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Abstract. In this paper we analyze symmetries, hidden symmetries, and commensura-
bility classes of (ε, dL)-twisted knot complements, which are the complements of knots that
have a sufficiently large number of twists in each of their twist regions. These knot com-
plements can be constructed via long Dehn fillings on fully augmented link complements.

We show that such knot complements have no hidden symmetries, which implies that
there are at most two other knot complements in their respective commensurability classes.
Under mild additional hypotheses, we show that these knots have at most four (orientation-
preserving) symmetries and are the only knot complements in their respective commensu-
rability classes. Finally, we provide an infinite family of explicit examples of (ε, dL)-twisted
knot complements that are the unique knot complements in their respective commensu-
rability classes obtained by filling a fully augmented link complement with four crossing
circles.

1. Introduction

Two manifolds are said to be commensurable if they share a common finite-sheeted
cover. In the case of hyperbolic 3-manifolds, this property is an equivalence relation and the
equivalence classes are called commensurability classes. In general, commensurability
classes of hyperbolic 3-manifolds are not well-understood, and it is often difficult to decide
if two such manifolds are commensurable. To make the commensurability problem more
tractable, it is natural to restrict to the case of hyperbolic knot complements. Evidence
from the literature suggests that hyperbolic knot complements are rarely commensurable
with one another. More precisely, Reid and Walsh put forth the following conjecture:

Conjecture 1.1 ([RW08, Conjecture 5.2]). There are at most three hyperbolic knot com-
plements in a commensurability class.

Much work has been done to verify the conjecture for particular classes of knot comple-
ments, which will be discussed below. Perhaps the biggest step forward toward a resolution
comes from a result of Boileau, Boyer, Cebanu, and Walsh [BBCW12], which asserts that the
conjecture holds for a hyperbolic knot complement S3 \K that does not admit hidden sym-
metries. A hidden symmetry of a (finite volume) hyperbolic 3-manifold M is a symmetry
of a finite-sheeted cover of M that does not come from a symmetry of M . For hyperbolic
knot complements, admitting hidden symmetries is equivalent to non-normally covering
an orbifold [NR92a, Proposition 9.1], and we will frequently make use of this perspective.
There are only three hyperbolic knot complements known to admit hidden symmetries: the
figure-8 knot complement and the two dodecahedral knot complements of Aitchison and
Rubinstein [AR92]. One of these dodecahedral knots is shown in Figure 1a. Neumann
and Reid have conjectured that these are the only hyperbolic knot complements admitting
hidden symmetries. While confirming this conjecture in full generality has proven difficult,
certain special (infinite) classes of knot complements have been shown to not have hidden
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symmetries: 2-bridge knot complements [RW08], [MW16], certain highly-twisted pretzel
knot complements [Mil17], and (−2, 3, n)-pretzel knot complements with n 6= 7 [MM08], as
well as certain classes of knot complements that arise from surgery on a common manifold
[Hof10], [CDM19].

(a) (b) (c)

Figure 1. The dodedecahedral knot on the left is one of only three knots
whose complements are known to have hidden symmetries. The twist
regions of this knots are highlighted in gray. By augmenting each twist
region with a crossing circle and reducing the number of twists modulo 2
we get the FAL in center. If we perform a 1

qi
-Dehn surgery along each

circle Ci of the FAL, we get the knot on the right, with 2qi crossings in
each twist region. It is a consequence of Theorem 1.2 that if each |qi| is
sufficiently large, the complement of the knot on the right will have no
hidden symmetries.

With an eye toward expanding this analysis to a far broader class of hyperbolic knot
complements, we consider knot complements obtained as Dehn fillings of fully augmented
link (FAL) complements. To construct an FAL L, start with a (twist-reduced) diagram of
a knot K, insert a trivial component encircling each twist region (called a crossing circle),
and reduce modulo 2 the number of crossings in each twist region. Conversely, K can be
recovered from L by Dehn surgery along the crossing circles of L, for appropriately chosen
surgery slopes (see Section 2 for details); for example consider the filling used to obtain
Figure 1a from Figure 1b. In fact, if we choose for each crossing circle component Ci of
L any slope of the form 1

qi
, for any qi ∈ Z6=0, the result will be a knot, which by the 6

Theorem will be hyperbolic assuming none of the qi are too small. Thus, we see that any
hyperbolic knot K can be obtained via Dehn surgery on an FAL, and a given FAL will be
a Dehn surgery ancestor of infinitely many hyperbolic knots. In particular, the three knot
complements known to have hidden symmetries can be obtained by surgery on an FAL; see
Figure 1b for the FAL ancestor of one of the dodecahedral knots.

In addition to furnishing Dehn surgery ancestors for all hyperbolic knots, the class of
FALs also has the benefit of some very nice geometric properties. Most notably, FALs
admit an explicit geometric decomposition into a pair of right-angled ideal hyperbolic poly-
hedra, as was first demonstrated by Agol and D. Thurston in the appendix to [Lac04] (see
also Section 2.1). For sufficiently long Dehn surgeries of the crossing circles, the deforma-
tion of the geometric structure is minimal and we are able to study many topological and
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geometric properties of the resulting knot complements in terms of the geometric struc-
tures of the FAL complements (see for example [Pur07, FP07]). Going forward this will
be our main line of attack, and as a result we will be forced to restrict our analysis to
hyperbolic knot complements having sufficiently many twists in each twist region, which
we call (ε, dL)-twisted knot complements. The exact parameters for the number of twists
necessary for a knot to be (ε, dL)-twisted depends on the geometry of the FAL being filled;
see Section 2.2.1 for details and Section 6.1 for explicit examples. Our first result shows that
such knot complements do not admit hidden symmetries, providing a major step towards
analyzing their commensurability classes.

Theorem 1.2. Let M = S3 \K be an (ε, dL)-twisted knot complement. Then M admits
no hidden symmetries.

Although we prefer to delay the rather technical definition of (ε, dL)-twisted until the
next section, we will show in Proposition 2.6 that all sufficiently long 1

qi
fillings of FAL

complements along crossing circles have this property. Thus we immediately get the fol-
lowing corollary about sequences of knot complements geometrically converging to an FAL
complement:

Corollary 1.3. Let {Mi = S3\Ki} be a sequence of hyperbolic knot complements resulting
from filling the crossing circles of an FAL complement S3 \ L, such that each filling slope
has length at least ni, with limi→∞ ni = ∞. Then only finitely many Mi have hidden
symmetries.

In light of this, it is perhaps unsurprising that each of the three examples of knot com-
plements known to admit hidden symmetries arise with just two twists per twist region.
Geometrically, this means that the hyperbolic structures of these knot complements are not
similar to the hyperbolic structures of their ancestor FAL complements.

By combining Theorem 1.2 with [BBCW12, Theorem 1.4] we also get the following corol-
lary, which provides further evidence in favor of the conjecture of Reid and Walsh:

Corollary 1.4. There are at most three hyperbolic knot complements in the commensu-
rability class of an (ε, dL)-twisted knot complement.

Work of Margulis [Mar91] shows that any (non-arithmetic) hyperbolic knot complement
covers a unique (orientable) minimal volume orbifold O in its commensurability class. The-
orem 1.2 implies that when M = S3 \ K is an (ε, dL)-twisted knot complement such a
cover must be regular and in particular, O must be the quotient of M by its group of
orientation-preserving symmetries. Thus it is natural to study the symmetry group of M in
order to more fully understand the commensurability class of M . Since our definition of an
(ε, dL)-twisted knot complement (see Section 2.2.1) guarantees that the core geodesics in-
troduced under Dehn filling are the shortest geodesics in M , any symmetry of M must map
this set of geodesics to itself. This provides a significant restriction on the symmetry groups
of (ε, dL)-twisted knot complements, which we highlight in the following theorem. For this
result we not only need our knot complements to be (ε, dL)-twisted, but also generic, which
means that no isometry of S3 \K permutes the core geodesics of the filling solid tori. For
instance, if these core geodesics all have different lengths, then this filling is generic. See
Section 2.2.3 for more details on this.

Theorem 1.5. Let M = S3 \K be an (ε, dL)-twisted and generic knot complement. Then
M has an orientation-preserving symmetry group of order at most 4.
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In addition to establishing that such symmetry groups must be very small, we also de-
termine how any non-trivial symmetries must act on the cusp of M ; see Corollary 4.7.
Furthermore, we note that there are infinite families of (ε, dL)-twisted and generic knot
complements with symmetry groups of order exactly 4; see Section 4. Finally, combining
Theorem 1.5 and Theorem 1.2 shows that the minimal orbifold cover M → O described in
the previous paragraph is at most degree 4; this is stated in Corollary 4.2. This result makes
it quite feasible to directly analyze O, and thus assist with distinguishing commensurability
classes of (ε, dL)-twisted and generic knot complements.

Futer and Purcell establish that if a twist-reduced diagram of a knot has enough twist
regions and enough twists in each twist region, then the associated complement cannot
admit exceptional surgeries (see [FP07, Corollary 1.8]). We refer the reader to Figure 1c for
a visual of twist regions and Section 2 for the definition. We extend this result by obstructing
quotients of (ε, dL)-twisted and generic knot complements with the same properties from
admitting exceptional surgeries. We summarize both our result and those of Futer and
Purcell in the following theorem.

Theorem 1.6. Let S3 \K be an (ε, dL)-twisted and generic knot complement admitting a
twist-reduced diagram with at least 9 twist regions such that each twist region has at least
6 crossings. Then S3 \K has no non-trivial exceptional fillings, and the quotient Q of S3 \K
by its symmetries that act freely on the cusp has no non-trivial exceptional fillings that are
good orbifolds.

See Section 5.2 for the definition of a good orbifold.The fact that our results extend to
quotients allows for the following corollary, which asserts that these knot complements are
the unique knots in their respective commensurability classes.

Corollary 1.7. Let S3 \K be an (ε, dL)-twisted and generic knot complement admitting a
twist-reduced diagram with at least 9 twist regions such that each twist region has at least
6 crossings. Then S3 \K is the only knot complement in its commensurability class.

This paper focuses on knot complements having a large number of crossings in each twist
region. It is natural to ask if it is sufficient to have a single twist region with a large
number of crossings. Further, one might ask for a universal lower bound on what is meant
by “large.” The below conjecture asserts that such a condition should be sufficient for the
conclusion of Theorem 1.2. Proving such a result would be a major step toward resolving
Conjecture 1.1.

Conjecture 1.8. Let S3 \ K be a knot complement and D be a twist-reduced diagram
of K. If S3 \ K admits hidden symmetries, there exists universal upper bound C on the
number of crossings in a twist region of D.

1.1. FAL structure results. In Section 3, a significant amount of work goes into develop-
ing structural results for any hyperbolic FAL L obtained from fully augmenting a knot K.
While the main purpose of these results is to provide tools for proving the above theorems
about (ε, dL)-twisted and generic knot complements, they also highlight some interesting
properties of horoball packings and orbifold covers of FAL complements. In what follows,
let K0 be the component of L corresponding to K and suppose there exists an orbifold
cover p : S3 \ L → O. Section 3.1 shows that certain FAL complements cannot admit
horoball packings with an order 3-rotational symmetry, which then restricts the geometry
of O. Specifically, if none of the crossing circle cusps of S3 \ L cover a rigid cusp, then the



SYMMETRIES AND HIDDEN SYMMETRIES OF (ε, dL)-TWISTED KNOT COMPLEMENTS 5

cusp of S3 \ L corresponding to K0 cannot cover an S2(3, 3, 3) or S2(2, 3, 6) rigid cusp; see
Section 2.2.1 for more details on rigid cusps and Lemma 3.4 for a precise statement of this
fact. In Section 3.2, FAL complements whose horoball packings admit an order 4-rotational
symmetry are analyzed. Such FAL complements exist, though the geometry of their cor-
responding horoball packings is quite restrictive, as shown in Proposition 3.6. As a result,
any FAL complement S3 \ L where the cusp corresponding to K0 covers a S2(2, 4, 4) rigid
cusp must either have every crossing circle cusp covering a rigid cusp or else S3 \L covers a
specific orbifold O with two S2(2, 4, 4) cusps; see Lemma 3.7 for a statement of this result
and Figure 12 and Figure 13 for descriptions of O.

1.2. Paper Organization. The paper is arranged as follows. In Section 2, we discuss
the necessary background on the geometry of FAL complements and (ε, dL)-twisted knot
complements. In particular, we describe how to construct such knot complements via Dehn
filling FAL complements, and discuss some of the important covering space properties of
these knot complements. In Section 3, we provide a careful analysis of the horoball packings
of FAL complements and leverage this analysis to understand orbifold covers of FAL com-
plements that come from restricting orbifold covers of (ε, dL)-twisted knot complements.
This all assists in proving Theorem 1.2 at the end of Section 3. In Section 4, we further
exploit our understanding of orbifold covers of FAL complements to prove Theorem 1.5 by
restricting the degree of certain orbifold covers of FAL complements. In Section 5, we prove
1.6 and Corollary 1.7, which builds off of our previous work along with an orbifold version
of the 6-theorem. In Section 6, we construct explicit examples of (ε, dL)-twisted and generic
knot complements. For each one of these examples, the knot complement in question is the
unique knot complement in its commensurability class.

1.3. Acknowledgements: The first author was partially supported by grant from the
Simons Foundation (#524123 to Neil R. Hoffman). Part of this project began when the
first and second authors were visiting the Okinawa Institute of Science and Technology
during the Geometry and Topology of 3-manifolds workshop. We thank the Institute and
the organizers of the workshop for their hospitality. The second author also wishes to thank
Rice University and Oklahoma State University for hosting him during this project. We also
thank Dave Futer for providing insightful suggestions on quantifying changes in geometry
under Dehn surgery. We wish to thank Jason Deblois for a number of discussions, which led
to revisions in Section 3. Finally, we wish to thank the referee for a number of thoughtful
suggestions about the paper, especially for the prompt to extract the relevant details from
the final example as a theorem.

2. Background

In this section, we describe the hyperbolic knots and links that we will analyze in this
paper. The geometric structures of fully augmented link complements are discussed in
Section 2.1. In Section 2.2, we describe how to construct (ε, dL)-twisted knot complements
by performing Dehn fillings on fully augmented link complements. For the remainder of
the paper, all manifolds and orbifolds are assumed to be finite volume, orientable, and
hyperbolic unless explicitly stated otherwise.

2.1. Fully Augmented Link Complements. Let K be a hyperbolic link with prime,
twist-reduced diagram D(K), thought of as a 4-valent planar graph with vertices labelled
by over- and under-crossing data (see [FP07], or Figure 2 for definitions). An edge of D(K)
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is called simple if it is the unique edge connecting its vertices (i.e., it is not part of a
multi-edge). We can partition D(K) into twist regions by cutting it at the midpoint of
every simple edge. More plainly, a twist region is a region of the diagram where two strands
twist around each other a maximal number of times—in a twist region with n crossings,
the strands twist around each other n

2 times. Going forward, we will assume that our link

K is embedded in S3 = R3 ∪ {∞} so that it’s projection onto the x, y−plane is the graph
D(K), thus allowing us to refer to twist regions of K.

(a) (b)

Figure 2. Left: A prime link. Right: A twist-reduced link.

Associated to K is a fully augmented link L, obtained as follows. First, for each twist
region ti of K, let Ci be a circle that bounds a twice punctured disk in S3 \K, punctured
by the two strands of ti. Let L′ be the disjoint union of K and the circles Ci, and let
L be the link obtained by reducing modulo 2 the number of crossings in the twist region
associated to each circle Ci of L′ (see Figure 3). If we consider the complement S3 \ L′,
then this reduction modulo 2 is equivalent to removing full twists by cutting along the
twice punctured disk bounded by each circle Ci, twisting one of the resulting boundary
components until at most one crossing remains, then regluing by the identity. Since this
operation is a homeomorphism of S3\L′, it follows that S3\L ∼= S3\L′. Any fully augmented
link L constructed in this manner is hyperbolic (see [FP07, Theorem 2.2] for a short proof
of this fact, which follows from [Ada86, Theorem 4.1]).

(a) (b) (c)

Figure 3. Left: A link K with three twist regions. Center: L′ is obtained
by augmenting each twist region of K with a circle. Right: the FAL L
associated to K, obtained by removing full twists from L′.

If K is an m-component link with n twist regions, then the fully augmented link (FAL,
henceforth) L associated to K will have m planar components K1, . . . ,Km (corresponding
to the components of K, with full twists removed), and n crossing circle components
C1, . . . , Cn. At each crossing circle Ci there is either one crossing, called a half-twist, or
no crossings. A planar cusp of S3 \ L is a cusp of this link complement that corresponds
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with a planar component of L. Similary, a crossing circle cusp of S3 \L corresponds with
a crossing circle of L.

2.1.1. Polyhedral decomposition. In the Appendix of [Lac04], Agol and D. Thurston give
a decomposition of L into two isometric right-angled ideal polyhedra (see also [FP07],
[Pur11]). To simplify the description of this decomposition, we will assume for now that L
has no half-twists. Thus each planar component of L can be thought of as a simple closed
curve in the projection plane P, which we identify with R2 ∪ {∞} ∼= S2 ⊂ S3. Embed each
crossing circle Ci so that the twice punctured crossing disk it bounds is perpendicular to
P. Then the reflection in P preserves L, and is therefore a homeomorphism of S3 \ L. By
Mostow–Prasad rigidity, this reflection is then an isometry of S3 \ L, and it follows that
P \ L must be totally geodesic in S3 \ L. By a result of Adams [Ada85] the crossing disks
also must be totally geodesic surfaces in S3 \ L. By first cutting along P \ L, then along
the crossing disks, we obtain two ideal polyhedra P1 and P2. Let P1 be the component that
lies above the projection plane. Since we have cut along crossing disks, we can pull apart
each half-disk in P1 (see Figure 4). By contracting each component of L to a point, we
realize P1 as an ideal polyhedron with geodesic faces, 4-valent vertices, and dihedral angles
all π

2 . The same is true for P2, as it is isometric to P1. If we shade the faces that come
from cutting along disks, and leave projection plane faces unshaded, then the faces of each
Pi will be checkerboard colored, and every shaded face will be a triangle.

Figure 4. To construct P1, first pull half-disks apart (left), then flatten
them onto the projection plane (center), and contract the strands of the
link to vertices (right).

If L has a half-twist at one (or more) of its crossing circles, then it still decomposes into
polyhedra P1 and P2. The only difference is that when we glue P1 to P2 to recover S3 \ L,
we must glue the punctured disks at that crossing circle with a half twist. This means that
the corresponding pair of shaded faces of P1 will glue to shaded faces of P2.

The above discussion shows that there are many totally geodesic properly embedded
surfaces in an FAL complement, including several thrice-punctured spheres. In the example
shown in Figure 4, for example, there are 3 obvious thrice-punctured spheres (the crossing
disks), and one that is less apparent. In particular, the middle crossing circle bounds a
thrice-punctured sphere on both sides (one contains the vertex at∞). We can see this extra
thrice-punctured sphere in P1 ∪ P2 as follows: a closed path that crosses three unshaded
faces, but is not homotopic into the boundary of a shaded face, is the boundary of a triangle
embedded in P1, and another in P2. The union of these triangles is a thrice-punctured
sphere. Note that if we isotope the middle crossing circle in the left frame of in Figure 4 so
that it wraps around the other planar component, then the “extra” thrice-punctured sphere
is now a crossing disk. In general, if a crossing circle for L bounds multiple twice-punctured
disks (whose punctures are meridians of planar components), then such an isotopy exists
for each one. For this reason we will call any such disk a generalized crossing disk.
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2.1.2. Horoball packing. Let O = H3 \ Γ be a hyperbolic orbifold with covering map
π : H3 → O. Given a cusp c of O, a cusp neighborhood is a neighborhood n(c) of c
such that π−1(n(c)) is a union of horoballs. An embedded system of neighborhoods {n(ci)}i
for the cusps of O is called a cusp expansion. Given a cusp expansion for O, the union⋃
i π
−1(n(ci)) of the inverse images of the cusp neighborhoods is called a horoball pack-

ing of H3. Such a horoball packing is called maximal if increasing the size of any cusp
neighborhood will result in horoballs in the packing whose interiors are not disjoint.

We are now ready to describe the (preferred) horoball packing associated to an FAL
L, which will be our main tool for ruling out hidden symmetries in Section 3. We start
by describing a certain lift of P1 ∪ P2 to H3. Going forward we will identify H3 with the
upper half-space model, with coordinates (z, t) ∈ C × R>0. We will identify ∂H3 with the

Riemmann sphere Ĉ.
Let τ be a shaded face of P1, and lift τ so that it has its vertices at 0, i and ∞. Our

choice of lift for τ determines a holonomy representation for π1(S3 \L), and a covering map
π : H3 → S3 \ L. The horoball packing we are interested in is provided by the following
theorem of Futer–Purcell:

Theorem 2.1 ([FP07]). Let L be an FAL, and π : H3 → S3 \L the covering map described
above. Then there exists a maximal horoball packing H of H3 such that for any edge e in
π−1(P1 ∪ P2), the midpoint of e is at a tangency of two horoballs.

Here the midpoint of an edge e is defined to be the intersection point of e and a geodesic
perpendicular to e that emanates from the vertex v, where v is the vertex that lies across
the shaded face that e bounds (see [FP07, Figure 8]). For example, the vertical edges of the
triangle τ have midpoints at height 1, as can easily be checked. Theorem 2.1 implies that
the boundary of the horoball H∞ at infinity must be at height 1.

To describe the other features of this horoball packing that will be important going
forward, we will need to understand the neighborhood of the cusp at ∞ ∈ ∂H3. To this
end, let L0 be the component of L whose corresponding cusp in S3 \ L lifts to ∞ under π.
Then π(∂H∞) is a torus that bounds a neighborhood of this cusp. Let T0 be a lift of this
torus to H∞ so that T0 lies above the first quadrant of C and has a corner at (0, 1) ∈ H3. To
ease exposition, it will be convenient to again restrict to the case where L has no half-twists.
In this case we have the following lemma from [FP07]:

Lemma 2.2. T0 is tiled by a grid of rectangles, each of which has sides of length 1 parallel
to the imaginary axis which intersect shaded faces of P1 or P2, and sides parallel to the real
axis intersecting unshaded faces. If L0 is a planar component of L that passes through m
crossing disks (counted with multiplicity), then T0 consists of 2m tiles and has meridian of
length 2, which is parallel with the imaginary axis. If L0 is a crossing circle, then T0 consists
of 2 tiles and has longitude of length 2, parallel with the imaginary axis. See Figure 5.

Now let L0 be a planar component, and let the shaded faces that intersect the tiles of T0
lie over the lines Li = {Re(z) = li} for 0 ≤ i ≤ m − 1, where l0 = 0. Then the points li,
li + i, and li + 2i along the line Li are vertices of two shaded faces, and each such vertex
is connected by an edge to the vertex at ∞. These shaded faces map via p to a crossing
disk Dj , and L0 must pass through this crossing disk, as it is a vertex of said shaded faces.
Since the midpoint of a vertical edge is at height 1, it follows from Theorem 2.1 that there
is a diameter 1 horoball centered at each of these vertices. One of these horoballs (of which
there are two up to deck transformation) corresponds to the crossing circle Cj that bounds
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(a) (b) (c)

Figure 5. Tilings of a planar cusp (center) and a crossing circle cusp
(right). Tiles a, b, c, d, and e come from truncation of vertices of P1 as
shown (left), while tiles a′, b′, c′, d′ and e′ come from truncating vertices of
P2. Vertices coming from crossing circles are colored red, and larger.

Figure 6. Looking down from a planar cusp L0 lifted to infinity in ∂H3,
we see lines of full sized horoballs parallel to the imaginary axis of
C ⊂ ∂H3. Each line corresponds to a crossing disk that L0 passes through,
and the embedded H2 lying above such a line is the developing image in H3

of the crossing disk. Horoballs corresponding to crossing circles are colored
red, and drawn thicker.

Dj . The other corresponds to the other planar component that passes through Dj (which
may be L0 itself). Translating these by the meridian deck transformation, we get a line
of full-sized (i.e., diameter 1) horoballs at the points li + ki for k ∈ Z, which correspond
alternately to crossing circle and planar components of L (see Figure 6).

While we restricted to FALs without half-twists to make the statement of Lemma 2.2
more palatable, the consequences of the lemma that we are interested in hold when half-
twists are present. In particular, the pattern of lines of alternating color horoballs shown
in Figure 6 is still present. We leave details to the reader.

Going forward, we will be interested solely in the case where there is a single planar
component K0 of L. By the horoball packing H, we will always mean the horoball packing
obtained from Theorem 2.1, where the planar component K0 corresponds to the vertex lifted
to∞. In this case, K0 passes through every crossing disk, and every shaded face has two of
its vertices corresponding to K0. It follows from the above discussion that for every crossing
circle Cj there is a line Lij of full-sized horoballs in H in which the horoballs correspond
alternately to Cj and K0. In fact, there are two such lines Lij . It will be convenient to
record the following important consequence:
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Lemma 2.3. Let L be an FAL with one planar component K0, and let H be the horoball
packing described above (with K0 at ∞). Then for every component of L, there is a full-
sized horoball in H, necessarily tangent to H∞, that is a lift of a neighborhood of that
component.

2.2. Knot Complements via Dehn Filling FAL Complements. Throughout this sec-
tion, let L = K0 t C1 t · · · t Cn be an FAL with one planar component K0 and n crossing
circles Ci, i = 1, . . . , n. In this section and going forward, we will abuse notation and refer
to K0 and the Ci both as components of L, and as cusps of S3 \ L.

Let Ti be the torus boundary of a neighborhood of a crossing circle Ci. An isotopy class
of simple closed curve on Ti is naturally identified with a tuple (pi, qi) ∈ Z×Z ∼= H1(Ti,Z),
where we identify the canonical meridian and longitude of Ci with a basis for H1(Ti,Z).
By removing a neighborhood of Ci and gluing in a solid torus along Ti so that its meridian
glues to the curve (pi, qi), we obtain the (pi, qi)–Dehn filling of Ci. The parameters (pi, qi)
describes the slope of the filling. When gcd(pi, qi) = 1 it is natural to identify the slope of
a filling with the rational number pi

qi
.

The main goal of our work is to better understand the geometry and topology of knot
complements obtained from high parameter fillings of FAL complements. In [Pur07], Purcell
studies fillings of FALs that result in at least c crossings per twist region, where c > 0 is an
explicit universal constant. This condition is equivalent to requiring that the Dehn filling
slope on each crossing circle Ci is 1

qi
, for some qi ≥ c/2, i = 1, . . . , n. A knot with this

property is often called a highly twisted knot.
Similar to Purcell, we will analyze knots with a large number of twists in each twist region.

In some sense, the complement of such a knot is geometrically similar to the corresponding
FAL complement, and we can control certain geometric aspects of the knot complement by
leveraging the well-understood structure of the FAL complement. Specifically, we want to
obtain control over the short geodesics in an FAL filling using the thick/thin decomposition
of orbifolds, which we now define. Let O = H3/Γ be a finite volume hyperbolic 3-orbifold.
Given ε > 0, the ε-thick part of O is defined as

O≥ε := {x ∈ O : d(x̃, αx̃) ≥ ε for all infinite order α ∈ Γ and all lifts x̃ ∈ H3 of x}.
The ε-thin part of O is defined to be O<ε := O \O≥ε, the complement in O of the ε-thick
part.

We refer the reader to [DM94] for a more thorough background on the thick/thin decom-
position and other geometric properties of hyperbolic 3-orbifolds.

2.2.1. (ε, dL)-twisted knot complements. Let S3\K be a knot complement obtained by Dehn

filling each crossing circle Ci of S3 \ L along a curve of slope 1
qi

, and let dL = 4vol(S
3\L)
v0

,

where v0 is the volume of the regular ideal tetrahedron. This setup implies that L has one
planar component.

Definition 2.4. We say that S3 \K is (ε, dL)-twisted, or alternatively that S3 \K is an
(ε, dL)-twisted filling of S3 \ L , if the following three conditions hold:

(i) (S3 \ L)≥ε is homeomorphic to S3 \ n(L),
(ii) (S3 \K)≥ε is homeomorphic to (S3 \ L)≥ε, and

(iii) (S3 \K)≥ε/dL is homeomorphic to (S3 \ L)≥ε.

For a more general version of this definition, see Section 6.
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In this setting S3 \K is a knot complement with a suitable number of twists in each twist
region, where the number of twists depends on the geometry of S3 \ L. This distinguishes
our (ε, dL)-twisted knots from Purcell’s highly twisted knots, where the number of the twists
required is independent of the geometry of S3 \ L. We note here that with this definition,
the figure-8 knot is not (ε, dL)-twisted for any choice of ε. This follows from observing
that the systole of the figure-8 is 1.0870.., while its FAL ancestor the Borromean rings

has systole 2.122.. and volume 7.327.., so that ε
dL
≤ (2.122..)

4(7.327..)/v0
< 1.0870, and (iii) cannot

hold. Our reason for wanting to rule out the figure-8 knot complement is that it is the
only knot complement that is an arithmetic manifold, by [Rei91] (see [NR92a] for relevant
background on arithmetic manifolds). Thus, it follows that any knot complement that is
(ε, dL)-twisted is necessarily non-arithmetic. This fact is important because it allows us to
use the following lemma, which along with the proof of Proposition 2.6 below, explains our
choice of the constant dL in Definition 2.4.

Lemma 2.5. Let Q be a cusped non-arithmetic orbifold. Then vol(Q) ≥ v0
4 .

Proof. The statement follows from Adams’ census of all cusped hyperbolic orbifolds with
volume less than v0

4 [Ada92, Corollary 6.2.] and Neumann–Reid’s observations that each
element of this census is arithmetic [NR92b]. �

In the next proposition, we show that (ε, dL)-twisted fillings exist in abundance, and have
a nice orbifold covering property. In what follows, let γi ⊂ S3 \K be the core geodesic of
the solid torus introduced by filling the ith crossing circle cusp of S3 \ L, for i = 1, . . . , n.

Proposition 2.6. Let N = S3 \ L be an FAL with one planar component and n crossing
circle components. Choose some ordering of the n crossing circles.

(1) There exists ε > 0, and positive integers k1, . . . , kn, such that if the |qi| ≥ ki for
all i then filling the n crossing circle cusps along α = ( 1

qi
, . . . , 1

qn
) results in an

(ε, dL)-twisted knot complement.
(2) If M = S3 \K is a (ε, dL)-twisted filling of N and p : M → O is an orbifold cover,

then there is an orbifold cover pN : N → Q, where Q ∼= O \ tni=1p(γi).

The following proof utilizes properties of geometric convergence. For further background
on these ideas we refer the reader to [BP92, Chapter E], [DM94], and Thurston’s notes
[Thu78].

Proof. Let N = S3 \ L, and denote by Nα the Dehn filling of N along α = ( 1
qi
, . . . , 1

qn
).

Part (1): To start, we require our choice of ε to be smaller than the systole length of N .
Such a choice of ε immediately satisfies item (i) from the definition of (ε, dL)-twisted. After
making ε smaller if necessary, [DM94, Theorem 5.4, (2) ⇒ (3)] implies that there exists
q1, . . . , qn such that for |qi| ≥ ki, we have (Nα)≥ε is homeomorphic to N≥ε, showing item
(ii) holds. In particular, this implies that (Nα)<ε consists of a neighborhood of the planar
cusp K0, and a tubular neighborhood of each core geodesic introduced by Dehn filling a
crossing circle. Furthermore, [DM94, Theorem 5.4, (2) ⇒ (3)] implies that the lengths
of these core geodesics converge to zero, and the lengths of other geodesics in Nα remain
bounded below by ε, as the |qi| go to ∞. Thus by making the ki larger if necessary, we can
guarantee that (Nα)≥ε/dL is homeomorphic to (Nα)≥ε, while ensuring that (ii) still holds,
giving (iii).

Part (2): Let M be an (ε, dL)-twisted filling of N as given by Part (1) and let dp be the
degree of the cover p. Since M is non-arithmetic, we have by Lemma 2.5 that vol(O) ≥ v0

4 .
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Since volume decreases under Dehn filling, it follows that dp = vol(M)
vol(O) ≤

vol(S3\L)
v0/4

= dL.

Hence 0 <
dp
dL
≤ 1 and we have that M<ε/dL ⊂ p−1(O<ε/dL) ⊂ M<ε. Since M is (ε, dL)-

twisted, its ε-thick and ε/dL-thick parts are homeomorphic, and so, p−1(O≥ε/dL) is homeo-
morphic M≥ε/dL . Let Q = int(O≥ε/dL). Since M<ε/dL contains only neighborhoods of the
core geodesics γi and of the planar cusp, it follows that Q ∼= O \ tni=1p(γi). Since M is
ε/dL-twisted, M≥ε/dL is homeomorphic to S3 \ n(L). Thus we get a cover pN : N → Q,
summarized below:

N

pN
$$

∼= // int(M≥ε/dL)
∼= // p−1(int(O≥ε/dL))

p

��
Q int(O≥ε/dL)

∼=oo

Figure 7. A schematic for covers used in the proof of Proposition 2.6.
We stress that with respect to pN no geodesic in the ε-thick part of M can
cover a geodesic in the ε/dL-thin part of Q.

�

Remark. In Section 6, we produce a quantified version of Proposition 2.6 by implementing
recent tools developed by Futer–Purcell–Schleimer [FPS19]. We also discuss how some of
the dependencies on the geometry of N can be simplified if we restrict to filling certain
subclasses of FAL complements.

The relevance of the proposition above to this paper is made clear by the following
theorem of Neumann and Reid, which relates hidden symmetries of a knot complement
to covering a rigid cusp orbifold. Recall that there are 3 types of Euclidean turn-overs:
S2(2, 3, 6), S2(2, 4, 4), and S2(3, 3, 3). An orientable cusped orbifold is said to have a rigid
cusp if it has a cusp with cross section of Euclidean turn-over. Otherwise, an orientable
cusped orbifold is said to have non-rigid cusps. There are two types of non-rigid cusps:
pillow-cases, which are homeomorphic to S2(2, 2, 2, 2), and tori.

Theorem 2.7 ([NR92a, Proposition 9.1]). Let S3 \K be a hyperbolic knot complement.
Then S3 \K admits hidden symmetries if and only if S3 \K covers a rigid cusped orbifold.

In the context of Proposition 2.6, this theorem tells us that if we can show that O does
not have a rigid cusp, then it follows that M does not admit hidden symmetries. The
proposition allows us to pass to the orbifold Q, and show instead that the corresponding
cusp of Q is non-rigid. To show this, we will need to use the fact that the other cusps of Q
must also be non-rigid, which follows from the fact that rigid cusps cannot be Dehn filled.
This fact is discussed below in Section 2.2.2, where we also give a detailed description of
fillings of non-rigid cusps by solid torus quotients. Although such a description is really
only needed as background for the proof of Lemma 3.8, we include it here since it has the
added benefit of providing a description of the thin part O<ε of O (recall from the proof of
Proposition 2.6 that Q is obtained by removing O<ε from O). Components of O<ε consist
of the quotients of solid tori described below. We note that the core geodesics p(γi) of O
correspond in the description below to the curves and arcs of n-torsion in the solid torus
quotients (where we may have n = 1).
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2.2.2. Orbifold Dehn filling. An important distinction between rigid and non-rigid cusps is
that non-rigid cusps have well-defined slopes. We include the discussion here to keep the
paper self-contained and to set ideas and notation used later (see [DM94, Section 4] for
further discussion of orbifold Dehn filling).

First, consider a torus cusp T of an orbifold O. Such a cusp is filled using an orbi-torus
D2(n)× S1, where for n = 1 we just have the solid torus D2 × S1. Alternatively, we could
consider an orbi-torus as the quotient of a solid torus by an order-n rotation about its core.
Associated to a primitive element (p, q) ∈ H1(T,Z) is a simple closed curve α. If we glue
the meridian ∂(D2(n) × {0}) of an orbi-torus to α, then we say that the fillings slope is
(np, nq). Thus the filling slope describes a multi-curve (n copies of α) that becomes trivial
in the orbifold fundamental group of the filled orbifold.

For an S2(2, 2, 2, 2) cusp P we fill using the order-2 quotient of an orbi-torus, which we
call an orbi-tangle. This is a 2-strand rational tangle in a ball, with each strand labeled
by 2-torsion, and an arc labelled by n-torsion connecting the strands of the tangle. When
n = 1 this is the 2-fold quotient of a solid torus (with fixed points on the boundary). A
slope on P is defined via a covering map p : T → P , where T is a torus. Any essential
simple closed curve α on T (which we may assume avoids the singularities) will project to
an essential simple closed curve ᾱ on P . We define a slope for such a closed curve in P
in terms of the slope it lifts to in T . If we are gluing in an orbi-tangle with n-torsion on
the arc between the tangles, then there is an orbi-disk D2(n) properly embedded in the
orbi-tangle that separates the two tangle strands. The orbi-tangle is glued to P in such a
way that the boundary of the orbi-disk glues to ᾱ on P . If the slope of ᾱ ⊂ P is (p, q),
then the filling slope for such a filling is (np, nq). As with the torus filling, the filling slope
describes a multi-curve (n copies of α) that becomes trivial after filling.

On the other hand, it is not possible to (non-trivially) fill a rigid cusp of an orbifold. This
is because no solid-torus quotient has a turnover as its boundary. We record this important
fact in the following lemma:

Lemma 2.8. Given any cusped (finite volume) hyperbolic 3-orbifold O, Dehn fillings can
be performed only along non-rigid cusps.

For a hyperbolic 3-orbifold O, each slope we Dehn fill along is associated to a parabolic
element of the fundamental group. If we inflate a (maximal) cusp neighborhood of a 3-
orbifold and use that to determine a horoball packing of H3, we define the length of a slope
to be the displacement of the parabolic in the appropriate horosphere. We point out that
for any cover of O in which a slope lifts, this gives a consistent measure of the length of
that slope.

2.2.3. (ε, dL)-twisted and generic knot complements. Generically, one should expect the ε-
thin part of an orbifold or manifold to be a set of non-isometric tubes and a set of non-
isometric cusp neighborhoods. This motivates the following definition:

Definition 2.9. We say that S3 \K is an (ε, dL)-twisted and generic filling of S3 \L if it
is (ε, dL)-twisted and no isometry of S3 \K non-trivially permutes the set of core geodesics
of the filling solid tori.

The above condition is satisfied if (S3 \K)<ε is a set of (disjoint) pairwise non-isometric
tubular neighborhoods of geodesics and a single cusp neighborhood. For example, this will
be true if the geodesics in the filling solid tori all have different lengths.
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Note that if S3\L has no symmetries that non-trivially permute crossing circle cusps, then
every (ε, dL)-twisted filling is generic in the sense of the above definition. This is because
any isometry of S3 \K that permutes core geodesics restricts to a symmetry of (S3 \K)≥ε
permuting the corresponding boundary tori, and (S3 \K)≥ε is homeomorphic to S3 \ n(L).
Since symmetry groups of link complements can be rigorously computed by SnapPy, this
allows us to identify certain FALs for which all sufficiently long fillings are (ε, dL)-twisted
and generic (see Section 6.1). Certainly, though, this condition on the symmetry group of
S3 \ L is far from necessary, as the following proposition demonstrates.

Proposition 2.10. For any FAL complement N = S3 \ L with one planar component,
(ε, dL)-twisted and generic fillings exist.

Proof. By Proposition 2.6 there are positive integers q1, . . . , qn such that if |qi| ≥ ki, then
filling along α = ( 1

q1
, . . . , 1

qn
) results in an (ε, dL)-twisted knot complement. Choose an

ordering of the crossing circle cusps {C1, ..., Cn} of S3 \ L and let α = ( 1
q1
, . . . , 1

qn
) be a

multi-slope with |qi| ≥ ki for all i. Then any multi-slope α′ = ( 1
q′1
, . . . , 1

q′n
) with each

|q′i| ≥ |qi| will also produce an (ε, dL)-twisted filling. To guarantee that such a filling is
both (ε, dL)-twisted and generic, first fix a filling 1

q′1
for any |q′1| ≥ |q1| on the first crossing

circle cusp. Then choose filling slope 1
q′2

for C2, with |q′2| ≥ |q2|, so that the core geodesics

of the filling tori for C1 and C2 have distinct lengths. This will be true for all but finitely
many choices of q′2, since the length of the core geodesic goes to 0 as q′2 goes to infinity.
Continuing this procedure, choose the filling slope 1

q′i
for Ci, with |q′i| ≥ |qi|, so that the

resulting core geodesic does not have the same length as that associated to any previous
filling. Since |q′i| ≥ ki for all i and the core geodesics of filling solid tori have distinct lengths,
the resulting filling is (ε, dL)-twisted and generic.

�

Remark. Though Proposition 2.10 is only an existence statement, the proof shows that given
any FAL complement, many of its fillings will be (ε, dL)-twisted and generic. In particular,
the above proof did not rely on the choice of ordering of the cusps, and only required
omitting finitely many fillings at each step (though this finite number will generally depend
on the filling slopes of previously filled cusps). However, we make no formal claim that
(ε, dL)-twisted and generic fillings are generic in a precise probabilistic sense, as we prefer
to avoid discussions about probability measures that would take us too far from the goals
of this paper.

An important feature of (ε, dL)-twisted and generic fillings is that we can understand
their symmetries in terms of symmetries of S3 \ L that map each cusp to itself. Recall
that the orientation-preserving symmetry group of a hyperbolic 3-manifold M consists of
the orientation-preserving homeomorphisms of M , up to isotopy; we denote this group by
Sym+(M). The following proposition is key for the proof of Theorem 1.5.

Proposition 2.11. Let M be an (ε, dL)-twisted filling of N = S3 \ L. Then there exists a
monomorphism f : Sym+(M) ↪→ Sym+(N) such that for all β ∈ Sym+(M), f(β) permutes
the crossing circle cusps of N . Furthermore, M is (ε, dL)-twisted and generic if and only if,
for every β ∈ Sym+(N), f(β) maps every cusp of N to itself.

Proof. Let M be an (ε, dL)-twisted filling of N and let {γi}ni=1 be the set of core geodesics
in M introduced by Dehn filling the crossing circle cusps of N . Then since {γi}ni=1 are
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the only geodesics in M with length less than ε, any β ∈ Sym+(M) must map this set
of geodesics to itself. As a result, Kojima [Koj88, Lemma 5] gives a monomorphism
f : Sym+(M) ↪→ Sym+(N). This monomorphism is called rest in Kojima’s paper, and
comes from restricting the domain of any symmetry of M to M≥ε/dL . Furthermore, Ko-
jima’s work implies that any f(β) must fix the meridional classes of C1 t · · · t Cn, and
therefore must permute the cusps {C1, . . . , Cn}.

Now, assume M is (ε, dL)-twisted and generic. Then any β ∈ Sym+(M) must map each
γi to itself, for i = 1, . . . , n. Suppose f(β) exchanges two cusps of N . By the previous
paragraph, we know that f(β) must exchange two crossing circle cusps of N . However,
since the monomorphism f comes from restricting symmetries of M , the previous sentence
implies that there is a symmetry of M that exchanges some γi and γj , where i 6= j, which
is a contradiction. Likewise, if every f(β) maps every cusp of N to itself, then we must
have that each corresponding β maps each core geodesic obtained from Dehn filling to itself,
which implies M is (ε, dL)-twisted and generic. �

3. Hidden symmetries and FALs

In this section we prove Theorem 1.2. Recall that by Theorem 2.7, for hyperbolic knot
complements having hidden symmetries is equivalent to covering a rigid cusped orbifold.
Thus Theorem 1.2 will follow as a direct corollary of the following statement:

Theorem 3.1. Let L be an FAL with a single planar component, and let S3 \ K be an
(ε, dL)-twisted filling of S3 \ L. Then S3 \K does not cover a rigid cusped orbifold.

We will delay the proof of the above theorem until the end of the section. However, the
idea of the proof is to leverage the thick/thin decomposition of S3 \ K to show that any
orbifold covering S3 \K → O restricts to a covering from the thick part of S3 \K to the
thick part of O. Under this covering the thick part of O has at least two cusps, but at most
one that is a rigid cusp. However, analyzing the embedded thrice punctured spheres in FAL
complements shows that such a restricted cover is impossible.

In this section we continue to restrict to FALs having a single planar component. Let
L = K0 tC1 t · · · tCn be such an FAL, possibly with half-twists at crossing circles. Recall
from Section 2 that the complement S3 \ L decomposes as a union P1 ∪ P2 of isometric
polyhedra. Since L has a single planar component, every shaded face of P1 ∪ P2 has a
vertex in the cusp K0. We choose a lift of a shaded face τ of P1 such that the vertices of τ
lift to 0, i, and ∞. We may further require that the vertex of τ corresponding to K0 is the
one that lifts to ∞. With this lift fixed, Theorem 2.1 gives a maximal horoball packing H.
For this section, H will always denote this particular choice of maximal horoball packing,
and we will refer to H as the preferred horoball packing for the FAL L. It follows from
the previous section that H contains as a subset the pattern of full-sized horoballs shown
in Figure 6. Recall that a horoball is full-sized if it has diameter 1, i.e., it is tangent to
the horoball at ∞.

The proof of the main theorem follows from analyzing the possible rigid cusped orbifold
quotients of all FALs with a single planar component. To prove this proposition, we start in
Section 3.1 by ruling out the possibility that K0 covers an S2(2, 3, 6) or S2(3, 3, 3) rigid cusp.
Then in Section 3.2 we consider the possible orbifold covers where K0 covers an S2(2, 4, 4)
cusp. In both cases our approach is to study possible symmetries of the preferred horoball
packing H. The reason for this is made apparent by the below lemma.
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Lemma 3.2. Let L be an FAL with a single planar component K0, and let p : S3 \ L→ O
be an orbifold cover such that no crossing circle covers a rigid cusp. Then K0 covers a
rigid cusp in O if and only if H has a rotational symmetry of order 3 or order 4 fixing ∞
(depending on the rigid cusp type).

Proof. Suppose that K0 covers a rigid cusp c0 of O. Since by assumption no crossing
circle covers a rigid cusp, K0 is the only cusp covering c0. We will construct a horoball
packing HO covering cusp neighborhoods of O. First, let π : H3 → S3 \ L be the cover
defined in Section 2.1.2, and let πO : H3 → O be the composition p ◦ π. Let n(c0) be a
maximal embedded cusp neighborhood of c0 (i.e., it contains every other embedded cusp
neighborhood of c0). For the remaining cusps c1, . . . , cm of O, let n(ci) be the largest
embedded cusp neighborhood whose interior is disjoint from n(c0), and from n(cj) for j < i.

Now let HO =
⋃
i π
−1
O (n(ci)). Note that π−1O (n(c0)) ⊂ (H ∩ HO), and among these lifts of

n(c0) are the horoball H∞ at infinity, and a full-sized horoball tangent to H∞.
Each cusp ci, i 6= 0, is covered by one or more crossing circles. Since n(ci) is maximal,

it is either tangent to n(c0), or to n(cj) for some j ≤ i (or both). First, consider the

case where n(ci) is tangent to n(c0). Then π−1O (n(ci)) contains a horoball tangent to H∞,
necessarily full-sized. Let Ck be any crossing circle covering ci, and let n(Ck) ∈ p−1(n(ci)).
The point of tangency between n(ci) and n(c0) lifts to a point of tangency between n(Ck)
and a neighborhood n(K0) ∈ p−1(n(c0)). It follows that there is a full-sized horoball in
π−1(n(Ck)), and this is the largest horoball covering Ck. Let i0 be the smallest index so that

n(ci0) is not tangent to n(c0). Then since πO = p ◦ π, it follows that
⋃i0−1
i=0 π−1O (n(ci)) ⊂ H.

Consider now the horoballs covering n(ci0). Since they are not tangent to n(c0), they
cannot be full-sized. If Ck0 is a crossing circle covering ci0 , then the horoballs covering
ci0 in HO are obtained by equivariantly deflating the horoballs in H covering Ck0 . But

such horoballs in H are isolated, and hence they must be isolated in
⋃i0
i=0 π

−1
O (n(ci)), since⋃i0−1

i=0 π−1O (n(ci)) ⊂ H. But this is a contradiction. Since n(ci0) has a point of tangency
with some n(cj) for j ≤ i0, the horoball lifts of ci0 must be tangent to horoball lifts of n(cj).

It follows that for every crossing circle Cj , the largest horoball corresponding to Cj is
full-sized. By Lemma 2.3, the same holds for H. Since πO = p ◦ π, it follows that we must
have H = HO. Since deck transformations for O are necessarily symmetries of HO, HO
must have an order-4 or order-3 rotation fixing ∞ (since ∞ covers the rigid cusp of O).
Hence H has an order-3 or order-4 rotation fixing ∞.

Conversely, if H has an order-4 symmetry then K0 covers an orbifold with an order 4 cone
point, which must be S2(2, 4, 4) as this is the only Euclidean 2-orbifold with this property.
Similarly, if H has an order-3 symmetry then K0 must cover an orbifold with an order 3
cone point, i.e., S2(2, 3, 6) or S2(3, 3, 3). �

In the discussions to follow we will denote by Hz the horoball in H centered at z ∈ Ĉ.
Since we will usually not need to distinguish between horoballs coming from different cross-
ing circles, we will refer to horoballs that lift from crossing circles as red horoballs. Horoballs
that are lifts of K0 will be referred to as blue horoballs. We will similarly refer to red and
blue vertices of the polyhedra Pi depending on whether the vertex corresponds to a crossing
circle or a planar cusp. Finally, we denote by N the nerve associated to L, and we again
color the edges of the nerve red or blue depending on the color of the vertex of Pi to which
they are dual. In the figures we will color these objects accordingly, and all red vertices,
edges, and horoballs will also be drawn thicker.
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3.1. Order 3 symmetries. In this section we will rule out the possibility that K0 covers
a rigid S2(2, 3, 6) or S2(3, 3, 3) cusp. By Lemma 3.2, this reduces to showing that H does
not admit order-3 symmetries fixing ∞. To this end, suppose that H does in fact have an
order–3 symmetry σ fixing∞ and a point z ∈ C, which we may assume is a counterclockwise
rotation as seen from∞. Recall that Lj denotes the line of full-sized horoballs along the line

{Re (z) = lj}, as in Figure 6. The image σ(L0) is a line of horoballs having slopes 1/
√

3.
This line of horoballs must intersect each Lj in a horoball. In particular, L0∩σ(L0) is some
horoball H0. From here forward we will assume that H0 is red, as shown in Figure 6. If H0

is blue then the discussion to follow and the proofs of Lemma 3.3 and Lemma 3.4 go through
with the only change being the reversal of colors. Rotating again by σ gives another line
σ2(L0) of horoballs, this time of slope −1/

√
3. It is clear that this line must also intersect

L0 in a red horoball (since H0 is red). After translating the horoballs in Figure 8a by the
group generated by µ and σ−1µσ, we get diameter 1 horoballs tiling C in the pattern shown
in Figure 8b. It follows that for each j we have lj = kj

√
3, for some kj ∈ Z>0.

(a) (b)

Figure 8. The images of a line L0 of full sized horoballs under an order-3
rotation σ by must intersect L0 in a full sized horoballs, as in (a). By
translating the picture in (a) by deck transformations, we get the tiling in
(b). As usual, crossing circle horoballs are colored red and drawn thicker.

Lemma 3.3. Suppose H has an order–3 rotational symmetry fixing infinity. Then every
unshaded face of Pi, i = 1, 2 has at least 6 vertices.

Proof. Let F be an unshaded face of P1. For some 0 ≤ j0 ≤ m − 1 and δ ∈ {0, 1}, there
is a lift of F with a vertex at ∞, as well as vertices at a1 = a′1 + δi, . . . , an = a′n + δi for
some lj0 = a′1 < a′2 < · · · < a′n = lj0+1. These vertices are centers for a horizontal string of
tangent horoballs, since the endpoints of lifted edges of P1 are centers of tangent horoballs.

Recall that lj = kj
√

3 for all j, so that |lj0+1 − lj0 | can only be a multiple of
√

3. If

|lj0+1 − lj0 | 6=
√

3, then it is at least 2
√

3 > 3. It is clear in this case that n ≥ 5, and hence

F has at least 6 vertices. Hence we may assume that |lj0+1 − lj0 | =
√

3.
We will assume that the horoballs Ha2 and Han−1 (centered at a2 and an−1) are as large

as possible, without intersecting any horoball in the packing represented in Figure 8b. Then
we will show that Ha2 and Han−1 are not tangent, so that 3 6= n− 1. Our assumption that
Ha2 is as large as possible forces it to be tangent to both Ha1 and the two blue horoballs
H and H ′ that are tangent to Ha1 and Han (see Figure 9a) . Hence the center of Ha2
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is at the barrycenter of the equilateral triangle with vertices the centers of Ha1 , H, and

H ′. This triangle has height
√
3
2 , so the distance x from a1 to the barrycenter satisfies

x2 = (12)2 + (
√
3
2 − x)2, so that x = 1√

3
(see Figure 9a). Refering to Figure 9b, it follows

that the radius r of Ha2 satisfies (12 − r)
2 + ( 1√

3
)2 = (12 + r)2, so that r = 1

6 . By symmetry

the radius of Han−1 is also 1
6 .

Since the center of a2 (resp. an−1) is distance 1√
3

from a1 (resp. an) and has radius 1
6 , it

follows that if Ha2 and Han−1 are tangent then the total distance from Ha1 to Han must be

2(16 + 1√
3
) <
√

3. But this is a contradiction of our observation that for any j, lj = kj
√

3,

for some kj ∈ Z>0. �

(a) (b)

Figure 9. Computing the largest possible radius for Ha2 and Han−1 .

Lemma 3.4. Let L be an FAL with a single planar component K0, and let π : S3 \ L→ O
be an orbifold cover such that no crossing circle covers a rigid cusp. Then the cusp corre-
sponding to the main component K0 cannot cover an S2(3, 3, 3) or S2(2, 3, 6) rigid cusp in
O.

Proof. By Lemma 3.2 the existence of such a cusp implies that there is an order–3 rotation
fixing ∞. It follows from the Lemma 3.3 that if H has such an order–3 symmetry, then
every unshaded face of P1 has at least 6 vertices. Following [Pur11, Lemma 2.3], the nerve
N of P1 is a triangulation of S2 (with no loops or multi-edges). However, every vertex in
this nerve triangulation of P1 is at least 6-valent, which is impossible as χ(S2) = 2. �

3.2. Order 4 symmetries. In this section we investigate order-4 symmetries of the pre-
ferred horoball packing H, with the goal of showing that (ε, dL)-twisted fillings of FALs
cannot cover S2(2, 4, 4) rigid cusps. First, though, we remark that a recent pre-print of
the first author [Hof20, Theorem 1.1] obstructs hyperbolic knot complements from covering
orbifolds with (2, 4, 4) cusps, and thus provides an alternate proof to the main result of this
section. Nevertheless, we retain this section in order to keep our proof self-contained, and
because we prove along the way some structural results of independent interest.

We cannot rule out order–4 rotational symmetries for horoball packings of all FAL com-
plements. In fact, octahedral FAL complements have horoball packings with order–4 sym-
metries, coming from the symmetries of the tessellation H3 by regular ideal octahedra.

In this section, as in the last, L = K0 tC1 t · · · tCn will be an FAL with a single planar
component. Suppose that H has an order–4 symmetry σ fixing ∞, and that σ does not
identify any red horoball with any blue horoball. For each fixed j0 ∈ {0, . . . ,m− 1}, σ(Lj0)



SYMMETRIES AND HIDDEN SYMMETRIES OF (ε, dL)-TWISTED KNOT COMPLEMENTS 19

(a) (b)

Figure 10. After rotating a line of full-sized horoballs by an order-4
rotation then translating by deck transformations, we get one of the two
packings shown above. As usual, crossing circle horoballs are colored red
and drawn thicker.

(a) (b)

Figure 11. If all lj are even, then pairs of shaded faces meeting at a blue
vertex must be as in (a). If an unshaded face does not satisfy either
condition (1) or condition (2) of Lemma 3.5, then (b) will appear. Red
vertices are drawn larger in these figures.

is a horizontal line of horoballs alternating in color, which must intersect each vertical
line Lj in a horoball. In particular, we have a horizontal line of horoballs σ(L0), which
after translating in the meridian direction gives horizontal lines of horoballs along the lines
Im (z) = 2k or Im (z) = (2k + 1) for k ∈ Z. Rotating again by σ now gives one of the two
horoball patterns shown in Figure 10. (recall that our lift was chosen so that the horoball
at 0 is red).

Lemma 3.5. Suppose H has an order–4 symmetry such that no red horoball is in the orbit
of a blue horoball, and all lj are even. Then every unshaded face of Pi has either (1) all
blue vertices, or (2) vertices that alternate in color on a walk around the boundary of the
face.

Proof. In either case shown in Figure 10, it follows that pairs of triangular faces of Pi
meeting at a blue vertex are as shown in Figure 11a. To see this, consider the blue vertex
connecting the two triangles in Figure 11a as lying at ∞, so that the four other vertices
are on lines Lj and Lj+1 for some j. Since all lj are even, and since the horoball packing
contains one of the patterns shown in Figure 10, all horoballs at points lj +bi for fixed b ∈ Z
are full-sized horoballs all of the same color. It follows that both vertices of a unshaded face
adjacent to ∞ are the same color.
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Therefore Pi must be built by joining together pieces like the one shown in Figure 11a.
Suppose that some unshaded face does not satisfy either (1) or (2). Then along this face
there are 3 consecutive vertices that are blue, blue, red (note that red vertices can never be
adjacent to each other). Consider the two triangles opposite the two edges joined by these
vertices. Since every triangle contains exactly one red vertex, the only possible configuration
of vertices for these two triangles is as in Figure 11b, contradicting our assertion that every
pair of triangles must have the vertex configuration shown in Figure 11a. �

Proposition 3.6. Let L = K0 t C1 t · · · t Cn be an FAL, and let p : S3 \ L → O be an
orbifold cover. Suppose that K0 covers an S2(2, 4, 4) rigid cusp in O, and that no crossing
circle covers an S2(2, 4, 4) rigid cusp. Then Hz is a full-sized horoball of H if and only if
z = a+ bi with a, b ∈ Z. Furthermore,

(1) all of the cusps corresponding to crossing circles cover a single cusp of O.
(2) all blue full-sized horoballs are centered at z ∈ Z[i] with a+ b ≡ 1 mod 2.
(3) all red full-sized horoballs are centered at z ∈ Z[i] with a+ b ≡ 0 mod 2.
(4) every blue full-sized horoball is centered at a fixed point of an order-4 rotation fixing
∞.

Proof. Suppose that K0 covers an S2(2, 4, 4) rigid cusp. Since K0 covers an S2(2, 4, 4) rigid
cusp, there is an order–4 rotational symmetry σ fixing infinity, which we may assume is a
counter-clockwise rotation as seen from ∞. In this case the (maximal) horoball packing H
contains one of the two patterns of horoballs shown in Figure 10, as discussed above. Note
that since we are assuming that crossing circles do not cover an S2(2, 4, 4), the σ-orbits of
blue horoballs and red horoballs are disjoint.

First assume that all lj are even, and suppose for a contradiction that H contains the
pattern in Figure 10b. Referring to the face F highlighted in Figure 10b (in which we are
looking down on the face), we see that the unshaded face having edges connecting the red
vertex at ∞ to the blue vertices at i and l1 + i also has a red vertex. In particular, the
red diameter 1 horoball H centered at 1 + i must be at a vertex of F . Since F has three
consecutive blue vertices, it cannot satisfy either condition of Lemma 3.5. Thus if all lj are
even then H cannot contain the pattern in Figure 10b, so it must contain that of Figure 10a.

Let µ ∈ π1(S3 \ L) be the lift of the meridian of K0 to the peripheral subgroup at ∞,
and let Γ∞ = 〈µ, σ〉. If some lj is odd, then the Γ∞-orbits of Lj and L0 are different:
one of them looks like Figure 10a and the other like Figure 10b. The union of these orbits
looks like Figure 10a with additional red full-sized horoballs in the empty spaces. Thus H
contains as a subset the pattern in Figure 10a.

In either case, we find that the horoball packing H must contain as a subset the horoball
packing shown in Figure 10a. Since τ = σ−1µσ is a translation by 2 in the longitude
direction (or z 7→ z + 2), a fundamental domain for 〈σ, τ〉 is contained in

{(z, t) ∈ H3 | 0 ≤ Re(z) ≤ 2, 0 ≤ Im(z) ≤ 2}.

The intersection of this domain with H∞ is shown as a (large) grey square in Figure 10a.
Thus we may assume that the other fixed point zσ of σ satisfies 0 ≤ Re (zσ) < 2 and
0 ≤ Im (zσ) < 2. Since we are assuming that no crossing circle covers an S2(2, 4, 4) rigid
cusp, it follows that either zσ = 1+ i, or up to equivalence in Γ∞, it is at one of the two blue
horoballs centered at 1 and i (since it cannot be centered at a red horoball). If zσ = 1 + i,
then µσ is a rotation fixing the center of the red horoball at 2i, which is not allowed. It
follows that zσ is centered on a blue horoball, and in fact by composing with µ and τ it is
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Figure 12. If an FAL complement covers an orbifold , with the (single)
planar component covering a rigid cusp and all crossing circles covering
flexible cusps, then the fundamental domain of the orbifold must be the
domain D above, with edge identifications as shown.

easy to see that every blue horoball shown in Figure 10a is centered at the fixed point of
an order–4 symmetry. This establishes (4). It also follows that there must be a full-sized
red horoball centered at 1 + i, and the centers of full sized horoballs are exactly the lattice
Z[i], with checkerboard coloring as described by (2) and (3).

To see that all of the crossing circle cusps cover the same cusp of O, we observe that each
crossing circle cusp cobounds a thrice punctured sphere with the cusp K0. Hence, there is
a cusp neighborhood of Ci represented by some red full-sized horoball in H. We observe
that all red full-sized horoballs are identified by Γ∞, so that (1) follows. �

Lemma 3.7. Let L = K0 tC1 t · · · tCn be an FAL, and let p : S3 \L→ O be an orbifold
cover. If K0 covers an S2(2, 4, 4) rigid cusp in O, then either each crossing circle Ci also
covers an S2(2, 4, 4) rigid cusp in O, or O is the orbifold in Figure 13.

Proof. We will assume that no crossing circle covers an S2(2, 4, 4) rigid cusp in O, and show
that O must be the orbifold shown in Figure 13. From Proposition 3.6, we have that the full
sized horoballs of H are centered above points in the lattice Z[i] in a checkerboard pattern,
and every blue horoball is the center of an order-4 rotation fixing ∞.

We will assume from here forward that σ is the rotation fixing H1. With this choice of
σ, the action of Γ∞ on H3 has a fundamental domain contained in

D∞ = {(z, t) | 0 ≤ Re(z) ≤ 1} ∩ {(z, t) | 0 ≤ Im(z) ≤ 1}.
We will construct a convex polyhedral fundamental domain DO for O, which we may

assume has an ideal vertex at ∞, by further cutting down D∞. For z ∈ {1, i}, let Sz be
the unique half-space of H3 containing H∞, and containing no point of Hz. Since DO is
an intersection of half-spaces and contains an ideal vertex at ∞, it is contained in both S1
and Si. It follows that DO ⊂ D ..= D∞ ∩ S1 ∩ Si, which is a finite volume convex domain
having three ideal vertices, one blue (at ∞), and two red (at 0 and 1 + i). The red vertices
are identified under Γ∞.

Claim 3.7.1. DO = D.
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(a)
(b)

(c)

Figure 13. There is exactly one possible gluing of D that gives an
orbifold with a flexible cusp covered by crossing circles, shown in (a). The
resulting orbifold is shown in (b) as a graph in S3, with three finite vertices
and two ideal vertices, and edges labelled by their degree. If we fill the red
cusp and apply the cusp-killing homomorphism as shown in (c), then a
loop of 2-torsion remains (top and bottom shows two possible cases up to
symmetry).

Proof of Claim 3.7.1. If DO 6= D, then there exists an open half-space S ⊂ H3 such that
DO ⊂ D ∩ S 6= ∅. Let π be the geodesic plane so that S is a component of H3 \ π. If π
is a vertical plane then it must cut D, so the peripheral subgroup at ∞ must be strictly
larger than Γ∞. The only possible translation that does not map a blue horoball to a red
horoball (up to composition with elements of Γ∞) is τ0 =

(
1 1+i
0 1

)
. But στ0 is an order–4

rotation about the red horoball at 0, so τ0 cannot be in π1(O) by our assumption that
crossing circles do not cover S2(2, 4, 4) rigid cusps. Since there can be no order-4 rotation
at a red horoball, the only possible rotation that does not exchange red and blue horoballs
is an order-2 rotation at 1

2 + i
2 . If σ2 is such a rotation, and σ is the counter-clockwise

rotation centered at H1, then σ2σ is an order-4 rotation centered at the red horoball at
1 + i. Thus the rotation σ2 cannot be in the peripheral subgroup, and so π is not a vertical
plane. Since the peripheral subgroup of π1(O) fixing ∞ is Γ∞, the covering map H3 → O
is a homeomorphism on int(D ∩H∞). It follows that π is a hemisphere of radius less than
or equal to 1. Since O has 2 cusps (one red and one blue), and since the two red vertices of
D are identified under Γ∞, π cannot cut off either of the red vertices of D. Since the two
finite vertices of D are in the (closed) horoball H∞, π cannot cut either finite vertex off of
D. It follows that all vertices of D (finite and ideal) are contained in the closure of H3 \ S
(where we take the closure in H3 ∪ ∂H3). Since D is the convex hull of these vertices, D
must then be contained in the closure of H3 \ S. This contradicts our assumption that S
intersects D non-trivially, and completes the proof of the claim.

Claim 3.7.2. O is the orbifold shown in Figure 13b.

Proof of Claim 3.7.2. Now consider the fundamental domain D = DO. Figure 12 shows
edge identifications of this domain, induced by the action of Γ∞ on H3. Under this action,
the four vertical faces of DO are identified in pairs, as shown. This leaves 2 triangular faces
∆1 and ∆2. The gluing of ∆1 must be realized by some φ ∈ Isom+(H3) that either maps
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∆1 to itself or to ∆2. The only two orientation-preserving maps satisfying this condition
are the order–4 rotation about the edge connecting 0 to 1 + i, and the order–2 rotation
whose axis lies on Si and bisects ∆1. In the first case, the rotation is an order–4 rotation
with fixed points on red horoballs, which is impossible given our assumption that crossing
circles do not cover S2(2, 4, 4) rigid cusps in O. In the second case, ∆1 is folded onto itself
along the axis of φ, and similarly ∆2 is folded onto itself along a bisecting edge on S1 (see
Figure 13a, in which ∆1 is the union of the two faces labelled by E, and ∆2 is the union of
faces labelled by F ). With this gluing of D we get the orbifold shown in Figure 13b. This
completes the proof of the claim, and of the Lemma. �

For the following lemma we rely on the discussion of orbifold Dehn filling from Sec-
tion 2.2.2. This lemma will rule out the possibility that any Dehn filling of the orbifold in
Figure 13b is covered by a knot complement. Note that the statement below does not require
the knot complement to be (ε, dL)-twisted, or even to be a filling of an FAL complement.

Lemma 3.8. If S3 \K a knot complement, then S3 \K does not cover an orbifold obtained
from filling the orbifold in Figure 13b.

Proof. Suppose S3 \K covers an orbifold Q, and Q is obtained by Dehn-filling the flexible
cusp of the orbifold O in Figure 13. By [Hof15, Proposition 2.3, Remark 2.4] and the
proof of [BBCW12, Corollary 4.11], the orbifold fundamental group of Q must be normally
generated by the peripheral subgroup. Thus if we just quotient π1(Q) by the normal
subgroup generated by peripheral torsion, the resulting group should be torsion free (and
the corresponding orbifold should have empty singular set). The two possible orbi-tangle
fillings of O (up to symmetry) are shown in the left frames of Figure 13c. In this picture
we draw the tangle strands as dotted lines to indicate that the drawing does not show the
actual tangle, but rather just indicates which singularities on the cusp are joined to each
other by the tangle strands (this will be sufficient for our purposes). The middle and right
frames of Figure 13c show the result of killing the peripheral torsion, with the middle frame
corresponding to n even and the right frame corresponding to n odd. In both cases, we
are still left with some order-2 torsion, so such an orbifold cannot be covered by a knot
complement. �

Remark. One can also prove a version of Lemma 3.8 in the context of FAL fillings, by
showing that any filling curve for the flexible cusp of O that lifts to a 1

q -filling of some

crossing circle of the FAL, must lift to an integer filling in some other crossing circle. This
follows from the fact that the horoballs H0 and H1+i are identified via the order–4 rotation
fixing 1 and ∞, so the longitude of the crossing circle lifting to H0 is identified with the
meridian of the crossing circle lifting to H1+i. Unfortunately this argument still allows for
the (1, 1)-filling on each cusp.

3.3. Proof of Theorem 3.1. We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Suppose S3 \ K is an (ε, dL)-twisted-filling of S3 \ L and suppose
S3 \K covers a rigid cusped orbifold O. By Proposition 2.6, the cover S3 \K → O induces
a cover S3 \ L→ Q, where Q ∼= O \ tni=1p(γi). By construction, Q must have a rigid cusp,
coming from the single rigid cusp of O, which the cusp corresponding to K0 covers. At the
same time, Q must have non-rigid cusps that are tori coming from drilling out the set of
geodesics {p(γi)}ni=1 from O. Consequently, either every crossing circle of S3 \ L covers a
non-rigid cusp in Q, contradicting either Lemma 3.7 or Lemma 3.4, or Q is the orbifold in
Figure 13, contradicting Lemma 3.8. �
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4. Symmetries of (ε, dL)-twisted and generic knots

The symmetries of an (ε, dL)-twisted knot complement are restricted in the sense that
the ε-thin parts of the manifold must be permuted under any symmetry. When a knot
complement is (ε, dL)-twisted and generic such a permutation is trivial, and we can narrowly
characterize the symmetry group of such a knot complement. In what follows, letM = S3\K
be an (ε, dL)-twisted and generic knot complement obtained by Dehn filling all of the crossing
circles of an FAL complement N = S3 \ L, where L has a single planar component. Our
goal here is to prove the following theorem on the structure of the (orientation preserving)
symmetry group Sym+(M).

Theorem 4.1. If M is an (ε, dL)-twisted and generic knot complement, then its orientation
preserving symmetry group satisfies |Sym+(M)| ≤ 4.

In fact, we will prove something slightly stronger, namely, that |Sym+(M)| = 1, 2, or 4.
In the case that the group is order two, the non-trivial element could be a strong involution
fixing points on the cusp or an order 2 symmetry acting freely on the cusp, but fixing points
in the interior of M . We collect these facts in Corollary 4.7 at the end of this section.

Together, Theorem 3.1 and Theorem 4.1 provide important information about the com-
mensurability class of M = H3/Γ. Since (ε, dL)-twisted knot complements must be non-
arithmetic (see Section 2.2), work of Margulis [Mar91] then implies that there exists a unique
minimal (orientable) orbifold in the commensurability class of M , namely, O = H3/C+(Γ),
where C+(Γ) = {g ∈ Isom+(H3) : |Γ : Γ∩gΓg−1| <∞}. Our work places strong restrictions
on the covering map ψ : M → O and the geometric structure of O.

Corollary 4.2. If M is an (ε, dL)-twisted and generic knot complement, then the degree
of the minimal orbifold covering map ψ : M → O is at most 4.

Proof. Hidden symmetries of M correspond with elements of C+(Γ)\N+(Γ), where N+(Γ)
is the normalizer of Γ in Isom+(H3). Theorem 3.1 and Theorem 2.7 imply that M has no
hidden symmetries, and so, C+(Γ) = N+(Γ). Since Sym+(M) ∼= N+(Γ)/Γ, we have that
O = H3/C+(Γ) = H3/N+(Γ) = M/Sym+(M). Thus, Theorem 4.1 restricts the degree of
ψ to at most 4. �

As noted in the proof above, C+(Γ) = N+(Γ), and so ψ : M → O is just the quotient of
M via Sym+(M). This fact only relies on Theorem 3.1, and we will assume that it holds
going forward. Thus, proving Theorem 4.1 is equivalent to proving that the covering map
ψ : M → O is at most degree 4.

Our work partially follows the same line of argument as the proof of [FM17, Theorem 1.7],
which shows that certain hyperbolic 3-manifolds are the minimal orbifold in their respective
commensurability classes. Their work requires some very strong conditions placed on the
geometry of thrice-punctured spheres inside of a cusped hyperbolic 3-manifold in order to
obtain the desired result. In a similar fashion, we exploit the geometry of thrice-punctured
spheres in our FAL complements to help reach our desired covering restriction.

Let O ∼= M/Sym+(M). Proposition 2.6 implies that the quotient map ψ : M → O
induces a quotient map ψN : N → Q with Q ∼= O \tni=1ψ(γi), where γi is the geodesic core
of the ith surgery solid torus. Furthermore, Proposition 2.11 tells us that Q is the quotient
of N by the subgroup of Sym+(N) that maps each cusp of N to itself. We will now consider
how thrice-punctured spheres in N behave under the quotient map ψN .
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Figure 14. A schematic of the three non-trivial symmetries of the thrice
punctured sphere that result in two cusped quotients. Using the standard
fundamental domain for the thrice punctured sphere, two ideal triangles
with vertices at 0,−1,1, and ∞, these symmetries can be realized by a
rotation of order 2 fixing i, a reflection through 0,∞ and a reflection
through the line with endpoints −1 and 1.

For our hyperbolic FAL complement N = S3 \ L, consider a crossing disk, as described
in Section 2.1.1. Such a crossing disk is isotopic in N to a totally geodesic thrice-punctured
sphere S ⊂ N [Pur11, Lemma 2.1]. Let p1, p2, and p3 be the three punctures of S. Let
H be the preferred horoball packing for L, with associated covering map π : H3 → N ,
and let n(K0), n(C1), . . . , n(Cn) be neighborhoods of the cusps of N that lift to H. The
neighborhood n(K0) contains neighborhoods of two of the punctures of S, say p2 and p3,
given by the components of S ∩ n(K0). Let Dj be the connected component of S ∩ n(K0)
containing pj , j = 2, 3. The third puncture p1 is contained in n(CiS ) for some crossing circle
CiS , and we denote by D1 the neighborhood of p1 given by S ∩ n(CiS ).

Let ψS = ψN |S be the restriction of ψN to S. The next lemma restricts the degree of ψS ,
and is the first step toward restricting the degree of ψ.

Lemma 4.3. Let S ⊂ N be a crossing disk. Then ψS is either a 1-to-1 map, a 2-to-1 map
or a 4-to-1 map.

Proof. Recall that ψN is the quotient map N/G, where G = f(Sym+(M)) ≤ Sym+(N), and
S ⊂ N is totally geodesic. It follows that ψS is a quotient map for the quotient S/GS , where
GS ≤ G are the symmetries in G that restrict to symmetries of S. By Proposition 2.11, G
must map each cusp of N to itself. Thus, any symmetry in GS must take D1 to itself, and
permute D2 and D3 (possibly trivially). Figure 14 shows three non-trivial symmetries on
S that satisfy these conditions, and generate a group of order 4.

We claim that the symmetries described in Figure 14 are the only symmetries of S sat-
isfying the required conditions. First, a thrice-punctured sphere S has a unique hyperbolic
structure, which implies that every homeomorphism of S is isotopic to an isometry. Since
homeomorphisms of S are completely determined by their action on the cusps, we only
need to consider how an isometry could permute cusps and possibly switch orientations on
cusps of S. For us, the cusp corresponding to p1 must be fixed under any isometry under
consideration, and so, we only have 4 possible isometries coming from permuting the two
remaining cusps and possibly switching orientations. �

Let R = ψN (S). In order to leverage the degree of ψS determined above to obtain
information about the degree of ψ, we will need to determine the number of pre-images in
ψ−1N (R). To this end, we first show that R must be an embedded, totally geodesic 2-orbifold
in Q. The following lemma implies this fact.

Lemma 4.4. The quotient ψN (S) has no transverse self-intersections.
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Proof. Here, we follow a similar procedure to the one used in Lemma 2.8 of Futer–Millichap
[FM17]. We first rule out transverse self-intersections between the images of the 2-dimensional
cusp neighborhoods, ψ(Di) for i = 1, 2, 3. Then we show this implies that we can not have
transverse self-intersections anywhere else in ψN (S), completing the proof.

As noted in the proof of [FM17, Lemma 2.8], the only way that ψN (Di) can have trans-
verse intersection with ψN (Dj) is if the cusp neighborhoods containing Di and Dj are
identified under ψN , and ψN (∂Di) and ψN (∂Dj) represent distinct slopes. The first con-
dition can only be met for D2 and D3 (since ψN does not exchange cusps of N), and the
boundary of each of these meets the boundary torus of n(K0) in a meridian.

Since the cusps in Q are non-rigid, this meridian maps down to a well-defined slope in
Q. So, the slopes of ψN (∂Di) and ψN (∂Dj) must be the same in Q. Thus, transverse
self-intersections do not occur between the cusps of ψN (S).

It remains to show that ψN (S) does not have transverse self-intersections outside of its
cusp neighborhoods. For this the exact same argument as the one used in the proof of
[FM17, Lemma 2.8] goes through unchanged, and we refer the reader to this work for
explicit details. In short, if ψN (S) has a transverse self-intersection somewhere outside of
its cusp neighborhoods, then there exists a path of transverse self-intersections in ψN (S)
that goes into some cusp of ψN (S), contradicting the previous paragraph. Therefore, ψN (S)
has no transverse self-intersections. �

Next we show that for some crossing disk S, the embedded totally geodesic 2-orbifold
R = ψN (S) has pre-image exactly S. To do this, we will first need to show that there is
a crossing circle that has only one generalized crossing disk, which is its standard crossing
disk (recall Section 2.1.1 for the definition of generalized crossing disks). We first need a
technical lemma that relies on the following definition. For S3 \ L, we have that P1 and P2

are the two polyhedra with shaded faces as in Section 2. The nerve of S3 \ L (or just the
nerve of L) is the dual 1-skeleton of the unshaded faces of P1 (see also [Pur11] for more
background).

Lemma 4.5. Let C be a crossing circle of an FAL L. If C has more than one generalized
crossing disk, then the nerve N of L contains the subgraph NC shown in Figure 15, in which
the red edge corresponds to the crossing circle C.

Proof. Let Pi, i ∈ {1, 2}, be the polyhedra coming from the polyhedral decomposition of L,
and let N be the nerve. If C has a generalized crossing disk that is not the standard crossing
disk, then there are triangles τi ⊂ Pi such that τi has C as a vertex, and τi separates Pi. On
Pi, τi is a path across white faces connecting 3 distinct vertices. Such a path gives a 3-cycle
in the nerve, one edge of which must correspond to C since τi has a vertex corresponding
to C. The two triangles of N adjacent to C correspond to the standard crossing disk of C,
so there must be 2 additional edges that form the 3-cycle corresponding to τi. �

Proposition 4.6. Let L be an FAL. Then L has at least one crossing circle having only
one generalized crossing disk.

Proof. Let N be the nerve for L. Suppose every crossing circle has ≥ 2 generalized crossing
disks. The preceding Lemma 4.5 then implies that for every crossing circle there is a
subgraph as shown in Figure 15. In particular, for every crossing circle Ci there is a 3-cycle
βi in N that is non-trivial in the sense that it does not bound a triangle. Identify S2 with

R̂2 = R2 ∪ {∞}, so that the point ∞ is disjoint from the edges and vertices of N . Let ∆i

be the component of R̂2 \ βi that does not contain ∞. For any other crossing circle Cj , the
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Figure 15. The subgraph NC , with a (vertical) red edge corresponding to
the crossing circle C, must be present if C has more than one generalized
crossing disk.

corresponding non-trivial 3-cycle βj is either disjoint from ∆i (though it may intersect βi),
or it has 1 or more vertices contained in ∆i, in which case it is contained in ∆i ∪ βi. Note
that ∆i does not contain the vertices of βi as we have defined it. It follows that we can
find a crossing circle Ci0 whose non-trivial 3-cycle βi0 is innermost, in the following sense:

the component ∆i0 of R̂2 \ βi0 that does not contain ∞, contains no vertex of any other
non-trivial 3-cycle associated to a crossing circle.

Now consider the subgraph NCi0
given by Lemma 4.5. The (arrow shaped) quadrilateral

Q ⊂ NCi0
must contain a red colored edge (i.e., one associated to a crossing circle), otherwise

Q would subdivide into triangles, each having all three edges uncolored, contradicting the
fact that every triangle of a nerve must have exactly one colored edge. This colored edge
cannot be part of a non-trivial 3-cycle, as such a 3-cycle would have a vertex in ∆i0 ,
contradicting our requirement that βi0 is innermost. Thus the associated crossing circle has
no generalized crossing disk other than the standard one, contradicting our assumption. �

We are now ready to prove our main theorem for this section.

Proof of Theorem 4.1. Let S be a totally geodesic thrice-punctured sphere that is a crossing
disk for a crossing circle Ci of L. First, we determine the structure of ψ−1N (R) = ψ−1N ◦ψN (S).
Lemma 4.4 implies that ψN (S) is an embedded totally geodesic cusped 2-orbifold in Q.
Thus, ψ−1N (R) must be a disjoint union of embedded totally geodesic cusped surfaces in N .

Let F be a component of ψ−1N (R).
First, we will show that F must be a totally geodesic thrice-punctured sphere in N . This

follows from the same argument used in the proof of [FM17, Theorem 2.3] and requires
analyzing a particular decomposition of S (coming from a Ford domain for S), which we
now describe. Consider our preferred horoball packing H coming from Theorem 2.1. Under
our covering π : H3 → N , this horoball packing descends to a particular choice of cusp
neighborhoods for N , which then (geometrically) determine the set of 2-dimensional cusp
neighborhoods {Di} of S. Let Ei ⊂ S be the closure of the set of points in S that are closer
to Di than to any other Dj . For this cusp expansion, the set {Di} is invariant under the
symmetries of S and each ∂Di has length 2. Thus, the elements of {Ei} are all isometric to
a once-punctured disk with non-ideal boundary consisting of two geodesic segments meeting
at angles of 2π/3. We call this decomposition of S into {Ei} its Ford decomposition and
each Ei a Ford cell of S.

We now bootstrap off of this Ford decomposition of S to determine the corresponding
Ford decomposition of F . The Ford decomposition of F (relative to our preferred horoball
packing H) decomposes F into a collection of Ford cells, one for each cusp of F . Since each
ψN (∂Dj) realizes exactly one slope on each cusp of Q (see the proof of Lemma 4.4), each
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cusp of F has the same slope as some ∂Dj . Thus, each cusp of F has a boundary slope of
length 2, which implies each cusp of F has area 2 and is isometric to a copy of Di. Since the
density of the cusp neighborhoods of F is the same as that of S, each Ford cell of F must be
isometric to Ei. The only complete, connected hyperbolic surface that can be constructed
by gluing together some number of copies of Ei is a thrice-punctured sphere, as needed.

We now claim that F must be a generalized crossing disk. Proposition 2.11 implies that
there is a one-to-one correspondence between cusps of N and cusps of Q, and so, we know
that F must have one cusp coming from intersecting n(CiS ) and two cusps coming from
intersecting n(K0). The classification of thrice-punctured spheres in FAL complements
given by Morgan–Spyropoulus–Trapp–Ziegler ([MSTZ17, Propositions 9 and 13]) implies
that F must be a generalized crossing disk.

Since we are quotienting N by orientation-preserving symmetries, the singular locus of
Q is at most one-dimensional, and so, we can conclude that the degree d(ψN ) of ψN is
the same as the degree of the restriction ψN |ψ−1

N (R) of ψN to the pre-image of R = ψN (S)

for any crossing disk S. Lemma 4.3 tells us that ψS is at most a 4-to-1 covering map. In
addition, Proposition 4.6 along with the previous paragraph implies that there exists some
crossing disk S0 such that ψ−1N (R0) = ψ−1 ◦ ψ(S0) = S0. So, for this particular crossing
disk, we have d(ψN |ψ−1

N (R0)
) ≤ 4. Therefore, d(ψN ) = d(ψ) is at most 4, which implies that

|Sym+(M)| ≤ 4. �

Remark. We observe that this bound on the number of symmetries is tight: there ex-
ists infinitely many (ε, dL)-twisted and generic knot complements that have an order four
(orientation-preserving) symmetry group. For instance, any (ε, dL)-twisted and generic 2-
bridge knot complement will have exactly an order four (orientation-preserving) symmetry
group; of course this is well-known (see [Sak90] for example).

We can completely describe the symmetry group of M based on how its inclusion into
Sym+(N) acts on thrice punctured spheres. Thus, the proof of the following corollary
follows directly from extending the action of the symmetries exhibited in Figure 14 to N
and then M .

Corollary 4.7. Let M be a (ε, dL)-twisted and generic knot complement. Then Sym+(M)
has at most three non-trivial elements. Furthermore, the group has zero or one element
that acts freely on the cusp.

5. Commensurability classes of (ε, dL)-twisted and generic knots

In this section, we show that an (ε, dL)-twisted and generic knot complement with at
least 9 twist regions, each having at least 6 crossings, is the only knot complement in
its commensurability class. Proving this result will rely on our classifications of hidden
symmetries and symmetries from Section 3 and Section 4, along with an analysis of short
filling slopes for these knot complements and the orbifolds that they cover. In particular,
the aforementioned lower bound on the number of twists regions and crossings will imply a
lower bound on filling slope lengths, allowing us to obstruct non-hyperbolic surgeries, which
by a theorem of Boileau–Boyer–Cebanu–Walsh will imply the claimed result.

To be more specific, Boileau, Boyer, Cebanu and Walsh [BBCW12] showed that if a
hyperbolic knot complement S3 \K without hidden symmetries is commensurable with a
second (distinct) knot complement S3 \K ′, then both knot complements cover an orbifold
Q with a torus cusp, and both covers are cyclic. In fact, the authors show that the set of
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knot complements that cover Q are in bijective correspondence with the set of finite cyclic
fillings of Q (see [BBCW12, Proposition 4.13]). Their work also defines and characterizes
orbi-lens spaces, which are cyclic quotients of S3 (in the case that the quotient acts freely
on S3, the resulting space is just a lens space). Thus if S3\K is commensurable with another
knot complement, then it covers an orbifold with two distinct orbi-lens space fillings. The
main technical result of this section will rule out the existence of orbi-lens space fillings on
the quotients of (ε, dL)-twisted and generic knot complements.

5.1. Geometric Bases. We begin by discussing geometric bases for co-compact groups
of translations in the plane. We will identify the plane with C, with the structure of a
2-dimensional R-vector space. We say a geometric basis for such a group G is a set
of two R-linearly independent elements {a, b} of C such that for any n,m ∈ Z we have
|a| ≤ |na+mb| and |b| ≤ |na+mb|.

A geometric basis can be found by a greedy algorithm. We start with the observation that
given two non-zero elements a, b ∈ C, |ta + b| has a unique minimum for t ∈ R and one or
two minima for t ∈ Z. Moreover, if |ta+b| ≤ |(t+1)a+b|, then either |(t−1)a+b| < |ta+b|
or |ta+b| is a minimum for t ∈ Z. (Of course if |(t±1)a+b| = |ta+b|, then both |(t±1)a+b|
and |ta + b| are minima.) In this way, we can start with two elements that form a basis
{a, b} (assume |a| ≤ |b|) and replace b with ta + b to form a basis with shorter entries. If
|ta+ b| < |a| we switch the roles of a, b above and repeat until the process terminates. Note
that even up to ordering such that |a| ≤ |b| a geometric basis might not be unique. For
example, non-uniqueness occurs if |b| = |a+ b| or |b| = | − a+ b|.

The following proposition relates a geometric basis for a group of translations G1 to
geometric bases of an index 2 subgroup G2. When used in context, G1 will correspond
to the peripheral subgroup of an orbifold and G2 will be the peripheral subgroup of its
manifold cover. Of course, the proposition applies much more generally.

Proposition 5.1. Let G1 be co-compact group of translations with geometric basis {a, b},
|a| ≤ |b|, and let G2 be an index 2 subgroup. Then one of the following holds:

(1) a ∈ G2 and 2b ∈ G2, and {a, 2b} or {a, a± 2b} form a geometric basis for G2,
(2) 2a ∈ G2 and b ∈ G2 and {b, 2a} or {b, b± 2a} form a geometric basis for G2,
(3) a± b ∈ G2 and a geometric basis is a subset of {a± b, 2a}.

The above proposition follows from a straightforward application of the greedy algorithm
to each of the kernels of the three possible surjective maps from Z× Z→ Z/2Z.

Lemma 5.2. Let G1 be co-compact group of translations with geometric basis {a1, b1},
and let G2 be an index 2 subgroup with geometric basis {a2, b2}. If |a2| = 2 and |b2| > 16,
then either |b1| > 6 or |a1| > 6.

Proof. If |a1| ≤ |b1|, then Proposition 5.1 gives the possible bases for G2. If |b1| < |a1| then
cases (1) and (2) in Proposition 5.1 are unaffected, and in case (3) we simply exchange the
roles of a = a1 and b = b1, giving the additional possible bases {2b1, a1± b1}. Table 1 shows
all possible bases {a2, b2}, and the resulting bounds on a1 and b1. �

5.2. Orbifold Dehn fillings. We say a good orbifold is an orbifold that is covered by a
manifold. Otherwise, it is bad. An orientable 2-orbifold is bad if it is S2(n) or S2(n,m)
such that n 6= m (see for example [BMP03, Proposition 2.10]). Rather directly, we can
see that an orientable 3-orbifold is bad if it contains a bad 2-suborbifold. The following
theorem of Boileau, Mallot, and Porti shows this is actually equivalent to being bad:
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a2 b2 |a2| |b2| a1 b1 |a1| |b1|

(1)

a1 2b1 2 > 12 a2
1
2b2 2 > 6

a1 a1 + 2b1 2 > 14 a2
1
2(b2 − a2) 2 > 6

a1 a1 − 2b1 2 > 14 a2
1
2(a2 − b2) 2 > 6

(2)

2a1 b1 2 > 6 1
2a2 b2 1 > 6

b1 + 2a1 b1 2 > 6 1
2(a2 − b2) b2 > 2 > 6

b1 − 2a1 b1 2 > 6 1
2(b2 − a2) b2 > 2 > 6

(3)

a1 + b1 a1 − b1 2 > 14 1
2(a2 + b2)

1
2(a2 − b2) > 6 > 6

a1 − b1 a1 + b1 2 > 14 1
2(a2 − b2) 1

2(a2 + b2) > 6 > 6

a1 + b1 2a1 2 > 16 1
2b2 a2 − 1

2b2 > 8 > 6

2a1 a1 + b1 2 > 7 1
2a2 b2 − 1

2a2 1 > 6

a1 + b1 2b1 2 > 16 a2 − 1
2b2

1
2b2 > 6 > 8

2b1 a1 + b1 2 > 7 b2 − 1
2a2

1
2a2 > 6 1

a1 − b1 2a1 2 > 16 a2 + 1
2b2

1
2b2 > 6 > 8

2a1 a1 − b1 2 > 7 1
2a2 b2 + 1

2a2 1 > 6

a1 − b1 2b1 2 > 16 a2 + 1
2b2

1
2b2 > 6 > 8

2b1 a1 − b1 2 > 7 b2 + 1
2a2

1
2a2 > 6 1

Table 1. The relations and lengths for a1, b1, a2, b2, with rows grouped
by the case breakdown in Proposition 5.1. A shaded row means that the
choices of a1 and b1 cannot form a geometric basis given the constraints on
a2 and b2, but are still relevant when accounting for short parabolic
elements. For example, if a1 = 1

2(a2 + b2) and b1 = 1
2(a2 − b2) are a basis

with |a2| = 2 and |b2| > 13 then a2 = a1 + b1 is shorter than both basis
elements. Finally, we note that |b2| > 16 is the cutoff we need.

Theorem 5.3 ([BMP03, Corollary 3.28]). A compact 3-orbifold is the quotient of a compact
3-manifold by an orientation preserving finite group action if and only if it does not contain
a bad 2-suborbifold.

We now prove a weak corollary of the 6 Theorem of Agol [Ago00] and Lackenby [Lac00],
which will be sufficient for our purposes. In particular, our eventual goal is to obstruct
orbi-lens space fillings of certain hyperbolic orbifolds having no short filling slopes (with
length as defined in Section 2.2.2). Since orbi-lens spaces are good (they are covered by
S3), it is enough then to show that filling along a long slope (i.e., one of length greater
than 6) results in an orbifold that is either hyperbolic or contains a bad 2-suborbifold. Our
statement is as follows:

Theorem 5.4. Let Q be an (orientable) hyperbolic 3-orbifold that is the quotient of a
hyperbolic 3-manifold with torus cusps and assume the singular locus of Q is either empty,
a single embedded knot Σ consisting of cone points of order n, or a set of properly embedded
arcs and simple closed curves all having cone points of order 2. Furthermore, denote by HQ
an (embedded) horoball packing of Q. Let α be a multi-slope of Q such that the length of
each component of α measured by its displacement in HQ is greater than 6. Then Q(α), the
orbifold resulting from filling along α, is either hyperbolic or contains a bad 2-suborbifold.
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Proof. If Q is a manifold, then the standard 6 Theorem applies. So, assume the set of cone
points of Q is non-empty.

If Q(α) contains a bad 2-suborbifold, we are done. Thus we may assume that Q(α) is
good and appeal to Theorem 5.3, which gives a manifold cover p : Mα → Q(α), for some
3-manifold Mα. Let Q be the result of drilling out from Q(α) the surgery solid tori and
surgery solid pillowcases (so that int(Q) ∼= Q), and let M = p−1(Q). The covering map p
restricts to a cover p|M : M → Q, which then extends to a cover pQ : int(M) → Q. Note

that int(M) is a cusped hyperbolic 3-manifold which admits a horoball packing consistent
with HQ. Under this packing each of the lifts of curves in α have length greater than 6.
Thus, Mα is hyperbolic by the standard 6 Theorem and Q(α) is hyperbolic as well. �

We now prove the main theorem of this section. We define an exceptional filling of a
hyperbolic orbifold to be a filling that results in a good non-hyperbolic orbifold. We separate
out the case that a filling results in bad orbifold, because this distinction is relevant to our
argument. This theorem was stated in the introduction. We restate here for convenience.

Theorem 1.6. Let S3 \K be an (ε, dL)-twisted and generic knot complement admitting a
twist-reduced diagram with at least 9 twist regions such that each twist region has at least 6
crossings. Then S3 \K has no non-trivial exceptional fillings, and the quotient Q of S3 \K
by its symmetries that act freely on the cusp has no non-trivial exceptional fillings that are
good orbifolds.

Proof. Futer and Purcell’s main result from [FP07, Corollary 1.8] establishes that S3 \ K
does not admit any non-trivial exceptional surgeries.

By Corollary 4.7, S3 \K has at most one non-trivial symmetry β that acts freely on the
cusp. Assume Q is a non-trivial orbifold quotient of S3 \K by such a symmetry β, and let
QL be the orbifold quotient of S3 \ L by the corresponding symmetry f(β) of S3 \ L given
by the Proposition 2.11.

By Proposition 2.11, f(β) maps each cusp of S3 \ L to itself, so any cusp expansion of
S3 \ L induces an embedded cusp expansion of QL. For the remainder of the proof we will
assume that lengths of parabolic elements are measured based on the preferred horoball
packing of H3, which by the preceding observation descends to embedded cusp expansions
of both S3 \ L and QL.

Let α be the multi-slope that we have Dehn filled along to obtain S3 \K from S3 \L, let
p be the covering map from S3 \ K to Q, and let pL be the covering map from S3 \ L to
QL. The slope α projects via pL to a slope αp, along which QL is filled to obtain Q. Let
s be a Dehn surgery slope for Q that is not the quotient of the meridian corresponding to
the knot complement. Then filling Q along s is equivalent to filling QL along (s, αp):

S3 \ L

pL

��

α // S3 \K

p

��
QL

αp //

(s,αp)

77
Q s // Q(s) = QL(s, αp)
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It therefore is enough to show that fillings of the form (s, αp) of QL have no non-trivial
exceptional surgeries that are good orbifolds. We claim that for every such multi-slope
(s, αp), each component has length greater than 6.

The length of each component of αp is equal to the length of the component of α that
it lifts to. By [FP07, Theorem 3.10] the length of the each component of α is at least√

62 + 1 > 6 since each twist region has at least 6 crossings. Thus it remains to analyze the
length of s. Applying Proposition 5.1 with G1 corresponding to the peripheral subgroup
of QL and G2 corresponding to the peripheral subgroup of the cover S3 \ L allows us to
analyze the lengths of surgery slopes of the cusps of QL in terms of the slope lengths on the
cusps of S3 \ L. In particular, our hypotheses imply that the longitude of the planar cusp
has length at least 18 > 16. By Lemma 5.2, this results in s having length greater than 6.
Combining both length bounds with Theorem 5.4, this filling of QL is either hyperbolic or a
bad orbifold. Hence, the corresponding filling of Q is either hyperbolic or a bad orbifold. �

We conclude with the following corollary, which is stated previously in the introduction.

Corollary 1.7. Let S3 \K be an (ε, dL)-twisted and generic knot complement admitting a
twist-reduced diagram with at least 9 twist regions such that each twist region has at least 6
crossings. Then S3 \K is the only knot complement in its commensurability class.

Proof. By Theorem 3.1 S3\K does not cover a rigid cusped orbifold, and thus S3\K does not
admit hidden symmetries (see [NR92a, Proposition 9.1]). Denote by Q the (possibly trivial)
quotient of S3 \ K by the group of symmetries that act freely on the cusp. Then by the
main results of [BBCW12] (especially [BBCW12, Proposition 4.13]), each knot complement
commensurable with S3 \K (including S3 \K itself) corresponds to an orbi-lens space filling
of Q. We have shown above in Theorem 1.6 that all non-trivial fillings of Q are hyperbolic
or bad orbifolds. In particular, only the trivial filling of Q, i.e., along the image of the
meridian of S3 \K, can result in an orbi-lens space filling.

Therefore, S3 \K is the unique knot complement in its commensurability class. �

If we add the further assumption that S3 \ K does not admit any symmetries that act
freely on the cusp, then S3\K would have to admit a lens space filling to be commensurable
with a knot complement by [BBCW12, Proposition 4.13]. In this case, we can apply the
bounds directly from Futer and Purcell [FP07, Corollary 1.8] with the Perelman’s affirma-
tive solution to the Geometrization Conjecture and obtain a similar result (see [MT14] for
example).

Corollary 5.5. Let S3 \K be an (ε, dL)-twisted and generic knot complement with at least
4 twist regions such that each twist region has at least 6 crossings. If S3 \K does not admit
any symmetries that act freely on the cusp, then S3 \K is the only knot complement in its
commensurability class.

6. Quantifying Results

Our main goal of this section is to address the following question:

Question 1. Can we find quantifiable bounds on ε and the multi-slope α so that M = N(α)
is an (ε, dN )-twisted manifold (as defined in Definition 6.1)?

(ε, dN )-twisted manifolds are a generalization of (ε, dL)-twisted knot complements. Work-
ing in this broader context allows for a somewhat more streamlined discussion as we adapt
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various effectivization results of [FPS19] to our setting. After adapting the necessary
bounds, this section culminates in the construction of an infinite family of examples of
(ε, dL)-twisted and generic fillings in Section 6.1.

Throughout this section, let N be a hyperbolic manifold with cusps {C0, C1, . . . , Cn}, and
let M be a manifold obtained by Dehn filling all but one component of N . We may take the
unfilled component to be C0, so that our filling is along a multi-slope α = (−, s1, . . . , sn).
Here si = pi

qi
for integers pi, qi 6= 0 and gcd(pi, qi) = 1 and we use ‘−’ to demarcate the

unfilled component of the boundary of N. Given such an N , let dN = 4vol(N)
v0

, where just as
before v0 is the volume of the regular ideal tetrahedron.

Definition 6.1. We say that a (hyperbolic) cusped manifold M is (ε, dN )-twisted, or
alternatively that M is an (ε, dN )-twisted filling of N , if for 0 < ε < 3.45 the following
three conditions hold:

(i) N≥ε is homeomorphic to N \ n(
⋃
iCi),

(ii) M≥ε is homeomorphic to N≥ε, and
(iii) M≥ε/dN is homeomorphic to N≥ε.

Furthermore, we say that M is an (ε, dN )-twisted and generic filling of N if it is
(ε, dN )-twisted and no isometry of M non-trivially permutes the set of core geodesics of
the filling solid tori.

Proposition 6.2. If M is an (ε, dN ) filling of N , then M is non-arithmetic. Moreover,

dN = 4vol(N)
v0

is an upper bound for the degree of any cover p : M → O, where O is an
orientable orbifold.

Proof. First we observe that dN = 4vol(N)
v0

> 4vol(M)
v0

. By [CM01] we have vol(M) > 2v0
so dN > 8. If M is arithmetic, then by [NR92a, Theorem 4.6] its shortest geodesic is at
least 0.43137. Since ε

dN
< 3.45

8 = 0.43125, we have M≥ε/dN
∼= M 6∼= N≥ε, contradicting (iii).

The final part of the claim follows directly from the minimum volume bounds established
by Lemma 2.5. �

Each of the three conditions of Definition 6.1 can be translated into restrictions on the
geometry of N and the multi-slope α. Condition (i) demands that we choose ε smaller
than the systole length of N . Condition (ii) requires us to choose each filling slope large
enough so that the core geodesics introduced under Dehn surgery are each shorter than ε,
while stabilizing the geodesic lengths coming from the unfilled manifold N . Condition (iii)
further requires these core geodesics to be smaller than the geodesics coming from N by a

factor of dN = 4vol(N)
v0

. Based on this description, one can expect an explicit dependence
on the systole length of N , the volume of N , and the multi-slope α. Our goal is to use tools
coming from the recent work of Futer–Purcell–Schleimer [FPS19] (which builds off of the
work of Hodgson and Kerckhoff [HK05]) to make this relationship as explicit as possible.
We now introduce some terminology and the results needed from Futer–Purcell–Schleimer.

Choose a cusp expansion for the cusps of N corresponding to a maximal horoball packing
in H3. Under this cusp expansion, each cusp Ci of N has a torus boundary ∂Ci. For a slope
si on ∂Ci define the normalized length of si to be

Li =
`E(si)√
area(∂Ci)

,
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where `E(si) is the length of the Euclidean geodesic isotopic to si. For a multi-slope
α = (−, s1, . . . , sn), the total normalized length L is defined via

1

L2
=

n∑
i=1

1

L2i
.

Let Σ = {γi}ni=1 be the set of n core geodesics introduced in N(α) via Dehn filling N .
Let `(Σ) be the total length of the n geodesics in Σ, as measured in the complete metric on
M . Our first step is showing that we can explicitly choose the multi-slope α as a function
of ε and vol(N) in such a way that Σ ⊂ N(α)<ε/dN . For this, we will need the following
reformulation of [FPS19, Corollary 6.13], specialized for our particular Dehn fillings.

Corollary 6.3 ([FPS19, Corollary 6.13]). Let M be the manifold obtained by filling N
along the multi-slope α = (−, s1, . . . , sn). If L2 ≥ 61.2, then

2π

L2 + 16.17
< `(Σ) <

2π

L2 − 28.78

Intuitively, this lemma says that the total length of the core geodesics introduced from
Dehn filling our crossing circle cusps is approximately 2π

L2 , assuming our Dehn filling slopes
are sufficiently long (in terms of normalized length).

Since we only need to make sure that each γi ∈ Σ is sufficiently short, we will only need
the upper bound on `(Σ). This requires an upper bound on 1

L2 , given by the below lemma:

Lemma 6.4. Let N(α) be the manifold obtained by Dehn filling N along the multi-slope
α = (−, s1, . . . , sn). For any ε > 0, if

1

L2
≤ min

{
1

61.2
,

εv0
8πvol(N) + 28.78εv0

}
,

then Σ ⊂ N(α)<ε/dN .

Proof. Since 1
L2 < 1

61.2 , Corollary 6.3 applies, so `(Σ) < 2π
L2−28.78 . Thus we just need to

ensure that 2π
L2−28.78 ≤

ε
dN

= εv0
4vol(N) . Solving this equation for 1

L2 gives the second upper

bound in the statement of the lemma. �

The above lemma explicitly shows that, for any choice of ε, we can choose α so that our
set of core geodesics Σ is in N(α)<ε/dN . We also want to make sure that these are the only
geodesics in N(α)<ε and quantify this relationship in terms of α and ε. Another result of
Futer–Purcell–Schleimer, restated for our purposes, is useful here.

Theorem 6.5 ([FPS19, Theorem 1.2]). Let N(α) be the manifold obtained by filling N
along the multi-slope α = (−, s1, . . . , sn). Fix 0 < ε ≤ log(3) and J > 1. If

`(Σ) ≤ min

{
ε5

6771 cosh5(0.6ε+ 0.1475)
,
ε5/2 log(J)

11.35

}
,

then there exists a J-bilipschitz inclusion ψ : N≥ε ↪→ N(α)≥ε/1.2.

In our applications, we will always have J ≥ 1.001. In this case we let

C(ε) =
ε5

6771 cosh5(0.6ε+ 0.1475)
,

and observe that C(ε) ≤ ε5/2 log(J)
11.35 for any ε > 0, J ≥ 1.001, so we can disregard the latter

bound. In what follows, let `N denote length as measured in the complete hyperbolic metric
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for N . Let `N (γs) denote the systole length of N , that is, the length of a shortest closed
geodesic in N .

Theorem 6.6. Let N(α) be the manifold obtained by filling N along the multi-slope

α = (−, s1, . . . , sn). If ε ≤ min{ `N (γs)
1.001 , log(3)}, and

1

L2
≤ min

{
εv0

8πvol(N) + 28.78εv0
,

1
2π
C(ε) + 28.78

}
,

then M = N(α) is (ε, dN )-twisted.

Proof. Since ε < `N (γs), item (1) from the definition (ε, dN )-twisted is satisfied. For items
(2) and (3) to hold, we need to show that Σ ⊂ N(α)<ε/dN and that these are the only closed
geodesics in N(α)<ε. First, note that since ε ≤ log(3) = 1.099.., we have that

1

L2
≤ 1

2π
C(1.099) + 28.78

≤ 0.0000086 <
1

61.2
.

As a result, our conditions on α guarantee that the hypotheses of Lemma 6.4 hold, and so,
Σ ⊂ N(α)<ε/dN .

Let γ ⊂ N be a closed geodesic and let γ′ be the corresponding geodesic in N(α). Note

that since ε ≤ `N (γs)
1.001 < `N (γs), γ is in N≥ε. We need to show that γ′ ⊂ N(α)≥ε. To do

this, we will apply Theorem 6.5 with J = 1.001 and ε as given in the statement of the
theorem. To satisfy the hypothesis of Theorem 6.5 we need `(Σ) ≤ C(ε). Similar to the
proof of Lemma 6.4, we use inequality (1), namely

`(Σ) <
2π

L2 − 28.78
,

to restate this condition in terms of our Dehn filling parameters. If we choose our multi-
slope α = (−, s1, . . . , sn) so that 2π

L2−28.78 ≤ C(ε), then we have a 1.001-bilipschitz map

ψ : N≥ε ↪→ N(α)≥ε/1.2. It follows that we need

1

L2
≤ 2

2π
C(ε) + 28.78

.

Under these conditions, our bilipschitz map guarantees that

ε ≤ `N (γs)

1.001
≤ `N (γ)

1.001
≤ `N(α)(γ

′).

�

If we want to apply Theorem 6.6 to particular examples of manifold N , it is useful to
have a way to estimate L2i . A bit of plane geometry gives the below lemma:

Lemma 6.7. Let Ci be a cusp of N with longitude λ ∈ R≥0 and meridian µ = reiθ, and
let s = pµ+ qλ be a slope on ∂Ci. Then

L2i ≥
p2r2 + q2λ2

rλ sin θ
− |pq cot(θ)|

In this paper our main interest is in the case where N is an FAL complement with a
planar component K0 and crossing circles C1, . . . , Cn, and the filling multi-slope has the
form α = (−, 1

q1
, . . . , 1

qn
). For a crossing circle the longitude always has length 2, and the

value of θ in the above lemma is bounded away from 0 and π. This allows us to greatly
simplify the bound in Lemma 6.7, as is shown by the following result of Purcell.
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Lemma 6.8 ([Pur08, Proposition 6.5]). Let N(α) be the knot compliment obtained by
filling an FAL complement N = S3 \ L along the multi-slope α = (−, 1

q1
, . . . , 1

qn
). Then the

normalized length Li of the slope 1
qi

satisfies Li ≥
√

2qi.

By combining Lemma 6.8 with the bound vol(N) ≤ 10v0(n− 1) given in the appendix of
[Lac04], we get the following corollary of Theorem 6.6:

Corollary 6.9. Let N(α) be the knot complement obtained by filling an FAL complement

N = S3 \ L along the multi-slope α = (−, 1
q1
, . . . , 1

qn
). If ε ≤ min{ `N (γs)

1.001 , log(3)}, and

n∑
i=1

1

q2i
≤ min

{
2ε

80π(n− 1) + 28.78ε
,

2
2π
C(ε) + 28.78

}
,

then M = N(α) is (ε, dL)-twisted.

While Corollary 6.9 does provide a quantified method to build (ε, dL)-twisted knot com-
plements, there are many explicit dependencies required for this method: ε depends on the
systole length of N and α depends on both the systole length of N and the volume of N
(which can be restated in terms of a dependence on the n crossing circles). It is natural
to ask if all of these dependencies are necessary. In fact, work of Meyer–Millichap–Trapp
[MMT20] shows that they are.

First, we note the dependence on volume is necessary for Corollary 6.9. Recall from

the proof of Proposition 2.6 that dL = 4vol(S
3\L)
v0

was introduced to provide a bound on the
degree of any cover fromN to an orbifold. Since there exist FAL complements that have both
volume and orbifold covering degrees growing linearly with the number of crossing circles,
we cannot avoid this dependence. The pretzel FAL complements discussed in [MMT20],
exhibit this feature; see the proofs of Theorem 7.7 and Corollary 7.8 from their paper for a
description of particular orbifold covers and volumes of these manifolds.

Now, consider a pretzel FAL Ln with n crossing circles, no half-twist going through the
first crossing circle, and a single half-twist going through each of the n−1 remaining crossing
circles. Such an FAL always has a single planar component, and for n ≥ 3, Nn = S3 \ Ln
is hyperbolic. The proof of [MMT20, Proposition 5.2] shows that Nn has a closed geodesic

γn of length `(γn) = 2 ln( csc(π/n)+1
csc(π/n)−1). As n → ∞, `(γn) → 0. Thus, there exist FAL

complements with arbitrarily short systole length. This implies that we cannot avoid the
dependence of ε on the systole length of N in the construction of an (ε, dL)-twisted knot
complement.

Although the dependence on systole length is necessary when considering the full class
of FAL complements, we can remove this dependence if we restrict to arithmetic FAL
complements. This class includes all octahedral FALs (see [Pur11, Proposition 3.8] for
an explicit description of this infinite class). By work of Neumann and Reid [NR92a,
Corollary 4.5, Theorem 4.6] any arithmetic link complement, in particular any arithmetic
FAL complement has `N (γs) > 0.862554. Using this fact, we get the following immediate
corollary of Corollary 6.9, which gives a stronger version of that theorem, at the cost of
restricting to arithmetic FALs.

Corollary 6.10. Let N(α) be the knot complement obtained by filling an arithmetic FAL
complement N = S3 \ L along the multi-slope α = ( 1

q1
, . . . , 1

qn
). Let ε ≤ 0.86255

1.001 < 0.861688
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Figure 16. The octahedral FAL L4, from which we exhibit
(ε, dL)-twisted and generic knot complements that are the only knot
complements in their respective commensurability classes.

and
n∑
i=1

1

qi
≤ min

{
2ε

80π(n− 1) + 28.78ε
,

2
2π
C(ε) + 28.78

}
.

Then M = N(α) is (ε, dL)-twisted. In particular, if we choose ε = 0.86168 and we require

n∑
i=1

1

qi
≤ min

{
1.72336

80π(n− 1) + 24.8
, 7.963× 10−6

}
,

then M = N(α) is (ε, dL)-twisted.

6.1. Examples of (ε, dL)-twisted and generic knot complements. We conclude this
section with a concrete family of (ε, dL)-twisted and generic knot complements. We will
first discuss a rigorous construction and then contrast our numbers against experimental
evidence which, although it may be susceptible to numerical errors, seems to suggest that
(ε, dL)-twisted and generic knot complements are obtained via relatively low filling param-
eters.

We denote by L4 the FAL shown in Figure 16. Using SnapPy’s Sage interface [CDGW19],
we can rigorously compute the orientation preserving symmetry group of S3 \ L4 and its
action on the cusps. In particular, this group is isomorphic to Z2 × Z2, and it fixes each
cusp of S3\L4. From this it follows that any (ε, dL)-twisted filling of S3\L4 is automatically
an (ε, dL)-twisted and generic filling.

Given that the link complement S3\L4 is in SnapPy’s octahedral census as ooct06 06059,
we see that S3 \L4 is an octahedral FAL complement, i.e., it is arithmetic and has invariant
trace field Q(i). In this case [NR92a, Corollary 4.5, Theorem 4.6] gives a lower bound on
the systole of 0.962424, which is an improvement on the bound used for Corollary 6.10.
While we could plug this value directly into Corollary 6.9, we can get a smaller lower bound
on the qi by using Theorem 6.6. In particular, since SnapPy can rigorously compute the
cusp translations for S3 \ L4, we can use Lemma 6.7 to get a better bound on L2i then is
provided by Lemma 6.8. As the link complement is octahedral, we can apply exact values
from Z[i] with SnapPy’s combinatorial calculations (eg the computation of peripheral tori)
to rigorously obtain the following inequalities: 0 ≤ cot θi ≤ 1, riλi sin θ ≤ 6, and ri ≥ 1.
Given that pi = 1 for all i and crossing circles always have longitudes of length λi = 2,
Lemma 6.7 yields

L2i ≥
1 + 4q2i

6
− qi,
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which implies that 1
L2i
≤ 3

2(qi−1)2 since we may assume that qi ≥ 3.

To apply Theorem 6.6, we find that we need 1
L2 ≤

∑n
i=1

3
2(qi−1)2 ≤ .0000057524 to ensure

that the resulting filling of S3 \ L4 is (ε, dL)-twisted. It follows that filling along slopes 1
qi

with qi ≥ 1023 for all i will yield an (ε, dL)-twisted knot complement, which will moreover
be (ε, dL)-twisted and generic given the symmetry group calculation for S3 \ L4.

All calculations above are rigorous, and thus by Corollary 5.5 the knots constructed above
are an infinite family of knots that are the only knots in their commensurability classes.
Furthermore, these are a new family that has not previously appeared in the literature, as
we now show. By [FKP08], the constructed knots all have volumes within 1.18 × 10−11 of
vol(S3 \ L4) = 21.9831742603... There are three families of knots in the literature (that we
are aware of) for which each is the only knot in its commensurability class. In [MM08],
the authors show that for n 6= 7, a (−2, 3, n) pretzel knot complement is the unique knot
complement in its commensurability class. Such knot complements are all obtained by
surgery on the arithmetic two-component census link L9n9. Thus their volumes are bounded
by vol(L9n9) = 5.333.., so our knots are distinct from these. In [Mil17] it is shown that
certain pretzel knots obtained by long Dehn fillings of a subfamily of FALs have no other
knots in their respective commensurability classes. Again using [FKP08], these knots must
have volumes close to their FAL ancestors, whose volumes are all at least 29.31, so our knots
are distinct from these as well. Finally, in [RW08] the authors show that 2-bridge knots
have no other knots in their commensurability classes, and that such knots always admit
non-trivial symmetries acting freely on the cusp. Since no symmetry of S3 \ L4 acts freely
on the planar cusp, it follows that no symmetry of an (ε, dL)-twisted filling will act freely
on the cusp, so our knots are not 2-bridge knots. Thus the family of knots we construct is
distinct from the three known families above, which gives the following theorem:

Theorem 6.11. Let L4 be the link in Figure 16. Let S3\K be a knot complement obtained
by preforming 1/qi Dehn filling on each crossing circle cusp of S3\L4. If each qi ≥ 1023, then
S \K is an (ε, dL)-twisted and generic filling and therefore it admits no hidden symmetries
and is the unique knot complement in its commensurability class.

While the bound of qi ≥ 1023 is as far as we are able to push things with rigorous
computations, the following non-rigorous computations suggest that a far more modest
bound will suffice. Using SnapPy, we find that filling the crossing circle cusps of L4 along
slopes 1

22 yields a knot complement M whose 4 shortest geodesics all have length less than

.02. All other geodesics of M have length at least 1.76. Since the volume of S3 \ L4 is
∼ 21.9831, and the systole is ∼ 1.76, if we choose ε = 1.75 then we get ε

dL
> .02. Thus

the four short geodesics of M are in M<ε/dL , and these are the only geodesics in M<ε.

Since drilling out these geodesics yields a manifold homeomorphic to S3 \ L4, it follows
that M is (ε, dL)-twisted and generic. Although systole computations and drilling geodesics
are non-rigorous in SnapPy, these calculations suggest that for L4, qi ≥ 22 is likely large
enough.

References

[Ada85] Colin C. Adams. Thrice-punctured spheres in hyperbolic 3-manifolds. Trans. Amer. Math. Soc.,
287(2):645–656, 1985. URL http://dx.doi.org/10.2307/1999666.

[Ada86] Colin C Adams. Augmented alternating link complements are hyperbolic. Low dimensional topol-
ogy and Kleinian groups (Coventry/Durham, 1984), 112:115–130, 1986.

http://dx.doi.org/10.2307/1999666


SYMMETRIES AND HIDDEN SYMMETRIES OF (ε, dL)-TWISTED KNOT COMPLEMENTS 39

[Ada92] Colin C Adams. Noncompact hyperbolic 3-orbifolds of small volume. In Topology ’90 (edited
by Boris et al. Apanasov), volume 1 of Ohio State Univ. Math. Res. Inst. Publ., pp. 17–26. de
Gruyter, Berlin, 1992.

[Ago00] Ian Agol. Bounds on exceptional Dehn filling. Geom. Topol, 4:431–449, 2000.
[AR92] I. R. Aitchison and J. H. Rubinstein. Combinatorial cubings, cusps, and the dodecahedral knots.

In Topology ’90 (edited by Boris et al. Apanasov), volume 1 of Ohio State Univ. Math. Res.
Inst. Publ., pp. 17–26. de Gruyter, Berlin, 1992.

[BBCW12] Michel Boileau, Steven Boyer, Radu Cebanu, and Genevieve S Walsh. Knot commensurability
and the Berge conjecture. Geometry & Topology, 16(2):625–664, 2012.

[BMP03] Michel Boileau, Sylvain Maillot, and Joan Porti. Three-dimensional orbifolds and their geometric
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