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Abstract

Quantum metrology is the application of quantum mechanics towards the enhancement of
measurements. This is typically achieved through either quantum measurements, such as
photon counting, or using quantum states. In this thesis, we focus on the use of a high
power quantum state of light, known as the bright two mode squeezed state, to achieve
a quantum enhancement in the estimation of transmission by reducing the uncertainty in
the value down to the fundamental limit allowed by quantum mechanics. These bright two
mode squeezed states are of particular use to enhance the precision of many sensing devices
beyond the classical limit, via quantum enhancement, and current state-of-the-art due to
being generated at high power.

We start with an introduction to the theoretical calculations that set the fundamental
lower limit in the uncertainty in the estimation of a parameter, transmission in our case. This
limit is given by the quantum Cramér-Rao bound. We go over the bound for the bright single
mode squeezed state and calculate the bound for the bright two mode squeezed state. These
squeezed states offer a large enhancement in transmission estimation at high transmissions
compared to classical states. We also expand on these bound to include losses in the states
both before and after probing the transmissive system and detail measurements that are
able to saturate the quantum Cramér-Rao bound, even in the presence of loss. Operating at
this bound means that, for our state, no other estimation can do better.

We experimentally verify that we can estimate transmission at the quantum Cramér-
Rao bound for the bright two mode squeezed state. Achieving such uncertainty levels at
the quantum Cramér-Rao bound required extensive control of our experiment and precise
calibration of our state and system. In addition, we expand upon the calculations of the
quantum Cramér-Rao bound to include generation of the bright two mode squeezed state in
a more realistic system that takes into account the absorptive medium that is used.

Finally, we examine systems that have a resonant frequency dependent transmission and
phase responses. This allows us to compare and identify the optimal measurement param-
eter for use in estimating frequency shifts in the system response. We focus on systems
with resonance responses, in which there is a large change in transmission around a single
frequency. We show that for resonances with the common Lorentzian lineshape, the phase
measurement is in general more sensitive to frequency shifts than the transmission measure-
ments. However, for lineshapes with a sharper change in transmission, we show that the
transmission measurement can do better than phase measurements.
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ÂT Transpose

((
a b
c d

)
→
(
a c
b d

))
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Chapter 1

Introduction

Those things which I am saying now may be obscure, yet they will be made
clearer in their proper place.

— Nicolaus Copernicus

The world around us is quantified through measurement. The weather outside is quan-
tified through measurements of temperature and humidity. The brightness of a lightbulb is
measured by lumens and the loudness of a motor by decibels. Through these measurements
questions of whether today is hotter than yesterday, which lightbulb illuminates a room
better, or will this jet engine blow out someone’s eardrums can be answered safely.

Here, we will address the measurement of parameters. For the purposes of this thesis, we
define a parameter as a property that cannot be directly measured and must be inferred from
measurements of observables, i.e., properties that can be directly measured. For example,
the color of a brick is an observable while the specific heat of the brick is a parameter that
requires a series of measurements in order to calculate it. The parameter we will focus on
primarily is transmission. We will show how the measurement of this parameter can be
improved by using bright quantum states of light.

Under the assumptions of classical mechanics, it was thought that the uncertainty in a
measurement arose only from the instruments and methods used, meaning that an observ-
able, such as the position of particle, has a definite value and any uncertainty in that value
must come from the measurement. Therefore, technology should improve to the point that
measurements would be perfect, such that no fluctuations in the measurement results would
be possible. The development of quantum mechanics showed that this is not the case and
that fundamentally there are uncertainties that better engineering or instrumentation can-
not remove [1,2]. This quantum mechanical property is limited by the Heisenburg uncertainty
principle, which states that the distribution in the measured values of two observables is
constrained by the commutablility, i.e., by how much the order of their observation matters.

The lack of commutation of two observables, which is a quantum mechanical effect, can
be visualized via the Stern-Gerlach experiment [1–3]. In this experiment, a collimated stream
of hot silver atoms is passed through a magnetic field gradient pointed in the vertical or
horizontal direction, perpendicular to the flow of atoms. The silver atoms have a single
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electron in the outermost shell, which causes the atoms to be deflected either towards or
away from the direction of the magnetic field, depending on the direction of the magnetic
moment of the electron. For hot silver atoms, half are deflected in each direction due to the
quantization of the magnetic moment and the equal probability of having one direction or
the other.

Initializing the atoms with a vertical field and following only the upwardly deflected
atoms, the initial electron magnetic moment is ‘up’. A horizontal field then measures how
much of the ‘up’ magnetic moment is also ‘left’ or ‘right’. It turns out that ‘up’ contains
equal parts of ‘left’ and ‘right’ and is thus deflected in both directions. Following the ‘right’
magnetic moment atomic stream, it is known that the electron was measured to be in the ‘up’
magnetic moment, as that is the state it was initialized in. However, the electron no longer
is in the ‘up’ state as the horizontal measurement forced it into the ‘right’ state. Thus, when
the vertical component of the magnetic moment is measured again, the ’right’ stream splits
evenly into a ‘right’ - ‘up’ stream and a ‘right’ - ‘down’ stream of atoms. The horizontal
and vertical components of the magnetic moment cannot both be known simultaneously as
measuring one component scrambles the information of the other. Taking the original ‘up’
atoms and applying a vertical and then horizontal field would lead to ‘up’ - ‘right’ and ‘up’ -
‘left’ measurement results of equal weight. However, the application of a horizontal field and
then a vertical field leads to ‘right’ - ‘up’, ‘left’ - ‘up’, ‘right’ - ‘down’, and ‘left’ - ‘down’ of
equal proportions. Thus, the order of the measurements changes the measurement results.

The fact that the order of operations in which these two different observations are made
haves an effect on the results implies that there is a relationship between the measurements
and their commutation. One of these relations is the Heisenburg uncertainty principle, where
the minimum uncertainties of the measurements are inversely proportional to each other and
constrained by the commutation of the observables,〈

∆2Â
〉〈

∆2B̂
〉
≥ 1

4

∣∣∣〈[Â, B̂]〉∣∣∣2 , (1.1)

where Â is an observable, [Â, B̂] = ÂB̂ − B̂Â is the commutation relation, ⟨Â⟩ is the

expectation value of the measured observable, and ⟨∆2Â⟩ = ⟨
(
Â − ⟨Â⟩

)2⟩ is the variance.
This uncertainty relations shows that states generally do not have definite values but a range
of simultaneous values with a probability distribution for possible measurement results.

A common example of the uncertainty principle is the position-momentum uncertainty
of a particle, 〈

∆2x̂
〉 〈

∆2p̂
〉
≥ ℏ2

4
, (1.2)

where x̂ is the position operator, p̂ is the momentum operator, and ℏ is the reduced Planck
constant. If a particle is tightly constrained to a small region, then its momentum must
take a large range of values, just as an electron beam or optical laser tightly focused will
quickly spread out over a wide area during propagation. As the uncertainty principle only
sets the lower bound, the uncertainty of the momentum and position can both be large. The
constraint states that a particle cannot have a singular position or a singular momentum.
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Measurement of these quantities must have a distribution and cannot return the exact same
value every time.

At the same time as the Heisenburg uncertainty principle was being developed, statistical
bounds were being found to limit the precision with which a parameter can be estimated. The
Fisher information [4], together with the Cramér-Rao bound [5–9], set the lower bound in the
uncertainty in estimating the mean value of a parameter given a distribution of measurement
results. This bound tells us how well any analysis of a given data set could estimate the
value of a parameter, thus stating what the best analysis could achieve.

As an example, let us look at a coin. For 4 flips of a fair coin, one that has an equal
chance of getting heads or tails, there is only a 3/8 chance of getting the same number of
heads as tails. Thus, it is unlikely to get a measurement result of a fair coin as fair from four
flips. To reduce the uncertainty in whether the coin is balanced, this measurement would
need to be repeated multiple times. Attaching numbers to the results, we can define tails as
-1 and heads as 1 such that a fair coin has a mean of 0. Different numbers of heads and tails
from each set of 4 flips are due to the variance of the distribution of results. The fair coin
has a variance of 2 for four flips, meaning there is a good chance of having one more heads
than tails, or vice versa, of having an equal number of both.

To check if a coin is fair, we need to know the mean value. As stated above, from a
single set of 4 flips it is unlikely to get the mean result. In fact, the variance of possible
estimated “mean” values from a single set of 4 flips is the same as the variance of 4 flips (2
for a fair coin). However, as we repeat the measurement, the variance of the estimated mean
value decreases as there is a similar probability of measuring above or below the mean value.
In most cases, the variance of the mean decreases inversely with the number of repeated
measurements.

However, is the most precise way to test the fairness of a coin looking at the mean value of
many coin tosses? Could counting the number of repeated results such as heads-heads-heads
allow for a lower variance of the mean value? To answer these questions, the Cramér-Rao
bound sets the lower bound for the variance about the mean for such estimation problems.
If an analysis for estimating a value has a variance about the mean equal to the Cramér-Rao
bound, it is an optimal estimator that gives the most precise estimation possible from the
data.

Returning to quantum mechanics, the Cramér-Rao bound then also limits how well a
parameter can be estimated from a set of measurements of the observables. Not only is there
a distribution of measurement results due to the state not having a singular value, but there
is also a limit to how well the distribution can be characterized from those measurements.
Therefore if the state changes, it may not be detectable due to the uncertainty in the mean
and other moments of the distribution of the measurements. For example, a small shift in
the position of a focused beam of particles may be hard to detect if the shift is smaller than
the position distribution.

From these constraints, quantum metrology attempts to find the optimal way to sense
small changes in a parameter using quantum mechanics. Typically this involves using a
quantum state that has properties that make sensing the parameter of interest easier than it
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would be with classical states or quantum measurements, such as photon counting. For this
thesis, we will specialize on quantum metrology using quantum states of light and typically,
our work is based on Gaussian states of light that can be generated at high powers. The high
power allows for even better estimations of parameters, like how flipping the coin more often
better resolved the fair or unfair coin. We will focus on estimating transmission through an
optical system using these states, but we will briefly cover phase estimation as well.

1.1 Transmission estimation

Transmission estimation is important since every optical system, both quantum and classical,
suffers from some amount of loss. Thus, the characterization of any system includes esti-
mating the transmission through it. Losses cause quantum states to transition into classical
states, thereby losing quantum properties.

In communication [10–13], the transmission along a channel sets limits on the rate at which
information can be sent and how often the signal needs to be amplified. If the transmission
is estimated to be higher than it is, this can cause corrupted downloads of data over the
internet, inaudible voice chat on phone lines, or, in the extreme case, two parties being unable
to communicate at all. If transmission is estimated lower than it is, resources are wasted
amplifying the signal and data rates are set too low. To optimize the use of a communication
channel, the transmission must be continuously remeasured so that data can be set at the
maximum rate possible at any given time and minimum resources are used to amplify the
signal. Transmission estimation also needs to be done quickly, such that the measurement
does not overtly interfere with the communications.

In other sensing applications, the transmission of the sensing device needs to be taken
into account when generating an initial optical state. For interferometers used to measure
the phase difference between two arms of the device, a difference in transmission between the
arms can cause a calibration error in the phase estimation. Since the power of the output of
the interferometer is used to measure phase, a drop in transmission can be misinterpreted
as a change in phase. For interferometers enhanced with quantum states of light [14], losses
can reduce the advantage of quantum states over classical ones and, in the worst case,
the quantum state can actually become worse than a classical state for phase estimation. In
certain cases, the quantum state that gives the greatest improvement in the phase estimation
is determined by the amount of loss in the interferometer [14].

Transmission is also used in resonance sensors [15,16], such as a plasmonic sensor [17,18] for
which a local change in the refractive index causes a change in the transmission. These
sensors can be used to measure air purity, pressure, or the temperature of an object. They
can also be used in medical applications to detect the presence of certain proteins used as
markers for various diseases and other biological markers.

Much work has been done in order to improve the calibration or sensing of transmission
using quantum states of light [19–23]. The theoretical limit in the uncertainty in the estimation
of transmission is known to be reached by certain low power quantum states of light [20,21].
However, the uncertainty scales inversely with power and thus the lower power quantum
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states have limited applicability. Only when studying transmissive systems with very low
damage thresholds, on the order of a few photons per second, can these optimal quantum
states be beneficial. For this thesis, we will use a bright, high power quantum state that can
estimate transmission better than classical states and, under certain conditions, can reach
the same theoretical limit as the aforementioned optimal low power states. These bright
quantum states expand the applicability of quantum enhanced transmission estimation by
being generated with power comparable to many classical estimation schemes.

Recent experiments with quantum states of light to estimate transmission have shown an
enhancement [24–28]. However, none of them have reported uncertainties in the estimation at
the fundamental limit. In certain cases, this is due to how the data was analyzed [24–27] and
in others it is due to not having enough control over their experiment to keep from adding
additional sources of uncertainty into the estimation [28].

1.2 Outline

The chapters are broken up as follows. Chapter 2 introduces Gaussian states of light and
the properties and representations of these states. In Chapter 3, the Fisher information and
Cramér-Rao bound are introduced, as well as the quantum mechanical expansions of each.
The original work I focused on as part of my dissertation starts in Chapter 4, which explains
the theory of transmission estimation with Gaussian states of light. My experimental work
that confirms the theory is presented in Chapter 5. Chapter 6 expands on the previous
transmission theory to compare transmission estimation to phase estimation in the context
of a resonance sensor. Finally, Chapter 7 concludes with an overview of the work as well as
possible future expansions of it.
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Chapter 2

Gaussian States of Light

In quantum theory, light is quantized into wavepackets called photons. Each photon is a
particle and a wave. For a state of light, it is difficult to describe, or achieve an intuitive
understanding of, the wave and particle nature of the state with a single representation. Here,
we will cover different states of light using different representations to build an understanding
of the relevant properties of the light used in this thesis. However, the light must first be
quantized.

For light in a finite volume V , the vector potential A⃗ of the electromagnetic (EM) wave
must satisfy the wave equation

∇2A⃗+
1

c2
∂2A⃗

∂t2
= 0. (2.1)

The vector potential can be written as [29,30]

A⃗ = c
∑
k

1√
2ωk

[u⃗k(r⃗)αk(t) + u⃗∗k(r⃗)α∗
k(t)] , (2.2)

where k labels the specific mode or solution to the wave equation, u⃗k(r⃗) are the spatial mode
functions that satisfy the boundary conditions of the wave equation, αk(t) are the temporal
mode functions, and ωk is the angular frequency of the EM wave. Using the Coulomb gauge,
∇ · A⃗ = 0, and assuming a square volume with periodic boundary conditions, the mode
functions can be solved such that

u⃗k(r⃗) =

√
1

V
ε⃗p(k⃗)e−ik⃗·r⃗ (2.3)

and
αk(t) = αke

iωkt, (2.4)

where ε⃗p(k⃗) is the polarization vector of the wave, k⃗ is the wave vector or momentum of the

light, and ωk = c|⃗k|. The vector potential can now be written as

A⃗ =
∑
k

√
c

2|⃗k|V
ε⃗p(k⃗)

(
αke

−i(k⃗·r⃗−ωkt) + α∗
ke

i(k⃗·r⃗−ωkt)
)
. (2.5)
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The vector potential can be quantized by setting αk →
√
ℏâk [29,30], such that

⃗̂
A =

∑
k

√
cℏ

2|⃗k|V
ε⃗p(k⃗)

(
âke

−i(k⃗·r⃗−ωkt) + â†ke
i(k⃗·r⃗−ωkt)

)
, (2.6)

where â†k is the Hermition conjugate of âk. These field operators are called the creation, â†k,
and annihilation, âk, operators as they create or destroy a photon in the corresponding mode
of the field, respectively. A quadrature operator Q̂ can be defined for an arbitrary phase, γ,
as

Q̂(γ) = âe−iγ + â†eiγ, (2.7)

such that the quantized vector potential of a single mode, such that we can drop the k
subscript, can be written as

⃗̂
A =

√
cℏ

2|⃗k|V
ε⃗p(k⃗)Q̂(k⃗ · r⃗ − ωt), (2.8)

such that it contains only one operator.
The state that most resembles the classical model of an electromagnetic (EM) wave is

the coherent state |α⟩, which satisfies â |α⟩ = α |α⟩. The expectation value of the vector
potential of a coherent state is

⟨α| Â(γ) |α⟩ =

√
cℏ

2|⃗k|V
ε⃗p(k⃗)

(
αe−iγ + α∗eiγ

)
(2.9)

such that in the classical limit of ℏ = 1, the expectation value of the vector potential exhibits
the same behavior as in classical theory. This can also be seen by comparing Eq. (2.5)
and Eq. (2.9) as the expectation values of quantum operators correspond to their classical
counterparts.

For the particle nature of light, let us look at the energy of the EM wave. The classical
Hamiltonian is given by [29,30]

H =
1

2

∫
V

(
|E⃗|2 + |B⃗|2

)
d3r⃗, (2.10)

where E⃗ is the electric field and B⃗ is the magnetic field. These fields can be obtained from
the vector potential via

E⃗ = −1

c

∂A⃗

∂t
(2.11)

B⃗ = ∇× A⃗ (2.12)

and thus the Hamiltonian can be shown to take the form [29,30]

H = ω|α|2. (2.13)
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Quantizing the field with α →
√
ℏâ gives the Hamiltonian operator

Ĥ = ℏω
â†â+ ââ†

2
(2.14)

= ℏω(n̂+ 1/2), (2.15)

where n̂ = â†â is the number operator and due to the noncommutativity of the field operators,
[â, â†] = 1, we have symmetrized the ordering. Now the energy of the EM wave is quantized
by the number of photons in the state and increasing or decreasing the energy can only be
done in steps of ℏω by adding or subtracting photons, respectively.

The state that most exemplifies this property is the Fock state. This state, also known
as the number state, has an exact number of photons n. It is written as |n⟩ and has mean
energy

⟨n| Ĥ |n⟩ = (n+ 1/2)ℏω (2.16)

with no variance 〈
∆2Ĥ

〉
= ⟨n| Ĥ2 |n⟩ −

(
⟨n| Ĥ |n⟩

)2
= 0. (2.17)

This purely quantum state is only defined by the number of photons and has no classical
analog since it has no mean vector potential

⟨n| Â(γ) |n⟩ = 0, (2.18)

and is not the vacuum state of no photons, |0⟩. This state exemplifies the particle nature of
light. Being only of the particle nature, it cannot be described using the classical EM wave
theory.

Due to the wave-particle nature of light, an arbitrary state is not easily understood by
looking solely at the wave nature, Â(γ), or particle nature, Ĥ, of the light. While a state
can be fully described via either one, it is not always intuitive to do so. For transmission
estimation, it is easier to understand the underlying physics by examining the particle nature
of states of light used to probe the system under study. The calculations that are introduced
in the next chapter are, however, simpler to do using the wave nature.

2.1 Representations of states

To represent the states used in this thesis, we will use two forms. The first is the represen-
tation in the Fock basis where any arbitrary state |Ψ⟩ can be written as a superposition of
Fock states [29,30]

|Ψ⟩ =
∑
n

ψn |n⟩ , (2.19)

with ψn = ⟨n|Ψ⟩ and
∑

n |ψn|2 = 1. This representation, along with the mean and variance
of the number operator, is used to explore the particle nature of the state. The second
representation is based on the quadrature measurements, which will be expanded upon here
before examining the states of light used in this thesis.
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a) b) c)

Figure 2.1: Phase space representations of a vacuum state a) in blue, coherent state b) in red,
and a squeezed state c) in green in quadrature space. For the coherent and squeezed states, a
quadrature X̂ can be defined along the direction of the offset, or displacement, from zero and, for
large displacement, along the direction of phase rotation, Ŷ .

For the coherent state, the expectation value of an arbitrary quadrature takes the form〈
Q̂(γ)

〉
= 2|α| cos(χ− γ), (2.20)

where χ = arg(α) is the phase of α. Plotting the quadrature distribution of a state in a
phase space diagram, Fig. 2.1, we can see that by setting γ = χ the quadrature measurement
is along the direction of the amplitude of the EM wave, Fig. 2.1(b), and thus is called the
amplitude quadrature. In the conjugate direction, γ = χ + π/2, and for sufficiently large
amplitudes, ⟨Q̂(χ)⟩ ≫ ⟨∆2Q̂(χ + π/2)⟩, the Q̂(χ + π/2) quadrature measurement points in
the direction of phase rotation for the state and the variance of this quadrature is equivalent
to the variance of the phase of the EM wave, using the small angle approximation. Thus,
this quadrature is called the phase quadrature. For simplicity, we shall limit our discussion
of quadratures to the amplitude quadrature, X̂, and phase quadrature, Ŷ , whenever possible
instead of the general quadrature measurement.

Certain states have a probability distribution in quadrature space that is Gaussian, i.e.
they can be fully described by the mean and variance of the quadrature observables [31]. Gaus-
sian states can thus be fully characterized by their covariance matrix, σ, and displacement
vector, d⃗, which are defined as [32]

d⃗ = ⟨Â⟩, (2.21)

σi,j =
〈
{Âi − di, Â†

j − d∗j}
〉

(2.22)

=
〈
ÂiÂ

†
j + Â†

jÂi

〉
− 2

〈
Âi

〉〈
Â†

j

〉
(2.23)

≡ 2 Cov(Âi, Â
†
j), (2.24)

where Cov is the covariance, Â = (â1, ..., âk, â
†
1, ..., â

†
k)T is a column matrix of annihilation

and creation operators for k photonic modes of the state with the superscript T representing
the transpose operation, and {Â, B̂} = ÂB̂ + B̂Â is the anti-commutation relation. These
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are the complex forms of the covariance matrix and displacement as they look at the field
operators, â and â†, instead of the X̂ and Ŷ quadratures used in the real forms. We use the
complex form as it is useful later when finding limits in precision for parameter estimation. To
compare between the two forms, the diagonal of the complex covariance matrix corresponds
to the mean quadrature variance

σi,i =
〈
âiâ

†
i + â†i âi

〉
− 2 ⟨âi⟩ ⟨â

†
i⟩ =

〈
∆2X̂i

〉
+
〈

∆2Ŷi

〉
2

(2.25)

and the off-diagonal terms arise from the asymmetry of the uncertainty

σi,i+k + σi+k,i =
〈

∆2Q̂i(0)
〉
−
〈

∆2Q̂i(π/2)
〉

(2.26)

for i ≤ k, and the argument, arg(σi,i+k), gives the direction of the asymmetry. Where the
asymmetry comes from and what all these terms mean will become clearer in the next section
where we talk about various Gaussian states of light that are important for this thesis.

2.2 Gaussian states of light

As stated above, Gaussian states of light can be fully described by the mean and covariance
of the field operators. As such, we can use the covariance matrix and displacement vector
introduced in the last section to represent these states. In this section, we will show how
this is done for various states and also go over their Fock basis representation.

2.2.1 Vacuum and coherent states

The vacuum state has a wave function in the Fock basis of |0⟩ as it has, as the name implies,
no photons. However, as shown in Fig. 2.1(a), this state still has quadrature noise,〈

∆2Q̂(γ)
〉

= 1, (2.27)

as even the vacuum has EM fluctuations. This comes from the commutation relation of the
quadrature observables

[X̂, Ŷ ] = 2i, (2.28)

such that the Heisenburg uncertainty relation, see Eq. (1.1), gives〈
∆2X̂

〉〈
∆2Ŷ

〉
≥ 1. (2.29)

Thus, no matter the state, even vacuum, there are still fluctuations of the EM field. This
can be also seen from the Hamiltonian introduced in Eq. (2.15), where the extra 1

2
ℏω in

Ĥ = ℏω(n̂+ 1/2) gives the energy of these vacuum fluctuations.
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Writing the vacuum state in the covariance matrix form, the displacement vector is(
0 0

)T
due to having zero mean amplitude. However, the covariance matrix, much like the

quadrature variance, is not zero as

σ =

(
1 0
0 1

)
= diag(1, 1). (2.30)

From Eq. (2.27), it is known that all the quadrature measures have an equal variance of 1.
Thus the diagonal of the vacuum state covariance matrix is 1 and the off diagonal terms are
zero as the noise is equal in all directions.

A coherent state, the state that most resembles a classical EM wave, is generated by
displacing the vacuum state such that the displacement vector is

d⃗ =

(
α
α∗

)
. (2.31)

The covariance matrix of the coherent state is the same as the vacuum state, diag(1, 1),
as it is only the displacement of the vacuum state, i.e. shift the quadrature distribution
from Fig. 2.1(a) to Fig. 2.1(b). Thus, the coherent state also has equal noise in every
quadrature. As it is at the Heisenberg uncertainty limit, this state is also known as the
minimum uncertainty classical state.

The dispacement is done using the displacement operator [29,30]

D̂(α) = eαâ
†−α∗â, (2.32)

which creates a coherent state wavefunction when applied to the vacuum [30]

|α⟩ = D̂(α) |0⟩ = e−
|α|2
2

∞∑
n=0

αn

√
n!

|n⟩ . (2.33)

The number of photons in a coherent state has a Poisson distribution, or random distribution

P (n) = | ⟨n|α⟩ |2 = e−|α|2 |α|2n

n!
, (2.34)

where P (n) is the probability of detecting n photons. Detection of these states with a
photon counting or intensity measurement has a ‘shot noise’ variance. This variance changes
linearly with the mean number of photons of the state, ⟨∆2n̂⟩ = ⟨n̂⟩ = |α|2 and comes from
the particle nature, and distribution, of the photons.

2.2.2 Squeezed states

As seen in Eq. (2.27), there are always fluctuations of the field, even in vacuum. The
vacuum and coherent states have a symmetric uncertainty in ⟨∆2X̂⟩ = ⟨∆2Ŷ ⟩ = 1. This
is the minimum quadrature variance a classical state can have and is called the quantum
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noise limit (QNL). Only quantum states, such as squeezed states, can have the noise in
one quadrature lower than the QNL, though at the expense of increased noise in another
quadrature. For squeezed states it is possible to have a phase space distribution as shown in
Fig 2.1(c) where 〈

∆2X̂
〉

= e−2s (2.35)〈
∆2Ŷ

〉
= e2s, (2.36)

and s ≥ 0 is the squeezing parameter. Given the direction of squeezing, the amplitude noise
in this example is reduced below the QNL at the expense of the phase noise. Whenever one
quadrature is squeezed, the other must be anti-squeezed, due to the Heisenberg uncertainty
principle, Eq. (2.29).

A state is squeezed using the squeezing operator [29,30]

Ŝ(ξ) = e
1
2 [ξ(â†)2−ξ∗â2], (2.37)

where ξ = seiθ and θ is the angle of squeezing which sets the quadrature which has reduced
variance and which has increased variance, i.e. the angle of the ellipse Fig. 2.1(c). Squeezing
the vacuum state generates the wavefunction [30]

Ŝ(ξ) |0⟩ =
1√

cosh(s)

∞∑
n=0

[(2n)!]

2nn!
[eiθ tanh(s)]n |2n⟩ , (2.38)

a state which is called the vacuum single mode squeezed state (vSMSS). As can be seen from
the ket on the right hand side, this state is a superposition of only Fock states with even
number of photons. This is due to the nonlinearity of the squeezer, Eq. (2.37), where the
photon creation and annihilation operators are squared. Thus photons are always created
and destroyed simultaneously in pairs. Due to this, the photon number variance for this
state is greater than that of a coherent state, ⟨∆2n̂⟩ = 2 ⟨n̂⟩ (⟨n̂⟩ + 1), even though there is
reduced noise in a quadrature.

The covariance matrix for this state is given by

σ =

(
cosh(2s) −eiθ sinh(2s)

−e−iθ sinh(2s) cosh(2s)

)
. (2.39)

Here, the diagonal terms are greater than those for the coherent state as the average quadra-
ture noise has increased, but there are non-zero off diagonal terms due to the asymmetry
of the quadrature noise of the state. Only the variances in the quadrature along and per-
pendicular to the squeezing direction saturate the Heisenberg uncertainty relation as the
average variance has increased. The argument of the off diagonal term, θ, gives the angle
of squeezing, while the magnitude of the term alludes to the amount of squeezing as the
amount of imbalance between the quadrature variances increases with squeezing. Squeezing
a displaced state gives a displacement vector of

d⃗ =

(
α cosh(s) − α∗eiθ sinh(s)
α∗ cosh(s) − αe−iθ sinh(s)

)
, (2.40)
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and the same covariance matrix as the vSMSS. Depending on the angle of squeezing, the
displacement, and therefore the amplitude as well as the photon number, can either be
amplified or attenuated. Squeezing a state where the displacement is much greater than the
quadrature variance creates a bright single mode squeezed state (bSMSS). An amplitude
quadrature that is squeezed leads to a sub-Poisson distribution of the photon number, such
that the variance is less than that of a coherent state,〈

∆2n̂
〉

= ⟨α| Ŝ†n̂2Ŝ |α⟩ − ⟨α| Ŝ†n̂Ŝ |α⟩2 (2.41)

= ⟨α| (Ŝ†â†Ŝ)(Ŝ†aŜ)(Ŝ†a†Ŝ)(Ŝ†aŜ) |α⟩ − ⟨α| (Ŝ†â†Ŝ)(Ŝ†âŜ) |α⟩2 (2.42)

= ⟨n̂⟩ e−2s, (2.43)

where we have used the unitary property ŜŜ† = I, where I is the identity matrix, and the
transform Ŝ†âŜ = â cosh(s)− â†eiθ sinh(s). However, if the phase quadrature is squeezed the
number variance is higher, ⟨∆2n̂⟩ = ⟨n̂⟩ e2s.

2.2.3 Two mode squeezed states

Gaussian states are not limited to a single mode and can be split into multiple modes char-
acterized by different polarizations, propagation directions, or frequencies. For instance, the
squeezing operation can be done over two modes, which correlates the quadrature fluctua-
tions of the two modes to reduce the variance in the sum or difference amplitude or phase
quadrature, or some other combination of quadratures. For example, if given two modes,
the probe mode indicated by the subscript p and the conjugate mode with subscript c, the
sum and difference variances of the amplitude and phase quadratures can be〈

∆2
(
X̂p − X̂c

)〉
= 2e−2s (2.44)〈

∆2
(
X̂p + X̂c

)〉
= 2e2s (2.45)〈

∆2
(
Ŷp − Ŷc

)〉
= 2e2s (2.46)〈

∆2
(
Ŷp + Ŷc

)〉
= 2e−2s, (2.47)

while the variance of any quadrature of a single mode is greater than that of a coherent
state, i.e. ⟨∆2X̂p⟩ > 1. The QNL for the sum and difference quadratures, as can be seen
by setting s = 0 above, is 2 and only quantum states are able to have a smaller quadrature
uncertainty. It should also be noted that the difference in one quadrature commutes with
the sum in the conjugate quadrature,[(

X̂p − X̂c

)
,
(
Ŷp + Ŷc

)]
= 0, (2.48)

and therefore both of these variances can be reduced simultaneously.
The two mode squeezing operation [29,30],

Ŝp,c(ξ) = eξâ
†
pâ

†
c−ξ∗âpâc , (2.49)
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generates a pair of photons simultaneously in two separate modes with one photon in what
we call the probe mode and the other in what we call the conjugate mode. This operator
transforms the field operators as

Ŝ†
p,câpŜp,c = âp cosh(s) − â†ce

iθ sinh(s) (2.50)

Ŝ†
p,câcŜp,c = âc cosh(s) − â†pe

iθ sinh(s). (2.51)

Using this transform, the covariance matrix of this state can be found to be

σ = 2


Cov(âp, â

†
p) Cov(âp, â

†
c) Cov(âp, âp) Cov(âp, âc)

Cov(âc, â
†
p) Cov(âc, â

†
c) Cov(âc, âp) Cov(âc, âc)

Cov(â†p, â
†
p) Cov(â†p, â

†
c) Cov(â†p, âp) Cov(â†p, âc)

Cov(â†c, â
†
p) Cov(â†c, â

†
c) Cov(â†c, âp) Cov(â†c, âc)

 (2.52)

=


cosh(2s) 0 0 −eiθ sinh(2s)

0 cosh(2s) −eiθ sinh(2s) 0
0 −e−iθ sinh(2s) cosh(2s) 0

−e−iθ sinh(2s) 0 0 cosh(2s)

 . (2.53)

For the single mode squeezed state the off diagonal terms of the covariance of the field
operator with itself are non-zero, as the single mode quadratures are squeezed. For the two
mode squeezed state, the off diagonal covariance terms are only present between the two
fields as photons are being generated or annihilated together. The covariance terms of âp
and âc and â†p and â†c are non-zero, while the covariance terms of âp and â†c are zero. This
gives the sum and difference quadrature squeezing. At the same time, the probe or conjugate
quadratures have symmetric noise as, unlike the single mode squeezing case, there is zero
covariance of âp,c or â†p,c with itself. This is due to the photon pairs now being generated in
separate modes instead of in the same mode.

Applying the squeezing operator on the vacuum state creates the vacuum two-mode
squeezed state (vTMSS) with wavefunction [30]

Ŝp,c(ξ) |0⟩p |0⟩c =
1

cosh(s)

∞∑
n=0

einθ [tanh(s)]n |n⟩p |n⟩c . (2.54)

Like the vSMSS, the vTMSS contains only even numbers of photons but these photons
are split between the two modes. As such, the intensity difference between the two modes
of the vTMSS has zero variance, ⟨∆2 (n̂p − n̂c)⟩ = 0, as the photons in each mode are
simultaneously generated in pairs and therefore are perfectly correlated.

Squeezing the two modes after displacement, α for the probe mode and β for the conjugate
mode, results in the state

Ŝp,c(ξ)D̂p(α)D̂c(β) |0⟩p |0⟩c = |α, β; ξ⟩p,c , (2.55)
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which can generate a bright two mode squeezed state (bTMSS) if the displacement is suffi-
ciently large. This state has a displacement vector of

d⃗ =


α cosh(s) − β∗eiθ sinh(s)
β cosh(s) − α∗eiθ sinh(s)
α∗ cosh(s) − βe−iθ sinh(s)
β∗ cosh(s) − αe−iθ sinh(s)

 (2.56)

and no change to the covariance matrix from the state without displacement, just like for
the single mode squeezed state. The bTMSS has more photons in each mode than the
vTMSS due to the displacement but at the expense of increased intensity difference noise,
⟨∆2 (n̂p − n̂c)⟩ = |α|2 + |β|2 when the amplitude difference quadrature is squeezed or only
a single mode is displaced, αβ = 0. Physically, this excess noise and increased power is
due to stimulating the squeezing process using coherent light. The generated photons are
perfectly correlated but the correlations of the initial coherent states cannot increase, so
the photons from those modes remain uncorrelated and the variances from each state add
together. As explained in the next section, each mode of the two-mode squeezed state by
itself is a thermal state, or displaced thermal state for the bTMSS, and only together do the
modes have reduced noise properties, as compared to coherent states.

2.2.4 Thermal state and density matrices

A thermal state is a classical state of light generated as an incoherent mixture of photons.
As such, this state cannot be written as a superposition of Fock states as it has a definite
but as of yet unknown number of photons. This is a subtle but significant difference from
a coherent state, which is in a coherent superposition of different Fock states and collapses
to one of them upon measurement. The thermal state is in an ensemble of Fock states.
Like colored marbles in a bag, it is unknown which one is grabbed until it is pulled out and
observed but the marble is not in a superposition of different colors.

To describe a thermal state we need to use a density matrix [33,34], ρ, which allow us
to combine classical probability, i.e. marbles in a bag, with quantum superpositions. A
wavefunction of the states discussed previously, known as pure states in this notation, can
be written as a density matrix by writing it as an outer product with itself, for example the
coherent state has a density matrix of

ρcoh = |α⟩⟨α| , (2.57)

as there is a 100% probability of finding the state as a coherent state. Formally, a density
matrix is an operator and is written as ρ̂, but for this thesis we drop the hat. For a state that
has a 50% probability of being a coherent state and 50% probability of being in a vacuum
state, the density matrix is written as

ρ =
1

2
|α⟩⟨α| +

1

2
|0⟩⟨0| (2.58)
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and is known as a mixed state as it requires a mix of classical probability to fully describe.
The thermal state has a density matrix of the form [30]

ρth =
1

1 + n̄

∞∑
n=0

(
n̄

1 + n̄

)n

|n⟩⟨n| , (2.59)

where n̄ = ⟨n̂⟩ is the mean number of photons. The thermal state has a super-Poisson
distribution of photons with a number variance of ⟨∆2n̂⟩ = n̄ (n̄+ 1). The quadrature
noise for the thermal state is symmetric like the coherent state except that it has a higher
uncertainty, 〈

∆2Q̂(γ)
〉

= 2n̄+ 1. (2.60)

The state has a quadrature mean of zero as the photon generation for a thermal state is not
coherent and thus the temporal phase of each photon is random, scrambling the EM wave.
The covariance matrix for the state is

σ =

(
2n̄+ 1 0

0 2n̄+ 1

)
(2.61)

and the state, due to the incoherence of the photon phases, has zero displacement.
For the vTMSS, if one of the modes was not measured or lost, the remaining mode would

have a covariance matrix of the form

σ =

(
cosh2(s) + sinh2(s) 0

0 cosh2(s) + sinh2(s)

)
(2.62)

=

(
2n̄+ 1 0

0 2n̄+ 1

)
, (2.63)

since ⟨n̂p⟩ = ⟨n̂c⟩ = sinh2(s) = cosh2(s) − 1. For the bTMSS, the remaining mode would
be a displaced thermal state. It is important to keep this in mind when discussing quantum
metrology using two mode squeezed states, as the quantum advantage from using these states
disappears when losses are too high. This is due to the states tending towards thermal states,
which have variances much higher than the QNL.
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Chapter 3

Parameter Estimation Limits:
The Cramér-Rao Bound and Fisher
Information

As mentioned in the introduction, we define a parameter as a property of a system or state
that does not have an associated observable. Using this definition, energy is not a parameter
as it is given by the mean of the Hamiltonian, Ĥ, but properties like transmission and
phase are, as they cannot be measured directly and must be inferred by the results of other
measured observables. Since parameters cannot be directly measured, how to best estimate
their values is an area of active research. The best estimation of a parameter is the one that
has the smallest uncertainty in the estimated mean value.

Precise, low uncertainty, estimations of parameters are used in sensing applications and
the testing of fundamental physics. An example from fundamental physics is the measure-
ment of the fine structure constant. Measuring a value different than what is predicted by
the standard model in particle physics would point to potential model improvements [35].
In sensing, a famous example is the Laser Interferometer Gravitational-Wave Observatory
(LIGO) that uses a change in the geometric phase between the two arms of the interfer-
ometer to detect gravitational waves [36]. Precise phase estimation allows for the detection
of weaker signals and therefore allows for the detection of more instances of gravitational
disturbances. In this chapter we will discuss the general framework for parameter estimation
and give bounds for the minimum estimation uncertainty.

Figure 3.1: Block diagram of the three parts
of parameter estimation. A state of light is
prepared with one or more modes. At least
one mode interacts with the system under
study that contains the parameter of inter-
est, p. Measurements are done on the light
after interaction with the system to estimate
the parameter value.

Initial

State
System

(p)
Measure
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As shown in Fig. 3.1, parameter estimation involves three main components: a system
under study whose response depends on the parameter of interest; a state, optical for this
thesis, to interact with the system; and a measurement of the state to extract the information
needed to estimate the parameter value. For a measurement M , the uncertainty in the
value of the parameter p is given by error propagation of the measurement uncertainty into
uncertainty of the parameter value [37]

〈
∆2p

〉
=

∣∣∣∣∂M∂p
∣∣∣∣−2 〈

∆2M
〉
, (3.1)

where ⟨∆2M⟩ is the variance of the measurement and ∂M
∂p

is the rate of change, or slope, of
the mean value of the measurement for changes in the parameter. To reduce the uncertainty
in the parameter, either the measurement uncertainty must decrease or there must be a large
change of the measurement results for small changes in the parameter value. The larger the
slope and the smaller the spread of measurement results, the smaller the changes in the
parameter that can be detected. Ideally, a change from an initial parameter value to a new
value would have no overlap of measurement results from the initial value. This allows for
different parameter values to be distinct from each other during the measurement.

The goal of our work has been to improve the precision with which a parameter, usu-
ally transmission, can be estimated. This is done by first finding the fundamental limits in
precision when using certain optical states to estimate a parameter and then finding mea-
surements that reach the fundamental limit. We will specialize to Gaussian states of light,
when looking at the fundamental limit for parameter estimation. Particularly, we look at
the coherent state and squeezed states, with particular focus on the bTMSS.

3.1 Parameter estimation bounds

Not every measurement leads to the same precision in the estimation of a parameter. A
change in a given parameter could change the measured quadrature and intensity of a state
of light, but one of these measures may be more sensitive to the change than the other.
There may even be an unknown measurement that has even higher precision. Finding the
limits in the uncertainty of estimating a parameter value leads to knowing whether certain
measures are optimal, and therefore at the fundamental limit, or if another measurement
can perform better.

The first part of this section derives the lower bound in the uncertainty in the estimation
of the parameter given the change in measurement results with respect to changes in the
parameter value. The second part shows the fundamental limit of how precise a measurement
can be by examining how much the state changes with respect to the parameter of interest.
If a measurement’s precision is at the fundamental limit, it is an optimal measurement that
cannot be improved upon.
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3.1.1 Classical Fisher information

For a given measurement, an estimator attempts to predict the value of a parameter of
interest. An unbiased estimator [38], p̃(x), gives, on average, the correct value of the parameter
such that

∫
p̃(x)ϱ(x|p)dx = p, where ϱ(x|p) is the probability distribution of getting the

measurement result x given a parameter value p. For example, a high speed camera can
be used to give an unbiased estimation for the time it takes a ball to fall from a set height
by taking the frame at with the ball is closest to the ground. This frame would have an
equally likely chance to be slightly before or after the ball actually hitting the ground, but
on average would give a good timing of the landing. A person with a stopwatch would give
a biased estimation as they would stop the timer after the impact. Thus, on average, the
recorded time would be longer than the actual time to fall.

The minimum uncertainty in the estimation of a parameter can be derived from the
definition of an unbiased estimator by first subtracting the actual value of the parameter [5–9]∫

[p̃(x) − p]ϱ(x|p)dx = 0. (3.2)

Taking the derivative on both sides of Eq. (3.2) in terms of p and using
∫
ϱ(x|p)dx = 1 and

∂ϱ
∂p

= ϱ∂ ln(ϱ)
∂p

gives

1 =

∫ {
[p̃(x) − p]

√
ϱ(x|p)

}{√
ϱ(x|p)∂ ln[ϱ(x|p)]

∂p

}
dx. (3.3)

Applying the Cauchy-Schwarz inequality (
∫
AB dx)2 ≤ (

∫
A2dx)(

∫
B2dx) then gives

1 ≤
{∫

[p̃(x) − p]2ϱ(x|p)dx
}{∫

ϱ(x|p)
(
∂ ln[ϱ(x|p)]

∂p

)2

dx

}
. (3.4)

Since the estimator is unbiased, p = ⟨p̃⟩, the first term on the right hand side is the variance.
Thus Eq. (3.4) can be rewritten as 〈

∆2p̃
〉
≥ 1

F (p)
, (3.5)

where

F (p) =

∫
ϱ(x|p)

(
∂ ln[ϱ(x|p)]

∂p

)2

dx (3.6)

is the second term on the right hand side of Eq. (3.4). This term is called the Fisher
information [4] and it is independent of the estimator. The Cramér-Rao bound [5–9], Eq. (3.5),
states that the minimum uncertainty in the estimation of a parameter is given by the inverse
of the Fisher information.

Not every estimator will saturate the bound. An unbiased estimator does not constrain
the fluctuations around the mean value, it only means that the average is correct. For
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instance, if there exists an unbiased estimator with zero variance, another estimator can be
constructed from that noiseless estimator plus some random term of zero average value. For
a more physical example, making measurements with a detector with high electronic noise
is always going to lead to higher uncertainties than making measurements with one that
has low electronic noise. Thus, an estimator being unbiased does not guarantee maximum
precision.

As we can see from the derivative in Eq. (3.6), the more the measurement results change
with the parameter value, the more information is gained about the parameter and thus an
estimator should have a lower uncertainty in estimating the parameter’s value. Since the
derivative in the Fisher information acts on the natural log of the distribution, halving and
doubling the probability of a measurement has the same information gain. Thus, the Fisher
information can be called a metric for the distinguishability of measurement results, as it is
dependent on how the measurement results change for small changes in the parameter.

3.1.2 Quantum Fisher information

As mentioned before, in classical physics it was thought that all measurement fluctuations
were due to the measurement device. As such, sufficient engineering should allow for perfect
noiseless measurements, such that ϱ(x|p) would be infinitely narrow and only allow for a
single unique x for each parameter value. This would lead to an infinite Fisher information.
However, quantum mechanics shows that the state itself also leads to measurement noise.
A perfect measurement would thus only have the noise from the state measured as the
distribution of ϱ(x|p) would be dominated by quantum statistics.

To find the lower bound in the uncertainty in the estimation of a parameter using a perfect
measurement, the classical terms from the last section need to be restated in quantum terms
to take advantage of the quantum description of states. The probability distribution can be
rewritten as

ϱ(x|p) → Tr(Π̂xρp) (3.7)

where Π̂x is a positive operator value measurement (POVM) for value x and ρp is the density
matrix of the probing state after interacting with the system under study. A POVM is a
general way to express a physical measurement as an operator. Applying the trace operation
with the density matrix is equivalent to taking the expectation value, Tr(Ôρ) = ⟨Ô⟩. The
Fisher information can be expressed in semi-operator form as [39]

F (p) =

∫
1

ϱ(x|p)

(
∂ϱ(x|p)
∂p

)2

dx (3.8)

=

∫
1

Tr(Π̂xρp)

(
∂Tr(Π̂xρp)

∂p

)2

. (3.9)

To write the Fisher information completely in operator form, the derivative operation needs
to also be written as an operator. This can be done using the symmetric logarithmic deriva-
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tive (SLD), L̂p where

L̂pρp + ρpL̂p

2
=
∂ρp
∂p

. (3.10)

The SLD concept comes from the derivative of the natural log of a variable. The derivative
of the natural log is equal to the derivative of the variable times the inverse of variable.
Working with non-commuting variables, it is not clear if the inverse should be before, a right
logarithmic derivative (1

ρ
∂ρ
∂p

), or after the derivative, a left logarithmic derivative (∂ρ
∂p

1
ρ
). The

symmetric logarithmic derivative is the symmetric form of both options. Using the SLD,
Eq. (3.9) can be written purely with operators,

F (p) =

∫ ℜ
[
Tr(ρpΠ̂xL̂p)

]2
Tr(ρpΠ̂x)

dx, (3.11)

where ℜ[·] is the real part.
To find the fundamental limit in the uncertainty for estimating a parameter value dom-

inated by quantum fluctuations, the measurement must be removed from the Fisher In-
formation, just like the estimator was removed from the classical Fisher information. Us-
ing Re(X)2 ≤ |X|2 and together with the permutation property of the trace operation,
Tr(ÂB̂Ĉ) = Tr(ĈÂB̂) = Tr(B̂ĈÂ), we can start the process of removing the measurement,
Π̂x. These properties transform Eq. (3.11) into [39]

F (p) ≤
∫ ∣∣∣∣∣∣Tr


√
ρpΠ̂x√

Tr(ρpΠ̂x)

√
Π̂xL̂p

√
ρp

∣∣∣∣∣∣
2

dx (3.12)

which is saturated whenever L̂pρp is also a valid density matrix. Once again, using the

Cauchy-Schwarz inequality, this time of the form |Tr(Â†B̂)|2 ≤ Tr(Â†Â)Tr(B̂†B̂) gives

F (p) ≤
∫

Tr

(
ρpΠ̂x

Tr(ρpΠ̂x)

)
Tr(Π̂pL̂pρpL̂p)dx (3.13)

=

∫
Tr(Π̂xL̂pρpL̂p)dx. (3.14)

Finally, using the POVM property
∫

Tr(Π̂xÔ)dx = Tr(Ô) for any operator Ô, the depen-
dence on the measurement can be removed and a QFI, FQ(p), can be defined such that

F (p) ≤ FQ(p) = Tr(ρpL̂
2
p) =

〈
L̂2
p

〉
. (3.15)

The QFI then sets a QCRB of the form〈
∆2p

〉
≥ 1

FQ(p)
. (3.16)

22



The QFI only depends on the state and system under study. Similar to the classical Fisher
information, the QFI is dependent on the square of the logarithmic changes in the state. As
such, the QFI is a metric for the distinguishability of the state after interaction with the
system for different parameter values.

For the estimation of a parameter value to saturate the QCRB, the estimator from the
measurement results must be efficient, such that the classical Cramér-Rao bound is saturated
and the measurement must be optimal, such that the classical Fisher information is equal
to the QFI and thus the classical and quantum bounds are the same.

3.1.3 Other forms of the quantum Fisher information

Keeping the QFI in terms of the SLD is not always useful as the SLD is primarily used for
QFI calculations and is not readily available in the literature for most systems. To take
advantage of the body of work already done studying quantum systems, the QFI can be
rewritten in more familiar terms by first solving for the SLD using the Lyapunov matrix
equation [40]. Working in the eigenbasis of ρp =

∑
n rn |ψn⟩ ⟨ψn|, the SLD takes the form [39]

L̂p = 2

∫ ∞

0

e−ρpq
∂ρp
∂p

e−ρpqdq (3.17)

= 2
∑
n,m

rm+rn>0

⟨ψm| ∂ρp
∂p

|ψn⟩
rm + rn

|ψm⟩ ⟨ψn| , (3.18)

where q is a dummy variable used for integration. The QFI can then be written in terms of
the change in the density matrix,

FQ(p) = 2
∑
n,m

rm+rn>0

∣∣∣⟨ψm| ∂ρp
∂p

|ψn⟩
∣∣∣2

rm + rn
. (3.19)

This form is useful when the density matrix and its dynamics are calculable, which is typically
true for states with a finite number of non-zero probabilities, rn. In particularly, this holds
for pure states, as there is only a single non-zero eigenvalue to sum over. However, the
derivative of the density matrix for certain parameters can be difficult to calculate and thus
this technique may not always be the easiest to use.

In such cases, it may be more tractable to examine how the system under study affects
the state instead of how the state itself changes. If the dynamics of the density matrix are
fully defined by a unitary matrix, Û , then the QFI can be written as [41]

FQ(p) = 4
∑
n

rn>0

rn

〈
∆2Ĝ

〉
n
−

∑
n̸=m

rn+rm>0

8rnrm
rn + rm

∣∣ ⟨ψn| Ĝ |ψm⟩
∣∣2, (3.20)
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where

Ĝ = i
(

∂Û†

∂p

)
Û , (3.21)〈

∆2Ĝ
〉
n

= ⟨ψn| Ĝ2 |ψn⟩ − ⟨ψn| Ĝ |ψn⟩2 , (3.22)

and Ĝ is called the generator. Examples of generators are the time independent Hamiltonian
as a generator for time, momentum as the generator for position, and photon number for
phase. The unitary operator can be written as Û = eiĜp, if the generator is independent of
the parameter. If the state is pure after interacting with the system, such that there is a
single nonzero rn = 1, the second term on the right hand side of Eq. (3.20) vanishes and the
QFI simplifies to FQ = 4⟨∆2Ĝ⟩. Since the generator commutes with the unitary operation of
the system under study, the variance of Ĝ is the same for the state before or after interacting
with the system. Thus, using this form of the QFI, it is possible to find the QCRB just from
the initial state and the generator. This form also demonstrates that to have a lower QCRB
for a parameter, a state inevitably has a large uncertainty in the conjugate variable due to
the uncertainty principle. For example, a system causes a displacement b to a probing state
and the parameter of interest is the magnitude of the displacement, |b|. We assume that the
displacement operator of such a system can be written as

D̂(b) = e−i|b|Q̂(δ+π
2 ), (3.23)

where δ = arg(b) is the phase of the displacement. The generator in this example is

Ĝ = i

(
∂D̂(b)†

∂p

)
D̂(b) (3.24)

= −Q̂
(
δ +

π

2

)
(3.25)

with variance ⟨∆2Ĝ⟩ = ⟨∆2Q̂(δ+π/2)⟩. As shown in Fig. 3.2, if a bSMSS is used for sensing
the displacement, the optimal squeezing angle would be perpendicular to the displacement.

For some parameters and states the above methods are still intractable due to containing
a large number of terms. For transmission estimation with squeezed light, which is what
this thesis focuses on, losses cause the states to loose purity and the theory description often
requires an infinite dimensional density matrix. As such, the summation of the forms listed
would have infinite terms. However, as already discussed in the last chapter, Gaussian states
are fully characterized by their covariance matrix, σ, and displacement vector, d⃗, and the
QFI can also be written using only those terms. Since the dimensions of this form only
depend on the number of modes, losses will not increase the dimensionality of the problem.

The QFI for a 2 mode Gaussian state is given by [32]

FQ(p) =
1

2 (|Σ| − 1)

{
|Σ|Tr

[(
Σ−1Σ̇

)2]
+
√
|I + Σ2|Tr

[((
I + Σ2

)−1
Σ̇
)2]

+4
(
λ21 − λ22

)( λ̇22
λ42 − 1

− λ̇21
λ41 − 1

)}
+ 2

˙⃗
d†σ−1 ˙⃗

d, (3.26)
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a) b)

Figure 3.2: For an initial state (black) displaced (red arrow) to a new final state (cyan) it is more
difficult to distinguish the change for the state squeezed orthogonal to the displacement (a) than for
the state squeezed along the direction of the displacement (b). For in (a), the measured quadrature
results from before and after the displacement have a large overlap.

where Σ = Kσ is the covariance matrix in symplectic form, | · | is the determinant, Σ̇ is the
elementwise derivative with respect to the parameter p, and λi are the symplectic eigenvalues
of the symplectic covariance matrix. Even though for 2 modes the covariance matrix is 4×4,
there are only 2 symplectic eigenvalues used to find the QFI. For each eigenvalue λi there
exists another eigenvalue −λi of Σ and only the magnitude of the eigenvalues are needed for
the calculation. The K term, from Σ = Kσ, is defined by the commutation relation of the
creation and annihilation operators, Â = (â1, ..., ân, â

†
1, ..., â

†
n)T ,

[Â, Â†] = K, (3.27)

such that

K =

(
I 0
0 −I

)
(3.28)

and I is the n× n identity matrix, which is 2 × 2 matrix for the two mode Gaussian.
This is the form of the QFI that will be used for the majority of this thesis. In the

next few chapters, we will go over how to use the Gaussian QFI to find the QCRB for
the estimation of transmission using a coherent or squeezed state. Our work has focused
on finding the fundamental limit in the estimation of transmission using a bTMSS and the
applications of transmission estimation.
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Part II

Quantum Enhanced Transmission
Estimation
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Chapter 4

QCRB of Transmission with Gaussian
States of Light

All real world systems, both classical and quantum, suffer from loss. This can be from
heat or energy dissipation; reflections from a mismatch in potential, resistance, or mode; or
some other sort of irreversible transfer of part of the state into the inaccessible environment.
These losses may need to be calibrated, such as for photodetectors and the quantum effi-
ciency of detection or for quantum interferometry, where the optimal state for phase sensing
is calibrated based on the amount of loss in the interferometer [14]. As mentioned in the
introduction, we focus on the uses of transmission for sensing instead of for calibration.

In sensing, it is important to know the value of the transmission, T , to high precision.
This allows for the detection of small changes in the transmission parameter and also the
ability to distinguish different possible values. This is useful for systems used as a sensor
where a change in the environment can be readout via the change in the sensor transmission.
For example, the plasmonic sensor mentioned in the introduction can be set up to detect a
given protein in the blood [42]. As each protein molecule binds to the surface of the sensor,
the transmission changes. While it may take many bound molecules to generate a detectable
transmission change, but a quantum enhanced estimation of transmission can improve the
sensitivity of the sensor [43].

4.1 Modeling transmission estimation

The theoretical setup for estimating the transmission of a system is shown in Fig. 4.1. A one
or two mode Gaussian state is generated with the probe mode used to probe the system and,
if there is a second mode, the conjugate mode used as part of the measurement to reduce
the transmission uncertainty. After probing the system, a measurement is made in order to
estimate the transmission of the system. For all cases, the number of photons interacting
with the system, ⟨n̂p⟩r, is taken as the sensing resource as this allows for a fair comparison
between different states of light. We count the photons interacting with the system instead
of the number generated or measured. This is done assuming that the limiting factor in
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Figure 4.1: Setup for transmission estimation.
A Gaussian state is generated and the probing
mode is sent through a transmissive system. A
measurement is made on the probe mode, and
the conjugate mode for a two mode state, to
estimate the transmission of the system. Im-
perfect transmissions are considered from the
state generation to the system and from the
system to the measurement for the probe mode
as well as detection efficiency for the conjugate
mode. © American Physical Society. Repro-
duced with permission. All rights reserved [22].
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the estimation of transmission is the damage threshold, how much optical power can be
used before damage, of the system under study. Extraneous losses, such as detection and
propagation losses, and their effects on the QCRB will be considered later in section 4.3.
For now, it will be assumed that the system is probed with pure states and the states can
be perfectly detected.

Here, we specialize to a linear transmissive system, which can be modeled as a beam
splitter [44]. Only one of the input ports and one of the output ports of the beam splitter is
treated as accessible, while the second output port is inaccessible and the photons are lost
to the environment. The second input port is the vacuum mode, such that the beam splitter
is represented by the unitary operator [45]

B̂(T ) = ecos
−1(

√
T )(â†pâν−âpâ

†
ν), (4.1)

where T is the transmission and the sub-index p represents the probe mode and ν the vacuum
mode. The operator annihilates a photon from the probe mode and creates a photon that is
lost to the environment with a given probability (1 − T ), which transforms the probe field
as [29]

B̂†(T )âpB̂(T ) →
√
T âp +

√
1 − T âν . (4.2)

This decreases the probe field strength as the probe photons are sent into the environment.
Since the parameter of interest is the intensity transmission, any phase rotation due to dis-
persion or other similar effects have no impact and can be ignored without loss of generality.
The beam splitter model for transmission is valid when the loss of a photon does not depend
on the loss of any other photon before or after it and the loss of each photon is completely
random, with the transmission giving the probability of a photon being lost to the envi-
ronment. This model works for most lossy systems except for non-linear media [44], such as
those that are used to implement the squeezing operation or an absorptive medium near
saturation.
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Figure 4.2: In order to derive the ul-
timate limit in precision for transmis-
sion estimation, we will treat the en-
vironment as a measurable port of the
beam splitter. Normally, when using
the beam splitter model for a trans-
missive system, only one port is acces-
sible. However, allowing for the non-
physical measurement of photons lost to
the environment, we can calculate the
maximum QFI possible for any probing
state.

4.1.1 Classical and ultimate limit for transmission estimation

Before examining the different Gaussian states to estimate transmission, let us first set a
range of possible uncertainties for a quantum enhanced estimation of transmission. By
definition, the enhanced estimation will need to have less uncertainty than the classical
limit [46], given by the coherent state QCRB, for at least some range of transmission values.
On the other end, is there a limit to how low the QCRB can get for a probing state? For
transmission, it turns out that the lowest possible bound can be calculated. This maximum
precision that any state can achieve, the ultimate limit, is derived from a non-physical
assumption to set a maximum possible QFI [47], as shown in Fig. 4.2. Physically, photons lost
to the environment cannot be measured. However, access to these photons can only increase
the QFI as these photons are the only other source of information, outside the transmitted
photons. Thus, a bound derived from access to the photons lost to the environment gives a
loose, due to the non-physical derivation, lower bound for the QCRB of any state. A state
that has the same QCRB as this ultimate limit would have to contain all possible information
about the system under study. The generator form of the QFI, Eq. (3.20), can be used to
derive the ultimate limit using an arbitrary state as this form depends more on the dynamics
of the system than the changes in the state. The generator, Ĝ, for the beam splitter can be
found using Eq. (3.21),

Ĝ = i

(
∂B̂(T )†

∂T

)
B̂(T ) (4.3)

=
i

2

â†pâν − âpâ
†
ν√

T (1 − T )
. (4.4)
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The variance of the generator can be calculated using an initial arbitrary pure state |ψp⟩
probing the system and the vacuum state |0ν⟩ at the second input port such that〈

∆2Ĝ
〉

= ⟨0ν | ⟨ψp| Ĝ2 |ψp⟩ |0ν⟩ − ⟨0ν | ⟨ψp| Ĝ |ψp⟩ |0ν⟩2 (4.5)

=
−1

4

1

T (1 − T )

[
⟨0ν | ⟨ψp|

(
â†pâν − 0

) (
0 − âpâ

†
ν

)
|ψp⟩ |0ν⟩ − 0

]
(4.6)

=
1

4T (1 − T )
⟨ψp| n̂p |ψp⟩ ⟨0ν |0ν⟩ (4.7)

and FQ = 4⟨∆2Ĝ⟩ for pure states. If the state was mixed, such that there is a classical
probability of being in one of many different states, the extra terms on the right hand side of
the generator QFI equation, Eq. (3.20), can only reduce the QFI [41] due to it always being
negative. Only a pure state assumption is needed to set the lowest limit for the QCRB.
Thus, the ultimate limit for the QCRB of any state used to estimate transmission is [20]〈

∆2T
〉(ult) ≥ T − T 2

⟨n̂p⟩r
, (4.8)

where ⟨np⟩r is the average number of photons probing the system.
It is known that the Fock state can saturate the ultimate bound [20]. This state changes

with transmission as [45]

|n⟩⟨n| →
n∑

k=0

rk |k⟩⟨k| =
n∑

k=0

n!

k!(n− k)!
T k(1 − T )n−k |k⟩⟨k| ≡ ρFockT , (4.9)

such that the QFI can be found using Eq. (3.19),

FQ
Fock(T ) =

n∑
k=0

∣∣∣⟨k| ∂ρFockT

∂T
|k⟩
∣∣∣2

rk
(4.10)

=
n

T (1 − T )
. (4.11)

The saturation of the ultimate limit is due to the zero variance in the number of photons
in the Fock state [20]. If a Fock state of N photons probes the transmissive medium and
M ≤ N photons are measured then N−M photons must have been lost to the environment.
No information was lost due to not being able to measure the environment, which is why
the Fock state has the maximum QFI and thus the minimum QCRB, reaching the ultimate
limit.

Returning to finding the classical limit for transmission estimation, the Gaussian form
of the QFI, Eq. (3.26), will be used to calculate the coherent state bound. The covariance
matrix for the coherent state is unchanged after probing the transmissive system and is still
σ =diag(1,1), but the displacement vector is reduced, due to the reduction in field amplitude,
to

d⃗ =
√
T

(
α
α∗

)
, (4.12)
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such that the field displacement, |α|, decreases by the square root of the intensity trans-
mission. Since the covariance matrix is independent of transmission, the terms on the right
hand side, other than the last one, of the Gaussian QFI, Eq. (3.26), are zero. Thus, the QFI
for the coherent state can be derived as

FQ
coh = 2

∂d⃗†

∂T
σ−1 ∂d⃗

∂T
(4.13)

=
1

2T

(
α∗ α

)( α
α∗

)
(4.14)

=
|α|2

T
, (4.15)

and therefore the classical limit for the QCRB is [21,19]〈
∆2T

〉(coh) ≥ T

⟨n̂p⟩r
, (4.16)

where |α|2 = ⟨n̂p⟩r is the number of photons probing the system.
Both the ultimate and classical limit for the QCRB scale inversely with the number of

probing photons, ∝ 1
⟨n̂p⟩r

. The more photons probe the system, the lower the transmission

uncertainty. For any system, it is always easier to lower the uncertainty by increasing the
number of probing photons than it is to generate a quantum state of light to probe the system.
However, many systems have a damage threshold and so we need to consider a finite number
of resources, ⟨n̂p⟩r, with which to probe the system. The maximum enhancement from using
quantum states of light can be seen from how the bounds scale with transmission, that is
linearly, T , for the coherent state and quadratically, T − T 2, for the ultimate limit. At high
transmission a large enhancement is possible but as the transmission decreases so does the
possible quantum advantage.

4.2 Quantum enhanced QCRB with squeezed states

The Fock state can reach the ultimate limit and thus have maximally enhanced measurement
precision in the estimation of transmission over a classical state. However, it is hard to
generate, especially at high powers [48]. In practice, a Fock state may not be the optimal
state to measure transmission due to the 1

⟨n̂p⟩r
scaling and due to the fact that Fock states

cannot currently be generated with enough power to reach the damage threshold for most
systems under study. Higher power states, with a QCRB below the classical limit but higher
than the ultimate limit, can achieve a better overall estimation than a Fock state, even if
these states are worse for an equal number of probing photons.

4.2.1 Single mode squeezed states

The first state we will look at is the bSMSS. This state, when squeezed in the amplitude
quadrature, has a reduced variance in the number of photons compared to the coherent state.
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Since the Fock state has no photon number variance, it can be expected that the reduced
number variance of the amplitude squeezed bSMSS will lead to enhanced transmission es-
timation. The bSMSS, with level of squeezing s and squeezing angle θ, after probing the
system has a covariance matrix that changes with transmission as [22]

σ =

(
T cosh(2s) + 1 − T −Teiθ sinh(2s)
−Te−iθ sinh(2s) T cosh(2s) + 1 − T

)
= Tσinitial + (1 − T )σvacuum, (4.17)

such that the average quadrature variance, the diagonal, decreases to one and the asymme-
try, off-diagonal terms, reduces to zero as transmission decreases and the state becomes a
photonless vacuum state. The displacement for the bSMSS changes as

d⃗ =
√
T

(
α cosh(s) − α∗eiθ sinh(s)
α∗ cosh(s) − αe−iθ sinh(s)

)
, (4.18)

which scales the same way as the coherent state. Thus, any quantum enhancement in the
estimation of transmission must come from the covariance matrix.

As with the coherent state, the Gaussian QFI calculation, Eq. (3.26), for the bSMSS is
dominated by the displacement term such that [22]

FQ
bSMSS = 2

∂d⃗†

∂T
σ−1 ∂d⃗

∂T
(4.19)

= |α|2T + (1 − T ) [cosh(2s) − cos(Θ) sinh(2s)]

T {1 − 2T (1 − T ) [1 − cosh(2s)]}
, (4.20)

where Θ = θ − 2 arg(α). The QFI per photon is maximized when the state is amplitude
squeezed, which occurs when cos(Θ) = 1 such that ⟨∆2n̂p⟩ = ⟨n̂p⟩ e−2s. This gives a QCRB
of [19,22] 〈

∆2T
〉(bSMSS) ≥ T − T 2 (1 − e−2s)

⟨n̂p⟩r
, (4.21)

where ⟨n̂p⟩r = |α|2 [cosh(2s) − cos(Θ) sinh(2s)] = |α|2e−2s. The (1 − e−2s) coefficient for the
quadratic term goes to one as s→ ∞, meaning that the QCRB for the bSMSS tends towards
the ultimate bound with increased squeezing. However, if the state was squeezed along the
phase quadrature, cos(Θ) = −1, and thus anti-squeezed along the amplitude, the QCRB
would be 〈

∆2T
〉(bSMSS, phase) ≥ T − T 2 (1 − e2s)

⟨n̂p⟩r
, (4.22)

where ⟨n̂p⟩r = |α|2e2s and ⟨∆2n̂p⟩ = ⟨n̂p⟩ e2s. As such, increased photon number variance
increases the bound in the uncertainty in transmission estimation, even making it higher than
that of the coherent state. At extremely high levels of phase squeezing, the uncertainty in
transmission would be dominated by the quadratic term and at infinite phase squeezing the
transmission uncertainty would be infinite as well. It should be noted that this correlation
between transmission estimation and photon number variance is not always the case, as the
vSMSS has a higher photon number variance than the phase squeezed bSMSS but has been
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shown to still reach the ultimate limit at high transmission, T ≈ 1 [19]. This is due to the
photons being generated in pairs, such that the loss of a single photon is easily noticed via
a parity, even or odd photon number, measurement. At lower transmission, however, the
vSMSS is much worse than a coherent state due to having a photon number variance that
is twice as large as that of a thermal state.

4.2.2 Two mode squeezed states

Switching to the two mode Gaussian state, the bTMSS has a conjugate mode that has a
photon number correlated to the number of photons in the probe mode interacting with the
system under study. This correlation allows for the inference of the number of photons lost
to the environment, reducing the uncertainty in transmission estimation. The covariance
matrix of the bTMSS changes with transmission as [22]

σ =


T cosh(2s) + 1 − T 0 0 −

√
Teiθ sinh 2s

0 cosh(2s) −
√
Teiθ sinh 2s 0

0 −
√
Te−iθ sinh 2s T cosh(2s) + 1 − T 0

−
√
Te−iθ sinh 2s 0 0 cosh(2s)

 .

(4.23)
Unlike the single mode case, the asymmetry of the quadratures decreases with the square
root of the transmission as only one of the modes is affected by the system under study and
the asymmetry is in the combination of the two mode quadratures. The displacement vector
changes as [22]

d⃗ =


√
T
[
α cosh(s) − β∗eiθ sinh(s)

]
β cosh(s) − α∗eiθ sinh(s)√

T
[
α∗ cosh(s) − βe−iθ sinh(s)

]
β∗ cosh(s) − αe−iθ sinh(s)

 , (4.24)

such that only the probe mode, denoted by the first and third terms, has reduced displace-
ment. With large displacement, such that the displacement term of the QFI dominates, we
have found a bTMSS QCRB of [22]

〈
∆2T

〉(bTMSS) ≥ T − T 2 [1 − sech(2s)]

⟨n̂p⟩r
, (4.25)

where ⟨n̂p⟩r = |α|2 cosh2(s) + |β|2 sinh2(s) − |α||β| cos(Θ) sinh(2s), Θ = θ− arg(α) − arg(β),
and |α|2 and |β|2 are the mean number of seeding photons for the probe and conjugate
modes, respectively.

As with the bSMSS, as the squeezing increases this bound tends towards the ultimate
limit [22]. However, the bTMSS QCRB approaches the bound more slowly than the bSMSS
QCRB, as can be seen by comparing Fig. 4.3a and Fig. 4.3b. In theory, the bSMSS would be
better for measuring transmission; however, in practice this may not be the case. Since the
bTMSS has a second mode that is correlated with the probing mode, technical noise from a
real experiment can be canceled out. Since any technical noise would be correlated between
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the two modes, a differential measurement can cancel the technical noise [44] due to the pair
generation of photons.

If the two mode squeezed state had zero displacement, the number of photons in each
mode would be perfectly correlated, leading to an increase in QFI per probe photon. For
the vTMSS, the QFI is derived using the non-displacement terms of the Gaussian QFI [22],
Eq. (3.26),

FQ(T ) =
1

2 (|Σ| − 1)

{
|Σ|Tr

[(
Σ−1Σ̇

)2]
+
√
|I + Σ2|Tr

[((
I + Σ2

)−1
Σ̇
)2]

+4
(
λ21 − λ22

)( λ̇22
λ42 − 1

− λ̇21
λ41 − 1

)}
. (4.26)

For the two mode squeezed state, the eigenvalues are

λ1 = 1, (4.27)

λ2 = T + (1 − T ) cosh(2s), (4.28)

for the symplectic form of the covariance matrix

Σ =


T cosh(2s) + 1 − T 0 0 −

√
Teiθ sinh 2s

0 cosh(2s) −
√
Teiθ sinh 2s 0

0
√
Te−iθ sinh 2s −T cosh(2s) − (1 − T ) 0√

Te−iθ sinh 2s 0 0 − cosh(2s)

 .

(4.29)

Since λ̇1 = 0, the term
λ̇2
1

λ4
1−1

in Eq. (3.26) is zero. Typically, a correction factor is needed

when an eigenvalue of Σ is one [32], but for transmission estimation the correction factor is
zero [22]. This correction factor is only ever needed for pure states as only those states have
eigenvalues of ±1. Thus, it is most likely due to the decoherence effect of the transmission
parameter that the correction factor is zero for this problem.

Solving for the QFI, it can be shown that the QCRB for the vTMSS is the same as the
ultimate limit [21], 〈

∆2T
〉(vTMSS) ≥ T − T 2

⟨n̂p⟩r
, (4.30)

where ⟨n̂p⟩r = sinh2(s). Like the Fock state, there is no loss of information to the environment
when probing the system since the conjugate mode acts as a reference for the number of
photons in the probe mode. Also like the Fock state, these states can only be generated at
a low power with current technology, though the vTMSS has higher photon number in the
probe mode than what is possible for a Fock state. There has been work done to further
increase the power of the vTMSS, creating so called bright vTMSS [49,50]. Being generated
with more power increases the number of known systems in which the vTMSS can reach
the damage threshold. This would make these states ideal, since they reach the ultimate
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Figure 4.3: The uncertianty in the estimation of transmission decreases as s increases from 0 (blue
dotted line), 0.5 (red dashed line), 1.0 (yellow dot-dashed line), 1.5 (purple long dashed line), to
2.0 (green solid line) for the bTMSS (a) and bSMSS (b). The plot in (c) compares the coherent
state (blue dotted line) to the s = 2 bTMSS (red short dashed line), bSMSS (green long dashed
line), and the ultimate limit (purple solid line). © American Physical Society. Reproduced with
permission. All rights reserved [22].
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limit, for transmission estimation. However, these state are not pure vTMSS and have lower
correlations between the modes than the current state of the art for bTMSS generation and
thus are currently not as good for transmission estimation.

Given that the QFI for the vTMSS is very large for a transmission near one, the as-
sumption made for the bTMSS QFI being dominated by the displacement term needs to be
examined further. Since the vacuum term of the bright two-mode squeezed state will always
dominate at T = 1 where FQ

vTMSS = ∞, the threshold for which the bTMSS dominates is
transmission dependent. Momentarily removing the assumptuion of bright or vacuum dom-
ination, the total QFI in terms of generated photons for the two-mode squeezed state must
be considered, that is

FQ
TMSS = FQ

vTMSS + FQ
bTMSS (4.31)

=
⟨n̂p⟩vac
T − T 2

+
⟨n̂p⟩bright

T − T 2 [1 − sech(2s)]
, (4.32)

where ⟨n̂p⟩vac is the number of photons spontaneously generated by the squeezing operation
and ⟨n̂p⟩bright is the number of stimulated photons generated from the initial displaced state.
For the bright QFI to dominate, and thus ignore the vacuum term contributions, the number
of stimulated photons must be large enough such that

⟨n̂p⟩bright ≫ ⟨n̂p⟩vac +
T sech(2s)

1 − T
⟨n̂p⟩vac . (4.33)

At low transmissions, T < 50%, the bright limit is reached when there are many more bright
photons than vacuum term photons. As the transmission increases, the second term on
the right hand side of Eq. (4.33) dominates as it becomes very large as T → 1. For large
squeezing, a bright limit at high transmission can be set from

lim
s→∞

sech(2s) sinh2(s) → 1

2
, (4.34)

since ⟨n̂p⟩vac = sinh2(s), such that the bright limit can be obtained when [22]

⟨n̂p⟩bright ≫
1

2

(
T

1 − T

)
. (4.35)

For a transmission of 99.95%, the bright portion of the probe mode with greater than an
average of 1,000 photons is needed. Since bTMSS are generally generated with coherent
states with a photon flux many orders of magnitude higher than that, the approximation of
the displaced terms dominating is typically valid [51].

For zero squeezing for either the bSMSS or bTMSS, the state is a coherent state and
the bound goes to the classical QCRB. This is the benefit of bright squeezed states, that
the state starts with high photon number, like a classical state, and then is squeezed to get
closer to the ultimate bound. Thus the state has a high photon number, to compete with
a classical state with the 1

⟨n̂p⟩r
scaling, and quantum enhancement that gives a lower QCRB
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for the same number of probing photons. As shown in Fig. 4.3, for currently accessible levels
of squeezing, s = 2 [52,23], the difference between the low power Fock and vTMSS and the
higher power bSMSS and bTMSS QCRBs is small. This is especially true when compared
to the enhancement from the coherent state bound.

It should also be noted for the two mode states that if the conjugate mode of the vTMSS
is undetected the probe mode is the same as a thermal state, as mentioned in Chapter 2.
Similar to the quantum states, the QCRB for the thermal state is quadratic,

〈
∆2T

〉(Thermal) ≥ T + T 2 ⟨n̂p⟩
⟨n̂p⟩r

, (4.36)

but the quadratic term is positive, similar to the bSMSS when phase squeezed, Eq. (4.22),
which can be rewritten as

〈
∆2T

〉(bSMSS, phase) ≥ T + T 2 (e2s − 1)

⟨n̂p⟩r
(4.37)

to make the comparison easier. For the bTMSS the probe mode by itself would be a displaced
thermal state. As will be shown in the next section, losses in the conjugate mode can undo
the quantum advantage of the two mode squeezed state, even making these states worse than
a coherent state with sufficient conjugate loss such that the bTMSS tends towards a thermal
state. Thus, the choice of using the bSMSS or the bTMSS depends on the limitations of the
physical setup of the sensing scheme.

4.3 QCRB with extraneous losses and imperfect de-

tection

For a real experiment, it is not currently possible to probe the system without any propa-
gation loss from the source to the system under study or to perfectly detect the state after
interaction with the system. For practical applications, the QCRB for the states should be
expanded to include transmissions both before, Tp, and after, ηp, probing the system and, for
the two mode states, detection efficiencies of the conjugate mode, ηc, as shown in Fig. 4.1.
The resources for probing a system under study considered here are still the number of
photons interacting with the system ⟨n̂p⟩r = Tp ⟨n̂p⟩0, where ⟨n̂p⟩0 are the number of probe
photons generated and Tp is the transmission between the pure state generation and the
system under study. As a detector with a quantum efficiency less than 100% can be modeled
as a perfect detector and a beam splitter with a transmission equal to the quantum efficiency
of the actual detector [44], the term ηp is given as the probe transmission between the system
under study and a perfect detector. The covariance matrices for the various states are the
same as before except with T → TpTηp. For the bTMSS, additional considerations must
be taken into account for the covariance matrix and displacement vector due to the losses
in the conjugate mode. In general, the covariance matrix and displacement vector take the
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form [22]

σ=


TpTηp cosh(2s)+1−TpTηp 0 0 −

√
TpTηpηce

iθ sinh(2s)
0 ηc cosh(2s)+1−ηc −

√
TpTηpηce

iθ sinh(2s) 0
0 −

√
TpTηpηce

−iθ sinh(2s) TpTηp cosh(2s)+1−TpTηp 0
−
√
TpTηpηce

−iθ sinh(2s) 0 0 ηc cosh(2s)+1−ηc

,
(4.38)

d⃗ =


√
TpTηp

[
α cosh(s) − β∗eiθ sinh(s)

]
√
ηc
[
β cosh(s) − α∗eiθ sinh(s)

]√
TpTηp

[
α∗ cosh(s) − βe−iθ sinh(s)

]
√
ηc
[
β∗ cosh(s) − αe−iθ sinh(s)

]
 , (4.39)

where the conjugate transmission, ηc, is added to the conjugate terms of the covariance matrix
and displacement vector and the asymmetry term in the covariance matrix in addition to the
changes to the probe transmission from losses before and after the system. We have found
the QCRBs for the lossy coherent state, bSMSS, bTMSS, and Fock state to be, following
the same procedures as before for the lossless cases, [22]〈

∆2T
〉(coh) ≥ T

ηp ⟨n̂p⟩r
, (4.40)

〈
∆2T

〉(bTMSS) ≥ T

ηp ⟨n̂p⟩r
− T 2

⟨n̂p⟩r
TpHc[1 − sech(2s)], (4.41)

〈
∆2T

〉(bSMSS) ≥ T

ηp ⟨n̂p⟩r
− T 2

⟨n̂p⟩r
Tp(1 − e−2s), (4.42)

〈
∆2T

〉(Fock) ≥ T

ηp ⟨n̂p⟩r
− T 2

⟨n̂p⟩r
Tp, (4.43)

where

Hc =
(2ηc − 1) [1 + 2 sinh2(s)]

1 + 2ηc sinh2(s)
(4.44)

contains all the loss terms for the conjugate mode. For ηc > 0.5, Hc is positive but for
ηc < 0.5 it is negative. When Hc is negative, the quadratic term of the bTMSS QCRB
changes sign and the QCRB of the lossy bTMSS is worse than the coherent state bound.
At ηc = 0.5, Hc = 0 and the bTMSS QCRB is exactly the same as the one for the coherent
state, independent of the level of squeezing. For ηc = 0, Hc is maximally negative and the
bTMSS QCRB is the same as a displaced thermal state QCRB [22].

For each quantum state bound, the second term on the right hand side of Eqs. (4.41)-
(4.43), the quadratic term, gives the enhancement in the transmission measurement. The
term deceases linearly with transmission, Tp, between state generation and the system as the
probe mode for these states tends towards a coherent state as losses increase. In particular,
for the bTMSS

⟨∆2T ⟩(bTMSS)

⟨∆2T ⟩(coh)
= 1 − ηpTTpHc[1 − sech(2s)] −−−→

Tp→0
1. (4.45)
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Figure 4.4: Effects of loss on the QCRB for the Fock state (black), bSMSS (green), and bTMSS
(magenta). For each state the detection efficiency is ηc = ηp = 0.98 and Tp = 1 (solid), Tp = 0.9
(dashed), and Tp = 0.8 (dotted). © American Physical Society. Reproduced with permission. All
rights reserved [22].

However, the coherent state QCRB does not depend on Tp as the state is already a coherent
state and the number of probing photons is held constant. The effects of loss on the Fock,
bSMSS, and bTMSS state are shown in Fig. 4.4 where we can see that the bound increases
rapidly at high transmission and more slowly at low transmission.

For each bound, the linear term is the same for all the states considered and is inversely
proportional to the probe transmission after interacting with the system, ηp. This linear
term is also the only term that the coherent state has, thus it can be considered as the term
corresponding to the classical limit. As the detection efficiency, ηp, of the probe mode goes
to zero, the classical term becomes larger and dominates the quantum bounds considered
here such that the enhancement due to the use of a quantum states becomes negligible. For
example, for the bTMSS

⟨∆2T ⟩(bTMSS)

⟨∆2T ⟩(coh)
= 1 − ηpTTpHc[1 − sech(2s)] −−−→

ηp→0
1. (4.46)

This is true for the bSMSS and Fock state as well. As can be seen from Eq. (4.46) and
Eq. (4.45), the quantum enhancement decreases linearly with the probe transmission, in-
cluding the transmission to be estimated.

4.4 Measurements that saturate the QCRB for trans-

mission estimation

The QCRB sets the limit for how precise a measurement can be when estimating a parameter
value, but it does not state what measurement will saturate it. Mathematically, it is possible
to build a POVM from the SLD [39], introduced in Chapter 3, but those measurements are not
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Figure 4.5: Measurements that saturate the QCRB for transmission estimation for the analyzed
states. The top diagram is the intensity, or photon counting, measurement that saturates the bound
of the single mode states considered; that is, the coherent, bSMSS, and Fock states. On the bottom
is the optimized intensity difference measurement that saturates the bound of the bTMSS. For this
measurement, an electronic gain, g ≥ 0, is applied to the intensity measurement of the conjugate
mode before subtracting the intensities of the two modes. The electronic gain is set to maximize the
cancellation of the intensity fluctuations of the probe mode. If the conjugate mode is uncorrelated
to the probe mode, the optimal gain is zero and the measurement simplifies to an intensity measure.
Thus, the optimized intensity difference measurement also saturates the bound for the coherent,
bSMSS, and Fock states. © American Physical Society. Reproduced with permission. All rights
reserved [22].
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always physical. The search for measurements that can actually be performed and saturate
the QCRB is non-trivial. Here, we will identify measurements that saturate the QCRB
for transmission for states with pure generation and extraneous propagation and detection
losses.

For the single mode states given by Eqs. (4.40), (4.42), and (4.43), it can be shown that
the intensity measurement, or photon counting measurement, shown in Fig. 4.5, saturates
the QCRB for each of the single mode states considered [22]. The variance of the measurement
is given by〈

∆2n̂p

〉
=

〈
B̂†

p(TpTηp) n̂
2
p B̂p(TpTηp)

〉
−
〈
B̂†

p(TpTηp) n̂p B̂p(TpTηp)
〉2

(4.47)

=

〈[(√
TpTηpâ

†
p +

√
1 − TpTηpâ

†
ν

)(√
TpTηpâp +

√
1 − TpTηpâν

)]2〉
−
〈(√

TpTηpâ
†
p +

√
1 − TpTηpâ

†
ν

)(√
TpTηpâp +

√
1 − TpTηpâν

)〉2
(4.48)

= (TpTηp)
2
〈
n̂2
p

〉
+ TpTηp(1 − TpTηp) ⟨n̂p⟩ − (TpTηp)

2 ⟨n̂p⟩2 (4.49)

= (TpTηp)
2
〈
∆2n̂p

〉
0

+ TpTηp(1 − TpTηp) ⟨n̂p⟩0 , (4.50)

where ⟨n̂p⟩0 and ⟨∆2n̂p⟩0 are the expectation value and variance for the initially generated
probe photon number, respectively. Error propagation into transmission uncertainty, shows
that 〈

∆2T
〉

=
⟨∆2n̂p⟩∣∣∣∂TpTηp⟨n̂p⟩0

∂T

∣∣∣2 (4.51)

=
T

ηp ⟨n̂p⟩r
− T 2

⟨n̂p⟩r
Tp

(
1 −

⟨∆2n̂p⟩0
⟨n̂p⟩0

)
, (4.52)

where
⟨∆2n̂p⟩

0

⟨n̂p⟩0
is the Fano factor [44] for the generated state. For each single mode state, the

Fano factor is given by

⟨∆2n̂p⟩0
⟨n̂p⟩0

=


1 coherent state

e−2s bSMSS

0 Fock state.

(4.53)

Substituting each Fano factor into Eq. (4.52), shows that this measurement saturates the
corresponding QCRBs given in Eqs. (4.40), (4.42), and (4.43), for those states,〈

∆2T
〉(coh)

=
T

ηp ⟨n̂p⟩r
, (4.54)

〈
∆2T

〉(bSMSS)
=

T

ηp ⟨n̂p⟩r
− T 2

⟨n̂p⟩r
Tp(1 − e−2s), (4.55)

〈
∆2T

〉(Fock)
=

T

ηp ⟨n̂p⟩r
− T 2

⟨n̂p⟩r
Tp. (4.56)
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For the bTMSS, the measurement needs to be expanded to include the second mode.
We have found that a modified form of the intensity difference measurement of the two
modes, shown in the bottom of Fig. 4.5, saturates the bTMSS QCRB. The modified intensity
difference measurement adds an electronic gain g to the conjugate mode detection [22],〈

∆2n̂−
〉

=
〈
(n̂p − gn̂c)

2〉− ⟨n̂p − gnc⟩2 (4.57)

=
〈
n̂2
p + g2n̂2

c − 2gn̂pn̂c

〉
−
(
⟨n̂p⟩2 + g2 ⟨n̂c⟩2 − 2g ⟨n̂p⟩ ⟨n̂c⟩

)
(4.58)

=
〈
∆2n̂p

〉
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〈
∆2n̂c

〉
− 2g (⟨n̂pn̂c⟩ − ⟨n̂p⟩ ⟨n̂c⟩) (4.59)
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2
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〉
0

+ TpTηp(1 − TpTηp) ⟨n̂p⟩0
+g2
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η2c
〈
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〉
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]

−2gTpTηpηc
(
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)
. (4.60)

The electronic gain is optimized for the minimum intensity difference measurement uncer-
tainty, with

gopt =
TpTηp

(
⟨n̂pn̂c⟩0 − ⟨n̂p⟩0 ⟨n̂c⟩0

)
ηc ⟨∆2n̂c⟩0 + (1 − ηc) ⟨n̂c⟩0

, (4.61)

such that the optimized intensity difference uncertainty is given by
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(4.62)
Error propagation of the optimal intensity difference variance for the measurement of an
amplitude difference squeezed bTMSS into transmission uncertainty gives

〈
∆2T

〉
=

〈
∆2n̂
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−
〉∣∣∣∂⟨n̂p−goptn̂c⟩
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=
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ηp ⟨n̂p⟩r
− T 2

⟨n̂p⟩r
TpHc[1 − sech(2s)], (4.65)

which saturates the QCRB for transmission estimation. The error propagation using only
the probe mode, TpTηp ⟨n̂p⟩0, is the same as taking the derivative of the total measurement,
⟨n̂p − goptn̂c⟩, as only the probe mode is explicitly dependent on the parameter of interest.
While the optimal electronic gain on the conjugate mode does change with transmission, the
gain is set independently of it. This is due to the optimal gain being defined as the gain
that minimizes the intensity difference noise, not the transmission, and thus it can be found
without knowing the transmission value.

The quantum enhancement offered by these quantum states are readily available for
current state-of-the-art devices as the measurements listed here are readily accessible with
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current technology. When estimating transmission using 100 coherent state photons, for a
transmission of 99%, it would take ∼4.6 bTMSS probe photons, ∼2.8 bSMSS photons, or 1
Fock state photon to achieve the same uncertainty, assuming no extraneous losses and s = 2
for the squeezed state. Since the bright states are generated with orders of magnitude higher
power than the Fock state, they can estimate transmission with orders of magnitude less
uncertainty. The next chapter will show that it is possible to saturate the bTMSS QCRB
experimentally and therefore enhance the transmission estimation with currently available
devices.
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Chapter 5

Experimental Saturation of the
Transmission QCRB with a bTMSS

Reaching the QCRB for real sensing applications is not a trivial matter. In practical applica-
tions there exist many different sources of noise that can increase the estimation uncertainty
and the bound can only be saturated by measurements dominated by quantum statistics.
Laser systems have technical noise that scales inversely with frequency [53], meaning they do
not correspond perfectly to a coherent state. Photodetectors have electronic noise from the
thermal effects of resistors [54] that add uncertainty to the measurement. The power output
of a laser slowly changes over time as internal components shift and settle in part due to
slowly heating up during continual use [55,56]. These and other noise sources increase the
uncertainty when trying to estimate transmission.

Saturating the QCRB experimentally requires tight control over the various components
of the experiment to correct for technical noise and imperfections as well as finding the
estimators and measurements that can saturate the bound. Here, we will show that we can
saturate the bTMSS QCRB for transmission estimation. This required us to lock many
aspects of our state generation and system properties and precise calibration of every device
in the experiment.

5.1 Overview of the experiment

A diagram of the experimental setup is shown in Fig. 5.1. The bTMSS is generated in a 85Rb
vapor cell. The probe mode, red, is used to probe the system and the conjugate mode, green,
is used as part of the measurement. Just as in the QCRB calculations from the last chapter,
the probe mode has imperfect transmission, Tp, between state generation and the system
under study and imperfect detection efficiency, ηp. The conjugate mode also has imperfect
detection efficiency, ηc. Each of these need to be calibrated to set the QCRB. Due to the
way in which we are generating the bTMSS, the theory from the previous chapter needs to
be expanded upon in order to include absorption of the probe mode by the Rb atoms during
the state generation.
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Figure 5.1: For the experiment a bTMSS is generated in a hot 85Rb vapor cell via a four-wave mix-
ing process. As shown in the inset for the state generation, during this process two pump photons,
purple, are absorbed and a probe, red, and conjugate, green, photon are generated simultaneously.
The probe photons are used to probe the system and the conjugate photons are used as part of the
measurement. The probe mode suffers loss before, 1 − Tp, and after, 1 − ηp, probing the system;
while the conjugate mode suffers loss as well, 1− ηc. The number of photons interacting with the
system, ⟨n̂p⟩r, is taken as the resource for the transmission estimation. The system under study
consists of a polarizing beam splitter (PBS) and a half waveplate to set the transmission as well as
an electro-optical modulator (EOM) to modulate the transmission. After probing the system, an
optimized intensity difference measurement is made. The modulation from the EOM is then used
to convert the variance of the measurement into the uncertainty in the estimation of transmission.

The optimized intensity difference measurement, shown in Fig. 4.5 and given by Eq. (4.62),
is used to estimate the transmission of the system under study. The system consists of a
variable transmission, to show saturation of the bound for a wide range of transmissions,
and a transmission modulator, to convert the variance of the measurement into uncertainty
in the estimation. As will be explained in further detail later, the change in transmission
due to the modulation can be used to find the uncertainty in the estimation of transmission
by comparing the measured modulation to the measurement variance.

5.1.1 State generation

For generation of the bTMSS to probe the system and estimate transmission, the squeezing
operation, Eq. (2.49), requires a non-linear process such that multiple electric fields inter-
act [30,57]. This allows for the simultaneous generation (absorption) of two photons in different
fields. The process used here to generate the bTMSS is four-wave mixing (FWM) [58,51]. The
FWM process uses two strong fields, called the pump fields, which act as a photon reservoir.
For our work, the pump fields are implemented with a single mode such that the energy for
the probe and conjugate photons are taken from this single mode in pairs of photon. Since
the pump has much more power then the probe and conjugate modes, it is treated classically
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and the statistics of the pump are ignored.
For our experiment, the FWM process is implemented in the D1 line of 85Rb in a hot

vapor cell [58,51]. As shown in the energy level inset of Fig. 5.1, the pump field (purple) excites
the electrons from the F=2 and F=3 ground energy levels into energy levels, virtual in this
case, near the 52P1/2 energy level. Virtual energy levels are short lived and the electrons
quickly transition back to the F=2,3 ground energy levels after emitting a probe photon
and a conjugate photon. Due to the non-linear nature of this parametric process, both the
electron transitions F=2 → virtual level → F=3 (probe emission) and F=3 → virtual level
→ F=2 (conjugate emission) happen simultaneously.

Energy and momentum conservation keep the FWM process dominant over a single
lambda transition, such as just the F=2 → virtual level → F=3 (probe emission). To offset
the energy imbalance from a single transition, the atom would receive a momentum kick to
add kinetic energy equal to the F=2 to F=3 energy level difference such that the total mo-
mentum of the probe photon emitted, pump photon absorbed, and the atom kick conserved
momentum. Proper angling of the laser fields and frequency tuning, photon energy, allows
for the FWM process to dominate as it is tuned to best match the energy and momentum
conservation which does not require the atom to compensate for the energy or momentum
mismatch.

To reduce the absorption of each mode, particularly the probe mode, the virtual energy
levels need to be set as far away as possible from the 52P1/2 energy level. In principle, the
double Lambda configuration of the energy levels should reduce the absorption, but it is
not perfect. Care needs to be taken when detuning, as detuning too far from a real energy
level reduces the light-atom interaction. Luckily, the absorption process decreases faster
with detuning than the FWM process, such that there exists an optimal frequency for high
gains from FWM and small losses from atomic absorption. Another complication to reducing
absorption comes from vaporizing a large amount of Rb for high squeezing. This is done by
heating the atoms in the cell, which unfortunately broadens the atomic energy levels due
to the Doppler effects of the fast moving hot vapor. The optimal density of Rb atoms, for
maximum squeezing, occurs when our cell is heated to around 120◦ C. This temperature
results from a balance between having enough atoms for the FWM process but not having
the atoms so hot that the Doppler broadened probe absorption reduces the squeezing.

To generate a bright squeezed state, we displace only the probe mode to stimulate the
FWM process, also known as seeding the process. The seed probe is generated by picking
off a portion of the pump mode and is detuned from the pump by 3.04 GHz via double
passing through an acousto-optical modulator (AOM), see Fig. 5.2(a). Since the wavelength
of the modes change slightly due to the frequency dependence of the Rb refractive index,
the momentum conservation changes as

ℏk⃗Rb
probe + ℏk⃗Rb

conj = 2ℏk⃗Rb
pump (5.1)

ℏnprobek⃗
0
probe + ℏnconjk⃗

0
conj = 2ℏnpumpk⃗

0
pump, (5.2)

where k⃗Rb
mode is the wavenumber for the mode in Rb, k⃗Rb

mode for vacuum, and nmode is the
refractive index for the mode in light. As shown in Fig 5.2(b), this causes the angle between
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Figure 5.2: The probe is detuned from the pump by double passing through an acousto-optical
modulator (AOM) as shown in (a). In the Rb cell, the probe, conjugate, and pump have slightly
different refractive indices due to being close to atomic resonance with the fields at slightly different
frequencies. Thus, the probe and pump modes cross at an angle as shown in (b) in order to conserve
momentum. After the AOM, the seeding for the probe mode is passed through a cleanup cavity in
order to reduce the intensity noise of the beam to the shot noise level at 1.5 MHz. This is shown in
(c) where the shot noise (blue) and the seed noise (red) noise power is plotted. The noise power is
normalized by shot noise and shown on a log scale such that 0 dB corresponds to the shot noise.

the pump and probe mode in the 85Rb cell to be 0.4◦ for momentum conservation.

For the FWM process, the pump mode has a power of 600 mW and 1/e2 waist radius of
700 µm. The probe mode has an initial power of 7 µW and 1/e2 waist radius of 400 µm.
The waist of each mode crosses at the center of the cell. The laser waist is the location
of the smallest beam size and is also the location of a flat wavefront, such that the mode
approximates a plane wave. The cell is kept to 1/2 in (13 mm) in length, so the relative
phases of the pump, probe, and generated conjugate beam do not change and the squeezing
angle is constant throughout the cell. Propagation through a long cell would cause the
squeezing angle to rotate due to the small difference in refractive index for each mode and
eventually fully reverse the FWM process such that photons are absorbed in pairs, one each
from the probe and conjugate modes, and added to pump mode.

Unlike in the theory, the probe mode seed is not a perfect coherent state due to technical
noise fluctuations from the laser. However, the noise fluctuations of a laser can approximate a
coherent state at a high enough analysis frequency. This occurs when the analysis frequency
is well outside the bandwidth of any technical noise sources and only the quantum fluctua-
tions of the light remain. To suppress the noise on the probe mode, and effectively reduce
the frequency at which the technical noise dominates, the probe is filtered through a cleanup
cavity (Newport SuperCavity model SR-140-C) after the AOM. The cavity acts like a low
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Figure 5.3: Sample noise trace from the measurement of the optimized intensity difference, red,
and the modulation from the signal trace, blue, plotted in standard deviation, µVolts, as the
transmission modulation standard deviation is ramped. The traces are recorded using a spectrum
analyzer with zero span, i.e. time trace of a single frequency, at an analysis frequency of 1.5 MHz
and resolution bandwidth of 51 kHz. The signal to noise ratio (SNR) of the two plots is shown on
the right and a linear fit of the signal is shown in black. At the circled X, the measured modulation
voltage is equal to the noise voltage of the measurement. The transmission modulation that creates
a signal of the same voltage as the noise gives the transmission estimation standard deviation for
our measurement.

pass filter with a linewidth of <0.6 MHz. After the cavity, the probe mode approximates a
coherent state at an analysis frequency of 1.5 MHz as shown in Fig. 5.2(c).

All together, the FWM process achieves a probe gain of 11.4 for ∼80 µW of probe power
with which to probe the system under study. The balanced intensity difference noise of the
generated bTMSS is squeezed 8.0 dB below an equivalent coherent state noise at the analysis
frequency of 1.5 MHz.

5.1.2 Converting variance of measurement to transmission uncer-
tainty

To find the uncertainty in transmission estimation, the measurement variance is compared
to a ramped transmission modulation in order to find a change in transmission equal to
our measurements limit in estimating such changes. As we will show, this is equivalent
to error propagating our measurement variance into transmission uncertainty. However,
we use an external modulation in order to make a strong argument that our measurement
is at the QCRB for transmission estimation. Since the modulation is unrelated to our
measurement apparatus, we can compare to our measurement results as an external reference.
The transmission modulation in our system is completely independent of our measurement
and the settings of the photodiodes and spectrum analyzer used to record the measurement
results. How this modulation is generated is covered in the next subsection. Here, we shall
cover how the transmission modulation is used to find the transmission uncertainty.

For each set at each transmission, two traces are recorded on the spectrum analyzer. A
noise trace of measurement noise power, which is proportional to the variance, of the state
without modulation and a signal trace that records the measurement with an additional
ramped transmission modulation power. These two traces are used to error propagate the
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noise power of the measurement into transmission uncertainty. This is done by finding the
point at which the noise power of the measurement is equal to the power of the modulation,
as shown in Fig. 5.3. The transmission modulation variance at that point is the same as the
transmission uncertainty using the measurement.

To show this mathematically [37], let us examine how a transmission modulation, δT ,
creates a modulation on the measurement, M ,

δM = δT

∣∣∣∣∂M∂T
∣∣∣∣ , (5.3)

where δM is the modulation measured on the signal trace and ∂M
∂T

is the dependence of
the measurement on the transmission. Since the amplitude of the transmission modulation
is ramped linearly over time, we define the signal-to-noise ratio (SNR) as the ratio of the
modulation standard deviation, δT , to the standard deviation of the measurement. The
SNR for the measurement is the same as the one for the tranmission modulation, that is

SNR =
δM

⟨∆M⟩
=
δT
∣∣∂M
∂T

∣∣
⟨∆M⟩

=
δT

⟨∆T ⟩
, (5.4)

where ⟨∆M⟩ and ⟨∆T ⟩ are the standard deviations of the measurement and transmission
estimation, respectively. As can be seen from Eq. (5.4), when the SNR= 1, the modulation
standard deviation is equal to the estimation standard deviation,

δT |SNR=1

⟨∆T ⟩
= 1 (5.5)

δT |SNR=1 = ⟨∆T ⟩ . (5.6)

In this way, it can also be shown that finding the modulation that gives a SNR=1 is equivalent
to error propagation of the measurement noise into estimation uncertainty [37]. We can see
this by squaring Eq. (5.4) such that

δT 2|SNR=1

∣∣∂M
∂T

∣∣2
⟨∆2M⟩

= 1 (5.7)

δT 2|SNR=1 =
〈
∆2T

〉
=

〈
∆2M

〉 ∣∣∣∣∂M∂T
∣∣∣∣−2

. (5.8)

Thus, in Fig. 5.3, the transmission modulation where the blue signal is equal the mean noise
in red, marked with a circled X, is the point where the modulation variance is the same
transmission uncertainty of the measurement.

For each transmission, the measurement variance is converted into transmission uncer-
tainty using the SNR. For each signal trace, the modulation is set the maximum amplitude
for 2 seconds to stabilize the modulation due to ringing. This is due to a large change in the
driving power of the system modulation causing extraneous fluctuation in the transmission
modulation. The modulation is then ramped down over 14 seconds to scan over multiple
SNR values.
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When the signal trace is recorded, it does not contain just the modulation power, but
the measurement noise power as well. Since the signal and noise of the measurement are not
correlated, to get just the modulation power the mean of the noise trace is subtracted from
the signal trace. At low SNR, the signal trace can dip below the mean of the noise trace
due to the signal trace being dominated by the noise power fluctuations. At this point, the
signal trace and jump above and below the mean of the noise trace, just as the points of the
noise trace jump above and below. Thus, we take the SNR as the real part of the square root
of the pure signal power divided by the mean noise power with the electronic noise power
subtracted out. It should be noted that in order to get the correct SNR, the traces must be
recorded in power as the pure signal and measurement noise only add in power. If the traces
are recorded in log-power or voltage, a correction factor must be applied to the traces to get
the correct SNR [59,60].

The SNR is fitted to a line as a function of the transmission modulation standard devia-
tion, to find the transmission modulation where the SNR= 1. Only the slope of the line is a
free parameter to fit as the intercept is set to zero since there should be no signal when there
is no modulation. The modulation standard deviation at SNR= 1 is given by the inverse of
the slope,

SNR = slope × δT, (5.9)

1 = slope × δT |SNR= 1, (5.10)
1

slope
= δT |SNR= 1. (5.11)

Using the inverse of the slope instead of the point of the trace closest to the SNR= 1 value
removes the digitization noise from the data points. The fitting also allows for every point in
the modulation ramp to be used in calculating the transmission uncertainty since a SNR= x
for any value of x can be used to find the transmission uncertainty as

δT 2|SNR=x = x
〈
∆2T

〉
. (5.12)

Thus, all points along the ramp of the signal trace can in principle be used to find the
transmission uncertainty. However, the points where the signal trace had values below the
mean noise power are excluded as they bias the slope fitting towards zero due to taking the
real part in the SNR.

5.1.3 System

To simulate the transmissive system under study, we use a half waveplate and PBS to
set the transmission and an electro-optical modulator (EOM) in the amplitude modulation
configuration to modulate it. The half waveplate and PBS are used to show the transmission
dependence of the estimation uncertainty and saturation of the QCRB over a wide range
of transmission values. The EOM adds the transmission modulation used to convert the
measurement variance into transmission uncertainty.

50



The EOM crystal creates a phase delay between two polarization components of light
defined by the EOM crystal axes [61]. A voltage applied along one of the crystal axes changes
the refractive index for light polarized along that axis. This difference in refractive index
between the two crystal axes adds a phase delay between the polarization axes of the indecent
light, changing the polarization of the input light. Modulating the applied voltage also
applies a modulation to the polarization. A half waveplate and PBS after the EOM crystal
transforms the polarization modulation between the two polarization into amplitude, and
thus transmission, modulation.

The transmission through the EOM in the amplitude modulation configuration changes
with an applied voltage, V , as [61]

T (V ) = Tmax − (Tmax − Tmin) sin2(CλV ) (5.13)

= Tmax −
Tmax − Tmin

2
[1 − cos(2CλV )], (5.14)

where Tmax(min) is the maximum (minimum) transmission through the EOM and Cλ is an
optical wavelength dependent constant that characterizes the response of the EOM crystal
to the applied voltage. To set the maximum and minimum transmission of the amplitude
configuration, a quarter and a half waveplate are placed before the EOM crystal to give
complete control of the polarization of the light into the EOM crystal. Thus, the maximum
and minimum transmission through the EOM can be set and the response of the EOM to
the applied voltage can be controlled as shown in Fig. 5.4.

For a transmission modulation to have a linear response to an applied voltage modulation,
the EOM needs to operate near the mean transmission T̄ = Tmax+Tmin

2
where cos(2CλV ) ≈

2CλV . The greater the difference between the maximum and minimum transmission, the
larger the transmission modulation for the same voltage signal. The red line in Fig. 5.4
is the linear response of the EOM around the mean transmission. If the applied voltage
modulation is too large, the response becomes nonlinear. This occurs for voltages for which
the red line no longer lines up with the blue line of the full response. When applying a
sinusoidal voltage to the EOM in the linear regime, the transmission can be modeled as

TEOM = T̄ +
√

2 T̄ δT sin(2πft), (5.15)

where f is the frequency of the applied voltage modulation and thus of the transmission
modulation while in the linear regime, and t is time. The δT term is the modulation “kernel”
such that the standard deviation is given by T̄ δT . The response of the EOM to a voltage
modulation is shown in black in Fig. 5.4. The kernel depends linearly on the amplitude of
the voltage modulation and is used to control the transmission modulation.

For the experiment, we wish to show saturation of the QCRB for transmission estimation
for a wide range of transmissions. To maximize this range, the mean transmission of the
EOM must to be as high as possible as it sets the maximum mean transmission for the
system. The waveplate and PBS are then used to lower the mean transmission through
the system. However, if the mean transmission of the EOM is too high, i.e. nearly equal
to the maximum EOM transmission, then the linear regime will be extremely small and
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Figure 5.4: The EOM transmission re-
sponse to an applied voltage. The blue
line is the full sinusoidal response of the
transmission as a function of the applied
voltage, while the red line indicates the
linear approximation of the response.
The range over which the red and blue
lines overlap is the linear regime. A
voltage modulation applied in the lin-
ear regime creates a transmission mod-
ulation at the same frequency. The am-
plitude of the transmission modulation
depends linearly on the amplitude of the
voltage modulation and the slope of the
response.
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a detectable transmission modulation will need to be outside the linear regime. Thus we
need to balance between having a high mean transmission through the EOM and having a
sufficiently large linear regime over which to modulate the transmission. For this experiment
we have found that Tmax = 0.848 and Tmin = 0.832 allows for the EOM modulation needed
for the experiment to be well within the linear regime while still maximizing the possible
transmission values.

As part of the measurement process, the transmission modulation needs to be well known
at all times. To keep a tight control, the modulation kernel is locked, as explained in the
next subsection, and the transmission modulation is calibrated such that δT is known at all
points along the signal trace. For each transmission value, the standard deviation of the
modulation is the modulation kernel times measured transmission of the system, T ,

δT = TδT , (5.16)

where T = T̄ Tadj and Tadj is the transmission through the waveplate and PBS after the
EOM used to adjust the system transmission. This change in modulation with the system
transmission is due to transmissions combining multiplicatively.

5.1.4 Results

The results of the experiment are shown in Fig. 5.5. Here, we looked at the mean transmis-
sion from ∼ 85% to 10% in steps of 5%. At 84% transmission, the absolute transmission
uncertainty when probing with a bTMSS is 1.11±0.01×10−10 for our measurement. In order
to build the statistics for this data, twenty sets of measurements are taken for each transmis-
sion. To rule out drifts in the state over time, the transmission uncertainty measurements
are made from ∼ 85% transmission to 10% transmission then back to ∼ 85% for the next
set instead of all measurements of one transmission done at once then moving to the next.
This greatly reduces the possibility that the change in transmission uncertainty is due to
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Figure 5.5: Results of the bTMSS trans-
mission estimation uncertainty experi-
ment. Here we plot the transmission
uncertainty against the mean transmis-
sion of the system. The black points are
the bTMSS measurement results with one
standard deviation horizontal error bars
for the mean transmission and vertical er-
ror bars for the transmission uncertainty.
Similarly, the green points are for the co-
herent state with error bars in the mean
transmission and the uncertainty in the
transmission estimation.

changes in the generated state instead of changes in the transmission value. The experiment
is repeated with a coherent state, green data points and dashed orange line QCRB. This is
done as a check on the experimental procedure and to show the quantum enhancement from
using the bTMSS. At the maximum transmission through the system of 84% the bTMSS is
able to estimate the transmission with 62% less uncertainty than the coherent state with the
same number of probing photons.

To consistently return to the same transmission set after set, the transmission for each
data point was set using an electronically controlled rotation mount to rotate the waveplate
in the “Set T” part of the system, see Fig. 5.1. After setting the transmission, the probe
beam was sent on a path around the system to measure the initial probe power. The ratio
of the probe power around the system and through the system sets the transmission for the
measurement. This is done for every transmission for every set and is also used to check
that the probe power is consistent throughout the experiment.

For the optimized intensity difference measurement, the optimal electronic gain is depen-
dent on the transmission of the system under study, Eq. (4.61). Thus, for each transmission,
the electronic gain is set during the first set of transmissions and is returned to for all sub-
sequent sets. To find the optimal gain, a series of quick unbalanced intensity difference
measurements are made with guessed gain values to find a range of possible optimal gains.
Then, for each possible optimal gain, a careful measurement is made and the electronic noise
power for that measurement, previously calibrated for each gain, is subtracted from the
measurement. The noise power of the measurement and the noise power of the electronics
of the detection apparatus are uncorrelated and thus can be subtracted out to leave the
noise power of the measurement itself. This process is repeated until the optimal gain is
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determined when the lowest unbalanced intensity difference measurement noise is achieved.
That gain is recorded and used again for each repeat of the transmission value for all 20 sets.
The gain is found 16 times, once for each mean transmission of the experiment.

In the next section, we will go over how we are able to keep control over our state and
system to take the data in Fig. 5.5. Afterwards, we will show how the system is calibrated
such that we were able to find the transmission uncertainty. Next, we will calibrate the
measurement to also count the number of photons used to collect the data such that we can
compare our results to theory like in Fig. 4.4. Finally, we will show how to calculate the
QCRB for our state and show that our measurement results saturate the bound

5.2 Control

It takes many measurements to get the data to build statistics of the transmission estimation
and show that the estimation uncertainty saturates the QCRB. To probe the same system
under study with the same state over the 20+ hours needed to perform the experiment, we
use multiple feedback controllers to lock the pump power, probe seed power, cell temperature,
and laser frequency. This keeps the bTMSS probing power and squeezing level consistent
over a long period of time, i.e. same covariance matrix and displacement vector. The
transmission modulation is kept repeatable as well such that the transmission modulation
to find the SNR is never out of calibration during the experiment.

5.2.1 Transmission modulation control

To lock the transmission kernel, see Eq. (5.15), to a specific value, the reflection from the
amplitude modulation configuration PBS is measured, as shown in Fig. 5.6. The detected
signal is split into two parts, a low frequency DC portion and a high frequency AC portion.
The DC portion of the detected reflection is used keep the EOM response at the center
of the linear regime by applying a voltage offset while the AC portion is used to lock the
modulation amplitude by adjusting the applied modulation voltage amplitude.

The AC portion is used to control the modulation kernel. We lock the modulation kernel
and not the modulation amplitude as the kernel does not change with mean transmission
like the modulation amplitude. To generate an error signal, the AC portion is demodulated
at 1.5 MHz, the frequency of the transmission modulation. This is done by mixing the AC
signal with an electronic local oscillator such that

VLO cos(2πfLOt+ ϕ) × VAC cos 2πft =
VLOVAC

2
{cos([f − fLO]t− ϕ) + cos([f + fLO]t+ ϕ)}

(5.17)
where VLO and VAC are the voltage amplitudes of the local oscillator and AC signal, respec-
tively and fLO is the frequency and ϕ the phase of the local oscillator. The phase is with
respect to the AC signal. Using a low pass filter to remove the frequency sum term and set-
ting the frequency and phase of the local oscillator to be the same as the AC signal gives an
output that is proportional to the transmission modulation kernel, VLOVAC

2
. The lockpoint
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Figure 5.6: Diagram for the locking of the
EOM. Expanding on the “System” inset of
Fig. 5.1, the detected light from the EOM re-
flection is split into AC and DC components
using a bias T. The AC portion is mixed down
with a LO and passed through a low pass fil-
ter (LPF) to create an error signal that is
proportional to the transmission modulation
amplitude. A PID lock, which stands for
Proportional-Integral-Derivative, uses this er-
ror signal to control the modulation amplitude
of the input voltage into the EOM. The DC
portion of the reflection is sent directly to the
PID lock to generate a DC offset to keep the
EOM at the center of the linear regime. The
AC modulation and DC offset are combined
with another bias T and amplified 50 X before
being sent to the EOM.

for the modulation kernel is set via a function generator such that it can be controllably
changed during the experiment to find the uncertainty in the transmission estimation, see
Sect. 5.1.2. The feedback control output is sent to the voltage modulator to control the
amplitude of the modulation output going to the EOM.

The DC portion of the detected reflection is also the error signal for the linear regime
lock. The feedback control is used to shift the voltage offset of the modulation to keep
the EOM at the center of the linear regime, shown in Fig. 5.4. When shifted away from
the center, the transmission modulation decreases for a given voltage amplitude due to a
change in the slope response. Since the EOM lock is from the reflection, the DC voltage
needs to be constant throughout the experiment in order for the transmission modulation
to be repeatable. If we had picked off a bit of the transmission from the EOM to do the
lock, a shift in the DC portion, and thus a change in the EOM response, could be correctly
compensated for by increasing or decreasing the modulation amplitude. However, using the
reflection the AC lock will compensate in the opposite direction that it should for changes in
the DC portion. On the other hand, the reflection gives a much greater AC error signal than
picking off part of the transmission and allows for a greater maximum mean transmission
for the experiment.

PID control boxes are used to lock both the AC and DC signals and a bias T is used to
combine the output from the DC lock and the voltage modulation. This offset modulation
is then amplified by 50x using a high power amplifier and sent to the EOM. With this lock
system, the transmission modulation is repeatable from measurement to measurement and
the amplitude of the transmission modulation is known at all times.

55



Figure 5.7: Error signal from the
PDH. Due to the phase difference
between the left and right detuned
modulation, the detected modula-
tion flips sign across zero detuning.
This generates a derivative like error
signal used to lock the cavity to the
laser.
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5.2.2 State control

For the bTMSS, the pump and probe seed powers are locked by sampling part of each beam
before the Rb cell. The probe power is sampled using a beam splitter and controlled via the
AOM used to detune it from the pump beam. By decreasing the amplitude of the acoustic
modulation of the AOM, the efficiency of the frequency conversion is reduced, lowering the
probe power. Increasing its amplitude increases the probe power. To lock the pump power,
part of the pump is picked up via a beam sampler. The detected power is kept steady by
using a polarizing beam splitter (PBS) and a half waveplate in an electronically controlled
rotation mount. Rotating the waveplate with the mount changes the transmission through
the PBS and thus the pump power. This method is much slower than the probe power
control, however the FWM process is not sensitive to fast pump power fluctuations and this
feedback scheme was quick enough to compensate for the slow thermal drift of the pump
power.

The cell temperature controls the density of Rb atoms in the vapor cell. Higher temper-
ature leads to a higher density, which allows for higher gain of the FWM process, but also
increases the rate of other processes as well, such as probe absorption. The squeezing of
our bTMSS is optimal at around 120◦ C and we controlled the cell temperature to < 0.1◦ C
using a PID temperature controller.

The laser frequency is locked by measuring the conjugate power after the Rb vapor cell.
Since the pump, probe seed power, and cell temperature are locked, the only way the gain
of the FWM process can change is from frequency drift of the involved fields. The probe
frequency is shifted by 3.04 GHz from the pump frequency by the AOM and thus only
the pump frequency needs to be locked. Changes in the conjugate power serves as the error
signal for frequency shifts, as the FWM gain, and thus the conjugage power, will change with
frequency. The probe power could also be used, but the change in the system transmission
would need to be compensated for. Thus, the conjugate is the better choice for locking the
laser frequency.

The cleanup cavity, used to make the probe seed resemble a coherent state, is locked
to the probe frequency using the Pound-Drever-Hall (PDH) technique [62]. This technique
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is used as the cavity needs to be locked where the power out is maximized. As such, a
shift in the cavity resonance frequency in either direction lowers the transmission. The
PDH technique creates a derivative error signal that can differentiate the direction of the
frequency shift. To generate the derivative signal from the cavity reflection, an EOM applies
a phase modulation at 10 MHz to the probe beam. This modulation is an order of magnitude
outside the linewidth of the cavity, < 0.6 MHz, and is not transmitted. The reflection from
the cavity is then detected and is mixed with a 10 MHz electronic local oscillator (LO) to
demodulate similarly to what is done for the EOM AC lock, see Eq. (5.17). After filtering
out the frequency sum term, the error signal is

error signal =
VLOVref

2
cos(ϕδf ) (5.18)

where Vref is the voltage amplitude of the detected modulation and ϕδf is the phase difference
between the modulation and the LO. This phase depends on the difference in frequency, δf ,
between the resonance frequency of the cavity and the frequency of the incident light up
to a difference of π between the light frequency well above and well below the resonance
frequency of the cavity. As shown in Fig. 5.7, this is what gives the derivative like error
signal. As the frequency of the light moves away from resonance with the cavity, shifting
higher or lower, shifts the phase in the opposite direction and gives a positive or negative
error signal voltage.

5.3 Calibration

With tight control over the state and system, the next step is calibrating exactly what
modulation amplitude or what bTMSS are being generated throughout the experiment. In
addition, in order to compare the experimental results to the expectations from the theory,
we need a way to count the number of photons used in the measurement.

5.3.1 EOM calibration

To calibrate the modulation kernel for a given AC lockpoint, the measured oscillating probe
power is read on an oscilloscope and the lockpoint is changed from 300% of the maximum
lockpoint during the experiment to 40% in steps of 20%. At each lockpoint, multiple os-
cillations of the modulation are recorded. The probe power during the calibration is given
by

P (t) = PinTEOMTadjηp (5.19)

= Pin

[
T̄ Tadjηp +

√
2T̄ Tadjηpδ

(lp)
T sin(2πft)

]
, (5.20)

where Pin in the input power, ηp is the detection efficiency of the probe mode, and δ
(lp)
T is

the kernel for a given lockpoint. During the analysis, the mean power of the probe mode is
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Figure 5.8: The EOM transmission modulation
kernel, δt, is calibrated as a function of the EOM
modulation lockpoint. The lockpoint is scanned
from 300% of the maximum lockpoint used in the
measurement to 40%. The blue data points show
the 1 standard deviation error bars for the cal-
ibration and the red line is the linear fit. The
transmission modulation is well within the lin-
ear regime of the EOM voltage response since a
lockpoint 3x higher than the experimental value
is still linearly related to the modulation kernel.
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calculated for each trace and subtracted from the recorded trace. The remaining modulation
term is then divided by the mean value such that the trace is

trace(t) =
√

2δ
(lp)
T sin(2πft). (5.21)

The amplitude of the trace is calculated using a fast fourier transform (FFT). Using an
FFT instead of fitting parameters to the function allowed for a more precise estimation of
the modulation kernel that is not affected by oscillations or noise at other frequencies. The
results of the calibration are shown in Fig. 5.8 with the one sigma vertical error bars for
the kernel shown in blue and the linear fit for the modulation kernel as a function of the
lockpoint shown in red. The modulation is well within the linear regime as the linear fit
matches for a lockpoint three times higher than what is used in the experiment.

5.3.2 Photon flux to photon number conversion

The QCRB sets the lower bound for a given number of probing photons. For the experiment,
the state generated is a continuous wave with a set photon flux in the probe mode. In order
to compare the transmission estimation results with the bound, the photon flux of our state
must be converted into a photon number given an effective detection time.

For a given photon flux Φ, the power, P , of the light beam is [29,30]

P = Φ
hc

λ
, (5.22)

where c is the speed of light, h is Plank’s constant, and λ is the wavelength of the laser.
When the light is detected on a photodiode, the photodetector gives a voltage reading with
a linear relation to the power such that Vpd = mP , where m is the conversion factor. The
conversion factor, m, is calibrated using a power meter on a flip mount moved in and out
of the probe detected by the photodetector for multiple different powers. The number of
photons used in a measurement is then

⟨n̂p⟩r = Φpte =
λp
hc

te
m
Vpd, (5.23)
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Figure 5.9: Spectrum analyzer model used in
the calculations. The Input is split into the in-
phase and out-of-phase paths to be mixed with
a Sine wave or Cosine wave LO, respectively.
After mixing, each path is filtered by the RBW
filter and then squared via a mixer. The two
paths are summed and the output of the spec-
trum analyzer is the variance of the input, up
to some scaling factor k.

where te is the effective time of the measurement.
The effective measurement time is based on the bandwidths of the various parts of the

measurement apparatus. Each point on the noise and signal traces from the spectrum an-
alyzer depend on the photon flux at the time of recording and the response time of the
measurement apparatus. For an ideal apparatus, the response time for a point in the spec-
trum analyzer trace would have a sharp cutoff at the detection ±t/2 [63]. However, a real
response does not sharply end but instead steadily reduces to zero. The effective time, te, of
a measurement is defined as the width of a rectangular, sharp cutoff measurement response
time equivalent to the response time of the actual measurement, such that the total number
of photons for the measurement is the same for each response.

For our experiment, the effective time is dominated by the resolution bandwidth (RBW)
of the spectrum analyzer. This is due to the RBW being much smaller, and thus have a
longer response time, than any other bandwidths, such as the photodetector bandwidth or
the spectrum analyzer analog-to-digital conversion bandwidth. It should be noted that we
do not consider the video bandwidth (VBW) smoothing of the trace. This smoothing is
turned off to simplify the time calculations as the VBW would correlate the points in the
trace, increasing the effective measurement time [59,60].

To find the effective measurement time, we will use the photon number statistics of the
coherent state. The noise power of a coherent state intensity measurement will be error
propagated into photon number variance. As will be shown below, this error propagation
will give the effective time as a function of the RBW. The first part of the calculation is
to find the electronic gain of the spectrum analyzer, such that it can be removed and the
output of the spectrum analyzer is the actual variance of the input.

Deterministic signal to remove electronic gain

The basic operation of a spectrum analyzer is given in Fig. 5.9. An input signal is split
into two paths, an in-phase path, I, and an out-of-phase path, Q. The in-phase path is the
upper one in Fig. 5.9 and is mixed with a LO of a set phase. The out-of-phase path mixes
the signal with a LO 90◦ out of phase with the in-phase LO. These LOs are represented
by the sin and cos inputs into the mixers shown in Fig. 5.9. After mixing with the LO in
either path, the signal passes through a low pass filter, the RBW filter, and is then squared.
Both paths are then summed together to create the output. The output I2 + Q2 scales
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with the variance of the input signal. Unlike the measurement response time, this scaling
of the output with the input variance has no effect on the number of photons used in the
measurement as multiplying the signal and noise traces by a scalar value after measurement
does not change the number of photons used to generate the traces. However, the scaling
factor can affect our calculations, and so needs to be found. This can be done by calculating
the output of a deterministic signal through the spectrum analyzer.

For an arbitrary, deterministic signal, A sin(2πft+ ϕ), with variance A2

2
, the output will

be kA2

2
, where k is some scaling factor. Going through the spectrum analyzer, the input

signal is first split by a factor z such that the amplitude is A/z for I and Q. The splitting
is kept arbitrary such that the effects of the splitter can be examined.

After mixing with the local oscillator, path I is

I =
A

z
sin(2πft+ ϕ) sin(2πfLt) (5.24)

=
A

2z

{
[cos(2πf−t) − cos(2πf+t)] cos(ϕ) − [sin(2πf−t) − sin(2πf+t)] sin(ϕ)

}
,

(5.25)

and similarly path Q is

Q =
A

2z

{
[sin(2πf−t) + sin(2πf+t)] cos(ϕ) + [cos(2πf−t) + cos(2πf+t)] sin(ϕ)

}
,

(5.26)

where f± = f ± fL are the sum and difference frequencies from the mixer and fL is the
frequency of the LO. The paths then are convolved in the time domain with the RBW filter
with a frequency response H(f). The impulse response of the filter is given by

h(t) =

∫ ∞

−∞
H(f)e2πiftdf. (5.27)

Note that we are working with linear frequencies instead of radial, 2πf , such that there is
no 1

2π
term to consider for the Fourier transform. The in-phase path after convolution with

the RBW is

I =
A

2z

∫ ∞

−∞
dτ
{

[cos(2πf−t) − cos(2πf+t)] cos(ϕ)

− [sin(2πf−t) − sin(2πf+t)] sin(ϕ)
}
h(t−τ) (5.28)

=
A

4z

∫ ∞

−∞
df
{[
δ(f− − f)H(f)e2πift + δ(f− + f)H(f)e2πift

−δ(f+ − f)H(f)e2πift − δ(f+ + f)H(f)e2πift
]

cos(ϕ)

−1

i

[
δ(f− − f)H(f)e2πift − δ(f− + f)H(f)e2πift

−δ(f+ − f)H(f)e2πift + δ(f+ + f)H(f)e2πift
]

sin(ϕ)
}

(5.29)
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Let us assume that H(f+) = 0 so that the RBW filter filters out the frequency sum term
from the LO mixer. In this way, the spectrum analyzer picks out only the terms near the
LO frequency. With this assumption, the in-phase path simplifies to

I =
A

4z

{ [
H(f−)e2πif−t +H(−f−)e−2πif−t

]
cos(ϕ)

−1

i

[
H(f−)e2πif−t −H(−f−)e−2πif−t

]
sin(ϕ)

}
, (5.30)

and the out-of-phase path can be shown to be

Q =
A

4z

{1

i

[
H(f−)e2πif−t −H(−f−)e−2πif−t

]
cos(ϕ)

+
[
H(f−)e2πif−t +H(−f−)e−2πif−t

]
sin(ϕ)

}
. (5.31)

Finally, squaring and adding Eqs. (5.30) and (5.31) to find the output of the spectrum
analyzer gives

I2 +Q2 =
A2

4z2
|H(f−)|2 . (5.32)

For the output of the spectrum analyzer to be the variance of the deterministic input
signal, the LO frequency must be at the same as the input frequency such that f− = 0. At
this LO frequency, the output is maximum and equal to

I2 +Q2 =
A2

2
k, (5.33)

where the scaling term is given by

k =
|H(0)|2

2z2
. (5.34)

This scaling is taken into account to obtain the variance from the output of the spectrum
analyzer when looking at the intensity measurement noise of a coherent state.

Coherent state power fluctuations

For calculating the coherent state power fluctuations, we will use the continuous wave no-
tation where â is now time dependent. In this notation, |α|2 for the coherent state is the
mean photon flux instead of the mean photon number. Furthermore, to get the variance of
the measurement, we only need to look at the fluctuations of the operators [44],

δâ = â− ⟨â⟩ = â− α, (5.35)

where δâ represents the fluctuations of the operator around the mean value. We will also
assume α to be real. Using this notation, the power of the fluctuations, δP̂ , of the state
are [44]

δP̂ = α
(
δâ(t) + δâ†(t)

)
= α

∫ ∞

−∞

(
δâ(f) + δâ(−f)†

)
e2πiftdf, (5.36)
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where we are assuming the fluctuations are small compared to the mean value, such that
terms of the order O(δâ2) can be neglected. The noise power from the photodetector after
measuring the state is gδP where g is from the electronic gain of the detector. Since the
RBW is significantly smaller that the bandwidth of the detector, the detector gain can be
taken as constant over the frequency range of the RBW.

After detection of the state, it is sent into the spectrum analyzer. Similar to the deter-
ministic signal, the input is split into the in-phase and out-of-phase paths. After mixing
with the in-phase LO, the in-phase path is

I =
αg

2iz

∫ ∞

−∞
df
[(
δâ(f−) + δâ(−f−)†

)
e2πif+t −

(
δâ(f+) + δâ(−f+)†

)
e2πif−t

]
, (5.37)

and the out-of-phase path is

Q =
αg

2z

∫ ∞

−∞
df
[(
δâ(f−) + δâ(−f−)†

)
e2πif+t +

(
δâ(f+) + δâ(−f+)†

)
e2πif−t

]
. (5.38)

To make dealing with the fluctuation terms easier, we deviate from the steps of the deter-
ministic signal calculations, and next apply the RBW filter and square the in-phase and
out-of-phase paths. Afterwards, we will take the expectation values of both paths and add
them together. Starting with the in-phase path, the RBW filtering and squaring gives

I2 = −α
2g2

4z2

∫ ∞

−∞
df

∫ ∞

−∞
dωH(ω)H(f − ω)

[ (
δâ(ω − fL) + δâ(−ω + fL)†

)
e2πi(ω−fL)t

−
(
δâ(ω + fL) + δâ(−ω − fL)†

)
e2πi(ω+fL)t

]
×
[ (
δâ(f − ω − fL) + δâ(−f + ω + fL)†

)
e2πi(f−ω−fL)t

−
(
δâ(f − ω + fL) + δâ(−f + ω − fL)†

)
e2πi(f−ω+fL)t

]
,

(5.39)

where ω is also a linear frequency and is used for integration. The expectation value of〈
δâ(f)δâ(f ′)†

〉
= δ(f − f ′), assuming O(δâ2) can be neglected [44]. Using this relation, the

expectation value of I2 is

〈
I2
〉

= −α
2g2

4z2

∫ ∞

−∞
dfH(f) [H(2fL − f) − 2H(−f) +H(−2fL − f)] . (5.40)

For the out-of-phase term

〈
Q2
〉

=
α2g2

4z2

∫ ∞

−∞
dfH(f) [H(2fL − f) + 2H(−f) +H(−2fL − f)] . (5.41)

Adding the two paths together gives the output of the spectrum analyzer,

〈
I2 +Q2

〉
=
α2g2

z2

∫ ∞

−∞
df |H(f)|2 . (5.42)
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Finally, dividing by k, Eq. (5.34), gives the variance of the detected coherent state input
signal 〈

∆2Input
〉

= 2α2g2
∫∞
−∞ df |H(f)|2

|H(0)|2
. (5.43)

The splitting term from the initial splitting of the input is canceled out in this last step. How
the input is split, either by power, z =

√
2, or voltage, z = 2, does not affect the variance of

the input nor the number of photons used in the measurement.

Effective measurement time from error propagation of coherent state detection

The variance of the intensity detection in Eq. (5.43) can be error propagated into the photon
number variance of the coherent state. To get the correct variance, the effective timing of
the measurement will need to be set. Using ⟨Input⟩ = gα2 = g ⟨n̂⟩

te
, where ⟨n̂⟩ is the average

number of photons detected in the effective detection time te, the photon number variance
is 〈

∆2n̂
〉

=
⟨∆2Input⟩∣∣∣∂⟨Input⟩∂⟨n̂⟩

∣∣∣2 (5.44)

= 2 ⟨n̂⟩ te

∫∞
−∞ df |H(f)|2

|H(0)|2
(5.45)

= ⟨n̂⟩ , (5.46)

where the last equation comes from the photon number statistics of a coherent state. Setting
Eq. (5.45) equal to Eq. (5.46) and solving for the effective time gives

te =
|H(0)|2

2
∫∞
−∞ df |H(f)|2

. (5.47)

For the spectrum analyzer used in the experiment, the RBW is the full-width at half-max
of an approximate Gaussian filter. This response is for |H(f)|2, not the actual low pass filter
response. For a Gaussian RBW

|H(f)|2

|H(0)|2
= e−

4 ln(2)f2

RBW2 (5.48)

and the effective time is

tGauss =

√
ln(2)

π

1

RBW
≈ 0.47

RBW
. (5.49)

Due to the RBW filter not being a perfect Gaussian [60], a correction factor of of ≈ 0.94 needs
to be applied to the effective time such that for our system

te ≈
0.44

RBW
. (5.50)
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Figure 5.10: Results of the bTMSS trans-
mission estimation uncertainty experi-
ment. The transmission uncertainty is
scaled by the number of photons used to
probe the system. The black points are
the bTMSS measurement results with one
standard deviation horizontal error bars
for the mean transmission and vertical er-
ror bars for the transmission uncertainty.
Similarly, the green points are for the co-
herent state with error bars in the mean
transmission and the uncertainty in the
transmission estimation.
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For our experiment, the RBW is 51 kHz and the effective time for the transmission estimation
is 8.63 µs for a total of ∼ 109 probe photons probing the system under study. As shown
in Fig 5.10, this information allows us to rescale the transmission uncertainty from the
experiment by the number of photons probing the system.

5.3.3 State characterization for determining the QCRB

For the actual bTMSS generated for our experiment, the previous approximation, see Sect. 4.3,
of perfect state generation followed by loss does not hold in our case. Since the squeezing
and beam splitter operators do not commute, the theory has to be expanded upon to include
a absorptive generation, were there the state suffers loss during generation, of the bTMSS. A
way to approximate the absorptive state generation is to distribute the loss throughout the
generation process by splitting up the two mode squeezer into a series of smaller squeezers
and apply a beam splitter operation in between each squeezer as shown in Fig. 5.11. The
operations for the squeezing and loss operations can be broken up using [51,64]

Ŝp,c(ξ) =
N∏

n=1

Ŝp,c(ξ/N), (5.51)

B̂p(Tx) =
N∏

n=1

B̂p(
N
√
Tx), (5.52)

B̂c(Ty) =
N∏

n=1

B̂c(
N
√
Ty), (5.53)
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Conj Figure 5.11: Model for squeezing generated in
an absorptive medium. The squeezing operator is
broken up into an infinite number of infinitesimal
parts composed of a stage of loss in the probe from
beam splitters after each stage of squeezing.

where Tx and Ty are the transmissions of the probe and conjugate mode, respectively. The
total operation for the distributed loss during state generation is

Ŝp,c(ξ;Tx, Ty|N) =
N∏

n=1

B̂c(
N
√
Ty)B̂p(

N
√
Tx)Ŝp,c(ξ/N). (5.54)

In the limit of N → ∞, this was shown to be an accurate model for the absorptive gener-
ation of a bTMSS seeded with a coherent state [51]. The covariance matrix and displacement
vector can be solved analytically following the work done by Jasperse et. al [64]. Working
in the Heisenberg picture, the photon annihilation operators for the probe and conjugate
modes transform as

Ŝ†
p,c(s)âpŜp,c(s) = âp cosh(s) + â†c sinh(s), (5.55)

Ŝ†
p,c(s)âcŜp,c(s) = âc cosh(s) + â†p sinh(s), (5.56)

B̂†
p(Tx)âpB̂p(Tx) =

√
Txâp +

√
1 − Txâx, (5.57)

B̂†
c(Ty)âcB̂c(Ty) =

√
Tyâc +

√
1 − Tyây, (5.58)

(5.59)

where the squeezing angle is set to decrease the variance of the amplitude difference quadra-
ture, Tx and Ty are the transmissions for the probe and conjugate, respectively, and the
operators âx and ây are vacuum mode operators. The operators at the n + 1 step can be
written as

â(n+1)
p =

√
Tx
[
â(n)p cosh(s) + â†(n)c sinh(s)

]
+

√
1 − N

√
Txâ

(n+1)
x (5.60)

â†(n+1)
c =

√
Ty
[
â(n)p sinh(s) + â†(n)c cosh(s)

]
+

√
1 − N

√
Tyâ

(n+1)†
y . (5.61)

Recursively applying each step, the final Nth step operators can be expressed as a matrix
transform of the form(

â
(N)
p

â
†(N)
c

)
= AN

(
â
(0)
p

â
†(0)
c

)
+

N∑
n=1

AN−n

(√
1 − N

√
Txâ

(n)
x√

1 − N
√
Tyâ

(n)†
y

)
, (5.62)

where

A =

(
N
√
Tx cosh(s/N) N

√
Tx sinh(s/N)

N
√
Ty sinh(s/N) N

√
Ty cosh(s/N)

)
. (5.63)
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It can be seen from Eq. (5.62) that as the state is generated through each step, the field
strength of the EM wave is both decreased by the transmissions of each mode through the
beam splitters and increased by the squeezers and the correlation between the two modes
changes in the same way. The part of the field lost to the environment changes as the steps
increase and some of the generated photons from previously applied squeezing operations
are lost. As shown in Appendix A, the final operators can be solved for and a density matrix
and displace vector can be found for a bTMSS with imperfect generation.

QCRB for the imperfect generation of the bTMSS

For only displacing the probe mode and having no absorption of the conjugate mode, we
have calculated the QCRB using the Gaussian form of the QFI [23],

〈
∆2T

〉(Lossy bTMSS) ≥ T

ηp ⟨n̂p⟩r
− T 2

⟨n̂p⟩r
TpH

′
c

32s2
√
Tx sinh2

(
ζ
4

)
ζ2
(√

Tx − 1
)

+ Γ
, (5.64)

where ζ =
√

16s2 + ln2 (Tx),

Γ =
√
Tx

{
cosh

(
ζ

2

)[
ζ2 + ln2 (Tx)

]
− ln (Tx)

[
ln (Tx) + 2ζ sinh

(
ζ

2

)]}
, (5.65)

and

H ′
c =

2ηc − 1

ηc

(
1 +

ζ2 (ηc − 1)

ζ2
[
1 + ηc

(√
Tx − 2

)]
+ ηcΓ

)
. (5.66)

The conjugate loss term, H ′
c, has the same relation with ηc as Hc in Eq. (4.44), such that the

term is positive for ηc > 0.5 and negative for ηc < 0.5 and H ′
c = 1 when ηc = 1. The linear

term of the QCRB in Eq. (5.64) is the same as the other bounds given in Eqs. (4.40)-(4.43),
as it is the quadratic term that contains the quantum advantage. Though the (

√
Tx − 1)

part in the denominator may suggest otherwise, the quadratic term does not change sign
as Tx → 0 due to the larger positive Γ. As before, the probe losses make the bound tend
towards that of a coherent state,

⟨∆2T ⟩(lossy bTMSS)

⟨∆2T ⟩(coh)
−−−→
Tx→0

1, (5.67)

as less probe transmission through the squeezing medium would have the mode tend to-
wards a coherent state, not a thermal state. Unlike with propagation and detection loss,
see Eqs. (4.45) and (4.46), the quantum advantage does not decrease linearly with state
generation loss.

State fitting

Different amounts of squeezing and different propagation and detection losses have different
QCRBs. To set the QCRB, Eq. (5.64), for our experiment, the state and subsequent losses
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must be characterized. The bTMSS generated in the experiment can be characterized using
the predicted balanced intensity difference variance and single beam intensity variances from
the theoretical values and comparing them to the actual measured values. As shown in
Appendix A, the variances normalized by a coherent state of equal power are

⟨∆2 (n̂p − n̂c)⟩0
⟨n̂p⟩0 + ⟨n̂c⟩0

= 1 −
2s sinh2( ζ

4
)

ζ cosh( ζ
2

+ ς)
−
√
Tx
s ln2(Tx) sinh4( ζ

4
)

2ζ3 cosh( ζ
2

+ ς)
, (5.68)

⟨∆2n̂p⟩0
⟨n̂p⟩0

=
16s2

{
1 −

√
Tx
[
1 − cosh( ζ

2
)
]}

+ ln2(Tx)

ζ2
, (5.69)

⟨∆2n̂c⟩0
⟨n̂c⟩0

=
2
√
Tx
[
8s2 + (ζ2 − 8s2) cosh( ζ

2
) − ζ ln(Tx) sinh( ζ

2
)
]
− ζ2

ζ2
, (5.70)

where tanh(ς) = ln(Tx)
ζ

. These are for the generated, not the measured, state and as such
do not include the propagation and detection loss terms. For the individual mode intensity
variances, the variances of the generated beams can be backtracked from the measured
variance using 〈

∆2n̂
〉
m

= η2
〈
∆2n̂

〉
0

+ η(1 − η) ⟨n̂⟩0 , (5.71)

⟨n̂⟩m = η ⟨n̂⟩0 (5.72)

such that

⟨∆2n̂⟩0
⟨n̂⟩0

=

⟨∆2n̂⟩
m

⟨n̂⟩m
− (1 − η)

η
, (5.73)

where η is the total transmission of the mode and the subscript m indicates the measured
value. For the probe mode, η = Tpηp and η = ηc for the conjugate mode.

Thus to characterize the state, the propagation and detection transmissions of the probe
and conjugate mode must first be calibrated. To measure the transmissions, two power
meters are set up. One power meter, PM1, is mounted before the Rb vapor cell on a flip
mount and a second power meter, PM2, is moved around to measure different transmissions.
To begin, the vapor cell is moved out of the beam path and PM2 is set directly behind
PM1 to calibrate the difference in power readings between the two power meters. Next,
PM2 is moved to before the system under study to measure the common path of both
the probe and conjugate modes after the cell and is found to be Tcommon = 98.4% ± 1%.
Afterwards, the Rb vapor cell is put back and, with the probe far off any Rb resonance,
the transmission of the cell windows is calculated. Each cell window is found to have a
transmission of Twindow = 98.8% ± 1%. Only the output window of the cell is part of the
probe propagation transmission and thus Tp = TcommonTwindow = 97.3%± 1%. The detection
efficiency of the photodiodes is approximated from previous work with the same model of
photodiodes which had a quantum efficiency of ηp = 94.5%±2% [51]. The detection efficiency
of the conjugate mode for our setup is the same as the total transmission of the probe mode,
ηc = Tpηp = 91.9%± 2%. Thus for both modes η = 91.9%. The intensity difference variance
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from the generated state can also be backtracked from the measured state using

〈
∆2(n̂p − n̂c)

〉
m

= η2
〈
∆2n̂p

〉
0

+ η(1 − η) ⟨n̂p⟩0 + η2
〈
∆2n̂p

〉
0

+ η(1 − η) ⟨n̂p⟩0
−2η2

(
⟨n̂pn̂c⟩0 − ⟨n̂p⟩0 ⟨n̂c⟩0

)
(5.74)

= η2
〈
∆2(n̂p − n̂c)

〉
0

+ η(1 − η)
(
⟨n̂p⟩0 + ⟨n̂c⟩0

)
(5.75)

such that

⟨∆2(n̂p − n̂c)⟩0
⟨n̂p⟩0 + ⟨n̂c⟩0

=

⟨∆2(n̂p−n̂c)⟩
m

⟨n̂p⟩m+⟨n̂c⟩m
− (1 − η)

η
, (5.76)

since the transmission of both modes is the same

With the generated state noises measured, the bTMSS used in the experiment can be
characterized. To find the parameters for the generated state, the squeezing s and internal
probe transmission Tx, the variance of the probe, conjugate, and balanced intensity differ-
ence measurements are compared to the theory for the variances, Eqs. (5.68)-(5.70). The
goodness-of-fit, GoF, parameter for the fitting is [65]

GoF(s, Tx) =
∑
i

[Measurementi − Theoryi(s, Tx)]2

Uncertainty of Measurementi
, (5.77)

where the sum is over each normalized measurement indexed by i. The values of s and Tx
that minimized GoF minimize the difference between the measurements and the theoretical
predictions. As explained in Appendix B, the parameter values are considered a good fit
when the GoF ≤ 1.

The GoF minimization process involves a type of genetic algorithm, called differential
evolution [66,67], to explore the parameter space of all possible s and Tx values to find the
global minimum for the GoF. For the minimization, a collection of random values for the
parameters are generated and then mixed based on the GoF for those parameter values.
This process allows the algorithm to search the parameter space of the GoF and find the
global minimum. The algorithm is explained in detail in Appendix B. The parameter values
that best match the theory to the measurements are s = 2.04 ± 0.02 and Tx = 71% ± 2%
with a GoF= 0.4563.

These parameters are not used as part of the transmission estimation from the measure-
ment, only for setting the QCRB for our state. To also keep the QCRB independent of the
probing power, the bound is rescaled by the number of probing photons when comparing the
experiment results to the bound. This keeps the photon number a property of the measure-
ment and thus the fundamental bound for the measurement only uses the parameters from
this section: Tp, ηp, ηc, Tx and s. Therefore the bound calculations and experiment analysis
are completely independent of each other and the bound cannot be adjusted to better match
the experimental results as there are no free parameters in setting the QCRB for our state.
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5.4 Final results

The final results [23] are shown in Fig. 5.12. The solid orange line is the QCRB for the bTMSS
generated for the experiment. The calculation of the bound is done using measurements not
part of the uncertainty measurements. These measurements are of the individual probe
and conjugate intensity variance and the balanced intensity difference variance of the two
modes and they are used to find and characterize the state parameters. These measurements
are only used to find the bound for our state and do not contribute to the transmission
uncertainty calculations. The gray region is the one standard deviation error in the QCRB
due to the uncertainty in the calibration of the parameters of the bound; s, Tx, Tp, ηp,
and ηc. In black is the measured transmission uncertainty scaled by the number of probing
photons with 1 standard deviation horizontal error bars in the mean transmission and vertical
error bars for the transmission uncertainty. The number of photons is recorded for every
transmission measurement, as is the uncertainty in the transmission estimation. The data
points are well within the uncertainty range for the theoretical QCRB, indicating that the
optimized intensity difference measurement does saturate the bound. Because of the tight
control of the state and system are we able to build these statistics and because of the
calibrations of the measurement and system can we compare our results to the theory and
show saturation of the bound.

Also shown in blue in Fig. 5.12 is the ultimate limit for transmission estimation. While
our state does not reach this limit, even when taking into account losses in the probe mode,
our state is close. With improved technology to increase squeezing and reduce absorption
during state generation, the gap between our state and the ultimate bound will be reduced.

These results not only show that the optimized intensity difference measurement satu-
rates the QCRB for transmission estimation, but also that the bound can be saturated with
currently available technology. The estimation variance is dominated by quantum statistics
and not fluctuations from the measurement or laser system. With the transmission estima-
tion uncertainty set by the state probing the system under study, further enhancement of
the measurement cannot be done by designing better measurements and must be done by
improving the generation of quantum states.
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Figure 5.12: Results of the bTMSS transmission estimation uncertainty experiment. The
orange lines show the QCRB for the bTMSS (solid) and coherent state (dashed) and the gray
regions are the one standard deviation errors in the theoretical bounds. The transmission
uncertainty is scaled by the number of photons used to probe the system. The black points
are the bTMSS measurement results with one standard deviation horizontal error bars for
the mean transmission and vertical error bars for the transmission uncertainty. Similarly,
the green points are for the coherent state with error bars in the mean transmission and the
uncertainty in the transmission estimation. Also plotted in blue is the ultimate limit (solid)
and the ultimate limit with the same propagation and detection losses as the probe mode
(dashed). The lossy ultimate limit is assumed to be the same as the Fock state QCRB.
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Chapter 6

Resonance Sensors:
Comparison of Sensitivity Limits
Based on Phase and Transmission
Measurements

In the previous chapters, the phase of the system model is ignored as it had no effect on
the transmission estimation. In this chapter, we will expand the system model to include
the phase change, i.e. dispersion, introduced by the system under study as the probe mode
is transmitted, allowing for two different parameters to be estimated in order to sense a
change in the system. Intrinsically, there is a link between transmission and phase changes
for a system as, due to causality, a system is not able to respond to any driving force,
i.e. an EM field, instantaneously. To do so would involve reacting to the driving force
before being affected by it. Since the system cannot respond instantaneously, the delayed
response time causes a phase delay between the input and output EM fields. Thus, for a
system with a transmission dependent on the optical frequency, there must exist a frequency
dependent phase change as well. The frequency dependent transmission and phase are set
by the complex system transfer function, τ(f), such that transmission T = |τ |2 and phase
ϕ = arg(τ).

There exists a common type of sensor, the resonance sensor, that has a frequency depen-
dent transmission and phase responses such as those shown in Fig. 6.1(a). These devices have
a transfer function with a relatively large change in magnitude centered around a resonance
frequency. When the resonance frequency shifts, so does the transmission and phase response
of the system. The plasmonic sensor [68,69] mentioned previously falls into this category as do
optical cavities [70], whispering-gallery mode resonators [71,72], and photonic crystals [73] all of
which have a resonance frequency shift caused by changes in temperature, stress or strain,
or local refractive index. When probing the sensor with light at a given frequency, a change
in the resonance frequency can be sensed using either the change in transmission or phase.
Thus, a comparison of phase and transmission measurements can be done using frequency
estimation as it is not a simple question as to which parameter, transmission or phase, gives
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Figure 6.1: Response of a resonance sensor. (a) The transmission and phase for a Lorentzian
lineshape transfer function. A resonance frequency shift causes the transmission and phase to
change. Thus, a measurement of the transmission or phase can be used to estimate the change
in frequency. (b) Setup for probing the resonance sensor. As before, the bTMSS is generated,
suffers loss before and after the system on the probe mode and losses on the conjugate mode, and
the transmission or phase of the state is measured to estimate the change in frequency. © IOP
Publishing. Reproduced with permission. All rights reserved [75].

a better estimation of the shift in resonance frequency since it is dependent on the form of
the transfer function. For clarity, the frequency shift, as the parameter of interest, will be
“estimated” through the transmission or phase, which will be considered “measured”. So we
will be doing phase or transmission measurements to estimate the frequency shift.

It has been shown that the bTMSS, in addition to transmission measurements, can also be
used to measure phase with a quantum enhancement over a classical state. The uncertainty
in the measurement of phase has a known QCRB for the lossless case given by [74]

〈
∆2ϕ

〉(bTMSS) ≥ sech(2s)

4 ⟨n̂p⟩r
. (6.1)

Thus, the comparison between phase and transmission measurements will be done as fair as
possible. That is, using the same state, probe power, and QCRB saturating measurement, as
it will be shown below that a quadrature measurement, the optimized homodyne detection,
can saturate both the transmission and phase QCRB.

Figure 6.1(b) shows the setup for the resonance sensor parameter estimation, which is
similar to the setup for transmission estimation except the system of interest changes the
phase and transmission of the incident light. For simplicity, let us first assume the resonance
sensor has a Lorentzian lineshape, as shown in Fig. 6.1(a), such that the system response
has a transfer function of the form

τ(f) =
1

1 − i
(

f−f0
∆f

) , (6.2)

where f0 is the resonance frequency and ∆f is the half-width at half-max (HWHM).
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The real and imaginary parts of the transfer function are Hilbert transforms of each other,
also known as the Kramers-Kronig relations [76,77], which arise from causality for a system
responding to a driving force.

The Lorentzian transfer function has a transmission and phase response of the form

T (f) =
1

1 +
(

f−f0
∆f

)2 = |τ(f)|2 (6.3)

ϕ(f) = arctan

(
f − f0

∆f

)
= arg

(
τ(f)

)
, (6.4)

respectively. Shifting either the probing frequency, f , or the resonance frequency, f0, leads to
the same change in magnitude for either the transmission or phase of the system, governed
by the HWHM. We define a unitless parameter F = f−f0

∆f
to make the analysis independent

of the resonance frequency or HWHM of a particular resonance sensor. This also allows for
our analysis to include resonance sensor where the HWHM changes instead of, or in addition
to, the resonance frequency. The variance in either parameter can be recovered from the
unitless parameter via [37] 〈

∆2f0
〉

= ∆2
f

〈
∆2F

〉
(6.5)〈

∆2∆f

〉
=

∆2
f

F 2

〈
∆2F

〉
. (6.6)

The resonance frequency uncertainty is just a rescaling by the HWHM from the unitless
frequency uncertainty but a resonance sensor with a changing HWHM is different. On
resonance a change in HWHM is undetectable, as neither the resonant phase nor transmission
changes with HWHM. Hence, the 1/F 2 term in the variance conversion. For this chapter,
the discussions will typically assume a shift of the resonance frequency, but will mention
HWHM changes the when significant. It should be noted that near resonance, sensitivities
will be much lower for HWHM estimation , while they will be much higher far off resonance.

The sensitivity for changes in F using transmission or phase measurements is defined as

S(F |X) =

[(
∂X

∂F

)−2 〈
∆2X

〉]−1

, (6.7)

where X is either transmission or phase. Here we will assume that the measurements in
transmission or phase are performed at the QCRB. As such, Eq. 6.7 is the fundamental limit
to the sensitivity in estimating F using either transmission or phase measurements. It should
be noted that the sensitivity used here is not the same as the QFI for the estimation of F ,
as Birchall et. al [78] have shown it to be equal to the sum of the phase and transmission
measurement sensitivities. However, since transmission is inherently a photon number type
measurement, it does not commute with phase measurements. Thus, phase and transmission
cannot be estimated at the QCRB simultaneously.
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6.1 Lossy phase estimation with a bTMSS

The QCRB for phase estimation with a bTMSS is known only for the ideal lossless case,
Eq. (6.1). It has also been shown that optimized homodyne detection saturates the lossless
bound for phase estimation [74]. Here, we will expand on those previous works by deriving
the lossy phase estimation QCRB for the bTMSS and show, as well as define, the opti-
mized homodyne detection that saturates the lossy bound, for both phase and transmission
estimation.

For the lossy phase system, we split the system into a beam splitter, as used in the
previous chapters, and a phase rotation operator. The order of these operations does not
matter in our case since the environment that the beam splitter couples to is traced out and
the information lost, but in general the order would matter. The phase rotation operator
Φ̂p(ϕ) = ein̂pϕ changes the probe field as

Φ̂†(ϕ)âpΦ̂(ϕ) → âpe
iϕ, (6.8)

adding a phase rotation ϕ. This rotation changes the covariance matrix and displacement
vector of the lossy bTMSS, see Eqs. (4.38) and (4.39), to

σ=


T cosh(2s)+1−T 0 0 −

√
T ηcei(θ+ϕ) sinh(2s)

0 ηc cosh(2s)+1−ηc −
√
T ηcei(θ+ϕ) sinh(2s) 0

0 −
√
T ηce−i(θ+ϕ) sinh(2s) T cosh(2s)+1−T 0

−
√
T ηce−i(θ+ϕ) sinh(2s) 0 0 ηc cosh(2s)+1−ηc

,
(6.9)

d⃗ =


√
T
[
α cosh(s) − β∗eiθ sinh(s)

]
eiϕ√

ηc
[
β cosh(s) − α∗eiθ sinh(s)

]
√
T
[
α∗ cosh(s) − βe−iθ sinh(s)

]
eiϕ√

ηc
[
β∗ cosh(s) − αe−iθ sinh(s)

]
 , (6.10)

where T = TpTηp and T is the transmission through the system. The phase rotation affects

both the direction of the displacement of the probe mode, in d⃗, and the angle of asymmetry
of the squeezed quadrature correlation, in σ, see Ch. 2.

The same Gaussian form for the QFI when only the displaced terms, as in Eq. (4.19),
which are dominant for the bTMSS, is used to find

FQ(ϕ) = 2
∂d⃗†

∂ϕ
σ−1 ∂d⃗

∂ϕ
. (6.11)

Using this, we derived the bTMSS lossy phase estimation QCRB to be [75]

〈
∆2ϕ

〉(bTMSS) ≥ 1

4Tηp ⟨n̂p⟩r
− 1

4 ⟨n̂p⟩r
TpHc[1 − sech(2s)] (6.12)

where

Hc =
(2ηc − 1) [1 + 2 sinh2(s)]

1 + 2ηc sinh2(s)
. (6.13)
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This bound is very similar to the transmission bound, Eq. (4.41), differing only by a factor
of 1

4T 2 . Thus, similar to the transmission QCRB, the first term on the right hand side
is the classical limit of the coherent state and the second term on the right hand side is
the one that leads to the quantum advantage. This can be seen by setting s = 0 such
that only the coherent state seed of the probe mode remains. As the squeezing, and thus
the s parameter, increases, the quantum advantage term reduces the bound. As with the
transmission bound, losses before the system in the probing mode increase the classical term
while losses after decrease the quantum advantage. Losses in the conjugate mode will flip the
quantum advantage into a disadvantage at ηc < 0.5, same as with transmission estimation.

With both the phase and transmission QCRB being closely related and the two measure-
ments having very different ranges, 0 to 1 for transmission and 0 to 2π for phase, a parameter
is needed to compare the two. The sensitivity to the frequency shift of the resonance sensors
using either a phase or transmission measurement will provide such a comparison between the
two approaches for sensing applications. Especially since, as will be shown below, both the
transmission and phase QCRB for the bTMSS can be saturated by the same measurement,
optimized homodyne detection.

6.1.1 Measurement to saturate phase bound

Optimized homodyne detection is a quadrature measurement, Eq. (2.7), that has been shown
to saturate the QCRB for bTMSS phase estimation in the lossless case [74]. Similar to the
optimized intensity difference, Eq. (4.62), this measurement has an electronic gain applied
to the conjugate quadrature measurement to minimize the measurement noise, Q̂p(γp) −
goptQ̂c(γc), where γp(c) selects the quadrature of the probe (conjugate). Here, we will show
that this measurement also saturates the bound when there is imperfect transmission in
propagating to the system, through the system, and after the system, as well as loss in the
conjugate mode. The lossy measurement noise is given by

〈
∆2
[
Q̂p(γp) − gQ̂c(γc)

]〉
=

〈
∆2Q̂p(γp)

〉
+ g2

〈
∆2Q̂c(γc)

〉
−2g

[〈
Q̂p(γp)Q̂c(γc)

〉〈
Q̂p(γp)

〉〈
Q̂c(γc)

〉]
(6.14)

= T cosh(2s) + 1 − T
+g2 [ηc cosh(2s) + 1 − ηc]

−2g
√

T ηc sinh(2s) cos(γp + γc − ϕ− θ), (6.15)

and optimizing the phase gives〈
∆2
[
Q̂p(γp) − goptQ̂c(γc)

]〉
= T cosh(2s) + 1 − T − T ηc sinh2(2s) cos2(γp + γc − ϕ− θ)

ηc cosh(2s) + 1 − ηc
(6.16)

where gopt = −
√
T ηc sinh(2s) cos(γp+γc−ϕ−θ)

ηc cosh(2s)+1−ηc
. While the measurement is denoted as a quadrature

difference it should be noted that the sign of the optimal gain changes when γp → γp + π/2
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and γc → γc + π/2. This is due to the two-mode squeezed state having reduced noise in the
difference of one quadrature and the sum of the perpendicular quadrature, i.e. amplitude
difference and phase sum. As such, we simplify the homodyne detection to only consider the
same quadrature in both modes, setting γp = γc ≡ γ. The variance of the measurement is
minimized when cos2(2γ − ϕ − θ) = 1 by setting γ = (nπ + ϕ + θ)/2 where n ∈ Z. Thus,
the optimal quadrature measurement depends on the squeezing angle, θ, and the phase
parameter of interest, ϕ.

Without loss of generality, the squeezing angle θ can be set to the sum of the probe
seeding phase, χ, and conjugate seeding phase, ξ, θ = χ+ ξ. This is due to the angle of the
quadrature squeezing, compared to the angle of the displacement, being a sum of all three
terms. Thus, the quadrature squeezing is controlled via the phase of the seeding modes.
With the squeezing phase set this way, then γ with an even numbered n, γe, corresponds to
the amplitude difference measurement and an odd numbered n, γo, corresponds to the phase
sum measurement.

Using the mean value of the measured probe quadrature〈
Q̂p(γ)

〉
= 2

√
T [|α| cosh(s) + |β| sinh(s)] cos(ϕ− χ− γ) (6.17)

it can be shown that when ξ = χ+ ϕ

〈
∆2ϕ

〉
=

〈
∆2
[
Q̂p(γo) − goptQ̂c(γo)

]〉
∣∣∣∣∂⟨Q̂p(γo)⟩

∂ϕ

∣∣∣∣2 (6.18)

=
T cosh(2s) + 1 − T − T ηc sinh

2(2s)
ηc cosh(2s)+1−ηc

4T [|α| cosh(s) + |β| sinh(s)]2
(6.19)

=
1

4Tηp ⟨n̂p⟩r
− 1

4 ⟨n̂p⟩r
TpHc[1 − sech(2s)], (6.20)

which saturates the phase QCRB [75]. The same measurement, but for the amplitude differ-
ence quadrature, γe, will saturate the transmission QCRB [75]

〈
∆2T

〉
=

〈
∆2
[
Q̂p(γe) − goptQ̂c(γe)

]〉
∣∣∣∣∂⟨Q̂p(γe)⟩

∂T

∣∣∣∣2 (6.21)

=
T cosh(2s) + 1 − T − T ηc sinh

2(2s)
ηc cosh(2s)+1−ηc

Tpηp
T

[|α| cosh(s) + |β| sinh(s)]2
(6.22)

=
T

ηp ⟨n̂p⟩r
− T 2

⟨n̂p⟩r
TpHc[1 − sech(2s)]. (6.23)

When comparing the frequency sensitivity from measuring either transmission or phase,
it will be assumed the measurement is being done via homodyne detection. Comparing
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transmission or phase using either the QCRB or the same measurement to estimate frequency
gives a fair comparison. While it may seem odd at first to require a measurement to be able to
say that we have a fair comparison, Jarzyna et. al. [79] pointed out that there exist “hidden”
resources in QCRB calculations and that finding a measurement that saturates the bound
illuminates what these resources are. For homodyne detection the hidden resource is the
local oscillator (LO) used as a phase reference to set γ, the phase of the quadrature [80]. This
LO is used the same as an electronic LO is used in the previous chapter to demodulate a
signal, see Eq. (5.17). Instead of a mixer to multiply the electronic LO with a signal, we use
a beam splitter to mix the probe with an optical LO for Q̂p. Instead of zero phase difference
for the electronic LO to measure the amplitude of the signal, we set the phase of the optical
LO to γe to measure the amplitude quadrature. Being able to set a phase for the probe or
conjugate mode implies a phase reference, the LO, and thus a LO is a “hidden” resource as it
is not explicitly stated. With how we are counting resources, probe photons interacting with
the system, these hidden resources are free and do not create an advantage for the optimized
homodyne measurement when compared to the optimized intensity difference measurement
that has no hidden resources. However, other applications may count resources differently
and thus comparing transmission and phase with the same measurement that saturates both
QCRB’s for the same state, as only γ changes between phase and transmission saturation,
gives the most equivalent comparison of the two parameters for frequency estimation.

6.2 Frequency estimation

As shown in Fig. 6.2, for a generalized resonance sensor response, the transmission is defined
as

T (F ) = Toff + (Tres − Toff)T0(F ), (6.24)

where Tres is the transmission at the resonance frequency, F = 0, Toff is the far-off resonance
transmission, |F | ≫ 1, and T0(F ) defines the lineshape of the transmission response. A
sensor with Tres > Toff, see Fig. 6.2(a), will be labeled as having a peak response as the
transmission peaks at the resonance frequency and a sensor with Tres < Toff, see Fig. 6.2(b),
will be labeled as having a dip response. For a resonance sensor, one of the most common
lineshapes is Lorentzian,

T0(F ) =

∣∣∣∣ 1

1 − iF

∣∣∣∣2 =
1

1 + F 2
. (6.25)

Following the Kramer-Kronig relations as shown in Appendix C, the transmission and phase
response for a generalized Lorentzian response are given by

T (F ) = Toff +
Tres − Toff

1 + F 2
(6.26)

ϕ(F ) = arctan

[
F
(√

Tres −
√
Toff
)

F 2
√
Toff +

√
Tres

]
. (6.27)
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Figure 6.2: Plot of transmission ver-
sus frequency of the (a) peak resonance
when Tres > Toff and (b) dip reso-
nance when Tres < Toff for a Lorentzian
line shape. By defining the on and
far-off resonance transmission and line-
shape we are able to create any arbi-
trary transmission response for the res-
onance system under study

F F

> <

Peak Dip

a) b)

Using Eq. (6.7), we find the sensitivity in estimating F using transmission or phase
measurements to be [75]

S(F |T ) = ⟨n̂p⟩r

{
(1 + F 2)3(F 2Toff + Tres)

4F 2ηp(Toff − Tres)2

−(1 + F 2)2(F 2Toff + Tres)
2

4F 2(Toff − Tres)2
TpHc[1 − sech(2s)]

}−1

, (6.28)

S(F |ϕ) = ⟨n̂p⟩r

{
(1 + F 2)

3
(F 2Toff + Tres)

4ηp
(√

Toff −
√
Tres
)2 (

F 2
√
Toff −

√
Tres
)2

− (1 + F 2)
2

(F 2Toff + Tres)
2

4
(√

Toff −
√
Tres
)2 (

F 2
√
Toff −

√
Tres
)2TpHc[1 − sech(2s)]

}−1

. (6.29)

Just like for the transmission and phase estimation, the first term in the curly brackets
is the classical limit and the second term is the quantum advantage obtained by using a
bTMSS. Also, for both sensitivities, and due to how we wrote the terms, the numerators in
the brackets are the same for the classical limit term and quantum advantage term. The
difference in frequency sensitivity for transmission or phase measurements comes from the
denominator. Figure 6.3 compares the sensitivity per probe photon incident with the system
at different frequencies and transmissions for a peak and dip response. The plots are for
the lossless case, Tp = ηp = ηc = 1, and with s = 2. In nearly every case, the optimal,
i.e. maximum, phase sensitivity is higher than the optimal transmission sensitivity. Though
transmission can be higher for a given frequency.

For transmission estimation, the uncertainty is minimized at transmission extremes of 1 or
0 at high levels of squeezing. However, the maximum frequency sensitivity using transmission
does not occur at maximum transmission as the change in transmission is not the same at all
frequencies. At resonance, the transmission response of the sensor has zero slope,

∣∣ ∂T
∂F

∣∣, while
the maximum slope is at F = ± 1√

3
≈ ±0.577. The maximum sensitivity is also not at the

maximum slope either, as the sensitivity in frequency is a combination of the transmission
uncertainty as well as the slope of the transmission response function. This is shown for
the Tres = 1 peak resonance in Table 6.1. The plot of Fig. 6.3(e) is an exception for the
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Figure 6.3: Comparison of the frequency sensitivity per photon for transmission (blue, left axis)
and phase (red, right axis) measurements as a function of frequency. On the top plots (a-d) the off
resonance transmission is 0% and the resonance transmission changes from 100% to 25% in steps
of 25%. On the bottom plots (e-h) the off resonance transmission is 100% and the on resonance
transmission changes from 0% to 75%. As such, each column has the same magnitude difference
between the maximum and minimum transmissions. The lower subplots show the transmission
and phase of the system for each set of resonance and far off resonance transmissions. © IOP
Publishing. Reproduced with permission. All rights reserved [75].
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Squeezing parameter (s) FOpt for Tres = 1, Toff = 0

0 ≈ ±0.71
0.5 ≈ ±0.66
1 ≈ ±0.55

1.5 ≈ ±0.45
2 ≈ ±0.36
...

s ±
√√

sech2(2s)+8 sech(2s)−sech(2s)

2

Table 6.1: Optimal frequency, FOpt, for transmission measurements of a peak resonance. As
the squeezing parameter, s, increases, the optimal transmission frequency tends towards zero
as the QCRB for transmission tends towards zero at T = 1.

sensitivity behavior for transmission based measurements. For a dip resonance with Tres = 0,
the maximum sensitivity is at resonance where the uncertainty in transmission is zero but
so is the slope. However, since the uncertainty approaches zero faster we have a non-zero
sensitivity on resonance. This is due to any photon passing through the system signifying a
change in transmission, from zero, and thus a shift in resonance frequency.

In the limit of infinite squeezing, where ⟨∆2T ⟩ = T − T 2, the transmission QCRB is
symmetric around T = 0.5, i.e. T = 0.5 ± x for 0 ≤ x ≤ 0.5 have the same transmission
uncertainty. In this limit, there is also a symmetry to the frequency sensitivity such that
flipping Tres → 1−Tres and Toff → 1−Toff does not change the sensitivity. The symmetry in
sensitivity can be seen even at s = 2 in Figs. 6.3(b) and 6.3(f), Figs. 6.3(c) and 6.3(g), and
Figs. 6.3(d) and 6.3(h), where the sensitivity from transmission measurements are nearly the
same in each pair. In the infinite squeezing limit, the transmission measurement sensitivity
in Fig. 6.3(a) would also peak at 4, just like Fig. 6.3(e). Assuming no internal loss, this
can be interpreted as comparing the transmission and reflection of the sensor, like a cavity,
where the top plots of Fig. 6.3 correspond to the transmission through, and the bottom
plots the reflection from, the sensor. As such, both transmission and reflection give the
same frequency sensitivity in the infinite squeezing limit. Below this limit, whichever has
the lowest measured power at the optimal frequency will typically give the better sensitivity
since at zero squeezing, high transmission has greater uncertainty than low transmission, see
Fig 4.3.

Using phase measurements, the maximum slope and maximum sensitivity, for Tres > 0,
both occur at the resonance frequency as shown by the red traces in Fig. 6.3. Unlike the
transmission QCRB being dependent on transmission, the phase QCRB is not dependent
on phase, thus only the phase slope and the losses from the sensor transmission affect the
sensitivity, not the phase itself. For the dip response, Figs. 6.3(e-h), there are two lobes of
local maxima sensitivity that appear. The lobs are most prevalent in Fig. 6.3(f). Looking
at the phase response, shown in red in the lower plot, and starting from resonance and
moving outwards, the phase reaches an extrema, reverses direction, and slowly tends to zero
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at far off-resonance. This leads to three local maxima in the slope of the phase response
and two zeros. The global maximum slope is on resonance and is much larger that the outer
local maxima, leading to the on resonance maximum frequency sensitivity even though the
transmission at that point is minimum. The maximum slope and maximum sensitivity occur
at resonance in all cases, except for Tres = 0 in Fig. 6.3(e) where the phase uncertainty at that
point is infinite due to zero transmission and thus only the two local maxima lobes remain.
As squeezing increases, the lobes move outward to higher transmissions for all cases.

Between transmission and phase measurements, which one has highest sensitivity de-
pends on the frequency. Other than for Tres = 0, the maximum sensitivity using phase
measurements is greater than the maximum transmission sensitivity. A change in squeezing
does not affect which measurement gives the maximum sensitivity as Fig. 6.4 shows from
s = 0, coherent state, to s = 2. For most cases, the sensitivity nears an asymptote by
s = 2 and further increases in squeezing typically offer little increase in sensitivity. However,
for the Tres = 1 peak, the phase measurement sensitivity continuous to grow. Looking at
Eq. (6.12), the phase uncertainty for zero extraneous loss and infinite squeezing is bounded
by the transmission of the system〈

∆2ϕ
〉
≥ 1

4 ⟨n̂p⟩r

(
1

T
− 1

)
. (6.30)

For perfect transmission the uncertainty limit is zero but for imperfect transmission it is
bounded, as we can see from Eq. (6.30). Thus, for a Tres = 1 the sensitivity from a phase
estimation will continue to grow with increased squeezing but for other resonance transmis-
sions it quickly approaches an asymptotic limit. However, since the sensitivity is only large
on resonance, the phase measurement would not work well when it is the HWHM that is
changing, due to the F 2 term when converting from F to ∆f sensitivities, see Eq. (6.6).
This bound, Eq. (6.30), also causes the lobes for the dip resonance to tend towards far off
resonance frequencies as squeezing increases. For transmission, the measurement uncertainty
is always limited by the ultimate bound for transmission estimation. Thus, the frequency
sensitivity for infinite squeezing is limited by that ultimate bound as well. The dip resonance
for Tres = 0 represents the maximum sensitivity from the transmission measurements and is
the same for all squeezing, that is, it does not offer a quantum enhancement for any state,
not just a bTMSS.

To show that phase measurement sensitivity is, in general, not always better than than the
transmission measurement sensitivity, we consider other lineshapes, such as a Butterworth
lineshape,

T0 =
1

1 + F 2N
, (6.31)

where N is the order of the Butterworth. For the Butterworth, we could not find a transfer
function for arbitrary on and off resonance transmission. Luckly, when the transfer function
is not known, the intensity transmission can be used to approximate the phase response,
but there does not exist a unique solution for the phase for a given transmission. In this
case, the Bode gain-phase relation [81] will give the minimum phase response [82] for a given
transmission response.
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Figure 6.4: Sensitivity per photon at the optimal frequency FOpt as the squeezing parameter
changes for transmission (blue) and phase (red) measurements. The left plots (a) are for peak
resonances and the right ones (b) are for a dip. Each plot corresponds to the max sensitivity in
the plots in Fig. 6.3 for |Tres − Toff| = 1 (solid line) on the far left in Fig. 6.3, |Tres − Toff| = 0.75
(dashed line) center left, |Tres−Toff| = 0.5 (dashed-dotted line) center right, and |Tres−Toff| = 0.25
(dotted line) on the far right in Fig. 6.3. © IOP Publishing. Reproduced with permission. All
rights reserved [75].
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N Max Slope Approx at F Approx

1 ±3
√
3

8
±0.650 ∓

√
1
3

∓0.557

2 ±5 4√5×33

16
±1.07 ∓ 4

√
3
5

∓0.880

3 ±6 6√3×55

32
±1.29 ∓ 6

√
5
7

∓0.945
...

N ±2N( 2N−1
2N+1)

1− 1
2N

(1+ 2N−1
2N+1)

2 lim
N→∞

= ±N
2

∓ 2N

√
2N−1
2N+1

lim
N→∞

= ∓1

Table 6.2: Maximum slope and frequency, F , at which it occurs for different orders of the
Butterworth lineshape. As the order N increases, the frequency of the maximum slope tends
towards the HWHM, F = 1, and the magnitude of the slope goes to infinity.

A first order Butterworth is the same as a Lorentizian and higher orders increase the
maximum transmission slope, as shown in Table 6.2. Also, the transmission changes less
between the maximum slope frequencies as the order increases. As can be seen in Fig. 6.5(d),
this causes the phase to flatten out near resonance and thus have the largest slope slightly
off resonance.

The Butterworth lineshape is more common in electronic filter design than in physics,
but is useful to show the interplay between the transmission and phase slopes for frequency
shift estimation. This will also give some insight into arbitrary response functions which may
have a single sharp transmission slope on one side of resonance. To compare sensitivities
from either transmission or phase measurements, we define a figure of merit (FOM) as

FOM =
max
F

S(F |ϕ)

max
F

S(F |T )
, (6.32)

such that FOM> 1 means phase measurements are more sensitive and FOM< 1 means that
transmission measurements are. The FOM for the Lorentzian and third-order Butterworth
are shown in Fig. 6.5. For the Butterworth, the phase response is solved for numerically,
as explained in Appendix C, as the analytical solution is difficult to find for arbitrary on
and off resonance transmissions. As shown in Fig. 6.5(b), there is a large parameter space
between the red lines where transmission measurements give a higher sensitivity than phase
measurements for the third-order Butterworth lineshape. While this does show that phase
measurement is not always best, it should be noted that for a peak response with Toff = 0
phase measurements gave the highest sensitivity for both lineshapes shown here. However,
for a dip resonance, the transmission measurement often has a higher sensitivity for the
third-order Butterworth.

To examine the effect of extraneous loss, we return to the Lorentzian lineshape. At a
single frequency, loss affects the frequency sensitivity, Eqs. (6.28) and (6.29), the same way
it does the transmission and phase estimation, Eqs. (4.41) and (6.12) respectively. A linear
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Figure 6.5: A comparison of the sensitivity obtained with phase and transmission measurements
for different system transmissions with either a Lorentzian or third-order Butterworth lineshape.
The top contour plots, (a) and (b), show the figure of merit (FOM) for each measurement and the
bottom plots, (c) and (d), show the lineshape and phase for a peak transmission. The red line
in (a) and (b) marks where the two measurements have the same frequency sensitivity. For the
Butterworth lineshape (b), there is a larger parameter space between the red lines in which trans-
mission outperforms phase measurements than there is for the Lorentzian lineshape. Reproduced
with permission. All rights reserved [75].
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The gray region is where the EQEF<1, marking the region where a coherent state outperforms
the bTMSS. For both phase and transmission measurements, the bTMSS always has a quantum
enhancement when ηc > 50%. Each plot corresponds to the max sensitivity in the plots in Fig. 6.3
for |Tres−Toff| = 1 (solid line) on the far left in Fig. 6.3, |Tres−Toff| = 0.75 (dashed line) center left,
and |Tres − Toff| = 0.25 (dotted line) on the far right in Fig. 6.3. The dashed-dotted line is omitted
for figure clarity. © IOP Publishing. Reproduced with permission. All rights reserved [75].

decrease in the enhancement for probe losses, including the transmission to be measured such
as in Eqs. (4.46) and (4.45). For conjugate loss there is a nonlinear change due to the loss in
correlation between the probe and conjugate mode. Probe losses made the bTMSS QCRB
more like the coherent state bound, conjugate loss more like the thermal state bound. Losses
also change the frequency at which the maximum sensitivity occurs for both transmission and
phase measurements. Thus the maximum sensitivity has a more complicated relationship
with extraneous loss than transmission or phase estimation does.

Since the purpose of using quantum states is to have a quantum enhancement, we in-
troduce an effective quantum enhancement factor (EQEF) consisting of the ratio of the
bTMSS maximum sensitivity to the maximum sensitivity for a coherent state with the same
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extraneous losses, that is

EQEF(X) =
max
F

S(F |X)bTMSS

max
F

S(F |X)Coh

, (6.33)

to quantify the enhancement when using a quantum state over a classical state and the
effects of loss. Note that the frequency will be different for each state and also that a higher
EQEF does not mean that one measurement is more sensitive than the other, only that the
measurement has the greater enhancement from an optimal classical measurement. Fig. 6.6
plots the effects of probe and conjugate loss on the EQEF for a squeezing of s = 2. For
probe loss, the effect is the same for loss being before or after the system, as the optimal
frequency for the coherent state sensitivity is independent of extraneous loss. To show this,
for transmission based measurements the coherent state sensitivity is

S(F |T )Coh = ⟨n̂p⟩r

{
(1 + F 2)3(F 2Toff + Tres)

4F 2ηp(Toff − Tres)2

}−1

. (6.34)

As ηp changes, it scales the sensitivity and thus will not change the optimal frequency. The
transmission EQEF is then

EQEF(T ) = max
F (bTMSS)

(1 + F
(coh)2
opt )3(F

(coh)2
opt Toff + Tres)

F
(coh)2
opt

×

{
(1 + F (bTMSS)2)3(F (bTMSS)2Toff + Tres)

F (bTMSS)2

−(1 + F (bTMSS)2)2(F (bTMSS)2Toff + Tres)
2

4F (bTMSS)2(Toff − Tres)2
TpηpHc[1 − sech(2s)]

}−1

,

(6.35)

where F
(coh)
opt is the optimal coherent state frequency and F (bTMSS) is the optimal frequency

for the bTMSS sensitivity. The second term in the curly brackets contains Tpηp and only
here does the extraneous probe loss appear. Since the transmissions are multiplied by each
other, loss before or after probing the system gives the exact same EQEF. The frequency
dependence with losses for the bTMSS comes from the quantum enhancement term having
an extra (F 2Toff+Tres) factor and one less (1+F 2) factor compared to the classical limit term,
for both measurements. Thus, the balance between the two terms shifts as losses increase,
affecting the optimal frequency. As with transmission or phase estimation, probe losses do
not affect whether there is a quantum advantage, just the degree of enhancement. However,
conjugate losses at >50% make the bTMSS worse than the coherent state for frequency
sensitivity.

Similarly, which measurement has a higher EQEF does not change for probe losses but it
does for conjugate losses. At 50% conjugate loss, the measurement that without loss would
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have the greater quantum enhancement becomes the worse measurement. This is due to the
enhancement term switching sign and becoming negative, due to Hc, as the measurement
that is farthest away from a EQEF=1 is always consistent. That is, the measurement with
the highest EQEF at> 50% conjugate transmission has the lowest EQEF at< 50% conjugate
transmission.

The frequency sensitivity, much like the phase and transmission uncertainty, only has a
large quantum enhancement when transmissions are high. This is true both for the prop-
agation and detection transmissions as well as the resonance transmissions, as shown in
Fig. 6.6 and Fig. 6.4. The phase measurement typically has a higher frequency sensitivity
for the Lorentzian lineshape. However, in general this is not always the case, as Fig. 6.5
shows. The sensitivity for each measurement is dependent on the slope of the measurement
with frequency as well as the transmission at that point. The Lorentzian lineshape peak
resonance has a large phase slope at the maximum transmission point, leading the phase
measurements to have the highest frequency sensitivity. Increasing the slope of transmission
by using the third-order Butterworth allows the transmission measurement to outperform
the phase measurement. Thus, a detailed model of the actual resonance sensor is needed in
order to determine which measurement is optimal.
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Chapter 7

Conclusion

The enormous usefulness of mathematics in the natural sciences is something
bordering on the mysterious and there is no rational explanation for it

— Eugene Wigner, Philosophical Reflections and Syntheses

In this thesis we have covered transmission estimation with Gaussian states of light.
Transmission is an important parameter for metrology as it can be used as the readout
of many sensors, i.e. resonance sensors, and is necessary for characterizing many optical
systems, i.e. interferometers and communications. The work presented primarily focused
on the bTMSS as the multimode nature of the state allows for differential detection, which
reduces technical noise. Also, being a bright state, the bTMSS can compete with the coherent
state and surpass the state-of-the-art for metrology.

In Chapters 2 and 3 we covered the basics of quantum metrology with Gaussian states of
light by first introducing the Gaussian states and covering various ways to mathematically
represent them. The Fisher information and Cramér-Rao bound were next introduced as
well as the extension of both via quantum mechanics. It was discussed that the QFI and
QCRB are not for quantum states specifically, but set lower bound for the uncertainty
in estimating a parameter based on the quantum descriptions of states. This allows for
parameter estimation bounds that are independent of the measurement used to extract the
information.

Chapters 4 and 5 derived the theory for and showed saturation of the QCRB of the
bTMSS in the presence of extraneous loss. While the bTMSS does not possess the same
low QCRB as the Fock state or vTMSS for the same number of probing photons, it can
have an overall lower bound due to being able to be generated with orders of magnitude
more photons. We presented the experimental saturation of the QCRB for the bTMSS,
and coherent state, using readily available measurement techniques, the optimized intensity
difference measurement. This measurement saturates the QCRB both for a pure bTMSS
and a lossy bTMSS with imperfect state generation. Thus, the high powered bTMSS can be
used to enhance current cutting edge sensors.

Finally, in Chapter 6 we compared transmission estimation to phase estimation using the
bTMSS. This state is able to enhance both estimations and the QCRB for both parameters is
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saturated by optimized homodyne measurements. This allows for a fair comparison of phase
and transmission estimation. Using resonance sensors, which have a simultaneous change
in both phase and transmission, we were able to compare and contrast transmission and
phase measurements for estimating a change in the resonance frequency. For the common
Lorentzian lineshape, the phase measurement is more sensitive than the transmission mea-
surement except in the extreme case of zero transmission on resonance. For a lineshape with
a sharper transmission slope, as is the case with Butterworth lineshapes, the transmission
measurement can achieve a higher sensitivity than the phase measurement for a larger set
of on and off resonance transmission values of the resonance sensor.

Our work is only the initial building block for future works of greater complexity. I
have worked with only a single parameter at a time. The expansion to multi-parameter
estimation has many complexities including the QCRB becoming a covariance matrix for
the set of parameters. One of the main concerns is that it is not always possible to saturate
the quantum Cramér-Rao bound matrix and only a subset of parameters can have minimum
uncertainty estimations at a time.

7.1 Future outlook: multiple transmissions

Since we have a two mode quantum state, one of the first expansions to measuring the trans-
mission of one of the modes would be measuring transmission of both modes. Simultaneous
transmission measurements of two parameters inherently have a speed up in the calibration
or characterization of multiple systems. However, initial calculations have suggested that
measuring two different transmissions with the bTMSS, one with the probe mode and the
other with the conjugate mode, is worse than measuring them with two coherent states
for all transmissions. This is probably due to each mode being a displaced thermal state
when treated separately and the unknown transmission of each state removing any usable
correlations. However it may be possible that, if both modes are seeded at the same power,
the difference in transmission between the two modes may be estimated more precisely than
with two coherent states of equal power. However, additional work needs to be done to check
these preliminary results.

Another extension is to measure two transmissions that are functions of a single pa-
rameter. This is then a single parameter estimation problem even though it involves two
transmissions. For such systems, both modes can be used to measure a transmission and
then jointly used to estimate a third parameter.

7.1.1 Two transmission measurements for estimating a single pa-
rameter

For a system with two addressable transmissions that depend on the same parameter using
a bTMSS there can be an improvement in probing the system with the probe and conjugate
mode, one mode for each transmission. For example, a resonance sensor with a different
resonance for orthogonal polarizations or angles of incidence that have resonance frequencies
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Figure 7.1: Plot of the QFI per probing
photon, thus probe plus conjugate pho-
tons, for the bTMSS (blue) and coherent
state (red) probing a resonance sensor with
two resonances. The bottom plot shows
the transmission of the resonance sensor
with a Lorentzian line shape shifted by one
HWHM left (grey dotted) or right (black
solid). For regions in which the transmis-
sion slope has an opposite sign for each res-
onance, the bTMSS has a higher QFI per
photon than the coherent state. To deter-
mine if this is always true requires further
analysis.
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that shift simultaneously due to some external parameter of interest. This is an improvement
over probing either one transmission with the probe mode of the bTMSS or probing both
transmissions with two coherent states. The main issue with probing with both modes of
the bTMSS is the loss of correlation between the two modes due to the loss of conjugate
photons. To overcome this issue, there needs to be a cross term in the QFI where probing
with correlated modes gives additional information than probing with uncorrelated modes.
This information needs to be large enough such that probing with both modes gives more
information than that which is lost from the conjugate mode loss.

Figure 7.1 shows the results of some initial calculations for the bTMSS with s = 2 and
equal seeding power for the probe and conjugate. Both modes are used to probe Lorentzian
lineshape resonance systems. The results are compared with two coherent states, one probing
each transmission. We can see that there is a cross term for the bTMSS that helps increase
the information gained when the transmission slopes of each resonance of the sensor are in
opposite directions, one positive and the other negative, and a reduction in information when
the slopes are in the same direction. This cross term information does allow the bTMSS to
have a higher QFI per photon than a pair of coherent states. However, more analysis needs
to be done to see in which parameter space the quantum enhancement of the bTMSS holds
true. Such as an imbalance in on-resonance transmissions or one of the resonances being a
dip instead of a peak.
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Part III

Appendices
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Appendix A

Covariance Matrix for bTMSS
Generated in an Absorptive Medium

To analytically solve for the covariance matrix of a bTMSS generated in an absorptive
medium, the generation process can be split into an infinite series of infinitesimal squeezers
and beamsplitters. To simplify the calculation, the phases of all the fields and operators are
chosen such that the operators have real coefficients. This will always create an intensity
difference squeezed bTMSS, such as the one used in the experiment described in Chapter 5.
As stated previously, the squeezing and beam splitter operations can be broken up using [51,64]

Ŝp,c(ξ) =
N∏

n=1

Ŝp,c(ξ/N), (A.1)

B̂p(Tx) =
N∏

n=1

B̂p(
N
√
Tx), (A.2)

B̂c(Ty) =
N∏

n=1

B̂c(
N
√
Ty), (A.3)

where Tx and Ty are the transmissions of the probe and conjugate mode, respectively. The
total operation for the distributed loss during state generation is

Ŝp,c(ξ;Tx, Ty|N) =
N∏

n=1

B̂c(
N
√
Ty)B̂p(

N
√
Tx)Ŝp,c(ξ/N). (A.4)

Here, the covariance matrix and displacement vector will be solved for following the work
done by Jasperse et. al [64]. Working in the Heisenberg picture, the photon annihilation
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operators for the probe and conjugate modes transform as

Ŝ†
p,c(s)âpŜp,c(s) = âp cosh(s) + â†c sinh(s), (A.5)

Ŝ†
p,c(s)âcŜp,c(s) = âc cosh(s) + â†p sinh(s), (A.6)

B̂†
p(Tx)âpB̂p(Tx) =

√
Txâp +

√
1 − Txx̂i, (A.7)

B̂†
c(Ty)âcB̂c(Ty) =

√
Tyâc +

√
1 − Tyŷi, (A.8)

where x̂i and ŷi are vacuum mode operators. As shown in Fig. A.1, the operators for each
step of the process recursively rely on the previous step as,

â(n+1)
p =

√
Tx
{
â(n)p cosh(s) + â†(n)c sinh(s)

}
+

√
1 − N

√
Txx̂n+1 (A.9)

â(n+1)
p =

√
Tx

{[√
Tx
[
â(n−1)
p cosh(s) + â†(n−1)

c sinh(s)
]

+

√
1 − N

√
Txx̂n

]
cosh(s)

+

[√
Ty
[
â(n−1)
p sinh(s) + â†(n−1)

c cosh(s)
]

+

√
1 − N

√
Tyŷ

†
n

]
sinh(s)

}

+

√
1 − N

√
Txx̂n+1 (A.10)

â†(n+1)
c =

√
Ty
{
â(n)p sinh(s) + â†(n)c cosh(s)

}
+

√
1 − N

√
Tyŷ

†
n+1 (A.11)

â†(n+1)
c =

√
Ty

{[√
Tx
{
â(n−1)
p cosh(s) + â†(n−1)

c sinh(s)
}

+

√
1 − N

√
Txx̂n

]
sinh(s)

+

[√
Ty
{
â(n−1)
p sinh(s) + â†(n−1)

c cosh(s)
}

+

√
1 − N

√
Tyŷ

†
n

]
cosh(s)

}
+

√
1 − N

√
Tyŷ

†
n+1. (A.12)

This can be written as

â(N)
p = A1â

(0)
p + A2â

†(0)
c + A3x̂1 + A4ŷ

†
1 + · · · + A2N+1x̂N + A2N+2ŷ

†
N (A.13)

= A1â
(0)
p + A2â

†(0)
c +

N∑
i=1

A2i+1x̂i +
N∑
i=1

A2i+2ŷ
†
i (A.14)

â†(N)
c = B1â

(0)
p + B2â

†(0)
c + B3x̂1 + B4ŷ

†
1 + · · · + B2N+1x̂N + B2N+2ŷ

†
N (A.15)

= B1â
(0)
p + B2â

†(0)
c +

N∑
i=1

B2i+1x̂i +
N∑
i=1

B2i+2ŷ
†
i . (A.16)

The displacement vector for this state when seeding only the probe mode is given by

d⃗ =


A1α
B1α
A1α
B1α

 , (A.17)
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Figure A.1: Schematic of the model of the ab-
sorptive medium used as a source of squeezed
light. The initial probe and conjugate fields
are squeezed (SQZ) and then each mode is
mixed with a vacuum mode, x̂1 for probe and
ŷ†1 for the conjugate, via beam splitters (BS)
to generate the field due to the first iteration.
The process is repeated again for the next it-
eration and so on until the Nth iteration.
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since ⟨âc⟩ = ⟨x̂i⟩ = ⟨ŷi⟩ = 0 due to initially being vacuum modes. To solve for the covariance
matrix, σ, the terms can be solved in a similar fashion. For the diagonal probe term, σ11,〈

â†(N)
p â(N)

p

〉
=

〈(
A1â

†(0)
p + A2â

(0)
c +

N∑
i=1

A2i+1x̂
†
i +

N∑
i=1

A2i+2ŷi

)

×

(
A1â

(0)
p + A2â

†(0)
c +

N∑
i=1

A2i+1x̂i +
N∑
i=1

A2i+2ŷ
†
i

)〉
(A.18)

=

〈
A2

1â
†(0)
p â(0)p + A2

2 +
N∑
i=1

A2
2i+2

〉
(A.19)

〈
â(N)
p â†(N)

p

〉
=

〈
A2

1

(
â†(0)p â(0)p + 1

)
+

N∑
i=1

A2
2i+1

〉
, (A.20)

where the vacuum terms appear in either normal or anti-normal ordering of the operators and
the summations are over only one index due to the commutation relation or the annihilation
operator. The covariance matrix term is then

σ11 = σ33 =
〈
â†(N)
p â(N)

p + â(N)
p â†(N)

p

〉
− 2d21 =

2N+2∑
i=1

A2
i . (A.21)

Thus, it can be shown that

σ =


∑2N+2

i=1 A2
i 0 0

∑2N+2
i=1 AiBi

0
∑2N+2

i=1 B2
i

∑2N+2
i=1 AiBi 0

0
∑2N+2

i=1 AiBi

∑2N+2
i=1 A2

i 0∑2N+2
i=1 AiBi 0 0

∑2N+2
i=1 B2

i

 . (A.22)

To find the displacement vector and covariance matrix, the solution to the coefficients Ai

and Bi must be found.
To this end, Eqs. (A.14) and (A.16) can be rewritten as a single matrix equation of the

form (
â
(N)
p

â
†(N)
c

)
= AN

(
â
(0)
p

â
†(0)
c

)
+

N∑
i=1

AN−i

(√
1 − N

√
Txx̂i√

1 − N
√
Tyŷ

†
i

)
, (A.23)
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where

A =

(
2N
√
Tx cosh(s) 2N

√
Tx sinh(s)

2N
√
Ty sinh(s) 2N

√
Ty cosh(s)

)
. (A.24)

Thus the first two A’s and B’s are given by(
A1 A2

B1 B2

)
= AN . (A.25)

The vacuum coefficients can be found by taking the expectation value of the inner product
of the second term on the right of Eq. (A.23),〈[

N∑
i=1

AN−i

(√
1 − N

√
Txx̂i√

1 − N
√
Tyŷ

†
i

)][
N∑
j=1

AN−j

(√
1 − N

√
Txx̂j√

1 − N
√
Tyŷ

†
j

)]†〉

=
N∑
i=1

N∑
j=1

AN−i

(
1 − N

√
Txδij 0

0 1 − N
√
Tyδij

)
AN−j (A.26)

=
N∑
i=1

AN−i

(
1 − N

√
Tx 0

0 1 − N
√
Ty

)
AN−i =

∑
i>2

(
A2

i AiBi

AiBi B2
i

)
≡ X. (A.27)

Following the method from Jasperse et. al [64] to solve for the sum in Eq. (A.27), the matrix
A and the transmissions will be expanded into a power series. Setting A = exp (A0) and
N
√
Tx = exp

[
1
N

ln(Tx)
]
, the terms can be expanded to

A = 1 +
1

N
A0 + O

(
1

N2

)
(A.28)

N
√
Tx = 1 +

1

N
ln(Tx) + O

(
1

N2

)
(A.29)

where

A0 =

(
1
2

ln(Tx) s
s 1

2
ln(Ty)

)
. (A.30)

Equation (A.27) can then be rewritten using the geometric series relation in the infinite N
limit as

X =
1

N

N−1∑
i=0

AiTAi (A.31)

A0XA0 = eA0TeA0 −T, (A.32)

where

T =

(
− ln(Tx) 0

0 − ln(Ty)

)
. (A.33)
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Equation (A.32) is a set of linear equations and, since there is no conjugate absorption
in our experiment in Ch. 5, setting Ty = 1 and solving for X gives

2N+2∑
i=2

A2
i =

1

2ζ2
e−

1
2
ζ
{

32e
1
2
ζs2
(

1 −
√
Tx

)
−
[√

Tx
(
1 + eζ

)
− 2e

1
2
ζ
]

ln2(Tx)

−ζ
√
Tx ln(Tx)

(
eζ − 1

)}
(A.34)

2N+2∑
i=2

B2
i =

1

2ζ
3
2

e−
1
2
ζ
{

16
(

1 − e
1
2
ζ
)
s2
√
Tx ln(Tx)

+
(
1 − eζ

)√
Tx ln3(Tx) + 32ζe

1
2
ζs2
(√

Tx − 1
)

+ζ ln2(Tx)
[√

Tx
(
1 + eζ

)
− 2e

1
2
ζ
]}

(A.35)

2N+2∑
i=2

AiBi =
2e

1
2
ζ
(
e

1
2
ζ − 1

)2
s
√
Tx ln(Tx)

ζ2
, (A.36)

where ζ =
√

16s2 + ln2(Tx). Solving for the remaining coefficients,

lim
N→∞

AN =

T
1
4
x

[
cosh( ζ

4
) +

ln(Tx) sinh(
ζ
4
)

ζ

]
4sT

1
4
x sinh( ζ

4
)

ζ

4sT
1
4
x sinh( ζ

4
)

ζ

T
1
4
x e−

1
4 ζ

[
ln(Tx)+ζ+e

1
2 ζ(ζ−lnTx)

]
2ζ

 (A.37)

=

(
A1 A2

B1 B2

)
. (A.38)

Finally, the displacement vector and covariance matrix, accounting for the extraneous
losses and the transmission of the system under study, are

d⃗ = α



√
TpTηp

√
Tx

[
cosh( ζ

4
) +

ln(Tx) sinh(
ζ
4
)

ζ

]
4sT

1
4
x sinh( ζ

4
)

ζ√
TpTηp

√
Tx

[
cosh( ζ

4
) +

ln(Tx) sinh(
ζ
4
)

ζ

]
4sT

1
4
x sinh( ζ

4
)

ζ


(A.39)

σ =


TpTηpσpp + 1 − TpTηp 0 0

√
TpTηpηcσpc

0 ηcσcc + 1 − ηc
√
TpTηpηcσpc 0

0
√
TpTηpηcσpc TpTηpσpp + 1 − TpTηp 0√

TpTηpηcσpc 0 0 ηcσcc + 1 − ηc

 ,

(A.40)
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where

σpp = 1 +
32s2

√
Tx sinh2( ζ

4
)

ζ2
(A.41)

σpc =
4s
√
Tx
[
ζ sinh( ζ

2
) − 2 ln(Tx) sinh2( ζ

4
)
]

ζ2
(A.42)

σcc =
√
Tx − 1 +

√
Tx
{

cosh( ζ
2
)
[
ζ2 + ln2(Tx)

]
− ln(Tx)

[
ln(Tx) + 2ζ sinh( ζ

2
)
]}

ζ2
.

(A.43)

This can also be used to find the normalized probe and conjugate intensity noise such
that

⟨∆2n̂p⟩0
⟨n̂p⟩0

=
2N+2∑
i=1

A2
i (A.44)

=
16s2

{
1 −

√
Tx
[
1 − cosh( ζ

2
)
]}

+ ln2(Tx)

ζ2
, (A.45)

⟨∆2n̂c⟩0
⟨n̂c⟩0

=
2N+2∑
i=1

B2
i (A.46)

=
2
√
Tx
[
8s2 + (ζ2 − 8s2) cosh( ζ

2
) − ζ ln(Tx) sinh( ζ

2
)
]
− ζ2

ζ2
. (A.47)

The balanced intensity difference is given by Jasperse et. al [64] as

⟨∆2 (n̂p − n̂c)⟩0
⟨n̂p⟩0 + ⟨n̂c⟩0

=

∑2N+2
i=1 (A1Ai − B1Bi)

2

A2
1 + B2

1

(A.48)

= 1 −
2s sinh2( ζ

4
)

ζ cosh( ζ
2

+ ς)
−
√
Tx
s ln2(Tx) sinh4( ζ

4
)

2ζ3 cosh( ζ
2

+ ς)
, (A.49)

where tanh(ς) = ln(Tx)
ζ

.
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Appendix B

Fitting of Theory Parameters to
Experimental Measurement Results

The fitting for the s and Tx values in Chapter 5 are done by the method of least squares.
This method assumes that the best fit for a given data set is one that minimizes the variance
of the data to the fit. Thus, a minimization of χ2 defined as

χ2(p1, p2, . . . , pN) =
∑
i

[yi − y(p1, p2, . . . , pN |xi)]2

∆2yi
, (B.1)

where, yi and xi are measured values, y(p1, p2, . . . , pN |xi) is the function to fit to yi. This
is done using the corresponding xi data to find fitting parameter p1, p2, . . . , pN . The final
term, ∆2yi, is the variance of the yi measurement. Each measurement is thus weighted by
how well known the yi value is and a noisy measurement has less weight than a precise one.

To give an example, let us find the location of the beam waist for a laser. At each location
along the beam path, xi, multiple recordings of the beam radius, wi, are taken. The multiple
measurements of the radius give the variance in the measurement, ∆2wi. The laser radius,
w, changes with propagation as

w(x) = w0

√
1 +

[
λ(x− x0)

πw2
0

]2
, (B.2)

where w0 is the waist located at x0 and λ is the wavelength of the laser. The χ2 is then

χ2(w0, x0) =
∑
i

{
wi − w0

√
1 +

[
λ(xi−x0)

πw2
0

]2}2

∆2wi

. (B.3)

The best fit to the data using the method of least squares is given by the fitting parameters
w0 and x0 that minimize Eq. (B.3).
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The difficulty in this method comes from the minimization of χ2. This could be done by
brute force and examining every possible value of the fitting parameters in y(xi), but it would
take a long time to explore the entire parameter space for an answer with sufficient significant
digits. Also, if too few significant digits are used a local minimum could be chosen instead.
Another method could be to take derivatives of each fitting parameter setting them to zero
to find the extremum values and testing those for the minimum χ2. However, complicated
equations or systematic errors in data taking could make it so there is no solution using this
method.

A better way to minimize χ2 is to use optimization algorithms that adjust initial values of
the coefficients to search for the values that minimize χ2. Care must be taken in choosing an
optimization algorithm, as some can get stuck in local minimums. The differential evolution
(DE) algorithm that we use is known to be able to reliably find global minimums.

B.1 Differential evolution

The DE is a type of genetic algorithm in which an initial population of possible fitting
parameter values are generated and then the population is mixed in order to optimized χ2.
In the example above, to minimize Eq. (B.3) an initial population would contain a set of

points Pj such that each point Pj = {w(j)
0 , x

(j)
0 } where w

(j)
0 and x

(j)
0 are guessed values for

the fitting of Eq. (B.2) to the data.
The possible values of the fitting parameters are bounded to decrease computational time

and keep the values physical. For the example above, if the data was taken properly the
measurements will be made before and after the minimum waist location. Thus, the position
can be bound by the largest and smallest distance measured and the minimum waist also
by zero and the largest measured. An initial inspection of the data could shrink this bound
further.

For each Pj the χ2
j is calculated. The next population is generated based on the χ2 of

each point of the previous generation. To do this, a point Pbest is found that has the lowest
χ2 of the population. Next, a point Pi ̸= Pbest would be chosen from the previous generation
and it will be decided whether to keep Pi for the next generation or to update it. This will
be done for each point, so the order the points are chosen does not matter.

To generate a new point P ′, two other points of the previous generation are chosen at
random, Psource and Psink, such that Pi ̸= Pbest ̸= Psource ̸= Psink. The two new points
are used to generate a vector to create point P ′ from the best point Pbest. The vector is
the direction from source to sink and is normalized by the size of fitting parameter space,√∑

i(p
min
i − pmax

i )2 where pmin
i and pmax

i are the minimum and maximum allowed values for
parameter pi. For optimizing Eq. (B.3), let us assume Psource = {w0 = 1 mm, x0 = 10 cm}
and Psink = {w0 = 2 mm, x0 = 5 cm}. If the fitting parameter space is constrained by
0 mm ≤ w0 ≤ 5 mm and 1 cm ≤ x0 ≤ 11 cm, a vector of

{2 mm − 1 mm, 5 cm − 10 cm}√
(0 mm − 5 mm)2 + (1 cm − 11 cm)2

≈ {0.1 cm,−5 cm}
10.01 cm

(B.4)
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would be generated and added to Pbest = {3 mm, 8 cm} to generate P ′ ≈ {3.1 mm, 3 cm}.
The χ2 of P ′ is then calculated and if P ′ has a lower χ2 than Pi it typically replaces it.

The replacement is performed 70% of the time in order to improve the algorithms ability to
find the global minimum and not get stuck in local minimums. For each point, except Pbest,
in the previous generation the next Pi is chosen with new Psource and Psink until all point in
the population of the previous generation have been used as a Pi. Pbest is always used in the
new generation.

The number of generations needed is not a known quantity, and the process is typically
repeated until the population occupies a small region of the fitting parameter space. Gen-
erally when the range of values for each fitting parameter is smaller than the uncertainty in
the fitting. The values of point Pbest of the last generation are then taken as the best values
for the fitting parameters.

Given that there is some uncertainty in measured values, there is not one single set of
coefficient values that line up with the data as a possible fit. To find the uncertainty in the
fitted coefficient values, the reduced χ2 must first be found. For N measurements to fit M
coefficients the degree of freedom (DoF) for the fit is N −M . The reduced χ2 (χ2

r) is χ2

divided by the DoF. For a good fit of the data χ2
r ≈ 1 is needed. It is possible for the χ2

r < 1,
but as long as χ2

r is not ≪ 1 the fit is considered fine.
To understand where χ2

r = 1 comes from, let us look at a y that is independent of xi.
Thus, we will be looking for the mean of y. The χ2

r for N sets of measurements is

χ2
r =

1

∆2y

(
1

N − 1

N∑
i=1

[yi − y(xi)]

)
(B.5)

where ∆yi = ∆y since all the variances should be the same and the DoF is N −1 since there
is one coefficient, the mean value. The terms in the parenthesis in Eq. (B.5) is the same
as the variance of yi, thus the χ2

r should equal 1. For actual fittings, the χ2
r is ratio of the

fitting variance to the average variance of each set of data.
The error in the fitting of the coefficients is found by finding the values of the coefficients

that increase the χ2 by χ2
r. For example, assume the beam waist is found to be 3.85 mm at

6.29 cm with a χ2 of 13.4 and χ2
r of 1.7 from the 2 coefficients and 10 sets of data. From the

previous DE algorithm, it was found, since the χ2 at each point from each generation was
saved, that a waist of 3.88 mm and 3.82 mm gives a χ2 = 15.1 = χ2

r + minχ2. Therefore the
waist is 3.85 ± 0.03 mm.

B.2 Finding s and Tx

To find s and Tx for the experiment in Chapter 5, we used the method of least squares for
each measurement, yi, such that

χ2 =
∑
i

[yi − fi(s, Tx)]2

⟨∆2yi⟩
, (B.6)
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where each measurement prediction fi is from Eqs. (5.68)-(5.70) for the normalized probe,
conjugate, and intensity difference noise. A single trace of 8000 points was taken for the
balanced intensity difference, probe intensity noise, and conjugate intensity noise. Each
divided by the intensity noise of a coherent state of equal power, which corresponds to
the difference of two coherent states for the intensity difference noise. After correcting for
imperfect detection from propagation and imperfect detectors, we take the base 10 logarithm
of the measurements and compared it to the log of the theory to find the GoF, which is given
by χ2. The variance of each measurement was the variance of the log10 of the measurements.

For the DE, the coefficients were limited to 0 ≤ s ≤ 3 and 0.5 ≤ Tx ≤ 1. A population of
5,000 points was generated and the algorithm ran until the spread of point was at least an
order of magnitude smaller than the error in s and Tx. The minimum GoF=0.4563. Since
there are three measurements and two coefficients, the χ2

r is the same as the GoF. To find the
error, we had saved each point of every generation and created a subset of those points where
the GoF ≤ 0.9126. The maximum and minimum values of s and Tx in that subset are the
standard errors for the fitting. The values found were s = 2.04 ± 0.02 and Tx = 0.71 ± 0.02.
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Appendix C

Kramers-Kronig Relations

The Kramers-Kronig relation (KKR) states that the real and imaginary parts of a transfer
function τ(f) must be related by a Hilbert transform,

ℜ[τ(f)] =
1

π
P
∫ ∞

−∞

ℑ[τ(f ′)]

f − f ′ df (C.1)

= H[ℑ[τ(f)]] (C.2)

ℑ[τ(f)] = − 1

π
P
∫ ∞

−∞

ℜ[τ(f ′)]

f − f ′ df (C.3)

= −H[ℜ[τ(f)]], (C.4)

where P denotes the Cauchy principal value integral, ℜ[·] the real part of the function, ℑ[·]
the imaginary part, and H[·] the Hilbert transform. The change in sign from the real to the
imaginary equation is due to the Hilbert transform being the negative inverse of itself,

τ(f) = −H[H[τ(f)]]. (C.5)

The KKR comes from causality given that a physical system cannot react instantaneously
to a driving force without responding before the driving force is applied. As is always the
case, these relations need to be satisfied when the response of the system is generalized.

The transfer function for the initial Lorentzian lineshape with zero off resonance trans-
mission and perfect on resonance transmission for a unitless frequency F is given by

τ(F ) =
1

1 − iF
=

1

1 + F 2
+ i

F

1 + F 2
. (C.6)

Arbitrary on resonance transmission for zero off resonance transission can be set simply by
multiplying by

√
Tres as it simply rescales the response. Setting an arbitrary off resonance

transmission is more difficult as, due to causality, an offset cannot be added to the transfer
function as a response at infinite frequency is not physical. Using the linearity of the trans-
form, H[f + g] = H[f ] + H[g], if two transfer functions follow KKR then so does the sum
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of them. This is how we are able to find the transfer function for arbitrary on and off reso-
nance transmissions for the Lorentzian lineshape, adding two transfer functions. The second
response is set much wider than the first to approximate an offset as, near the resonance of
the initial transfer function, the second transfer function can be treated as flat. This is done
by taking the infinite limit for the HWHM of the second transfer function.

To find the transfer function for an arbitrary resonance, we solve for A and B in

Toff +
Tres − Toff

1 + F 2
= lim

σ→∞
|Aτ1(F ) +Bτ2(F/σ)|2 (C.7)

= lim
σ→∞

A2

1 + F 2
+

B2

1 +
(
F
σ

)2 +
2AB

(1 + F 2)
(

1 +
(
F
σ

)2) (C.8)

=
A2 + 2AB

1 + F 2
+B2. (C.9)

Here it is easy to see that B2 = Toff and A2 + 2AB = Tres − Toff such that

A2 + 2
√
ToffA+ Toff − Tres = 0 (C.10)

A = −
√
Toff ±

√
Toff − (Toff − Tres). (C.11)

After testing solutions, the answer that makes physical sense is A =
√
Tres−

√
Toff. Therefore

the phase for this system is given by

ϕ = lim
σ→∞

arctan

(
ℑ[(

√
Tres −

√
Toff)τ1(F ) +

√
Toffτ2(F/σ)]

ℜ[(
√
Tres −

√
Toff)τ1(F ) +

√
Toffτ2(F/σ)]

)
(C.12)

= arctan

(
(
√
Tres−

√
Toff)F

1+F 2

(
√
Tres−

√
Toff)

1+F 2 +
√
Toff

)
(C.13)

= arctan

(
F (

√
Tres −

√
Toff)

F 2
√
Toff +

√
Tres

)
. (C.14)

For the Butterworth lineshape, a similar treatment was not possible due to additional
frequency terms appearing in the transmission that could not be removed. Thus, another
treatment had to be used. The Bode gain-phase relation (BGPR) is used here. The gain
phase relation comes from the radial form of the transfer function,

τ(F ) = |τ(F )|ei arg[τ(F )] (C.15)

ln[τ(F )] = ln[
√
T (F ) ] + iϕ(F ). (C.16)

The BGPR states that ln[
√
T (F ) ] and the phase are Hilbert transforms of each other, like

in the KKR; however, unlike the KKR, there is not a unique solution to the imaginary part,
the phase, if only the real part is known. The Hilbert transform of the natural log of the
square root of the transmission response will give the minimum phase solution, but larger
changes in phase with frequency are possible.
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To numerically solve for the third order Butterworth phase for Fig. 6.5 we used two
different methods. The first is the fast Hilbert transform (FHT) based on the fast fourier
transform (FFT). For a function g(t), the Fourier transform, F [g(t)](f), of a Hilbert trans-
form gives

F [H[g(t)]](f) = −i sign(f)F [g(t)](f) (C.17)

H[g(t)] = F−1[−i sign(f)F [g(t)](f)](t) (C.18)

where

sign(f)


1 f > 0

0 f = 0

−1 f < 0

(C.19)

gives the sign of the variable. Thus a FHT is an inverse FFT of −i sign(f) times the FFT
of the function to be transformed.

This transform is not without problems as the FFT suffers from spectral leakage. For the
FFT, only a finite sampling of the data to be transformed is available, due to not being able
to record data for infinite amounts of time. This finite length ‘windows’ the waveform and
unless every oscillation is zero at the edges of the ‘window’, some of the frequencies leak out.
Since the FFT treats the sample as if it is repeating, to give an equivalent infinite sampling
of the data, the spectral leakage out of the ‘window’ causes it to be added back in. Luckily,
the problems are at the edges of the FFT so the lower frequency terms are unaffected. To
examine higher frequencies, a large window is used to push the spectral leakage issue even
higher. For the FHT, we used a unitless frequency range of F = ±1, 000 and used only the
range F = ±3 for the phase response.

The second approach is based on the numerical solution of the Hilbert transform from
Lee et. al [83] to find the phase

ϕ(F ) =
1

π
P
∫ ∞

0

ln

[∣∣∣∣f + F

f − F

∣∣∣∣] d ln
[√

T (f)
]

df
df, (C.20)

using numerical integration over the dummy variable f . Since the response of the system
must be zero at very high frequencies, the integration was not done to infinity but to a limit
L such that integrating to L + δL did not change the solution. The given solution to this
equation had many numerical artifacts due to computation, but with sufficient smoothing
matched well with the HFT solution. At the end, this form was used only to verify the HFT
solution due to the instability of the solution making it difficult to find the derivative of the
phase.
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