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ABSTRACT 

A new method for sizing vertical ground heat exchangers is proposed using topology optimization to reduce the number of boreholes required to fulfill the 

cooling and heating demand. The ASHRAE sizing equation is adapted to formulate a topology optimization problem to minimize the number of boreholes 

required in a bore field. The results show that topology optimization can help reduce the number of boreholes required when compared to a sizing performed 

on a regular grid using conventional sizing methods. These optimized configurations show smaller spacings between the boreholes located on the perimeter 

and larger spacings between the boreholes located in the center of the bore field. 

INTRODUCTION 

The design phase is a crucial part of the installation of a ground heat exchanger (GHE). Many aspects must be 

considered such as the heating and cooling loads of the building, the properties of the ground and the operating 

conditions. The operating conditions are usually a constraint that is imposed on the temperature of the fluid when 

entering or leaving the borehole. Multiple boreholes are often required to satisfy all the design parameters. However, 

boreholes interfere with each other, which may lead to a decrease in the performance of the GHE and an increase in 

the required borehole length. A higher drilling length in the GHE tends to increase the initial investment cost, which is 

one of the biggest obstacles for a wider use of GHEs. Working on ways to reduce these expenses by minimizing the 

total drilling length is a task that could be beneficial for the adoption of the technology on a larger scale. 

Existing design methods usually evaluate the minimal required total drilling length given a regular and already planned 

GHE configuration. An example is ASHRAE’s sizing method, as modified by Ahmadfard & Bernier (2018):  

𝐿𝑡𝑜𝑡 =
𝑞𝑎𝑅𝑔𝑎,𝑔+𝑞𝑚𝑅𝑔𝑚,𝑔+𝑞ℎ𝑅𝑔ℎ,𝑔+𝑞ℎ𝑅𝑔ℎ,𝑔

(𝑇𝑚−𝑇𝑔)
𝑟𝑒𝑓

(1) 

where 𝐿𝑡𝑜𝑡 is the total drilling length, 𝑞𝑎, 𝑞𝑚 and 𝑞ℎ are respectively the mean annual ground load, the mean monthly 

ground load for the design month, and the hourly peak ground load for the design month, 𝑅𝑔𝑎,𝑔, 𝑅𝑔𝑚,𝑔, and 𝑅𝑔ℎ,𝑔 are 

the respective thermal resistances for each load which are evaluated using 𝑔-functions, 𝑇𝑚 is the mean fluid temperature

inside the borehole, and 𝑇𝑔 is the undisturbed ground temperature. Both 𝑇𝑚 and 𝑇𝑔 are imposed in that method, thus

the notation “( )𝑟𝑒𝑓” in equation 1. 
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Previous research has identified different design strategies to optimize bore field configurations. Cimmino & Bernier 

(2014) studied the effect of adding or removing boreholes by modifying the spacing between the boreholes in a regular 

configuration. Guo et al. (2017) studied the impact of the ground temperature variation when displacing boreholes from 

the center of the bore field to its perimeter. Spitler et al. (2020) analyzed strategies such as irregular spacings and 

configurations that wrap around the buildings. These previous investigations on the optimization of GHE 

configurations result in similar conclusions: increasing the spacing with longer boreholes and a density of boreholes that 

is higher on the perimeter and lower in the center leads to savings in total drilling length and to more effective bore 

fields. Most of the research made on the subject proposed design strategies that compare advantageously with a base 

case, usually a regular configuration. The question remains as to how close these strategies are to the optimal layout. 

Automated methods to optimize GHEs have been developed over the years. Beck et al. (2013) proposed to optimize 

both the positioning of the boreholes and their heat extraction rates using linear programming and evolutionary 

computation. They found that optimizing a combination of both parameters produced minimal differences in the 

results. Bayer et al. (2014) developed a method to balance the workloads of each borehole in a bore field by removing 

the least effective ones. More recently, Edigi et al. (2021) proposed a method for evaluating bore field configurations 

for a fixed number of boreholes that relied on minimizing the sum of squares of the temperature difference in the 

ground due to the long-term operation of the bore field using the steepest descent method. Even though the objective 

function of that problem is not a condition that is usually used when designing GHEs, it led to results similar to previous 

studies. Cook (2021) developed the GHEDT program. The tool searches through pre-defined configurations via various 

design routines to find a combination of configurations that will optimize the bore field. These methods all converged 

to configurations where the perimeter is denser in boreholes than the center. 

As mentioned by Sigmund & Maute (2013), topology optimization originated for mechanical design applications but 

has since been used in many other fields of study. The idea behind topology optimization is to find the placement of 

material that will give the best structural performance. Most topology optimization approaches are density based and 

are performed on a prescribed domain. This domain is usually divided in elements and a design variable (𝜌) that can 

take either the value of 0 (void) or 1 (solid) is introduced. The optimization process evaluates which elements will 

contain material to meet the constraints. However, this is a discrete problem, and it is difficult to solve it directly 

(Sigmund & Maute, 2013). The problem is usually reformulated into a continuous one which allows to use more efficient 

gradient-based methods. The continuous problem takes the following form: 

{

Minimize:     𝑓0(𝝆)

Subject to:     𝑓𝑖(𝝆) ≤ 0 for 𝑖 = 1, … , 𝑚 
0 ≤ 𝜌𝑗 ≤ 1 for 𝑗 = 1, … , 𝑛

(2) 

where 𝑓0 is the cost-function (i.e. the function to minimize), 𝑓𝑖 are the constraints, 𝑚 is the number of constraints, 𝑛 is 

the number of elements in the domain, and 𝝆 is the vector of design variable.  

Even though the solving process is more efficient with the continuous formulation, the problem does not always 

converge to values of 0 or 1, which may create non-feasible solutions. A method to facilitate the convergence to values 

of 0 or 1 is the Simplified Isotropic Material with Penalization (SIMP) (Bendsoe, 1989), where a penalization term (𝑝) 

is introduced in the problem formulation. For 𝑝 = 1, the solution is the same as if no penalization was introduced. For 

𝑝 > 1, intermediate values of 𝜌 are penalized. As pointed out by Rozvany (2001) and Sigmund & Maute (2013), the 

optimization problem is solved repeatedly by slowly increasing the values of 𝑝 which leads to better results. 

The placement of the boreholes that compose a GHE has proven to be a parameter that influences the design process 

because of the thermal interactions between the boreholes. Strategically placing them can lead to significant savings in 

drilling length, which should usually help reduce the cost of investment of GHEs. This paper proposes a topology 

optimization method for the design of ground heat exchangers to minimize the number of boreholes in a GHE by 

strategically placing them inside the available area, adapting the modified ASHRAE sizing method.  
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METHODOLOGY 

Problem Formulation 

A problem of the form of equation 2 must be formulated to apply topology optimization for the design of GHEs. The 

objective of the proposed method is to minimize the number of boreholes of a given length inside a prescribed domain. 

The problem is constrained by the maximum temperature difference between the undisturbed ground and the fluid 

circulating in the boreholes, as in the modified ASHRAE sizing equation (equation 1). Contrary to many topology 

optimization problems, the domain is discretized in points instead of elements as only the coordinates of the boreholes 

are needed. The optimization determines which combination of boreholes of length 𝐿 minimizes its number, where 𝐿 

is a fixed parameter. This procedure is explained in details in the next section. With respect to equation 2, the proposed 

optimization problem can be written as follows: 

{

Minimize: 𝑓0(𝝆) = ∑ 𝜌𝑖
𝑛
𝑖=1

Subject to: 𝑓1(𝝆) = (𝑇𝑚 − 𝑇𝑔) − (𝑇𝑚 − 𝑇𝑔)
𝑟𝑒𝑓

≤ 0

0 ≤ 𝜌𝑖 ≤ 1 for 𝑖 = 1, … , 𝑛

(3) 

where 𝜌𝑖 represents the fraction of a borehole of length 𝐿 on every point inside the domain (which would ideally only 

take the value of 0 or 1), and (𝑇𝑚 − 𝑇𝑔)
𝑟𝑒𝑓 the imposed temperature constraint. As previously mentioned, gradient-

based optimization methods are efficient, but require a continuous problem formulation, which is why 𝜌𝑖 is continuous 

in equation 3.  

The modified ASHRAE sizing equation has to be modified to evaluate (𝑇𝑚 − 𝑇𝑔) while taking into account the design 

variable. The temperature is evaluated as follows: 

𝑇𝑚 − 𝑇𝑔 =
𝑞𝑎𝑅𝑔𝑎,𝑔+𝑞𝑚𝑅𝑔𝑚,𝑔+𝑞ℎ𝑅𝑔ℎ,𝑔+𝑞ℎ𝑅𝑏

∑ 𝜌𝑖⋅𝐿𝑛
𝑖=1

(4) 

with: 

𝑅𝑔𝑎,𝑔 =
𝑔(𝑡𝑓)−𝑔(𝑡𝑓−𝑡1)

2𝜋𝑘𝑠
(5) 

𝑅𝑔𝑚,𝑔 =
𝑔(𝑡𝑓−𝑡1)−𝑔(𝑡𝑓−𝑡2)

2𝜋𝑘𝑠
(6) 

𝑅𝑔ℎ,𝑔 =
𝑔(𝑡𝑓−𝑡2)

2𝜋𝑘𝑠
(7) 

where 𝑘𝑠 is the ground thermal conductivity, 𝐿 the individual length for a borehole, and 𝑔 the 𝑔-functions evaluated at

timesteps 𝑡𝑓, 𝑡𝑓 − 𝑡1 and 𝑡𝑓 − 𝑡2, with 𝑡1 = 10 years, 𝑡2 = 𝑡1 + 1 month and 𝑡𝑓 = 𝑡2 + 6 hours. The 𝑔-functions are

evaluated by superposition of the finite line source (FLS) solution: 

𝑔(𝑡) =
𝝆𝑇[𝑏𝑖𝑗∙ℎ𝑖𝑗]𝝆

∑ 𝜌
𝑖
𝑝𝑛

𝑖=1

(8) 

with: 

ℎ𝑖𝑗 =
1

2𝐿
∫

1

𝑠2
exp(−𝑑𝑖𝑗

2 𝑠2) 𝐼𝑙𝑠(𝐿𝑠, 𝐷𝑠)𝑑𝑠
∞

1
√4𝛼𝑡

⁄
(9) 

𝐼𝑙𝑠(𝐿𝑠, 𝐷𝑠) = 2 ∙ 𝑖𝑒𝑟𝑓(𝐿𝑠) + 2 ∙ 𝑖𝑒𝑟𝑓(𝐿𝑠 + 2𝐷𝑠) − 𝑖𝑒𝑟𝑓(2𝐿𝑠 + 2𝐷𝑠) − 𝑖𝑒𝑟𝑓(2𝐷𝑠) (10) 

where [𝑏𝑖𝑗 ∙ ℎ𝑖𝑗] is the array of thermal response factors for a borehole positioned on the 𝑗-th node on a borehole 

positioned on the 𝑖-th node, multiplied by a constant. The ℎ𝑖𝑗 factors are evaluated using the FLS model as proposed 

by Claesson & Javed (2011), with 𝑑𝑖𝑗 representing the radial distance between the 𝑖-th and the 𝑗-th borehole (with 𝑑𝑖𝑖 =
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𝑟𝑏), 𝐷 the buried depth of the boreholes, and 𝛼 the ground thermal diffusivity. The 𝑏𝑖𝑗 factor is added to ensure a 

minimal spacing between the boreholes in the solution. It acts as a soft constraint that takes either the value of 5 if 

𝑑𝑖𝑗 < 𝐵𝑚𝑖𝑛 or 1 if 𝑑𝑖𝑗 ≥ 𝐵𝑚𝑖𝑛, where 𝐵𝑚𝑖𝑛 is the imposed minimal spacing. The value of 5 has shown sufficient to 

fulfill the imposed minimal spacing constraint for the different cases tested. It has however been chosen arbitrarily and 

is subject to further research. The penalization is added in equation 8. Having the penalization at this specific position 

was found to be the most efficient way of obtaining discrete values of the design variable. 

Optimization Procedure 

The available domain is first discretized using the pygmsh 7.1.17 Python module (Schlömer, 2022) with the default 

Frontal-Delaunay algorithm and is then reloaded with the trimesh 3.11.2 Python module (Dawson-Haggerty et al., 2022) 

with processing for future manipulations of the grid. The positions are determined with more precision with a finer 

discretization, at the cost of increasing calculation time. The array of thermal response factors is evaluated for every 

point in the domain using pygfunction 2.1.0 and the method of similarities (Cimmino, 2018a, 2018b). At this point, it is 

assumed that there is a borehole on every point of the discretization. The initial value of 𝝆 is generated randomly to 

avoid the convergence of the solution to a local minimum.  

The method of moving asymptotes (MMA) (Svanberg, 1987, 2002) as implemented in the NLopt 2.7.0 Python module 

(Johnson, 2020) is used to perform the optimization. The MMA requires the evaluation of the derivatives of the cost-

function and the constraints functions with respect to the design variable on every point in the domain. The derivatives 

of the cost function in equation 3 are given by: 

 
𝜕(𝑓0)

𝜕𝜌
= [1, … ,1]𝑇  (11) 

and the derivatives of the constraint function in equation 4 are given by: 

 
𝜕(𝑓1)

𝜕𝜌
=

𝜕(𝑇𝑚−𝑇𝑔)

𝜕𝜌
=

𝑞𝑎
𝜕𝑅𝑔𝑎,𝑔

𝜕𝜌
+𝑞𝑚

𝜕𝑅𝑔𝑚,𝑔

𝜕𝜌
+𝑞ℎ

𝜕𝑅𝑔ℎ,𝑔

𝜕𝜌

𝐿 ∑ 𝜌𝑖
𝑛
𝑖=1

−
𝑞𝑎𝑅𝑔𝑎,𝑔+𝑞𝑚𝑅𝑔𝑚,𝑔+𝑞ℎ𝑅𝑔ℎ,𝑔+𝑞ℎ𝑅𝑏

𝐿(∑ 𝜌𝑖
𝑛
𝑖=1 )

2  (12) 

The ground thermal resistance requires the evaluation of the derivatives of the 𝑔-function, given by: 

 
𝜕𝑔

𝜕𝜌
=

1

∑ 𝜌
𝑖
𝑝𝑛

𝑖=1

(−𝑝𝝆𝑝−1𝑔 + (𝐛 ∘ 𝒉)𝝆 + 𝝆𝑇(𝒃 ∘ 𝒉)) (13) 

The process is repeated for values of 𝑝 ranging from 1 to 3 by increments of 0.05. The limit of 3 was found to provide 

configurations that contain almost exclusively values of 0 or 1 for the design variable. Gradual refinement of the grid is 

also proposed to reduce the calculation time. The grid is refined using trimesh around the points where 𝜌 ≥ 0.001 in 

the previous solution. The penalization process is repeated starting from 𝑝 = 1 to 𝑝 = 3 using the new refined grid. 

CASE STUDY 

The medium office from the commercial building library of the U.S. Department of Energy located in the city of 

International Falls, MN, is chosen for the case study (DOE & PNNL, 2020). The heating and cooling loads are 

evaluated, and it is assumed that this demand is met by a ground source heat pump system with a COP of 3 in both 

modes. The three ground loads are then evaluated and multiplied by a factor of 4, requiring a larger bore field. A large 

imbalance in cooling was found for the ground loads, therefore the sizing is only performed in cooling mode. An 

additional constraint could be added to equation 3 to also cover the heating mode. 

The study is performed on an L-shaped area of 6800 m2. A first sizing is done with the modified ASHRAE sizing 

method using a regular configuration and serves as the base case (case 1). A target length of around 125 m was aimed 

and multiple combinations of spacings were tested to find the minimum total drilling length. These combinations were 
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tested manually, which means that it is possible that a better configuration could have been achieved. A spacing of 10 m 

in the 𝑥 direction and 5 m in the 𝑦 direction was finally chosen. Another sizing is performed using the topology 

optimization method, with boreholes of the same length as the ones evaluated with the first method (case 2). It is then 

proposed to size the bore field using topology optimization by increasing the individual length of the boreholes (cases 

3 and 4). The purpose of these last two cases is to analyze the behavior of the topology optimization method when 

increasing the individual length, and how it compares to previous studies that analyzed this parameter. A minimal 

spacing of 2.5 m is imposed for all three sizings done using topology optimization, and the initial grid is refined two 

times starting from a grid where the longest distance between two consecutive points is 5 m. The parameters used for 

the sizing are presented in Table 1. The value of 𝑇𝑚,𝑟𝑒𝑓 used in constraint 𝑓1 from equation 3 is evaluated at 37.5°C. 

This results in a value of 23.5°C for the (𝑇𝑚 − 𝑇𝑔)
𝑟𝑒𝑓

 constraint. 

Table 1. Parameters Used in the Simulation 

 Bore field parameters  

Borehole buried depth (𝐷) 4 m 

Borehole radius (𝑟𝑏) 0.075 m 

Borehole thermal resistance (𝑅𝑏) 0.2 m-K/W 

 Ground properties  

Thermal diffusivity (𝛼) 1.0×10-6 m2/s 

Thermal conductivity (𝑘𝑠) 2.0 W/m-K 

Undisturbed ground temperature (𝑇𝑔) 14 °C 

Annual ground load (𝑞𝑎) 108.60 kW 

Monthly ground load (𝑞𝑚) 255.72 kW 

Hourly ground load (𝑞ℎ) 773.36 kW 

 Fluid properties (propylene-glycol 20% concentration)  

Flow rate (�̇�𝑓) 0.05 L/s per kW of peak load 

Density (𝜌𝑓) 1008 kg/m3 

Specific heat capacity (𝑐𝑝,𝑓) 4014 J/kg-K 

Entering fluid temperature (𝑇𝑜,𝑓) 40 °C 

RESULTS AND DISCUSSION 

Figure 1 presents the comparison for sizings done using the methods described in the previous section. These are 

filtered results, meaning that only the locations where 𝜌𝑖 ≥ 0.01 are shown. Figure 2 presents the results for the sizing 

of case 1. The complete grid after refinement is shown, and the shaded points represent locations where the value of 𝜌𝑖  

is approximately 0. A summary of the four cases is presented in Table 2. 

The optimized configurations using topology optimization are in accordance with previous studies and present a 

combination of the design strategies identified in the literature. The configurations are usually denser on the perimeter 

and have spacings that increase in the middle of the bore field. The method can achieve significant savings as case 2 

presents savings of 9.8% compared to case 1. As previous studies showed, increasing the maximum length of the 

individual boreholes (cases 3 and 4) usually tends to higher savings in the total drilling length. The perimeter is still filled 

with boreholes, and the density of boreholes at the center is reduced. The spacing between boreholes is also increased, 

both on the perimeter and in the center. 

The penalization introduced in equation 8 is not sufficient to ensure that 𝝆 converges to values of 0 and 1. The total 

drilling length in Table 2 for cases 2, 3 and 4 is not equal to the product of the number of boreholes and the individual 

borehole length. This causes errors in the calculation of the total drilling length since boreholes that are only partially 

present are accounted for in the cost function which can lead to two phenomena. The first one is when the value of 𝜌 

on a given point is significant depending on the case but not equal to 1. For example, case 2 has a point with a value of 
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𝜌 ≈ 0.76. The other case is when multiple values of 𝜌 are small but not equal to 0. These additional lengths are small 

for a single point in the domain but become significant when summed for the entire domain.  

 

Figure 1 Bore field sizing filtered results case 1 (top left), case 2 (top right), case 3 (bottom left), case 4 (bottom right)  

  

Figure 2 Detailed sizing results with topology optimization for case 2 

The optimized configurations are complex and impractical for real applications. The boreholes in the middle are 

scattered in what seems a random configuration. Since the optimization procedure relies on 𝑔-functions, it is the 

borehole density (e.g. in boreholes per square meter) across the domain that affects the temperature difference and thus 
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affects the presence or absence of boreholes in a given region of the domain. There might be multiple configurations 

that will satisfy the design criteria with similar total drilling lengths. A “feasibility” constraint could be considered in 

future work, but this necessitates a quantitative criterion compatible with the problem formulation of equation 2. 

Table 2. Sizing Results 

The time consumption of the method also represents one of its limits. The method may take a couple of hours for large 

bore fields that are finely discretized. The optimization method however does not require supervision. Once all the 

design parameters are entered, the method produces the result automatically. On the other hand, ASHRAE’s sizing 

method takes a couple of seconds, and the same can be said for some of the more recent sizing tools, such as GHEDT.  

CONCLUSION 

Borehole placement is an important aspect to consider when designing a GHE. Previous research has shown the effect 

of placement on the total drilling length, and many strategies have been explored to optimize bore field configurations. 

This paper has proposed a new method to optimize GHEs based on topology optimization.  

A case study has been presented, which compared this new optimization method with one that is used frequently when 

designing bore fields. It has been shown that this method can reduce the total drilling length using efficient and robust 

optimization algorithms. The configurations obtained are in accordance with the more recent research made on the 

optimization of bore fields: boreholes should be more densely placed on the perimeter and more coarsely in the center. 

The current state of the method shows that directly applying topology optimization can lead to savings in total drilling 

length, but that the resulting configurations are complex. It should however help uncover new design strategies that 

have not been explored yet. The results can also serve to produce reference lower bounds on the total drilling length to 

compare other design methods. It is finally worth noting that this paper proposes only one formulation for the design 

problem. As long as the objective function and the constraints are in respect with the problem formulation in equation 2, 

different types of optimizations, e.g. techno-economic optimization, could be performed. 
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NOMENCLATURE 

𝛼  = Ground thermal diffusivity (m2/s) 

𝜌  = Design variable (-) 

𝜌𝑓  = Fluid density (kg/m3) 

𝑏𝑖𝑗   = Distance multiplying factor 

𝐵𝑚𝑖𝑛 = Imposed minimal spacing (m) 

𝑐𝑝,𝑓  = Fluid specific heat capacity (J/kg-K)  

𝑑𝑖𝑗   = Radial distance between the 𝑖-th and the 

𝑗-th borehole (m) 

𝐷  = Borehole buried depth (m) 

𝑓0  = Cost-function 

𝑓1  = Constraint function 

Case Method Number of 
boreholes 

Individual borehole length 
(m) 

Total drilling length 
(m) 

Savings (%) 

1 Modified ASHRAE 
sizing method 

163 127.3 20 750 0.0 

2 Topology 
optimization 

150 127.3 18 714 9.8 

3 Topology 
optimization 

117 150.0 17 528 15.5 

4 Topology 
optimization 

94 175.0 16 426 20.8 
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𝑔(𝑡) = 𝑔-function evaluated at time 𝑡 (-) 

𝒉  = Array of ground thermal response factors 
(-) 

𝑖𝑒𝑟𝑓 = Error function integral (-) 

𝑘𝑠  = Ground thermal conductivity (W/m-K) 

𝐿𝑡𝑜𝑡  =  Total bore field drilling length (m) 

𝐿  = Individual borehole length (m) 

𝑝  = Penalization value (-) 

𝑞𝑖   = Ground loads (W) 

𝑅𝑏  = Borehole thermal resistance (m-K/W) 

𝑟𝑏  = Borehole radius (m) 

𝑅𝑔𝑖,𝑔 =  Ground thermal resistance evaluated 

using 𝑔-functions (m-K/W) 

𝑇𝑚  =  Mean fluid temperature (°C) 

𝑇𝑔   =  Undisturbed ground temperature (°C) 

∆𝑇  = Temperature variation constraint (°C) 

𝑇𝑜,𝑓  = Entering fluid temperature (°C) 

�̇�𝑓  = Fluid flow rate (L/s per kW of peak load) 
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