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ABSTRACT 

An analytical solution for the transient heat transfer under groundwater flow for ground heat exchangers (GHEs) is presented. The method is an extension 
of the transient multipole expansion that describes the transient heat transfer as a pure conduction phenomenon inside and around a GHE including 
arbitrarily positioned pipes in the grout, coupling an irrotational and incompressible potential field in the ground with constant far-field velocity. The method 
does not rely on the supposition that groundwater flows through the GHE but instead moves around it. The method is validated against a finite element 
analysis model comparing the borehole wall temperature for two cases considering different single U-tube pipes position. It is shown that the thermal 

resistances inside the GHE do not respect the general symmetry condition (𝑅௜௝ ≠ 𝑅௝௜ and 𝑅௜௜ ≠ 𝑅௝௝) as opposed to the pure conduction problem. 

INTRODUCTION 

One of the main components of ground source heat pump (GSHP) systems are ground heat exchangers (GHEs) which 
allow heat transfer between the building and the ground. In many applications the heat transfer between the GHE and 
the ground can be treated as pure heat conduction due to diffusion in the ground. However, there are cases where the 
impact of groundwater flow on the heat transfer process is significant. When groundwater is present, the heat transfer 
process is given by three effects: conduction in the ground, conduction in the groundwater and advection by 
groundwater. Current analytical models consider that the fluid within the ground moves unidirectionally through the 
GHE and not around it. This allows the classical heat conduction models such as infinite/finite line sources (ILS/FLS) 
(Ingersoll et al.,1948; Eskilson, 1987) and cylindrical heat source (CHS) (Carslaw and Jaeger, 1947) to be extended to 
their analogs when groundwater is present resulting in the moving infinite/finite line sources (MILS/MFLS) (Diao et 
al., 2004; Molina-Giraldo et al., 2011) and moving cylindrical heat source (MCHS) (Al-Khoury et al., 2020). These 
models have been used to study the response between the ground and the periphery of the GHE due to the presence 
of groundwater, finding that when the groundwater velocity increases, the average borehole wall temperature decreases 
and thus the average temperature of the circulating fluid decreases (in cooling mode) (Sutton et al., 2003; Cai et al., 2020; 
Wagner et al., 2013). However, how diffusion-advection of groundwater flow moving around GHE affects the heat 
transfer between the circulating fluid in the pipes and the borehole wall due to grout diffusion has not been studied, as 
well as whether the position of the pipes plays an important role in the overall heat transfer. 

This paper presents a new analytical solution for the heat transfer problem that relates the groundwater flowing around 
the GHE by extending the transient multipole expansion for pure conduction presented by Prieto and Cimmino (2021a) 
in which any number of pipes could be placed inside the GHE. The groundwater model is reduced from diffusion-
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advection to a diffusion-reaction model using a special change of variable and coefficient simplification for the reaction 
term. The average borehole wall temperature for two different pipe positions of a single U-tube is calculated and 
compared with a finite element analysis (FEA) model to validate the present solution. Thermal resistances are calculated 
to understand how the pipes position impacts the overall thermal response of the GHE. 

MATHEMATICAL MODEL 

Figure 1 shows a top view of a GHE containing two pipes (𝜕Ω௜, 𝜕Ω௝) arbitrarily positioned (𝑂௜, 𝑂௝) within the grout 
(Ωଵ) and bounded by the borehole wall (𝜕Ω௕) with respect to the ground (Ωଶ). The heat-carrier fluid inside the pipes 
has a constant temperature (𝑇௙௜) at each pipe 𝑖. The geometrical parameters of the GHE are the borehole wall radius 
(𝑟௕) and the outer pipe radius (𝑟௜) at each pipe 𝑖. The thermal properties of the grout and the ground are considered 
isotropic, constant, and homogeneous. 𝑘௕ , 𝑘௦  are the thermal conductivities of grout and ground, and 𝛼௕ , 𝛼௦ are the 
thermal diffusivities of the grout and ground, respectively. The ground has a constant porosity (𝜖) that allows 

groundwater to pass through with constant volumetric heat capacity ൫𝜌𝑐௣൯
௙
 and thermal conductivity (𝑘௙) through the 

whole ground domain. The ground is considered as a semi-infinite domain and extends to 𝑟௘ → ∞. 

 

Figure 1 Domain geometry around a GHE 

The transient multipole expansion of Prieto and Cimmino (2021a) is extended to describe the heat transfer phenomenon 
inside and outside the GHE considering groundwater flow. The original transient multipole expansion describes the 
heat conduction inside the periphery of the GHE for pipes arbitrarily positioned in the grout. As opposed to several 
existing models in the literature, the groundwater flow does not pass over the GHE but flows around it. It is assumed 
that the flow is incompressible and irrotational with constant far-field velocity (𝑢ஶ), resulting in a potential field. 

Diffusion-advection model 

The partial differential equation known as the advection-diffusion equation is used to describe the phenomenon of heat 
transfer in and out of the GHE for polar coordinates (𝜌, 𝜙) and time (𝑡): 

 
డ்೔

డ௧
+

൫ఘ௖೛൯
೑

൫ఘ௖೛൯
೔

𝐻(𝜌 − 𝑟௕)𝑢ሬ⃗ ⋅ ∇𝑇௜ = 𝛼௜∇ଶ𝑇௜  (1) 

where 𝐻(𝜌 − 𝑟௕) is the Heaviside function which is defined as 0 if 𝜌 < 𝑟௕ and 1 otherwise, 𝑇௜ is the temperature field 

for domain Ω௜ , 𝛼௜ (= 𝑘௜ ൫𝜌𝑐௣൯
௜

ൗ ) is the thermal diffusivity for each Ω௜ (𝛼௕ = 𝛼ଵ and 𝛼௦,௘௙௙ = 𝛼ଶ). The ground has an 
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effective thermal conductivity and capacity given by volume average properties defined as 𝑘௦,௘௙௙ = 𝑘௙𝜖 + (1 − 𝜖)𝑘௦ 

and ൫𝜌𝑐௣൯
௦,௘௙௙

= ൫𝜌𝑐௣൯
௙

𝜖 + (1 − 𝜖)൫𝜌𝑐௣൯
௦
, respectively. The velocity vector field, 𝑢ሬ⃗ , is derived considering the 

continuity equation in the ground for a fluid moving with a density 𝜌௙: 

 
డఘ

డ௧
+ ∇ ⋅ ൫𝜌௙𝑢ሬ⃗ ൯ = 0 (2) 

For an incompressible and irrotational flow, Equation 2 is then a potential field ∇ଶψ = 0 which means 𝑢ሬ⃗ = ∇𝜓. For a 
non-slip boundary condition at 𝜕Ω௕ (𝑛ሬ⃗ |௥್

⋅  𝑢ሬ⃗ = 0), the velocity field with constant far-field velocity is then: 

 𝑢ሬ⃗ = 𝑢ஶ ቀ1 −
௥್మ

ఘమቁ cos 𝜙 𝑒ఘෝ − 𝑢ஶ ቀ1 +
௥್మ

ఘమቁ sin 𝜙 𝑒థෞ = 𝑢ఘ𝑒ఘෝ + 𝑢థ𝑒థෞ (3) 

where 𝑒ఘෞ and 𝑒థෞ are unitary vectors in the radial and tangential directions, respectively. The potential field is then 𝜓 =

𝑢ஶ ቀ1 +
௥್మ

ఘమቁ 𝜌 cos 𝜙. 

The boundary and initial conditions of the advection-diffusion equation (Equation 1) are given by: 

 −𝛽௞𝑟௞
డ భ்

డఘ
ቚ

௥ೖ

+ 𝑇ଵ|௥ೖ
= 𝑇௙௞   on 𝜕Ω௞ (4.1) 

 𝑇ଵ|௥್
= 𝑇ଶ|௥್

 on 𝜕Ω௕  (4.2) 

 −𝑘௕
డ భ்

డఘ
ቚ

௥್

   = −𝑘௦,௘௙௙
డ మ்

డఘ
ቚ

௥್

+ [൫𝜌𝑐௣൯
௙

𝑢௥𝑇ଶ]|௥್
  on 𝜕Ω௕  (4.3) 

 𝑇ଶ|௥೐→ஶ = 𝑇଴ on 𝜕Ω௘ (4.4) 

 𝑇௜(𝜌, 𝜙, 0) = 𝑇଴ in Ωଵ ∪ Ωଶ  (4.5) 

Equation 4.1 corresponds to a Robin boundary condition for each pipe 𝑘 with constant fluid temperature 𝑇௙௞, where 

𝛽௞ = 2𝜋𝑘௕𝑅௞ is the dimensionless fluid-to-outer wall pipe thermal resistance and 𝑅௞ the fluid-to-outer wall pipe 
thermal resistance. Equations 4.2 and 4.3 describe the continuity conditions for temperature and heat flux, respectively. 
Here, it is important to mention that Equation 4.3 is different from the ones encountered in the literature since the 

dissipation term, [൫𝜌𝑐௣൯
௙

𝑢௥𝑇ଶ]|௥್ , is included. In this case, this term is equal to zero since the radial velocity at the 

borehole wall is 0 due to non-slip condition. Equations 4.4 and 4.5 are the far-field temperature and initial temperature, 
which are both equal to the undisturbed ground temperature 𝑇଴. 

Groundwater transient multipole expansion 

The resolution of the problem defined by Equations 1 and 4 is based on the methodology proposed in Prieto and 
Cimmino (2021a), which separates the heat transfer model as the sum of two subproblems, in this case: a) transient 
advection-diffusion equation with homogeneous boundary conditions (𝑇௜,௛), and b) steady-state advection-diffusion 
equation with non-homogenous boundary conditions (𝑇௜,௦௦). The following change of variable is introduced to relate 
the potential field 𝜓 with the temperature field: 

  𝑇௜,௛ = Γ௜,௛  𝑒

భ

మഀೞ,೐೑೑
൭

൫ഐ೎೛൯
೑

൫ഐ೎೛൯
ೞ,೐೑೑

൱ு(ఘି௥್)ట

= Γ௜,௛𝑒௙(ఘ,థ) (5.1) 

  𝑇௜,௦௦ − 𝑇଴ = Γ௜,௦௦ 𝑒

భ

మഀೞ,೐೑೑
൭

൫ഐ೎೛൯
೑

൫ഐ೎೛൯
ೞ,೐೑೑

൱ு(ఘି௥್)ట

= Γ௜,௦௦𝑒௙(ఘ,థ)  (5.2) 

The mathematical model for 𝑇௜,௛ is reduced to a diffusion-reaction model and defined as:  
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డ୻೔,೓

డ௧
+ 𝐻(𝜌 − 𝑟௕) ቆ

൫ఘ௖೛൯
೑

൫ఘ௖೛൯
ೞ,೐೑೑

ቇ

ଶ

 ൬
௨ഐ

మ ା௨ഝ
మ

ସఈ೔
൰ Γ௜,௛ = 𝛼௜∇ଶΓ௜,௛ (6.1) 

 −𝛽௞𝑟௞
డ୻భ,೓

డఘ
ቚ

௥ೖ

+ Γଵ,௛|௥ೖ
= 0  on 𝜕Ω௞ (6.2) 

 Γଵ,௛|௥್
= Γଶ,௛|௥್

 𝑒௙(௥್,ఏ)  on 𝜕Ω௕  (6.3) 

 −𝑘௕
డ୻భ,೓

డఘ
ቚ

௥್

   = −𝑘௦,௘௙௙
డ୻మ,೓

డఘ
ቚ

௥್

𝑒௙(௥್,ఏ)   on 𝜕Ω௕  (6.4) 

 Γଶ,௛|௥೐→ஶ = 0 on 𝜕Ω௘  (6.5) 

 Γ௜,௛(𝜌, 𝜙, 0) = (𝑇଴ − 𝑇௜,௦௦)/𝑒௙(ఘ,థ)    in Ωଵ ∪ Ωଶ  (6.6) 

For 𝑇௜,௦௦, the problem is described as: 

 𝐻(𝜌 − 𝑟௕) ቆ
൫ఘ௖೛൯

೑

൫ఘ௖೛൯
ೞ,೐೑೑

ቇ

ଶ

 ൬
௨ഐ

మ ା௨ഝ
మ

ସఈ೔
൰ Γ௜,௦௦ = 𝛼௜∇ଶΓ௜,௦௦ (7.1) 

 −𝛽௞𝑟௞
డ୻భ,ೞೞ

డఘ
ቚ

௥ೖ

+ Γଵ,௦௦|௥ೖ
= 𝑇௙௞ − 𝑇଴ on 𝜕Ω௞  (7.2) 

 Γଵ,௦௦|௥್
= Γଶ,௦௦|௥್

 𝑒௙(௥್,థ) on 𝜕Ω௕  (7.3) 

 −𝑘௕
డ୻భ,ೞೞ

డఘ
ቚ

௥್

   = −𝑘௦,௘௙௙
డ୻మ,ೞೞ

డఘ
ቚ

௥್

𝑒௙(௥್,థ)  on 𝜕Ω௕ (7.4) 

 Γଶ,௦௦|௥೐→ஶ = 0 on 𝜕Ω௘  (7.5) 

An approximation of the reaction coefficient 𝑢ఘ
ଶ + 𝑢థ

ଶ = 𝑢ஶ
ଶ ቀ1 −

ଶ௥್మ

ఘమ cos 2𝜙 +
௥್ర

ఘరቁ ≈ 𝐾௚௪𝑢ஶ
ଶ  is proposed to simplify 

the model presented in Equations 6.1 and 7.1. This approximation is valid since 𝑢௥
ଶ + 𝑢ఏ

ଶ has a maximum value of 4𝑢ஶ
ଶ  

for 𝜌 = 𝑟௕ , 𝜙 = (2𝑛 + 1)𝜋 for 𝑛 ∈ 𝑍 and a minimum value of 0 for 𝜌 = 𝑟௕ , 𝜙 = 𝑛𝜋. Moreover, when 𝜌 is sufficiently 
large when compared with 𝑟௕, the value is 𝑢ஶ

ଶ . It was found that 𝐾௚௪ = 1.6 produces a good approximation. 

Equation 6.1 has a similar structure to those expressed in Prieto and Cimmino (2021a). Thus, assuming that Γ௜,௛ is 

spatiotemporally separable as Γ௜,௛ = 𝑋௜(𝜌, 𝜙)𝜏(𝑡) results in a Sturm-Liouville problem with 𝜏(𝑡) = exp ቀ−൫𝜆௜
௝
൯

ଶ
𝛼௜𝑡ቁ 

for unique 𝑗 eigenvalues for each domain 𝑖 denoted as 𝜆௜
௝. The continuity condition requires that 𝛼ଵ൫𝜆ଵ

௝
൯

ଶ
= 𝛼ଶ൫𝜆ଶ

௝
൯

ଶ 

must hold for all time 𝑡. Therefore, the problem 𝑋௜(𝜌, 𝜙), defined as the Helmholtz equation for the interior of the 
GHE (i.e. 𝑋ଵ), has the same formulation as that of the transient multipole expansion for a point 𝐱 with coordinates 
related to a particular pipe center 𝑂௞ given by 𝐱𝐤 = (𝜌௞ , 𝜙௞) and for the GHE center 𝐱𝟎 = (𝜌଴, 𝜙଴): 

 𝑋ଵ൫𝐱; λଵ
௝
൯ = ∑ γ௟

଴ெ
௟ୀିெ 𝐽௟൫λଵ

௝
𝜌଴൯𝑒௜௟மబ + ∑ ∑ γ௟,௝

௞ெ
௟ୀିெ

ே
௞ୀଵ 𝐻௟

(ଵ)
൫λଵ

௝
ρ௞൯𝑒௜௟மೖ (8) 

For the ground domain, the expansion for 𝑋ଶ is slightly different: 

 Xଶ൫𝐱; λଶ
୨

൯ = ∑ δ୪
଴୑

୪ୀି୑ H୪
(ଵ)

൫𝜎௝ρ଴൯ e୧௟மబ  (9) 

where 𝜎௝
ଶ = ൫𝜆ଶ

௝
൯

ଶ
−  𝑢ஶ

ଶ  ቀ
௄೒ೢ

ସఈమ
మቁ ቆ

൫ఘ௖೛൯
೑

൫ఘ௖೛൯
ೞ,೐೑೑

ቇ

ଶ

, and 𝐽 and 𝐻(ଵ) are the first kind Bessel and Hankel functions, 

respectively. The calculation of the eigenvalues is done by means of singular value decomposition (SVD), as done by 
Prieto and Cimmino (2021a). The coefficients 𝛾଴, 𝛾௞ , 𝛿଴ are the coefficients that match the boundaries and calculated 
for each eigenvalue. 
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The full solution for T௜,௛ is given by a Fourier-Bessel expansion: 

 T௜,௛(x, t) = ∑ 𝐶௝
ஶ
୨ୀଵ  X୧൫x; λ୧

୨
൯eିቀ஛౟

ౠ
ቁ

మ
஑౟ ୲ା୤(஡,ம) (10) 

where 𝐶௝ are in this case: 

 𝐶௝ =

ೖ್
ಉ್

∫ ൫்బି మ்,ೞೞ൯௑భതതതതௗಈభ
ஐభା

ೖೞ,೐೑೑

ಉೞ,೐೑೑
∫ ൫்బି మ்,ೞೞ൯௑మതതതത

ಈమ
௘మ೑൫ೝ್,ഝ൯ష೑(ഐ,ഝ)ௗஐమ

ೖ್
ಉ್

∫ ௑భಈభ
௑భതതതതௗஐభା

ೖೞ,೐೑೑

ಉೞ,೐೑೑
∫ ௑మಈమ

௑మതതതത௘మ೑൫ೝ್,ഝ൯ௗஐమ

 (11) 

The coefficients expressed in Equation 11 are obtained by means of the quasi-orthogonal conditions of the Sturm-
Liouville problem and using Green’s second identity. 

Similarly, for Equation 7.1, the same procedure is done. For the grout, the same multipole expansion presented in Prieto 
and Cimmino (2021a) is used: 

 Γଵ,௦௦ = 𝛼଴ + ∑ ቂ𝛼௠ ቀ
ఘబ

௥೘ೌೣ
ቁ cos(𝑚𝜙଴) + 𝛽௠ ቀ

ఘబ

௥೘ೌೣ
ቁ sin(𝑚𝜙଴)ቃ௛

௠ୀଵ +  ∑ ቄ𝛾଴
௞ ln 𝜌௞ +ே

௞ୀଵ

∑ ቂ𝛾௠
௞ ቀ

ఘೖ

௥೘೔೙
ቁ cos(𝑚𝜙௞) + δ୫

୩ ቀ
஡ౡ

୰೘೔೙
ቁ sin(𝑚𝜙௞)ቃ  ௛

௠ୀଵ ቅ (12) 

For the ground, the multipole expansion is given by: 

 Γଶ,௦௦ = ∑ 𝛿௟
଴𝐾௟ ቆ𝑢ஶ

  ൬
ඥ௄೒ೢ

ଶఈమ
 ൰ ቆ

൫ఘ௖೛൯
೑

൫ఘ௖೛൯
ೞ,೐೑೑

ቇ

 

𝜌଴ቇ 𝑒௜௟థబ௛
௟ୀି௛  (13) 

where 𝐾 is the modified Bessel function of the second kind of order 𝑙 and 𝛼, 𝛽, 𝛾, 𝛿 are the coefficients that match the 
boundaries which are different from the homogenous problem. 

RESULTS 

The average borehole wall temperature (𝑇௕) is evaluated using the present method and FEA for 4 different far field 
velocities: 𝑢ஶ =  0, 10ି଺, 10ିହ, 10ିସ 𝑚/𝑠. Two cases are studied, with the same thermal properties and geometrical 
parameters shown in Table 1 but with different positioning of the pipes: (I) the pipes are positioned at 𝑂ଵ(−0.05,0), 
𝑂ଶ(0.05,0), and (II) 𝑂ଵ(0,0.05),  𝑂ଶ(0, −0.05). The FEA model for both cases is composed of 5504 nodes and 9906 
triangular elements (second order Lagrange elements) with 𝑟௘ = 55 𝑚. The parameters for the multipole expansion are 
set to 𝑀 = 14 and ℎ = 30, doubling those shown in Prieto and Cimmino (2021a) due to the exponential term in the 
continuity conditions (Equations 6.3-6.4 and 7.3-7.4), and the first 100 eigenvalues are used. 

TABLE 1.   GHE PARAMETERS 

Parameter Value Parameter Value 
Grout thermal conductivity 𝑘௕ = 0.81 𝑊/(𝑚𝐾) Borehole radius 𝑟௕ = 0.075 𝑚 

Grout thermal diffusivity 𝛼௕ = 2.13 × 10ି଻𝑚ଶ/𝑠 U-tube pipe outer radius 𝑟௞ = 0.021082 𝑚 

Ground thermal conductivity 𝑘௦ = 2.4 𝑊/(𝑚𝐾) 
Dimensionless fluid-to-pipe 

thermal resistance 𝛽௞ = 0.480281 

Ground thermal diffusivity 𝛼௦ = 1.2 × 10ି଺ 𝑚ଶ/𝑠 
Undisturbed ground 

temperature 𝑇଴ = 10 ℃ 

Groundwater thermal 
conductivity 𝑘௙ = 0.48 𝑊/(𝑚𝐾) Porosity 𝜖 = 0.2 

Groundwater thermal 
capacity 

൫𝜌𝑐௣൯
௙

= 

4.2 × 10଺ 𝐽/(𝑚ଷ𝐾) 

Shank spacing 𝑒 = 0.1 𝑚 

Figure 2 shows the average borehole wall temperature calculated by the present method (dotted line) and the FEA 
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method (solid line) for cases I and II for a period of 60000 s with a time-step equal to 60s considering the four different 
far-field velocities with fluid temperatures equal to 𝑇௙ଵ = 𝑇௙ଶ = 20 ℃ for both cases. Figure 2 also shows temperature 
contours for the final simulation time with 𝑢ஶ =  10ିହ 𝑚/𝑠. As expected, when the far-field velocity increases the 
average borehole wall temperature decreases and reaches the quasi-steady-state condition earlier. The maximum 
absolute differences between the proposed method and the FEA appear at approximately 180 h (10740 s) with values 
of 0.105, 0.115, 0.117, 0.061℃ for case I and 0.090, 0.103, 0.106, 0.024℃ for Case II, for each far-field velocity 
𝑢ஶ =  0, 10ି଺, 10ିହ, 10ିସ 𝑚/𝑠, respectively. At the final simulation time, the maximum difference between the 
proposed method and the FEA is 0.010℃ for case I with 𝑢ஶ =  10ି଺ 𝑚/𝑠. The main reason for this discrepancy is 
the simplification in Equations 6.1 and 7.1 for the reaction coefficient. The relatively small errors show that the 
coefficient 𝐾௚௪ can be used to successfully simplify the problem without significant loss of accuracy. Figure 2 also 
shows that the borehole wall temperatures are different in cases I and II for the same far-field velocity when 𝑢ஶ ≥

10ିହ 𝑚/𝑠. This implies that, under groundwater flow, the orientation of the U-tube influences the internal thermal 
resistances.  

 

Figure 2 Average borehole wall temperature comparison between FEA (continuous line) and present method 
(discontinuous line) for 4 different far-field velocities: a) Case I and b) Case II 

The internal thermal resistances are defined by: 

 𝑇௙ଵ − 𝑇௕ = 𝑅ଵଵ𝑞ଵ + 𝑅ଵଶ𝑞ଶ (14.1) 

 𝑇௙ଶ − 𝑇௕ = 𝑅ଶଵ𝑞ଵ + 𝑅ଶଶ𝑞ଶ (14.2) 

where 𝑞௞ =  ൫𝑇௙௞ − 𝑇ଵ|௥ೖ
തതതതതത൯/𝑅௞ is the heat flow at each pipe 𝑘, with 𝑇ଵ|௥ೖ

തതതതതത the average outer-wall pipe temperature. 
Internal thermal resistances are generally symmetrical (𝑅ଵଵ = 𝑅ଶଶ and 𝑅ଵଶ = 𝑅ଶଵ) in the absence of groundwater flow 
when symmetrical positioned pipes are considered. To estimate the thermal resistances, two pairs of arbitrary constant 
fluid temperatures for both pipes are used to solve the system of equations defined by Equations 14. Figures 3 and 4 
show the thermal resistances defined in Equation 14 for the two cases, with Figures 3a and 4a corresponding to 𝑢ஶ =

 0 𝑚/𝑠. The internal thermal resistances are symmetrical for this velocity. The thermal resistances calculated with the 
multipole method developed by Claesson and Hellström (2011) for the quasi-steady-state condition (conduction 
problem) are 𝑅ଵଵ = 𝑅ଶଶ = 0.291 𝑚𝐾/𝑊 and 𝑅ଵଶ = 𝑅ଶଵ = −0.029 𝑚𝐾/𝑊 for both cases. Comparing these 
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resistances with the final simulation time shown in Figure 3a and Figure 4a, the thermal resistances are 𝑅ଵଵ = 𝑅ଶଶ =

0.285 𝑚𝐾/𝑊 and 𝑅ଵଶ = 𝑅ଶଵ = −0.027 𝑚𝐾/𝑊. As expected, thermal resistances are symmetrical and are in good 
agreement with the classical multipole method. There are small differences between the multipole method and the 
transient multipole expansion since the transient multipole has not reached steady state. When 𝑡 → ∞, the thermal 
resistances approach to those calculated by Claesson and Hellström (2011). 

 

Figure 3 Internal thermal resistances for case I with 
different far-field velocities: a) 𝑢ஶ = 0 𝑚/
𝑠, b) 𝑢ஶ = 10ି଺ 𝑚/𝑠, c) 𝑢ஶ = 10ିହ 𝑚/𝑠 
and d) 𝑢ஶ = 10ିସ 𝑚/𝑠 

 

Figure 4 Internal thermal resistances for case II with 
different far-field velocities: a) 𝑢ஶ = 0 𝑚/
𝑠, b) 𝑢ஶ = 10ି଺ 𝑚/𝑠, c) 𝑢ஶ = 10ିହ 𝑚/𝑠 
and d) 𝑢ஶ = 10ିସ 𝑚/𝑠 

As shown on Figures 3b-d for case I, the thermal resistances decrease when the far-field velocity increases, and the 
symmetry tends to break down at higher far-field velocities. This is not the case on Figures 4b-d for case II where the 
symmetry holds at all far-field velocities. At the final time, the values of the thermal resistances are 𝑅ଵଵ = 0.281, 0.259, 
0.239, 𝑅ଶଶ = 0.289, 0.289, 0.253, 𝑅ଵଶ = −0.029, 0.020, 0.0, 𝑅ଶଵ = −0.024, −0.006, 0.003 for case I, and 𝑅ଵଵ =

𝑅ଶଶ = 0.285, 0.267, 0.234, 𝑅ଶଵ = 𝑅ଶଵ = −0.027, −0.02, −0.001 for case II, respectively, for each far-field velocity 
𝑢ஶ = 10ି଺, 10ିହ, 10ିସ 𝑚/𝑠. 

On Figures 3c-d and 4c-d, it is observed that the resistances 𝑅ଵଵ and 𝑅ଶଶ are not equal for case I, however they are 
equal for case II. This interesting result shows that even though the pipes are symmetrically distributed within the GHE, 
the symmetry condition does not hold in general. The fact that case II does present symmetry is because the far-field 
velocity is perpendicular to the spacing between the pipes. This allows using Green's identities to show that for this case 
the symmetry condition holds. It is also interesting to observe the behavior of resistances 𝑅ଵଶ and 𝑅ଶଵ for both cases I 
and II. Figures 3d and 4d show that these resistances tend to 0 as the velocity increases. In both cases, this behaviour 
on thermal resistances is explained in that the heat transfer is due to heat exchange between each pipe and the borehole 
wall rather than the pipes transferring heat to each other, therefore the groundwater is dissipating heat from the pipes.  

CONCLUSION 

A new analytical method for the study of conduction-advection heat transfer inside and around of a GHE was presented. 
The method allows including a potential field in the ground flowing around the GHE, in this case incompressible and 
irrotational. No simplification inside the GHE is made, allowing to place different pipe positions. Also, when posing 
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the complete mathematical model, a new boundary condition is considered in Equation 4.3 which takes into account 
the energy dissipation by means of the groundwater advection. 

As a first validation, the method was compared with a high-fidelity FEA simulation, which showed that the present 
method possesses good agreement despite making an approximation in the reduction of the diffusion-reaction problem 
by introducing a 𝐾௚௪ coefficient. With this new analytical method, it was shown that the position of the pipes slightly 
changes the temperature around the GHE. The observation of the temperature around the borehole wall showed that 
the thermal resistances coming from the linear conduction problem inside the GHE are not symmetric (𝑅௜௜ ≠ 𝑅௝௝ and 
𝑅௜௝ ≠ 𝑅௝௜). It was found that when the groundwater velocity is sufficiently large, the heat transfer problem is one-
dimensional, meaning that to calculate the heat flux of each pipe it is sufficient to know the temperature of each pipe 
and the average borehole temperature as 𝑅௜௝ → 0 for 𝑖 ≠ 𝑗. 

With these results, the use of methods such as thermal resistance capacitance (TRC) methods should be revisited when 
including groundwater flow, as the delta-circuit is not always valid. Extending the method from 2D to 3D including 
thermal interactions between boreholes and time-dependent fluid temperatures could be done using a segmented MFLS 
solution (Cimmino and Baliga, 2019) and a modified equivalent borehole method (Prieto and Cimmino, 2021b) with a 
coefficient updating scheme as done in Prieto and Cimmino (2021a, 2022).  
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