to be measured with much greater

precision [50, 51]. SAS uses two counter-propagating laser beams, an intense pump

beam and a weak probe beam, overlapped in a hot atomic vapor cell with both beams

derived from the same source, tuned to the same resonant frequency. When atoms

are moving at close-to-zero longitudinal velocity, both pump and probe beams can

be absorbed. The strong pump beam saturates the atomic transition along the beam

path due to its high intensity. At the same time, the weak probe beam that counter-

propagates the pump beam will no longer pump atoms from the ground state to the

excited state since the atoms are already optically saturated. Instead, the probe beam

interacts with the atoms in the excited state and causes stimulated emission, creating

transmission peaks in the Doppler-broadened profile. These peaks are monitored on a

photodiode detector.

Additionally, crossover peaks occur for a system with more than two states. For

example, when two atomic transitions are within a single Doppler-broadened feature

and share a common ground state, a moving atom sees both pump and probe beams

resonant with two separate transitions simultaneously. Therefore the crossover peak

occurs at a frequency precisely between two transitions. Crossover peaks can be quite

strong, often stronger than the main saturated absorption peaks.

Fig. 4.2 shows an example of absorption spectroscopy of sodium with and without

using the SAS technique. By blocking the pump beam and scanning the probe beam

frequency over the sodium D2 line, we can perform normal laser spectroscopy on
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Figure 4.2: Probe beam absorption profile for laser spectroscopy. By blocking the pump

beam and scanning the laser frequency over the sodium D2 line, we observe two distinct

but not fully resolved absorption dips, as shown in (a). In (b), when the pump beam

is unblocked, Lamb dips appear within the absorption profile. The leftmost and the

rightmost peaks correspond to the transitions within the hyperfine structure, and the

middle peak results from crossover resonances at frequencies directly between the other

peaks.
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the sodium vapor, which yields the Doppler-broadened absorption profile shown in

Fig. 4.2a. Within this profile, two distinct but not fully resolved absorption dips

are caused by the two ground states within the sodium hyperfine structure. The

absorption on the left, at lower frequency, corresponds to the transitions between the

32S1/2 F = 2 ground state and 32P3/2 F’ = 1, 2, 3 excited states. The absorption on

the right, at higher frequency, corresponds to the transitions between the 32S1/2 F =

1 state and the 32P3/2 F’ = 1, 2 states. When the pump beam is unblocked, we now

perform saturated absorption spectroscopy, which causes the Lamb dips to appear

within the absorption profile. As shown in Fig. 4.2b, the leftmost peak contains the

Lamb dips associated with transitions involving the F = 2 ground state and their

crossover resonances. The rightmost peak is similar to the left peak but for the F = 1

ground state. The Lamb dip in between these results from crossover resonances at

frequencies directly between the other peaks.

The schematic of our SAS setup is shown in Fig. 4.3. The laser used for SAS is

originated from the primary yellow laser (TA-SHG Pro 589 nm). The first half-wave

plate and the following polarized beam splitter (PBS) distribute laser power to the SAS

setup. Another half-wave plate and PBS split the beam into an intensive pump beam

and a weak probe beam which counter-propagate in a hot sodium vapor cell. We use

aluminum foil to wrap our glass sodium vapor cell and heat it with a heating tape, as

illustrated in Fig. 4.4. The heating tape is positioned so that a temperature just above

∼ 100◦C is maintained and the windows are kept slightly hotter than the other parts of

the cell. The sodium will neither condense on the cell windows nor react with the glass.

We choose the leftmost peak in Fig. 4.2b which involves the transition between F=2

ground state to F’ excited states to lock our laser. Specifically, we use the crossover

peak between the F = 2 to F’ = 3 and F = 2 to F’ = 2 transitions as our locking

point because it provides the strongest signal. In addition, we frequency-modulate
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Figure 4.3: Experimental setup for FM-modulated saturated absorption spectroscopy.

The pump beam (red solid line) and probe beam (blue dash line) are derived from the

main laser. The pump is frequency shifted and FM modulated through an AOM to

allow tuning of the lock point and lock-in detection to generate a derivative signal.

our pump beam via an acousto-optic modulator (AOM) set at a carrier frequency

equal to 80 MHz. The AOM is set up in a double-pass configuration, so the total shift

of the pump beam is red-detuned by 160 MHz. The modulation signal is generated

by a lock-in amplifier reference signal which outputs a sine wave at a frequency of 30

kHz. We use a variable gain and offset circuit to make this signal compatible with FM

input of the AOM driver. The resulting probe beam signal after de-modulation by

the lock-in amplifier is proportional to the derivative of the original signal, which will

have zero crossings for each of the well-defined Lamb dips in the absorption profile.

To lock the laser, the lock-in amplifier is used both to obtain a better signal-to-noise

ratio as well as generate the error signal used to create the feedback loop for locking

the laser. The probe beam is monitored by a photodiode (PD1), as shown in Fig. 4.3.

The photodiode signal is fed into a lock-in amplifier (EG&G 5207 Lock-in Amplifier

from Princeton Applied Research) to generate the error signal. The input probe beam
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Figure 4.4: Sodium vapor cell used in our saturated absorption spectroscopy setup. We

wrapped the vapor cell with aluminum foil and heated it up to ∼ 110 ◦C. The windows

are kept a few degrees hotter than the body.

signal can be detected by the lock-in amplifier via phase sensitive detection with a

high signal-to-noise ratio [52]. This error signal generated by the lock-in amplifier is

then fed into a home-built analog PID controller. It creates the feedback signal fed

into the laser control circuit to stabilize the laser frequency via grating angle piezo and

current feed-forward control, as shown in Fig. 4.5. To mitigate the residual amplitude

modulation in the pump beam due to the AOM, we generated another sine wave

signal, derived from the lock-in reference output, and feed it into the AM input of the

AOM to stabilize the pump power. With the lock-in amplifier and PID controllers

implemented in the SAS setup, we can lock our main diode laser for over 15 hours

with a frequency accuracy within 1 MHz.
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Figure 4.5: The output of the lock-in amplifier is shown in red. The grey curve is the

absorption profile of the F=2 to F’ transition. The red curve represents the amplitude

derivative of the absorption signal. We lock the laser at the largest cross over peak

which is the zero crossing of the error signal.

4.1.2 Main Laser Setup

Apart from the weak diagnostic beam used for locking the laser via SAS, all laser

power is sent to the main optics setup to generate the Na atom cooling, Zeeman

slowing, imaging laser beams, and their corresponded repumping beams, as shown in

Fig. 4.6.

As discussed in Chapter 2, Doppler cooling happens when the cooling beam is

red-detuning with respect to the atomic transition frequency. We use two AOMs to

manipulate the frequency of the MOT cooling and Zeeman slowing beams, respectively,

and another three AOMs to manipulate their repumping laser beams. The energy

level diagram with the relevant transitions used for laser cooling is shown in Fig. 4.7.

The initial laser frequency is locked ∼80 MHz red-shifted from the crossover transition

between the F=2 to F’=3 and F=2 to F’=2 atomic transitions. The repumping beams’

frequency is set to bring the atom from the F=1 ground state back into the cooling

51



Figure 4.6: Schematic of the laser system used to generate MOT cooling, MOT re-

pumping, imaging, imaging repumping, Zeeman slowing and Zeeman slower repumping

beams. All cubes are polarizing beamsplitter cubes and all laser powers are measured

before the PM fibers

cycles. Thanks to the energy structure of sodium atoms, the two hyperfine levels of

the ground states are only about 1.77 GHz away from each other. This spacing is

rather rather small compared to other alkaline atoms, such as rubidium (6 GHz) and

cesium (9.8 GHz). It allows us to do cooling and repumping with only one laser. The

necessary 1.77 GHz frequency shift to the blue is realized with a large frequency AOM

(Brimrose GPF-1800-200-589) with a carrier frequency equal to 1800 MHz. Since the

AOM is designed to shift large frequency, the diffraction efficiency is only about 30%

to 40%. To get the maximum diffraction efficiency, we mounted this AOM onto a

translational and rotational stage that can be adjusted precisely to set the x, y and z

translation, as well as the z-axis rotations, and the y-axis tilt. In addition, this AOM
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Figure 4.7: Frequencies of laser light used in the experiment compared to the hyperfine

structure of sodium D2 line. Frequencies are not drawn to scale.

is driven by a frequency generator (Agilent 8657B) which produces a center frequency

at 1.74 GHz with 1 W of RF power. Our final output power is about 200 mW, and it

is distributed to three repumping beams, including MOT repumping, Zeeman slower

repumping, and imaging repumping beams. Care has to be taken to ensure that both

the RF power and light intensity remain below the damage threshold of the AOM.

Our detuning of the MOT cooling beam is about 20 MHz to the red of the strongest

atomic transition F = 2→ F ′ = 3. During polarization gradient cooling, this detuning

is increased. To allow such changes of detuning while still keeping a high fiber coupling

efficiency, the corresponding AOM is double passed. The double-pass AOM scheme

maintains the laser beam pointing over a large range of frequency detunings. Figure 4.8

shows a schematic of the double-pass AOM configuration. The incoming laser beam

passes through the AOM, and its first order diffracted beam is retro-reflected by a

mirror and passes back through AOM again. Then, the beam is deflected in the
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Figure 4.8: Double-pass AOM configuration can mitigate the shift in laser pointing due

to frequency changes, and also provide a doubled frequency detuning. In this figure, f0

is the original laser’s frequency and f is the frequency of the rf signal sent to the AOM.

The first order of the final output laser’s frequency after the double-pass configuration

is 2f + f0. The lenses are chosen so that the AOM is in the focus of both lenses.

AOM at the same angle as the incoming beam and counter-propagates along with the

original zero-order beam. A quarter-wave plate in front of the mirror will change the

beam polarization by π/2. Therefore the PBS can separate the outgoing beam from

the incoming beam. In order to optimize the efficiency of the AOM, the beam width

needs to be adjusted close to the size of the active aperture when it goes through the

crystal inside the AOM. Usually, a lens is placed before the AOM to focus the beam

size such that the relay length is well overlapped with the AOM position. Another

lens with the same focal length is placed after the AOM to collimate the beam and

ensure that the reflected beam going back through the lens will focus at the same

spot as the incoming beam. The outgoing beam will end up having the doubled

frequency after two deflections in the AOM with respect to the zero-order incoming

beam. The efficiency depends on the AOM specification. With a double-pass AOM

scheme, the final diffracted beam overlaps with the incident beam regardless of the

frequency changes made by the AOM, which is essential for laser cooling and trapping

experiments. The same double-pass configuration is also used in our Zeeman slower

beam and the Zeeman slower repumping beam to achieve a double frequency shift
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(∼480MHz), see Fig. 4.6.

In our setup, AOMs and shutters in Fig 4.6 are either analog or digitally controlled

via NI or Spincore DAQ cards, which is dicussed in detail in section five. The AOMs

for the MOT (Zeeman slower) cooling and repumping beam can receive an analog

signal, and their frequency and power can be manually adjusted via LabVIEW at

any time. The rest of the AOMs have pre-set frequencies. The drivers receive a

digital TTL signal so the beams can be switched from on to off within nanoseconds

to stop the light from going into the main experimental chamber. Shutters can also

be turned on and off digitally within milliseconds during our experiments. When the

shutters are turned off, they can help block the light leaking from the AOM zero-order

scattering. All laser beams with their designated frequencies are then delivered to the

main chamber with single-mode polarization-maintaining (PM) optical fibers from

Thorlabs. All laser beams should be carefully aligned to their fibers to ensure the

system’s performance. The first step of the alignment is to connect a fiber optic tracer

(PRO-VFL-10) to the outgoing end of the PM fiber. Red tracer light then appears

out of the fiber input. The yellow beam is now aligned to overlap with the red tracer

beam. Next, fine alignment is done by walking the laser beam using two mirrors until

the maximum output power is achieved. We use fiber collimators (CFC8-A Thorlabs)

to move the laser beam focus onto the PM fiber tip to further optimize the power

output and have maximum efficiency.

We aligned the polarizations to the slow axis of the PM fibers, using both λ/2

and λ/4 wave plates in front of the fiber collimators. The λ/4 wave plate is used

to generate a pure linear polarized light before entering the fiber, and the λ/2 wave

plate is used to align the linear polarization axis of the laser beam with the slow

axis of the fiber. We use a polarization-extinction ratio meter to measure the output

polarization extinction ratio from a PM fiber to see how much of the output beam is
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linearly polarized along the slow axis. If the laser beam is well coupled into the fiber,

we should get at least 70 % efficiency measured in this way.

4.2 Zeeman Slower

The MOT can only capture atoms within the capture velocity range of a few tens

of meters per second for sodium. However, the average velocity of the hot sodium

gas generated in the oven chamber is about 700 m/s, far above the capture velocity.

Therefore, to slow the atoms down and efficiently load them into the MOT, a number

of slowers have been invented. For example, one can chirp the laser frequency or

use a broadband laser to keep a laser beam always on resonance with a slowing

atomic beam [53, 54]. In another example, one can use diffused light such that the

Doppler shift varies with the angle of the laser beam; therefore, the atoms can be

efficiently slowed by scattering the counter-propagating light at different angles [55].

Another convenient way is to keep the laser’s frequency unchanged and tune the

atomic transition by applying a spatially varying magnetic field along the atomic

beam path. This method is known as Zeeman slowing and was first demonstrated

in 1982 by William D. Phillips and Harold Metcalf. They built a Zeeman slower to

reduce the velocity of a sodium atomic beam from hundreds to a few tens of meters

per second [8].

The Zeeman slower is often used in atom cooling and trapping laboratory. We

designed and implemented a passively cooled zero-crossing Zeeman slower in our lab

to help us load the MOT and achieve BEC. In chapter three, we briefly mentioned

the setup of the Zeeman slower. In this section, we focus on the mechanism of the

Zeeman slower and how we implemented it in our system.
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4.2.1 Zero-crossing Zeeman Slower

In a Zeeman slower, a laser beam is counter-propagating an atomic beam to

decelerate the atomic beam. The frequency of the laser beam is red-detuned from the

atomic transition. When laser light is nearly resonant with the atoms, from chapter

two, we know the deceleration due to the scattering is

a =
~kΓ

2m

s0

1 + s0

, (4.1)

where k is the laser wave number, Γ is the natural linewidth of the atomic transition,

and s0 = I/Is is the ratio between the laser intensity and the atomic saturation

intensity. At large laser intensity, this reduces to

a =
~kΓ

2m
. (4.2)

To continuously generate a scattering force on the atoms, the magnetic field is

spatially changed such that the Zeeman splitting of the hyperfine level matches the

Doppler shift of the moving atoms. It satisfies the equation kv(x)+2πδ+µB(x)/~ = 0.

In an ideal case, we assume that the deceleration of the atoms is constant and only

due to the laser. The velocity of the atom at any position x can then be written as

v(x) =
√
v2

0 − 2ax. The ideal magnetic field is given by

Bideal(x) =
~k
µ

√
v2

0 − 2ηax−B0, (4.3)

where η is a safety factor to account for magnetic field imperfections in any realistic

slower, µ = µB(geme − ggmg) is the magnetic moment of the atomic transition, µB is

the Bohr magneton, g is the Landé factor and me(g) is the Zeeman substate of the

excited (ground) states. The bias field B0 = ~δ/µ is a constant value that depends

on the detuning of the Zeeman slowing laser. According to Eq. (4.3), the magnetic

field gradually decreases along the longitudinal direction (x) of the Zeeman slower,

and it reaches B(x) = 0 based on the value of bias field B0. Then the direction of
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the B-field starts to reverse, but the velocity keeps decreasing at the same rate. This

type of Zeeman slower is called a zero-crossing slower since its magnetic field changes

from positive to negative. The zero-crossing configuration offers several practical

advantages. The magnetic field has positive and negative regions, which means the

magnetic field’s maximum is reduced. Therefore, the heat dissipation in the coils is

decreased. The atoms exit a nonzero field, quickly decoupling from the slowing laser

to preserve a narrow velocity distribution. The zero-crossing position can be chosen

to match the detuning of the slowing laser [56].

4.2.2 Zero-crossing Zeeman Slower Design

Figure 4.9 shows the design of our Zeeman slower. It is made of a 1-meter long

stainless steel tube, that can slide on a long 1.33” nipple with a CF flange on each side.

In order to allow sliding the tube onto the nipple, a special removable 1.33” flange is

used on the side close to the experimental chamber. We wound the stainless steel tube

with AWG14 double-insulated Kapton magnet wires, which have a diameter of 0.0641”.

The wires were wound around the tube tightly with multiple horizontal and vertical

loops to generate the designated magnetic field. Based on numerical simulation, our

zero-crossing Zeeman slower consists of 31 segments, where the first 20 segments

produce a positive field, and the following ten segments produce a negative field. An

additional coil with a positive current was added to the end to control the minimum of

the field at the end of the slower, which precisely tunes the final velocity and prevents

atoms from being pushed back into the slower after they exit. The magnetic field for

a Zeeman slower is typically generated by a solenoid of current-carrying wire with a

varying number of layers. The field strength is derived from the Biot-Savart Law. The

total magnetic field of the Zeeman slower is formed by summing the contribution from

each layer. From our numerical calculations, the magnetic field at the beginning of
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the Zeeman slower should be 600 G to capture the hot sodium gas entering the slower.

Instead of using a high current to generate such a high magnetic field, our solution is

to add more coil layers since adding more layers could get the equivalent magnetic

field. In practice, we only apply low current of a few Amperes through the wires since

less current generates less heat. In addition, copper disks between segments serve as

heat sinks to dissipate the heat into the air via convection. Our design replaces the

need for water cooling with completely passive cooling. No cooling fans are needed

either.

Figure 4.9: 3D rendering of the Zeeman slower. The first 20 segments produce a positive

field, the following ten segments produce a negative field, and the last coil produce

positive current to tune the final velocity of atoms.

We tested our slower by applying 4 A of current through all segments of wires and

measuring the magnetic field in the center of the Zeeman slower with a Hall-effect

based Gaussmeter. A comparison with the simulation results is shown in Fig. 4.10.

As can be seen, our measurement data matches very well with the simulation. Note

that the change of the magnetic field experienced by the atomic beam must not be

too fast. In other words, it must satisfy the adiabatic theorem, which says that it

takes a finite amount of time for atoms to slow down during each absorption and

emission cycle. If we decelerate the atoms too quickly as they travel along the slower,
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Figure 4.10: Measured longitudinal component of the magnetic field generated along

the center of the Zeeman slower with 4 A of current through each segment of wires

(black dots) compared to the simulated field (red line)

they will be removed from the slowing process. Therefore, atoms must be decelerated

slowly enough, so the laser remain on resonance with them when they relax back to

the ground state.

The Zeeman slower is oriented diagonally upwards, as shown in Fig. 4.11 connected

to one of the 1.33” CF ports of the UHV chamber. The diagonal configuration keeps

it out of the way of other components, and allow us to keep better optical access

provided by the bigger windows. The window on the opposite side of the Zeeman

slower is periodically cleaned by UV LIAD. The Zeeman slower beam incident to

this window has a power of about 17 mW which is high enough to saturate the

2S1/2F = 2→ 32P3/2F = 3 atomic transition and a λ/4 wave plate is used to rotate

the light polarization from linear to circular to match the selection rule for the strongest

transition. The frequency of the Zeeman slowing beam is red-detuned from the laser

locking point by δ = 480 MHz, as shown in Fig. 4.7. The Zeeman slower repumping
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beam with a power of 1.6 mW is overlapped with the Zeeman slowing beam. Its

frequency is further tuned by 1.74 GHz used to pump the atoms back to the cooling

cycle. The current setting for the Zeeman slower is different from the testing data due

to the influence of the ambient magnetic field generated from other sources, such as

MOT coils and magnets of the ion pumps. After carefully tuning the current in each

segment, we eventually set 3.8 A, 3 A, and 1 A for the three sections along the path of

the atomic beam, respectively, to optimize the number of atoms trapped in the MOT.

Figure 4.11: The 4’ × 10’ non-magnetic optical table that holds the MOT optical

system, and the vacuum system. The laser beams generated on the main laser table are

delivered to this table via PM fibers to generate the MOT.
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4.3 3D MOT

4.3.1 MOT Setup

The MOT setup fits on a 4’ × 10’ non-magnetic optical table, as shown in Fig. 4.11.

After sodium atoms are slowed down with our Zeeman slower, we use a magneto-optical

trap (MOT) to further cool them down from ∼ 20 m/s to a few centimeters per second

and trap them at the center of the main experimental chamber. Our 3D MOT consists

of three pairs of counter-propagating cooling beams in three orthogonal directions.

Each of the cooling beams has a Gaussian profile. We use a telescope to expand the

size of the MOT beams to about 0.8” diameter before they intersect in the center of

the chamber. The larger size of the beam can potentially trap more atoms in the MOT.

The total power of the MOT beams during the MOT loading phase is ∼ 30 mW,

evenly distributed into six beams by several polarizing beam splitters (PBS), so each

beam has a power of ∼5 mW. The linear polarization of the cooling beams after the

PM fiber is changed to circular polarization by a λ/4 wave plate before entering the

main chamber. The frequency of the MOT cooling beam is red-detuned with respect

to the F = 2 to F ′ = 3 cooling transition by δ = −20 MHz during the MOT loading

phase and is then changed during each phase for further cooling. The MOT cooling

beam’s power and frequency can be changed programmatically via an AOM (ISOMET

M1201E-SF40-1.7). This AOM is set up in a double-pass configuration, so the laser

beam pointing will be maintained even when a large frequency detuning is applied to

the AOM.

The MOT cooling beams can excite the atoms to the F’ = 2 excited state, from

which atoms can decay to the F = 1 ground state via spontaneous emission, causing

loss from the trap. In order to keep most of the atoms in the cooling cycle, two pairs

of ∼3.8 mW, 0.8” diameter repumping beams, overlapping with cooling beams, are

turned on at the same time to optically pump atoms from the F = 1 state to the
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F ′ = 2 excited state. The MOT cooling and repumping beam configuration is shown

in Fig. 4.12.

Figure 4.12: CAD rendering of MOT, MOT repump, and imaging beams entering the

main experimental chamber.

In addition to the cooling and repumping laser beams, magnetic field gradients

are required to create a position-dependent force to trap the atoms. The magnetic

field gradient is generated by a pair of coils in anti-Helmholtz configuration, where

current goes through each pair of loops in the opposite direction and generates a linear

gradient at the center. Two coils are mounted on the top and bottom of the vacuum

chamber. Each of them is wound with 20 loops of hollow core insulated copper wires.

The maximum current on each coil is up to 80 A and provides a maximum quadrupole

field gradient of 12 G/cm at the center of the chamber, sufficient to create a strongly

compressed MOT. We use water-cooling method to keep the coils from melting due

to resistive heating. The cooling water is pumped through the center core of the
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hollow-core wires with an inner diameter of 0.125”.

4.3.2 Water-cooling of MOT Coils

The water cooling system consists of a heat exchanger (Coolflow Liquid/Liquid

Recirculator System I), an external water micro-pump (Micropump GAF-T23-DENSE),

and a flow meter (Omega FSW 530 series). The heat exchanger pumps the water

through the water-cooling system and transfers heat from the hot recycled water to

the cold water from the building loop. To maintain a reasonable flow rate, we use 0.5”

inner diameter plastic water tubing which connects to the anti-Helmholtz coils via

compression tube fittings. The water tubing is opaque to prevent algae from growing.

Using distilled water mixed with a few drops of alcohol as cooling water also reduces

the number of algae in the water. The cold water is fisrt pumped by an internal water

pump (Procon PD2 Series) in the heat exchanger, then further pumped by an external

micro-pump installed just before the copper coil. The micro-pump can provide an

extra pressure of up to 250 psi, which further boosts the water flow going through the

small inner diameter of the hollow core copper wire. A flow meter is installed before

the micro-pump to indicate the flow rate of the cooling water. In addition, an extra

mesh filter is placed in the water line to collect the debris and algae, thereby increasing

the pumps’ lifetime. Two interlock controls are set up on the heat exchanger and

the flow meter, respectively. If the heat exchanger is shut down or the water flow is

too small, the interlock will automatically shut off the current that goes through the

copper coils to prevent the coils from melting.

4.3.3 MOT Coils Electrical System

The current going through the MOT coils is provided by a 16 V, 310 A power

supply (Sorensen DCR 16-310T). The output voltage and current can be manually
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or remotely controlled from either the front panel or the rear panel in the back of

the power supply. After the MOT is fully set up, the control system is switched from

manual to remote control. We use a calibrated analog signal generated via LabVIEW

and a NI DAQ card to control the output current for the power supply. The power

supply should be set to run in constant current mode to provide a stable current

during the experiment. Since the power supply can generate very high DC current

(up to 310 A), we use a carolprene 4/0 GA welding cable to conduct the current to

the experiment. We also set the current limit at 88 A to protect the apparatus from

overheating. In order to transfer atoms most effectively from the MOT into the dipole

trap, the MOT has to be switched off in less than a few milliseconds. Since the MOT

coil has a large inductance and generates back emf when switched off, slowing down

the switching, another circuitry needs to be added to increase the switching speed.

Our solution uses a high-power insulated gate bipolar transistor (IGBT, Semikron

SKM200GB125D), connected in series with the coil return, as depicted in Fig. 4.13.

A number of reverse transient voltage suppression (TVS) diodes are connected in

parallel to the IGBT to bypass the current to the ground at large voltage. The IGBT

gate is driven by a commercial IGBT driver (SKHI 10/12 (R)), which is controlled

via a TTL input. When the IGBT is in conducting mode, the voltage across it is low,

usually about a few volts, and the TVS diodes appears as an open circuit. When the

IGBT is switched into the non-conducting mode, the back-emf becomes equal to the

breakdown voltage of the TVS array, at which point the diodes start conducting. The

current in the coils then decreases quickly according to

dI

dt
= −Vz

L
, (4.4)

where Vz is the breakdown voltage of the TVS array and L is the inductance of the

MOT coils. The switching time can be adjusted by adjusting the number of TVS

diodes. The fastest switching is obtained when Vz is just below the maximum IGBT

65



.

Figure 4.13: The MOT coil switch circuit is made of a high-power IGBT with two

TVS diodes. When the IGBT switch opens, the TVS diodes start conducting, and the

current starts to decrease, according to Eq. (4.4).

voltage. It is worth noting that the breakdown voltage of the TVS diode should

always be lower then the maximum IGBT voltage to protect the IGBT circuit. In

the experiment, we use two TVS diodes (Little Fuse 15KPA17CA) which gives us

Vz = 2 × 17 V. The inductance of the MOT coil is 194.6 µh and the calculated

switching time of the MOT coil is ∼ 900 µs. In principle, the switching time could

be further reduced by using more TVS diodes. However, fast switching time proved

problematic due to fast voltage spikes that are picked up by other electronics such as

digital signal lines.

4.3.4 Bias Coils

Besides the anti-Helmholtz coils for the MOT, we also set up three pairs of bias

coils around the main chamber, as illustrated in Fig. 4.14. The bias coils are in

Helmholtz configuration, generating a constant magnetic field in the region of the

MOT. The constant magnetic field can be used to center the MOT position by shifting

66



Figure 4.14: a) 3D printed plastic Helmholtz bias coils frame. b) The three pairs of

Helmholtz bias coils surrounding the main chamber generate a uniform background

magnetic field.

the magnetic field zero. The bias field is also used to define a quantization direction

and apply Zeeman shifts to the magnetic sublevel of the hyperfine states in our

spinor BEC experiments, which is significant for controlling the rate of spin-exchange

collisions in the BEC.

The bias coils are made of three pairs of 3D printed plastic frames with 33 turns

of copper wires wound on each. The coils in the vertical z-direction and north-south

x-direction have square shapes with side lengths of 235.5 mm and 275 mm, respectively.

The coils in the east-west y-direction (side way imaging beam axis) are circular with

a diameter of 294 mm. Three pairs of coils are mounted around the vacuum chamber,

as illustrated in Fig. 4.14b. Since the space around the chamber is relatively compact,

the coils are made of thin wires so they cannot be water cooled from inside. After

applying current on a test coil, we limited the magnitude of the current to be no larger

than 4 A to prevent the 3D printed plastic coil frame from melting.

It turns out that the current fluctuation in the bias coils, which leads to magnetic

field fluctuation and corresponding Zeeman shift fluctuation, has a significant impact
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on the spin-mixing dynamics in the BEC, which are our focus of study. Therefore a

current control system that can generate a low-noise and stable current is needed. In

addition, to fulfill our requirements, the magnetic field generated by the bias coils

must be quickly adjustable, not only in amplitude but also in direction during the

experiment, as necessary. In order to satisfy these requirements, we designed coils

with a highly stable, home-built, bipolar DC supply, which has six individual channels

whose outputs are controlled by analog input voltages and stabilized by PID controllers.

Our first design used a commercial DC power supply and homemade PID circuits to

generate the current. Even though we could switch the currents very fast, the noise

that appeared on the signal was hard to minimize, and the high-power transistors used

to control the circuit was easily destroyed by the high back emf voltages generated

during switching. To tackle this problem, we switched to another design based on the

idea of using ultra-low noise temperature controllers (TC) as current controllers. We

replaced the homemade current controllers with commercial temperature controllers

(Wavelength Electronics PTC5K-CH) that can output ± 5 A control current with

faster ramp time and lower noise. To make the TC work properly in our system, we

built an additional homemade circuit to convert an external setpoint analog voltage

channel signal generated via LabVIEW and our NI-DAQ card to a signal which is

within the range allowed by the TC. We also built a sensing circuit which can convert

the current signal from the Helmholtz coil to a fake temperature sensor signal which

can be sensed by the TC. After adding these circuits, the sensor of the TC, instead of

measuring the load temperature, now measures the voltage across a 10 kΩ resistor.

The voltage across the sensor is compared with the setpoint voltage, and the TC

minimizes this difference using PID control. Our new bias coil current control box is

shown in Fig. 4.15. The external setpoint circuit and the sensing circuit are illustrated

in Appendix B.
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Figure 4.15: A homemade current controller for the bias coil. There are six individual

channels that can output a current range from -5 A to 5 A. Each of them uses a

commercial ultra-low noise TC (Wavelength Electronics PTC5K-CH) as a current

controller. An extra external setpoint circuit and a sensing circuit are used to convert

the signal to a readable signal for the TC.
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Figure 4.16: A photo of the fluorescence of our sodium MOT locates in the center of

the UHV chamber. After optimization of the cooling light power, polarization, and

frequency, as well as the bias magnetic field and the magnetic field gradient, we trap

∼3 × 108 sodium atoms in the MOT.

After carefully optimizing the power and the frequency of the MOT cooling and

repumping beams, as well as the magnetic quadruple field and the bias field, we

routinely create sodium MOTs with ∼ 3 × 108 atoms located at the center of the

UHV chamber, as illustrated in Fig. 4.16.

4.4 Imaging System

Trapped ultracold atomic gases such as MOTs and BECs are usually small in size,

typically around a few micrometers to a few millimeters across, and are isolated in

ultra-high vacuum chambers. Therefore it is not feasible to interrogate the trapped
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atoms with material probes, such as a thermometer. Using light beams to probe the

ultracold atom cloud and measure the optical power radiated from or transmitted

through it is a feasible way to detect the density distribution of the atom cloud

and extract quantitative information like shape, size, atomic number density, and

temperature. This section presents the imaging techniques we employ to image the

MOT and BECs.

4.4.1 Fluorescence and Absorption Imaging

Fluorescence and absorption imaging are two standard methods to probe ultra-cold

atomic clouds with near-resonant light [57, 58, 59, 60]. Implementing fluorescence

imaging techniques is straightforward by shining a near-resonant light beam on the

atomic gas. The atoms absorb photons and scatter them due to spontaneous emission.

The scattered photons generate fluorescence signals on photodiodes or CCD cameras.

The higher the system’s scattering rate, the larger the fluorescence signals that will

be obtained. Therefore, saturated light beams are typically used to maximize the

fluorescence signal magnitude. However, this will unavoidably distort the shape of

the atomic sample and heats the atoms. The radiation pressure from the imaging

beam and the subsequent isotropic reemission will blur the images [61]. In addition, a

small collection solid angle when applying the fluorescence imaging will also limit the

number of scattered photons detected. As the number of atoms decreases, the signal

quickly gives way to background scattering light and detector noise. Due to these

drawbacks, we only use fluorescence imaging to monitor the MOT qualitatively for

optimization of its position and shape, since the MOT can move and become distorted

if there is an imbalance in the intensity of cooling beams.

For quantitative measurements, we use absorption imaging to probe the ultracold

atoms and obtain essential properties such as optical density, number density, atom
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number in the cloud, and cloud shapes. Absorption imaging is a standard method to

probe the atomic cloud in situ or time-of-flight. In our absorption imaging, a collimated

probe beam of resonant light which couples the 32S1/2, F = 2 and 32P3/2, F
′ = 3

states of Na is illuminating the cold sodium cloud, and the shadow of the cloud is

imaged onto a CCD camera. Absorption imaging for cold atomic clouds works best

when the probe intensity is weak (weaker than the saturation intensity), and the

optical density of the atomic cloud is equal to or lower than one [62].

Suppose a weak probe laser beam propagates along the z direction and passes

through an atomic cloud. The intensity profile of the probe beam after the absorption

follows the Lambert-Beer law

I(x, y) = I0(x, y)e−OD(x,y), (4.5)

where I0 is the initial intensity before light passes through the cloud, OD(x, y) is the

optical density profile, x and y are the transverse directions. The optical density is

defined as

OD(x, y) = σ

∫
n(x, y, z)dz = σnc(x, y), (4.6)

where z is the longitudinal direction of the beam path, n(x, y, z) is the number density,

nc(x, y) is the column density, and σ is the absorption cross section which depends on

the intensity, polarization, and detuning of the probe beam. The cross section can be

written as

σ =
σ0

1 + 4(∆
Γ

)2 + ( I
Isat

)
, (4.7)

where σ0 is the on-resonance cross-section which depends on the light polarization and

atomic transition, ∆ is the detuning of the imaging light from the atomic resonance,

and Γ is the natural linewidth of the optical transition. From Eq. (4.5), we see that the

optical density can be obtained by measuring the transmission of the probe laser beam

with and without atoms. Here, we denote them as raw images and reference images,
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respectively. Probe beam profiles are recorded by a CCD camera. In addition, a third

image needs to be taken without the probe beam or any cold atomic cloud. This

third image serves as a background image to be subtracted from the raw and reference

images. It can remove contamination from stray scattering light and any background

offsets added by the camera electronics. The optical density can be calculated from

the three images according to Eq. (4.5)

OD(x, y) = − ln
I(x, y)

I0(x, y)
= ln

Iref (x, y)− Ibg(x, y)

Iraw(x, y)− Ibg(x, y)
. (4.8)

Here, Iraw is the first raw image which includes both the cloud and the laser beam

signal, Iref is a second reference image taken without the cloud but with the same

laser beam as Iraw. Ibg is a background image that is taken with no cloud and no light.

An example of how to take the absorption images is illustrated in Fig. 4.17. Once

optical density is determined from the three images, the column number density of

atoms can be calculated from Eq. (4.6). The total number of atoms is obtained by

integrating the column number density over x and y, using the known pixel size and

magnification of the imaging system.

4.4.2 Design of the Imaging System

Our experiment requires us to acquire images of atomic clouds with reliable density

distribution in either trapped or ballistic expansion from both side and top-down views.

In addition, our imaging system should be flexible enough to switch between imaging

the MOT and BECs. To accomplish these tasks, we developed two identical imaging

systems, so we can detect either the MOT, which has a radius of a few millimeters

across, or BECs, which have Thomas-Fermi radii of a few micrometers across.

To find the lens configuration that gives us variable magnification for imaging the

MOT and BECs, respectively, is not enough. The resolution of the system also needs

to be good enough to not blur the BEC images. Resolution is defined as the smallest
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Figure 4.17: An example of how an absorption image is constructed. a) The raw image

that includes information about both atoms and light. b) The reference image that

only includes light. c) The background image that contains no light and no atoms. d)

The image of optical density calculated using Eq. (4.8). e) The false-color image of d).

Axes are labeled in the unit of camera pixels.

distance between two points in a sample that can still be distinguished as two separate

entities. The resolution of an imaging system is determined by the numerical aperture

of the detection optics. Usually, the higher the numerical aperture of the total system,

the better the resolution. For a thin lens approximation, the equation of resolution is

given by

R =
0.61λ

NA
, (4.9)

where NA is the numerical aperture, λ is the wavelength of the light in the air, and R

is the smallest distance between two distinguishable points [63]. The equation tells us

that a large numerical aperture corresponds to better resolving power. In addition,

the numerical aperture is determined as the ratio of entrance pupil D and focal length

f , NA = D/(2f), which means the resolution can be optimized by optimizing the lens
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Figure 4.18: Schematic diagram of the optical configuration used for our imaging system.

Lens 1 and lens 2 comprise the f -2f -f configuration with unit magnification. The

inverted image after lens 2 is further magnified by lens 3 and imaged with a CCD

camera. The black dashed line is the image of the atom cloud, and the solid red line

is the imaging beam. The lenses are achromatic doublets (47718 and 47713 for side

imaging and 49285 and 49284 for top imaging) from Edmund Optics. QWP is an

abbreviation for quarter wave plate.

configuration. In our system, the position of the cloud in the center of the vacuum

chamber limits the distance at which we can place the detection optics to obtain a

high numerical aperture. Therefore, we use a relay telescope. The lens configuration

of the relay telescope was simulated using the software package OSLO, as shown in

Fig. 4.18. The side imaging system consists of two sets of achromatic lenses (Edmund

Optics, 47718) with identical focal distance f = 150 mm, to produce a relayed image

of the cold atom cloud far away enough from the experiment chamber and to minimize

spherical aberration. In addition, another magnification lens (Edmund Optics, 47713)

is installed in front of the CCD camera to enlarge the image size of the atomic cloud.

All optics are AR coated and designed for visible light (400 nm - 700 nm). The

optical configuration in Fig. 4.18 can be used in both fluorescence and absorption

imaging for the side view of the cold atomic cloud. In order to observe the atomic

cloud along the vertical axes, another identical imaging system is set up to have a

top-down view. The structure of the top-down imaging system is similar to the side

imaging system. Two achromatic doublet lenses with f = 150 mm (Edmund Optics,
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49285 lens ach 50 × 150 vis 0 ts) are used to construct the relayed image of the cold

cloud and another achromatic doublet lens with f = 100 mm to enlarge the size of

the image for top-down imaging. Since the top-down imaging laser beam overlaps

the top-down MOT laser beams, we choose the polarization of the top-down imaging

beam orthogonal to the polarization of the top-down MOT beam. We combine them

below the chamber using a polarizing beam-splitter. A second polarizing beam-splitter

is used above the chamber to separate the imaging beam from the cooling beam before

it exposes the camera. Since the top-down imaging beam’s optical path is longer than

the side beam’s and it passes through more optics, the images taken from the side

CCD camera have better resolution than the ones from the top-down camera. The

complete imaging optical system setup is shown in Fig. 4.19.

Figure 4.19: Top and side absorption imaging systems are used to take absorption

images of the MOT and BECs inside our vacuum chamber. The side imaging system

comprises a CCD camera along with L1, L2, L3, and a QWP between L1 and L2. The

other components comprise the top imaging system. A polarizing beam-splitter is used

to split the top-down imaging beam and the MOT beam. In experiments, we can move

lens L3 and CCD (side) or L6 and CCD (top) to change the magnification of our side

and top imaging system, respectively.

The imaging devices in our experiments are scientific CCD cameras (14-bit PCO
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Pixelfly USB). The most important specifications of our cameras are listed in Table. 4.1.

The cameras have a resolution of 1392 × 1040 pixels with pixel size of 6.45µm ×

Table 4.1: Camera Specifications

Quantity Specification

Type of sensor CCD

Quantum efficiency 62 %

Spectral range 290 nm .. 1100 nm

Dynamic range A/D 14 bit

Pixel size 6.45 µm× 6.45 µm

Resolution 1392× 1040 pixel

Dark current 1 e−/pixel/s at 23◦C

Full well capacity 16000 e−

Size 39 mm× 39 mm× 71 mm

Double Shutter Mode 2 images in rapid succession ∼µs

6.45µm. These ultra-compact cameras can be remotely controlled via LabVIEW and

digital I/O card using TTL signals. The camera exposure time ranges from 2 µs

to 60 s. When taking a picture, cameras are triggered, and the CCD chips start to

convert the light signal to electrons captured on each pixel during 150 µs of exposure

time, then are read off by the CCD electronics. The quantum efficiency determines

the conversion efficiency from photon to electron of the CCD chip. The number of

electrons that can accumulate in each pixel is referred to as well depth. The full well

depth of our cameras is 16000 electrons per pixel, so it is very important to adjust

the exposure time such that the capacity of the well depth is not exceeded and the

saturation of the CCD is avoided. Dark current is another factor that could potentially

increase the camera’s detection noise, which is defined as the charge accumulated in
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a well in the absence of light. Dark current is an inherent property of the camera

and is affected by the temperature. At room temperature, the dark current for PCO

pixelfly is one electron per pixel per second. For an average exposure time of 150 µs,

the number of electrons by dark current noise in each pixel is about 10−4 e−/pixel

which computes to a total of ∼ 200 e− over the entire CCD array. Therefore taking

reference images is necessary to subtract out the dark current while the dark noise

remains since it is a statistical variation of the dark current.

In addition, the camera has a large spectral range which ranges from 290 nm

to 1100 nm. It means it has great flexibility to image laser beams with different

wavelengths ranging from ultraviolet to infrared. However, unwanted light with other

wavelengths will also be counted, leading to unwanted exposure of pixels. To remove

this noise, we put a bandpass filter (FB590-10, Thorlabs) in front the of the camera to

only allow the light with a wavelength of 589 nm to pass through. The two cameras

are placed on precise translation stages with micrometer screws to adjust the focus.

4.4.3 Fringe Reduction

Image analysis works best when the imaging signal is clear and any background

noise in the image is as small as possible. Apart from the inherent properties, such as

the dark current of the camera, which could lead to noise on the absorption image,

there are other factors due to optics and environment which could also potentially

contribute noise to the image. For example, interference fringes on the imaging beam

due to etaloning can happen when the beam passes multiple lenses and windows and

bounces back and forth between them. The etaloning of the imaging beam can be

effectively reduced by inserting a quarter wave plate between two optics. The incoming

beam and the retro-reflected beam pass through the quarter wave plate, resulting in

an orthogonal polarization and preventing the generation of interference fringes.
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In addition, fringes on the final images could be caused by mechanical vibration from

the environment. Suppose there is a large time elapsed between taking the background

images and the images with atoms. In that case, the mechanical vibration of the lenses

and camera can change the intensity profile of the imaging beam between the two

images and create fringes on absorption images that can not be easily subtracted out.

We minimize mechanical vibration by firmly securing all the optics in the imaging

setup and floating the optical table. We also mount cameras and some optics for

imaging on thick 1” diameter posts to mitigate the mechanical vibrating effect. Some

mechanical devices such as the shutters and piezo in the IR diode laser also generate

vibrations when they are running, so it is important to place them on a separate

platform or damp them using vibration-damping material such as Sorbothane. For

example, we hang all of our shutters from overhead shelves to remove their vibrations

on the optics table.

4.4.4 Image Acquisition

Our imaging system is controlled from two synchronized desktop computers via

LabVIEW with two analog NI-DAQ PCI cards and one digital Spincore pulse-blaster

PCI card. The first computer is used to run the experimental sequences and sends a

TTL signal to trigger the camera. The second computer connects to the camera via

a USB cable. After each experiment cycle, the camera sends the image back to the

second computer, where the images are stored and analyzed automatically using the

Igor Pro software data analysis package.

As mentioned in the previous section, different magnifications are used for detecting

the large MOT or small BEC. For example, we use a small magnification of M = 0.6

to image the MOT and a larger magnification of M = 2 to image the BEC. This can

be achieved by using different lens configurations. The BEC cloud inside the trap
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can be imaged in situ or during time of flight (TOF) after release. While the in situ

probes can measure the original geometric configuration of the atomic cloud inside

the trap, the BEC cloud, with the size of a few µm, only occupies a few pixels on the

CCD camera and the image is too dense to measure quantitatively because the BEC

shadow becomes utterly black in the images with high optical densities larger than 2.

The TOF measurement has a better resolution on small and dense atomic clouds by

turning off the trap and allowing the atoms to expand freely for a few milliseconds,

resulting in a larger could with smaller optical density. The TOF method is commonly

used to measure the temperature of cold gases. In a time of flight expansion, the

atomic cloud expands ballistically. The momentum distribution of the atoms converts

to a spatial distribution from which the temperature can be extracted. If we assume

ω(τ) is the size of the MOT after some time τ of free expansion, the following equation

described the ballistic expansion

ω(τ) =
√
ω2

0 + vτ 2 (4.10)

where ω0 is the initial size of the cold atom cloud, v is the velocity of the atoms defined

as v =
√

3kBT/m according to the equipartition theorem. The temperature of the

atomic cloud is found via

ω(τ) =
√
ω2

0 + (3kBT/m)τ 2. (4.11)

This method can be used to determine the temperature of the MOT.

Figure 4.20 shows the absorption pictures of the MOT (Fig. 4.20a) and the picture

of the spinor BEC (Fig. 4.20b). The sequences for taking MOT and BEC images are

also different. For MOT images, we take an absorption image after a few millisecond

of time-of-flight. For taking the images of our spinor BEC, we use the method of

Stern-Gerlach absorption imaging. A strong magnetic gradient pulse to separate the

three spin states during time-of-flight. Figure 4.20b shows examples of Stern-Gerlach
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Figure 4.20: False color images from absorption imaging. (a) The MOT absorption

image taken after a few milliseconds of time-of-flight. (b) Stern-Gerlach absorption

image showing BEC in different spin states after 10 ms time of flight. From left to right

are absorption images of mF=1, mF=0, mF=-1 states

absorption images of three spin components of our spinor BEC after 10 ms time of

flight, from left to right are mF=1, mF=0, mF=-1 magnetic sub-level states of F=1

hyperfine level, respectively.

4.5 Control System

To achieve programmable, fast and precise remote control over various devices,

such as AOMs, optical shutters, function generators, rf switches, and camera triggers,

we employ analog and digital signals. We use two National Instruments (NI) DAQ

cards (PCI-6733) with eight analog channels each and a sample update rate of 1

MHz to generate analog voltage signals. Digital signals are generated with a Spincore

PulseBlaster PCI card, providing 24 digital channels with a standard clock frequency

of 100 MHz. The three PCI boards are synchronized using a single clock signal from

the PulseBlaster PCI card.
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We use two computers to send commands to and receive data from our experimental

apparatus. One computer is used to program timing sequences via LabVIEW and

send them to the PulseBlaster PCI card to generate digital signals and to the NI

DAQ boards to generate analog signals, respectively, to control running experiments.

After each experiment’s cycle, the images taken by the camera are sent to the second

computer for a real-time analysis via Igor to obtain the desired information, such as

atom numbers, spin population fractions, atomic cloud sizes, or temperatures. The

imaging data can also be stored by the Igor program to do a more detailed analysis at

a later time. LabVIEW is programmed to have a user-friendly interface, which helps

us to visualize the timing sequence when running the experiment. Figure 4.21 shows

an example panel of our LabVIEW interface that controls all the 24 digital channels

and 16 analog channels. An arbitrary amount of such steps are stacked vertically, row

by row, to program a timing sequence, with time increasing from top to bottom.

Table 4.2 and Table 4.3 summarize the channels used in experiments. We can

manually update the configurations of each channel after the system completes a full

cycle of an experiment. The “Delay” column in Fig. 4.21 shows the time it takes

for the corresponding step, the total time of each experiment cycle is the sum of the

times in the “Delay” column of all rows. Usually, the time of running one cycle of an

experiment varies from 23 seconds to 28 seconds. We also wait for one extra second at

the end of each cycle because the re-configuration time for each PCI board takes about

a second to complete. The “Delay” column and analog configurations can also be

automatically updated in “Run Sequence” mode. When running experiments in this

mode, the system will automatically update a channel with pre-programmed values.

This mode is convenient when we want to scan some parameter of the experiment,

such as time delay after quench, microwave power, or microwave frequency.
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Figure 4.21: A control panel of the LabVIEW interface. There are 24 digital channels

with green circles as on/off switches. Bright green represents status “on” while dark

green represents “off”. There are 16 analog channels with input boxes. The value in the

“Delay” column defines the time duration for each step. These steps are stacked vertically

to create any desired timing sequence, with time increasing towards the bottom.
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Table 4.2: Analog Channel Specification

Usage Channel Operational Range

MOT AOM Frequency AO 0 31.7 ∼ 53.2 MHz

MOT AOM Power AO 1 -0.05 ∼ 1 Volt

MOT Repump Frequency AO 2 60.58 ∼ 98.614 MHz

MOT Repump Power AO 3 -0.05 ∼ 1 Volt

Zeeman AOM Frequency AO 4 197.9 ∼ 296.7 MHz

Zeeman Repump Frequency AO 5 200.8 ∼ 422.2 MHz

Zeeman current Seg 1 AO 6 0 ∼ 5 A

Zeeman current Seg 2 AO 7 0 ∼ 5 A

Zeeman current Seg 3 AO 8 0 ∼ 5 A

MOT Current AO 9 0 ∼ 81 A

X1-Bias Current AO 10 -3.6 ∼ 3.6 A

X2-Bias Current AO 11 -4.2 ∼ 4.2 A

Y1-Bias Current AO 12 -4 ∼ 4 A

Y2-Bias Current AO 13 -4.2 ∼ 4.2 A

Z1-Bias Current AO 14 -4 ∼ 4 A

Z2-Bias Current AO 15 -4.29 ∼ 4.29 A
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Table 4.3: Digital Channel Specification

Name Channel Operational Definition

Zeeman Cooling AOM CH 0 Turn on/off Zeeman cooling AOM

MOT Cooling Shutter CH 1 Turn on/off MOT cooling shutter

Zeeman Repump AOM CH 2 Turn on/off Zeeman repump AOM

MOT Repump Shutter CH 3 Turn on/off MOT repump shutter

Zeeman Laser Shutter CH 4 Turn on/off Zeeman cooling shutter

Imaging Abs. AOM CH 5 Turn on/off imaging beam AOM

Imaging Abs. Shutter CH 6 Turn on/off imaging beam shutter

Imaging Repump AOM CH 7 Turn on/off imaging repump AOM

Microwave Trigger CH 8 Trigger the 1.74 GHz function generator

Camera Trigger Side CH 9 Trigger side camera

Camera Trigger Top CH 10 Trigger top camera

Na Source Shutter CH 11 Open/close Na source shutter

Camera Shutter Top CH 12 Open/close top camera shutter

Imaging Repump Shutter CH 13 Turn on/off imaging repump shutter

Bias Coil Feedback CH 14 Empty

Diode Laser Ramp CH 15 Empty

RF Trigger CH 16 Trigger the RF function generator

Dipole Trap AOM CH 17 Turn on/off dipole trap AOM

MW Power Relay CH 18 Turn on/off MW power relay

RF Switch CH 19 Turn on/off RF switch

MW DDS CH 20 Trigger DDS and FPGA

IGBT Switch CH 21 Turn on/off the IGBT

Bias Coil Switch CH 22 Turn on/off switch of bias coil

AO Trigger CH 23 Enable/disable AO panel
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Chapter 5

Microwave and RF System

The transitions between the ground hyperfine states of sodium F=1 and F=2,

or magnetic sub-levels within the hyperfine manifold, can not be directly coupled

by electric fields because they are electric dipole-forbidden, e.i. ∆L = 0. Luckily,

these rules are not obeyed in microwave and RF transitions due to magnetic dipole

transitions induced by the oscillating magnetic field of the radiation.

Microwaves are of great utility in AMO physics to coherently manipulate the

atomic transitions between hyperfine states and ground-state hyperfine manifolds

[64, 65, 66]. Using microwave-dressing to apply AC Zeeman shifts to hyperfine energy

levels leads to many applications, for example, generating spin-squeezing and multi-

particle entanglements [67, 68, 69]. In our experiment, microwaves with frequencies

close to the hyperfine splitting of 1.77 GHz serve two important purposes. First,

we can transfer arbitrary populations between the F = 1 and F = 2 states using

a sequence of resonant microwave pulses such as Pi and Pi/2 pulses. This gives us

control over the initial state of our spinor BEC. Second, we can create arbitrary

effective quadratic Zeeman shifts q using non-resonant microwaves which are detuned

slightly from the F = 1 to F = 2 clock transition. This allows us to apply quenches to

the spinor BEC, control the onset of spin-exchange collisions and apply phase shifts

during spin-mixing interferometry. A schematic of our home-built microwave source is

shown in Fig. 5.1

In this chapter, I will mainly discuss how microwave and radio frequencies are

implemented in our experiment. Section one explains the theory of how microwaves

couple the hyperfine states. Section two discusses in detail how our FPGA-based

versatile microwave source is set up. Section three shows microwave performances
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Figure 5.1: Schematic of microwave signal generation hardware. The parameters for

the low-frequency signal are sent from the computer to the FPGA via USB. The FPGA

then communicates with the DDS after it receives a TTL signal, which produces a low-

frequency (MHz) signal. Next, the low-frequency signal is mixed with a high-frequency

signal of 1.73 GHz in a single-sideband modulator. The modulator produces the desired

sum-frequency signal close to the hyperfine splitting of the sodium ground state. After

filtering, amplification, and impedance matching, the signal is emitted from a half dipole

antenna to irradiate a sample of trapped cold atoms.

and calibrations in the experiment, including power calibration and microwave Rabi

oscillations. In the last section, the separate, independent radio-frequency system for

our experiment is explained.

5.1 Microwave Transitions

5.1.1 Na Ground-state Hyperfine Structure

For 23Na in the ground state, the spin angular momentum quantum number is

S = 1/2 because there is only one electron in the valence shell. The orbital angular

momentum quantum number is L = 0. The total angular momentum quantum number
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F , which results from the coupling between J = L+ S together with the nuclear spin

I, is given by F = J + I and can take the values |J − I| ≤ F ≤ J + I. This leads

to two ground states F = 1 and F = 2 for sodium. In the presence of an external

magnetic field, the degeneracy of the 2F + 1 magnetic sub-levels is lifted, known as

Zeeman splitting.

For a weak field, the external magnetic field can be treated as a perturbation, and

the magnitude of Zeeman splitting is governed by

HB = µBgFFzBz, (5.1)

where µB is Bohr magneton and

gF =
F (F + 1) + J(J + 1)− I(I + 1)

2F (F + 1)
gJ , (5.2)

where gJ is the Landé g-factor and the corresponding Zeeman shifts between the

magnetic sub-levels is

E = gFµBBzMF . (5.3)

In a more general case, the Hamiltonian can be written as the combination of the

hyperfine Hamiltonian and the external magnetic field

H = Hhf +Hz = AhfJ · I− µBJ ·B− µBI ·B. (5.4)

The different energy eigenvalues are found by diagonalization, which yields an algebraic

expression

E(F = I ± 1/2,MF ) = − ∆Ehf
2(2I + 1)

− gIµBMFBz

± 1

2

√
∆E2

hf +
4MF

2I + 1
(gJ − gI)µBBz∆Ehf + (gJ − gI)2µ2

BB
2
z ,

(5.5)

known as the Breit-Rabi formula [70]. ∆Ehf is the hyperfine splitting for B = 0.

Figure 5.2 shows the Breit-Rabi diagram of the sodium ground state hyperfine structure,

88



Figure 5.2: Breit-Rabi diagram of the sodium ground state hyperfine structure. The

interaction between the external magnetic field and the magnetic dipole moment

lifts the degeneracy of the hyperfine state and leads to the splitting of the magnetic

sublevel. A dimensionless parameter is introduced in the plot: x = (gJ−gI)µBB
∆Ehf

, where

B0 = (gJ−gI)µB
∆Ehf

.

where the nuclear spin I = 3/2. In the low external magnetic field regime, where

the Zeeman splitting is much smaller than the energy difference between F = 1 and

F = 2 states, the Zeeman shift is linear and approximately equal to the expression

in Eq. (5.3). However, the nonlinear term related to B2
Z is also present, which is

quadratic in a magnetic field, leads to the quadratic Zeeman effect, which becomes

stronger for large fields. The quadratic Zeeman effect is different from the linear

Zeeman effect. It shifts the magnetic sublevels in the same hyperfine manifold in the

same direction, regardless of the sign of the magnetic quantum number of MF .
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5.1.2 Oscillatory Magnetic Field

Since ∆L = 0, transitions between the hyperfine ground states are forbidden for

electric dipole interactions. However, oscillating magnetic fields such as those present

in the microwave and radio regimes can interact with the magnetic dipole moment

without obeying this selection rule. Like the static magnetic field case, the interaction

Hamiltonian for a weak field is

Hos ≈ µBgSBos · S, (5.6)

where Bos = B0 cos(ωt). We can omit the nuclear interaction term because the

nuclear magnetic moment is small. We can set z as our quantization direction, and

approximate the system as nine separate two-level systems [71]. The spin matrices S

have the Pauli spin matrices’ structure, which is defined as Si = ~
2
σi, where σi is

σx =

0 1

1 0

 σy =

 0 i

−i 0

 σz =

1 0

0 −1

 . (5.7)

Therefore we can workout the transition matrices:

〈F,MF |σx|F,MF 〉 =



0 − 1
2
√

2
0 −

√
3

2
0 1

2
√

2
0 0

− 1
2
√

2
0 − 1

2
√

2
0 −

√
3

2
√

2
0

√
3

2
√

2
0

0 − 1
2
√

2
0 0 0 − 1

2
√

2
0

√
3

2

−
√

3
2

0 0 0 1
2

0 0 0

0
√

3
2
√

2
0 1

2
0

√
3

2
√

2
0 0

1
2
√

2
0 − 1

2
√

2
0

√
3

2
√

2
0

√
3

2
√

2
0

0
√

3
2
√
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0 0 0

√
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2
√

2
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0 0
√

3
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(5.8)
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and

〈F,MF |σz|F,MF 〉 =



1
2

0 0 0 −
√

3
2

0 0 0

0 0 0 0 0 −1 0 0

0 0 −1
2

0 0 0 −
√

3
2

0

0 0 0 −1 0 0 0 0

−
√

3
2

0 0 0 −1
2

0 0 0

0 −1 0 0 0 0 0 0

0 0 −
√

3
2

0 0 0 1
2

0

0 0 0 0 0 0 0 1



, (5.9)

where the basis states from left to right and top to bottom are (1,-1), (1,0), (1,1),

(2,-2), (2,-1), (2,0), (2,1) and (2,2), respectively. The 3 × 3 diagonal submatrix in

the top left corner and the 5 × 5 diagonal submatrix in the bottom right corner in

Eq. (5.8) and Eq. (5.9) are the transition within F = 1 and F = 2 manifolds, and

the rest of them are the magnetic sublevels coupling between F = 1 and F = 2. For

the sodium electronic ground state hyperfine manifold (32S1/2), the magnetic dipole

transitions can be induced by microwaves, which connect F = 1 and F = 2 (red, green,

and blue arrows in Fig. 5.3), and rf, which connect Zeeman sub-levels within the

same F state (black arrows in Fig. 5.3). The selection rule for this type of transition

becomes apparent from the transition matrices in Eq. (5.8) and Eq. (5.9). If the

oscillating field is polarized perpendicular to the quantization direction, ∆F = 0,±1

and ∆MF = ±1. If the oscillation field is parallel to the quantization direction,

∆F = ±1 and ∆MF = 0.

5.1.3 Microwave Dressing

Similar to how the light field can shift the energy levels via the AC Stark shift,

the microwave can also shift the energy levels via the AC Zeeman effect, known as
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Figure 5.3: Schematic of microwave and rf transitions. Red, blue and green arrows

represent microwave fields coupling to transitions between F = 1 and F = 2. Black

arrows represent rf field coupling to transitions between F = 1 Zeeman sublevels.

microwave dressing [72]. In contrast to a DC magnetic field-induced quadratic Zeeman

shift, which can only be positive, a microwave dressing field can generate an effective

quadratic Zeeman shift that can be either positive or negative depending on the sign

of microwave detuning ∆. For the simplest case in a two-level system, the Hamiltonian

that describes the interaction between an atom and a microwave field can be written

with the field interaction representation

H ′ =
~
2

−δ Ω

Ω δ

 , (5.10)

where δ is the detuning between the microwave field and the atomic transition, and

Ω is the Rabi frequency defined as µbB/~. If δ � Ω, then the resulting AC Zeeman
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shift is

∆E ≈ ±~Ω2

4δ
. (5.11)

For sodium with F = 1 and F = 2 ground state manifolds, the shift of one energy level

depends on all the other energy levels that couple to it. Therefore, the AC Zeeman

shift of a target energy level is expressed as [73, 74]

∆EmF =
~
4

∑
k=0,±1

Ω2
mF ,mF+k

∆mF ,mF+k

=
~
4

∑
k=0,±1

Ω2
mF ,mF+k

∆− (gFmF − gF ′(mF + k))µBB
,

(5.12)

where mF is the magnetic quantum number in F = 1 manifolds, which takes the

values -1,0, and 1, respectively. k takes the value of -1, 0, and 1 such that mF + k

defines the magnetic sublevels in the F = 2 manifold. We define ∆mF ,mF+k =

∆ − (gFmF − gF ′(mF + k))µBB as the frequency detuning of the microwave pulse

with respect to the |F = 1,mF 〉 → |F = 1,mF + k〉 transition, where gF,F ′ = ±1/2.

ΩmF ,mF+k is the on-resonance Rabi frequency between mF and mF +k states, which can

be directly obtained from experiments or calculated using Clebsch-Gordan coefficients.

The total effective quadratic Zeeman shift qMW on the magnetic sublevels in the F = 1

manifold induced by the microwave field is

qMW =
1

2
(∆EmF=1 + ∆EmF=−1 − 2∆EmF=0). (5.13)

In our system, the microwave dressing is realized by tuning the microwave frequency

from the clock transition |F = 1,mF = 0〉 → |F = 2,mF = 2〉 by ∆, as illustrated in

Fig. 5.4. Choosing a microwave dressing field that is close to the clock transition

makes it insensitive to the magnetic field fluctuations. By choosing the detuning to

be relatively close to the clock transition but far away from others, we can selectively

shift the mF = 0 states without having too much effect on the other states.

93



Figure 5.4: Microwave dressing in the presence of an applied magnetic field allows us

to selectively shift only the mF = 0 level and control the magnitude and sign of the

effective quadratic Zeeman shift q.

5.2 Microwave Signal Generation

In our experiments, a time sequence of changing microwave parameters is stepped

through that consists of changing frequencies, amplitudes, and phases during one

experiment cycle of creating a BEC and perfoming measurement on it. In order to

meet these requirements, we developed a home-built microwave system controlled by

a field-programmable gate array (FPGA).

5.2.1 Hardware

Our FPGA controlled microwave generating system consists of an FPGA chip

(Cyclone II, Altera), a Direct Digital Synthesizer chip (DDS, AD9954), and other

electronic components surface mounted on three commercial boards: an FPGA board,

a DDS board, and a USB input board for receiving data. An LCD screen module

connected to the output pins of the FPGA board is used to aid user interaction via
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Figure 5.5: Enclosure of the FPGA system. a) FPGA board (left) and DDS board

(right). b) Front panel of the FPGA system, the LCD screen is on the left side and the

input control panel with buttons and switches is on the right side.

the front panel. These boards are enclosed in a grounded aluminum box, as illustrated

in Fig. 5.5.

FPGA

The FPGA is a critical part of our microwave signal generation system because an

FPGA we chose to use is versatile. A wide range of functions have been programmed

into FPGAs with many applications in experimental physics [65, 75, 76]. One benefit

of an FPGA compare to a microcontroller is that an FPGA can run several tasks in
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parallel without any slow-down, making it possible to manage experimental equipment

in a compact and controllable way without the need to devote extra controllers.

FPGAs are also configured to run in some extreme conditions. For example, some

FPGAs have been shown to work in cryogenic temperatures with minimal errors [77].

This allows the FPGA to be integrated with devices or detectors in a compact form,

removing the physical barrier and limiting electrical losses from separation.

Our Cyclone II FPGA is a low-cost device that is powered by a 5 V power supply.

It has 68,000 logic elements (LEs), each of them has a four-input look-up table. LEs

serve as re-configurable digital logic gate arrays that can implement arbitrary digital

functions. The LEs in FPGAs are configured using Verilog hardware description

language. The code is synthesized using the Quartus II synthesizer to configure the

FPGA. The configuration data from a host computer are transmitted to a Joint Test

Action Group (JTAG) port via a USB Download Cable (USB-Blaster). The JTAG is

mounted on the FPGA printed circuit board (PCB) and the configuration data are

stored in a serial configuration device (EPCS64). The FPGA has up to 1.1 Mbits

of embedded RAM clocked at 260 MHz, which can store data such as lookup tables.

There are 16 global clock lines in the global clock network that drive the FPGA.

We mounted a 400 MHz external crystal oscillator on the board, which provides the

clock to all resources within the chip, such as input/output elements, LEs, embedded

multipliers, and embedded memory blocks. The chip has three pairs of I/O banks that

support multiple configurable voltage outputs: 1.5, 1.8, 2.5, and 3.3 volts for different

types of operation. However, since our LCD screen and DDS need a 5 V input signal,

we mounted a buffer (SN64BCT25244NT) before each output port. Some FPGA input

pins connect to switches and buttons on the front panel and are programmed to accept

user inputs, as shown in Fig. 5.5b. A toggle switch is used to change between manual

and remote mode. In manual mode, the user can use the front panel menu display on
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the LCD screen to select microwave parameters. We use manual mode to test that the

DDS and FPGA are working correctly. In manual mode, a basic menu is displayed on

the LCD screen, controlled via “up”, “down”, and “switch parameter” buttons on the

front panel. The switch parameter button cycles between DDS parameters. The “up”

and “down” buttons adjust the value of the selected parameter. As the user switches

between the parameters, the LCD screen will display the selected parameter and

its value. The menu currently allows setting amplitude and frequency. Any change

in these parameters causes the output to update immediately. When running the

experiment, the FPGA is switched to remote mode, and receives a timing sequence

data from a compute running LabVIEW via the USB connection. Once the data

sequence is received, it is stored in the RAM on the FPGA board and transmitted to

the FPGA when the FPGA receives a rising TTL trigger on one of the inputs. On

each trigger, the FPGA will step through the set of parameter values (amplitude,

phase, and frequency) in the timing sequence table and updates the DDS accordingly.

The FPGA receives TTL signals via a BNC cable, connected to one of the input

pins of the FPGA board. In our setup, the TTL signals are generated by a digital

output PCI card (PulseBlaster), but they can also be generated by any other function

generator or data acquisition board. When in remote mode, the LCD screen displays

the words “REMOTE MODE” to indicate that manual user input is disabled.

DDS

The DDS AD9954 is mounted on a PCB separated from the FPGA circuit board.

The DDS can receive a digital signal via a serial connector and generate a sinusoidal

voltage with analog output with a frequency of up to 160 MHz. In contrast to tradi-

tional analog synthesizers, the direct digital synthesizer has various advantages, for

example, lower phase noise, extremely fast switching between different phases and
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frequencies, and precise control of the output phase and frequency [78]. In our setup,

the DDS board is controlled by the FPGA board. The control interface is shown in

Fig 5.6. The FPGA can store frequency, amplitude, and phase values in its memory

addresses and use as steps in the timing sequence. When the FPGA receives a TTL

signal, it steps to the next memory block and sends the corresponding parameters to

the DDS chip to update the output signal. We time the DDS board with an external

400 MHz clock, generated by a stable function generator referenced to a Rb atomic

oscillator (SRS FS725 Rubidium Frequency Standard). This enables the DDS to

produce a change of output amplitude, frequency, or phase within four microseconds

of receiving new parameters. The external clock also allows us to bypass the internal

clock multiplier on the DDS chip, which removes unwanted sidebands on the output

signal. The output of the DDS is passed through a DC block to prevent any DC bias

on the output signal. A desktop computer running LabVIEW is utilized. LabVIEW

communicates with the FPGA board via a USB connection (FT232R UART) to serial

interface. Through this connection, LabVIEW transmits the frequency, amplitude and

phase information of each timing sequence, which are stored on RAM or the FPGA

board. The timing sequences are transmitted as strings that always start with the

letter “L”. Thus when the FPGA receives a sequence starting with the letter “L”,

it decodes the following characters into amplitude, frequency, and phase parameter

values that can later be stepped through and used to update the DDS chip.

5.2.2 Workflow of the Microwave Source

The schematic of our home-built microwave system is shown in Fig. 5.1. The

microwave system uses a frequency reference from a rubidium atomic oscillator (SRS

FS725 Rubidium Frequency Standard), producing a stable 10 MHz reference signal.
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Figure 5.6: A screenshot of the DDS AD9954 LabVIEW user interface. Frequency,

amplitude, and phase values are stored in several RAM memory addresses on the FPGA

board. Later, these parameters arre used to update the DDS chip when it receives a

ASCII sequence starting with the letter “L”.
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The FPGA board is programmed via a computer at the begining of an experiment cycle.

During a cycle, it steps through the timing sequence, sends commands to the DDS

chip to create a sine wave with specified frequency, amplitude, and phase. The sine

waves’ frequency is set to around 30 MHz and mixed with a constant high-frequency

signal of 1.7416 GHz from a stable function generator (Stanford Research Systems, Inc.

SG382). The mixing is done with a single-sideband modulator (Polyphase Microwave

SSB0622A) which passes the sum of the two input frequencies, resulting in the desired

frequency. The signal’s frequency is very close to the clock transition in sodium at

1.7716 GHz. The parameter of the microwave signal, which includes the frequency,

amplitude, and phase shifts, can be conveniently controlled only by changing the DDS

while keeping the high-frequency signal generator at a fixed frequency output. The

mixed microwave signal is further modulated with a high-pass filter (Mini-Circuit SHP

-1000+) to filter out any potential unwanted DC levels or harmonics before sending it

to a microwave amplifier. Our microwave amplifier (HD Communication HD 28747)

amplifies the signal to a maximum output power of 25 W. The amplifier’s power is

turned on and off via an SSR relay (SPST-NO 30A 1-50V) which is controlled by a

TTL signal sent from the computer running LabVIEW. The amplifier is usually turned

on for about 13 s for each experimental cycle, and it becomes excessively hot after a

long time of running. To cool the amplifier, we use thermal paste on its mounting

surface and to mount it on the optical table with good thermal contact. We also put

two fans on top of the amplifier’s heat sink so it could be air-cooled as well during

the experiment. After the amplifier, the signal is sent through a directional coupler

(Pasternack PE2201-30) which provides a -30 dB diagnostic output used to monitor

the signal on a spectrum analyzer.

To couple the microwave signal to our home-built antenna, impedance matching

is important, since back reflections could go into the amplifier and destroy it when
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the signal power is high. Therefore, a stub tuner (Maury Microwave 1819B) is used

to match the impedance between the microwave source and the load, which is our

home-built half dipole antenna. To match the impedance, the stub tuner is adjusted by

moving the stubs back and forth to empirically minimize the back reflections. A coaxial

circulator (DiTOM D3C0120) is used to prevent any back reflections from coupling

back into the amplifier. While adjusting the stubs, we monitor the back reflections on

the third port of the coaxial circulator via a spectrum analyzer. Impedance matching

is done at low microwave power to prevent the antenna from heating up and being

damaged during operating.

5.2.3 Antenna

We designed two types of microwave antennas for our experiments. The first

one is a home-built half dipole antenna mounted inside the vacuum chamber. The

other is a home-built Yagi antenna set up outside and underneath the vacuum chamber.

Internal Antennas

Fig. 5.7 shows two antennas located inside the vacuum chamber. Our half-dipole

antenna is a quarter wave antenna with a length of 4.2 cm to match the frequency of

1.771 GHz. The antenna is made of UHV-compatible copper wire connected to an

electrical feedthrough (Kurt J. Lesker IFTCG012012) via a UHV-compatible Kapton

coax wire (Kurt J. Lesker FTAKC060CM1). The antenna is located inside the vacuum

chamber approximately 3 cm away from the center, as shown in Fig. 5.7. Inline

barrel connectors are used to provide a reliable, UHV-compatible electrical connection

between the copper antenna and the coax wire. The half-dipole antenna radiates

the microwave fields equally in all azimuthal directions. Therefore, we oriented our

antenna parallel to the atoms to maximize the microwave intensity that the atoms
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Figure 5.7: (a) CAD rendering of the microwave and RF antennas mounted inside

the vacuum chamber. The microwave antenna is a half-dipole antenna mounted about

3 cm from the center of trapped atoms inside the vacuum chamber via an SMA CF

1.33” electrical feedthrough. The RF antenna is a small copper loop with a diameter

of 25 mm. The RF antenna is also installed close to the center of the atomic cloud

to ensure high RF intensity at the position of the atomic cloud. (b) A photo of the

chamber showing microwave and rf antennas.

could receive.

Using the antenna inside the vacuum chamber allows us to irradiate the microwave

signal directly onto the cold atom cloud with little loss. However, the internal antenna

has two major drawbacks: outgassing and maintenance. An antenna running at high

power for relatively long periods would heat up and give off particles (outgassing),

causing the chamber pressure to rise and triggering our safety interlocks, stopping the

experiment. Our testing data shows excessive outgassing when the microwave source

continuously runs for over 100 ms at highest power. Therefore, the internal antenna

is not feasible for the experiments which need long-term continuously microwave

irradiation.
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External Antenna

Due to the outgassing issues with our internal microwave antenna, we switched

to an external antenna. The internal antenna is approximately 1.2 inches from the

atoms, while the external antenna is approximately 4 inches away. Due to the 1/r2

power spread, this corresponds to a large loss of power that can be transmitted to

the atoms. In order to mitigate this problem and ensure maximum gain, we used a

Yagi antenna design for our external antenna see Fig. 5.8. A general Yagi antenna

typically consists of a number of parallel thin rod elements, which include a single

driven element, a reflector element, and director elements. The driven element is

directly connected to a radio transmitter, and the reflector element is usually slightly

longer than the driven element and placed behind the driven element. Directors, on

the other hand, are a little shorter, can be used in any number, and are placed in front

of the driven element in the intended direction. In our design, we use microwaves with

a frequency of 1770 MHz ± 100 MHz, corresponding to a wavelength of 16.9 cm. Due

to the limitation of the experimental space, we built a compact Yagi antenna with

a folded dipole that has a length of 8.45 cm which folds the microwave in half. As

the wave leaves the antenna, it unfolds into the full 16.9 cm. For a Yagi antenna, the

gain increases with the number of directors used. Our current home-built antenna has

three directors, which is the maximum given current space limitations.

5.3 Microwave Source Performance

After setting up the microwave system, the microwave power needs to be calibrated

and tested before it can be put into use. Since all experimental data in this thesis are

taken with the external Yagi antenna, we only show the calibration data and the Rabi

frequency testing data using the external antenna.
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Figure 5.8: The Yagi antenna shown in the image is used in the experiment. The

antenna consists of three components: the reflector, transmitter, and director. The

reflector reflects the signal which help to collimate to the beam and increases the gain.

The transmitter emits the microwave signal. The director resonates with the wave

creating constructive interference, also increasing gain.
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5.3.1 Microwave Calibration

In a well calibrated system, the set power and the corresponding output power

should be equal. In our microwave system, we calculate the real microwave power

by measuring the on-resonance Rabi frequency of population oscillation on the clock

transition of our sodium BEC and then compare it with the corresponding set power

entered in our LabVIEW that is sent to the microwave source. The Rabi oscillations

on the clock transition can be treated using an effective two-level system. The Rabi

frequency due to an oscillating magnetic field can be expressed

Ω = η
< 2|µ ·B|1 >

~
, (5.14)

where µ is the magnetic dipole moment, B = ~B cosωt is the oscillating magnetic field,

which in our case is the microwave field, and Ω is the generalized Rabi frequency,

which can be expressed as Ω =
√

Ω2
0 + ∆2, where ∆ is the detuning. η is a loss factor

that depends on several aspects, such as the distance between the antenna and the

atoms, radiation angle, solid angle, and loss in transmission.

The first step of calibrating the microwave power is to calculate the real power. In

general, the microwave power transferred per unit area is related to the Rabi frequency

via

Pmw ∝ Ω2
clock, (5.15)

where Pmw is the power of the microwave in mW and Ωclock is the Rabi frequency

of the clock transition. Since the proportionally factors are the same for different

microwave powers, we have

Pmw
Ω2

=
P0mw

Ω2
0

, (5.16)

where P0mw and Ω0 are the reference power in mW and reference Rabi frequency

in radians, respectively. Equation (5.16) means that given a reference power and

corresponding Rabi frequency, we can calculate any real microwave power if we know
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the Rabi frequency corresponding to that power. Therefore, the real microwave power

in units of dBm can be written as

Preal = 10× log

(
Ω2

Ω2
0

10P0/10

)
, (5.17)

where Preal and P0 are the real power and reference power in dBm.

The last step is to compare the real power with the set power. If there is a

discrepancy, we add a power calibration factor to compensate for the difference.

Usually, a list of about 20 points should be measured and calculated. We then

enter the set power and the real power multiplied by the calibration function into

LabVIEW to do the interpolation. In our calibration data, we took 18 different data

points, measured the Rabi frequency for each of them, calculated the real power,

and compared it with the set power, as shown in Fig 5.9. We choose 40 dBm as the

reference power because the maximum power output of the microwave amplifier is

44 dBm. If the reference power is chosen too close to the saturation point, the real

power measurement will not be accurate, because of clipping and saturation of the

amplified output waveform.

5.3.2 Microwave Rabi Oscillations

Next, we test the functionality of the calibrated microwave source by exciting Rabi

oscillations in our Na spinor BEC in an applied B-field that defines the quantization

direction and gives a linear Zeeman shift of µ·B0/h = 300 kHz, where µ is the magnetic

dipole moment. The applied B-field B0 is a constant magnetic field generated by

our three pairs of Helmholtz coils and can be changed to point in different directions

by changing the current through the coils. We set the quantization direction in the

vertical z and east-west x directions with respect to the optical table, respectively. The

angle between the microwave B-field and the B0 field affects the Rabi frequencies. In

our experiments, we located the microwave antenna underneath the vacuum chamber
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Figure 5.9: Microwave power as a function of Rabi frequency used for microwave power

calibration. Black dots are the real power obtained by measuring each Rabi frequency.

Red squares are the power set points, used in programming the microwave source. The

black dots are closely matching the red squares which means that the set power matches

the real power, indicating a good calibration.

and pointed it up at a small angle to the vertical direction of the vacuum chamber.

Furthermore, we change B0 to the x and z directions to measure the Rabi frequencies.

Figure 5.10 shows an energy level diagram for the relevant transitions and Rabi

oscillations. For each sublevel of the F = 1 hyperfine state, three independent transi-

tions are coupled to sub-levels in the F = 2 hyperfine states. Therefore, one might

think we would measure nine microwave transitions for our experiments to have a full

picture of the coupling between the two hyperfine states. However, we can simplify

this effect by measuring only three transition and calculating the other six using the

known Clebsch–Gordan coefficients. The three transitions we measure are Ωπ, Ωσ+

and Ωσ− which correspondent to the transitions |F = 1,m = 0〉 → |F = 2,m = 0〉,

|F = 1,m = 0〉 → |F = 2,m = −1〉 and |F = 1,m = 0〉 → |F = 2,m = 1〉, respec-
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Figure 5.10: Na ground state hyperfine energy levels and associated Rabi couplings. The

linear Zeeman splitting between hyperfine sublevel is 300 kHz at an applied magnetic

field of 0.428 G.

tively. Figure 5.11 shows the microwave Rabi oscillations of the Ωπ, Ωσ+ and Ωσ−

transitions with B0-field in the x and z directions, respectively. Rabi oscillations were

obtained by scanning the microwave pulse length at a fixed microwave power, and

Rabi frequencies were obtained by fitting a sine function to the measured data points.

We measured the Rabi frequencies with B0 field aligned in x direction to be

Ωπ = 2π × 8363.75 kHz

Ωσ− = 2π × 9867.45 kHz

Ωσ+ = 2π × 5963.22 kHz,

with B0 aligned along the z direction, we obtained

Ωπ = 2π × 12525.97 kHz

Ωσ− = 2π × 6586.63 kHz

Ωσ+ = 2π × 4322.01 kHz.
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These Rabi frequencies are large enough to induce fast quenches and phase shifts,

because the corresponding time scales are much faster than the ones associated with

spin-mixing, which is ∼30 Hz.

5.4 Radio-Frequency Signal

Apart from using resonant microwave fields to transfer population between ground

hyperfine states, and microwave dressing with detuned field to cause an AC Zeeman

shift. We also designed an independent radio-frequency (RF) source to couple the

atoms between the sublevels in the F = 1 hyperfine manifold, directly. This gives us

more feasibility for different initial state preparation of our spinor BEC. The RF source

is designed to remotely couple the magnetic sub-levels in the F = 1 ground hyperfine

state of sodium with frequencies on the order of a few hundred kilohertz. Figure 5.12

shows the experimental data of the population oscillation in the sublevel of the F = 1

manifold due to the rf coupling. The initial state was prepared to be |F = 1,m = −1〉.

The magnetic field was set to generate a 300 kHz linear Zeeman shift between the

adjacent F = 1 sublevels. Then, the on-resonant RF field was turned on for 100

µs, during which the population in the three sublevels oscillated sinusoidally. The

RF generator’s design is relatively simple compared to our microwave system. The

schematic is shown in Fig. 5.13. The RF signal is generated by a function generator

(Agilent 33220A), amplified to 25 W, and then radiated to atoms via a home-built RF

coil antenna mounted inside the vacuum chamber, as shown in Fig. 5.7. The required

frequency for the RF transitions in our experiments depends on the magnetic field

because it has to be resonant with the linear Zeeman shift. For the typical magnetic

field used in our experiments, the RF frequency is resonant at 300 kHz.
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Figure 5.11: (a)-(c) show the Rabi oscillations measured on resonance for the Ωπ, Ωσ−

and Ωσ+ transition, respectively when B0 is along the x direction. (d)-(f) show the Rabi

oscillations on resonance for the Ωπ, Ωσ− and Ωσ+ transition, respectively when B0 is

in the z direction. (a) and (d) show the atom number in |F = 1,m = 0〉 as a function

of microwave pulse length. (b)-(f) show the atom number fraction in |F = 1,m = 0〉 as

a function of microwave pulse length.
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Figure 5.12: Experimental data of RF Rabi oscillations in F = 1 hyperfine state manifold.

The B-field is set to generate a 300 kHz linear Zeeman shift in F = 1 hyperfine state,

and the on-resonant RF field is turned on for 100 µs. ρ0, ρ−1 and ρ+1 are the population

fraction number of |F = 1,m = 0〉, |F = 1,m = −1〉, and |F = 1,m = +1〉, respectively.

Figure 5.13: Schematic of the RF system. The RF signal generated from a function

generator after receiving a TTL signal is filtered by a low-pass filter before passing

through the RF amplifier. A home-built RF coil antenna is installed inside the vacuum

chamber so that it is close to the atoms to ensure large Rabi frequencies.

111



Chapter 6

All-optical Generation of Spinor Sodium

Bose-Einstein Condensates

Bose-Einstein condensation (BEC) has a long and rich history starting from the

1920s. Satyendranath Bose, an Indian physicist and mathematician wrote a paper in

1924 in which he derived Planck’s quantum radiation law without referencing classical

physics. However, Bose’s article on Planck’s law was not accepted for publication.

He then sent it directly to Einstein, who recognized its importance, translated it to

German, and got it published on behalf of Bose in the scientific journal Zeitschrift

für Physik [79]. Later, Einstein extended Bose’s idea to the case of noninteracting

atoms [80], resulting in a phenomenon known as Bose-Einstein statistics. In this

prediction, when a bosonic gas is cooled below a critical temperature Tc, a large fraction

of atoms would occupy the lowest energy state. At this point, the wavelength of the

matter wave, known as the thermal de Broglie wavelength λdB becomes comparable to

the interatomic separation. The atomic wavepackets start to overlap, finally condense

in the lowest quantum state, and become indistinguishable. They behave like a single

giant “superparticle” or giant “matter wave”, a macroscopic quantum object, which

can be described by a single wave function which is a product of indentical single

atom wave functions. However, this theory was not taken too seriously until the 1930s,

when Fritz London and Laszlo Tisza found that the underlying mechanism of BEC

could be used to explain the superfluidity in liquid helium 4 [81, 82]. Moreover, it

has been recognized now that the properties of superconductivity and superfluidity in

helium 3 and helium 4 are related to BEC, even though they are very different from

the ideal gas system described by Einstein.

To experimentally realize a real BEC, one needs to cool the bosonic atomic gas
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to an extremely cold temperature until λdB becomes large enough and the atomic

wavepackets start to overlap. Meanwhile, the system should be gaseous all the way

to the BEC transition. This requires a dilute gas with a density of about a hundred-

thousandth the density of normal air, such that it will not form molecules due to

three-body collisions or transition to the liquid or solid. One candidate that scientists

have tried to form a BEC with is spin-polarized hydrogen. In 1976, Stwalley and

Nosanow pointed out that the spin-polarized hydrogen would remain gaseous even at

zero temperature, which stimulated lots of interest in generating the spin-polarized

hydrogen BEC in the experiment. Experiments were first done using cryogenic cells

to cool the sample and compressing it [83], but they failed to reach the requisite phase

space densities to form a BEC [84]. Later, by switching to magnetic trapping and

evaporative cooling to compress and reduce the temperature of the sample, the spin-

polarized hydrogen BEC was eventually accomplished in 1998 by Kleppner, Greytak,

and collaborators [85].

At about the same time, laser cooling and trapping technology had been developed

and opened a new door to generate BECs with alkali atoms. Atoms can be cooled and

trapped in a magneto-optical trap in a ultra-high vacuum chamber, with a temperature

of about a few hundred micro-kelvin to a few millikelvin. Then, the temperature

of the cold atomic cloud can be further cooled down via the evaporative cooling

technique. The atomic gas finally reaches the critical temperature Tc, and the BEC

starts to form. In 1995, the first BEC of rubidium atoms was finally achieved by

Eric Cornell, and Carl Wieman [86], 70 years after Bose and Einstein made the

prediction, while the first sodium BEC was created by Wolfgang Ketterle in the same

year [87]. Not long after, the first signatures of the occurrence of BEC in vapors of

lithium were also reported [88]. In those systems, atoms were magnetically trapped

during the evaporative cooling and confined in a single magnetic sublevel so their spin
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degrees of freedom were frozen. In 1998, an optical trap was used to confine sodium

BECs in the F = 1 hyperfine level [89]. The optical trap simultaneously trapped all

magnetic sublevels. Thus, the atomic spin was liberated from the requirements of

magnetic trapping and became a new degree of freedom that could be investigated in

BECs. Since BECs in optical traps have multi-component spin levels, they are also

called spinor BECs. Over the last 27 years, BEC has been experimentally realized

in many groups with different atomic species. Apart from alkali atoms such as 7Li,

Rb, Na, and Cs [90], BEC has been created in some alkaline-earth-like atoms, such as

Ytterbium [91], Calcium [92], Strontium [93, 94], and some high magnetical strongly

dipolar atomic species such as Erbium [95], Chromium [96], Dysprosium [97] and

Europium [98]. In addition, even light [99] has been condensed to a BEC, which was

surprising due to the vanishing interaction.

In this chapter, we present the method we used to achieve the University of

Oklahoma’s first sodium Bose-Einstein condensate, a sodium spinor BEC, which is

achieved by an all-optical route. This chapter is divided into four sections. Section

one presents the BEC theory, including basic features of the non-interacting Bose gas

and interacting Bose gas in a harmonic trap. Section two introduces our far-detuned

crossed optical dipole trap (ODT) setup and method to transfer atoms from the MOT

into the ODT. Section three describes how we implement and optimize the evaporative

cooling technique to realize the phase transition to generate the BEC. Finally, section

four shows our BEC characteristics, including BEC fractions, temperature, and trap

frequencies.
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6.1 Theory of Bose-Einstein Condensate

6.1.1 Ideal Boson Gas

Atoms are bosonic if they have integer spin, which means the total number of

electrons, protons, and neutrons they contain is even. Bose-Einstein Condensates

(BECs) are bosonic gases that are so cold that a macroscopic fraction of atoms

occupy the same lowest quantum state of the trapping potential. The atoms become

indistinguishable from one to another and act as a single giant matter wave. The phase

transition to BEC occurs when the temperature falls below the critical temperature Tc,

usually in the nano-Kelvin (nK) regime. The process of an atomic system undergoing

a phase transition from a thermal gas to a BEC can be related to the change of the

thermal de Broglie wavelength λdB of each particle, which is defined as

λdB =
h√

2πmkBT
, (6.1)

where m is the particle’s mass, h is Planck’s constant, and kB is the Boltzmann

constant. We can think of the particles as wavepackets, and λdB is the associated

wavelength which is inversely related to the momentum. At high temperature, λdB is

very small compared to the average inter-particle distance d. The wavepackets do not

overlap, and the atomic gas behaves like billiard balls. When the temperature of the

system is lowered, λdB increases as the temperature decreases. The quantum nature

of the particles becomes apparent as the wavepackets of the particles begin to overlap.

For the simplest system, which includes N non-interacting free particles, the

Hamiltonian is

H =
N∑
i

p2
i

2m
. (6.2)

Therefore, the the single-particle energy in momentum space is

εi =
p2
i

2m
. (6.3)
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We consider a non-interacting Bose gas in 3D in thermodynamics equilibrium. The

mean occupied number of a single particle state i is given by the Bose distribution

f(εi) =
1

eβ(εi−µ) − 1
. (6.4)

The grand partition function can be written as

Z(z, V, T ) =
∏
i

1

1− ze−βεi
, (6.5)

and the grand canonical potential of the ideal Bose gas can be written as [100]

Ω = PV = kBT logZ = −kBT
∑
i

log
(
1− ze−βεi

)
, (6.6)

where z = eβµ is the fugacity, which is related to the chemical potential µ, and

β = (kBT )−1. The particle number can be written as

N = z
∂

∂z
logZ(z, V, T ) =

∑
i

ze−βεi

1− ze−βεi
. (6.7)

We notice that Eq. (6.7) diverges when atoms are in the state with p = 0 with fugacity

z = 1. Therefore we split the sum into two parts: one indicates atoms in the ground

state with ε0 = 0, and the other describes the non-ground states’ energy. We also

replace the sum over i with integrals over the momentum p. The number density of

the Bose gas then becomes

n =
N

V
=

4π

h3

∫
dp p2 1

z−1eβε − 1
+

1

V

z

1− z
, (6.8)

where the first term is associated with the number density in the excited states and the

second term is associated with the number density in the ground state. Specifically,

we can re-write the excited state part in terms of the thermal de Broglie wavelength

λdB [101]

n =
1

λdB
g3/2(z) +

1

V

z

1− z
, (6.9)
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where g3/2(z) is defined as
∑∞

n=1 z
n/n3/2. Only when z is between 0 and 1 is g3/2(z)

bounded. Specifically, when z = 1 (µ = 0), g3/2(1) becomes the Riemann zeta function

with a value ≈ 2.612. We can now write the fraction of the atoms in the ground state

as

n0 = n−
g3/2(z)

λ3
db

, (6.10)

where n0 = 1
V

z
1−z . From this equation, when n > g3/2(1)/λ3

dB, a finite fraction of

atoms occupies the ground state, and the phenomenon is known as Bose-Einstein

condensation. The critical condition for BEC to happen is nλ3
dB ≈ 2.612, and the

critical temperature Tc can also be derived from this expression. At zero temperature,

a pure condensate with all particles in the ground state can be realized, see Fig. 6.1.

6.1.2 Bose-Einstein Condensate in a Trap

In the previous section, we assume the Bose gas is uniform and noninteracting. This

section discusses the Bose gas in a harmonic potential with two-body interactions. The

Hamiltonian that describes a many-body system with N interacting bosons confined

in an external harmonic potential is given, in second quantization, by [102]

Ĥ =

∫
dr Ψ̂†(r)(−~2∇2

2m
+ Vext(r))Ψ̂(r) +

1

2

∫
drdr′ Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r′)Ψ̂(r),

(6.11)

where Ψ̂†(r) and Ψ̂(r) are the bosonic field operators that create and annihilate,

respectively, a particle at the position r. The first two terms are kinetic energy and

external harmonic potential field, and V (r− r′) is the two-body interatomic potential

which describes the hardcore interaction. The ground state of this Hamiltonian can

be directly calculated using the Monte Carlo method [103]. However, the calculation

can be very computationally expensive and impractical when the number of atoms

becomes large. The many-body system with interaction is commonly solved using

mean-field approximations to simplify the calculation as well as to gain more physical
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Figure 6.1: An illustration of how the de Broglie wavelength λdB changes with decreasing

temperature. When the temperature is high, λdB is much smaller than the inter-particle

distance. As we lower the temperature, quantum effects start to become visible. The

wavefunctions of the atoms start to overlap with each other. At T=0 K, all particle

waves are overlapped and become a single “giant matter wave.” Adapted from [1].

insights about the system. The basic idea of the mean-field approximation is to assume

that the action felt by a given particle due to all other particles is substituted by the

mean action of all particles. According to the mean-field approximation [104, 105], we

decompose the field operator

Ψ̂(r, t) = Φ(r, t) + δΨ̂(r, t), (6.12)

where the complex function Φ(r, t) ≡ 〈Ψ̂(r, t)〉 has the meaning of an order parameter

and is commonly known as the macroscopic wave function of the condensate. δΨ̂(r, t)

describes the non-condensate part, which can be neglected when the temperature of

the system is well below the critical temperature Tc. The two-body interaction term
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V (r− r′) in the dilute ultracold gas can be replaced by

V (r− r′) = gδ(r− r′), (6.13)

where g is the interaction strength related to the s-wave scattering length a through

g =
4π~2a

m
. (6.14)

Then, the evolution of the condensate wave function Φ(r, t) can be expressed using

the following equation

i~
∂

∂t
Φ(r, t) =

(
−~2∇2

2m
+ Vext(r) + g|Φ(r, t)|2

)
Φ(r, t). (6.15)

This equation, known as Gross-Pitaevskii (GP) equation, was derived independently

by Gross and Pitaevskii [106, 107]. The GP equation can also be derived through the

variational procedure:

i~
∂

∂t
Φ =

δE

δΦ∗
, (6.16)

where E is the energy functional, which is given by

E(Φ) =

∫
dr

[
~2

2m
|∇Φ|2 + Vext(r)|Φ|2 +

g

2
|Φ|4

]
, (6.17)

where the three terms inside the square bracket from left to right are the kinetic

energy of the system, the harmonic confinement potential, and the interaction energy,

respectively. For the mean-field theory in the ground state, the condensate wave

function is Φ(r, t) = φ(r)e−iµ~/t. Here, µ is the chemical potential and φ(r) is a

time-independent wave function, normalized to the total number of particles in the

condensate,
∫
dr |φ(r)|2 = N0. The GP equation for the ground state can then be

written as (
−~2∇2

2m
+ Vext(r) + g|φ(r, t)|2

)
φ(r) = µφ(r), (6.18)

where |φ(r)|2 = n is the particle density, which is a nonlinear term that has no analog

in the linear many-body Schrödinger equation. If the kinetic energy is equal to the
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interaction energy, and we use p = ~/ξ, then we get

~2

2mξ2
=

4π~2a

m
n, (6.19)

or, more common, it can be written as

ξ =
1√

8πan
, (6.20)

where ξ is called “healing length”, which is a length scale that indicates the distance

over which the wave function tends to its bulk value when subjected to a localized

perturbation [108]. The healing length, which is related to the number density and

the s-wave scattering length, gives the shortest distance over which the wave function

can “heal” from a perturbation effect.

If the interaction term is much larger than the kinetic energy term, one can neglect

the kinetic energy term, and Eq. (6.18) becomes

n(r) = |φ(r)|2 = g−1[µ− Vext(r)]. (6.21)

This is known as the Thomas-Fermi approximation, which sets a boundary to the

cloud beyond which n(r) = 0. The boundary of the cloud is therefore given by

Vext(r) = µ. (6.22)

For a harmonic trap under the Thomas–Fermi approximation the extension of the

cloud in the three directions is given by the distance called the Thomas-Fermi radius

Ri,

R2
i =

2µ

mωi
, i = x, y, z. (6.23)

The Thomas-Fermi radius is often used to determine the size of a weakly interacting

BEC, and it can also be compared with the healing length ξ. For example, the ratio

between the Thomas-Fermi radius and the healing length ξ can be used to determine

the critical frequency of a rotating trap for creating a vortex [102, 108].
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6.2 Crossed Optical Dipole Traps

Experimentally, we achieve Bose-Einstein condensation by evaporatively cooling

the Bose gas in a far-off resonant trap, also known as optical dipole trap (ODT).

ODT is a simple way to trap atoms without requiring large magnetic field gradients.

Additionally, the tightly confining trapping potential provides a conservative force

to localize the atoms, therefore significantly reducing the optical excitations. These

characteristics make it an appealing option for various metrology applications, such

as magnetometry and inertial sensing. The optical dipole trap (ODT) is one of the

most important setups in our system to create all-optical BECs. We load atoms from

the MOT or the optical molasses into a crossed ODT formed by focusing two far-off

resonance laser beams. Then, we perform forced evaporative cooling to realize BEC.

6.2.1 ODT Setup

We evaporative cooling a gas in an optical dipole trap (ODT), atoms with the

highest energy are removed from the trap by lowering the laser power, and the

remaining atoms thermalize through two-body elastic collisions. Therefore, relatively

high collision rates are necessary, which corresponds to high trapping frequencies. A

simple way to make an ODT that has tight confinement in all three dimensions is to

cross two focused Gaussian beams at their foci under a 90◦ angle, as shown in Fig. 6.2.

In this case, the intensity distribution of both beams can add up to the total intensity

Itot =
2Px

πω2(x)
e
− 2(x2+y2)

ω2(x) +
2Py

πω2(y)
e
− 2(x2+y2)

ω2(y) , (6.24)

where Px, Py and ω(x), ω(y) are the power and the beam waist of the two crossed laser

beams, respectively. Usually, the frequency of ODT beams is detuned far below the

atomic transition. The wavelength difference is several hundreds of nanometers. Due

to the large detuning, this far-off resonant trap (FORT) minimizes optical excitations,
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Figure 6.2: Representations of a crossed beam dipole trap. a) Shows that the two

focusing beams are crossed at the center of the chamber to form a crossed optical

dipole trap. b) Presents the corresponding calculated potentials. c) Shows a false

color absorption image of our crossed optical dipole trap when the two beams are not

overlapped. Atoms can be seen to fill the arms and the focus area of the trap geometry.

reducing heat generation due to the scattering process. A FORT works as follows: two

ODT beams overlap, with the polarization being linear and orthogonal to each other.

The overlapping foci of the FORT have the largest light intensity, which leads to the

AC Stark shift induced by the trapping light to lower the ground state energy of the

atoms proportionally to the local intensity. The spatial dependence of the atomic

potential energy is therefore equivalent to a spatial dependence of the light intensity,

according to Eq. (2.10). We set up the crossed ODT in the horizontal (x− y) plane

so that the strongest dipole force works along the direction of gravity. When the

intensity of the light is high, gravity does not play a big role in shaping the dipole

trap, and the sagging of the cloud can be neglected.

Our system uses an infrared (IR) laser (IPG photonics YLR-50-1064-LP) with

an output power of 50 W at 1064 nm to generate a crossed ODT. The crossed ODT

consists of two tightly focused far red-detuned beams overlapping with the MOT at

the center of the chamber, and each has a 1/e2 beam waist of approximately 24 µm.

The schematic of our ODT setup is shown in Fig. 6.3. The laser can produce a

linearly polarized Gaussian beam with a maximum power output of 50 W. The output
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fiber of the IR laser is set on a separated optical breadboard (Thorlabs MB1224)

along with the other dipole trap optics which are anti-reflection coated at 1064 nm

wavelength. The optical breadboard is about 7” above the main optical table and

held by five 1.5” thick mounting posts to minimize the vibration from the main optics

table. The collimated laser beam is output from a commercial optical fiber collimator

with a beam waist equal to 3.5 mm in diameter. Then the beam is passed through an

AOM (3110-125 Crystal Technology) with a telescope which consists of a plano-convex

lens (200 mm focal length) and a plano-concave lens (-20 mm focal length). The

telescope shrinks the size of the beam from 3.5 mm diameter to 0.35 mm diameter so

it can pass through the center of the hole of the AOM without accidentally heating

the metal frame or the transducer inside. A D-shape mirror is used to direct the

zeroth order beam after the AOM into a high-power beam dump. The first-order

beam passes through an expansion telescope and is then focusing at the center of

the chamber via a plano-convex 400 mm focusing lens followed by a dichroic turning

mirror. To complete the crossed ODT, we guide this laser beam to return it back into

the vacuum chamber from the other side, as shown in Fig. 6.3, so it is orthogonal to

the original beam. The reflecting beam is focused by another plano-convex 400 mm

focusing lens and a dichroic turning mirror. At the center of the vacuum chamber two

foci with approximately the same beam waist are overlapped to generate the optical

potential well to trap the cold atoms. In order to implement a fine adjustment, both

400 mm focusing lenses are mounted on travel translation stages (Thorlabs MT1)

with micrometer drives which can move the foci back and forth along the beam path.

In total, four dichroic-coated mirrors surrounding the chamber are used to guide the

beams in and out of the vacuum chamber. They are used to reflect the laser beam at

1064 nm wavelength and allow the yellow MOT laser to transmit. We also replace the

standard adjustment knobs on the dichroic mirror with the high precision micrometer
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Figure 6.3: Schematic of crossed ODT setup. The high-power IR laser is expanded by an

optical telescope after going through an AOM, then focused by a 400 mm plano-convex

lens. The IR laser beam travels through the chamber twice so that the two foci overlap

at the center of the MOT to form the crossed ODT. PD stands for photodetector,

and H stands for half-wave plate. The D-shape mirror, the zeroth order light and the

corresponding beam dump after the AOM are not shown.

heads, which have sensitivities better than 1 µm to increase the accuracy.

Given the size of the vacuum chamber and the working space of the dipole trap

system, we choose to use a 400 mm plano-convex focusing lens to achieve a beam waist

of about 24 µm at the center of the chamber. In order to approximately determine

the position as well as the size of the beam waist, we measured the beam size w(z) at

ten different spots along the laser propagating direction z after the 400 mm lens and

fit them into the equation

w(z) = w0

√
1 +

(
λz

πw2
0

)2

. (6.25)

This equation describes the evolving beam width of a Gaussian beam, where w0 is

the beam waist, and λ is the laser’s wavelength, which is 1064 nm. After fitting the
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measured data point, we found that the dipole trap beam waist w0 ≈ 24 µm, the

Rayleigh length z(R) = πw2
0/λ is ∼ 1.7 mm, and the distance between the beam waist

position and the 400 mm focusing lens is ∼ 16.6 cm.

6.2.2 ODT Beam Alignment

The ODT should be overlapped with the highest density part of the MOT or optical

molasses to load atoms efficiently. Aligning the ODT with the MOT is challenging.

Usually, the beam alignment is performed using a low laser power of about 80 mW.

However, when running the experiment, we use 85% of the full power corresponding

to ∼ 42 W. The high power of the ODT laser beams will generate heat and cause

thermal stress on mirrors, lenses, and the crystal inside the AOM and therefore distort

the beam path. Additionally, the high-power back-reflection light generated from one

optic can be incident on another optic, if not blocked, and will also lead to distortions.

To tackle the first challenge, we move both the MOT and ODT to the geometric

center of the vacuum chamber as precisely as possible. First, we center the MOT using

magnetic bias fields by moving the zero magnetic field position, as explained in chapter

four. To help the alignment, we also set up two video cameras aligned with two 1.33”

viewports to locate the MOT position, and then align the ODT to the center of the

chamber. We align the ODT beam through the center of the two diagonal viewports

where the MOT beams also pass through. To overlap the ODT beams with the MOT,

we first use the on-resonant imaging repumping beam to approximately overlap and

counter-propagate the ODT beam since the on-resonant yellow light interacts with

the cold atoms trapped in the MOT and removes them via the scattering force. Once

the MOT is extinguished by the imaging repumping beam, it indicates that the beam

path of the imaging repump beam crosses the atomic cloud. Then we align the ODT

beam carefully with the imaging repumping beam with some reference apertures. To
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deal with the thermal effects in the optical system, we put irises along the laser beam

path to block the back-reflection light generated from lenses, mirrors, and AOMs. We

also observed a decrease of ODT laser power as well as beam path deviation after

running the laser at high power for some time due to the thermal stress generated

from the high-power laser. In order to minimize the effects, after switching the laser

to high-power mode, we do not perform any data-taking until the ODT optical system

reaches thermal equilibrium.

The fine alignment of the ODT requires aligning the dipole trap light focus and

the MOT. Therefore, we run an experiment sequence that can generate the MOT

as well as running the IR laser at the high-power mode simultaneously, such that

we can observe the ODT and MOT using absorption imaging if they are on top of

each other. We usually start the alignment by aligning a single ODT beam to the

MOT, then overlap the second beam with the first one. While aligning the ODT, two

cameras are switched on alternately to take pictures from the top and side to locate

the ODT positions along horizontal and vertical directions, respectively. At this time,

the magnification of the cameras are set to m = 0.6, so they can image both MOT

and ODT, as illustrated in Fig. 6.4.

After preliminary aligning the ODT to the MOT, we turn off the MOT beam and

leave the ODT beam on for at least 500 ms, so atoms from the MOT have fallen and

expanded away except for the ones that are trapped in the ODT. The focus of the

ODT beam is found by recording the center position of the trapped atoms after some

holding time inside the ODT since atoms tend to be attracted to the beam’s waist

position. The focus position of the ODT beams can be adjusted via a micrometer screw

along the beam path by moving the plano-convex 400 mm focusing lenses mounted

on the translation stages. The highest intensity of the intersection point of the two

ODT beams is generated by crossing two foci of the ODT beam, which creates a
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Figure 6.4: False-color TOF absorption images of the MOT and ODT from side view

(a) and top view (b). The red color indicates the high-density regime where the atoms

are trapped inside the ODT. The TOF was 5 ms.

deep potential depth for trapping the atoms. Since the ODT beam waist is small,

the overlapping spot is, therefore, very small compared to the size of the MOT. To

achieve a high-resolution image of the two foci when crossing one of them to another,

we change the camera’s magnification from m = 0.6 to m = 2 to enlarge the regime

of interest. Then, we slightly adjust the high-precision micrometer knobs mounted

on the dichroic mirrors between experiment cycles to optimize the alignment. Better

alignment means that more atoms can be trapped in the ODT. The number of atoms

is obtained using Igor to fit the overlapping spot after each experiment cycle. This

number, which automatically updates, is maximized by making small adjustments.

In addition, the polarization of the ODT beam was also found to contribute to

the alignment: the best crossed ODT is achieved when the ODT beams’ polarization

is linear and orthogonal to each other to neutralize any interference effects. The

orthogonal polarization configuration of the ODT beam is achieved with a λ/2 wave-

plate rotating the polarization of the second beam by 90◦. A well-focused imaging

system is essential since one might not be able to identify the initial signal of the

ODT beam if the imaging system was defocused too much. In this situation, the ODT
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beam in the absorption image tends to be very wide and blurry, although the MOT

picture still looks good.

6.2.3 Stabilization of ODT

Our IR laser can output high power (50 W) but also has significant intensity noises

which reduces the number of atoms that can be loaded into the dipole trap. Therefore,

we built an opto-electronic noise eater to minimize the laser noise as well as controlling

the laser power. The system consists of an AOM, a free-space photodetector, a

function generator (Agilent 33521A), a current pre-amplifier (SRS Model SR570),

and a commercial proportional-integral (PI) controller (New Focus LB 1005 Servo

Controller). A small portion of the ODT beam that is reflected from a flat glass

plate (Thorlabs WG11010-C) is picked up by a photodetector. The electrical signal is

amplified and converted from current to voltage by the current pre-amplifier with a

large signal-to-noise ratio. A commercial PI controller generates an error signal by

subtracting an amplified photodetector signal from an external setpoint generated

from the function generator. The PI controller generates a feedback control signal via

the proportional-integral mechanism. The control signal is sent back to the AOM to

stabilize the output power of the IR laser beam after the AOM.

In addition to minimizing intensity noise, this electronic noise eater also serves

as a laser power modulator, allowing us to realize forced evaporative cooling by

exponentially decreasing the power of the ODT. This is done by first using LabVIEW

to program an exponential decay curve as a function of time. The curve is empirically

determined to have the most efficient cooling rate. The decay curve is programmed

into the function generator via a USB, producing an output voltage signal serving

as the external setpoint to the PI controller. The Agilent function generator has a

16-bit high resolution (better than 1 mV voltage accuracy), so it can implement an
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accurate exponential ramp from large to very small voltage which is critical for the

evaporative cooling mechanism. After receiving the exponential ramp-down curve

as a time-dependent setpoint voltage, the PI loop controls the power modulation

on the AOM to decrease the laser power exponentially to follow the setpoint value.

Atoms in the ODT undergo force evaporation until the phase transition to the BEC is

accomplished.

6.2.4 Loading Cold Atoms into the ODT

Optimizing the loading efficiency is key to trapping more atoms in an ODT. This is

essential for generating Bose-Einstein condensates because forced evaporative cooling

causes about 90% of atoms to be lost duing the cooling. The loading efficiency of

a system depends on the competition between atoms loading into a trap and atoms

leaving the trap. Typically, the loss of atoms in the ODT happens due to three

processes: one-body losses, two-body losses, and three-body recombination. One-

body losses could come from photon scattering induced by the ODT or background

collisions due to the imperfect vacuum. The far-off resonant trap (FORT) light photon

scattering can be determined by calculating the photon scattering rate given by

Eq. (2.13). Background gas atoms moving at high speed will collide with trapped

atoms and kick the atoms out of the trap, leading to atom loss. Two-body losses

are induced from two-body collision. Elastic collisions evaporate the hot atoms from

the trap and decrease the remaining atoms’ temperature, which is crucial to realize

evaporative cooling. Elastic collisions are therefore “good” in this context. Two-body

inelastic collisions such as photoassociative collisions (induced by the trapping laser

light) and ground state hyperfine changing collisions generate heat and cause the

atom to leave the trap. Inelastic collision are therefore “bad” in this context. Three-

body recombination describes three atoms colliding where two colliding atoms form a
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Figure 6.5: Lifetime measurements of sodium atoms in F = 1 hyperfine ground state.

The black dots are the experimental data, and the red curve is an exponential decay

function N(t) = N0e
− t
τ , where N0 is the initial atom number in the trap, and τ is the

time constant. From the fitting we obtain τ ≈ 14.7± 2 s. Atoms in the F = 1 ground

state show an exponential decay mainly due to the one-body losses.

molecule, and the third carries away the excess energy. Three-body losses are small

during the loading procedure and, therefore, can be neglected [46]. For sodium atoms

trapped in the F = 1 hyperfine state, the primary atom loss comes from the one-body

losses, which can be observed from the 1/e lifetime of our optical dipole trap, as shown

in Fig. 6.5

The lifetime of the dipole trap is measured by observing the number of atoms in

the trap for different holding times. All the other light sources are blocked, so that

resonant light cannot influence the lifetime of the atoms in the trap. Figure 6.5 shows

the decay of sodium atoms in the F = 1 hyperfine ground state. Since the atom

loss in ODT at high laser power is mainly due to one-body losses, the atom number

can therefore fit an exponential decay curve and the time constant from the fitting
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is τ ≈ 14.7± 2 s. The lifetime of the dipole trap can be increased by decreasing the

pressure in the vacuum chamber. With a lower background pressure, the possibility

of trapped atoms colliding with background atoms is lowered, resulting in a lower

heating rate. Our BEC was reached with a vacuum chamber pressure of 10−11 Torr,

where the background collision can be mostly ignored.

Our experiment starts with loading ∼ 3 × 108 atoms in the MOT. The optical

dipole trap is turned on during the MOT loading phase so that atoms can transfer

directly from the MOT into the tightly focused crossed ODT. The power of the ODT

beam is set to 80% of its maximum value during the MOT loading stage and tuned to

full power after the optical molasses stage. This will minimize the frequency shift of

atoms due to the AC Stark shift induced by the high-intensity FORT laser beam and

lessen its impact on the MOT cooling transition. Since the size of the ODT is small

compared to the size of the MOT, no visible reduction of atom number in the MOT

can be observed.

The dynamics of the loading procedure are complex because it not only depends

on the atom loss in the ODT but also depends on atom loading, which involves

on-resonant yellow light. For example, one factor determining the loading rate is

the flux of atoms into the ODT, which depends on atom number and density in the

MOT. To have a large number of atoms in the MOT, a relatively high power of the

MOT repumping beam is needed to sustain the MOT. However, the high power of

the repumping beam also increases the loss rate, because it generates heat during the

repumping cycle. Therefore, finding a mechanism to minimize the loss and increase the

flux of atoms in the ODT is necessary. The flux of the atoms into the ODT depends

on MOT density, atom temperature, and the potential depth of the ODT. Common

ways to increase the MOT’s density and obtain a high loading rate while reducing the

losses is to generate a dark spot MOT [109, 110] or a compressed MOT [111, 112]. In
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our experiment, we compress the MOT by increasing the magnetic field gradient from

∼7 G/cm to 12 G/cm in 20 ms to increase the MOT density and maximize the flux of

atoms into the ODT. To further cool and increase the atoms’ phase space density, we

apply an optical molasses stage to cool the atoms via sub-Doppler cooling during the

loading process. The optical molasse stage lasts 32 ms as the MOT is gradually turned

off. During this time, the magnetic-field gradient from the MOT coils is decreased

from 12 G/cm to zero, and the detuning of the laser cooling beam increased from 20

MHz to 32 MHz. Apart from detuning the MOT cooling beam’s frequency during the

optical molasses stage, we also empirically found optimal values for the power of the

MOT cooling beam and MOT repumping beam during the ODT loading phase that

maximizes the atom number in the optical dipole trap.

Figures 6.6a, b, and c show the number of atoms loaded into the optical dipole

trap at the optical molasses stage as a function of the MOT cooling beam detuning,

the MOT cooling beam power, and the repumping laser beam power, respectively.

During the optical molasses stage, the MOT cooling beam frequency is tuned from

-20 MHz to -32 MHz to optimize the number of atoms in the ODT, as illustrated in

Fig. 6.6a. The larger effective detuning reduces the excitation rate of atoms in the

dipole trap and thus reduces light-induced collisions and heat. Increasing the detuning

of the cooling laser in this way also helps cool the temperature of the atoms to the

sub-Doppler regime, thereby increasing the phase space density and the probability of

trapping the atoms in the dipole trap. The intensity of the cooling laser beam also

affects the loading rate. Figure 6.6b shows that the number of atoms is maximum

in the ODT when our MOT cooling laser power is about 30 mW. Below this level,

the MOT is not sustained. To further optimize the transfer of atoms from the MOT

into the ODT, we gradually turn down the power of the optical repumping beams

from 3.8 mW to a few hundred microwatts during the optical molasses stage. The
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Figure 6.6: Atom number loaded in the optical dipole trap as a function of (a) the cooling

laser detuning from resonance, (b) the cooling laser power, and (c) the repumping laser

power. (a) The larger effective detuning reduces the excitation rate of the atoms in the

dipole trap and thus reduces light-induced collisions and heat. (b) Atoms are maximum

in the ODT when the MOT cooling laser power is about 30 mW. Below this level, the

MOT is not sustained. (c) The intensity of the repumping laser is decreased so that the

atoms are pumped into the F = 1 ground state. The optimum repumping laser beam

intensity is ∼600 µW.
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atom number inside the ODT is highest when the repump power equals ∼600 µW,

as presented in Fig. 6.6c. The atom number increases when the repumping beam

power decreases because the atoms are optically pumped into the F = 1 ground state.

However, the atom number decreases when the power of the repumping laser is too

low because the optical molasses is not sustained for lower intensities.

We use these atom-loading parameters to empirically find the best polarization

gradient cooling scheme for our system to optimize the atom loading number in the

trap, presented in Fig. 6.7. This is programmed in the computer control experimental

sequence using LabVIEW.

At the end of the optical molasses stage, we turn off the MOT beams using an

AOM, followed by the mechanical shutter. Then we linearly ramp up the ODT power

to its maximum available value within 5 ms and hold it at constant power (∼ 20 W)

for 1.5 seconds to perform free evaporation. The trap depth of the ODT can be

calculated according to Eq. (2.14), which is Umax ' kB × 986 µK. Due to the tight

trap confinement, the density in the optical dipole trap is much higher than the

density in the MOT, leading to free evaporation caused by elastic two-body collisions.

During free evaporation, the most energetic atoms escape from the dipole trap due

to the elastic collision, and the temperature of the trapped atomic gas is reduced

via re-thermalization. Figure 6.8a shows the absorption images at the early time

of the free evaporation stage where the molasses is still visible on top of the ODT.

Figure 6.8b shows ODT the after 1.5 s of free evaporation. After optimization and 1.5

seconds of free evaporation, the total number of atoms in the ODT is about 2.5 × 105.
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Figure 6.7: Empirically optimized experimental cooling sequence for optical molasses

using polarization gradient cooling before evaporative cooling. CMOT stands for the

compressed MOT.

6.3 Evaporatively Cooling Atoms

6.3.1 Modelling Evaporation

Frequent elastic collisions between atoms inside the ODT are the key to efficiently

performing the evaporative cooling since re-thermalization depends on how often

elastic collisions happen. The collision rate is determined by the elastic cross section

σ, the density n of the atomic cloud, and the average relative velocity
√

2v̄ of the two
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Figure 6.8: False-color absorption images of our ODT. a) A typical top view absorption

image of our crossed ODT in the presence of MOT atoms after a short free evaporation

time of 10 ms. b) A typical top view absorption image of our crossed ODT after 1.5

s free evaporation. OD stands for optical density. The time-of-flight for a and b are

10 µs.

colliding atoms

Γel = nσ
√

2v̄, (6.26)

where the elastic cross section is given by σ = 8πa, a is the atom scattering length

and v̄ is the average thermal velocity which is defined as

v̄ =

√
8kBT

πm
. (6.27)

From this equation, the elastic collision rate depends on the number density n, which is

related to the trap frequencies. Therefore, at high densities and high trap frequencies

the collision rates are high and allow a faster evaporation ramp. Conversely, at low

densities and low trap frequencies the collision rate is low and demands a slower

evaporation ramp. This means that the evaporation ramp for atoms in an optical

dipole trap should start with a steep slope and flatten out for longer evaporation

times.
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In our experiment, atoms in the ODT are evaporatively cooled by ramping down

the laser power with an AOM with two exponential ramps that optimized empirically.

It takes five seconds to complete the forced evaporative cooling and reach BEC. The

first exponential ramp has a steep slope with a exponential decay constant τ1 = 0.4 s,

which is only applied for a short time due to the high collision rate. The following

ramp has a more moderate decay constant applied for the rest of the time with a time

constant τ2 = 0.8 s. The ramping speed is critical. If the trap depth is ramped down

too fast, the atoms do not have enough time to re-thermalize, and the evaporative

cooling is not efficient. If the trap depth is ramped down too slowly, inelastic collisions,

for example, three-body recombination have time to happen more and more, and

evaporative cooling is also inefficient.

6.3.2 Scaling Laws

The dynamics of the phase space density and the atom number in the ODT during

the evaporative cooling are determined by scaling laws [113]. It is well known that the

evaporation rate of an atomic cloud in a fixed depth ODT decreases as the temperature

drops [114]. The cut-off parameter η =
UDip
kBT

, the ratio of the trap depth and the atom

thermal energy, plays an important role in defining the evaporation rate. Usually,

η = 10 is the best condition for evaporation when only elastic collisions are taken into

consideration. If η > 10, the evaporation slows dramatically. On the other hand, if

η < 10, the atoms evaporate out of the trap until η reaches 10 again.

From Ref. [113], scaling laws are derived from the energy loss of the system due to

the atom evaporation and adiabatic lowering of the trap depth. With a fixed value

η =
UDip
kBT

, the number of trapped atoms is related to the trap depth as

N

Ni

=

(
U

Ui

) 3
2(η′−3)

(6.28)

where Ni and Ui are the initial atom number and trap potential, respectively. Here,

137



η′ = η + (η − 5)/(η − 4). The phase space density increases during the evaporation

and scales with trap potential and atom numbers as

ρ

ρi
=

(
U

Ui

) 3(η′−4)

2(η′−3)

=

(
N

Ni

)η′−4

. (6.29)

For an energy-independent scattering cross section, the elastic collision rate scales

with the trap depth as

γ

γi
=

(
U

Ui

) η′
2(η′−3)

, (6.30)

and the evaporation rate is given by the s-wave Boltzmann equation [114]:

Ṅ = −2(η − 4)e−ηγN. (6.31)

Eventually, the time-dependent potential depth is obtained by

U

Ui
=

(
1 +

t

τ

)−2(η′−3)

η′

(6.32)

with the time constant τ given by

1

τ
=

2

3
η′(η − 4)e−ηγi. (6.33)

It is worth noting that the scaling laws only take into account the atom loss due to

elastic collisions. In a real experiment, the atom loss due to background gas collisions,

inelastic collisions, and gravity should also be taken into consideration. Therefore, the

simulation curve from Eq. (6.32) can only be used as a starting point in the experiment.

For the actual evaporation curve used experimentally, the time constant of each ramp

is determined empirically by measuring the atom number and the temperature of the

atoms at the end of each ramp. The optimum duration of the ramp is determined

by obtaining the most atoms for a given final laser power. The final laser power

determines the final temperature of the atoms that can be reached, and is chosen such

that the final temperature is well below Tc.
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6.3.3 Experimental Realization

Figure 6.9 shows our optimized experimental sequence for evaporative cooling.

The dipole trap laser is tuned on during the MOT loading phase and the optical

molasses phase. After 1.5 seconds of free evaporation, the forced evaporative cooling

takes place by exponentially lowering the trap depth Udip. This is realized by lowering

the trapping laser power through a PI control loop. The evaporative cooling curve

generated from the function generator (Agilent 33521A) has a sample rate of 1000 Hz,

meaning 5000 laser power steps are stepped through during the 5 seconds for forced

evaporative cooling. The laser power is lowered down smoothly adiabatically. We

notice that, as the trap depth is reduced and the laser power is low at the end of the

evaporative cooling, gravity starts to play an important role. Due to gravity, the trap

can no longer hold the atoms when the laser power is very low. We found that the

cut-off laser power is close to 100 mW in our experiment.

6.4 BEC Detection and Imaging Analysis

6.4.1 Imaging System for BEC

Imaging the BEC provides the density distributions of the atomic cloud from

which we can obtain information such as the atom number, the density distribution,

and, with the Stern-Gerlach TOF technique, the spin population. The two most

popular techniques for observing BEC are in-situ and time-of-flight imaging. The

in-situ imaging technique is often applied to image the atomic cloud in a trap or in

the early phase of ballistic expansion. For in-situ images, dispersive imaging, such as

phase-contrast imaging, is often used to image a dense cloud. The “non-destructive”

feature of the dispersive imaging comes from the low heat generation since the light

is off-resonant. Dispersive imaging can be used to take a real-time movie without
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Figure 6.9: Optimized ODT ramping sequences in the experiment. The ODT is kept at

a relatively small trap depth during the laser cooling process. It is then linearly ramped

to Umax within 5 ms. After 1.5 s of free evaporation, it is exponentially ramped down

during 5 s, as depicted.

destroying the BEC. Absorption imaging, as discussed in chapter four, uses near-

resonant light to illuminate an atomic cloud and image the shadow cast by the atoms

onto a CCD camera. Absorption imaging can be applied after time-of-flight imaging

with sufficiently long expansion times so that the resonant optical density has dropped

to values around unity.

Bose-Einstein condensation is experimentally observed in our lab by taking absorp-

tion images after a few milliseconds of time-of-flight after the trap is switched off. After

a sudden switching off of the trap, the quantum kinetic energy and interaction energy

are then rapidly converted into kinetic energy of motion. Then the atoms expand at

a constant velocity when they leave the trap. We usually wait for more than 10 ms

of time-of-flight before we take the absorption images so that the atomic cloud has

enough time to expand so that the optical density becomes low and the cloud can be
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imaged with high spatial resolution. The absorption imaging beam is σ−polarized, and

is tuned to drive the optical dipole transition |F = 2,m = −2〉 → |F ′ = 3,m = −3〉

for 30 µs of exposure time. An optical pumping beam is turned on simultaneously

with the imaging beam to optically pump the atoms from |F = 1〉 to |F = 2,m = −2〉

during the exposure. Atoms trapped in different sublevels of the F = 1 ground state

are pumped into the same excited state for imaging withing a few µs, allowing easy

comparison of relative atom numbers without correcting for different transition matrix

elements [1].

For most of our experiments, we use the absorption images to show the spatial

structure of different magnetic sublevel components separately, which requires us to

spatially separate the spin components after the trap is switched off and before the

absorption images are taken. Turning on a magnetic field gradient will apply a force to

spin components with mF 6= 0 and deflect their trajectories during the expansion. The

phenomenon is known as the Stern-Gerlach effect. In our experiment, we turn on the

magnetic field gradient to generate a Stern-Gerlach pulse for 9 ms after switching off

the trap. The distance between each spin component after the Stern-Gerlach pulse is

about 200 µm which allows us to have a clear separation between each spin component

in a single image.

6.4.2 Detecting Bose-Einstein Condensation

At the end of the forced evaporative cooling, the trap depth becomes shallow,

the temperature is low, and the collision rate is low. This leads to a slow-down of

rethermalization, and evaporative cooling eventually stops. The Bose gas undergoes a

phase transition and forms a Bose-Einstein condensate. The indicator of a trapped

Bose-Einstein condensate is the appearance of a sharp peak in momentum space. After

TOF expansion, this peak in momentum space is mapped to a sharp peak in position
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Figure 6.10: Absorption images are taken after interrupting an optimized evaporation

curve at various laser powers, followed by a 10 ms time-of-flight. Figure a) to f) show

the evaporation curve interrupted at the laser power of 281.2 mW, 233.7 mW, 197.6

mW, 178.6 mW, 142.5 mW, and 125.4 mW, respectively. OD stands for optical density.

There is no indicate of condensates in figure a) and b). The condensate atoms appear as

a sharp density peak in the images c), d), e), and f) as the condensate fraction increases.

Finally, we have an almost pure BEC in image f).

space, visible in the TOF absorption images. To observe how a BEC is formed, we

took several absorption pictures of the condensate fraction after interrupting the

evaporation curve at various trap potentials, then atoms are released from the trap

and undergo a 10 ms of time-of-flight. The thermal cloud and the condensate are

shown in Fig. 6.10.

When the evaporative cooling is interrupted at a high trapping potential, which

142



corresponds to high laser power, as shown in Fig. 6.10a, the atomic cloud is a thermal

Bose gas with no fraction of BEC. When the trap is switched off, atoms expand

quickly. As the trap depth gets more shallow, the atomic cloud’s temperature becomes

lower and lower. The phase transition to BEC happens when the temperature of the

atomic cloud reaches a critical temperature, and the thermal gas starts to condense

to the lowest energy of the system and form a Bose-Einstein condensate. The phase

transition is shown in Fig. 6.10c, with a sharp peak appearing at the center of the

thermal gas. Continuing evaporative cooling leads to T < Tc, in Fig. 6.10f, almost all

the thermal gas has undergone a phase transition and forms an almost pure BEC.

6.4.3 Characterizing Bose-Einstein Condensation

The false-color absorption imaging method provides a two-dimensional picture of

a column optical density and contains information on the spatial distribution of the

atomic cloud. When above the critical temperature, the density distribution in the

thermal cloud follows the classical Gaussian distribution of a trapped thermal gas

following Boltzmann statistics

nth(x, y) = nth(x0, y0)e
− (x−x0)

2

2σ2x
− (y−y0)

2

2σ2y , (6.34)

where σx and σy are the standard deviation of the Gaussian atomic density distribution

in the x and y direction, respectively. If the temperature is close to or below the critical

temperature, the density distribution becomes predominantly the Bose distribution

and can be described by the Bose-enhanced Gaussian function [1]

ñth(x, y) =
nth(x0, y0)

g2(1)
g2

(
e
− (x−x0)

2

2σ2x
− (y−y0)

2

2σ2y

)
, (6.35)

where g2(x) =
∑∞

n=1 x
n/n2. The density distribution of the thermal gas then becomes

a classical Boltzmann distribution (Eq. 6.34). On the other hand, the density of the

BEC fraction in the Thomas-Fermi regime takes the shape of an inverted parabolic
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density distribution

nTF (x, y) = nTF (x0, y0)max

{
0,

(
1− (x− x0)2

R2
x

− (y − y0)2

R2
y

)3/2
}
, (6.36)

where Rx and Ry are the Thomas-Fermi radii of the BEC in the x and y direction,

respectively.

Figure 6.11 shows false-color absorption images of our atomic cloud taken after

interrupting the optimized evaporation curve at several different times close to the

end of forming a BEC. The images are taken by the side camera. The images show

the coexistence of the condensate cloud and the thermal gas, with a bimodal feature

in the density distribution, which can be described by summing up Eq. (6.35) and

Eq. (6.36). The data points in Fig. 6.11 are obtained from the one-dimensional dashed

line of the column optical density data. After fitting the density distribution with

the bimodal function, the density of the BEC (nTF ) and the density of the thermal

gas (nth) can be obtained. Thus, the condensate fraction (CF) can be determined as

CF = nTF/(nTF + nth).

The temperature is determined by measuring the width of the thermal cloud at a

different time during the time of flight, and the temperature can be determined by

T =
m

kB

ω2
1 − ω2

2

t21 − t22
, (6.37)

where ω1 and ω2 are the 1/e2 radii of the thermal cloud at different times t1 and t2

during the time-of-flight.

Another important physical quantity is the trap frequency, which defines, in the

absence of interactions, the potential energy of the BEC in a trap. The trap frequency

depends on the trap laser power and the trap geometry. The crossed optical dipole

trap used in our lab has a larger trap frequency in the axial direction but a smaller trap

frequency in the radial direction, which gives an approximately axial symmetry. In our

setup, we measure the trap frequency by applying a force to kick the atoms in the trap
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Figure 6.11: (Right) False-color absorption images of the atomic cloud are taken after

interrupting an optimized evaporation curve at 4 s, 4.5 s, 4.7 s, and 5 s. The z direction

is aligned with gravity. (Left) Column optical density data along the dashed lines on

the right side pictures. The red solid curve is the revert of the bimodal fit, and the

blue dashed curve is the classical Boltzmann distribution specifically showing only the

thermal gas. The condensate fraction (CF) can be determined as CF = nTF /(nTF +nth).

The CF is about 32% when the evaporation time is 4 s and increases to about 97%

when the evaporation time is 5 s.
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so that they can slosh back and forth near the bottom of the trap. Therefore, the trap

frequency can be calculated by measuring the center-of-mass position as a function of

time. Since the ODT potential is only approximated well by a harmonic trap near the

center, the kick should be small to minimize anharmonicities. In the axial direction,

we kick the atoms using gravity by releasing them from the trap for ∼50 µs and

recapturing them. Then, we use the side camera to record the center-of-mass position

as a function of time. To measure the trap frequency in the radial direction, we first

prepare atoms in the |F = 1,m = −1〉 state, and apply a weak and short magnetic

field gradient pulse to kick the atoms in the trap. We then record the center-of-mass

position in the x and y directions as a function of time with the top-down imaging

system.

Figure 6.12 depicts the measured center-of-mass position of atoms in the trap as

a function of the holding time after the displacement from the center. A sine wave

is used to fit the measured data points. The trap frequency can be extracted from

the sine function. We record the center-of-mass position for times up to 80 ms. For

early time, the data agree well with the sine wave fit. However, large discrepancies

appear between the data and the fitting curve after 60 ms, which might be due to the

vibrational noise from the optical breadboard used for holding the dipole trap optics.

In our new lab in Lin Hall, we will replace the old breadboard with a 60 mm thick

honeycomb optical breadboard, which has a better ability to dissipate energy from

induced vibrations. The trap frequency measurement results are ωz = 2π × 275.3 Hz,

ωx = 2π × 127.3 Hz, and ωy = 2π × 138.5 Hz.
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Figure 6.12: (a) to (c) are trap frequencies measured along the x, y, and z directions,

respectively. Here, z is the vertical (axial ODT) direction aligned with gravity. We use

a gravity kick method to excite motion of the trap frequency in the z direction and

a Stern-Gerlach pulse kick method to excite the motion of the trap frequency in the

x and y directions. The black dots are the measured data, and the red curve is the

sine-wave fit. The fit gives trap frequencies of ωz = 2π × 275.3 Hz, ωx = 2π × 127.3 Hz,

and ωy = 2π × 138.5 Hz.
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Chapter 7

Spinor Bose-Einstein Condensate

The first Bose-Einstein condensate was generated with a magnetic trap, in which

only one magnetic sub-level was trapped. The atom’s internal degrees of freedom were

therefore frozen. This type of BEC is known as scalar BEC. On the other hand, BECs

trapped in an optical trap where all magnetic sublevels are trapped simultaneously,

are called spinor BEC. The spin degree of freedom is liberated.

The study of spin-exchange collisions is an active research frontier because the

collisions generate correlated quantum states, including squeezed and entangled states,

which have a wide range of important applications in matter-wave quantum optics

because they can be controlled precisely by microwave dressing. The spin-exchange

collisions amplify vacuum fluctuations in the initial states [115] and create exotic

quantum many-body spin states such as spin-nematic squeezed states [116], two-mode

spin squeezing [117] and non-Gaussian spin-squeezed states [118]. In addition to

providing a new tool to study fundamental principles of many-body quantum mechan-

ics [119], spinor BECs have applications in quantum metrology, quantum information

processing, and many other fields. For example, high-resolution magnetometry and

interferometry have been realized with sensitivities close to or below the standard

quantum limit (SQL) that fundamentally limits the precision of measurements for

uncorrelated atoms [120, 121]. In our experiment, we use spinor BECs with total

angular momentum F = 1. The coherent spin dynamics are driven by spin-exchange

collisions, which cause characteristic population oscillations between the m = 0 and

m = ±1 states, and can generate entanglement between atom pairs in m = ±1

states [122].

In this chapter, we present our study of F = 1 sodium spinor BECs. Specifically,
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we focus on the coherent spin population oscillation between magnetic sublevels in the

mean-field picture. Section one presents the theory of the spin-1 system’s dynamics in

the mean-field ground state. Section two shows the experimental procedures to realize

the F = 1 spin mixing dynamics. In this experiment the initial state is prepared in

the m = 1, m = 0, and m = −1 data population fractions states with ρ−1 = 0.25,

ρ0 = 0.5, and ρ+1 = 0.25, respectively. Section three presents data and analysis of

the spin mixing dynamics data within the single-mode approximation (SMA), and

beyond the SMA.

7.1 Theoretical Model of Spin Interaction

7.1.1 Hamiltonian in the Mean-field Picture

The Hamiltonian of the general spin-F Boson gas is similar to the Hamiltonian of

the spinless Boson (Eq. 6.11), which consists of two parts: a single-particle term and

an interaction term. In second-quantized notation, the single-particle Hamiltonian

can be described as [123]

Ĥ0 =

∫
dr

F∑
m,m′=−F

{
Ψ̂†m(r)

(
−~2∇2

2M
+ Utrap(r) + V̂ext

)
Ψ̂m′(r)

}
, (7.1)

where Utrap(r) is a harmonic trap potential defined as Utrap(r) = 1
2
m(w2

xx
2 + w2

yy
2 +

w2
zz

2), and wx, wy and wz are trap frequencies in the x, y and z directions of the trap.

Ψ̂†m(r) and Ψ̂m′(r) are bosonic field operators that create and annihilate a particle at

position r. Different from the spinless case, the spinor Bose gas has internal degrees

of freedom represented with indices m, m′ corresponding to the magnetic sublevels of

spin F. V̂ext is the external field. In our experiment, a homogeneous magnetic field

and a microwave field are the two main sources that contribute to V̂ext in which the

homogeneous magnetic field defines the quantization direction, so V̂ext can be written
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as (
V̂ext

)
mm′

= −p(F̂z)mm′ + q(F̂ 2
z )mm′ . (7.2)

The first term corresponds to the linear Zeeman shift, p = gµBBz, where g is the

Landé hyperfine g-factor and µB is the Bohr magneton. The second term corresponds

to the effective quadratic Zeeman shift. The coefficient q = qB+qMW has contributions

from the external magnetic field, qB, and the microwave field, qMW . The former is

calculated by using second-order perturbation theory as

qB =
(gµBBz)

2

∆Ehf
, (7.3)

where ∆Ehf is the hyperfine energy splitting. qMW is derived in chapter five, Eq. (5.13).

F̂z is the spin matrix along z component, whose element is given by (F̂z)mm′ .

The interaction part of the Hamiltonian in second quantization can be written

generally as

ĤI =

∫
dr1

∫
dr2

∑
ij,kl

Ψ̂†i (r1)Ψ̂†j(r2)V (r1 − r2)Ψ̂k(r2)Ψ̂l(r1), (7.4)

where V (r1 − r2) is the potential describing the interatomic interaction. Usually, the

many-body interaction problem is difficult. Here, we make several approximations to

simplify the problem. First, we neglect the long-range interaction, such as dipole-dipole

interaction, since it is a thousand times smaller than the short-range interaction in

alkali atoms. Second, BECs are cold and dilute, so we assume that there are only binary

collisions and the incident collision energy is so low that only the lowest-order incident

partial waves contribute, and the other partial waves can be ignored. This means we

only consider s-wave collisions. Third, we treat the two-body collision among atoms as

having rotational symmetry. That is to say, the total angular momentum f = F1 + F2

is the same before and after the collision. Usually, rotational symmetry is only valid

when no external field, such as a magnetic field, is applied. As the magnetic field is

increased, the hyperfine spin F1,2 are no longer good quantum numbers for describing
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the atomic states. Thus collision properties are no longer governed by rotational

symmetry. In practice, such influences are rarely completely absent. Nevertheless,

this approximation still applies at a low magnetic field where Zeemann shifts are

much smaller than the hyperfine splitting. After all those approximations, now the

interatomic interaction V (r1 − r2) is reduced to the form

V (r1 − r2) =
4π~2

m
δ(r1 − r2)

∑
f

af P̂f , (7.5)

where the index f is the total spin f = F1 + F2. Due to the symmetry requirements

of identical bosons, only the even total spin numbers remain, i.e. f = 0, 2, ..., 2F

(F = F1 = F2). af is the scattering length for collisions between atoms with total spin

f . P̂f is the projection operator that projects a pair of atoms into a total hyperfine

spin f state. From the completeness relation for two spin-F particles, Î =
∑

f P̂f , and

the composition law of spin operators, we have

F̂1 · F̂2 =
1

2

F∑
f=0

[f(f + 1)− 2F (F + 1)], (7.6)

where Î is the identity operator of total spin states. In a Na spinor BEC, the lowest

ground state hyperfine level is F = 1, and thus total spin f=0 or 2. Therefore,

Î = P̂0 + P̂2 and F̂1 · F̂2= P̂2 − 2P̂0 and Eq. 7.5 becomes [124]

V (r1 − r2) = δ(r1 − r2)(c0Î + c2F̂1 · F̂2), (7.7)

where

c0 =
4π~2

m

a0 + 2a2

3
, c2 =

4π~2

m

a2 − a0

3
. (7.8)

Therefore, the interaction part of the Hamiltonian ĤI is

ĤI =

∫
dr

1

2

∑
ijkl

{c0Ψ̂†i (r)Ψ̂†j(r)Ψ̂k(r)Ψ̂l(r)+c2

(
Ψ̂†i (r)(Fv)ilΨ̂l(r)

)
·
(
Ψ̂†j(r)(Fv)jkΨ̂k(r)

)
},

(7.9)
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where the index v runs over the three coordinates axis x, y and z. In F = 1 system,

spin matrix Fx, Fy, and Fz can be represented by

Fx =
1√
2


0 1 0

1 0 1

0 1 0

 , Fy =
i√
2


0 −1 0

1 0 −1

0 1 0

 , Fz =


1 0 0

0 0 0

0 0 −1

 .

(7.10)

After applying particle exchange symmetries and gathering similar terms, the interac-

tion part can be written as

ĤI =
1

2

∫
dr[(c0 + c2)Ψ̂†1Ψ̂†1Ψ̂1Ψ̂1 + c0Ψ̂†0Ψ̂†0Ψ̂0Ψ̂0 + (c0 + c2)Ψ̂†−1Ψ̂†−1Ψ̂−1Ψ̂−1

+ 2(c0 + c2)Ψ̂†−1Ψ̂†0Ψ̂−1Ψ̂0 + 2(c0 − c2)Ψ̂†1Ψ̂†−1Ψ̂1Ψ̂−1

+ 2c2(Ψ̂†0Ψ̂†0Ψ̂1Ψ̂−1 + Ψ̂†1Ψ̂†−1Ψ̂0Ψ̂0)].

(7.11)

The first line shows that atoms are annihilated and created in the same state, which

refers to the self-scattering or density-density terms. The terms in the second line are

the cross-scattering terms, and the last line describes a pair of atoms annihilated in

m = ±1 states and generated in m = 0 state and vice versa, which represents the

spin-exchange collision.

The total Hamiltonian Ĥ = Ĥ0 + ĤI of a spin-1 Bose gas in an external magnetic

field can be described as follows

Ĥ =

∫
dr

{
1∑

m=−1

Ψ̂†m(r)

(
−~2∇2

2m
+ Utrap(r)

)
Ψ̂m(r)

+
1∑

mm′=−1

Ψ̂†m(r)
(
−p(Fz)mm′ + q(F 2

z )mm′
)

Ψ̂m′(r)

}

+
1

2

1∑
mm′=−1

{
c0Ψ̂†m(r)Ψ̂†m′(r)Ψ̂m′(r)Ψ̂m(r)

+ c2

(
Ψ̂†m(r)(Fv)mm′Ψ̂m′(r)

)
·
(

Ψ̂†m(r)(Fv)mm′Ψ̂m′(r)
) }

.

(7.12)

In our calculations for ultracold sodium prepared in the F = 1 manifold, we use the
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most recent determined values of a0 = 48.91 aB and a2 = 54.54 aB from Ref. [125],

where aB is the Bohr radius.

7.1.2 Spin Dynamics in the F = 1 Ground State

The ground state of the system can be directly calculated from the Hamiltonian.

However, the calculation can be heavy and even impracticable for systems with large

values of N . Mean-field theory can be used to overcome the problem of solving exactly

the full many-body Schrödinger equation and is usually obtained by replacing field

operators with their expectation values Φm(r) =
〈
Ψ̂m(r)

〉
when the total number of

condensed atoms N is large, and the occupation numbers of each magnetic sub-level

are also large. Using the mean-field approximation, we can evaluate the expectation

value of the Hamiltonian Ĥ

E(Φ) =
〈
Ĥ
〉

=

∫
dr

{∑
m

Φ∗m

[
~2∇2

2m
+ Utrap(r)− pm+ q m2

]
Φm +

c0

2
n2 +

c2

2
〈F 〉2

}
,

(7.13)

where m = (−1, 0,+1), n =
∑

m |Φm|2, and
〈
F
〉

=
∑

m,m′ Φ
∗
m(Fv)mm′Φm′ . Then the

mean energy of the spin-dependent Hamiltonian is just

Espin =

∫
dr
{
−p nm+ q nm2 +

c2

2
〈F 〉2

}
. (7.14)

In the absence of the external magnetic field, where the Zeeman terms p = q = 0,

the F = 1 BECs can be divided into two categories depending on the sign of the

spin-dependent interaction parameter c2.

• For c2 > 0, like sodium, the spinor gas tends to lower its energy by minimizing its

average spin, 〈F 〉2 = 0. This interaction type is denoted as “antiferromagnetic”,

and the ground state spinor is either a polar state (0,1,0), or antiferromagnetic

state 1/
√

2(1,0,1).
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• For c2 < 0, like rubidium, the condensates tend to lower their energy by

maximizing their average spin. That is to say, by making 〈F 〉2 = 1 in F = 1

spinor gas. This interaction type is known as “ferromagnetic”, and the ground

state spinor can be either (1,0,0) or (0,0,1).

Similar to the spinless case discussed in chapter six, the time evolution of the

spinor gas in the mean-field picture is governed by the Gross-Pitaevskii (GP) equations

which can be obtained by a variational procedure [123]

i~
∂Φm

∂t
=

δE

δΦ∗m
. (7.15)

In a spin-1 system, the GP equation contains multiple components due to the internal

degrees of freedom, and becomes [123]

i~
∂Φm

∂t
=

(
−~2∇2

2M
+ Utrap(r)− pm+ q m2

)
Φm + c0 nΦm + c2

1∑
m′=−1

〈F 〉 Fmm′Φm′ ,

(7.16)

where m takes values -1, 0, and 1. In a stationary state Φm(r, t) = Φm(r)e−iµt can be

substituded into Eq. (7.16), where µ is the chemical potential, obtaining,(
−~2∇2

2M
+ Utrap(r)− pm+ q m2

)
Φm + c0 nΦm + c2

1∑
m′=−1

〈F 〉 Fmm′Φm′ = µΦm.

(7.17)

Writing down the three components m = 1, 0, −1 explicitly, we obtain(
−~2∇2

2M
+ Utrap(r)− p+ q + c0n+ c2Fz − µ

)
Φ1 +

c2√
2
F−Φ0 = 0, (7.18a)

(
−~2∇2

2M
+ Utrap(r) + c0n− µ

)
Φ0 +

c2√
2

(F−Φ−1 + F+Φ1) = 0, (7.18b)(
−~2∇2

2M
+ Utrap(r) + p+ q + c0n− c2Fz − µ

)
Φ−1 +

c2√
2
F+Φ0 = 0, (7.18c)

where F± = Fx± iFy. The wavefunction of each spin component Φ0, Φ−1, and Φ1 can

be obtained by solving these three equations. Since the spin and spatial terms in these
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wavefunctions are coupled, we refer to them as coupled Gross-Pitaevskii equations.

In the next section, we will discuss the spinor wavefunction under the single-mode

approximation, where the spin and spatial degrees of freedom are decoupled.

7.1.3 Single-mode Approximation

Since the Thomas-Fermi radius of our system is smaller than the spin healing

length, ξs = 2π~/
√

2m|c2|n [126], spin domain formation is energetically suppressed.

Thus we can use the single-mode approximation (SMA) to simplify our model even

further. According to the SMA, all spin components are assumed to share the same

spatial dependence, and only the spin components vary in time, and thus the wave

function can be written as

Φ(r, t) =
√
Nζm(t)ΦSMA(r)e−iµt, (7.19)

where ζm(t) is the space-independent spinor, and µ is the chemical potential. In

addition, since the sodium spinor gas has a spin-dependent interaction term ∝ |c2|

much weaker than the spin-independent interaction ∝ |c0|, we can treat the spin-

dependent term as the perturbation term to the spin-independent term. Therefore the

spatial wave function ΦSMA(r) can be determined from the spin-independent term of

Eq. (7.17) alone(
−~2∇2

2M
+ Utrap(r) + c0N |ΦSMA(r)|2

)
ΦSMA(r) = µΦSMA(r). (7.20)

Substituting Φ(r, t) into Eq. (7.16), we obtain the equation of motion of ζm(t)

i~ζ̇1 = (−p+ q))ζ1 + c[(ρ1 + ρ0 − ρ−1)ζ1 + ζ2
0ζ
∗
−1], (7.21a)

i~ζ̇−1 = (p+ q))ζ−1 + c[(ρ−1 + ρ0 − ρ1)ζ−1 + ζ2
0ζ
∗
1 ], (7.21b)

i~ζ̇0 = c[(ρ1 + ρ−1)ζ0 + 2ζ1ζ−1ζ
∗
0 ], (7.21c)
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where c = c2N
∫
dr|Φ(r)|4 = c2n̄ is the spin-dependent interaction energy, n̄ is the

spin density, and ρi = |ζi|2 is the fractional population of i-th spin state. The equation

should also obey the normalization condition
∑

i ρi = 1, and atomic magnetization

should also be conserved, ρ1−ρ−1 is a constant. We further eliminate the p dependence

by writing ζm as

ζi =
√
ρie

iθieipmt/~. (7.22)

We identify ρi as the mean fractional population and θi as the mean quantum mechan-

ical phase of the i-th magnetic sublevel. Then, after some algebraic manipulation, we

obtain the following equations of motion for the fractional m = 0 population, ρ0, and

spinor phase, θ ≡ θ1 + θ−1 − 2θ0,

ρ̇0 =
2c

~
ρ0

√
(1− ρ0)2 −m2 sin θ

θ̇ = −2q

~
+

2c

~
(1− 2ρ0) +

2c

~
(1− ρ0)(1− 2ρ0)−m2√

(1− ρ0)2 −m2
cos θ.

(7.23)

The above two coupled equations give rise to the classical dynamics of a nonrigid

momentum-shortened pendulum, with classical energy

E = q (1− ρ0) + cρ0

[
(1− ρ0) +

√
(1− ρ0))2 −m2 cos(θ)

]
. (7.24)

It is noted that Eq. (7.24) can also be derived from ρ̇0 = −(2/~)∂E/∂θ and θ̇ =

(2/~)∂E/∂ρ0. This function describes the spin-dependent energy for a spin-1 spinor

gas in a semi-classical approximation. The energy E is conserved and the system

traces a constant-energy contour in phase space under such dynamics. Figure 7.1

shows spinor energy contours, for both a ferromagnetic condensate (Fig. 7.1a) and

an anti-ferromagnetic condensate (Fig. 7.1b) in phase space (θ, ρ0) with different

effective quadratic Zeeman shifts q. When we start from the same initial state, say

(θ = 0, ρ0 = 0.5), the trajectory changes depending on the value of q/|c|. For example,

when q/|c| ≥ 2, the trajectory of the system is in the running-phase region where the

spinor phase keeps accumulating. For q/|c| ≤ 1, the trajectory is in the periodic-phase
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Figure 7.1: Mean-field energy contours in phase space for a ferromagnetic condensate

(a) and an anti-ferromagnetic condensate (b) with magnetization m = 0. The color scale

shows the energy, which is scaled by c. The low energy region is shaded in blue, and the

high energy region is shaded in yellow. For an initial state (θ = 0, ρ0 = 0.5), if q/|c| ≤ 1,

the spin evolution of ρ0 are in the periodic-phase which the oscillations are bounded

in the spinor phase θ. If q/|c| ≥ 2 the spin evolution of ρ0 is in the running-phase

region where the spinor phase keeps accumulating. If q/|c| = 1, the spin evolution is on

separatrix marked in red dashed lines with an infinite period. The sidebar on the right

is the color legend for the dimensionless energy defined as ε/c.
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region where the oscillation is bounded in spinor phase θ. The region in between the

running-phase and the periodic-phase is called separatrix marked in red dashed lines

in Fig. 7.1a and Fig. 7.1b [127]. When a system is evolving on the separatrix, the

oscillation period becomes infinite. Note that for a ferromagnetic spinor BEC, like

rubidium, the hills in phase space become valleys and vice versa because of the different

sign of c. The time evolution of the anti-ferromagnetic gas is therefore different than

the evolution of the ferromagnetic gas. The nature of the ground state also changes

depending on the sign of c.

7.2 Spin-mixing Dynamics in an Anti-ferromagnetic Spin-1

BEC: Experiment

7.2.1 Spin-mixing in F = 1 Manifold

One of the salient features of spinor BECs is the spin-mixing dynamics. The

population of each spin component can change via the spin exchange collision, whereas

the total number of atoms is fixed, according to Eq. (7.11). For instance, in a spin-1

spinor BEC such as sodium, two atoms in the magnetic sublevel m = 0 can coherently

and reversibly scatter into a pair of atoms in the m = 1 and m = −1 states, and vice

versa creating entanglement in the process, as shown in Fig. 7.2

The cartoon in Fig. 7.3 depicts the spin exchange collision in a pair-energy diagram

of a three-level spinor BEC. The linear Zeeman shift does not appear because it cancels

out in the pair energy basis. On the other hand, the quadratic Zeeman shift q, which

defines the energy gap between the m = 0 state and m = ±1 states, is important. The

competition between the spin-interaction term and the quadratic Zeeman term allows

for interesting spin-mixing dynamics. In an experiment, changing the spin-interaction

energy c2n̄ is difficult, but changing the quadratic Zeeman shift is possible over a large
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Figure 7.2: Cartoon of a spin-exchange collision in F = 1 system. Two atoms in the

magnetic sublevel m = 0 can coherently and reversibly scatter into a pair of atoms in

the m = 1 and m = −1 states, and vice versa, creating entanglement denoted by the

wavy line.

range. As we mentioned in chapter five, the effective quadratic Zeeman shift q in

our experiment is controlled in two ways: the external bias magnetic field and the

microwave field. This can be described as the following equation

q = qB + qM = aB2h+
1

2
(∆EmF=1 + ∆EmF=−1 − 2∆EmF=0), (7.25)

where a ≈ 277 Hz/G2 for F = 1 sodium atoms, B is the bias magnetic field in units

of Gauss, and ∆EmF is defined in Eq. (5.12). We can either change q by changing the

magnetic field magnitude or the microwave dressing power. However, a fast-changing

magnetic field is hard to realize because of the induced eddy currents. In addition, the

magnetic field only allows for a positive q value. Microwave dressing is more versatile

since q generated by the microwave dressing field can be either positive or negative

depending on the sign of microwave detuning ∆. In addition, our microwave generator

has an output power range from -30 dBm to 42 dBm, which corresponds to a large

range of q. The microwave field’s power and frequency can also be switched on/off or

changed instantaneously within ns, which is crucial for quenching the system. The

microwave envelope waveform can be generated in different forms other than a square
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pulse, such as linear ramps or Blackman windows, depending on the experimental

requirements.

We control the spin-mixing dynamics by quenching the m = 0 energy, as shown in

Fig. 7.3. The detuning of the microwave dressing field is set to ∆ = 75 kHz blue shift

from the |F = 1,m = 0〉 to |F = 2,m = 0〉 clock transition. Figure 7.3 (left) shows

the energy diagram before the quench: no spin-exchange collision happens because the

population transition between m = 0 and m = ±1 is energetically forbidden. After

applying the microwave dressing field (Fig. 7.3 right), the m = 0 state is quenched

close to m = ±1 states. The value of q depends on the power of the microwave field.

Coherent spin population oscillations between m = 0 state and m = ±1 states can

now happen after the quench. Their amplitude and period depend on the interplay

between the spin-dependent interaction energy c and the effective quadratic Zeeman

energy q.

7.2.2 Experimental Procedures

We start the experiment by preparing about 25,000 pure sodium BECs in a crossed-

beam optical dipole trap via evaporative cooling. The trapping potential near the

minimum is approximately harmonic and approximately axially symmetric. The

stronger confinement direction, which is the axial direction, aligns with the direction

of gravity.

We apply a bias magnetic field of B = 429± 2 mG in the x direction of the lab

coordinates (west direction), which approximately corresponds to a 300 kHz linear

Zeeman shift and 51 Hz quadratic Zeeman shift of the F = 1,m = ±1 level. For the

spin-mixing dynamics, the linear Zeeman shift is irrelevant since it can be removed

on a rotating basis. To prepare the initial state, we start by applying the maximum

available current (80 A) to the anti-Helmholtz coils during the last two seconds of
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Figure 7.3: Schematic of a quenching process illustrated with pair energy levels of

the m = 0 and m = ±1 states with single-particle detuning q. The linear Zeeman

shift has been rotated out. The blue dashed arrow means no spin exchange happens,

and the solid red arrow means spin exchange can happen. Left: before quenching

the Hamiltonian, the effective quadratic Zeeman shift q is large, and the spin mixing

dynamic is energetically forbidden. Right: after quenching, the spin mixing starts, and

the competition between the spin-interaction c and q determines the exact dynamics of

the spin oscillations.

the evaporative cooling to generate a magnetic field gradient. This populates most

of the atoms in the F = 1,m = −1 state. Then we clean the unwanted atoms out

of the F = 1,m = 0 and F = 1,m = 1 states using adiabatic microwave sweeps to

F = 2 followed by resonant yellow light pulses that blow away all F = 2 atoms out of

the trap. We wait two seconds for the magnetic field to settles down and stabilize.

We apply a radio-frequency pulse, which transfers atoms from the m = −1 state to

the m = 0 and m = +1 states (see Fig. 7.4). The pulse length is 15 µs such that the

fractional populations of the m+ 1, m = 0, and m = −1 are ρ−1 = 0.25, ρ0 = 0.5, and

ρ+1 = 0.25, respectively. At the end of the radio-frequency pulse (t=0), we quench

the system by rapidly turning on the microwave field, and the microwave dressing

field is detuned from the clock transition by 75 kHz. The fast change of microwave

field allows a rapid change of q, which can move the energy of a m = 0 pair close to
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Figure 7.4: (a) A radio-frequency pulse is applied to transfer atoms from the m = −1

state to the m = 0 and m = +1 states. (b) The pulse length is 15 µs such that the

fractional populations of the m+ 1, m = 0, and m = −1 are ρ−1 = 0.25, ρ0 = 0.5, and

ρ+1 = 0.25, respectively. The circles are experimental data, the lines show the theory of

the three-level system

the energy of a pair atoms with m = 1 and m = −1. The spin-mixing dynamics is

initiated by this quenching of the system, and the spin population starts to oscillate

between m = 0 state and m = ±1 states coherently. At t = 80 ms, the confining

potential is turned off, and atoms experience a 1.5 ms free expansion before a 9 ms

long Stern-Gerlach pulse is applied. Then a destructive absorption imaging of the

m = 1, m = 0, and m = −1 spin components is taken after 10.5 ms of time-of-flight.

The data is analyzed in real-time in the Igor Pro software after each experiment cycle,

and we extract the number of atoms and the density profile in each of the three spin
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components to analyze.

It is worth noting that the phase of the initial state is essential for the spin-mixing

dynamics. The spinor phase is defined as θ = θ1 + θ−1 − 2θ0. For this experiment,

the initial state (0.25, 0.5, 0.25) is prepared using a resonant RF pulse from (0, 0, 1),

and the corresponding phase is θ = 0. If the population fraction of the initial state

is prepared using a RF pulse by rotating the state (0,1,0), the corresponding phase

would be θ = π. According to the mean-field energy phase diagram in Fig. 7.1, even

though the system is starting with the same population distribution in these two case,

the different phases will lead to different dynamics.

7.3 Data Analysis

7.3.1 Spin Oscillations within the Single-mode Approximation

We focus on our results for initial phase θ = 0 and initial number fraction (0.25,

0.5, 0.25) in m = −1, m = 0, and m = 1, respectively. We quench the system using

different microwave dressing fields such that the effective quadratic Zeeman shift q

takes the value 45 Hz, 38 Hz, 35 Hz, and 30 Hz. The spin oscillations for each q

value are shown in Fig. 7.5. Here we focus on the spin population oscillation in the

m = 0 state, the population oscillation of the m = ±1 states are approximately equal

due to the conservation of the magnetization. The mean value of the total atom

number in this data set is about 2.5 × 104, and the trap frequencies are characterized

by ωz = 246.3 Hz, ωx = 135.3 Hz, and ωy = 151.2 Hz in x, y, and z directions,

respectively. The spin-dependent interaction energy is c/h ≈ 22 Hz, and q/c are

about 2.0, 1.73, 1.59 and 1.41 in Fig. 7.5(a) to Fig. 7.5(d), respectively. In the plots,

black lines and dots are the experimentally measured fractional ρ0 in F = 1, m = 0

hyperfine level as a function of quench time t for four different q values. The error bars

on each data point indicate the statistical uncertainty, in the form of the standard
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Figure 7.5: Quench-induced spin population oscillations of the F = 1 m = 0 state. The

black dots are the measured experimental data. The error bars on each data point

indicate the statistical uncertainty (standard error), which arises from an average of

five measurements for each time t. The red dashed line is the mean-field SMA with the

best fitting q. The spin oscillation data in (a), (b), and (c) correspond to experimental

parameter of q/h = 45, q/h = 38, and q/h = 35 Hz, the best mean-field SMA fitting

is at q/h = 42, q/h = 35, and q/h = 33 Hz, respectively. In (d), an upward drifting

appears accompanied by the damping in amplitude, indicating the mean-field SMA

does not fully capture the spin dynamics.

error (SE= σ/
√
N , where σ is the standard deviation) calculated from averaging five

separate measurements for each time t. The main contribution to the error bars is

estimated to come from the atom number variation from one experimental realization

to another, which is about 20% of the total atom number in this experiment. Dashed

red lines are the theoretical best fits to the mean-field single-mode approximation

(SMA) models, according to Eq. (7.24).
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The best mean-field SMA fit in Fig. 7.5a to Fig. 7.5b was found at q/h = 42,

q/h = 35, and q/h = 33 Hz, which is about 2 to 3 Hz away from the q used in the

experiments. In the mean-field SMA picture, the spin dynamics are governed by

the competition between q and c. In Fig. 7.5a, q/c ≈ 2 corresponds the spin mixing

dynamics is in the “running phase” regime, which can be associated with the mean-field

SMA phase space diagram in Fig. 7.1b. The agreement between the experimental data

and theoretical prediction is good for the first two oscillations. However, discrepancies

appear after a longer time of spin evolution after several oscillations. The deviations

could indicate that the dynamics of a quantum system cannot be precisely captured

by a classical method after a long-time of evolution. Fig. 7.5b and Fig. 7.5c show

a good agreement between the mean-field SMA fittings and the experimental data.

In these two figures, the ratio q/c is smaller compared to Fig. 7.5a, which leads to a

larger amplitude but smaller frequency in the spin evolution. These results are also

qualitatively in agreement with the mean-field SMA phase space diagram in Fig. 7.1b.

However, a concern is raised by Fig. 7.5d. It shows a significant deviation between

the mean-field SMA and the experimentally measured spin oscillation data. Even

though the frequency is approximately the same, the amplitude of the spin oscillation

changes over time. It shows damping after the first few oscillations. At the same time,

an overall upward baseline drift appears and increases as time evolved. This upward

drift is not captured by the mean-field SMA, which predicts fractional population

oscillations with constant amplitude and period.

7.3.2 Spin Oscillations Beyond the Single-mode Approximation

To understand the discrepancies between the mean-field SMA and the experimental

data shown in Fig. 7.5d, our collaborator Dr. Jianwen Jie (working as a postdoc in

Dr. D. Blume’s group at the time 2018-2021, University of Oklahoma), developed a new
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theoretical model to explain the emergence of spin dynamics beyond the mean-field

SMA [128]. As mentioned earlier when discussing Eq. (7.19), the spatial term of

the wavefunction can be separated from the spin term because the spin-dependent

interaction c2n̄ is much smaller than the spin-independent interaction c0n̄, which

means the energy (time) scale for the spin interactions is smaller (larger) than for

the density-dependent interactions. The mean-field SMA assumes that the dynamics

introduced by these high-energy scales are so fast that they can be safely averaged

out. As a consequence, the spatial term only represents a mean total density in the

spin Hamiltonian, as shown in Eq. (7.21). However, the coupling between the spin

and spatial degrees of freedom can lead to an energy transfer between the associated

degrees of freedom. When some resonance conditions are fulfilled, the coupling between

different degrees of freedom could dynamically change the form of the wave function

and generate a large deviation from the prediction by the mean-field SMA.

A resonance effect in a spinor BEC has been discussed in Ref [129], where the

resonance of the system is driven by quantum fluctuations. In our system, however,

the resonance effect is triggered by the effective mean-field potential. The beyond SMA

effects might be understood like this: the effective mean-field potential can generate

ground and excited states for different magnetic sublevels m, which are characterized

by different spatial modes, and these spatial modes are set by the density interaction

c0n̄(r). In an energy diagram with energy detuning q between the m = 0 and m = ±1

states, two atoms in the m = 0 state need an energy of 2q to scatter into m = 1 and

m = −1 states due to energy conservation. If the effective potential induced excited

state energy equals 2q, the system is on resonance, and the following two processes

may occur:

A : E1
gr + E−1

gr = E0
gr + E0

exc

B : E0
exc + E0

exc = E±1
gr + E∓1

exc.

(7.26)

These equations show two possible coupling channels: A. two atoms in m = ±1
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Figure 7.6: Mean-field driven beyond the SMA process. The effective mean-field

potential generates ground (dashed lines) and excited states (dash-dotted lines) for both

m = ±1 (left) and m = 0 (right), which are characterized by different spatial modes.

If the excitation energy is equal to 2q, two possible coupling channels occur (A) two

atoms in m = ±1 ground states collide; one goes to m = 0 ground state, and the other

goes to m=0 excited state or vice versa. (B) one atom in m = ±1 excited state and one

atom in m = ±1 ground state collide, becoming two atoms in m = 0 excited states or

vice versa. We thank Dr. D. Blume’s group for this figure.

ground states collide; one goes to the m = 0 ground state, and the other goes to the

m = 0 excited state or vice versa. B. one atom in m = ±1 excited state and one

atom in m = ±1 ground state collide and become two atoms in m = 0 excited states

or vice versa, as shown in Fig. 7.6. When the system is on resonance, the quench-

induced spin oscillation dynamics cannot be fully captured by the SMA which always

provides the population oscillations with constant amplitude and period. Instead,

a “drifting” phenomenon occurs with changing amplitude and period in oscillation,

indicating the beyond SMA dynamics. Since the drifting of the population oscillations

can be derived from the coupled Gross-Pitaevskii equations, shown in Eq. (7.18),

the dynamically induced beyond-SMA physics discussed here is mean-field in nature.

Quantum fluctuations are not at play. Moreover, since the resonance condition depends

on the single-particle detuning between the m = 0 and the m = ±1 atom, which is
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characterized by the effective quadratic Zeeman shift q, the resonance can be avoided

by changing q to some other regimes. This flexibility of changing q is realized in our

experiment by tuning the microwave dressing field.

To further understand the beyond-SMA dynamics, we quantitatively study the

dynamics close to resonance where the baseline drifting occurs and away from the

resonance. In this data set, the mean atom number is ∼ 2.36×104, the geometry of

the trap is approximately cylindrical symmetric with trap frequencies of ωz = 255 Hz,

ωx = 107 Hz, and ωy = 113 Hz in the z, x, and y directions, respectively. Furthermore,

the spin healing length, defined as ξ = ~/
√

2Mc2n̄, is comparable to the Thomas-Fermi

radius in the z-direction, which indicates our initial state is well described by the

SMA.

Figure 7.7a and 7.7b show the quench-induced spin oscillation for a q tuned away

from the resonance and q tuned close to resonance, respectively. The black dots are the

measured experimental data showing the number fraction of atoms in F = 1, m = 0

hyperfine level. The red error band on top of the experimental data indicates the

statistical uncertainty that arises from averaging 9 or 10 data sets for each time t. The

blue squares and the green diamonds show the fractional population ρ0 obtained by

solving the mean-field SMA equations and coupled Gross-Pitaevskii equations. The

error bars reflect the average of 9-10 separate simulations. Figure 7.7a shows the spin

population oscillation within the SMA, where q is tuned average from the resonance.

The population fraction ρ0 has a fixed spin oscillation amplitude and period. The

experimental data, the data simulated using the mean-field SMA, and simulation using

coupled GP equations agree with each other quite well. The experimental data (black

dots) in Fig. 7.7b shows the upward drifting of the spin oscillation when q is tuned

towards the resonance. This behaviour deviates from the mean-field SMA simulation

(blue squares). On the other hand, the coupled mean-field GP equations (green
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Figure 7.7: Quench-induced spin oscillation for q away from the resonance (a) and q

close to resonance (b). The black dots are the measured experimental data showing the

number fraction of atoms in F = 1, m = 0 hyperfine level. The red error bands are

standard erros for the average of 9 or 10 data sets for each time t. The blue squares and

the green diamonds are simulations using the mean-field SMA equations and coupled

GP equations. The simulation data are the theoretical best fit with q/h = 37.6 Hz

for (a) and q/h = 28.2 Hz for (b). A good agreement between the experimental data

and the mean-field SMA simulation is shown in (a), where the system is away from

resonance. In contrast, in (b), when the system is close to resonance the experimental

data agree well only with the coupled GP equations, but not with the SMA equation.

This indicates physics beyond the SMA. Figures are complied by Dr. Jianwen Jie from

our experimental data and his theoretical simulations.

diamonds) reproduce the experimental data quite well. Therefore we deduce that the

drifting is due to the coupling between the spin and spatial degrees of freedom when

the system is at or close to a resonance which is driven by the mean-field potential;

the quantum effects seem to play a minor or no role.

It is worth noting that the simulation curves in Fig. 7.7 are the theoretical best

fit, which is q/h = 37.6 Hz for (a) and q/h = 28.2 Hz for (b). The experimental

data were taken at q/h = 42 Hz for (a) and q/h = 32 Hz for (b) which is about

4 Hz difference from the theoretical predictions. The error bars of the theoretical

simulations correspond to the statistical uncertainty that arises from averaging the
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results for 9-10 different N values for each time t, where N is the number of atoms

founded from the experimental data, and we assume the system is closed, so the

total number of atoms are conserved. In the resonant case, the error bars on both

experimental data and the coupled GP equation simulation grow large when drifting

happens. In contrast, the increase of the error bar in the SMA simulation is not

obvious. This might be explained by the energetic degeneracy described in Eq. (7.26),

which causes the number preserving population oscillation period to depend sensitively

on the particle number.

Due to the energetic degeneracy, the spin components could be excited from the

ground state to a spatial excited state and obtain the spatial structure. In order to

give further insight into this point of view, the GP simulation of each spin component’s

density is plotted in Fig. 7.8 along with the corresponding absorption images of the

experimental data. The simulation data uses atom number N = 2.4×104 and the spin

oscillation time is t = 66 ms. Figure 7.8a, 7.8b and 7.8c, 7.8d show the GP simulated

atom density in the m = 0 state and the m = ±1 states, respectively. Two different

representations are chosen. Figures in the first column show the atom density in three

dimensions plotted as functions of the axial axis z and the radial axis ρ. If the system

is described by the SMA, the peak density should be located at z = 0 and ρ = 0

in both figures. Apparently, some spatial structures appear in the m = ±1 density

such that the highest peak is at z = 0 and ρ 6= 0. Such behavior cannot be captured

within the SMA. Figures in the second column show the integrated two-dimensional

component densities as functions of z and exy = (x + y)/
√

2. This representation

is consistent with the experimental pictures which were taken by the side camera.

Figure 7.8e is an experimental image that shows the individual density profile of

three spin components, which correspond to N ≈ 2.43 × 104 and spin oscillation

time t = 68 ms. This figure agrees qualitatively with the integrated two-dimensional
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Figure 7.8: Density plot from GP simulation and experimental data. (a) and (b) show

the density profile of n0. (c) and (d) show the density profile of n±1. In (a) and (c), the

three-dimensional densities are shown as functions of vertical (axial ODT) axis z and

the horizontal (radial ODT) axis ρ; the normalization is
∫
nm(~r, t)d~r. (b) and (d) are

the integrated two-dimensional densities as functions of z and exy = (x+ y)/
√

2, which

has the same representation as the experimental pictures. (e) Experimental images of

the density profiles in m = −1, m = 0, and m = +1 from top to bottom; the sidebar on

the right defines the color code for the experimental images. Figures are complied by

Dr. Jianwen Jie from our experimental data and his theoretical simulations.

densities obtained by solving the coupled GP equations despite the slightly different

spin oscillation times.

To gain more insight into the resonance phenomenon, we scanned the effective

quadratic Zeeman coefficient q around the resonance and mapped out the resonance.

Figure 7.9 shows the resonance mapping as a function of quench time. The initial

state was prepared in (ρ−1 = 0.25, ρ0 = 0.5, ρ1 = 0.25) as in the previous cases.

The Hamiltonian was quenched using ten different q values from q/h = 35 Hz to

q/h = 27 Hz. The black dots are the measured experimental data showing the number

fraction of atoms in F = 1, m = 0 hyperfine level, and black lines serve as a guide
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that connects the data points. The error bars are the standard error that arises from

averaging ten data sets for each time t. In these data sets, the trap frequencies in

the x, y, and z directions are ωx = 147.24 Hz, ωy = 132.05 Hz, and ωz = 245.96 Hz,

respectively. The mean value of the total atom number is ∼ 26,000. In Fig. 7.9a,

q/h = 35 Hz, the spin population oscillation in m = 0 state has a fixed spin oscillation

amplitude and period for the first three oscillations. Damping occurs at the fourth

oscillation, which is at a long spin evolution time, but no obvious drifting is observed.

Therefore the system is considered away from the resonance, which can be captured

by the mean-field SMA. As the value of q decreases, the damping becomes more

obvious at long spin evolution time, and the drifting also appears in the oscillation.

Figure 7.9d to 7.9g show the spin oscillation with q/h = 32 Hz to q/h = 29 Hz.

Upward drifting starts at the second oscillation, accompanied by amplitude damping,

indicating the system is close to the resonance where the coupling between the spin

and spatial degrees of freedom happens. In Fig. 7.9h and Fig. 7.9i, the upward drifting

is gone. However, the amplitude of the oscillations shows strong decay after the second

oscillation with large error bars in a long spin evolution time.

Our resonance mapping depends sensitively on the exact values of trap frequencies

in the x and y directions, which differ by a few tens of Hz in the experiment. The

theoretical simulation is a symmetrical model which assumes that the trap frequencies

in the x and y directions are exactly equal. Therefore, the theory only qualitatively

agrees with the experimental mapping data.

To inspect the statistical uncertainty in the long time regime of spin evolution, we

measure the number fraction in m = 0 for 90 times individually at a spin evolution

time of 60 ms. Then we plot the number of occurrences (Frequency) as a function

of population fraction (ρ0) in histograms, as shown in Fig. 7.10. At q/h = 35 Hz,

shown in Fig. 7.10a, where the system is off-resonance, the density distribution obeys
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Figure 7.9: Resonance mapping of the quench-induced spin oscillations by scanning

q/h = 35 Hz to q/h = 27 Hz. The black dots are the measured experimental data

showing the number fraction of atoms in the F = 1, m = 0 hyperfine level. The error

bars on top of the experimental data as the standard errors that arise from averaging

ten data sets for each time t. The trap frequencies in the x, y, and z directions are

ωx = 147.24 Hz, ωy = 132.05 Hz, and ωz = 245.96 Hz, respectively. The mean value of

the total atom number is ∼ 26K. In (a), the spin oscillation has no drift at q/h = 35 Hz,

which indicates the system is away from the resonance. The spin oscillation in (b) to

(g) shows upward drifting, indicating the system is close to resonance. In (h) and (i),

the upward drifting is gone, but the oscillations amplitude decay and data uncertainty

increase as the increase of evolution time.
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a Gaussian distribution where ρ0 ranges from 0.18 to 0.4 with a maximum at about

ρ0 ≈ 0.25. In Fig. 7.10b when q/h = 34 Hz, the distribution is still Gaussian, but

with a broader width. As the value of q/h becomes small, the system approaches

the resonance, and the Gaussian distribution starts to deform. In Fig. 7.10e where

q/h = 31 Hz, the density in ρ0 is almost non-Gaussian and evenly distributed from

0.3 to 0.65. The mean value of the distribution increases from somewhere close

to 0.25 to about 0.45, which agrees with the upward-drifting spin oscillation result

shown in Fig. 7.9e. At q/h = 27 Hz, the distribution changes back to a Gaussian-like

distribution, and the mean value is back to ∼0.3, indicating the spin oscillation no

longer has an upward drift.

7.4 Summary

Starting from an initial state of our F = 1 sodium spinor BEC with 50% of

atom in mF = 0 and 25% of atom each in mF = ±1, we investigated the coherent

spin-population oscillation between mF = 0 and mF = ±1 states after a quench of

effective quadratic Zeeman shift q.

Scanning q, we identified a new resonance phenomenon, driven by mean-field

coupling between spin and spatial degrees of freedom and not by quantum fluctuations.

In plots of mF = 0 population faction versus time, the resonance causes an upward

drift of the baseline and a corresponding damping of the spin-population oscillations.

We mapped the resonance as a function of q using the baseline as an indicator, as

well as the non-Gaussian broadening of the distribution of mF = 0 fractions near the

resonant. A mean-field theory that goes beyond the SMA done by Dr. Qingze Guan

and Dr. Jianwen Jie in the theory group of Dr. D. Blume fits the experimental results

well.

Understanding such resonance can be important for future quantum technologies
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Figure 7.10: Mapping the spin-spatial resonance via histogram bars of the density

distribution of ρ0 at the spin oscillation time t = 60 ms. The trap frequency and the

total atom number are the same as for Fig. 7.9, and a total of 90 data points were

taken for each q value. When q/h = 35 Hz, away from the resonance, the density

distribution of ρ0 is Gaussian-like, and the mean value is about 0.25. As q/h decreases,

the density distribution deviates from a Gaussian. At q/h = 31 Hz, the distribution is

non-Gaussian, and the mean value is about 0.45 with large uncertainty. At q/h = 27 Hz,

the distribution changes back to Gaussian-like distribution, and the mean value is back

to ∼0.3.
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based on spin-squeezing and spin-exchange in neutral gas, such as quantum enhanced

magnetometry because they affect the time evolution that generated squeezing and

entanglement in non-trivial ways.
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Chapter 8

Spin-mixing Atom Interferometry

Interferometry is a measurement method based on one of the fundamental principles

of waves: interference. Interferometric signals can be obtained by coherently splitting

and recombining a monochromatic light wave and counting changes from bright

to dark fringes in the interference pattern. A change of the pattern can contain

information about the object or phenomenon being studied, such as a changing index

of refraction along one path that causes a relative phase shift between the interfering

beams. Interferometry has been demonstrated to make precise measurements of small

quantities that are not achievable in any other way. One of the quintessential uses of

precision interferometry was in 1887 when Michelson and Morley set up an optical

Michelson interferometer to measure the speed of the light, which helped disprove the

existence of ether. Recently LIGO’s Michelson interferometers successfully detected

the direct signal of gravitational waves. Besides using light waves for interferometry,

ultracold atoms can also be used. Atoms can be considered as matter waves when the

temperature is cold enough, due to the increase of de Broglie wavelength of atoms with

respect to the change of temperature. Generating interference patterns from atoms

is possible in this kind of matter-wave interferometry. Compared to light, the cold

atom’s slow motion allows for a longer time to accumulate phase before interfering,

allowing for longer interrogation times. Therefore, atoms can achieve higher sensitivity

than light in some potential sensing applications.

Atom interferometry has been proved to be one of the most precise measurements

in physics. Several experiments achieved in laboratories have demonstrated that

atom interferometers can be excellent in sensing applications [28, 29], cartography

mapping [130], and tests of fundamental physics [131, 132, 133]. The performance of an
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atom interferometer is usually characterized by its sensitivity. For the interferometer

prepared in separable states, the attainable sensitivity is fundamentally bounded by

the standard quantum limit (SQL) ∆θ ∼1/
√
n̄ [134], also known as the shot noise limit.

However, when interferometers are performed with quantum states where particles

are entangled, sensitivities beyond the SQL can be achieved [135]. An example is the

SU(1,1) interferometer which is constructed by replacing the passive beam splitters in

a Mach-Zehnder interferometer with active nonlinear parametric amplifiers [136]. It

has been tested to overcome the SQL and gain sensitivity enhancement compared to

its classical counterpart [137, 138, 139, 140].

One fundamental question is understanding which quantum states offer an advan-

tage for quantum metrology. For example, spin-squeezed states [141] and some other

many-body entangled states such as Greenberger-Horne-Zeilinger (GHZ) are useful for

quantum-enhanced metrology [142, 143]. In spinor Bose-Einstein condensates (BECs),

the entanglement between particles can be generated through spin-exchange collisions.

In the three-level F = 1 system, the spin-exchange collision is shown in Fig. 7.2: the

spin-mixing dynamics happen as a pair of m = 0 atoms couple to m = 1 and m = −1

states after colliding with each other and generate entanglement. The mechanism has

been realized as a proof-of-principle SU(1,1) interferometer [144] in spinor BEC, which

is an atomic analog of parametric amplification in optical four-wave mixing [145]. The

m = 0, m = −1, and m = 1 states are analogous to the pump, probe, and conjugate

light beams in optical four-wave mixing, respectively.

This chapter focus on the experiments with seeded nonlinear interferometers

enabled by spin-mixing dynamics (SMD). We experimentally prepare different initial

states through either a double-sided seeding or single-sided seeding method. We use

microwave-dressing to control the spin-mixing dynamics of the system. At long spin

evolution time, the interferometer enters into the so-called depleted pump regime,
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where the interference fringes of the interferometer become highly non-sinusoidal.

In section one, we work out a theoretical model of spin-mixing interferometry after

briefly introducing the SU(2) and SU(1,1) interferometers. Section two describes the

initial state preparation method of single- and double-sided seeded interferometers

and the experimental procedures to realize a spin-mixing interferometer. In the last

section, we show our data on spin-mixing dynamics and interference fringes of the

atom interferometers and then compare them with the theoretical simulation using the

truncated Wigner approximation. We also calculate our interferometer’s sensitivity

using the error propagation method. Our data suggest that the sensitivities of our

seeded interferometers can reach below the SQL, indicating a metrological enhancement

of phase sensitivity due to quantum effects and non-linearity in our system, useful for

magnetometry. Our current research about seeded spin-mixing interferometry in the

regime of long evolution time paves the way for the light-pulse atom interferometry

experiment, which involves the coupling spin and momentum degrees of freedom, for

inertial sensing and gravimetry, which will be performed in the future.

In this chapter, the standard quantum limit is obtained by assuming our interfer-

ometers are linear. Under this assumption, the state (probe state) used to probe the

imprinted phase and the subsequent time evolution during the “recombining” step al-

ways yield sinusoidal interference fringes. In our experiment, we observe non-sinusoidal

fringes, and compare sensitivities to the limits for the linear (sinusoidal) case.

8.1 Theory of Interferometry

8.1.1 SU(2) and SU(1,1) Interferometry

One of the classical interferometer configurations is the Mach-Zehnder interferome-

ter depicted in Fig. 8.1a. A light beam is coupled into one port of a passive linear

beam splitter and split into two beams that propagate along different paths. The
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Figure 8.1: (a) A SU(2) Mach-Zehnder interferometer. Light enters one of the two

input ports a1 or a2 and is split by a 50/50 linear beam splitter BS1. The two light

beams accumulate a relative phase shift φ before entering another 50/50 linear beam

splitter. The two light beams b1 and b2 leaving the interferometer are detected by

photodetectors D1 and D2. (b) A SU(1,1) interferometer. The passive linear beam

splitters in the SU(2) Mach-Zehnder interferometer are replaced with active nonlinear

parametric amplifiers, such as four-wave mixers (FWM1 and FWM2). The pumping

light is phase shifted by φ. The outgoing light beams b1 and b2 are quantum correlated.

relative phase shift, ϕ, along the different paths can be determined by measuring the

position of interference fringes in the output beams. The phase sensitivities of classical

interferometers are limited by the standard quantum limit. This type of interferometer

can be characterized by the group SU(2) [136]. SU(2) group is equivalent to the

rotation group in three dimensions which contain the three Hermitian generators

Jx =
1

2
(a†1a2 + a†2a1),

Jy = − i
2

(a†1a2 − a†2a1),

Jz =
1

2
(a†1a1 − a†2a2),

(8.1)

where the the annihilation operators ai and creation operators a†j obeys bosonic

commutation relations [ai, aj] = [a†i , a
†
j] = 0 and [ai, a

†
j] = δij. The geometric

picture of the SU(2) interferometry process can be represented on a Bloch sphere, as

180



Figure 8.2: The performance of a Mach-Zehnder SU(2) interferometer can be represented

using a Bloch sphere. The input state is prepared at the north pole of the sphere (a).

The first beam splitter performs a π
2 rotation about the Jx (b). The phase shifts

accumulated along the beam path correspond to a rotation φ about the Jz (c). The

second beam splitter performs a −π
2 rotation about the Jx axis (d).

illustrated in Fig. 8.2. Let the initial state be |ψ〉, which is the state prepared at the

north pole on the Bloch sphere, as illustrated in Fig. 8.2a. The first beam splitter

in Fig. 8.1a is the equivalent to applying a π/2 pulse along the Jx direction of the

Bloch sphere, as shown in Fig. 8.2b. The overall phase shifts ∆φ are equivalent to a

rotation about Jz direction by a phase of φ on the Bloch sphere, which is depicted in

Fig. 8.2c. The last beam splitter applies a -π/2 pulse to rotate the state about the

Jx axis again, as shown in Fig. 8.2d. So φ can now be measured by measuring the

spin population along the Jz axis. The state vector |ψ′〉 leaving the interferometer is

|ψ′〉 = ei
π
2
Jxe−iφJze−i

π
2
Jx |ψ〉.

SU(1,1) interferometry can be realized by replacing the passive linear beam splitters

in the SU(2) Mach-Zehnder interferometer with active nonlinear parametric amplifiers

such as four-wave mixers, as shown in Fig. 8.1. The group SU(1,1) also has three

Hermitian generators Kx, Ky, and Kz, which are defined as [136]

Kx =
1

2
(a†1a

†
2 + a1a2)

Ky = − i
2

(a†1a
†
2 − a1a2)

Kz =
1

2
(a†1a1 + a†2a2 + 1).

(8.2)
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In these equations, Kx and Ky contain terms a†ia
†
j and aiaj that create or annihilate

two particles at the same time. This nonlinear process generates entanglement between

the particles and generates spin-squeezing, which can lead to quantum enhancement

in the phase sensitivity of the interferometers. In our sodium spinor Bose-Einstein

condensate, the active nonlinear parametric amplifiers are realized by the spin-mixing

dynamics, which are responsible for generating quantum correlations and entanglement.

8.1.2 Theoretical Background of Spin-1 Interferometry

We start with F = 1 spinor BECs consisting of N sodium atoms confined in a

tight 3D trap. We assume the Thomas-Fermi radius of the spinor BEC is smaller than

the spin healing length, and the spin-dependent interaction is much weaker than the

density-dependent interaction. Hence, we can apply the single-mode approximation

(SMA) [146], which assumes all spin components share the same spatial density. As a

result, the dynamics are governed by the spin Hamiltonian in the SMA is [147]:

ĤSMD =
c

N
(â†0â

†
0â+1â−1 + â0â0â

†
+1â

†
−1)

+
c

N
(N̂0 −

1

2
)(N̂+ + N̂−) + q(N̂+ + N̂−).

(8.3)

The first term on the right-hand side of Eq. (8.3) is identical to the four-wave mixing

term in nonlinear quantum optics [136], which here describes spin-exchange collisions

between atoms. The second term in Eq. (8.3) refers to an energy shift due to elastic

collisions, and the last term describes the effective quadratic Zeeman shift which

contributes to the linear phase shift during interferometers. The operators â†m and âm

satisfy the bosonic commutation relation [â†m, âm]=1 where â†m create and âm destroy

an atom in hyperfine state |F = 1,m = m〉. The number operator for each mode

is N̂m which is defined as N̂m = â†mâm. The coefficient q is the effective quadratic

energy shift and has the same definition as Eq. (7.25). The spin-dependent interaction

parameter c, c = c2n̄ has the same definition as what we defined in chapter seven.
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Figure 8.3: Schematic of our three-mode nonlinear interferometer based on spin-mixing

dynamics. Initial state (N−1, N0, N1) is made of pure BECs in the m = 0 state

with some initial seeds in the m = ±1 states. The spin-mixing dynamics Hamiltonian

H triggers the nonlinear “path” splitting or recombining by creating (annihilating)

paired atoms in |F = 1, m = ±1〉 components from (into) |F = 1, m = 0〉. The phase

encoding shifts the spin component |1, 0〉 and adds a relative phase φ = 2π × 2qτ to

the overall spinor phase φ = φ1 + φ−1 − 2φ0. In the end, the total number of atoms,

Ns = N+ +N−, in |F = 1, m = ±1〉 is measured.

Sometimes, the undepleted pump approximation (UPA) is applied to simplify ĤSMD

by replacing a† and a with a complex number
√
N0e

−iφ0 , which reduces Eq. (8.3) to a

form in terms of the SU(1,1) operators [148]

HUPA =
c

N
(2N0Kx) + (2Kz − 1)

[
c

N
(N0 −

1

2
) + q

]
. (8.4)

Physically, the undepleted pump approximation is valid when the majority of the

atoms are in the m = 0 pump mode. This places restrictions on the initial state and

on the evolving time of the interferometers.

Our three-mode nonlinear interferometers based on spin-mixing dynamics are

realized in three major blocks, as shown in Fig. 8.3. First, we prepared initial state

|Ψ(t = 0)〉 with some classical seeds in the side modes (the |1,±1〉 components) at

spin evolution time t = 0. After quenching the system by tuning the ratio |q|/c, the
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system starts to evolve under the spin-mixing Hamiltonian HSMD for variable time t1,

|Ψ(t1)〉 = e−iHSMDt1/~ |Ψ(t = 0)〉 . (8.5)

The spin-exchange collisions cause the atoms to change from |1, 0〉 state to the |1, ±1〉

and generates entanglement between them. This step is referred to as “splitting”.

Second, a phase imprinting operation is performed on |Ψ(t1)〉 for time τ ,

|Ψ(t1 + τ)〉 = e−iHps(q)τ/~ |Ψ(t1)〉 (8.6)

the phase imprinting operator corresponds to the last term in Eq. (8.3). When |q| � c,

the last term of the spin-mixing dynamics Hamiltonian dominates, and the spin-

exchange collisions are energetically forbidden. Hence, the phase shift Hamiltonian

Hps is simply

Ĥps = q(N̂+ + N̂−). (8.7)

With this steps, the phase encoding shifts the spin component |1, 0〉 and adds a

relative phase φ = 2π × 2qτ to the overall spinor phase φ = φ1 + φ−1 − 2φ0.

The last step is refered to as “recombining”. It is realized by applying an approx-

imate time-reversal dynamics of the splitting process. The entangled probe states

become disentangled and traced back to the input state if no additional phase is

added. The commonly adopted approach for realizing time-reversed dynamics comes

from time-forward evolution with a sign-flipped Hamiltonian [149]. In the spinor

BEC system, an exact time reversal is only possible in the limit of infinitely small

evolution times. An approximate time-reversal can be achieved by applying phase

shift Hamiltonian Hps with a certain q value. Then, we apply HSMD again,

|Ψ(t1 + τ + t2)〉 = e−iHSMDt2/~ |Ψ(t1 + τ)〉 , (8.8)

where t2 is the time for “recombining,” which is set equal to t1 to accomplish time-

reversal spin evolution as described in Ref [140]. With the presence of a finite encoding
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phase, the “recombining” mechanism does not couple the entangled probe state back

to the same state as the input state. Instead, it gives rise to a phase-dependent output

state. This approximate time-reversal dynamic is constrained to short-term spin

evolution [150], where the time-reversal dynamic is applied before the probe states

become too deeply entangled to be disentangled. For long-term spin evolution, the

cyclic dynamics method has been employed to realize the nonlinear atom interferometer

in Ref [149]. After this procedure, the number of atoms in each spin component is

measured.

8.1.3 Phase Estimation: Fisher Information and Cramér-Rao Bound

The phase shift θ during the interferometer cannot be directly measured. Instead,

the phase estimation relies on the measurement outcomes µ, and the probability

of the outcome, P (µ|θ), which is conditioned on the parameter θ. We assume the

unbiased phase estimator operator Θ(µ) to estimate the phase θ associating each set

of measurement outcomes µ, such that Θ̄ =
∑

µ Θ(µ)P (µ|θ) = θ. We start from two

equalities
∂Θ̄

θ
=

∂

∂θ

∑
µ

Θ(µ)P (µ|θ) = 1

∂

∂θ

∑
µ

P (µ|θ) = 0.

(8.9)

These two equations lead to∑
µ

(Θ(µ)− θ) ∂
∂θ
P (µ|θ) = 1. (8.10)

We square both sides of the equation and apply the Cauchy-Schwartz inequality to

obtain

(∆θ)2
∑
µ

P (µ|θ)
[
∂

∂θ
logP (µ|θ)

]2

≥ 1. (8.11)

From this equation, the sensitivity ∆θ has a lower bound which can be written as

∆θ ≥ ∆θCR =
1√
F (θ)

, (8.12)
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where

F (θ) =
∑
µ

1

P (µ|θ)

(
∂P (µ|θ)
∂θ

)2

. (8.13)

∆θCR is called the Cramér-Rao bound, which is one of the most famous results in

parameter-estimation theory and expresses the lowest possible uncertainty among

all unbiased estimators that can be achieved. F (θ) is called Fisher information. An

upper bound to the Fisher information is obtained by maximizing Eq. (8.13) over

all possible generalized measurements in quantum mechanics [151], called quantum

Fisher information. We have FQ[ρ̂θ] ≥ F (θ), where ρ̂θ = e−iĴθρ̂eiĴθ. Therefore, the

corresponding bound on the phase sensitivity is called quantum Cramér-Rao [151, 152]

bound, which is defined as

∆θCR ≥ ∆θQCR =
1√

F [ρ̂, Ĵ ]
. (8.14)

Generally, for a pure state ρ̂ and any unitary transformations generated by some

Hermitian Ĵ , the quantum Fisher information is FQ[ρ̂, Ĵ ] = 4(∆Ĵ)2. If a state ρ̂ is

separable, that is ρ̂sep = ρ̂1 ⊗ ρ̂2 ⊗ ...⊗ ρ̂N , then the quantum Fisher information of

any separable state of N qubits is [152]

F [ρ̂sep, Ĵ ] ≤ N (8.15)

Therefore the lowest sensitivity one can possibly achieve for any separable states

according to Eq. (8.14) is 1/
√
N , which is known as the standard quantum limit. On

the other hand, if states are entangled in a way that is useful for quantum metrology,

the quantum Fisher information can violate the upper bound in Eq. (8.15)

F [ρ̂, Ĵ ] > N, (8.16)

and the quantum state is helpful in estimating a phase shift θ, with a sensitivity

overcoming the standard quantum limit. The maximum value of the quantum Fisher

186



information obtained for genuine N-particle entangled states is given by

F [ρ̂, Ĵ ] ≤ N2, (8.17)

which defines the ultimate Heisenberg limit of sensitivity ∆θHL = 1/N [153].

In our experiment, the mean value 〈N̂s〉 and the standard deviation ∆Ns after

the spin-mixing dynamics of the “splitting” and “recombining” steps are the two

important physical quantities to characterize the interferometer performance. Here

〈N̂s〉 is the total number of atoms in |F = 1, m = ±1〉 states. We define,

〈N̂s〉 = 〈N̂+1〉+ 〈N̂−1〉, (8.18)

where 〈N̂s〉 = 〈N̂s(t)〉 = 〈Ψ(t)|N̂s(t)|Ψ(t)〉, and

∆Ns =

√
〈N̂2

s 〉 − 〈N̂s〉2. (8.19)

We analyze 〈N̂s〉 and ∆Ns as a function of relative phase θ to find regions with the

best sensitivity. The phase sensitivity ∆θ is defined through error propagation [137],

and it is evaluated at time t = t1 + τ + t2,

∆θ =
∆Ns(t)

|∂Ns(t)/∂θ|
. (8.20)

The phase sensitivity ∆θ is then compared to the lowest possible sensitivity of separable

states, which is the standard quantum limit (SQL) 1/
√
Ns(t1), to show if there is an

enhanced gain for the nonlinear interferometer.

In addition, the lower bound for the error propagation-based sensitivity is set by

the quantum Cramér-Rao bound

∆θQCR =
1√

FQ[|Ψ(t1)〉 , N̂s/2]
, (8.21)

where the quantum Fisher information FQ depends on |Ψ(t1)〉 and the linear phase

generator N̂s/2. We further assume our state is a pure state after the spin-mixing
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dynamics of the “splitting”, then the quantum Cramér-Rao bound is obtained from

∆θQCR = 1/∆Hs(t1). Ideally, one should use a state which gives maximum FQ to

optimize the interferometric gain and operate in the regime where the error propagation-

based sensitivity ∆θ is as close as possible to the best achievable phase sensitivity.

For comparison, we also plot the Heisenberg limit ∆θHL which is defined in terms of

the number Ns(t1) of atoms at side modes at time t1,

∆θHL =
1

Ns(t1)
. (8.22)

The Heisenberg limit is the ultimate limit for the phase sensitivity that can be reached

in an ideal system with the absence of noise.

8.2 Single- and Double-Sided Seeding Atom Interferometers

We use 23Na spinor Bose-Einstein condensates to experimentally realize the seeded

spin-mixing interferometer. The preparation detail of the spinor Bose-Einstein conden-

sates has been discussed in chapter six. The scheme of the interferometry experiment

can be divided into five blocks: initial state preparation, entangled probe state genera-

tion via spin-mixing dynamics, phase encoding, approximate time-reversal dynamics

to disentangle the states, and measurement by taking images of the three spinor

components.

8.2.1 Initial State Preparation

We start the experiment by preparing ∼25000 atoms in a pure sodium BEC in

a crossed-beam optical dipole trap via evaporative cooling. The trapping potential

near the minimum is approximately harmonic and approximately axially symmetric.

The trapping laser beam is far red-detuned, having wavelength λ = 1064 nm and a

beam waist (1/e2 radius) of ∼ 26 µm. The measured trap frequencies are ω{z,x,y} ≈
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2π × {248, 123, 125} Hz, and the strongest confinement direction z is aligned with

the direction of gravity. The trap frequency fluctuation in the x and y directions is

larger than the fluctuation in the z direction. The day-to-day measurements show

about ±15 Hz fluctuations in the x and y directions. A bias magnetic field is fixed at

B = 0.428 G and applied along the z direction to split the F = 1 hyperfine manifolds.

The bias magnetic field corresponds to a linear Zeeman shift of 300 kHz·h and a

quadratic Zemman shift between m = 0 and m = ±1 magnetic sublevels of 141 Hz·h.

The atomic population fraction in each sublevel can be controlled by applying an

empirically determined bias magnetic field at the end of forced evaporation. With

this method, we populate most of the atoms into the |F = 1,m = 0〉 state before

initializing the spin-mixing interferometry experiment. In order to have a pure state

of |F = 1,m = 0〉 before seeding, atoms in the unwanted states |F = 1,mF = ±1〉

have to be cleaned. This step is realized by applying two consecutive one-millisecond

microwave sweep signals through the ∆m = 0 resonances, such that the atoms in

|F = 1,mF = ±1〉 states are adiabatically transferred to |F = 2,mF = ±1〉 states,

respectively. Immediately after all unwanted atoms are in the F = 2 manifold, we

apply a short, 200 µs, pulse of on-resonant light which couples the F = 2 and F ′ = 3

state to give a momentum kick to the F = 2 atoms, causes the unwanted atoms to

leave the optical dipole trap. In the end, we prepare ∼21,000 atoms in the desired

state |F = 1,mF = 0
〉
, and all other hyperfine states are empty. The various pulses

are illustrated in Fig. 8.4.

The initial seeded states are prepared independently at the beginning of each

interferometry experiment with either single- or double-sided seeding, as illustrated in

Fig. 8.4. For single-sided seeding, a small number fraction of atoms are coherently

prepared only in |F = 1, m = −1〉 state through two consecutive microwave π pulses.

Atoms are transferred from |F = 1, m = 0〉 state to |F = 1, m = −1〉 state through
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Figure 8.4: State preparation. We adiabatically sweep the microwave field (black

arrows) to transfer atoms from unwanted F = 1 states to the F = 2 manifold, followed

by resonant light pulses (yellow arrows) to clean those atoms out of the trap. The

single-sided seeding is realized using two consecutive microwave π pulses (blue dash

arrows). The double-sided seeding is realized by applying a radio-frequency pulse (red

dot arrows) to seed |F = 1, m = ±1〉, simultaneously.

an intermediate state |F = 2, m = −1〉. The fraction of the seed is controlled by the

power of the microwave field, and we seed 10% of total atoms in |F = 1, m = −1〉

state. The microwave pulse is generated via a versatile microwave source controlled

by a field programmable gate array (FPGA) which has the capability to modulate

the power and frequency on fast time scales [65]. The microwave signal is emitted

from the same homemade microwave antenna which was discussed in chapter five. For

double-sided seeding, instead of using the microwave pulses to prepare the seeding,

we apply a short on-resonant rf pulse (300 kHz) which is on resonance with the

linear Zeeman shift between the sublevels in the F = 1 manifold. After receiving the

rf pules, atoms are transferred from |F = 1, m = 0〉 state to |F = 1, m = −1〉 and
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|F = 1, m = 1〉 states simultaneously with the same amount of atoms, the quadratic

Zeeman shift is ignored because the effects are negligible at 300 kHz. The number of

atoms in seeds can be controlled either by changing the duration or the power of the

radio frequency pulse. In the end, both seeding methods give 10% of seeds for the

spin-mixing interferometry.

8.2.2 Experimental Interferometry Sequence

After preparing the initial seeded states, the spin-mixing interferometry can be

experimentally realized in the following three steps: state splitting, phase imprinting,

and state recombining.

After preparing the initial seeded states, the states-splitting step is realized by

applying the spin-mixing Hamltonian HSMD: An off-resonant microwave-dressing field

(∆ = 75 kHz blue-detuned from the |1, 0〉 to |2, 0〉 clock transition) is switched on

within 5 µs. This quenches the condensates. The effective quadratic Zeeman is shifted

to the target value q and remains there for a variable spin-mixing time t1. The system

evolves and the atomic population is transferred from m = 0 states to m = ±1 states

due to the spin-exchanging collision.

The phase imprinting step happens at the end of the first spin-mixing dynamics,

after evolution time t1. We apply a relative phase shift to the system by changing

the quadratic Zeeman shift q, such that |q| � c. This is experimentally realized by

decreasing the detuning of the microwave field from ∆ = 75 kHz to ∆ = 30 kHz

as well as increasing the microwave power. Since our Rabi frequency for coupling

|F = 1, m = 0〉 to |F = 2, m = 0〉 is less than 10 kHz, our detuning is still sufficiently

large compared to the Rabi frequency, as verified by the fact that we didn’t observe

a large number of atom loss during the experiment. Due to the large ratio of |q|/c

during the phase imprinting, the spin-exchange collisions are energetically suppressed.
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Therefore, the phase imprinting does not lead to noticeable population changes and

only causes an extra q-dependent spinor phase shift. The relative spin phase shift

induced by the microwave kick is defined by equation φ ≈ −2π × 2qτ , which depends

on the effective quadratic Zeeman shift q and the pulse length τ . Here we keep τ

constant for 1 ms and scan the relative phase φ by scanning q. The range of q values

is from q/h = −100 Hz to q/h = −1040 Hz.

After phase imprinting, the entangled states “recombine” under another HSMD for

time t2 (t2=t1). During this process, the entangled m = ±1 pair partially disentangle

and transfer back to the m = 0 state. With different imprinted phases, we can either

control the evolution of Ns to continue evolving or recover back the approximate initial

state. After a total time t = t1 + τ + t2, the optical dipole trap is switched off, a 9 ms

long Stern-Gerlach pulse is applied, and the false color absorption images are taken to

measure the atom number for the three spin components.

By measuring the final m = 0 spin population as a function of applied phase

shift, we can map interference fringes for this type of spin-mixing interferometer. We

can also change the spin-mixing duration t1,2 to change the number of atoms in the

side modes of the interferometer and investigate the spin population in either the

short-time or the long-time evolution regime.

8.3 Experimental Results

8.3.1 Spin-mixing Dynamics of Different Initial States

The spin-mixing dynamics for initial states that are prepared using either single-

sided seeding or double-sided seeding methods with a total of 10% of atoms in the side

modes (|F = 1, m = ±1〉), and the effective quadratic Zeeman shift of q/h = −5 Hz

are shown in Fig. 8.5.

Figure 8.5a and 8.5b show the spin oscillations with initial states prepared us-
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Figure 8.5: Spin-exchanging collisions with initial states are prepared by (a) double-sided

seeding and (b) single-sided seeding. The black dots and lines are experimental data of

fractional population in the |1, 0〉 component, ρ0, as a function of spin evolution time.

The error bars are the standard error of over five experimental runs. Red dashed lines

are the TWA simulation fitted with q/h = −5 Hz, c/h = 18.5 Hz, and N = 21000. The

red error bands indicate the statistical uncertainty that arises from averaging 1000 data

sets at each time step.

ing double-sided seeding and single-sided seeding method, respectively. The black

dots are the measured experimental data showing the number fraction of atoms in

|F = 1 m = 0〉 state as a function of time after quench. The error bars are the standard

error (SE= σ/
√
N , where σ is the standard deviation) that arise from averaging five

data sets for each time t. More data will need to be taken to get a good estimate of the

uncertainty. The error bars are smaller at early time and increase as the evolution time

increase. The main contribution to the error bars might come from the atom number

variation from one experimental realization to another, and the fluctuation is about

20% of the total atom number. The red dashed lines are theoretical predictions of

the spin-mixing dynamics using the truncated Wigner approximation. The simulation

was done using parameters q/h = −5 Hz and a number of atoms N = 21000. Due to

some fluctuation of the trap frequency in the radial direction, we fit the data with
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spin-dependent interaction strength c/h = 18.5 Hz. The time steps are set to 0.1 ms,

and the number of simulation data points is 800 during 80 ms of spin evolution time.

The red error bands on the top of the theoretical prediction indicate the statistical

uncertainty that arises from averaging over an ensemble of 1000 data sets at each

time step. Since the initial state prepared with double-sided seeding is sensitive to

the initial phase, during the simulation, we set the initial phase φ = 0. Figures show

a good agreement of oscillation period and amplitude between the experimental and

theoretical data using the truncated Wigner approximation. The spin oscillations

are sinusoidal. The population fraction in the m = 0 state starts with ∼90% of

the total atom number N . During spin-exchange collisions, atoms transfer from

the |F = 1, m = 0〉 state to |F = 1, m = ±1〉 which leads to population decrease in

the |F = 1, m = 0〉 state until an evolution time of t ≈ 20 ms. Then the process

is reversed, and the population in |F = 1, m = 0〉 returns to ∼ 0.9N at ∼ 40 ms,

consistent with the simulation result. After 60 ms of spin evolution, the deviation

between the experimental data and the theoretical simulation becomes larger and

larger, and the error bars of the experimental data grow larger than the simulation,

which could be due to technical noise such as magnetic field noise, number fluctuation,

or microwave amplitude noise.

8.3.2 Interference Fringes

Just like with optical interferometers, interference patterns can be observed at

the output of atom interferometers. Figure 8.6 shows the interference fringes of our

double-sided seeding spin-mixing interferometry. In Fig. 8.6a to Fig. 8.6d, the final

number fraction in the m = 0 state, ρ0, is plotted as a function of the imprinted phase

Φ with different spin-mixing times. Figure 8.6a to 8.6d show fringes for spin-mixing

time of 8 ms, 10 ms, 13 ms, and 18 ms, respectively, in the states splitting and
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recombining steps. The pulse length of the phase imprinting step is 1 ms, so the total

interferometry times in each sub-figure of Fig. 8.6, where the data is plotted, are 17

ms, 21 ms, 27 ms, and 37 ms, respectively.

For comparison, the interference fringes for single-sided seeding spin-mixing inter-

ferometry are plotted in Fig. 8.7. The same interferometry parameters are used as the

double-sided seeding interferometer except for the initial state. Figure 8.7a to 8.7d

reflect the spin-mixing times of t1 = t2 = 8 ms, 10 ms, 13 ms, and 18 ms, respectively.

The total interferometry times are 17 ms, 21 ms, 27 ms, and 37 ms in each sub-figure.

In the plots, black circles are the mean value of experimentally measured fractional,

ρ0, in |F = 1 m = 0〉 state as a function of the imprinted phase. The error bars

indicate standard errors calculated from averaging five separate measurements for

each phase value Φ. The red dashed lines are the theoretical simulation from the

truncated Wigner approximation. The red error bands around the red dashed lines

are theoretical fitting indicate the statistical uncertainty that arise from averaging an

ensemble of 100 trajectories at each phase value. Here, the simulation uses parameters

q/h = −5 Hz for the spin-mixing dynamics and N = 21000 as the atom number. The

spin-dependent interaction strength c/h = 19 Hz was used to fit the data in Fig. 8.6

and c/h = 22 Hz was used to fit the data in Fig. 8.7. Phase Φ is scanned from 2π×0.2

to 2π×2.08 with step of 2π×0.04. Experimental results agree reasonably well with

the theoretical model for these parameters.

Generally, both the experimental results and the theoretical simulations in single-

or double-sided seeding interferometry have an apparent fringe contrast. Moreover, the

oscillations of each fringe pattern have a period of 2π, which is expected. Specifically,

in Fig. 8.6a and Fig. 8.7a, where the spin evolution time is relatively short (8 ms),

both the experimental data and the TWA simulations show close-to-sinusoidal fringe

patterns. For a relatively short spin evolution time, a small number of atoms are

195



Figure 8.6: Interference fringes for the double-sided seeding interferometer presented in

terms of fractional population in the |1, 0〉 component, ρ0, as a function of imprinted

phase Φ. The spin-mixing time t1 = t2 of “splitting” and “recombining” steps from (a)

to (d) are 8 ms, 10 ms, 13 ms, and 18 ms, respectively. Black circles are the mean values

of experimental data. Error bars are standard errors calculated from averaging five

separate measurements. Red dashed lines are TWA simulation results with parameters

q/h = −5 Hz, c/h = 19 Hz, and N = 21000. The red error bands arise from averaging

over an ensemble of 100 trajectories for each phase value. The experimental data and the

TWA simulation show close-to-sinusoidal fringe patterns in (a) at the short spin-mixing

time of 8 ms. Interference fringes become non-sinusoidal in (b), (c), and (d) when the

spin-mixing time increases, which indicates the nonlinear nature of the interferometer.
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Figure 8.7: Interference fringes for the single-sided seeding interferometer presented in

terms of fractional population in the |1, 0〉 component, ρ0, as a function of imprinted

phase Φ. The spin-mixing time t1 = t2 of “splitting” and “recombining” steps from (a)

to (d) are 8 ms, 10 ms, 13 ms, and 18 ms, respectively. Black circles are the mean values

of experimental data. Error bars on each data point are standard errors calculated from

averaging five separate measurements. Red dashed lines are TWA simulation results

with parameters q/h = −5 Hz, c/h = 22 Hz, and N = 21000. The red error bands arise

from averaging over an ensemble of 100 trajectories each phase value. The single-sided

seeding interferometer performs similarly to the one with double-sided seeding in terms

of interference patterns.
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transferred to the side modes due to spin-exchange collisions, and the probe states

become lightly entangled. As the spin evolution time increases, the non-sinusoidal

fringe patterns are more and more evident in the sub-figure (b), (c), and (d) of Fig. 8.6

and Fig. 8.7, respectively. This is because the system is no longer in the undepleted

pump regime and the non-sinusoidal feature is caused by pump depletion. For long

evolution time, the number of entangled pairs of atoms in m = ±1 states is increased,

and spin squeezed and non-Gaussian squeezed states can be generated [149]. It is

also worth noting that ρ0 in the TWA simulation (red line) reaches ∼0.9 at phase

Φ = 2π × 0.5 and Φ = 2π × 1.5 in (a), (b) and (c), and at Φ = 2π and Φ = 4π

in (d), in both Fig. 8.6 and Fig. 8.7. An approximate close-to-perfect time-reversal

dynamic happens close to these phase shifts which is important for the spin-mixing

interferometry. Usually, interference fringes close to these phases have steep slopes,

indicating some non-linear effects that could possibly lead to metrological gain in the

phase estimation. Experimental data agree with the model qualitatively but do not

have the same results as the theoretical prediction. This could be due to the technical

noise such as atom loss, field or microwave noise, and number fluctuations. We also

notice that the phase of the highest peak in figure (d) is shifted by ∼ π compared to

the other sub-figures in both Fig. 8.6 and Fig. 8.7. This phase difference is induced by

the spin-mixing dynamics. Our TWA simulations also show the fringes at 18 ms of

spin evolution time have ∼ 0.4π phase shifts compared to the others at spin evolution

time of 8 ms, 10 ms, and 13 ms, respectively.

8.3.3 Phase Sensitivity Measurement

In our experiment, the phase sensitivity of the spin-mixing interferometry is

obtained using the error propagation method, which is defined in Eq. (8.20). 〈Ns(t)〉

is the average total atom number in |F = 1, m = ±1〉 states which can be obtained
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by applying Gaussian fit to Stern-Gerlach absorption images. ∆Ns(t) is the statistical

uncertainty which is defined as the standard deviation of Ns(t). To calculate the phase

sensitivity, we narrow the measurements to a small phase range where the metrological

gain is more likely to happen than in other areas, due to the theoretical predictions.

Then we measure the phase with relatively high resolution, and each phase value is

measured ten times to calculate averages and standard deviations.

Figure 8.8 shows the phase sensitivity estimations when the spin-mixing time t1

is 10 ms, and the initial state is prepared with the single-sided seeding method. In

Fig. 8.8a and Fig. 8.8c, the black circles are the experimental data which show the

mean value of the total number in the |F = 1, m = ±1〉 states 〈Ns(t)〉 as a function

of imprinted phase Φ. Each data point is averaged from ten data sets for each phase

Φ. The black circles in Fig. 8.8b and Fig. 8.8d are the standard deviation of the

experimental data Ns(t). In order to use the error propagation equation, we introduce

two different fitting methods to fit our experimental data. The data in Fig. 8.8a and

Fig. 8.8b are fitted with a polynomial regression model up to the eighth order, which

is shown as the red line. In Fig. 8.8c and Fig. 8.8d, we use Hermite interpolation

up to the third order between each data point. The red lines are the interpolation

result. The phase sensitivity estimation results (black lines) resulting from the two

different fitting methods are shown in Fig. 8.8e and Fig. 8.8f, respectively. The red

lines in Fig. 8.8e and Fig. 8.8f are the standard quantum limit normalized to unity,

for comparison. The black lines are the calculated phase sensitivity using the error

propagation method normalized to the standard quantum limit. The SQL here is

defined as ∆ΦSQL = 1/
√
〈Ns(t1)〉, where 〈Ns(t1)〉 is the mean value of the total atom

number in |F = 1, m = ±1〉 states right after the “splitting” step, and t1 = 10 ms.

Here, we measured Ns(t1) 30 times, and the red error band on top of the SQL indicates

the statistical uncertainty that arises from averaging 30 data points measured at t1.
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Figure 8.8: Phase sensitivity measurement using error propagation method. Black

circles in (a) and (c) are the experimental data showing the mean value of the total

number in the |F = 1, m = ±1〉 states as a function of phase. Each point is an average

of ten data. Black circles in (b) and (d) are the standard deviation of the experimental

data. The experimental data are fitted with a polynomial regression model up to the

eighth order in (a) and (b), and are interpolated using the Hermite function up to the

third order in (c) and (d), as shown in the red lines. Black lines in (e) are the phase

sensitivity estimation using the fitting from (a) and (b). Black lines in (f) are the phase

sensitivity using the fitting from (c) and (d), respectively. Results are normalized to

the SQL. The red lines in (e) and (f) are the normalized SQL defined as 1/
√
〈Ns(t1)〉

where t1 = 10 ms. Red bands are the standard deviation that arises from averaging 30

data points measured at t1. Blue dash lines are the quantum Cramér-Rao bound of the

probe states, and green dash and dot lines are the Heisenberg sensitivity limit.
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Compared with the SQL (red line), the black lines below the SQL from Φ = 2π× 1.52

to Φ = 2π × 1.56 indicates the metrological gain in phase sensitivity. For comparison,

we also drew the quantum Cramér-Rao bound of the probe states in blue dash lines

and the Heisenberg sensitivity limit in the green dash and dot lines, all normalized to

the SQL.

The meaning of the standard quantum limit is by assuming the atoms Ns(t1) in

the probe states are separable. Therefore the lowest achievable sensitivity for atoms in

separable states is bounded by the quantum Cramér-Rao bound, which is equivalent

to the SQL. However, in our experiment, the atoms Ns(t1) are forming spin-mixing

induced probe states with entanglement generated between each pair of atoms in the

|F = 1, m = ±1〉 states. The quantum Cramér-Rao bound of the entangled states is

then supposed to give a better sensitivity than the SQL. The results in Fig. 8.8e and

Fig. 8.8f show that with the same atom number, Ns(t1), prepared in the separable

probe states and the entangled probe states, the phase sensitivity of the entangled

states (black line) induced by the spin-mixing dynamics can overcome the SQL (red

line) and achieve metrological gain compared to its classical reference.

We further explore the phase sensitivity with different initial states: the initial

states prepared with the single-sided seeding, the initial states prepared with the

double-sided seeding, for different spin-mixing time. Figure 8.9 shows the phase

sensitivity of single-sided seeding atom interferometers. The black lines are the

calculated phase sensitivity using the error propagation method normalized to the

standard quantum limit. The red lines are standard quantum limits normalized to

unity, and the red error band on top of the SQL indicates the statistical uncertainty

that arises from averaging 30 data points measured at the end of the first spin-mixing

time t1. For comparison, we draw the quantum Cramér-Rao bound of the probe

states in blue dash lines and the Heisenberg sensitivity limit in the green dash and
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Figure 8.9: Phase sensitivities of single-side seeded spin-mixing interferometers with

the spin-mixing time, t1, of (a) 10 ms, (b) 13 ms, and (c) 18 ms. When t1 = 10 ms, the

maximum metrological gain is obtained at Φ = 2π × 1.54 with G = 3.69 dB indicating

a metrological gain. Dashed black lines are the phase sensitivities calculated from the

TWA simulated data, with a gain of 5.25 dB at Φ = 2π × 1.58. The gain becomes

smaller at t1 = 13 ms, and there is no gain at t1 = 18 ms.

dot lines, all normalized to the SQL. Figure 8.9a to 8.9c show the phase sensitivities

obtained with t1 equal to 10 ms, 13 ms, and 18 ms, respectively. At t1 = 10 ms, the

experimental error propagation data (black line) goes below the SQL (red line) from

Φ ≈ 2π × 1.52 to Φ ≈ 2π × 1.57. The maximum gain is found at Φ = 2π × 1.54 with

G = 3.69 dB where the metrological gain is defined as G = 10 log10(∆ΦSQL/∆Φ). For

comparison, the black dashed line is the TWA simulated error propagation data, and

the maximum gain is obtained at Φ = 2π × 1.58 with G = 5.25 dB, which is ∼1.6 dB

greater than the experimental result. At t1 = 13 ms, the experimental gain is G = 1.96

dB at Φ = 2π × 1.5, and the TWA simulated gain is G = 3.44 dB at Φ = 2π × 1.56.

Both theoretical and experimental data show that the metrological advantage of the

interferometry is weaker at t1 = 13 ms than t1 = 10 ms. In Fig. 8.9c, the minimum

experimental data is about four times above the SQL, and the theoretical simulation

is very close to the SQL, indicating no metrological gain is obtained when t1 = 18 ms.

Figure 8.10 shows the phase sensitivity of double-sided seeding interferometers.
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Figure 8.10: Phase sensitivities of double-sided seeding atom interferometers with the

spin-mixing time, t1, of (a) 8 ms, (b) 13 ms, and (c) 18 ms. When t1 = 8 ms, the

maximum metrological gain is obtained at Φ = 2π × 0.56 with G = 4.77 dB indicates a

metrological gain. Dashed black lines are the phase sensitivities calculated from the

TWA simulated data, with a gain of 5.53 dB at Φ = 2π× 0.66. The gain becomes barely

visible at t1 = 13 ms, and no gain at t1 = 18 ms.

We use the same way to obtain the error propagation data, TWA simulation data,

Cramér-Rao bound, and the Heisenberg sensitivity limit as in Fig. 8.9 with the same

legends. Figure 8.10a to 8.10c show the phase sensitivities obtained with t1 equals to 8

ms, 13 ms, and 18 ms, respectively. At t1 = 8 ms, the experimental error propagation

data (black line) goes below the SQL (red line) from Φ ≈ 2π × 0.56 to Φ ≈ 2π × 0.59.

The maximum gain is found at Φ = 2π× 0.575 with G = 4.77 dB. For comparison, the

TWA simulated error propagation shown in the black dashed line has the maximum

gain at Φ = 2π × 0.66 with G = 5.53 dB. In Fig. 8.10b, where t1 = 13 ms, the

experimental error propagation data is within the error band of the SQL, indicating

little metrological enhancement in this interferometry. The TWA simulated error

propagation data is closer to the SQL than that in Fig. 8.10a shows the metrological

advantage of the interferometry is theoretically weaker at t1 = 13 ms than t1 = 8 ms.

In Fig. 8.10c, experimental data is above the SQL indicates no metrological gain is

obtained when t1 = 18 ms.

It must be pointed out that the discrepancies between the experimental data and
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the TWA simulations are still somewhat large in both Fig. 8.9 and Fig. 8.10. It might

be explained from two different perspectives: (1) From the theoretical point of view,

with 10% of initial seeding, after several milliseconds of spin-mixing dynamics, lots of

atoms are coupled from |F = 1,m = 0〉 state to |F = 1,m = ±1〉 states. The system is

in a deeply entangled regime where the undepleted pump approximation [148] cannot

capture the dynamics of the system very well. Therefore, a full quantum calculation

might be better to describe the system [150]. (2) From the experimental point of

view, atom number fluctuations from one experiment realization to another and atom

loss during one experimental cycle, will cause the realistic spin-mixing interferometer

to exhibit a significant deviation between the experimental data and the theoretical

simulation.

Generally speaking, our experimental phase sensitivity data suggests that our

spin-mixing interferometry with seeded states and intermediate time evolution beats

the standard quantum limit. However, when increasing the spin evolution time, the

results are perturbed by fluctuations. There are several things we can do to improve

the interferometry performance at a longer spin evolution time. On the one hand,

since the error propagation method relies on calculating the derivative of the actual

atom number in |F = 1, m = ±1〉 states with respect to the phase change, we can

increase the data resolution by narrowing the step size, increasing the accuracy of

data interpolation, and improving the error propagation method. On the other hand,

taking much more data for each point and doing appropriate post-selection on atom

numbers can help to narrow the uncertainty in the future.

8.4 Summary

We demonstrated experimental spin-mixing interferometry with microwave-dressed

F = 1 anti-ferromagnetic sodium spinor BECs. Contrary to previous work, our

204



interferometer operates with seeded initial states and in the regime of intermediate to

long evolution time. We analyzed the metrological enhancement which suggests gain

of up to 4.77 dB beyond the standard quantum limit for certain operating parameters

and evolution times which starting with 10% seeded initial states. Our experiment

is currently limited by technical noise such as shot-to-shot number fluctuations and

atom loss from the trap.
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Chapter 9

Conclusions

9.1 Final Remarks

This final chapter summarises the thesis and also concludes my seven-plus years

as a Ph.D. student. I joined the group in January 2016. I still remember the first

time I walked into the lab, and there were just a few optics on the optical tables. We

built up the experimental system from the ground up. In May 2016, we created our

first sodium MOT, which was a very tiny yellow dot. After another two years of hard

work, we finally achieved our sodium spinor BECs in January 2018. Our experimental

system was then optimized to provide a BEC of ∼104 sodium atoms in our daily

experiments. From 2019 to 2022, we performed interesting experiments using our

BEC to study spin dynamics and atom interferometry. We also had challenges: 2020

was a hard year like no other. We had to shut down the lab for more than a half year

due to the Covid-19 pandemic and slowly recovered to normal life after the university

reopened. On July 16th, 2022, I finished taking the last data in the old lab in Nielsen

Hall 360, and a day later, we started to move to our new lab in Lin Hall, where we

will have a brand new laboratory to begin a new journey. It has been an unforgettable

experience to witness a lab built from nothing.

In this thesis, we showed our experimental demonstration of the first all-optical

Bose-Einstein Condensation with sodium atoms at the University of Oklahoma. The

sodium atoms were loaded from the MOT in an optical dipole trap created by two

focused laser beams intersecting at the center of the ultra-high vacuum chamber under

a 90◦ angle. The atoms were subsequently evaporatively cooled down to quantum

degeneracy by ramping down the laser power with two exponential ramps. BECs with

an internal spin degree of freedom, also called spinor BECs, offer rich opportunities
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to explore quantum dynamics since the spins can interact with each other to create

entanglement, spin squeezing, and exotic many body states. The dynamics are

controllable via external magnetic and microwave fields.

Using the spinor BEC as a platform, we observed coherent spin population oscilla-

tions after quenching the system using a microwave-dressed field. This type of spin

oscillation dynamics was thought to be well described using the mean-field theory

and the single-mode approximation, which assumes that the different hyperfine states

share the same time-independent spatial mode. This implies that the resulting spin

Hamiltonian only depends on the spin interaction strength and not on the density

interaction strength. However, we experimentally observed, in certain parameter

regimes, an upward drifting on a coherent spin oscillation at long spin evolution

time, which is beyond the single-mode approximation physics. The theory group of

Dr. Blume helped us to verify the drifting dynamic, which is a dynamically-induced

mean-field driven resonance mechanism resulting from the coupling between the spin

and spatial degrees of freedom of the spinor wave function, can be predicted by solving

a set of coupled mean-field Gross-Pitaevskii equations. The resonance we observed

and mapped is a new type of spin-spatial coupling resonance driven by the mean-field

not by the quantum fluctuating.

In our spin-mixing atom interferometer experiments, we experimentally demon-

strated two types of interferometry based on the different initial states: single-sided

seeding interferometers and double-sided seeding interferometers. Our spin-mixing

atom interferometers rely on the entangled states generated via spin-exchange colli-

sions. We use the entangled states as the probe states and perform an interferometer

mechanism that contains three major steps: “splitting”, phase imprinting, and “recom-

bining”. We experimentally show the interference pattern in terms of the fractional in

|F = 1, m = 0〉 as a function of the imprinted phase at a different spin-mixing time.
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We also calculated the phase sensitivity of the interferometers at different times and

compared it with the standard quantum limits, quantum Cramér-Rao Bound and the

Heisenberg sensitivity limit. Our results show the metrological gain of sensitivities

using our nonlinear interferometry schemes in the intermediate time of spin evolution.

Specifically, we obtained a metrological gain of 3.96 dB in the single-sided atom

interferometer with spin-mixing time t1 = 10 ms and 4.77 dB in the double-sided atom

interferometer with spin-mixing time t1 = 8 ms. Our current research on spin-mixing

interferometry paves the way for light-pulse atom interferometry, which involves the

coupling between the spin and momentum degrees of freedom, which is planned for

the future.

9.2 Future Plans

In early August 2022, we moved our lab from the third floor of Nielsen Hall to

the basement of the new Lin Hall, where the new laboratories meet the NIST-A

requirements on vibrations, temperature, and humidity, as well as electromagnetic

interference. With this world-class research facility, our future experiments will be

performed in low-noise and high-stability environments, which is especially important

for precision measurement experiments, such as atom interferometry. After setting

up the new laboratory, we plan to extend the spin-mixing interferometry to the

light-pulse interferometry, transferring entanglement from the spin degree of freedom

to well-separated momentum modes.

Our Mach-Zehnder light-pulse atom interferometry relies on coherently splitting

and recombining the matter waves after generating entangled pairs of atoms in

|F = 1, m = ±1〉 states via spin-exchange collisions. The spatially-dependent splitting

and recombining of the matter-wave are realized by transferring the momentum from

light pulses to atoms via either Raman diffraction or Bragg diffraction mechanism,
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Figure 9.1: Energy diagrams of different light pulse schemes for interferometry. Energies

are not drawn to scale. (a) Raman diffraction is realized with a two-photon transition

in a three-level system. Atoms are transferred from the ground states |g1〉 to |g2〉 via

an exited state |e〉 with two-photon detuning δ and one-photon detuning ∆. (b) Bragg

diffraction with n=4 Bragg order and 8~k momentum has been transferred. Solid lines

are the resonance transition between the initial and final momentum states. Dashed

lines are virtual transitions.

depicted in Fig. 9.1. In Raman diffraction, as shown in Fig. 9.1a, the internal state

changes during the two-photon process from the ground states |g1〉 to |g2〉 via an exited

state |e〉. The momentum gain is equal to 2~k. In contrast to Raman diffraction,

Bragg diffraction does not involve any change in the internal states. In fact, it is

possible to choose a high diffraction order, as shown in Fig. 9.1b, to achieve high

momentum-splitting. By choosing a nth Bragg order, atoms coherently scatter 2n

photons and gain a momentum of 2n~k. One of the drawbacks of using the Bragg

diffraction scheme is that high-powered laser beams are mandatory to achieve high-

order multiphoton Bragg diffraction [154]. Therefore, we plan to use Raman diffraction

first to transfer 2~k momentum to atoms.

The schematic of our Mach-Zehnder light-pulse atom interferometer is shown in

Fig. 9.2a. It consists of three stimulated Raman pulses separated with free propagation
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Figure 9.2: (a) Mach-Zehnder light-pulse atom interferometry. A sequence of three

Raman pulses (π/2-π-π/2 configuration) is applied to a free-falling BEC separated with

free propagation time of T . Atoms exchange between two ground states F=1 and F=2

as well as their momentum due to the sequence of three Raman pulses. (b) A simplified

optical layout for generating stimulated Raman pulses.

time of T , and each of them couples the two hyperfine ground states of 23Na (F =

1 and F = 2 states). The first pulse spatially separates the atomic cloud and

prepares a superposition of the states with the same weight for both |F = 1, p〉 and

|F = 2, p+ 2~k〉 states to implement a matter-wave beam splitter (“π/2” pulse).

The second light pulse (“π” pulse) redirects and exchanges the internal states and

momentum modes of the two clouds and implements a matter-wave mirror. The final

light pulse (another “π/2” pulse), recombines the two wave packets and causes them

to interfere at the output. A simplified optical layout for generating stimulated Raman

pulses is illustrated in Fig. 9.2b. During the evaporation cooling stage, the MOT

cooling and repumping beam will be redirected to generate the stimulated Raman

pulses, which are detuned by 800 MHz with two AOMs. After the entangled BECs

are released from the optical trap, a sequence of three counter-propagating circularly-

polarized Raman pulses is applied to realize the interferometry. With this setup, we

will study several questions such as (1) what is the role of spin-exchange collisions
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in light-pulse atom interferometry; (2) Can we achieve quantum-enhanced sensitivity

in the light-pulse atom interferometer; (3) What are the effects of decoherence and

losses on the light-pulse atom interferometer?

The spinor BEC system is a fascinating prototyping system to learn in detail

about future quantum technologies such as quantum enhanced sensors and quantum

parametric amplifiers. It allows us to gain insight into exotic squeezed and many-body

quantum states. Although our current system is more of a prototyping system that

allow us to learn about the fundamentals of atom interferometry in spin space, one

can imagine that, in the future, such systems could be miniaturized and become

practical for real world field applications. For example, a BEC setup has recently been

ruggedized in a box of a few feet side length and installed on the international space

station as a turn-key system. In the future, one could imagine future miniaturization

using small size vacuum chamber, atom chips, pyramid MOT beams and integrated

opto-electronic diode laser system.
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[5] T. Hänsch and A. Schawlow, “Cooling of gases by laser radiation,” Optics
Communications 13, 68 (1975).

[6] A. Ashkin, “Acceleration and Trapping of Particles by Radiation Pressure,”
Phys. Rev. Lett. 24, 156 (1970).

[7] D. J. Wineland, R. E. Drullinger, and F. L. Walls, “Radiation-Pressure Cooling
of Bound Resonant Absorbers,” Phys. Rev. Lett. 40, 1639 (1978).

[8] W. D. Phillips and H. Metcalf, “Laser Deceleration of an Atomic Beam,” Phys.
Rev. Lett. 48, 596 (1982).

[9] S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, “Three-
dimensional viscous confinement and cooling of atoms by resonance radiation
pressure,” Phys. Rev. Lett. 55, 48 (1985).

[10] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of
Neutral Sodium Atoms with Radiation Pressure,” Phys. Rev. Lett. 59, 2631
(1987).

[11] A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji,
“Laser Cooling below the One-Photon Recoil Energy by Velocity-Selective Coher-
ent Population Trapping,” Phys. Rev. Lett. 61, 826 (1988).

[12] X. Luo, Y. Zou, L. Wu, Q. Liu, M. Han, M. Tey, and L. You, “Deterministic
entanglement generation from driving through quantum phase transitions,”
Science 355, 620 (2017).

[13] A. Vinit and C. Raman, “Precise measurements on a quantum phase transition
in antiferromagnetic spinor Bose-Einstein condensates,” Phys. Rev. A 95, 011603
(2017).

212
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J. Ji, M. Ye, Y. Yao, D. Lü, Y. Wang, W. Chen, and L. Liu, “Space qualified
microwave source for cold atom clock operating in orbit,” Review of Scientific
Instruments 89, 113115 (2018).

216



[65] I. Morgenstern, S. Zhong, Q. Zhang, L. Baker, J. Norris, B. Tran, and A.
Schwettmann, “A versatile microwave source for cold atom experiments con-
trolled by a field programmable gate array,” Review of Scientific Instruments
91, 023202 (2020).
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[68] P. Böhi, M. F. Riedel, J. Hoffrogge, J. Reichel, T. W. Hänsch, and P. Treutlein,
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Appendix A

Angular Momentum Coupling

Here, we assume that the orbital angular momentum L = 0. Since for sodium

atoms the nuclear spin I is 3
2

and electron spin s is 1
2
, the total angular momentum

is F = I + S. Therefore, we can expand the coupled states via the compeletness

relations in the uncoupled basis, |F,MF 〉 =
∑
|I, Iz, S, Sz〉 〈I, Iz, S, Sz|F,MF 〉:
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(A.1)

In sodium ground hyperfine manifolds F = 1 and F = 2. The spin flip transition

induced by the magnetic oscillatory field between eight |F,MF 〉 is

〈F,MF |σi|F,MF 〉 =
(∑

〈F,MF |I, Iz, S, Sz〉 〈I, Iz, S, Sz|
)

× σi
(∑

|I, Iz, S, Sz〉 〈I, Iz, S, Sz|F,MF 〉
)
,

(A.2)

where σi is the Pauli spin matrix, which is defined as:

σx =

0 1

1 0

 σy =

 0 i

−i 0

 σz =

1 0

0 −1

 . (A.3)
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Appendix B

Bias Coils Current Control Circuits

The current control circuits of the bias coils are made of three parts: the external

set point circuit, the temperature controller circuit, and the sensing circuit. Fig. B.1

shows the temperature controller circuits. The commercial temperature controllers

(PTC5K-CH wavelength) can output ± 5 A control current with faster ramp time and

lower noise. It receives the external set point signal at point 5. To sense the current,

the current in the Helmholtz Coils is pick up at points 1 and 2, the it is fed to the

sensor of the temperature controller at points 3 and 4.

The external set point circuit diagram is illustrated in Fig. B.2. The external set

point value is ranged from -5 V to 5 V which is programmed from the LabVIEW. The

circuit can convert a range of the LabVIEW signal to 0.5 V to 5.5 V which is a range

the temperature controller can interpret.

The sensing circuit diagram is shown in Fig. B.3. The sensing circuit is designed

Figure B.1: Circuit diagram of the temperature controller. Point 5 receives the external

set point signals. Points 1 and 2 pick up the current signal from the Helmholtz coil and

send it to the sensor of the temperature controller at points 3 and 4
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Figure B.2: Circuit diagram to generate the external set point. Up is the signal generated

from the LabVIEW.

Figure B.3: Circuit diagram of the sensing circuit. The current in Helmholtz Coils is

picked up in points 1 and 2, and converted to a value which can be interpreted by the

temperature controller at points 3 and 4.
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to sense current and present fake temperature to the temperature controller. Points 1

and 2 pick up the current in Helmholtz Coils. A 10 kΩ resistor is connected across

the points 3 and 4, and work as a 10 kΩ thermistor.
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