
INFINITELY MANY VIRTUAL GEOMETRIC TRIANGULATIONS

DAVID FUTER, EMILY HAMILTON, AND NEIL R. HOFFMAN

Abstract. We prove that every cusped hyperbolic 3–manifold has a finite cover admitting in-

finitely many geometric ideal triangulations. Furthermore, every long Dehn filling of one cusp

in this cover admits infinitely many geometric ideal triangulations. This cover is constructed in
several stages, using results about separability of peripheral subgroups and their double cosets,

in addition to a new conjugacy separability theorem that may be of independent interest. The

infinite sequence of geometric triangulations is supported in a geometric submanifold associated
to one cusp, and can be organized into an infinite trivalent tree of Pachner moves.

1. Introduction

A hyperbolic 3–manifold M is called cusped if it is noncompact and has finite volume. Every
cusped 3–manifold M admits a topological ideal triangulation: that is, a decomposition into finitely
many tetrahedra whose vertices have been removed, with faces identified in pairs by affine maps. A
geometric ideal triangulation is a stronger notion, where each tetrahedron is isometric to the convex
hull of 4 non-coplanar points in H3, and where the tetrahedra are glued by isometry to give the
complete hyperbolic metric on M . See Definition 2.2 for precise details. The focus of this paper is
on geometric triangulations.

The presence of a geometric triangulation makes the geometry of M much more accessible to both
practical and theoretical study. On the practical side, geometric ideal triangulations are central to the
workings of the computer program SnapPy [7] that computes hyperbolic structures and rigorously
verifies their geometric properties [20]. On the theoretical side, Thurston’s original proof of the
hyperbolic Dehn filling theorem implicitly assumed the 3–manifold at hand admits a geometric
triangulation [29]. Similarly, Neumann and Zagier’s work on volume assumes that the complement
of some closed geodesic in M admits a geometric triangulation [23].

Despite the importance of geometric triangulations, the first part of the following conjecture has
been open for multiple decades.

Conjecture 1.1. Let M be a (finite volume) cusped hyperbolic 3–manifold. Then

(1) (Folklore) M admits at least one geometric ideal triangulation.
(2) M admits infinitely many geometric ideal triangulations.

In the 1980s, Conjecture 1.1.(1) was widely believed to follow from the work of Epstein and Penner
[10]. More precisely, the community believed that a geometric ideal polyhedral decomposition of
M can always be subdivided to give a geometric ideal triangulation. It took time to realize that
a naive refinement of the Epstein–Penner cell decomposition does not suffice; see the discussion of
coning in Section 2 for a description of some of the challenges. To our knowledge, the first record
of Conjecture 1.1.(1) in the literature is by Petronio [25, Conjecture 2.3], in 2000. See also Petronio
and Porti for a useful account of the history [26].

By contrast, Conjecture 1.1.(2) is new. We propose this tantalizing strengthening of the original
conjecture because searching for infinite and flexible sequences of geometric triangulations might
provide a pathway to finding at least one. Indeed, our main result can be interpreted as a proof of
concept that such a pathway exists in the context of finite covers and Dehn filling.
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Passing to covers makes both parts of Conjecture 1.1 more amenable. Toward Part (1) of the
Conjecture, Luo, Schleimer and Tillmann showed that every cusped hyperbolic manifold M has a
finite cover that supports a geometric triangulation [22]. We recall their proof strategy in Section 2,
and incorporate several of their ideas in the proof of our theorems. Our main result, in the direction
of Conjecture 1.1.(2), is the following.

Theorem 1.2. Let M be a cusped hyperbolic 3–manifold and A ⊂ M a horocusp. Then there is a

finite cover M̂ →M , such that A lifts to a cusp Â ⊂ M̂ , with the following properties:

• M̂ admits infinitely many geometric ideal triangulations.

• For every sufficiently long slope s on ∂Â, the Dehn filling M̂(s) admits infinitely many
geometric ideal triangulations.

Part of the interest of Theorem 1.2 comes from the fact that direct constructions of geometric
ideal triangulations are only known in special classes of manifolds. For example, Guéritaud proved
that certain well-studied triangulations of hyperbolic once-punctured torus bundles are geometric
[13]. Futer extended Guéritaud’s method to hyperbolic 2–bridge link complements [13, Appendix].
Guéritaud and Schleimer proved that if M is a generic multi-cusped hyperbolic manifold, then
long Dehn fillings of M will admit geometric triangulations [15]. Ham and Purcell found geometric
ideal triangulations of highly twisted link complements, by adapting Guéritaud and Schleimer’s
construction to some especially nice triangulations of fully augmented links [16].

There have also been attacks on Conjecture 1.1.(1) that have attempted to subdivide a geo-
metric polyhedral decomposition into geometric ideal tetrahedra. Wada, Yamashita, and Yoshida
[30], building on work of Yoshida [32], described a sufficient condition on the dual 1–skeleton of a
polyhedral decomposition to make such a subdivision possible. Sirotkina proved that a subdivision
is always possible if each 3–cell has at most six faces [28]. Goerner proved that a subdivision is
always possible if each 3–cell is a (not necessarily regular) ideal dodecahedron [12]. Champanerkar,
Kofman, and Purcell have constructed interesting examples of link complements admitting a decom-
position into regular ideal bipyramids, which can then be subdivided into geometric ideal tetrahedra
[5, Theorem 3.5].

To our knowledge, there is only one prior paper constructing infinitely many geometric triangula-
tions on the same hyperbolic manifold. Dadd and Duan showed that the figure–8 knot complement,
which decomposes into two regular ideal tetrahedra, supports infinitely many geometric triangu-
lations [9]. Their proof strategy is very delicate, in that it does not extend to the figure–8 sister
manifold, which also decomposes into two regular ideal tetrahedra.

Given a cusped manifold M , the topological Pachner graph of M is the graph whose vertices are
isotopy classes of (topological) ideal triangulations, with edges corresponding to 2–3 moves and their
inverses. (See Definition 3.5 for the definition of a 2–3 move, and Figure 3 for an illustration.) The
geometric Pachner graph of M is the induced subgraph whose vertices are geometric ideal triangu-
lations. The infinitely many geometric triangulations found by Dadd and Duan [9] are organized
in the form of an infinite ray in a single component of the geometric Pachner graph of the figure–8
knot complement. In a generic situation, the infinitely many geometric triangulations constructed
in Theorem 1.2 contain an even greater amount of structure.

Theorem 1.3. Let M be a cusped hyperbolic 3–manifold containing a non-rectangular cusp. Then

there exists a finite cover M̂ →M such that the geometric Pachner graph of M̂ contains a subgraph
homeomorphic to an infinite trivalent tree.

The hypothesis on a non-rectangular cusp can be explained as follows. As we describe in Section 2,
every non-compact end of M has the form A ∼= T × [0,∞), where T is a torus endowed with a
Euclidean metric that is well-defined up to similarity. We say that A is rectangular if the Euclidean
metric on T admits a rectangular fundamental domain, and non-rectangular otherwise. By the work
of Nimershiem [24], the Euclidean structures on cusp tori of hyperbolic 3–manifolds form a dense
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subset of the moduli space of M(T 2). Since rectangular tori represent a codimension-one slice of
M(T 2), one can say that a generic cusped 3–manifold satisfies the hypotheses of Theorem 1.3.

The infinite trivalent tree mentioned in Theorem 1.3 can be identified with the dual 1–skeleton
of the Farey graph. See Definition 3.9 and Figure 4 for a review of the Farey graph; in brief, its
vertices correspond to slopes, or simple closed curves on a torus, and to rational numbers in RP1.
The branches of the trivalent tree of Theorem 1.3 limit to every point of RP1. In particular, the
infinite sequence of geometric triangulations that we will construct can be chosen to approach any

rational or irrational foliation on a cusp torus of M̂ . Manifolds with rectangular cusps satisfy a
slightly weaker version of Theorem 1.3; see Remark 6.12 for details.

1.1. Proof strategy. Next, we outline the main ideas in the proofs of Theorems 1.2 and 1.3. Both
proofs use the same initial setup and general strategy. Since having a non-rectangular cusp simplifies
the argument considerably, Theorem 1.3 will be proved first.

Let M be a cusped hyperbolic 3–manifold. We will obtain geometric triangulations by subdivid-
ing the canonical (Epstein–Penner) polyhedral decompositions of covers of M . Section 2 reviews the
Epstein–Penner construction [10], emphasizing the way in which the canonical polyhedral decompo-
sition P depends on the choice of neighborhoods of the cusps. That section also reviews the process
of subdivision via coning and lays out a sufficient condition (involving an order on the cusps) that
ensures P can be subdivided into geometric ideal tetrahedra. See Lemma 2.9, which is essentially
due to Luo, Schleimer, and Tillmann [22], for details.

In Section 3, we describe a particular feature of the canonical polyhedral decomposition P that
occurs in the “generic” scenario when a manifold M has multiple cusps, one cusp A is chosen to be
sufficiently small, and there is a unique shortest path from A to the other cusps. In this situation,
Guéritaud and Schleimer [15] show the canonical polyhedral decomposition P has only one or two
cells poking into this cusp A. These cells fit together to form a submanifold called a drilled ananas
(see Definition 3.3). In Lemma 3.6, we show that a drilled ananas admits an infinite sequence of
geometric ideal triangulations. When A is a non-rectangular cusp, these triangulations are arranged
in a trivalent tree of 2–3 moves, as described in Theorem 1.3.

To build covers of M satisfying the above-mentioned conditions, we will need to separate certain
subgroups and subsets of π1(M) from group elements that cause undesired coincidences. Section 4
reviews several key definitions and results about separability that are needed for our purposes. The
strongest result that is needed for the proof of Theorem 1.3 is Theorem 4.4, due to Hamilton, Wilton,
and Zalesskii [18], which provides separability of double cosets of peripheral subgroups.

With this background in hand, we can begin to construct covers. Assuming that M has a non-

rectangular cusp, Section 5 produces a sequence of finite covers M̂ → M̊ → M , with increasingly

strong properties. In particular, M̊ contains a drilled ananas, while M̂ has a polyhedral decomposi-

tion P̂ that can be subdivided via coning. It will follow that M̂ admits an infinite trivalent tree of
geometric ideal triangulations, establishing Theorem 1.3.

1.2. New separability tools. To prove Theorem 1.2, which handles hyperbolic manifolds with
rectangular cusps and provides an additional conclusion about Dehn fillings, we need stronger sep-
arability tools than what was previously available in the literature. The following new result may
be of independent interest. In the theorem statement, a peripheral subgroup of Γ = π1(M) is a
subgroup coming from the inclusion of a cusp.

Theorem 1.4 (Conjugacy separation of peripheral cosets). Let M = H3/Γ be a cusped hyperbolic
3–manifold. Let H and K be (maximal) peripheral subgroups of Γ corresponding to distinct cusps
of M . Let g ∈ Γ be an element such that K is disjoint from every conjugate of gH. Then there
is a homomorphism ϕ : Γ → G, where G is a finite group, such that ϕ(K) is disjoint from every
conjugate of ϕ(gH).

Theorem 1.4 has the following topological interpretation. A maximal peripheral subgroup H ⊂ Γ

is the stabilizer of a horoball B̃ ⊂ H3. Given g ∈ Γ rH, the coset gH is the set of all elements of
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Γ that move B̃ to gB̃. Connecting these two horoballs is a geodesic arc β̃ that projects to an arc

β ⊂M . We wish to find a finite cover M̂ →M where the cusp corresponding to K lifts, and where
every preimage of β connects distinct cusps. Theorem 1.4 provides such a cover, corresponding to

the subgroup Γ̂ = ϕ−1 ◦ ϕ(K) that contains K but excludes every conjugate of gH.
Several precursors of Theorem 1.4 appear in the recent literature on 3–manifold groups. Given a

peripheral subgroup K and a single element g ∈ Γ that is disjoint from every conjugate of K, it is
straightforward to find a finite quotient that witnesses this disjointness [18, Lemma 4.5]. Given non-
conjugate subgroups H and K, Chagas and Zalesskii find a finite quotient of Γ where their images
are not conjugate [4]. Given a pair of non-conjugate peripheral subgroups H and K, Wilton and
Zalesskii use an argument of Hamilton to construct a finite quotient ϕ : Γ→ G, such that non-trivial
elements of ϕ(H) and ϕ(K) always lie in distinct conjugacy classes [31, Lemma 4.6].

It is worth recalling the proof of the last result. First, take a hyperbolic Dehn filling M(s)
corresponding to a quotient Γ→ Γ(s), where K stays parabolic but non-trivial elements of H become
loxodromic. In particular, the quotient of H is represented by loxodromic matrices of trace not equal
to 2. Then, take a congruence quotient of the matrix group Γ(s) in a matrix group over a finite ring
(see Definition 4.6), where the traces of these loxodromic matrices can still be distinguished from
2. Our contribution to this narrative is that we achieve even stronger separability for non-conjugate
parabolic subgroups H and K, separating the image of K from the image of every conjugate of gH.

The proof of Theorem 1.4 appears in Section 4, and uses a similar two-step method: first construct
an appropriate Dehn filling, and then analyze the congruence quotients related to the Dehn filling. As
part of this analysis, we apply tools from algebraic number theory, including a theorem of Hamilton
[17, Corollary 2.5] (restated below as Proposition 4.9), to control the traces of an entire coset gH.

Using the separability Theorem 1.4, we prove Theorem 1.2 in Section 6. If M̊ is a cover of M
containing a drilled ananas N̊ , as above, we use the topological interpretation of Theorem 1.4 to

construct two additional covers

(

M → M → M̊ where the ananas N̊ lifts but most edges of the

polyhedral decomposition

(

P connect distinct cusps. In particular,

(

M has a drilled ananas

(

N and a

polyhedral decomposition

(

P that can be subdivided into ideal tetrahedra via coning, which implies

infinitely many geometric triangulations. Then, we build a cover M̂ →

(

M where the drilled ananas

(

N has two distinct lifts. One of these lifts supports infinitely many geometric triangulations, while
the other gets filled to obtain the Dehn filling conclusion of the theorem. The opening paragraphs
of Section 6 outline this construction in much greater detail.

1.3. Acknowledgements: We thank Jessica Purcell, Saul Schleimer, and Henry Segerman for help-
ful discussions about triangulations. We thank Ian Agol and Matthew Stover for enlightening dis-
cussions about separating peripheral double cosets. Henry Wilton, who fielded our questions at
several crucial points, deserves particular gratitude.

This project was conceived when the first author visited Oklahoma State University in November
2019, and reached a mature state when the first and third authors visited the University of Arkansas
for the Redbud Topology Conference in March 2020. We thank both universities for their hospitality.
From there the collaboration proceeded over Zoom, with the second author joining at this virtual
stage. The Redbud conference stands out in our memories as a last hurrah of in-person discussion
and collaboration, for a significant time to come.

During this project, Futer was partially supported by NSF grant DMS–1907708, while Hoffman
was partially supported by Simons Foundation grant #524123.

2. Triangulations and polyhedral decompositions

This section reviews some standard definitions about hyperbolic manifolds and their polyhedral
decompositions and triangulations. Then, it proves Lemma 2.9 and Corollary 2.10, which will be
our main ways to obtain a geometric triangulation from a polyhedral decomposition.
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For the remainder of this paper, the symbolM denotes a cusped, orientable hyperbolic 3–manifold.
(Since Theorems 1.2 and 1.3 construct finite covers, no generality is lost in assuming that M is

orientable.) We will use M̃ to denote the universal cover of M , which is isometric to H3. Other

decorations, such as M̂ and M , denote finite-sheeted covers of M .

Definition 2.1. Let M be a cusped hyperbolic manifold, and let f̂ : M̂ →M be a finite cover. Let

A ⊂M be an embedded submanifold. We say that A lifts to M̂ if the inclusion map ι : A ↪→M lifts

to an inclusion ι̂ : A ↪→ M̂ . In this case, the image Â = ι̂(A) is called a lift of A. The lift Â forms

only one component of f̂−1(A), and covers A with degree one.
We remark that a lift is distinct from a path-lift. If γ ⊂M is a (parametrized) closed curve based

at x, then γ always has a path-lift γ̂ starting at any preimage x̂ ∈ f̂−1(x). This path-lift is only a
lift if it returns to x̂.

Definition 2.2. A geometric ideal polyhedron P is the convex hull in H3 of n ≥ 4 non-coplanar
points in ∂H3. If n = 4, the polyhedron is called a geometric ideal tetrahedron, and its isometry class
is determined by the cross-ratio of its 4 vertices. The polyhedron P and its boundary ∂P inherit an
orientation from the embedding P ↪→ H3.

An ideal polyhedron P is called an ideal pyramid if P contains an ideal vertex v (called the apex )
and a unique face F not incident to v (called the base). It follows that every edge of P either belongs
to ∂F (in which case it is called a base edge) or connects v to a vertex of F (in which case it is called
a lateral edge). Every pyramid is either an ideal tetrahedron, or has a unique choice of apex and
base.

A geometric ideal polyhedral decomposition P is a decomposition of M into geometric ideal poly-
hedra, glued together by orientation-reversing isometries along their boundary faces. The cusps of
M are therefore in bijection with the equivalence classes of ideal vertices in P. If all the cells are
ideal tetrahedra, the decomposition P is called a geometric ideal triangulation, and denoted T . The

preimage of P in a cover M̂ →M is denoted P̂, and similarly for other decorations.

Convention 2.3. All triangulations and polyhedral decompositions described below are presumed
to be geometric, unless specified otherwise. While there is a rich theory of topological ideal triangu-
lations of 3–manifolds, sometimes endowed with extra data, our focus in this paper is on geometry.

Definition 2.4. A (closed) horocusp A is the quotient of a closed horoball in H3 by a discrete group
G of parabolic isometries, where G ∼= Z× Z. Topologically, A is homeomorphic to T 2 × [0,∞) and
∂A is isometric to a flat torus. The interior of A is called an open horocusp.

If M = H3/Γ is a finite-volume hyperbolic 3–manifold, an open horocusp in M is an embedded
noncompact end that is isometric to an open horocusp. A (closed) horocusp in M is the closure of
an open horocusp in M . In particular, a horocusp A ⊂ M is homeomorphic to T 2 × [0,∞) with a
finite number of points of tangency on T 2 × {0} identified in pairs.

A horocusp collection in M is a union of closed horocusps A1, . . . , An containing all the noncom-
pact ends of M , such that the interiors of the Ai are pairwise disjoint.

For a hyperbolic 3–manifold M = H3/Γ, we typically work with M̃ = H3 in the upper half-space
model. The preimage of a horocusp collection in M is a collection of (closed) horoballs in H3 with

disjoint interiors, called a packing. When we mention a horoball Ã in H3 in this context, we implicitly

assume that Ã is one of the horoballs in the packing, meaning Ã covers one of the specified horocusps
of M . We further conjugate Γ in Isom(H3) ∼= PSL(2,C) so that ∞ is a parabolic fixed point of Γ,

which means that a horoball Ã about ∞ occurs in the packing. All other horoballs in the packing
are tangent to points of C. The packing horoballs with largest Euclidean diameter (equivalently, the

horoballs closest to Ã) are called full-sized.

Definition 2.5. Let M be a cusped hyperbolic 3–manifold with horocusp collection A1, . . . , An.
An orthogeodesic is an immersed geodesic segment γ that begins at ∂Ai and ends at ∂Aj , such that
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Figure 1. The construction of a canonical polyhedral decomposition in a cusped
hyperbolic surface. We have a horoball packing of H2 (black) and the universal

cover Σ̃ of the cut locus Σ (red). Dual to Σ̃ is a canonical triangulation P̃ (blue).

Every vertex ṽ ∈ Σ̃ is the center of a ball (grey) tangent to a maximal collection of

horoballs that contain the vertices of the cell of P̃ dual to ṽ.

γ is orthogonal to ∂Ai and ∂Aj at the respective endpoints. The case Ai = Aj is permitted. If Ai
is tangent to Aj , then a point of tangency is considered an orthogeodesic of length 0. We note that
an orthogeodesic is necessarily the shortest path in its homotopy class.

In a similar fashion, an orthogeodesic in H3 is the shortest path between a pair of disjoint horoballs

Ã, Ã′. This path is necessarily a geodesic segment that is orthogonal to ∂Ã and ∂Ã′.

A collection of horocusps in a hyperbolic manifold M determines a canonical decomposition of
M into polyhedra, as follows.

Definition 2.6. Let M be a cusped hyperbolic 3–manifold, endowed with a horocusp collection
A1, . . . , An. The Ford–Voronoi domain F ⊂M consists of all points of M that have a unique shortest
path to the union of the Ai. The complement Σ = M r F , called the cut locus, is a 2–dimensional
cell complex consisting of finitely many totally geodesic polygons. The combinatorial dual of Σ is
denoted P and called the canonical polyhedral decomposition determined by (M,A1, . . . , An). This
polyhedral decomposition has one geodesic edge for each polygonal face of Σ, one totally geodesic
2–cell for each edge of Σ, and one 3–cell for each vertex of Σ. The edges of P are bi-infinite extensions
of orthogeodesics between the cusps. See Figure 1 for a 2–dimensional example.

The top-dimensional cells of P can be characterized as follows. By construction, every 3–cell
P ⊂ P is dual to a vertex v ∈ Σ. There is a metric ball D centered at v, which is tangent to some
number of horocusps (corresponding to the ideal vertices of P ), and disjoint from their interiors.
Furthermore, the collection of cusps tangent to D is maximal with respect to inclusion.

In the context of closed surfaces, the construction of the canonical decomposition P dates back
to the work of Voronoi and Delaunay in the early 20th century. Epstein and Penner [10] gave a
characterization of P using convexity in the hyperboloid model of H3. As a consequence, P is
sometimes called the Delaunay or Epstein–Penner decomposition of M .

The canonical polyhedral decomposition P determined by a choice of horocusps is always geo-
metric. Thus every cusped hyperbolic 3–manifold admits a geometric polyhedral decomposition.
Furthermore, one may attempt to subdivide the polyhedra of P into tetrahedra by coning.

Definition 2.7. Let P be a (geometric) ideal polyhedron, and let v be an ideal vertex of P . The
coning of P from v is the decomposition of P into (geometric) ideal pyramids whose apex is v and
whose bases are the polygonal faces of P not incident to v. If P is an ideal pyramid and w is a
vertex of the base of P , the coning of P from w results in ideal tetrahedra, because every face of P
not incident to w is an ideal triangle.
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Definition 2.8. Let P be a (geometric) ideal polyhedral decomposition of M , and let V denote
the set of cusps of M . Consider a strict partial order ≺ on V . Observe that ≺ imposes a (strict)
partial order on the vertices of any polyhedron P ⊂ P, because vertices of P map to cusps of M .
The coning of P induced by ≺ is the following subdivision: if P has a unique ≺–minimal vertex v,
then P is coned from v; otherwise, P is not subdivided at all.

The iterated coning of P induced by ≺ is the following two-step procedure. First, cone P from its
unique ≺–smallest vertex (if such a vertex exists), which either leaves P unchanged or decomposes
it into pyramids. Second, cone each pyramid from the unique ≺–smallest vertex of its base (if such
a vertex exists).

Lemma 2.9. Let M be a cusped hyperbolic 3–manifold, and ≺ a strict partial order on the set of
cusps of M . Let P be a (geometric) ideal decomposition of M , with the property that every polyhedron
P ⊂ P has a unique ≺–minimal vertex vP . Then the iterated coning of P induced by ≺ produces a
well-defined subdivision of P into geometric ideal pyramids.

Furthermore, if ≺ gives a total order of the vertices of every polyhedron, then the iterated coning
of P produces a geometric ideal triangulation.

Proof. Suppose P and P ′ are polyhedra of P that are identified along a face F . We need to check
that the iterated coning of P and P ′ induces the same subdivision of the face F . We show this by
considering two cases.

Case 1: F does not have a unique ≺–minimal vertex. In this case, we claim that F will not be
subdivided at all. For, polyhedron P will be coned from its unique minimal vertex vP , which is not
contained in F by hypothesis. This produces a collection of pyramids, with F a base of one of the
pyramids. Since F does not have a unique minimal vertex, the second stage of iterated coning does
not subdivide F at all. An identical argument applies to P ′, proving the claim.

Case 2: F has a unique ≺–minimal vertex w. In this case, we claim that F will be subdivided
by coning from w. If w = vP is minimal in all of P , then P will be subdivided into pyramids by
coning from w, hence F will be also. Otherwise, if w 6= vP , then P will be subdivided into pyramids
by coning from vP , and F will be the base of one of these pyramids. At the second stage of the
iterated coning, the pyramid in P containing F will be coned from the minimal vertex of F , namely
w. An identical argument applies to P ′, proving the claim.

Finally, observe that if ≺ gives a total order of the vertices of each cell, then we must be in Case 2:
every face F has a minimal vertex. Thus every face is subdivided into triangles, and every pyramid
is subdivided into geometric ideal tetrahedra. �

The “furthermore” statement of Lemma 2.9 was previously observed by Luo, Schleimer, and
Tillmann [22, Lemma 7]. They also used the separability of peripheral subgroups (Proposition 4.3)
to show that every cusped 3–manifold M with a geometric polyhedral decomposition P has a finite

cover M̂ such that any order on the cusps of M̂ imposes a total order on the vertices of each

polyhedron of P̂. Compare Lemma 5.4 below. Consequently, M̂ has a geometric ideal triangulation.
In fact, a total order is not necessary to produce a geometric triangulation:

Corollary 2.10. Let M be a cusped hyperbolic 3–manifold, and ≺ a strict partial order on the
set of cusps of M . Let P be a (geometric) ideal decomposition of M , with the property that every
polyhedron P ⊂ P has a unique ≺–minimal vertex vP . Let P ′ be the pyramidal refinement of P
guaranteed by Lemma 2.9. Then every choice of diagonals in the non-triangular faces of P ′ leads to
a decomposition of P ′ into geometric ideal tetrahedra.

Proof. Following Lemma 2.9, let P ′ be the subdivision into ideal pyramids coming from the iterated
coning of P induced by ≺. Then every non-triangular 2–cell F ⊂ P ′ must be the base of exactly
two pyramids. Thus the non-tetrahedral pyramids of P ′ are glued in pairs, with each pair forming
a bipyramid that is joined to other cells along ideal triangles only. This means we have complete
freedom to choose diagonals of every non-triangular 2–cell F , subdividing the two pyramids adjacent
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to F into tetrahedra, without impacting the choices anywhere else in the manifold. Every such choice
produces a subdivision of P ′ into geometric ideal tetrahedra. �

3. An infinite tree of triangulations

In the last section, we described a construction of Luo, Schleimer, and Tillmann for decomposing
an ideal polyhedral decomposition P into a geometric ideal triangulation. Having one geometric
triangulation is clearly a prerequisite to having infinitely many. In this section, we describe a
particular geometric feature called a drilled ananas (see Definition 3.3) that admits an infinite
sequence of geometric triangulations. By embedding a drilled ananas inside a triangulation of a
cusped manifold M , we obtain an infinite sequence of ideal triangulations of M . See Lemma 3.6 for
the construction of an infinite sequence of triangulations, and Proposition 3.10 for a more refined
description of an infinite trivalent tree of triangulations.

Consider a polyhedral decomposition P of M . Let A ⊂ M be a horocusp, chosen small enough
that for every polyhedron P ⊂ P, the intersection P ∩A consists of neighborhoods of ideal vertices.
Then P induces a decomposition of the torus ∂A into Euclidean polygons, which truncate the ideal
vertices of polyhedra of P. We call this decomposition the cusp cellulation of ∂A, and denote it
C(A). If P is the canonical polyhedral decomposition (determined by some choice of cusps), then
C(A) satisfies the Delaunay condition: the vertices of every polygon can be inscribed on a circle,
where the interior of the circle does not contain any other vertices.

In the following proposition, A is a horocusp of M . Let At be a sub-horocusp of A such that
d(∂A, ∂At) = t. A particular feature occurs when t becomes sufficiently large.

Proposition 3.1 (Guéritaud–Schleimer [15]). Let M be a cusped hyperbolic 3–manifold, endowed
with a choice of horocusps A,B1, . . . , Bn for n ≥ 1. Assume that an orthogeodesic α from A to
B1 is the unique shortest path from A to ∪nj=1Bj. Then, for every sufficiently small sub-horocusp

At ⊂ A, the canonical decomposition P determined by At, B1, . . . , Bn contains a unique edge from
At to ∪nj=1Bj. This edge is the bi-infinite extension of α.

Furthermore, there are one or two 3–cells of P that meet the cusp At. Each such 3–cell is an
ideal pyramid with an apex at At and all lateral edges identified to α. If A is a rectangular cusp,
then the single 3–cell meeting At is a rectangular pyramid and the induced cellulation of ∂At is a
rectangle. Otherwise, if A is a non-rectangular cusp, then the two 3–cells meeting At are isometric
ideal tetrahedra, and the induced cellulation of ∂At consists of two isometric, acute triangles.

This result is due to Guéritaud and Schleimer [15, Section 4.1], and appears in the form of a
discussion with the explicit hypothesis that the cusp torus ∂A is not rectangular. For completeness,
we reproduce an expanded version of their proof.

Proof. Set M = H3/Γ, where we view H3 in the upper half-space model. As described in Section 2,

we conjugate Γ in Isom(H3) so that a horoball Ã about ∞ covers the horocusp A. Then K =
StabΓ(∞) ∼= Z2 can be identified with π1(A) ⊂ Γ. Every preimage of Bj is a horoball tangent to a
point of C.

By hypothesis, there is a unique shortest orthogeodesic from A to ∪nj=1Bj , which leads from A
to B1. Extend α to be a bi-infinite geodesic. After shrinking A by an appropriate distance, we may
further assume that α is the unique shortest orthogeodesic from A to A ∪ (∪nj=1Bj). Consequently,

there is a choice of horoball B̃1 covering B1, such that all of the full-sized horoballs tangent to points

of C are in the K–orbit of B̃1.
Consider a ball D ⊂ H3 that rests on the collection of horoballs tangent to points of C (see

Figure 2). If the Euclidean diameter of D is sufficiently large, then D will only touch the full-sized
horoballs. Furthermore, if we shrink A by a sufficiently large distance t ≥ 0, producing a sub-

horocusp At whose preimage horoball Ãt ⊂ Ã is at sufficient Euclidean height, then D will also be

disjoint from Ãt. Inflating D to a maximal (hyperbolic) radius produces a ball D+ that is tangent

to Ãt and some number of horoballs from the orbit K · B̃1, and is disjoint from all other horoballs.
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Figure 2. A ball D (shown in red) resting on four full-sized horoballs (blue) and
tangent to a horoball about ∞ (green). In the setting of Proposition 3.1, all of the
full-sized horoballs are in the same orbit of K ∼= Z2. It follows that the ball D can
be tangent to four full-sized horoballs at once if and only if K has a rectangular
fundamental domain, as in this figure. The center of D corresponds to an ideal
rectangular pyramid (dotted).

Observe that D+ is tangent to either 3 or 4 horoballs in K ·B̃1, and that the case of 4 occurs precisely

when ∂At = ∂Ãt/K has a rectangular fundamental domain.
Now, consider the cut locus Σt corresponding to the horocusp collection At, B1, . . . , Bn. Let

Σ̃t be the preimage of Σt in H3, and consider the polyhedral decomposition P = Pt dual to Σt.

By Definition 2.6, every vertex v ∈ Σ̃t is equidistant from some collection of horoballs (which is
maximal with respect to inclusion), and conversely every point equidistant from a maximal collection

of horoballs is a vertex of Σ̃t. In particular, the hyperbolic center of the ball D+ constructed in

the previous paragraph must be a vertex w ∈ Σ̃t. By Definition 2.6, this vertex w is dual to a
polyhedron Pw in the canonical decomposition P, whose ideal vertices lie in the horoballs tangent

to D+. Recall that D+ is tangent to Ãt and either 3 or 4 full-sized horoballs in K · B̃1.
If there are 3 full-sized horoballs tangent to D+, then Pw is an ideal tetrahedron. Furthermore,

up to the action of K = StabΓ(∞), there must be exactly one other ideal tetrahedron in P that

intersects Ãt. In this case, the induced cusp cellulation of ∂At consists of two isometric triangles.
These triangles must be acute: otherwise, the circle that circumscribes the 3 vertices of an obtuse
triangle would contain the fourth vertex of the parallelogram in its interior, violating the Delaunay
condition. Since the two triangles of ∂At are isometric, the two tetrahedra meeting At are also
isometric. Furthermore, each of the two tetrahedra has 3 edges identified to α, corresponding to the
fact that the cusp cellulation has a single vertex at α ∩ ∂At.

If there are 4 full-sized horoballs tangent to D+, as in Figure 2, then the polyhedron Pw is an
ideal rectangular-based pyramid. In this case, Pw is the only cell of P meeting At, and the induced
cusp cellulation of At is a single rectangle with a vertex at α ∩ ∂At. Consequently, all lateral edges
of Pw are identified to α. �

Remark 3.2. Akiyoshi [1] proved that the canonical polyhedral decomposition Pt determined by
the horocusp collection At, B1, . . . , Bn must stabilize as t→∞. Thus, for sufficiently large t, there
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is a stable geometric decomposition P = Pt independent of t. This is our motivation for dropping
the superscript t.

In the polyhedral decomposition P that occurs in Proposition 3.1, the cells that enter the special
cusp At fit together to form a geometric object that we call a drilled ananas.

Definition 3.3. A drilled ananas is a 3–manifold N homeomorphic to T 2 × [0,∞) r {x}, where
x ∈ T 2 × {0}, and endowed with a complete hyperbolic metric with the following properties. For
some y > 0, the non-compact end T 2 × [y,∞) ⊂ N is isometric to a horocusp, such that each
cross-section T 2 × {y′} for y′ > y is a horotorus. The boundary ∂N = T 2 × {0} r {x} is made up
of two totally geodesic ideal triangles, with vertices at x. These two triangles are glued by isometry
along their edges to form a standard two-triangle triangulation of a once-punctured torus, with
shearing and bending allowed along the edges of this boundary triangulation. If the base of the
drilled ananas is comprised of a single totally geodesic ideal rectangle, then we make a choice of
diagonal to decompose N into two ideal tetrahedra.

The horocusp T 2×[y,∞) ⊂ N is called the cusp ofN , while a regular neighborhood of x ∈ T 2×{0}
is called the thorn of N .

Here are a few notes on terminology and past usage. The term thorn was coined by Baker and
Cooper [2]. A drilled ananas is a special case of a topological ideal polyhedron in the work of Guéritaud
[14], and a slightly less special case of an ideal torihedron in the work of Champanerkar, Kofman,
and Purcell [5, Definition 2.1]. Both of these generalizations capture the idea of placing a hyperbolic
structure on a 3–manifold endowed with a polyhedral graph on its boundary. Guéritaud coined the
term ananas (French for pineapple) to describe a topological polyhedron with the topology of a solid
torus. (Compare the definition of a filled ananas immediately above Claim 6.10.) The object N in
Definition 3.3 can be obtained by removing the core of a solid torus, hence drilled ananas.

With the above definition, the conclusion of Proposition 3.1 can be rephrased as follows.

Corollary 3.4. Let M be a cusped hyperbolic manifold satisfying the hypotheses of Proposition 3.1,
and let P = Pt be the polyhedral decomposition produced by that proposition. Let N ⊂ M be the
submanifold obtained by gluing together all cells of P that have an ideal vertex in cusp A, along
their shared faces. Then N is a drilled ananas comprised of two acute ideal tetrahedra or one ideal
rectangular pyramid. Furthermore, N is convex, with an angle less than π at every edge of P ∩ ∂N .

Proof. The conclusion that N is a drilled ananas is immediate from Proposition 3.1 and Defini-
tion 3.3. It remains to check that N is convex.

By Proposition 3.1, each cell of P comprising N is an ideal pyramid with a base along ∂N . If N
contains a single rectangular pyramid, we subdivide it into two isometric ideal tetrahedra T, T ′ by
choosing a diagonal along ∂N . Otherwise, N already consists of two isometric, acute-angled ideal
tetrahedra T, T ′. The three lateral faces of T are glued to the three lateral faces of T ′, and all lateral
edges of T, T ′ are identified to the single geodesic α that connects the thorn of N to the cusp of N .

Let θ1, θ2, θ3 be the dihedral angles of T at the edges identified to α. Since T and T ′ are necessarily
isometric, these are also the dihedral angles of T ′ at the edges identified to α. See Figure 3(I). Then
the three internal angles along the edges of ∂N are 2θ1, 2θ2, 2θ3.

If T and T ′ are cells of P, then Proposition 3.1 says that all of their angles are acute. Thus
2θi < π for every i, hence ∂N is locally convex at every edge on its boundary. Otherwise, if T
and T ′ were created by subdividing an ideal pyramid, the cusp A ⊂ N is rectangular, hence the
Euclidean triangles truncating the tips of T and T ′ have a right angle θ1 and two acute angles θ2, θ3.
Consequently, the internal angles along ∂N are 2θ1 = π and 2θ2, 2θ3 < π. In either case, ∂N is
locally convex, hence N is convex. �

A key feature of a drilled ananas is that it is made up of two tetrahedra glued along three faces.
Each of these three faces supports a local move, called a 2–3 move.
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(i) Gluing two ideal tetrahedra to form a
drilled ananas Ni.

(ii) In a 2–3–move, the two tetrahedra
glued along a vertical face, shown in part I,
are replaced by three tetrahedra that share
an edge dual to that face (dashed). The
result appears in part III.

(iii) After a 2–3 move, the original ananas
Ni decomposes into three ideal tetrahedra.

(iv) The new ananas Ni+1 is the union of
the two tetrahedra in Ni which are incident
to ∞. The next 2–3 move will be along
a face that is exterior to the fundamental
domain shown here.

Figure 3. The inductive step of Lemma 3.6.

Definition 3.5. Let T0 be a topological ideal triangulation of a 3–manifold N , possibly with bound-
ary. Let T and T ′ be distinct tetrahedra in T0 that are glued together along a face F , and observe
that T ∪F T ′ is a bipyramid. A topological 2–3 move replaces T ∪ T ′ with three tetrahedra glued
together along a central edge dual to F , while all other tetrahedra of T0 remain the same. The
resulting triangulation is denoted T1. We say that a 2–3 move is geometric if T0 and T1 are both
geometric triangulations. Assuming T is geometric, a 2–3 move will be geometric whenever the
bipyramid T ∪F T ′ is strictly convex.

In Figure 3, tetrahedra T and T ′ are shown in panel (I), with face F a darker shade of blue. The
dual edge to F is dashed in panel (II), and the resulting three tetrahedra are shown in panel (III).

Lemma 3.6. A drilled ananas N admits an infinite sequence of geometric triangulations, connected
by geometric 2–3 moves.

The inductive construction that proves the lemma is illustrated in Figure 3.

Proof. Let N be a drilled ananas. By definition, ∂N is subdivided into two totally geodesic ideal
triangles. Consequently, N itself can be subdivided into two geometric ideal tetrahedra T, T ′ by
coning those triangles to the non-compact end at∞. As in Proposition 3.1, we think of each of T, T ′

as a triangular pyramid with a base along ∂N . The three lateral faces of T are glued to the three
lateral faces of T ′, and all lateral edges of T, T ′ are identified to a single geodesic α.

As in Corollary 3.4, let θ1, θ2, θ3 be the dihedral angles of T and T ′ at the edges identified to α.
See Figure 3(I). Since these angles are positive and θ1 + θ2 + θ3 = π, two of the three angles must
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be strictly less than π/2. Then the three internal angles along the edges of ∂N are 2θ1, 2θ2, 2θ3. At
least two of these angles (say, 2θ1 and 2θ2) are strictly less than π.

We will prove the lemma by induction. Set N0 = N . The key inductive claim is:

Claim 3.7. Let Ni be a drilled ananas with a two-tetrahedron geometric triangulation. Let βi ⊂ ∂Ni
be a boundary edge such that the internal angle at βi is less than π. Then performing a diagonal
exchange on βi results in a geometric ideal tetrahedron ∆i and a new sub-ananas Ni+1 ⊂ Ni, where
Ni = Ni+1 ∪∆i and Ni+1 again has a two-tetrahedron geometric triangulation.

The proof of the claim is almost immediate. Removing βi from a triangulation of ∂Ni results in
a quadrilateral. Let β′i be the opposite diagonal of this quadrilateral. Observe that the geodesic
representative of β′i lies strictly inside Ni, because Ni is locally convex at βi. The join of βi, β

′
i is a

(geometric) ideal tetrahedron ∆i. Removing the interior of ∆i from Ni produces a sub-ananas Ni+1

whose boundary is pleated along β′i and the two remaining edges of ∂Ni. 6

Observe that the two-tetrahedron triangulation of Ni gives rise to a three-tetrahedron triangula-
tion of Ni = ∆i ∪ Ni+1, in a geometric 2–3 move. See Figure 3. We can now apply this move to
Ni+1, and so on, resulting in an infinite sequence of geometric triangulations of N = N0. �

Corollary 3.8. Suppose N is a drilled ananas, and f : N̂ → N is a finite cover. Then N̂ admits
an infinite sequence of f–equivariant geometric triangulations.

The corollary follows immediately from Lemma 3.6 because every triangulation of N lifts to a

triangulation of N̂ . We also remark that any finite cover N̂ → N is regular and has abelian deck
group, because π1(N) ∼= Z2 is abelian.

3.1. Connections to the Farey complex. We can now describe some additional structure in the
set of triangulations of a drilled ananas N .

Definition 3.9. The Farey complex F is a simplicial complex whose vertices are isotopy classes of
arcs on a torus T 2 based at a marked point x, and whose edges correspond to arcs that are disjoint
(except at x). The vertices of F are commonly identified with the rational points QP1 ⊂ RP1, as
follows. Endow T 2 with a standard Euclidean metric, with fundamental domain a unit square. Then
every loop in T 2 based at x can be pulled tight to a Euclidean geodesic of some well-defined slope
Q ∪ {∞}. Conversely, every rational slope defines a unique isotopy class of arc from x to x.

Triangles in F correspond to (isotopy classes of) one-vertex triangulations of T 2 with the vertex
at x, or equivalently to ideal triangulations of T 2 r{x}. The dual 1–skeleton of F is a trivalent tree,
with every edge of the dual tree corresponding to a diagonal exchange. See Figure 4.

Using Definition 3.9, we can state the following stronger formulation of Lemma 3.6.

Proposition 3.10. Let N be a drilled ananas with a geometric triangulation consisting of two acute-
angled tetrahedra. Then N admits an infinite trivalent tree of geometric 2–3 moves, with vertices of
the tree in natural bijection with triangles of the Farey complex F .

Proof. The proof amounts to adding some book-keeping to the proof of Lemma 3.6. Let N0 = N ,
subdivided into ideal tetrahedra T, T ′. By hypothesis, all dihedral angles of T and T ′ are acute.
This triangulation of N defines an induced cellulation of the boundary of the horocusp A ⊂ N . In
fact, this cusp cellulation is a one-vertex triangulation: the one vertex is the intersection between
∂A and the single edge α ⊂ N into cusp A, while the two triangles are the cross-sections ∂A∩T and
∂A ∩ T ′. Let δ0 be this triangulation of ∂A. Fix a framing of ∂A so that the three slopes occurring
in τ0 are 0/1, 1/0, and 1/1, as in the central triangle of Figure 4.

Observe that any one-vertex triangulation of ∂A defines an ideal triangulation of ∂N , by projecting
outward from the cusp. In the opposite direction, any ideal triangulation of the boundary ∂Ni for
some sub-ananas Ni ⊂ N defines a one-vertex cusp triangulation. We will pass freely between the
two viewpoints.
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Figure 4. The Farey complex F . Edges of the dual tree correspond to diagonal
exchanges in a torus with one marked point. Every non-backtracking path in the
dual tree, starting from the central triangle, can be realized via geometric 2–3 moves
in a drilled ananas. Figure from Ham and Purcell [16, Figure 3.1].

Now, let β0 be a boundary edge of N0. In order to carry out the construction of Claim 3.7, the
internal angle of β0 needs to be less than π. But since all dihedral angles of T and T ′ are acute, we
may choose β0 at will. Now, the new sub-ananas N1 ⊂ N0, constructed as in Claim 3.7, will induce
a new cusp cellulation τ1 of ∂A, which differs from τ0 via a diagonal exchange. Thus we may choose
τ1 to be any one of the three triangulations adjacent to τ0 in Figure 4.

Continuing inductively, suppose that we have constructed the sub-ananas Ni ⊂ Ni−1 ⊂ . . . ⊂ N0,
and that ∂Ni has ideal triangulation τi. Then, as noted in the proof of Lemma 3.6, there are two
edges of ∂Ni that have interior angle less than π. The third edge necessarily has angle more than π;
it is the edge β′i−1 that was just created in constructing Ni. (See Figure 3(IV), with indices shifted
by 1.) Thus we may choose βi to be any edge of ∂Ni other than β′i−1, which means the new cusp
triangulation τi+1 is allowed to be any of the two neighbors of τi that are distinct from τi−1. In
summary, the path τ0, τ1, . . . of cusp cellulations associated with N0, N1, . . . is allowed to be any
non-backtracking path starting from τ0. �

In any path τ0, τ1, . . . of cusp cellulations constructed in the above proof, the slopes of edges
approach some limiting value in RP1, and the edges themselves approach a foliation with the limiting
slope. Thus the geometric retriangulations of N can be chosen to limit to any foliation of the torus.

The strategy for proving Theorem 1.2 and Theorem 1.3 can now come into view. Given a cusped
3–manifold M , we will find a cover M̊ with a polyhedral decomposition P̊ as in Proposition 3.1,

where two ideal tetrahedra fit together to form a drilled ananas. A further cover M̂ ensures that

the other cells of P̂ can be subdivided into ideal tetrahedra as well. Producing these covers requires
tools from subgroup separability, described in the next section.

4. Separability

This section begins with a review of some standard results about separable subsets and subgroups
in a group G. The main content of the section is a proof of Theorem 1.4.

Definition 4.1. Let G be a group. The profinite topology on G is the topology whose basic open
sets are cosets of finite-index normal subgroups. Since every coset of a finite-index subgroup H CG
is the complement of finitely many other cosets of H, the basic open sets are also closed.

A subset S ⊂ G is called separable if it is closed in the profinite topology on G.

The following characterization is standard.

Lemma 4.2. Let G be a group and S ⊂ G a subset. The following are equivalent:
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(1) S is separable.
(2) For every element g ∈ GrS, there is a homomorphism ϕ : G→ F , where F is a finite group

and ϕ(g) /∈ ϕ(S).

Proof. The set S is closed if and only if every g ∈ G r S is contained in a basic open set disjoint
from S. But, by Definition 4.1, a basic open set containing g is precisely the preimage of an element
under a homomorphism to a finite group. �

If M is a cusped hyperbolic 3–manifold, a subgroup of π1(M) coming from the inclusion of a
horocusp A is called peripheral. This peripheral subgroup of π1(M) is also maximal abelian: it is
not contained in any larger abelian subgroup.

We will need to separate peripheral subgroups and their double cosets. The following separability
result has been known since the 1980s, if not earlier. See e.g. Long [21, page 484] for a proof.

Proposition 4.3. Let M = H3/Γ be a cusped hyperbolic 3–manifold. Then maximal abelian sub-
groups of Γ are separable. In particular, peripheral subgroups of Γ are separable. �

We will also need to separate peripheral double cosets, using the following theorem of Hamilton,
Wilton, and Zalesskii [18, Theorem 1.4].

Theorem 4.4 (Hamilton–Wilton–Zalesskii [18]). Let M = H3/Γ be a finite-volume hyperbolic 3–
manifold. Let H and K be abelian subgroups of Γ. Then, for every g ∈ Γ, the double coset HgK =
{hgk : h ∈ H, k ∈ K} is separable in Γ. �

Theorem 4.4 is the strongest separability tool needed in the proof of Theorem 1.3. The reader
who is mainly interested in that result is invited to proceed directly to Section 5.

4.1. Algebraic tools for separability. The separability results that we use in this paper, including
Theorem 4.4 and Theorem 1.4, are proved using tools from algebraic number theory. To set up the
proof of Theorem 1.4, we review some needed definitions and results.

A number field is a finite field extension of Q. An extremely useful connection between number
fields and 3–manifolds comes from the following result.

Theorem 4.5 (Thurston [29], Bass [3], Culler–Shalen [6, 8]). Let M = H3/Γ be a cusped hyperbolic
3–manifold. Then

(1) Γ ⊂ PSL(2,C) can be lifted to SL(2,C).
(2) Γ can be conjugated in SL(2,C) to lie in SL(2, R) ⊂ SL(2, k), where R is a finitely generated

subring of a number field k. �

Conclusion (1) was observed by Thurston [29, page 98] and carefully written down by Culler and
Shalen [8, Proposition 3.1.1], with a simplified proof by Culler [6, Corollary 2.2]. Conclusion (2) was
observed by Thurston [29, Proposition 6.7.4] as an algebraic consequence of Mostow rigidity, and
independently proved by Bass [3].

The arithmetic data associated to a ring R can be used to construct finite quotients of both rings
and groups. The construction uses the following notions.

Definition 4.6. If k is a number field, let Ok denote the ring of integers of k. If p is a non-zero
prime ideal of Ok, we let kp denote the p-adic completion of k and Okp the ring of integers of kp.
The ring Okp has a unique maximal ideal. The quotient of Okp by this maximal ideal is a finite field
called the residue class field of Okp . The quotient map is called the residue class field map with
respect to p. If R is a finitely generated ring in a number field k, then R ⊂ Okp for all but finitely
many primes p of Ok. Restricting the residue class field map to R yields a finite quotient of R.

Now, suppose Γ ⊂ SL(2, R), where R is a ring. Let I ⊂ R be an ideal, such that S = R/I is
finite. Then the homomorphism

SL(2, R)→ SL(2, S)
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where coefficients are reduced modulo I is called a congruence quotient of PSL(2, R). We also call
the composition

ϕ : Γ ↪→ SL(2, R)→ SL(2, S)

a congruence quotient of Γ. (This is slightly abusive, because Γ may fail to surject SL(2, S).)

We now describe three algebraic results that will be used in the proof of Theorem 1.4. The first
of these is [18, Theorem 2.6].

Proposition 4.7 (Hamilton–Wilton–Zalesskii [18]). Let R be a finitely generated ring in a number
field k. By fixing a Q embedding of k into C, we may view k ⊂ C. Let ω ∈ R, and set Zω =
{m+ nω | m,n ∈ Z} and Qω = {m+ nω | m,n ∈ Q}. If y ∈ R −Qω, then there exist a finite ring
S and a ring homomorphism ρ : R→ S such that ρ(y) /∈ ρ(Zω). �

The following technical lemma is a variant of Proposition 4.7.

Lemma 4.8. Let R be a finitely generated ring in a number field k. By fixing a Q embedding of
k into C, we may view k ⊂ C. Let ω ∈ R − R. Then there is an infinite collection Ω of primes
of Q, such that for each prime p ∈ Ω, there exist a finite field Fp of characteristic p and a ring
homomorphism ηp : R→ Fp, such that {1, ηp(ω)} is linearly independent over Fp.

Consequently, ηp has the following property. Consider an element y∗ ∈ Qω = {m+nω | m,n ∈ Q}.
Express y∗ in lowest terms:

y∗ =
m∗ + n∗ω

v∗
where m∗, n∗ ∈ Z and v∗ ∈ N. If ηp(y∗) = ηp(m+ nω) for some m,n ∈ Z, then v∗m ≡ m∗ (mod p)
and v∗n ≡ n∗ (mod p).

Proof. Since ω ∈ C − R, the set {1, ω} is linearly independent over Q. By a standard argument
used in the proof of Theorem 4.4 (compare [18, page 278]), we can preserve this property in a finite
quotient. We include the details for completeness. Let L denote the normal closure of k over Q and
let τ̄ ∈ Gal(L/Q) represent complex conjugation. Since ω ∈ C − R, we know ω is not fixed by τ̄ .
By the Tchebotarev Density Theorem, there exist infinitely many primes p of Q with unramified
extension p in L such that τ̄ is the Frobenius automorphism for p/p. After eliminating a finite set
of primes, if necessary, we may assume that R ⊂ OLp

, where OLp
denotes the ring of integers in the

p-adic field Lp. Given such a prime p, let Fp denote the residue class field of OLp
and let Fp denote

the finite field of p elements. Let ηp be the composition of the inclusion map of R into OLp
with the

residue map:

ηp : R ↪→ OLp
→ Fp.

Since τ̄ is the Frobenius automorphism of L/Q with respect to p/p, Gal(Lp/Qp) = 〈τ̄ ′〉 where τ̄ ′ = τ̄
on L. Since τ̄(ω) 6= ω, it follows that ω /∈ Qp. The Galois group of Fp/Fp is also induced by τ̄ . This
implies that ηp(ω) /∈ Fp and therefore, the set {1, ηp(ω)} is linearly independent over Fp.

Next, suppose that ηp(y∗) = ηp(m+ nω) for some m,n ∈ Z. Then

ηp(m∗ + n∗ω) = ηp(v∗y∗) = ηp(v∗m+ v∗nω).

The above equality can be rewritten as ηp(v∗m−m∗)+ηp(v∗n−n∗)ηp(ω) = 0. Since the set {1, ηp(ω)}
is linearly independent over Fp, it follows that v∗m ≡ m∗ (mod p) and v∗n ≡ n∗ (mod p). �

The third preliminary algebraic result is a combination of [17, Theorem 2.3 and Corollary 2.5].

Proposition 4.9 (Hamilton [17]). Let R be a finitely generated ring in a number field k, let λ be a
non-zero element of R that is not a root of unity, and let x1, x2, . . . , xj be non-zero elements of R.
Then, for every sufficiently large integer q, there exist a non-zero prime ideal p of Ok, a finite field
Fp, and a ring homomorphism σ : R → Fp such that R ⊂ Okp , the multiplicative order of σ(λ) is
equal to q, and σ(xi) 6= 0, for each 1 ≤ i ≤ j. The field Fp is the residue class field of Okp and the
map σ is the restriction to R of the residue class field map with respect to p. �
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4.2. Conjugacy separation of peripheral cosets. We can now prove Theorem 1.4.

Proof of Theorem 1.4. Let H and K be maximal parabolic subgroups of Γ corresponding to distinct
cusps of M , and let g ∈ Γ be an element such that K is disjoint from every conjugate of gH. In
particular, this implies g /∈ H. Fix a non-trivial element h0 ∈ H. Since H is a maximal abelian
subgroup of Γ, and g /∈ H, the commutator [g, h0] = gh0g

−1h−1
0 is nontrivial. Let A be the cusp of

M corresponding to K, let B be the cusp corresponding to H, and let C1, . . . , C` be the remaining
cusps. We will leave the cusp A unfilled, and will fill the remaining cusps. So long as a tuple of slopes
s on B,C1, . . . , C` avoids finitely many slopes on each cusp, the Dehn filled manifold M(s) will be
hyperbolic. Thus, by Thurston’s hyperbolic Dehn surgery theorem, we can choose generators h1 and
h2 of H that can be completed to tuples s1 and s2 where M(s1) and M(s2) are both hyperbolic.
Then, for j = 1, 2, the fundamental group π1(M(sj)) has a discrete, faithful representation to a group
of isometries Γ(sj) ⊂ PSL(2,C). By Theorem 4.5, we view Γ(sj) as a subgroup of SL(2,C). Let
ψj : Γ→ Γ(sj) be the quotient homomorphism induced by the inclusion M ↪→ M(sj). By choosing
sufficiently long Dehn fillings, we may assume that ψ1([g, h0]) and ψ2([g, h0]) are non-trivial. These
choices ensure the following properties for j ∈ {1, 2}:

• ψj(K) is a parabolic subgroup of Γ(sj),
• ψj(H) is a loxodromic subgroup of Γ(sj),
• ψj(g) /∈ ψj(H).

Before working with the Dehn filled manifolds, we examine the coset gH in Γ. By Theorem 4.5,
we can conjugate Γ to lie in SL(2, k) for some number field k. After possibly expanding k, and then
conjugating Γ in SL(2, k), we may assume that

g =

(
a b
c d

)
, h1 = ±

(
1 1
0 1

)
, and h2 = ±

(
1 ω
0 1

)
,

for a fixed element ω ∈ C − R. Note that the traces of h1 and h2 are determined by the lift to
SL(2,C), and might not coincide. Thus an arbitrary element ghm1 h

n
2 ∈ gH can be expressed as

ghm1 h
n
2 = ±

(
a b
c d

)(
1 m+ nω
0 1

)
= ±

(
a a(m+ nω) + b
c c(m+ nω) + d

)
, (4.1)

where the sign ± depends on the traces of h1, h2 and the parity of m,n.
As above, set Zω = {m+ nω | m,n ∈ Z} and Qω = {m+ nω | m,n ∈ Q}. Then

gH ⊂
{
±
(
a ax+ b
c cx+ d

) ∣∣∣ x ∈ Zω} .
Since g /∈ H, and H is a maximal parabolic subgroup of Γ, we have c 6= 0. Thus ghm1 h

n
2 ∈ gH is

parabolic if and only if tr(ghm1 h
n
2 ) = ±(a+ d+ c(m+ nω)) ∈ {±2}. Solving for x = m+ nω ∈ Zω,

let

y+ = y+1 =
2− a− d

c
and y− = y−1 =

−2− a− d
c

.

Then the coset gH contains a parabolic element if and only if {y+, y−} ∩ Zω 6= ∅. We will abuse
notation slightly by thinking of the subscripts as either symbols (±) or numbers (±1), as convenient.

The pair y+ and y−, corresponding to trace +2 and trace −2, are the “problem elements” that
we will need to track throughout the proof. In particular, let R ⊂ k be the ring generated by the
coefficients of the generators of Γ. By expanding R if necessary, we may assume that c−1 ∈ R, which
implies y± ∈ R.

From here, the proof proceeds as follows. For each number i ∈ {±1}, we will construct a homo-
morphism ϕi : Γ→ Gi, where Gi is a finite group. Each ϕi will be either a congruence quotient of Γ,
or the product of a congruence quotient of Γ and a congruence quotient of Γ(sj) for some j. Then
we will package these homomorphisms together to obtain

ϕ = ϕ− × ϕ+ : Γ −→ G = G− ×G+.
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In particular, for every γ ∈ Γ, the image ϕ(γ) is a tuple of matrices, each with coefficients in a finite
ring, and each with a well-defined trace. To complete the proof, we will see that for every h ∈ H
and every ` ∈ K, some coordinate of ϕ(gh) differs in trace from the same coordinate of ϕ(`). This
will imply that ϕ(gh) cannot be conjugate to ϕ(`).

For each i ∈ {±1}, the definition of ϕi : Γ→ Gi depends on whether yi belongs to Qω. If yi /∈ Qω,
we argue as follows.

Claim 4.10. Suppose yi ∈ R−Qω. Then there is a ring homomorphism ρi : R→ Si, where Si is a
finite ring, such that the following holds. For every pair (m,n) ∈ Z2, we have

ρi(m+ nω) 6= ρi(yi).

By Proposition 4.7, there exist a finite ring Si and a ring homomorphism ρi : R → Si such that

ρi(yi) /∈ ρi(Zω). By the definition of Zω, this means ρi(yi) 6= ρi(m+ nω) for any (m,n). 6

Using ρi, we define a congruence quotient

ϕi : Γ ↪→ SL(2, R)→ Gi = SL(2, Si) if yi /∈ Qω, (4.2)

completing the definition of Gi and ϕi in this case.
Alternately, if yi ∈ Qω, Lemma 4.8 provides an infinite set of primes Ω, such that for each p ∈ Ω

there is an associated finite field Fp and ring homomorphism ηp : R→ Fp. The central claim in this
case is the following.

Claim 4.11. Suppose yi ∈ Qω. Then there is a choice of Dehn filling quotient ψj : Γ → Γ(sj)
where the coefficients of Γ(sj) lie in a finitely generated ring Tj, a prime number p ∈ Ω, and a ring
homomorphism σp,i : Tj → Ei, where Ei is a finite field, such that the following holds. For every
pair (m,n) ∈ Z2, we have

ηp(m+ nω) 6= ηp(yi) or σp,i ◦ tr ◦ψj(ghm1 hn2 ) 6= ±2.

In fact, the desired homomorphism σp,i exists for all sufficiently large p ∈ Ω. However, we will
only need σp,i for one p ∈ Ω.

We momentarily postpone the proof of Claim 4.11 to describe the construction of ϕi. The ring
homomorphism ηp defines a congruence quotient

ν0 : Γ ↪→ SL(2, R)→ SL(2, Fp).

Similarly, σp,i defines a homomorphism νi factoring through a congruence quotient:

νi : Γ
ψj−→ ψj(Γ) = Γ(sj) ↪→ SL(2, Tj)→ SL(2, Ei).

We can now define

ϕi = ν0 × νi : Γ −→ Gi = SL(2, Fp)× SL(2, Ei) if yi ∈ Qω, (4.3)

completing the definition of Gi and ϕi in this case.

Proof of Claim 4.11. We begin by specifying the choice of Dehn filling quotient ψ1 or ψ2. Write
yi = (mi+niω)/vi in lowest terms, as in Lemma 4.8. If vi = 1, then we set j = 2 and work with the
Dehn filling ψj = ψ2 : Γ→ Γ(s2) for concreteness (although ψ1 would also work). Assuming vi 6= 1,
we have either vi - mi or vi - ni. If vi - mi, then we set j = 2 and select the Dehn filling M(s2) and
the quotient map ψ2 : Γ → Γ(s2). Then ψ2(H) is an infinite cyclic loxodromic subgroup of Γ(s2)
generated by ψ2(h1). Consequently, ψ2(hm1 h

n
2 ) = ψ2(hm1 ), where

vim 6≡ mi (mod vi) because vi - mi.

Similarly, if vi - ni, then we set j = 1 and select the Dehn filling M(s1) and the quotient map
ψ1 : Γ→ Γ(s1). This has the effect that ψ1(hm1 h

n
2 ) = ψ1(hn2 ), where

vin 6≡ ni (mod vi) because vi - ni.
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In either case, the above non-congruences will be used in the endgame of the proof of the claim.
Because the arguments for mi and ni are entirely parallel, and differ only by a substitution of
symbols, we assume without loss of generality that vi - mi, hence j = 2 and we have the Dehn filling
quotient ψ2 : Γ→ Γ(s2).

By Theorem 4.5, we can conjugate Γ(s2) in SL(2,C) such that Γ(s2) ⊂ SL(2, T ), where T = T2

is a finitely generated ring in a number field. Moreover, we may assume that

ψ2(g) =

(
r s
t u

)
and ψ2(h1) =

(
λ 0
0 λ−1

)
,

for some r, s, t, u, λ ∈ C with |λ| 6= 1. Then

ψ2(gH) =

{(
r s
t u

)(
λm 0
0 λ−m

) ∣∣∣ m ∈ Z
}

=

{(
rλm sλ−m

tλm uλ−m

) ∣∣∣ m ∈ Z
}
,

and tr ◦ψ2(ghm1 h
n
2 ) = rλm + uλ−m. In particular, ψ2(gH) contains a parabolic matrix if and only if

rλm + uλ−m = ±2 for some m, which is true if and only if λm is a root of rx2 ± 2x+ u. Let

ζ =
1 +
√

1− ru
r

, ξ =
1−
√

1− ru
r

be the roots of rx2 − 2x+ u. Then {−ζ,−ξ} are the roots of rx2 + 2x+ u. By expanding T = T2,
if necessary, we may assume that {ζ, ξ} ⊂ T . Since ψ2(g) does not commute with ψ2(h1), we have
s 6= 0 and t 6= 0. Therefore, ru 6= 1, which implies that ζ 6= ξ.

To prove the claim, we consider two cases.

Case 1: λ2mi /∈ {ζ2vi , ξ2vi}.
By Proposition 4.9, for all sufficiently large primes p ∈ Ω, there exist a finite field Ei and a ring

homomorphism σp,i : T → Ei, such that

σp,i(ζ − ξ) 6= 0, σp,i(λ
2mi − ζ2vi) 6= 0, σp,i(λ

2mi − ξ2vi) 6= 0,

and the multiplicative order of σp,i(λ) is equal to 2p.
Suppose for a contradiction that there exist m,n ∈ Z such that

ηp(m+ nω) = ηp(yi) and σp,i ◦ tr ◦ψ2(ghm1 h
n
2 ) = σp,i(rλ

m + uλ−m) = ±2.

Then Lemma 4.8 implies

vim ≡ mi (mod p) ⇒ 2vim ≡ 2mi (mod 2p).

If σp,i(rλ
m + uλ−m) = 2, then σp,i(λ

m) is a root of f(x) = σp,i(r)x
2 − 2x + σp,i(u) over Ei. Since

the two distinct roots of f over Ei are equal to σp,i(ζ) and σp,i(ξ), we have σp,i(λ
m) = σp,i(ζ) or

σp,i(λ
m) = σp,i(ξ). Similarly, if σp,i(rλ

m + uλ−m) = −2, then σp,i(λ
m) = σp,i(−ζ) or σp,i(λ

m) =
σp,i(−ξ). In either case,

σp,i(λ
2vim) = σp,i(ζ

2vi) or σp,i(λ
2vim) = σp,i(ξ

2vi).

Since 2vim ≡ 2mi (mod 2p) and the multiplicative order of σp,i(λ) is equal to 2p, this implies that

σp,i(λ
2mi) = σp,i(ζ

2vi) or σp,i(λ
2mi) = σp,i(ξ

2vi),

a contradiction.

Case 2: λ2mi ∈ {ζ2vi , ξ2vi}.
Without loss of generality, we may assume that λ2mi = ζ2vi . First, suppose that vi = 1. This

means that yi = mi + niω ∈ Zω, hence ghmi
1 hni

2 ∈ gH has trace ±2 and is parabolic in Γ. Since
λ2mi = ζ2vi and vi = 1, λmi ∈ {ζ,−ζ}. Therefore, ψ2(ghmi

1 hni
2 ) = ψ2(ghmi

1 ) is also a parabolic
element in Γ(s2). This is a contradiction, since the only parabolic elements of Γ that remain parabolic
after the Dehn filling lie in conjugates of K, and the coset gH is disjoint from every conjugate of K.
We conclude that vi > 1.



INFINITELY MANY VIRTUAL GEOMETRIC TRIANGULATIONS 19

Next, assume that λ2vimi 6= ξ2v2i . By Proposition 4.9, for all sufficiently large primes p ∈ Ω, there
exist a finite field Ei and a ring homomorphism σp,i : T → Ei, such that

σp,i(ζ − ξ) 6= 0, σp,i(λ
2vimi − ξ2v2i ) 6= 0,

and the multiplicative order of σp,i(λ) is equal to 2vip. Suppose for a contradiction that there exist
m,n ∈ Z such that

ηp(m+ nω) = ηp(yi) and σp,i ◦ tr ◦ψ2(ghm1 h
n
2 ) = σp,i(rλ

m + uλ−m) = ±2.

Then Lemma 4.8 implies

vim ≡ mi (mod p) ⇒ 2v2
im ≡ 2vimi (mod 2vip).

Since σp,i(rλ
m + uλ−m) = ±2, we have σp,i(λ

m) = σp,i(±ζ) or σp,i(λ
m) = σp,i(±ξ). If σp,i(λ

m) =
σp,i(±ζ), then

σp,i(λ
2vim) = σp,i(ζ

2vi) = σp,i(λ
2mi).

Since the multiplicative order of σp,i(λ) is divisible by 2vi, we have

2vim ≡ 2mi (mod 2vi),

contradicting the fact that vi - mi. If σp,i(λ
m) = σp,i(±ξ), then, since the multiplicative order of

σp,i(λ) is equal to 2vip and 2v2
im ≡ 2vimi (mod 2vip), we obtain

σp,i(λ
2vimi) = σp,i(λ

2v2im) = σp,i(ξ
2v2i ),

which contradicts our assumption in choosing σp,i.

Finally, assume that λ2vimi = ξ2v2i . By Proposition 4.9, there exist a finite field Ei and a ring
homomorphism σp,i : T → Ei, such that σp,i(ζ − ξ) 6= 0, and the multiplicative order of σp,i(λ)
is divisible by 2v2

i . Suppose that there exist m ∈ Z such that σp,i(rλ
m + uλ−m) = ±2. Then

σp,i(λ
m) = σp,i(±ζ) or σp,i(λ

m) = σp,i(±ξ). By the argument above, σp,i(λ
m) 6= σp,i(±ζ). If

σp,i(λ
m) = σp,i(±ξ), then

σp,i(λ
2v2im) = σp,i(ξ

2v2i ) = σp,i(λ
2vimi).

Since the multiplicative order of σp,i(λ) is divisible by 2v2
i , this implies that

2v2
im ≡ 2vimi (mod 2v2

i ).

But this contradicts the fact that vi - mi, completing the proof of Claim 4.11. 6

We can now complete the proof of the theorem. For each i ∈ {±1}, we have defined a homo-
morphism ϕi : Γ → Gi, using Equation (4.2) if yi /∈ Qω and Equation (4.3) if yi ∈ Qω. Now,
define

ϕ = ϕ−1 × ϕ+1 : Γ −→ G = G−1 ×G+1.

We need to show that ϕ(K) is disjoint from every conjugate of ϕ(gH).
Consider an arbitrary element ghm1 h

n
2 ∈ gH, and suppose for a contradiction that ϕ(ghm1 h

n
2 ) is

conjugate to ϕ(`) for some ` ∈ K. Since ` is parabolic, we know tr(`) ∈ {±2}. Recalling the general
form for ghm1 h

n
2 in Equation (4.1), define a number ε = ε(`,m, n) ∈ {±1} so that

tr(ghm1 h
n
2 ) = ε · tr(`)

2 · (a+ d+ c(m+ nω)).

In other words, ε = 1 when tr(hm1 h
n
2 ) = tr(`), and ε = −1 otherwise. We use the coordinate ϕε of ϕ

to obtain a contradiction.
If yε /∈ Qω, then ϕε(`) ∈ SL(2, Sε). Since ϕε(gh

m
1 h

n
2 ) is conjugate to ϕε(`), we have

tr ◦ϕε(ghm1 hn2 ) = ρε ◦ tr(ghm1 h
n
2 ) = ρε

(
ε tr(`)

2 (a+ d+ c(m+ nω))
)

= ρε
(

tr(`)
)

= tr ◦ϕε(`).

Since ρε is a ring homomorphism and ε tr(`)
2 ∈ {±1} is a unit, we may rearrange terms to obtain

ρε(a+ d+ c(m+ nω)) = ρε
(

2
ε

)
⇒ ρε(c(m+ nω)) = ρε

(
2
ε − a− d

)
.

But then ρε(m+ nω) = ρε(yε), contradicting Claim 4.10.
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If yε ∈ Qω, then ϕε(`) = (ν0(`), νε(`)) ∈ SL(2, Fp) × SL(2, Eε), a product of two matrices. Since
ν0(ghm1 h

n
2 ) is conjugate to ν0(`), we obtain

tr ◦ ν0(ghm1 h
n
2 ) = ηp ◦ tr(ghm1 h

n
2 ) = ηp

(
ε tr(`)

2 (a+ d+ c(m+ nω))
)

= ηp
(

tr(`)
)

= tr ◦ ν0(`).

Then the same rearrangement of terms as before gives ηp(m + nω) = ηp(yε). Meanwhile, since
νε(gh

m
1 h

n
2 ) is conjugate to νε(`), we obtain

σp,ε ◦ tr ◦ψj(ghm1 hn2 ) = tr ◦ νε(ghm1 hn2 ) = tr ◦ νε(`) = ±2,

contradicting Claim 4.11. In either case, the proof is complete. �

5. Manifolds with non-rectangular cusps

In this section, we prove Theorem 1.3. We begin with a cusped, hyperbolic 3–manifold M

containing a horocusp A. We will construct a sequence of finite covers M̂ → M̊ → M , with an

increasingly strong sequence of properties. The final cover M̂ will have infinitely many geometric
ideal triangulations, implying Theorem 1.3. The construction proceeds in four steps.

Step 1. Construct a cover M̊ → M where A lifts to a horocusp Å that has a unique shortest path
to the other cusps. This is accomplished in Lemma 5.2.

Step 2. Shrink Å ⊂ M̊ to a small sub-horocusp Åt. By Proposition 3.1 and Corollary 3.4, the

canonical cell decomposition P̊ determined by Åt and the other cusps contains an embedded
drilled ananas N̊ consisting of one or two cells of P̊.

Step 3. Construct a cover M̂ → M̊ where every polyhedron in the lifted polyhedral decomposition

P̂ has vertices at distinct cusps. This is accomplished in Lemma 5.4.

Step 4. Now, P̂ can be subdivided into geometric ideal tetrahedra by Lemma 2.9, and furthermore

P̂ contains a cover N̂ of the original ananas N̊ . If the cusp A was non-rectangular, the

induced triangulation of N̂ is equivariant with respect to the cover of N̊ . To conclude the

proof, we use Lemma 3.6 to find infinitely many ideal triangulations of N̂ , hence of M̂ .

Step 1 builds covers using Theorem 4.4, whereas Step 3 uses Proposition 4.3. Steps 2 and 4
construct and subdivide polyhedral decompositions, but do not build any covers. The hypothesis
that A is a non-rectangular cusp is used only in Step 4. See Remark 5.5 for a detailed description
of how this hypothesis is used.

The following basic lemma will be used to apply the results of Section 4.

Lemma 5.1. Let M = H3/Γ be a cusped hyperbolic manifold. Let B̃, B̃′ ⊂ H3 be horoballs that

cover the same cusp in M , and let g ∈ Γ be an isometry such that g(B̃) = B̃′. Then the set of all

elements of Γ taking B̃ to B̃′ is of the form

S = StabΓ(B̃′)g StabΓ(B̃) = g StabΓ(B̃) = StabΓ(B̃′) g,

both a left coset and a right coset of peripheral subgroups.

Proof. Let h ∈ S. Then h differs from g by pre-composition with some element s ∈ StabΓ(B̃) and

post-composition with some element s′ ∈ StabΓ(B̃′). In other words,

S = StabΓ(B̃′)g StabΓ(B̃) =
{
s′ · g · s | s′ ∈ StabΓ(B̃′), s ∈ StabΓ(B̃)

}
,

proving the first equality of the lemma. Now, observe that StabΓ(B̃′) = g StabΓ(B̃)g−1. Thus

S = g StabΓ(B̃)g−1 · g StabΓ(B̃) = g StabΓ(B̃),

proving the second equality of the lemma. The final equality is proved similarly. �
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Now, let M be a cusped hyperbolic manifold containing a collection of disjoint, closed horocusps.
Let A be one of the horocusps. Let γ1, . . . , γn be the set of all orthogeodesics below a certain length
L that connect A to the union of the other cusps. This set is finite for any L, and non-empty when
L is sufficiently large.

Step 1 of the proof is accomplished by the following lemma.

Lemma 5.2. Let M = H3/Γ be a cusped hyperbolic manifold and A ⊂ M a horocusp. For i =
1, . . . , n, let γi be an orthogeodesic from ∂A to some horocusp of M . Assume that γi 6= γj for i 6= j.

Then there is a finite cover f̊ : M̊ →M , where A lifts to a horocusp Å ⊂ M̊ and where the path-lifts
γ̊1, . . . , γ̊n that start at Å lead to horocusps of M̊ that are distinct from one another and from Å.

Recall from Definition 2.1 that a lift Å must cover A with degree one. Thus, for each i, the path
γi has exactly one path-lift γ̊i starting at Å.

Proof. Conjugate Γ in Isom(H3) so that one preimage of A is a horoball Ã about ∞. The subgroup

K = StabΓ(Ã) ∼= Z2 can be identified with π1(A). Choose a fundamental domain D ⊂ ∂Ã for the

action of K. For each i, let γ̃i be a path-lift of γi to H3, whose initial point lies in D. Let B̃i be the
horoball at the forward endpoint of γ̃i. By construction, the orthogeodesics γ̃1, . . . , γ̃n lie in distinct

K–orbits, hence the horoballs B̃1, . . . , B̃n do also. In addition, each B̃i is disjoint from Ã.
For every pair (i, j) with 1 ≤ i < j ≤ n, let Sij ⊂ Γ be the set of all deck transformations that

map B̃j to B̃i. This set may be empty (this will be the case if B̃i and B̃j cover distinct cusps of M).

Otherwise, let gij ∈ Sij be an arbitrary element and observe that by Lemma 5.1, Sij = gij StabΓ(B̃j).

Let Tij be the set of all deck transformations that map B̃j to any horoball in the K–orbit of B̃i. If

Sij 6= ∅, we have Tij = KSij = Kgij StabΓ(B̃j), a double coset of peripheral subgroups of Γ.

In a similar fashion, let S0j ⊂ Γ be the set of all deck transformations that map B̃j to Ã.

If S0j 6= ∅, Lemma 5.1 says that S0j = g0j StabΓ(B̃j) for an arbitrary element g0j ∈ S0j . Let
T0j = KS0j . Finally, define

T =
⋃

0≤i<j≤n

Tij =
⋃

0≤i<j≤n

KSij =
⋃

i<j, Sij 6=∅

Kgij StabΓ(B̃j).

Theorem 4.4 says that for every non-empty Sij , the double coset Tij = Kgij StabΓ(B̃) is separable
in Γ. Thus each such double coset is a closed subset of Γ. Since T is a finite union of these closed
sets, it follows that T itself is closed, hence separable. Observe that 1 /∈ T , because any element

g ∈ Tij moves horoball B̃j to a distinct location. (This uses the above observation that the horoballs

B̃i and B̃j lie in distinct K–orbits.)
By Lemma 4.2, there is a homomorphism ϕ : Γ → F , where F is a finite group, such that

1 = ϕ(1) /∈ ϕ(T ). Since ϕ(K) = ϕ(K)−1 is a group, we have

{1} ∩ ϕ (K) · ϕ
(⋃

Sij

)
= ∅ ⇒ ϕ (K) ∩ ϕ

(⋃
Sij

)
= ∅.

Now, let Γ̊ = ϕ−1 ◦ ϕ
(
K
)
. This is a finite-index subgroup of Γ. Let M̊ = H3/Γ̊. Since StabΓ(Ã) =

K = StabΓ̊(Ã), the horocusp Å = Ã/K ⊂ M̊ is a lift of A ⊂M .

By the above displayed equation, ϕ(̊Γ) = ϕ(K) is disjoint from ϕ(Sij), hence Γ̊ is disjoint from

Sij for every 0 ≤ i < j ≤ n. Thus B̃i and B̃j belong to different Γ̊–orbits and project to distinct

cusps in M̊ . Similarly, Ã and B̃j belong to different Γ̊–orbits and project to distinct cusps in M̊ .

Thus the geodesic arcs γ̊1, . . . , γ̊n, namely the quotients of γ̃1, . . . , γ̃n in M̊ , lead to cusps of M̊ that
are distinct from one another and from Å. �

Returning to our plan for proving Theorem 1.3, suppose that A ⊂ M is a horocusp and that
{γ1, . . . , γn} is the set of all orthogeodesics of minimal length from A to the other cusps (including

itself). Following Lemma 5.2, we find a cover M̊ where A lifts to Å and where the path-lifts γ̊1, . . . , γ̊n
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lead to cusps B̊1, . . . , B̊n that are distinct from one another and from Å. Since the B̊i are distinct,
we may adjust their sizes independently. We keep B̊ = B̊1 and shrink B̊2, . . . , B̊n slightly. Now, γ̊1

is the unique shortest path in M̊ from Å to the other horocusps.
In Step 2, we apply Proposition 3.1 to shrink Å by a sufficiently large distance (keeping the name

Å) so that the canonical polyhedral decomposition P̊ determined by Å, B̊, and the remaining cusps

meets Å in one or two 3–cells, each with one ideal vertex at Å. By Corollary 3.4, these cells glue
together to form an embedded drilled ananas N̊ ⊂ M̊ .

If A is a non-rectangular cusp, then its lift Å is also non-rectangular. Thus, by Proposition 3.1,
the drilled ananas N̊ consists of two isometric acute-angled tetrahedra.

Definition 5.3. Let P be an ideal polyhedral decomposition of a cusped hyperbolic 3–manifold M .
A diagonal of P is a bi-infinite geodesic β that is contained in some cell of P. A diagonal β is called
returning if its endpoints are in the same horocusp of M .

Step 3 of the proof is to apply the following result due to Luo, Schleimer, and Tillmann [22,
Lemmas 8 and 9].

Lemma 5.4. Let M̊ be a cusped hyperbolic 3–manifold with a polyhedral decomposition P̊. Then

there is a finite regular cover f̂ : M̂ → M̊ , such that the lifted polyhedral decomposition P̂ has no
returning diagonals.

Proof. This is proved in [22, Lemmas 8 and 9], using a fairly straightforward application of Propo-
sition 4.3. �

We can now prove Theorem 1.3: a cusped hyperbolic 3–manifold M containing a non-rectangular

cusp A has a cover M̂ with infinitely many geometric ideal triangulations, organized in a trivalent
tree. We stress that each edge of this tree represents a sequence of n geometric Pachner moves as

described by Corollary 3.8, where n is the degree of the local cover N̂ → N̊ of the ananas N̊ ⊂ M̊ .

Proof of Theorem 1.3. Let M be a cusped hyperbolic 3–manifold, and let A ⊂ M be a non-
rectangular cusp. Consider the sequence of finite covers

M̂
f̂−→ M̊

f̊−→M

constructed in Lemma 5.2 and Lemma 5.4. In particular, M̊ has a polyhedral decomposition P̊ such
that two acute-angled ideal tetrahedra of P̊ fit together to form a drilled ananas N̊ . Consequently,
∂N̊ consists of two triangular faces of P̊.

Let P̂ be the polyhedral decomposition of M̂ obtained by pulling back P̊. Then P̂ contains a

submanifold N̂ that covers N̊ . By Lemma 5.4, P̂ has no returning diagonals, hence the vertices of

every polyhedron P ⊂ P̂ are mapped to distinct cusps of M̂ .

Choose an ordering ≺ on the cusps of M̂ . Then, for every polyhedron P ⊂ P̂, we get a total

ordering of the vertices of P . Thus, by Lemma 2.9, the iterated coning induced by ≺ subdivides P̂
into geometric ideal tetrahedra. By construction, N̂ already consists of tetrahedra, so does not need

to be subdivided. Now, by Corollary 3.8, the initial geometric triangulation of N̂ (which comes from

lifting the two-tetrahedron triangulation of N̊) is the start of an infinite sequence of geometric ideal
triangulations.

Since A is non-rectangular, the triangulation of the drilled ananas N̊ consists of two acute-angled
tetrahedra. Thus every path in the trivalent tree of geometric triangulations of N̊ that was described

in Proposition 3.10 lifts to a path of geometric triangulations of N̂ , hence to a path of geometric

triangulations of M̂ . �

Remark 5.5. If A is a rectangular cusp of M , the above proof of Theorem 1.3 still constructs covers

M̂ → M̊ →M , where M̂ contains a submanifold N̂ that covers the drilled ananas N̊ . However, this

time N̂ consists of rectangular pyramids that need to be subdivided into tetrahedra. The subdivision
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imposed by ordering the cusps of M̂ may impose different choices of diagonals on the rectangles of

∂N̂ , which would obstruct the triangulation of N̂ from being equivariant with respect to the cover

N̂ → N̊ . This means we cannot apply Corollary 3.8 to obtain an infinite sequence of triangulations.

The issue of equivariance does not arise if N̂ is a lift of N̊ .

In the next section, we will deploy Theorem 1.4 to construct a cover M̂ where N̂ is indeed a lift,
enabling us to handle rectangular cusps. This will have the additional benefit that each edge of the
trivalent tree will represent a single geometric 2–3 move, as in Proposition 3.10.

6. Rectangular cusps and Dehn fillings

In this section, we prove Theorem 1.2, which extends Theorem 1.3 to manifolds with rectangular

cusps, and also provides infinitely many geometric triangulations of long Dehn fillings of M̂ . The
proof begins in the same way as Steps 1 and 2 of the four-step outline described at the start of
Section 5. In particular, we will find a cover M̊ → M that contains a drilled ananas N̊ . The main
challenge, as mentioned in Remark 5.5, is to build further covers where N̊ continues to lift but
(most) returning diagonals stop being returning. Before outlining how to do this, we introduce a
definition and a motivating example.

Definition 6.1. Let M = H3/Γ be a cusped hyperbolic 3–manifold with a distinguished horocusp

A and a polyhedral decomposition P. Let Ã ⊂ H3 be a horoball covering A, and let P̃ be the lifted

polyhedral decomposition. An Ã–parabolic diagonal of P̃ is a bi-infinite geodesic β̃ contained in a

cell of P̃, whose ends are in horoballs C̃ and C̃ ′ such that there is a parabolic isometry g ∈ StabΓ(Ã)

with g(C̃) = C̃ ′.

An A–parabolic diagonal of P is the projection β ⊂ M of an Ã–parabolic diagonal of P̃, for

some horoball Ã covering A. We remark that the choice of Ã is immaterial: for any other horoball

Ã′ covering A, there will be some Ã′–parabolic lift of β. On the other hand, the choice of P can
affect the collection of A–parabolic diagonals, because it affects the set of bi-infinite geodesics that
are diagonals of P in the first place. We also remark that an A–parabolic diagonal is necessarily
returning, according to Definition 5.3.

A horocusp C ⊂M is called A–problematic (relative to P) if there is an A–parabolic diagonal β
of P whose endpoints lie in C.

Example 6.2. Suppose, as in the conclusion of Corollary 3.4, that M = H3/Γ contains a drilled
ananas N that is obtained by gluing one or two cells of P. Let A ⊂ M be a horocusp containing
the cusp of N , and let B ⊂ M be a horocusp containing the thorn of N . Now, consider a geodesic
β ⊂ ∂N that lies in a 2–cell of ∂N . We claim that β must be an A–parabolic diagonal of P. Indeed,
both endpoints of β are in the single thorn of N , hence every lift of β to H3 must have its endpoints

in horoballs that are permuted by StabΓ(Ã) for an appropriate horoball Ã covering A. Thus, by
Definition 6.1, B is an A–problematic cusp relative to P.

Now, suppose that M = H3/Γ is some finite cover of M where A lifts to A. Since A lifts,

or equivalently StabΓ(Ã) = StabΓ(Ã), every A–parabolic diagonal β of P lifts to an A–parabolic

diagonal β of the lifted polyhedral decomposition P. In particular, some preimage of β continues to
be a returning diagonal in M .

The gist of the following outline is that Example 6.2 is a worst-case scenario that can be isolated
and handled. With Theorem 1.4 and with enough care, all diagonals that are not in the boundary
of a drilled ananas eventually lift to be non-returning, while the ananas continues to lift.

Now, let M be a cusped hyperbolic 3–manifold containing a horocusp A. We will take the
following sequence of steps:

Step 1. Describe a criterion on the distance from A that any A–problematic cusp must satisfy. This
is accomplished in Lemma 6.3.
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Step 2. Using the criterion of Lemma 6.3, find a finite cover M̊ →M , where A lifts to Å. This cover
M̊ contains a polyhedral decomposition P̊ and a drilled ananas N̊ with its cusp in Å and
its thorn in B̊, such that B̊ is the only Å–problematic cusp of M̊ . In fact, all Å–parabolic
diagonals of P̊ lie in ∂N̊ . See Lemma 6.4 for details.

Step 3. Using Theorem 1.4, find a finite cover M → M̊ , where all of the above features hold (in

particular, N̊ lifts to N), and in addition every polyhedron of P has some vertex in a
horocusp other than B, the thorn of N . See Lemma 6.5 for details.

Step 4. Using Theorem 1.4 again, find a finite cover

(

M → M , where all of the above features hold

(in particular, N lifts to

(

N), and in addition all returning diagonals have their endpoints in
cusps that cover B. This means there are very few returning diagonals, and the partial order

argument of Corollary 2.10 suffices to find a geometric triangulation

(

T that is compatible

with infinitely many geometric triangulations of

(

M . See Lemma 6.6 for details.

Step 5. Using H1(

(

M), find a double cover M̂ →

(

M where

(

N has two distinct lifts, called N̂ and

N̂ ′. See Lemma 6.7 for details. We will replace one lift N̂ with a triangulated solid torus

to perform a long Dehn filling M̂(s), while using the other lift N̂ ′ to obtain infinitely many

geometric triangulations of M̂(s).

We now proceed to carry out these steps in detail. In the following lemma, M(T 2) is the moduli
space of unit-area flat tori, and R+M(T 2) is the moduli space of flat tori of any area.

Lemma 6.3. There is a function L : R+ ×R+M(T 2)→ R+ such that the following holds for every
multi-cusped hyperbolic 3–manifold M .

Suppose that M contains a horocusp collection A,B1, . . . , Bk and that α is an orthogeodesic from
A to B1. Then, in the canonical polyhedral decomposition P determined by A,B1, . . . , Bk, any
A–problematic horocusp Bj must satisfy d(A,Bj) < L = L(len(α), ∂A).

Furthermore, if A is replaced by a sub-horocusp At for some t > 0, then the distance bound L is
replaced by L+ t. In symbols,

L(len(α)+t, ∂At) = L(len(α), ∂A) + t.

One particular consequence of Lemma 6.3 is that the length bound L only depends on the horo-
cusps A and B1. Although varying the sizes of B2, . . . , Bk may have the effect of changing the
polyhedral decomposition P, thereby changing the collection of A–parabolic diagonals of P, the
conclusion of the lemma still holds for the same L.

Proof. Write M = H3/Γ, and conjugate Γ so that A is covered by a horoball Ã about ∞. Then α

has a lift α̃ that leads from Ã to a horoball B̃1 covering B1. A further conjugation, preserving the

point ∞, ensures that B̃1 has Euclidean diameter exactly 1. Then, setting ` = len(α) = len(α̃), it

follows that ∂Ã lies at Euclidean height e`. Let K = StabΓ(Ã). Note that the length ` ∈ R+ and the

Euclidean metric ∂A ∈ R+M(T 2) determine the orbit of horoballs KB̃1 up to Euclidean isometry

(equivalently, up to a hyperbolic isometry stabilizing ∂Ã).

Suppose that β̃ ⊂ H3 is an Ã–parabolic diagonal of P̃. Let C̃, C̃ ′ be the horoballs at the endpoints

of β̃, and let P̃ be a polyhedron containing β̃. Then, as in Definition 2.6, P̃ contains the center of a

metric ball D that is tangent to the horoballs about its vertices, including C̃ and C̃ ′, and is disjoint
from all other horoballs in the packing.

Let h denote the Euclidean diameter of C̃, which is equal to the Euclidean diameter of C̃ ′ because

C̃ ′ ∈ KC̃. Then d(Ã, C̃) = ` − log h. We will see that when h � 1, or equivalently d(Ã, C̃) � 0,
competing pressures on the diameter of D lead to a contradiction.

Let w be the shortest Euclidean translation length (along C = ∂H3 r {∞}) of any element of

K. Thus the Euclidean distance between the centers of C̃ and C̃ ′ is at least w. Since D must be
tangent to C̃ and C̃ ′ but disjoint from C, its Euclidean diameter is bounded below by a function of
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w and h that grows without bound as h→ 0. On the other hand, a ball of large Euclidean diameter
whose lowest point is below Euclidean height h must intersect one of the diameter 1 horoballs in

the K–orbit of B̃1. Compare to Figure 2. Thus every sufficiently small value h � 1 leads to a

contradiction, and there is an upper bound L on d(Ã, C̃) = `− log h. Observe that L depends only

on the lattice of horoballs KB̃1, hence on ` = len(α) and the Euclidean metric on ∂A. Thus we may
write L = L(len(α), ∂A).

To prove the “furthermore,” suppose that we replace A by a sub-horocusp At. This has the effect

of replacing ` by `+t and replacing Ã by a horoball Ãt at Euclidean height e`+t. Then the Euclidean

length w and the lattice of horoballs KB̃1 both remain the same, hence the same value of h � 1

leads to a contradiction. However, the distance d(Ã, C̃) has just increased by t. Thus replacing A
by At has the effect of replacing L by L+ t. �

We can now begin constructing covers of a cusped hyperbolic 3–manifold M containing a horocusp
A. In the following lemma, corresponding to Step 2, we build a cover M̊ → M that supports
a polyhedral decomposition P̊ that contains a drilled ananas N̊ with its cusp in Å, such that all
Å–parabolic diagonals of P̊ lie in ∂N̊ .

Lemma 6.4. Let M be a cusped hyperbolic 3–manifold and A ⊂ M a horocusp. Then there is a

finite cover f̊ : M̊ →M such that the following hold:

• M̊ contains a horocusp collection Å, B̊ = B̊1, . . . , B̊k, where k ≥ 2 and Å ⊂ M̊ is a lift of A.
• There is an orthogeodesic α̊ from Å to B̊ that is the unique shortest path from Å to ∪B̊j.
• For large t > 0, the polyhedral decomposition P̊ = P̊t determined by Åt, B̊1, . . . , B̊k contains

a drilled ananas N̊ , built out of one or two pyramids whose lateral edges are identified to α̊,
with its cusp in Å and its thorn in B̊.

• For every horoball Ã covering Å, there is a corresponding preimage Ñ of N̊ , such that all

Ã–parabolic diagonals of P̃ lie in ∂Ñ .

The main point in Lemma 6.4 is the last bullet, as it provides a partial converse to Example 6.2.

Proof. Choose a collection of disjoint horocusps, containing A. Relative to this collection of horo-
cusps, let α be a shortest orthogeodesic in M that starts at A. Let L = L(len(α), ∂A) be the bound
produced by Lemma 6.3. Let S = {γ1, . . . , γn} be a set of n ≥ 2 orthogeodesics starting at ∂A,
containing all the orthogeodesics that have length at most L. We set γ1 = α. By Lemma 5.2, there
is a finite cover M̊ →M , where A lifts to a cusp Å, and where the γi ∈ S have path-lifts γ̊1, . . . , γ̊n
that start on ∂Å and lead to cusps that are distinct from one another and from Å. Let B̊i be the
horocusp at the endpoint of γ̊i.

Let B̊ = B̊1 be the horocusp at the end of α̊ = γ̊1. We keep B̊ fixed, but shrink each of B̊2, . . . B̊n
to ensure that d(Å, B̊i) ≥ L for i ≥ 2, . . . n. Any other horocusp of M̊ , labeled Bi for i = n+1, . . . , k,

must already satisfy d(Å, B̊i) ≥ L. In particular, α̊ is the unique shortest path from Å to any cusp

of M̊ .
Now, M̊ and its collection of horocusps satisfies the hypotheses of Proposition 3.1. Thus, for

sufficiently large t, we may replace Å with Åt and build a canonical polyhedral decomposition
P̊ = P̊t that contains one or two ideal pyramids with a vertex in Å and with their lateral edges
glued to α̊. By Corollary 3.4, these cells glue up to form an embedded, convex drilled ananas N̊ ⊂ M̊ .
By construction, N̊ has its cusp in Å and its thorn in B̊.

By Lemma 6.3, any Å–problematic cusp B̊i in the polyhedral decomposition P̊ must satisfy
d(Å, B̊i) < L or equivalently d(Åt, B̊i) < L + t. The only horocusp satisfying these hypotheses is

B̊ = B̊1. Thus any Å–parabolic diagonal must have its endpoints in B̊.

Let β̊ be an Å–parabolic diagonal of P̊ = P̊t. In the universal cover H3, let Ã be a horoball

covering Å, and let Ñ be the preimage of N̊ containing Ãt. The Å–parabolic diagonal β̊ lifts to an

Ã–parabolic diagonal β̃, whose endpoints must be in horoballs B̃, B̃′ such that d(Ã, B̃) < L. By
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construction, α̊ is the only orthogeodesic from Å to B̊ with length less than L. Therefore, B̃ and

B̃′ must be full-sized horoballs connected to Ã by lifts of α̊. Since the endpoints of β̃ are in the

ideal vertices of Ñ , and Ñ is convex, it follows that β̃ ⊂ Ñ . In particular, β̊ must lie in one of the
polyhedra comprising N̊ .

To complete the proof, recall that N̊ consists of either two ideal tetrahedra or one rectangular-
based ideal pyramid. In either case, we think of the constituent cells as pyramids with bases along
∂N̊ and lateral edges glued to α̊. Any diagonal in an ideal pyramid is either a lateral edge or

contained in the base. Since the Å–parabolic diagonal β̊ has both of its endpoints in B̊, it cannot

be a lateral edge, and must be contained in the base of the ambient pyramid. Thus β̊ ⊂ ∂N̊ and

β̃ ⊂ ∂Ñ , as claimed. �

The next lemma, corresponding to Step 3 of the outline, is our first use of Theorem 1.4. Roughly
speaking, the lemma says that there is a cover M → M̊ where the drilled ananas N̊ lifts, and where
returning diagonals are controlled to a significant degree.

Lemma 6.5. Let M̊ = H3/Γ̊ be a cusped hyperbolic 3–manifold containing a distinguished horocusp

Å and a drilled ananas N̊ whose cusp is at Å and whose thorn is in horocusp B̊. Suppose that P̊ is

a polyhedral decomposition of M̊ , with the following property: for every horoball Ã covering Å, there

is a corresponding preimage Ñ of N̊ , such that all Ã–parabolic diagonals of P̃ lie in ∂Ñ . Then there
is a finite cover f : M → M̊ such that the following hold:

• Å lifts to a distinguished cusp A.
• N̊ lifts to a drilled ananas N whose cusp is at A and whose thorn is in horocusp B.
• Every A–parabolic diagonal of P has its endpoints in B.
• Every polyhedron P ⊂ P has a vertex in some horocusp other than B.

Proof. Let Ã be a horoball covering Å, and let K = StabΓ̊(Ã). Let Ñ ⊂ H3 be the preimage of N̊

containing Ã. Then there is a horoball B̃ covering B̊, such that all ideal vertices of Ñ lie in Ã∪KB̃.

By hypothesis, all Ã–parabolic diagonals of P̃ lie in ∂Ñ and have their endpoints in horoballs of

KB̃. Let P̊1, . . . , P̊n be the polyhedra of P̊ that have all of their vertices in B̊. (If no such polyhedra

exist, we may simply set M = M̊ and let f be the identity map.) For each P̊i, let β̊i be an edge

that is not Å–parabolic. Such an edge must exist, because all Å–parabolic edges belong to ∂N̊ .

For each β̊i, choose a preimage β̃i ⊂ H3. The ends of β̃i lie in horoballs B̃i, B̃
′
i, which must

cover B̊ because both endpoints of β̊i are in B̊. Thus there is an isometry gi ∈ Γ̊ = π1(M̊) such

that gi(B̃i) = B̃′i. By Lemma 5.1, the set of all isometries in Γ̊ taking B̃i to B̃′i is a left coset

gi StabΓ̊(B̃i). Since β̊i is not Å–parabolic, the coset gi StabΓ̊(B̃i) is disjoint from all Γ̊–conjugates of

K = StabΓ̊(Ã). Equivalently, K is disjoint from all Γ̊–conjugates of gi StabΓ̊(B̃i).

By Theorem 1.4, there is a homomorphism ϕi : Γ̊ → Gi, where Gi is a finite group, such that

ϕi(K) is disjoint from all Gi–conjugates of ϕi
(
gi StabΓ̊(B̃i)

)
. We can now consider the product

homomorphism
ϕ = (ϕ1, . . . , ϕn) : Γ̊ −→ G = G1 × · · · ×Gn.

Then, for each i, the image ϕ(K) is disjoint from all G–conjugates of ϕ
(
gi StabΓ̊(B̃i)

)
.

Now, let Γ = ϕ−1 ◦ ϕ(K), and let M = H3/Γ. We get a covering map f : M → M̊ . Then, by

construction, every Γ̊–conjugate of gi StabΓ̊(B̃i) is disjoint from Γ. Since K = StabΓ̊(Ã) = StabΓ(Ã),

the horocusp Å ⊂ M̊ lifts to a horocusp A = Ã/K ⊂ M . Similarly, N̊ lifts to a drilled ananas

N = Ñ/K ⊂ M . The thorn of N is in the horocusp B that is covered by B̃, hence B covers B̊.
This proves the first two bullets in the lemma.

For the next bullet, let γ be an A–parabolic diagonal in P. Since H3 →M is a regular cover, we

may choose a lift γ̃ that is an Ã–parabolic diagonal in P̃. Recall that all Ã–parabolic diagonals in

P̃ lie in ∂Ñ and have their endpoints in horoballs of KB̃. Since K ⊂ Γ, it follows that γ ⊂ ∂N has
its endpoints in B, as desired.
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To prove the remaining conclusion, let P be a polyhedron of P. If P has an ideal vertex in some

cusp that does not belong to f
−1

(B̊), then certainly P has a vertex that is not in B. Otherwise,

P = P i is a lift of some P̊i. Let βi ⊂ P i be a lift of β̊i ⊂ P̊i. We claim that the endpoints of βi are
in distinct cusps of M , and in particular one endpoint is not in B.

Let γ̃i ⊂ H3 be an arbitrary preimage of βi, and let C̃i, C̃
′
i be horoballs in the packing containing

the ends of γ̃i. Since γ̃i and β̃i both cover β̊i ⊂ M̊ , there is an isometry hi ∈ Γ̊ such that hi(γ̃i) = β̃i,

which implies hi(C̃i) = B̃i and hi(C̃
′
i) = B̃′i. Thus the set of all isometries in Γ̊ taking C̃i to C̃ ′i can

be written as h−1
i · gi StabΓ̊(B̃i) · hi. By construction, this conjugate of gi StabΓ̊(B̃i) is disjoint from

Γ. Thus C̃i and C̃ ′i lie in distinct Γ–orbits, which means that the endpoints of βi are in distinct
cusps. This proves the claim and the lemma. �

The next lemma, corresponding to Step 4 of the outline, builds a cover

(

M with even stronger

restrictions on the returning diagonals of the polyhedral decomposition

(

P.

Lemma 6.6. Let M = H3/Γ be a cusped hyperbolic 3–manifold containing a distinguished horocusp
A and a horocusp B. Suppose that P is a polyhedral decomposition of M , such that every A–parabolic

diagonal of P has its endpoints in B. Then there is a finite cover

(

f :

(

M → M where A lifts to a

distinguished cusp

(

A, such that every returning diagonal of

(

P has its endpoints in

(

f −1(B).

Proof. Let R = {β1, . . . , βn} be the set of returning diagonals of P whose endpoints are not in
B. This set is finite because P has finitely many polyhedra, and each polyhedron contains finitely
many diagonals. By hypothesis, every diagonal βi ∈ R is not A–parabolic. Assume that R 6= ∅, as

otherwise we may simply take

(

M = M .

Let Ã be a horoball covering A, and let K = StabΓ(Ã). For each βi, choose a preimage β̃i ⊂ H3.

The ends of β̃i lie in horoballs B̃i, B̃
′
i, which cover the same cusp of M because βi is a returning

diagonal. Thus there is an isometry gi ∈ Γ = π1(M) such that gi(B̃i) = B̃′i. By Lemma 5.1, the set

of all isometries in Γ taking B̃i to B̃′i is a left coset gi StabΓ(B̃i). Since βi is not A–parabolic, the

coset gi StabΓ(B̃i) is disjoint from all Γ–conjugates of K = StabΓ(Ã).

As in the proof of Lemma 6.5, we use Theorem 1.4 to find a finite-index subgroup

(

Γ ⊂ Γ that

contains K and is disjoint from every Γ–conjugate of gi StabΓ(B̃i). Let

(

M = H3/

(

Γ. Since K ⊂

(

Γ,

the horocusp A ⊂ M lifts to a horocusp

(

A ⊂

(

M . As in the proof of Lemma 6.5, the disjointness

of

(

Γ and all Γ–conjugates of gi StabΓ(B̃i) implies that every lift

(

βi of βi has endpoints in distinct

cusps, and is not a returning diagonal. Thus any returning diagonal in

(

M must be the preimage of

a returning diagonal in M whose endpoints are in B, hence it has endpoints in

(

f −1(B). �

Following Lemma 6.6, the manifold

(

M has so few returning diagonals that it is possible to impose

a partial order ≺ on the cusps of

(

M such that every polyhedron

(

P ⊂

(

P has a unique lowest vertex.

Using Corollary 2.10, we can refine

(

P to a geometric triangulation T , and apply Lemma 3.6 to build

infinitely many geometric triangulations of

(

M . See Claim 6.8 below for details.
To find geometric triangulations Dehn fillings, we need to take one more cover.

Lemma 6.7. Let

(

M = H3/

(

Γ be a cusped hyperbolic 3–manifold containing at least three cusps and

a distinguished horocusp

(

A. Then there is a double cover f̂ : M̂ →

(

M , where

(

A has two distinct lifts.

Proof. Since

(

M is the interior of a compact 3–manifold with at least three boundary tori, the “half

lives, half dies” lemma [19, Lemma 3.5] implies that H1(

(

M) has a Zn direct summand for n ≥ 3. Let

G be the subgroup of H1(

(

M) induced by the inclusion

(

A→

(

M . Since G has rank at most 2, there

must be a primitive, infinite-order homology class h ∈ H1(

(

M) such that 〈h〉 is a direct summand
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that is linearly independent from G. Thus we may define a projection πh : H1(

(

M)→ 〈h〉 such that
G ⊂ ker(πh).

Now, consider the sequence of surjective homomorphisms

(

Γ = π1(

(

M)
ab−−→ H1(

(

M)
πh−−→ 〈h〉 ∼= Z −→ Z/2Z,

where ab is abelianization. Let ϕ̂ :

(

Γ→ Z/2Z be the composition, and let Γ̂ = ker(ϕ̂). By construc-

tion, G ⊂ ker(πh), hence π1(

(

A) ⊂ ker(ϕ̂) = Γ̂. By the lifting criterion,

(

A lifts to M̂ = H3/Γ̂. Since

f̂ : M̂ →

(

M is a regular cover of degree 2, there must be two distinct lifts. �

We can now prove our main result, Theorem 1.2.

Proof of Theorem 1.2. Let M be a cusped hyperbolic 3–manifold containing a horocusp A. Consider
the sequence of finite covers

M̂
f̂−→

(
M

(

f−→M
f−→ M̊

f̊−→M

constructed in the preceding lemmas. The cusp A ⊂ M lifts along each covering map. Recall that

by Lemma 6.4, M̊ has at least three cusps, hence
(

M does also, and we may indeed apply Lemma 6.7

to construct f̂ .
By Lemma 6.4, M̊ has a polyhedral decomposition P̊ such that one or two ideal 3–cells of P̊ fit

together to form a drilled ananas N̊ that deformation retracts to Å. The 1–skeleton of P̊ decomposes

∂N̊ into two ideal triangles or one ideal rectangle. Furthermore, since Å lifts to A ⊂M and

(

A ⊂

(

M ,

the drilled ananas N̊ lifts to N ⊂M and

(

N ⊂

(

M .

Claim 6.8. The polyhedral decomposition

(

P of

(

M can be refined to a geometric ideal triangulation

(

T . If ∂

(

N is a single ideal rectangle, then we may choose either diagonal of this rectangle to be an

edge in

(

T . Finally,

(

T is the start of an infinite sequence of geometric triangulations of

(

M .

Recall, from Lemma 6.5, that the drilled ananas N ⊂M has its thorn in a horocusp B, such that
every polyhedron P ⊂ P has a vertex in some horocusp apart from B. Thus, in the lifted polyhedral

decomposition

(

P of

(

M , every polyhedron

(

P must have at least one vertex in a horocusp that is not

in

(

f −1(B). We call the cusps of

(

f −1(B) blue. By Lemma 6.6, all returning diagonals of
(

P have
their endpoints in blue cusps.

Let V be the set of cusps of

(

M . We impose a partial order ≺ on V as follows: the non-blue cusps

are totally ordered in some fashion; the blue cusps are pairwise incomparable; and

(

C ≺

(

B for every

blue cusp

(

B and non-blue cusp

(

C. Since every polyhedron P ⊂

(

P has at least one non-blue ideal
vertex, and the non-blue vertices of P are totally ordered below the blue ones, it follows that P has
a unique ≺–minimal vertex. Thus, by Lemma 2.9, the iterated coning of P induced by ≺ produces

(

P ′, a well-defined subdivision of

(

P into geometric ideal pyramids. By Corollary 2.10, any choice of

diagonals in the non-triangular faces of

(

P ′ produces a geometric ideal triangulation

(

T .

By construction, the thorn of

(

N is in a blue cusp of

(

f −1(B). Thus the partial order ≺ does not

impose any ordering on the ideal vertices of ∂

(

N . If this boundary is a single ideal rectangle, the
coning induced by ≺ in Lemma 2.9 does not subdivide it, and we may choose our preferred diagonal

to subdivide

(

N into two ideal tetrahedra. By Lemma 3.6,

(

N admits infinitely many geometric ideal

triangulations, hence

(

M does also. This proves the claim. 6

Next, we lift the triangulation

(

T of

(

M to a geometric triangulation T̂ of M̂ . Then the infinite

sequence of geometric triangulations of

(

M lifts to an infinite sequence of geometric triangulations of

M̂ , as claimed in the statement of the theorem.
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By Lemma 6.7, the horocusp

(

A ⊂

(

M has two distinct lifts to M̂ , which we call Â and Â′.

Consequently, the drilled ananas

(

N ⊃

(

A also has two distinct lifts to M̂ , namely N̂ ⊃ Â and

N̂ ′ ⊃ Â′. The two distinct lifts of

(

A and

(

N play distinct roles in the Dehn filling argument.

Claim 6.9. For all but finitely many choices of slope s on ∂Â, the following hold:

• The Dehn filled manifold M̂(s) has a hyperbolic structure where the core curve γ of the filled
solid torus is isotopic to a closed geodesic γs.

• The ideal tetrahedra of T̂ remain geometric in the hyperbolic metric on M̂(s). Each ideal

vertex of a tetrahedron of T̂ that used to enter cusp Â now spins about the geodesic γs.

• With an appropriate choice of diagonals in Claim 6.8, the union of the two tetrahedra in N̂

has convex boundary in M̂(s).

The first two bullets in the claim follow from Thurston’s hyperbolic Dehn surgery theorem [29,

Chapter 4]. For a sufficiently long slope s, the hyperbolic metric on M̂(s) is obtained via an

arbitrarily small deformation of the metric on M̂ . Thus, for every ideal tetrahedron T ⊂ T̂ , a
sufficiently small deformation of the metric will keep T geometric and positively oriented. As in [29,

Section 4.4], the two tips of ideal tetrahedra that enter Â will now spin about the core geodesic γs.
For the last bullet of the claim, suppose first that the cusp A ⊂ M is non-rectangular (hence,

so are its lifts). Then Corollary 3.4 implies that the original drilled ananas N̊ consists of acute

tetrahedra, and ∂N̊ is strictly convex at all three of its edges. The same properties are preserved in

the lift N̂ and are still preserved in N̂(s) after a sufficiently small deformation of the metric.
Next, suppose that A ⊂ M is rectangular. Then Corollary 3.4 implies that the original drilled

ananas N̊ has convex boundary, with interior angles strictly less than π at the two edges of ∂N̊ ∩ P̊,
and an angle of π along the (arbitrary) diagonal of the ideal rectangle. The same properties remain

true in the lift N̂ ⊂ M̂ . When we deform the metric on M̂ to obtain M̂(s), the interior angle of π

may become π + ε for small ε, violating convexity, but then the opposite choice of diagonal on ∂N̂

will have interior angle π− ε. Thus an appropriate choice of diagonal in Claim 6.8 keeps ∂N̂ convex

in M̂(s). 6

To construct geometric triangulations of M̂(s), we need to introduce the solid-torus analogue
of a drilled ananas. A filled ananas is a 3–manifold X homeomorphic to a solid torus with one
boundary point removed, and endowed with a complete hyperbolic metric with the following prop-
erties. The boundary ∂X is made up of two totally geodesic ideal triangles, with vertices at the
removed point. These two ideal triangles are glued by isometry along their edges to form a standard
two-triangle triangulation of a once-punctured torus, with shearing and bending allowed along the
edges. Furthermore, X is subdivided into geometric ideal tetrahedra.

Claim 6.10. For all but finitely many choices of slope s on ∂Â, the hyperbolic manifold M̂(s)

has a geometric triangulation T̂ (s) with the following properties. Finitely many tetrahedra of T̂ (s)

fit together to form a filled ananas X(s). Furthermore, the restriction of T̂ (s) to the complement

M̂(s) rX(s) is combinatorially isomorphic to the restriction of T̂ to the complement M̂ r N̂ .

This statement is due to Guéritaud and Schleimer, and closely resembles [15, Theorem 1]. As-

suming that T̂ is the canonical triangulation of M̂ with respect to some choice of horocusps, they
construct the triangulated filled ananas X(s) and endow it with a geometric structure isometric to

the completion of the two spun tetrahedra of N̂ mentioned in Claim 6.9. Then they replace N̂ with

X(s), and prove that the resulting triangulation T̂ (s) is the canonical triangulation of M̂(s). In
fact, the construction of X(s), which occurs in [15, Section 2] and is encapsulated in [15, Corollary

16], only uses the hypotheses that T̂ is geometric and that N̂ remains convex in M̂(s). See also [16,
Corollary 4.18]. The combinatorial structure of the triangulation of X(s) is closely guided by the
combinatorics of the Farey graph F and the continued fraction expansion of the filling slope s, while
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the hyperbolic metric on X(s) is constructed using Casson and Rivin’s work on angle structures and

volume optimization [27, 11]. In particular, the canonicity of T̂ is not needed in the proof that T̂ (s)

is geometric. 6

To complete the proof of the theorem, we have

Claim 6.11. For all but finitely many choices of slope s on ∂Â, the Dehn filled manifold M̂(s) has
an infinite sequence of geometric triangulations connected by geometric 2–3 moves.

Observe that by Claim 6.10, the geometric triangulation T̂ (s) agrees with T̂ on the drilled ananas

N̂ ′ ⊂ M̂(s). By Lemma 3.6, this two-tetrahedron geometric triangulation of N̂ ′ is the start of an

infinite sequence of geometric triangulations connected by geometric 2–3 moves. 6 �

The following remark states a version of Theorem 1.3 for manifolds with rectangular cusps. In
the statement, a 4–4 move is a local move on triangulations, which takes an octahedron that has
been decomposed into 4 tetrahedra along one of its three internal diagonals and replaces it with a
decomposition into 4 tetrahedra along a different internal diagonal. The move is called a geometric
4–4 move if both decompositions are into geometric ideal tetrahedra.

Remark 6.12. If A ⊂ M is a rectangular cusp, the cover

(

M contains an infinite trivalent tree of
geometric ideal triangulations, where one edge of the tree is a geometric 4–4 move and the remaining
edges are geometric 2–3 moves. This can be seen as follows. In Claim 6.8 of the above proof, the

drilled ananas

(

N consists of an ideal rectangular pyramid
(

P ⊂
(

P. After the pyramidal decomposition

induced by ≺, the 3–cell

(

P ′ glued to

(

P is also an ideal rectangular pyramid. The two choices of

diagonal for the shared face of

(

P ∩

(

P ′ lead to ideal triangulations that differ by a geometric 4–4
move. Each of these choices can serve in Lemma 3.6 as the starting configuration in an infinite
sequence of geometric ideal triangulations. In the proof of Proposition 3.10, the dual tree of the
Farey complex splits in half along the edge 0

1 −
1
0 : half of the tree is reachable by geometric 2–3

moves if we choose the diagonal 1
1 , and the other half is reachable if we choose the diagonal −1

1 . The
union of these halves is an infinite trivalent tree of geometric 2–3 moves, with one edge replaced by
a 4–4 move.

We close the paper by pointing out that the figure–8 knot complement M does not contain a
drilled ananas, because M has only one cusp. Nevertheless, by the work of Dadd and Duan [9], this
manifold has an infinite family of geometric triangulations. Thus the presence of a drilled ananas
is a sufficient but not necessary condition. We wonder what other features will also guarantee an
infinite sequence of geometric triangulations.
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[14] François Guéritaud. Deforming ideal solid tori. arXiv:0911.3067, 2009.
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