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Abstract. Myers shows that every compact, connected, orientable 3–manifold with no 2–sphere boundary
components contains a hyperbolic knot. We use work of Ikeda with an observation of Adams-Reid to show

that every 3–manifold subject to the above conditions contains a hyperbolic knot which admits a non-trivial
non-hyperbolic surgery, a toroidal surgery in particular. We conclude with a question and a conjecture

about reducible surgeries.

Myers shows that there are hyperbolic knots in every compact, connected, orientable 3–manifold whose
boundary contains no 2–spheres [Mye93]. Might there be such a 3–manifold for which every hyperbolic knot
has no non-trivial exceptional surgeries?

One approach to showing the answer is Yes would be to prove that there exists a 3–manifold in which
every hyperbolic knot has cusp volume larger than 18 so that the 6–Theorem [Ago00,Lac00] would obstruct
any exceptional surgery. However, [ACF+06, Corollary 5.2] implies that every closed, connected, orientable
3–manifold contains infinitely many hyperbolic knots with cusp volume at most 9. So this approach will not
work. Furthermore, the knots constructed in [ACF+06, Corollary 5.2] do not necessarily have any exceptional
surgery, so that work does not address our question.

In this short note we demonstrate the answer to the question is actually No by constructing hyperbolic
knots with a non-trivial toroidal surgery in any 3–manifold.

Theorem 1. Let M be a compact, connected, orientable 3–manifold such that ∂M contains no 2–spheres.
There exist infinitely many hyperbolic knots in M that admit a toroidal surgery.

Proof. Let M be a compact, connected orientable 3–manifold whose boundary contains no 2–spheres. In
[Ike12], Ikeda shows that M contains an infinite family of embedded genus 2 handlebodies in M , each with
hyperbolic and anannular complement of its interior where its genus 2 boundary is totally geodesic. Let H
be any one of these handlebodies.

In Lemma 2 we find a knot K in H that bounds an embedded once-punctured Klein bottle Σ such that
H −K is a one-cusped anannular hyperbolic manifold in which ∂H is totally geodesic. Therefore M −K
decomposes along ∂H into two anannular hyperbolic manifolds. Thus, following an observation of Adams and
Reid [AR93, Observation 2.1], M −K is a hyperbolic manifold containing a quasi-Fuchsian surface isotopic
to ∂H, and K is a hyperbolic knot in M . (Note that while ∂H is totally geodesic in both M − int(H) and
H −K, its hyperbolic structure may not be the same in these two manifolds. Hence ∂H is not necessarily
totally geodesic in M −K.)

Since K bounds the once-punctured Klein bottle Σ, surgery on K along the slope σ of ∂Σ produces a

manifold MK(σ) containing an embedded Klein bottle Σ̂. The manifold MK(σ) will be toroidal unless the

torus ∂N (Σ̂) compresses. However, Lemma 2 shows that K may be further chosen in M so that HK(σ)− Σ̂
is also a one-cusped anannular hyperbolic manifold in which ∂H is totally geodesic boundary. Therefore, as

MK(σ)− Σ̂ decomposes along ∂H into the hyperbolic manifolds M − int(H) and HK(σ)− Σ̂, it follows that

∂N (Σ̂) must be incompressible in MK(σ). �

Lemma 2. There is a knot K in a genus 2 handlebody H that bounds a once-punctured Klein bottle Σ so
that H−K is a one-cusped anannular hyperbolic manifold in which ∂H is totally geodesic. Hence surgery on

K along the slope σ of ∂Σ produces a manifold HK(σ) containing an embedded Klein bottle Σ̂. Furthermore,

K may be chosen so that HK(σ) − Σ̂ is also a one-cusped anannular hyperbolic manifold in which ∂H is
totally geodesic.
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Proof. Figure 2(a) shows a surgery description of a trivial 3–strand tangle in the ball, along with an arc k
that has its endpoints on the tangle strands. Figure 2(b) shows the result of an isotopy in which the tangle
is more obviously trivial at the expense of elongating the arc k. The double branched cover of this trivial
3–strand tangle is a handlebody H in which the arc k lifts to a knot K. Figure 2(c),(d), and (e) illustrate
the construction of the knot K in the handlebody H. In (c), two caps with red dual arcs are attached to
the 3–strand tangle to form a trivial 1–strand tangle in the ball. After straightening the strand in (d), the
double branched cover is taken in (e). The two caps each lift to 2–handles attached to H. The two red arcs
in (e) are the co-cores of these two 2–handles, so H is obtained by drilling them out. For lifting the surgery
description, note that a curve linking the branch locus once with surgery coefficient 1/2a lifts to a single
curve with surgery coefficient 1/a. Thus for each pair of integers n,m, we obtain a knot K in a genus 2
handlebody H.

Figure 2(f) shows a surgery description of the double of (H,K) across ∂H, the link K ∪K in H ∪H =
S1×S2#S1×S2, obtained by mirroring Figure 2(e) and performing 0 surgery on the components formed from
the co-cores of the 2–handles and their mirrors. The certificate for a verified computation in SnapPy [CDGW]
confirms that the complement of the link K ∪K in S1 × S2#S1 × S2 is hyperbolic for choices of n,m ∈ Z
with |n| and |m| suitably large. We provide that certificate as an ancillary file to this arxiv posting. (More
specifically, a verified computation in SnapPy shows that after doing the two 0-surgeries on the two red
components in Figure 2(f), the resulting 6–component link in S1×S2#S1×S2 has a hyperbolic complement.
Then there is a constant N such that the 2–component link complement resulting from the surgeries on the
green and purple components will be hyperbolic if both |n| > N and |m| > N ; see [Koj88, Lemma 5]
or [BHL19, Theorem 3.1].) Since the double has the reflective symmetry in which ∂H is the fixed set, it
must be a totally geodesic surface. Hence H −K must be a one-cusped anannular hyperbolic manifold in
which ∂H is totally geodesic.

In Figure 2(e) one observes that K bounds a once-punctured Klein bottle Σ in H that is disjoint from the
two curves of the surgery description. As such, Dehn surgery on K in H along the boundary slope σ = ∂Σ

produces the manifold HK(σ) which contains the Klein bottle Σ̂ obtained by capping off Σ with a meridional
disk of the surgery.

All that remains is to show that Σ̂ is essential in the filling. First, we may understand the complement

of Σ̂ through tangles. As apparent in Figure 2(e), the surface Σ may be taken to be invariant under the
involution of H from the branched covering so that the fixed set intersects Σ in two points and an arc. Then
Σ descends to a disk D containing the arc k in its boundary and meeting the branch locus in the remainder
of its boundary and two points in its interior. This disk D may be tracked from its initial quotient of Σ in
Figure 2(d) back to Figure 2(a). Now Figure 1(a) shows the exterior of the arc k while Figure 1(b) shows
the rational tangle filling associated to σ–framed surgery on K. In particular, the disk D − k is completed

to a disk D̂ containing the closed component of the branch locus as its boundary and meeting the strands
of the branch locus in two interior points. Indeed, the double branched cover of the tangle Figure 1(b) is

the manifold HK(σ) in which D̂ lifts to Σ̂. Finally, Figure 1(c) shows the tangle that is the complement of

a small regular neighborhood of D̂.
Figure 3(a) shows a rational tangle filling of Figure 1(c) with the arc k′ that is the core of the rational

tangle. This 3–strand tangle is a trivial tangle as made more apparent in Figures 3(b), (c), and (d) which
isotop the tangle while elongating arc k′. As before, (c) shows the attachment of two caps with dual arcs and
(d) straightens the resulting 1–strand tangle. Figure 3(e) shows the double branched cover which illustrates
the lift of the arc k′ as the knot K ′ in another genus 2 handlebody H ′. Again, the two caps each lift to 2–
handles attached to H ′, the two red arcs in (e) are the co-cores of these two 2–handles, and so H ′ is obtained
by drilling them out. Note that the knot K ′ in H ′ depends on the previously chosen pair of integers n,m of
the surgery description.

It now follows that, by construction, HK(σ) − Σ̂ is homeomorphic to H ′ −K ′. We show that H ′ −K ′

is a one-cusped anannular hyperbolic manifold in which ∂H ′ is totally geodesic just as we did for H −K.
Figure 3(f) shows a surgery description of the double of (H ′,K ′) across ∂H ′, the link K ′ ∪K ′ in H ′ ∪H ′ =
S1 × S2#S1 × S2, obtained by mirroring Figure 3(e) and performing 0 surgery on the components formed
from the co-cores of the 2–handles and their mirrors. Just as before, the certificate for a verified computation
in SnapPy [CDGW] confirms that the complement of the link K ′ ∪ K ′ in S1 × S2#S1 × S2 is hyperbolic
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Figure 1. (b) A surgery description of a 3–strand tangle in the ball with an unknot compo-
nent that bounds a disk intersected twice by the strands. (a) The complement of a rational
tangle in this tangle. (c) The complement of a small neighborhood of the disk bounded by
the unknot component.

if both |n| and |m| are suitably large. We provide that certificate as an ancillary file to this arxiv posting.
Since the double has the reflective symmetry in which ∂H ′ is the fixed set, it must be a totally geodesic
surface. Hence H ′ −K ′ is a one-cusped anannular hyperbolic manifold in which ∂H ′ is totally geodesic.

Since HK(σ) − Σ̂ ∼= H ′ −K ′, we obtain the desired results whenever |n| and |m| are large enough to be
suitably large in both situations. �

Remark 3. To give a concrete example, taking n = m = 1 is sufficient for the knots K ⊂ H and K ′ ⊂ H ′ to
be hyperbolic. Certainly, one could verify the hyperbolicity of these knots by hand in the spirit of what was
done in [AR93], but the argument would take longer. Hence we content ourselves with verified computations
in SnapPy [CDGW].

What can be said about other kinds of exceptional surgeries? Considerations of Betti numbers show that
many closed, compact, orientable 3–manifolds cannot contain a knot with a Dehn surgery to a lens space or
a small Seifert fibered space. In light of the Cabling Conjecture [GAnS86] whose proof would imply that no
hyperbolic knot in S3 has a reducible surgery, it is reasonable to expect that there are 3–manifolds in which
no hyperbolic knot admits a reducible surgery. However, we are presently unaware of any 3–manifold known
to not have a hyperbolic knot with a non-trivial reducible surgery.

Question 4. Which compact, connected, orientable 3–manifolds do not contain a hyperbolic knot with a
non-trivial reducible surgery?

While non-trivial reducible surgeries on hyperbolic knots in reducible manifolds do exist, see e.g. [HM03],
we suspect that manifolds whose prime decompositions have at least 3 summands are candidates.

Conjecture 5. A closed orientable 3–manifold with at least 3 summands does not contain a hyperbolic knot
with a non-trivial reducible surgery.

Towards the conjecture, suppose K is a hyperbolic knot in a closed orientable 3–manifold M with at
least 3 summands. One may hope that each planar meridional surfaces in the knot complement M − K
arising from K intersecting multiple reducing spheres would contribute a certain amount to the length of
the shortest longitude of K. From this, at least if M had sufficiently many summands, one would be able to
use the 6-Theorem to obstruct a non-trivial reducible surgery. However this would also obstruct a toroidal
surgery contrary to Theorem 1. Indeed, it would also contradict [ACF+06, Corollary 5.2] which shows that
the topology of M cannot force all longitudes of hyperbolic knots in M to be long.

On the other hand, combinatorial structures in knot complements can induce obstructions. For instance,
hyperbolic alternating knots in S3 that have at least 9 twist regions (in twist-reduced diagrams) provide an
obstruction the existence of non-trivial exceptional fillings; see [Lac00, Theorem 5.1].

Acknowledgments 6. KB thanks Jacob Caudell for conversations related to [Cau21, Conjecture 5] that
prompted this note. This work was partially supported by Simons Foundation grant #209184 to Kenneth
Baker and by Simons Foundation grant #524123 to Neil Hoffman.
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Figure 2. (a) A rational tangle filling of Figure 1(a) with its core arc k. (b) & (c) An
isotopy showing the filled tangle is a rational 3–strand tangle. The arc k is carried along.
(c) Attached to the rational 3–strand tangle are two caps with their dual arcs to form a 1–
strand tangle in the ball. (d) The 1–strand tangle is straightened. (e) The double branched
cover is formed. Drilling out the red arcs leaves a genus 2 handlebody H containing the
knot K that covers k. (f) A surgery description of the double of (H,K) is formed.

References

[ACF+06] C. Adams, A. Colestock, J. Fowler, W. Gillam, and E. Katerman. Cusp size bounds from singular surfaces in

hyperbolic 3-manifolds. Trans. Amer. Math. Soc., 358(2):727–741, 2006.

[Ago00] Ian Agol. Bounds on exceptional Dehn filling. Geom. Topol., 4(1):431–449, 2000.
[AR93] Colin C. Adams and Alan W. Reid. Quasi-Fuchsian surfaces in hyperbolic knot complements. Journal of the Aus-

tralian Mathematical Society. Series A. Pure Mathematics and Statistics, 55(1):116–131, 1993.
[BHL19] Kenneth L Baker, Neil R Hoffman, and Joan E Licata. Jointly primitive knots and surgeries between lens spaces.

arXiv preprint arXiv:1904.03268, 2019. To appear in Communications in Analysis and Geometry.

[Cau21] Jacob Caudell. Three lens space summands from the Poincaré homology sphere, 2021. arXiv:2101.01256.
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Figure 3. (a) A rational tangle filling of Figure 1(c) with its core arc k′. (b) & (c) An
isotopy showing the filled tangle is a rational 3–strand tangle. The arc k′ is carried along.
(c) Attached to the rational 3–strand tangle are two caps with their dual arcs to form a 1–
strand tangle in the ball. (d) The 1–strand tangle is straightened. (e) The double branched
cover is formed. Drilling out the red arcs leaves a genus 2 handlebody H ′ containing the
knot K ′ that covers k′. (f) A surgery description of the double of (H ′,K ′) is formed.
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