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ON MANIFOLDS WITH MULTIPLE LENS SPACE FILINGS

KENNETH L. BAKER, BRANDY GUNTEL DOLESHAL, AND NEIL HOFFMAN

Dedicated to the 70th birthday of Professor Fico González Acuña.

Abstract. An irreducible 3–manifold with torus boundary either is a Seifert fibered space or admits at
most three lens space fillings according to the Cyclic Surgery Theorem. We examine the sharpness of this
theorem by classifying the non-hyperbolic manifolds with more than one lens space filling, classifying the
hyperbolic manifolds obtained by filling of the Minimally Twisted 5 Chain complement that have three
lens space fillings, showing that the doubly primitive knots in S3 and S1 × S2 have no unexpected extra
lens space surgery, and showing that the Figure Eight Knot Sister Manifold is the only non-Seifert fibered
manifold with a properly embedded essential once-punctured torus and three lens space fillings.

1. Introduction

The Cyclic Surgery Theorem of Culler-Gordon-Luecke-Shalen [CGLS87] shows that an irreducible man-
ifold whose boundary is a torus is either Seifert fibered or admits at most three lens space fillings. In this
article we examine the sharpness of this theorem with

• Theorem 12 which determines the non-hyperbolic manifolds with at least two lens space fillings,
• Theorem 1 which classifies the hyperbolic manifolds that are the fillings of the exterior of the exterior
of the Minimally Twisted 5 Chain link that have three lens space fillings,

• Theorem 10 which shows that the doubly primitive knots in S3 and S1 × S2 have no unexpected
extra lens space surgery, and

• Corollary 39 which concludes that the Figure Eight Knot Sister manifold is the only non-Seifert
fibered manifold with a properly embedded once-punctured torus and three lens space fillings.

Based on these, Conjecture 2 proposes a classification of hyperbolic manifolds with three lens space surgeries.
Through these studies we have also observed a couple of behaviors that may be counter to one’s expectations.

• Corollary 7 shows that there are non-hyperbolic knots in lens spaces that have integral lens space
surgeries which do not arise from Berge’s doubly primitive construction.

• Corollary 37 shows that there are many (non-primitive) non-fibered hyperbolic knots in lens spaces
with non-trivial lens space surgeries.

Throughout we regard lens spaces as the closed, compact, connected, orientable 3–manifolds that have a
genus 1 Heegaard splitting. In particular, we include both S3 and S1 × S2 among the lens spaces.

1.1. Basics of Dehn filling and Dehn surgery. For more precise statements of our results, let us first
recall some terminology about Dehn fillings and Dehn surgery. A slope is an isotopy class of essential simple
closed curves in a torus, and the distance ∆(r1, r2) between two slopes r1 and r2 is the minimum geometric
intersection number among their representatives. For a (compact, connected, oriented) 3–manifold M with
torus boundary, Dehn filling M along a slope r in ∂M attaches a solid torus to ∂M so that r bounds a
meridional disk to produce both the manifold M(r) and the knot K ⊂ M(r) that is the core curve of the
attached solid torus. Given a knot K in a 3–manifold, removing a solid torus neighborhood N (K) of K and
then Dehn filling along the resulting torus boundary is known as Dehn surgery, and the core curve of the
attached solid torus is a knot called the surgery dual to K.

A slope in ∂N (K) of a knot K is a framing or a longitude if K is isotopic to that slope in the solid torus,
and a framed knot is the knot with a chosen framing. A framed knot then has a natural framed surgery
(Dehn surgery along the framing) and the surgery dual inherits a framing from the meridian of the original
framed knot.

1

http://arxiv.org/abs/1308.5002v1


Figure 1. The Whitehead Sister Link, the Berge Link, the Magic Link, and the Minimally
Twisted 5 Chain.

Figure 2. The Magic Manifold is the double branched cover of the tangle P3.

A framing of a knot together with a meridian give a parametrization of the slopes in ∂N (K) as follows.
Choose an orientation of K, let µ be the meridian of K oriented to link K positively, and let λ be the
framing oriented to be parallel to K. Then ([µ], [λ]) is a basis for H1(∂N (K);Z) so that every oriented slope
is represented by p[µ]+ q[λ] for some pair of coprime integers p, q, and the unoriented slope is identified with

p/q ∈ “Q = Q ∪ {1/0}. For a null homologous knot, the framing by the Seifert surface is often used for this
parametrization.

1.2. Triples of Lens Space Fillings and Notable Knots, Links, and Manifolds. Figure 1 shows four
links. From left to right these are the Whitehead Sister Link which is the (−2, 3, 8)–pretzel link and denoted
WSL, the Berge Link denoted BL, the Magic Link (which is the (2, 2, 2)–pretzel link), and the Minimally
Twisted 5 Chain which we abbreviate MT5C. The exteriors of these links are the Whitehead Sister Manifold
(m125 in the SnapPea Census [CDW12, CHW99]), the Berge Manifold (m202), and the Magic Manifold
(s776). Following [MPR], we also let M3 and M5 denote exteriors of the last two. (Note that in [MP06]
the mirror of M3 is used and denoted N .) For these links and their exteriors we use the parametrization of
their slopes with the standard Seifert surface framing of each individual component to describe their Dehn
surgeries and Dehn fillings.

Let WSLp/q and BLp/q denote the knot resulting from the Whitehead Sister Link or the Berge Link
respectively by p/q Dehn surgery on the unknotted component of those links. It so happens that the knots
WSL−1 and BL∞ are both the (−2, 3, 7)–pretzel knot (with exterior m016) which is famously known to have
two non-trivial lens space surgeries [FS80]. Indeed WSL+1 is also a hyperbolic knot in S3 with three lens
space surgeries as are the knots BL1/n for all integers n. As one may observe from Tables A.6 and A.7 of
[MP06], the knots WSLp and BLp/q are generically hyperbolic knots in lens spaces with two non-trivial lens
space surgeries. A more careful analysis of [MP06] however reveals that the family of hyperbolic manifolds
with three lens space fillings that come from the Whitehead Sister Manifold belong to a broader family.

Figure 2 shows a tangle P3 that is the quotient of M3 by a strong involution. Figures 3 and 4 show the

generic members of two families of tangles A′ = {A′
m,n|m,n ∈ Z} and B′ = {B′

p/q|p/q ∈ “Q} which are fillings

of the tangle P3. Each admits three rational tangle fillings that produce two-bridge links as demonstrated
in the last three columns of those figures. Let A and B be the respective families of manifolds obtained as
double branched covers of these tangles. In terms of the Magic Manifold, these are explicitly the families
of manifolds A = {Am,n = M3(3 − 1

m , 2 − 1
n )|m,n ∈ Z} with the three lens space fillings ∞, 1, 2 and

B = {Bp/q = M3(5/2, p/q)|p/q ∈ “Q} also with the three lens space fillings ∞, 1, 2. We note that the
2
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Figure 3. The tangle A′
m,n with its triple of two-bridge fillings.
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Figure 4. The tangle B′
p/q with its triple of two-bridge fillings.

exterior of the knot WSLp is homeomorphic to the manifold Ap+4,2 and the exterior of the knot BLr/s is
homeomorphic to the manifold B(4r+7s)/(r+2s).

Theorem 1. Let M be a 3–manifold obtained by filling four boundary components of M5. If M admits three
distinct lens space fillings, then either M is the exterior of a trivial knot in a lens space, M is the exterior
of a torus knot in a lens space, or M with its lens space fillings are homeomorphic to a member of family A
or B.

We are informed that Audoux-Lecuona-Matignon-Paoluzzi-Roukema have obtained similar results in the
case that one of the lens spaces is S3 [Rou13].

Proof. If M is non-hyperbolic, then it follows from Theorem 12 that M is the exterior of either a trivial
knot or a torus knot in a lens space. If M is hyperbolic then, using Martelli-Petronio-Roukema [MPR] as
a starting point, Theorem 18 shows that M must be homeomorphic to a filling of M3. Theorem 21 then
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uses the Martelli-Petroinio catalog of exceptional fillings of M3 [MP06] to show M with its lens space fillings
belongs to family A or B. �

Due to Theorems 1 and Theorem 10, the following conjecture seems reasonable.

Conjecture 2. Let M be a 3–manifold whose boundary is a torus. If M admits three lens space fillings
along distinct slopes, then either M is the exterior of a torus knot in a lens space or M belongs to family A
or B.

Here, a torus knot is any knot that embeds as an essential simple closed curve in a Heegaard torus of
a lens space. In a lens space, the trivial knot (i.e. the knot that bounds an embedded disk) is therefore
included among the torus knots even though its exterior is not Seifert fibered in general.

1.3. Doubly primitive knots and (1, 1)–knots. Following Berge [Ber], a knot K in a 3–manifold M is
doubly primitive if there is a genus 2 Heegaard surface Σ for M containing K such that to each side of Σ
there is a compressing disk whose boundary transversally intersects K once. We further say a framed knot
K is doubly primitive if there is such a Heegaard surface Σ containing K for which the induced surface slope
is the framing. Surgery on a doubly primitive framed knot along its doubly primitive framing produces a
lens space.

Given a knot K in a lens space L(p, q) with a genus 1 Heegaard splitting into two solid tori Vα and
Vβ , we say K has a (1, n)–presentation for a positive integer n if it may be expressed as the union of n
boundary-parallel arcs in each Vα and Vβ . We further say it is a (1, n)–knot, a genus one n–bridge knot, if
it does not have a (1, n− 1)–presentation; that is, the genus one bridge number of the knot is n. One may
care to regard torus knots as (1, 0)–knots, but it is convenient to include them among the (1, 1)–knots.

The next lemma is a direct consequence of the definition of doubly primitive, perhaps implicit in Berge’s
work [Ber]. Indeed the framed knot dual to any longitudinal surgery on a (1, 1)–knot is a doubly primitive
knot. See also the Appendix of Saito [Sai08].

Lemma 3. A framed knot is doubly primitive if and only if its framed surgery dual is a (1, 1)–knot. �

Since (1, 1)–knots and doubly primitive knots have tunnel number one (i.e. their exteriors may be obtained
by attaching a 2–handle to a genus 2 handlebody) they are strongly invertible. Recall that strongly invertible
knots may be viewed in the “tangle setting” as the lift of an embedded arc a in the double branched cover of
a link L ⊂ S3 where a ∩ L = ∂a. Indeed the exterior of the knot is the double branched cover of the tangle
(S3 −N (a), L −N (a)). Because we largely work in this tangle setting, we find convenient to translate the
notions of genus one 1–bridge and doubly primitive. This also makes Lemma 3 rather transparent.

Say an embedded arc a is on a link L if a ∩ L = ∂a. Then an arc a on L is doubly primitive if L may be
presented as a three-bridge link with bridge sphere S, a ⊂ S, and to each side of S there is a bridge disk for
L that intersects a in a single endpoint. An arc a on L is monotonic (or a (1, 1)–arc) if L may be presented
as a two-bridge link with bridge sphere S, |a ∩ S| = 1 and to each side of S there is a bridge disk for L that
contains a component of a−S. This property is sometimes more easily verified by showing there is a height
function h : S3 → [−∞,+∞] such that h|L has only two maxima and two minima and the extrema of h|a
occur at ∂a.

Theorem 4. The knots that are the cores of the lens space fillings of the manifolds in families A and B are
all (1, 1)–knots and all doubly primitive knots with two doubly primitive framings.

Proof. Figure 3 shows that for each m,n ∈ Z, the core arcs of the three two-bridge fillings of A′
m,n are each

monotonic. Similarly, Figure 4 shows that for each p/q ∈ “Q, the core arcs of the three two-bridge fillings of
B′

p/q are each monotonic. Hence the corresponding knots in the double branched covers are all (1, 1)–knots.

Since each of these (1, 1)–knots are dual to other (1, 1)–knots by distance 1 surgeries, Lemma 3 applies
to show that they are all doubly primitive as well with a doubly primitive framing for each of the other lens
space surgeries. �

For the knots of family B, we could have also appealed to Berge’s proof that up to homeomorphism the
exterior of the unknotted component of the Berge Link gives the unique hyperbolic knot in the solid torus
with two non-trivial surgeries producing the solid torus [Ber91]. Moreover, this knot is a (1, 1)–knot in the
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solid torus. The knots of family B may be obtained from the Berge Link by the various surgeries on the
unknotted component.

In fact Gabai showed that any knot in the solid torus with a non-trivial solid torus surgery is a (1, 1)–
knot, and either the surgery is longitudinal or the knot is a torus knot [Gab90]. Berge classified these knots
[Ber91]. Collectively these knots are the Berge-Gabai knots in a solid torus. Let us then say a knot in a lens
space is a Berge-Gabai knot if some Heegaard torus for the lens space bounds a solid torus that contains the
knot as a Berge-Gabai knot in a solid torus. See also [BBCW12].

Theorem 5. The Berge-Gabai knots in lens spaces are all doubly primitive knots. Every framed lens space
surgery on a Berge-Gabai knots is given by a doubly primitive framing.

Proof. Every Berge-Gabai knot has at least one framed lens space surgery for which its surgery dual is also
a Berge-Gabai knot. This is due to its origin as a Berge-Gabai knot in a solid torus. Since the Berge-Gabai
knots are all (1, 1)–knots, Lemma 3 implies that the Berge-Gabai knots are doubly primitive knots and this
particular lens space surgery is done along a doubly primitive framing. If a Berge-Gabai knot has another
integral lens space surgery then either it is the trivial knot, its exterior is Seifert fibered and hence it is a
torus knot, or it is hyperbolic by [CGLS87]. (A priori, this other surgery need not manifest from a solid
torus surgery on the corresponding Berge-Gabai knot in a solid torus.) In the first two cases, these knots
and their lens space surgery duals are all (1, 1)–knots and so the theorem follows from Lemma 3. For the
last case, we note that it follows from the work of [Bak08b] that the exteriors of the Berge-Gabai knots in
solid tori may be obtained by three fillings of M5. Hence the Berge-Gabai knot exteriors are fillings of M5.
Thus if a Berge-Gabai knot in a lens space is hyperbolic and has two integral lens surgeries then its exterior
must be homeomorphic to a member of family A or B by Theorem 1. Now apply Theorem 4. �

In light of Theorem 5, one may suspect that a knot in a lens space with an integral lens space surgery
must be a doubly primitive knot, but this is not so. (Cf. Problem 1.9 [BBCW12].)

Theorem 6. There are knots in lens spaces of arbitrarily large genus one bridge number that have integral
lens space surgeries.

Proof. Let U be an unknot in L(n, 1) with |n| ≥ 2 and let Tp,q be the (p, q)–torus knot in S3. The genus
1 bridge number of U is 0. The genus 0 bridge number of Tp,q is min{|p|, |q|} by Schubert [Sch54] (see also
[Sch07]). By Doll, the genus one bridge number of the knot K = U#Tp,q in L(n, 1) is therefore at least
0 + min{|p|, |q|} − 2. By Theorem 12 below, this knot has an integral lens space surgery. Clearly we may
choose the torus knot Tp,q so that the genus one bridge number of K is as large as we wish. �

Corollary 7. There are knots in lens spaces with integral lens space surgeries that are not doubly primitive.

Proof. The surgery duals to the knots of Theorem 6 have integral lens space surgeries but cannot be doubly
primitive due to Lemma 3. �

Remark 8. The knots of Corollary 7 are neither hyperbolic nor knots in S3. One may also obtain the
result of Theorem 6 for hyperbolic knots by using the work of [BGL13]. This applies to knots among certain
families of Berge knots in S3 and the famliy of cores of the 0–filling in M3(0, n, 4−n−1/m). Consequentially,
their surgery duals give examples of knots with integral lens space surgeries but without doubly primitive
presentations as in Corollary 7. We have been informed that Bowman-Johnson are also able to show this for
certain Berge knots in S3 by other means [Bow13, Joh09].

Nevertheless, all examples of knots in lens spaces with a non-trivial lens space surgery that we know are
either doubly primitive or (1, 1).

Conjecture 9. If knots K1 ⊂ L(p1, q1) and K2 ⊂ L(p2, q2) are longitudinal surgery duals, then up to
reindexing K2 is a (1, 1)–knot and p2 ≥ p1.

1.4. The doubly primitive knots in S3 and S1 × S2. The doubly primitive knots in S3 and in S1 × S2

are known. For S3, Greene [Gre13] showed Berge’s list [Ber] was complete. For S1 × S2, Cebanu [Ceb] has
confirmed the list of Baker-Buck-Lecuona [BBL] is complete. But note that these works do not explicitly
address when two doubly primitive knots with different doubly primitive framings are actually isotopic as
unframed knots. Moreover, it is conceivable that a doubly primitive knot in some manifold may have a lens
space surgery along an “alternative” framing that does not arise from a doubly primitive presentation.
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Theorem 10. Let K be a doubly primitive knot with framing of slope r in S3 or S1 × S2. If r ± 1 surgery
on K is a lens space, then K has a presentation as a doubly primitive knot with that framing. Furthermore:

If K is in S3, then up to homeomorphism K is WSL±1 or BL1/n for n ∈ Z.

If K is in S1 × S2, then up to homeomorphism K is WSL0 or BL0.

Proof. The works [Bak08b, Bak08a] show that the doubly primitive knots in S3 either (a) embed in the
fiber of a genus one fibered knot (a trefoil or the figure eight knot) where the fiber gives the knot a doubly
primitive framing or (b) admit a description as a filling of M5. The same holds for the doubly primitive knots
in S1 × S2: As described in [BBL], they either embed in the fiber of a genus one fibered knot in S1 × S2,
arise as a Berge-Gabai knot (and hence admit a description as a filling of M5), or are a “sporadic” knot. The
sporadic knots in S1 × S2 are a slight modification of the sporadic knots in S3, and it is readily apparent
that this modification corresponds to an adjustment of the description as a filling of M5 of the S3–sporadic
knots. Therefore, by Theorem 1, if a knot K in S3 or S1 × S2 with a doubly primitive framing of slope r
admits a surgery description on the MT5C as well as a lens space surgery along the slope r+1 or r− 1, then
K or its mirror belongs to family A or B.

Let K be a knot embedded in the fiber of a genus one fibered knot in either S3 or S1×S2. So now assume
the fiber frames K with slope r and that K admits another lens space surgery along the slope r+1 or r− 1.
If K ⊂ S3, then Theorem 24 shows that K or its mirror is the knot obtained by either +1 or −1 surgery on
the unknotted component of the Whitehead Sister Link. If K ⊂ S1 × S2 then Kadokami-Yamada show in
Theorem 1.4 [KY12] that K or its mirror is the knot obtained by 0–surgery on the unknotted component of
the Whitehead Sister Link. Since these knots are surgery on the Whitehead Sister Link, they all belong to
family A.

By Theorem 4, the knots of families A and B are all (1, 1)–knots, and thus any longitudinal lens space
surgery slope is a doubly primitive framing. Hence if knot K in S3 or S1×S2 has two framings of distance 1
that give surgeries to lens spaces, then either both framings are doubly primitive framings for K or neither
are.

The remainder of the theorem now follows from the classification of knots in families A and B. �

Remark 11. A key ingredient in the proof above is the determination of when a Dehn twist in the mon-
odromy of a genus one fibered knot in S3 or S1 × S2 gives a genus one fibered knot in a lens space. We
do this for the genus one fibered knots in S3 in Theorem 24 by determining which lens spaces that may be
obtained by surgery on a knot in S3 also contain a genus one fibered knot. Kadokami-Yamada do this for
the genus one fibered knots in S1 × S2 by using Reidemeister torsion [KY12].

Question. When do the monodromies of two genus one fibered knots in lens spaces differ by a single Dehn
twist? The curves along which such Dehn twists occur are knots with two non-trivial lens space surgeries.

1.5. Non-hyperbolic knots in lens spaces with non-trivial lens space fillings. Let us say a knot is
an unknot if its exterior is a solid torus and a trivial knot if is the boundary of a disk. Only in S3 are unknots
and trivial knots equivalent. Note that an unknot in a lens space has a framed surgery that produces S3

only if the lens space is homeomorphic to L(n, 1); moreover the framing is unique if |n| ≥ 2.
For a torus knot, let λ be the longitudinal framing given by the the Heegaard torus. Recall that we

include the trivial knots among the torus knots even though their exteriors are in general not Seifert fibered.
Furthermore note that the framing λ of a trivial knot as a torus knot agrees with the framing given by the
disk it bounds. Also recall that for a choice of orientation of the knot, we orient λ as a parallel push-off and
let µ be a meridian oriented to link the knot positively.

Lastly, let us note that the connected sum of two oriented framed knots produces a well-defined framed
knot. If one of the summands is reversible, then we may disregard the orientation condition.

Theorem 12. Assume K is a non-hyperbolic knot in a lens space with a non-trivial surgery yielding a lens
space. Then K is either

(1) an unknot and surgery on K along any slope produces a lens space,
(2) a torus knot and surgery on K along any slope distance 1 from λ produces a lens space,
(3) a 2λ±µ–cable of a torus knot and ±1 surgery on K with respect to the framing by the cabling annulus

produces a lens space,
6



(4) a pλ+ qµ–cable of a torus knot on which p/q–surgery produces S3 and surgery on K along the slope
of the cabling annulus produces a lens space, or

(5) the connected sum of a torus knot Tp,q in S3 and an unknot U in L(n, 1) and surgery of K along the
framing that arises in the connected sum from the framing λ of Tp,q and a framing on U that gives
S3 by surgery produces a lens space.

Moreover, in the last three cases, if the knot is not also itself a torus knot, then the stated surgery is the only
non-trivial lens space surgery. The last two cases are surgery dual.

Remark 13. We present this theorem because we did not find any complete classification of non-hyperbolic
manifolds with two lens space fillings in the literature. In particular, we have not seen the last two cases
of knots with their lens space surgeries mentioned before. They are of particular interest due to Theorem 6
and Corollary 7.

Remark 14. We also note that in the last case of Theorem 12, if n = ±1 then the knot is simply a torus
knot in S3 with its integral lens space surgeries. If n = 0 then the knot is the unknot in S1 × S2 with its S3

surgery.

Proof. Let K be a non-hyperbolic knot in a lens space Y . Then its exterior M = Y − N (K) is either
reducible, Seifert fibered, or toroidal.

If M is reducible, then K is contained in a ball in Y and Y 6= S3. Since lens spaces are prime, if K has
a non-trivial surgery yielding a lens space, then K must be the trivial knot by [GL89]. Every Dehn surgery
on K distance 1 from the slope bounding a disk produces a homeomorphism of Y .

If M is Seifert fibered, then either K is a torus knot or a regular fiber of the Seifert fibration M(−1; (n, 1))
of Y = L(4n, 2n−1) over the projective plane with one singular fiber. If K is the unknot, then every surgery
on K is a lens space. If K is a torus knot other than the unknot (or the trivial knot), then K embeds in
the Heegaard torus T of Y and M ∩ T = A is an essential annulus. Then surgery on K along any slopes
distance 1 from ∂A gives a lens space as apparent from the Seifert fibration of M over the disk with two
exceptional fibers, see e.g. [DS00]. If K is not a torus knot, then K is the curve in the Klein bottle with
annular complement in ±L(8, 3) and ±1 surgery on K (with respect to the framing given by the Klein bottle)
is ∓L(8, 3), [BB13, Theorem 6.9].

If M is toroidal, then there is an essential torus T in M which is either separating or, if Y ∼= S1 × S2,
possibly non-separating. If T is a non-separating essential torus in M ⊂ Y = S1 × S2 then K must be
null-homologous. If K has a non-trivial lens space surgery, then since the non-separating torus will persist
the resulting lens space must be S1 × S2. Gabai has shown that this implies K must be a trivial knot
[Gab87]. Hence we may now assume T separates.

Let M = N ∪T MK and Y = N ∪T YK where ∂N = T and ∂MK = T ∪∂M . Furthermore, assume we have
chosen T so that MK is atoroidal. Since T must compress in YK , YK is homeomorphic to either S1 ×D2 or
S1 ×D2#Y . Assume non-trivial surgery on K produces a lens space Y ′ with dual knot K ′. In particular,
this surgery transforms YK into the manifold Y ′

K′ where Y ′ = N ∪T Y ′
K′ and T compresses in Y ′

K′ . As before
Y ′
K′ is homeomorphic to either S1 ×D2 or S1 ×D2#Y ′.
If neither YK nor Y ′

K′ is a solid torus, then N is the exterior of a non-trivial knot in S3. Since T compresses
in each YK and Y ′

K′ , Scharlemann shows that either YK is reducible or K is isotopic into T [Sch90]. In either
case, M is reducible and so K is a trivial knot as shown above. This contradicts that M is toroidal.

Hence we may assume either YK or Y ′
K is a solid torus; say YK is a solid torus with core curve C. Let

w denote the winding number of K in YK , the minimum of the absolute values the algebraic intersection
numbers of K with the compressing disks of YK . Following [BL89] using [Gor83, Gab90], since ∂Y ′

K′ is
compressible we may assume that w ≥ 2. Hence the slope of compression Y ′

K′ on T has distance greater
than 1 from the meridian of YK , and filling N along this slope is either S3 or Y ′ according to whether Y ′

K′

is reducible or a solid torus. Then, by [CGLS87] and the Seifert fibered case above, it follows that N is the
exterior of a torus knot in either S3 or Y ′ respectively.

If Y ′
K′

∼= S1 ×D2#Y ′ (with Y ′ 6∼= S3) then K is a cabled knot and the surgery is along the slope of the
cabling annulus by Corollary 4.4 of [Sch90]. Recall that N is the exterior of a torus knot in S3. Hence C is a
torus knot in Y with a surgery to S3, K = J(C) is a cable of C along this surgery slope, and Y ′ is obtained
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by surgery on K along the cabling slope. It follows that the surgery dual of this knot is the connected sum
of an unknot in L(n, 1) and the torus knot in S3 with exterior N .

If Y ′
K′

∼= S1 ×D2, then K ⊂ YK is a Berge-Gabai knot in a solid torus and K ⊂ Y is a satellite of a torus
knot C in Y . Since C is a torus knot and the lens space Y ′ = Y ′

K′ ∪ N may be viewed as surgery on C ,
it must be that the meridian of Y ′

K′ has distance 1 from the framing λ of C. Since YK is the closure of a
regular neighborhood of C, we may frame it with λ. Observe that if N ′ is the exterior of a torus knot in S3

with framing λ′, then we may attach YK so that S3 = N ′ ∪ YK , the framings λ and λ′ agree, and N ′ ∪ Y ′
K′

is a lens space. In particular, we have used the Berge-Gabai knot K ⊂ YK to form a satellite of a torus knot
in S3 that has a lens space surgery. Now we may appeal to [BL89] to conclude that K is the 2λ± µ–cable
of C in the solid torus YK and the surgery to Y ′

K′ is along the slope of the cabling annulus. �
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2. Notation and Conventions

2.1. Tangles. We use the continued fraction expansion

p/q = [a1, a2, . . . , an] = a1 −
1

a2 −
1

a2 −
1

. . . −
1

an

for an extended rational number p/q ∈ Q̂ = Q ∪ {∞}. Typically we restrict to the case that the coefficients
ai are integers, but it is convenient to permit them to be rational numbers as well.

A rational tangle is a pair consisting of two arcs properly embedded in a ball such that the arcs are
isotopic rel–∂ into the boundary of the ball. Any two rational tangles are isotopic through rational tangles.
However, by choosing four fixed points around a circle on the boundary of the ball and restricting to rational
tangles whose arcs have their endpoints at these four fixed points, the isotopy classes of these rational tangles
are parametrized by Q̂. Diagrammatically, represent a twist region between two strands of an embedded
1–manifold by an oblong rectangle labeled with an integer n if there are |n| crossings and the twisting has

handedness sgn(n). Then we can build the rational tangle p/q, pictorially denoted
PSfrag replacements

p/q , from a continued

fraction expansion p/q = [a1, a2, . . . , an] with a sequence of twist regions assembled as depicted in Figure 5.
In a sphere with four marked points, a slope is an isotopy class of embedded loops that separate the four

points in pairs. Note that for each rational tangle there is an isotopy class of properly embedded disks in
8
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the ball that separate the two arcs; the boundary of such a disk is a slope. Conversely, a slope determines
a rational tangle. A basis for these slopes is given by an ordered pair of two oriented slopes (up to overall
reversal) with algebraic intersection number +2. Figure 6 shows the standard choice of basis µ, λ. If the
diagram of the tangle is in a different orientation than standard we will show at least the slope µ. Observe
that the double cover of the sphere branched over the four points is a torus; the basis lifts to a basis for
the torus, and slopes lift to slopes. The double branched cover extends across any rational tangle filling the
sphere defined by the slope to give a filling of the torus by a solid torus whose meridian is the lift of that
slope. This correspondence, and in particular the correspondence between replacing one rational tangle with
another and Dehn surgery on knots, is often referred to as the Montesinos Trick [Mon75].

More generally, a tangle is the pair of 3–manifold and a 1–manifold properly embedded in it. We will
restrict attention to tangles in which the 3–manifold is just S3 minus a finite number of open balls and the
1–manifold meets each boundary component in exactly four points. For such a tangle T let Σ(T ) denote its
double branched cover. We define a tangle T to be hyperbolic if Σ(T ) is a hyperbolic manifold; otherwise T
is non-hyperbolic. Here, a 3–manifold is hyperbolic if its interior admits a complete hyperbolic metric with
finite volume.

2.2. Factoring fillings. Given two tangles A and B such that A ⊂ B, we say a filling α of A factors through
B if there exists a filling β of B such that A(α) is orientation preserving homeomorphic to B(β). Similarly,
given two 3–manifolds M and N such that M ⊂ N , we say that a Dehn filling α of M factors through N if
there exists a filling β of N such that M(α) is orientation preserving homeomorphic to N(β).

2.3. MT5C and the Pentangle. Figure 7 shows an isotopy of the Minimally Twisted 5 Chain (MT5C)
from its common form to a form admitting a strong involution along a vertical axis. Figure 8 shows the
quotient of its exterior M5 under this involution and the subsequent isotopy into the form of the Pentangle
P5. (In the first three frames, the top and the bottom of the axis join at the point at ∞.) This quotient
and isotopy follows the standard meridian-longitude basis for each component of ∂M5 coming from its
identification as the exterior of the MT5C of Figure 7 to the induced basis for the quotient tangle and
compares it with the standard basis given by this diagram of P5 in the last frame. We will always take P5

with this basis. Figure 9 facilitates the translation between the bases of the boundary components of M5

and P5. In particular, a sequence of Dehn fillings (α1, α2, α3, α4, α5) of M5 corresponds to a sequence of
9
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rational tangle fillings (nw,ne, sw, se,x) of P5 as follows:

M5(α1, α2, α3, α4, α5) = Σ(P (α2, 1−
1
α1

, 1− 1
α4

, α3, α5 − 1))(1)

M5(
1

1−ne ,nw, se, 1
1−sw ,x+ 1) = Σ(P (nw,ne, sw, se,x))(2)

The pentangle admits three obvious involutions that preserve the fifth boundary component and its slopes
while pairs of the other four:

(nw,ne, sw, se,x) 7→ (ne,nw, se, sw,x)(3)

(nw,ne, sw, se,x) 7→ (sw, se,nw,ne,x)(4)

(nw,ne, sw, se,x) 7→ (se, sw,ne,nw,x)(5)

There is also an order 3 symmetry illustrated in Figure 2.3 that fixes two boundary components (though
altering their slopes) while permuting the other three. The shaded triangle helps suggest the action of this
symmetry, the slopes (nw = 1, sw = ∞,ne = 0) are cyclically permuted. This rotation gives the following
map:

(nw,ne, sw, se,x) 7→ ( 1
1−ne ,

1
1−sw , 1

1−nw , 1
1−se ,

−1
1+x )(6)

Rotating the figure a quarter turn and then taking the mirror provides another symmetry:

(nw,ne, sw, se,x) 7→ ( 1
ne ,

1
ne ,

1
se ,

1
nw , 1

sw , 1
x)(7)

3. On lens space fillings of the MT5C

Let M5 denote the exterior of the MT5C. Let M3 denote the magic manifold, i.e. the exterior of the
(2, 2, 2)–pretzel link. These have the quotient tangles P5 and P3.

Lemma 15. A filling α = (nw,ne, sw, se) of P5 is non-hyperbolic if one of the following holds:
10
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• nw,ne, sw, or se ∈ {0, 1,∞}
• {nw,ne} or {sw, se} ∈ {{−1, 2}, { 1

2 ,
1
2}}

• {nw, sw} or {ne, se} ∈ {{−1, 12}, {2, 2}}

• {nw, se} or {sw,ne} ∈ {{ 1
2 , 2}, {−1,−1}}

Lemma 16. A filling α = (nw,ne, sw, se) of P5 factors through P3 if one of the following holds:

• {nw,ne} or {sw, se} ∈ {{2,−2}, {−1, 32}, {
1
2 ,

1
3}, {2,

1
2}, {−1,−1}}

• {nw, sw} or {ne, se} ∈ {{−1, 13}, {
1
2 ,−2}, {2, 32}, {−1, 2}, { 1

2 ,
1
2}}

• {nw, se} or {ne, sw} ∈ {{ 1
2 ,

3
2}, {2,

1
3}, {−1,−2}, { 1

2 ,−1}, {−2,−2}}

It factors through the mirror of P3 if one of the following holds:

• {nw,ne} or {sw, se} ∈ {{−1, 3}, {2,− 1
2}, {

1
2 ,

2
3}, {−1, 12}, {2, 2}}

• {nw, sw} or {ne, se} ∈ {{ 1
2 ,−

1
2}, {−1, 23}, {2, 3}, {

1
2 , 2}, {−1,−1}}

• {nw, se} or {ne, sw} ∈ {{2, 23}, {
1
2 , 3}, {−1,− 1

2}, {2,−1}, { 1
2 ,

1
2}}

Proof. Check that the five fillings (2, 2), (−1, 3
2 ), (

1
2 ,

1
3 ), (2,

1
2 ), and (−1,−1) for (nw,ne) in P5 do indeed

produce P3. Then apply the symmetries of Equations (3),(4), and (5) to obtain all the fillings of the first
line. The next two lines of fillings that yield P3 are produced by applying Equation (6) to the first fillings of
the first line. Thereafter Equation (7) gives the relation between those fillings that factor through P3 and
those that factor through the mirror of P3. �

3.1. One-cusped hyperbolic fillings of M5 with three lens space fillings. The objective of this section
is the following theorem which has the subsequent theorem as an immediate corollary.

Theorem 17. If a filling α = (nw,ne, sw, se) of P5 admits three two-bridge fillings then P5(α) either is
non-hyperbolic or factors through P3 or its mirror.

Theorem 18. If a one-cusped hyperbolic manifold M is obtained from a filling of M5 and admits three lens
space fillings, then M may be obtained from a filling of M3.

Proof. Observe that M5 = Σ(P5) and lens spaces are double branched covers of two-bridge links. Then
apply Theorem 17. �

Say a filling α = (nw,ne, sw, se) of P5 simplifies if either it is non-hyperbolic or it factors through P3 or
its mirror. Thus the theorem asserts that any filling α of P5 with three two-bridge fillings must simplify. To
prove this theorem we rely heavily on Lemmas 15 and 16 which tell us when a filling simplifies. Note that
the lemmas use unordered pairs, so {nw,nw} = {−1, 2} means (nw,ne) = (−1, 2) or (2,−1) for example.

Proof of Theorem 17. Assume the filling α = (nw,ne, sw, se) of P5 does not simplify. In particular,
Σ(P5(α)) = M5(α̃) is hyperbolic and not homeomorphic to M3. If there are three choices for x such that
P (α,x) is two-bridge for each, then these fillings lift to three fillings of Σ(P5(α)) = M5(α̃) that produce lens
spaces. By [CGLS87], these three fillings are all distance 1. By Theorem 1.2 and Corollary 1.3 of [MPR], if
P (α,x) is a two-bridge link so that Σ(P5(α,x)) = M5(α̃, x̃) is a lens space, then x̃ may be taken to be ∞ by
the automorphisms of M5. Hence a triple of distance 1, non-hyperbolic fillings of M5(α̃) may be taken (by
an automorphism of M5) to be the fillings 0, 1,∞. Descending back to P5, these correspond to the fillings
x = 0,∞,−1. We will show that if P5(α, 0), P5(α,∞), and P5(α,−1) are all two-bridge links, then the filling
must simplify contrary to our assumption.

11
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The links L0 = P5(α, 0), L∞ = P5(α,∞), and L−1 = P5(α,−1) are shown in Figure 10. In each of these
three links the there is an obvious Conway sphere (a sphere meeting the link in four points) that divides the
link into pairs of sums of rational tangles. View these spheres in Figure 10 as defined by a horizontal line, a
vertical line, and the plane of the page (pull the rational tangles ne and sw in front of the page) respectively.
We call the sums in these pairs North and South, West and East, and Front and Back accordingly.

For each of these links to be two-bridge, its Conway sphere must bound a rational tangle. Thus either
North or South is rational, West or East is rational, and Front or Back is rational. By the symmetries of P5

that preserve x and its fillings, we may assume North and Front are always rational.

In order for the sum of rational tangles A and B (arranged as so:

PSfrag replacements

a b ) to be a rational tangle, at

least one of the summands must be the reciprocal of an integer, i.e. a horizontal sequence of twists. Thus
for West to be rational we must have either nw = [0, h] or sw = [0, k]. We could say “West is rational by
Northwest” or “West is rational by Southwest” to indicate these two situations, but we will abbreviate these
with wxnw and wxsw. Proceeding similarly with the other six cases we have the first two columns of the
following chart which designate the case and the corresponding constraint on the filling Lx = P5(α,x) that
makes the Conway sphere bound a rational tangle.

Case Rational Constraint Filling Montesinos Link

wxnw nw = [0, h] x = 0 L0 = Q([−1, h, sw], [ne], [se])
wxsw sw = [0, k] x = 0 L0 = Q([−1, k,nw], [se], [ne])
exne ne = [0,m] x = 0 L0 = Q([−1,m, se], [nw], [sw])
exse se = [0, p] x = 0 L0 = Q([−1, p,ne], [sw], [nw])
nxnw nw = [n] x = ∞ L∞ = Q([1, n+ ne], [0, sw], [0, se])
nxne ne = [ℓ] x = ∞ L∞ = Q([1, ℓ+ nw], [0, se], [0, sw])
fxne nw = [1,m] x = −1 L−1 = Q([1,nw], [m, 1, sw], [−1 + se])
fxsw sw = [1, k] x = −1 L−1 = Q([1, se], [k, 1,ne], [−1 + nw])

When the Conway sphere of Lx = P5(α,x) bounds a rational tangle, we can view Lx as a Montesinos
link Q(A,B,C). The resulting Montesinos links for each of the cases are shown in the last column of the
chart above. This is illustrated for the cases nxnw, wxnw and fxne in Figure 11; the other cases may be
obtained through the symmetries of P5.

For each x = 0, x = ∞, and x = −1 we actually want to determine when Lx is two-bridge and not just a
Montesinos link. Recall that for a Montesinos link Q(A,B,C) to be two-bridge, at least one of its rational

tangle factors A, B, C must be associated to a number in “Q that is the reciprocal of an integer. Reciprocals
of integers have continued fraction expansions of the form [0, j] for j ∈ Z. The following two basic operations
on continued fraction expansions facilitate the determination of conditions on a rational tangle factor to be
of this form.

• [a1, . . . , an−1, an + [b1, b2, . . . , bm]] = [a1, . . . , an−1, an + b1, b2, . . . , bm]

• If r/s ∈ Q̂ and [a1, . . . , an, r/s] = [0, j] for a1, . . . , an, j ∈ Z, then r/s = [0,−an, . . . ,−a1, j].
12
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The above chart gives us 16 cases for us to determine the conditions that force L0, L∞, L−1 to be
two-bridge links.

(1) (2) (3) (4) (5) (6) (7) (8)
wxnw wxnw wxnw wxnw wxsw wxsw wxsw wxsw

nxnw nxnw nxne nxne nxnw nxnw nxne nxne

fxne fxsw fxne fxsw fxne fxsw fxne fxsw

(9) (10) (11) (12) (13) (14) (15) (16)
exne exne exne exne exse exse exse exse

nxnw nxnw nxne nxne nxnw nxnw nxne nxne

fxne fxsw fxne fxsw fxne fxsw fxne fxsw

There are two order 3 symmetries that relates some of these case. There is an order 3 rotation of P5 that fixes
the ne and x boundary components while cyclically permuting the triple (nw, sw, se). This causes a cyclic
permutation of the triples (nxnw, fxsw, exse) and (nxne, fxne, exne). Under the action of this symmetry
Cases (9), (12), (15) are equivalent and Cases (10),(13),(16).

There is also an order 3 rotation of P5 that fixes the se and x boundary components while cyclically
permuting the triple (nw,ne, sw). This causes a cyclic permutation of the triples (nxnw, fxne,wxsw) and
(wxnw,nxne, fxsw). Under the action of this symmetry Cases (1),(6),(7) are equivalent and Cases (2),(3),(8)
are equivalent.

This leaves us with Cases (1),(2),(4),(5),(9),(10),(11),(14). Each of these cases are treated in the following
subsections. The general strategy is to first use the constraints from each specific case to find conditions
for each of the three factors of each Montesinos link L0, L∞, L−1 that makes the link two-bridge. We
then discard situations that immediately imply (by Lemmas 15 and 16) that the filling simplifies. We then
proceed to consider conditions that force two or all three of these links to be two-bridge. This frequently
becomes an analysis of several subcases. In all cases we eventually conclude that the filling simplifies. �

3.1.1. Case (1): wxnw, nxnw, fxne. This case gives the constraints nw = [0, h], nw = [n], and ne = [1,m].
The first two imply that nw = ±1. The filling simplifies if nw = 1 so we take nw = −1 (and so h = 1 and
n = −1). Let us also set sw = r/s and se = p/q. This gives us the three following Montesinos links.

wxnw L0 = Q([−1, 1, r/s], [1,m], [p/q]) = Q(− 2s−r
s−r ,

m−1
m , p

q )

nxnw L∞ = Q([1, 0,m], [0, r/s], [0, p/q]) = Q(m+ 1,− s
r ,−

q
p )

fxne L−1 = Q([1,−1], [m, 1, r/s], [−1 + p/q]) = Q(2, ms−mr−s
s−r , p−q

q )

For each of these Montesinos links to be two-bridge, we need at least one numerator of their factors to be
±1. Hence at least one of the conditions in each of the following three rows must hold.
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L0 m = 0 m = 2 r/s = [0,−1, 1, j] p/q = [0, j]

ne = ∞ ne = 1
2 sw = j−1

2j−1 se = − 1
j

L∞ m = 0 m = −2 r/s = [i] p/q = [i]
ne = ∞ ne = − 1

2 sw = i se = i
L−1 r/s = [0,−1,−m] p/q = [1, h]

sw = m
m−1 se = h−1

h

Since nw = −1, we see that the filling simplifies if any of the conditions on ne above hold. Therefore
either two of the sw conditions or two of the se conditions above must hold.

If sw = j−1
2j−1 = i then 2j − 1 = ±1 and so j = 0 or 1. Hence sw = 1 or sw = 0.

If sw = j−1
2j−1 = m

m−1 then j − 1 = ǫm and 2j − 1 = ǫ(m − 1) for ǫ = ±1. Thus j = ∓1 and so either

sw = 2
3 or sw = 0.

If sw = i = m
m−1 then m = 0 or m = 2. Hence sw = 0 or sw = 2.

If se = j−1
3j−2 = i then 3j − 2 = ±1 and so j = 1. Hence se = 0.

If se = j−1
3j−2 = h−1

h then j − 1 = ǫ(h − 1) and 3j − 2 = ǫh for ǫ = ±1. Thus ǫ = 2j − 1 which implies

j = 0 or j = 1. Hence sw = 1
2 or sw = 0.

If se = i = h−1
h then h = ±1 Hence se = 0 or se = 2.

Since nw = −1, these pairs of conditions all show the filling simplifies. �

3.1.2. Case (2): wxnw, nxnw, fxsw. This case gives the constraints nw = [0, h] = [n] and sw = [1, k]. The
first pair of constraints implies nw = ±1. Since the filling simplifies if nw = 1, we take nw = −1 (and so
h = 1 and n = −1). Let us also set ne = m/ℓ and se = p/q. This gives us the three following Montesinos
links.

wxnw L0 = Q([−1, 1, 1, k], [m/ℓ], [p/q]) = Q(k − 2,m/ℓ, p/q)
nxnw L∞ = Q([1,−1 +m/ℓ], [0, 1, k], [0, p/q]) = Q(m−2ℓ

m−ℓ ,−
k

k−1 ,−q/p)

fxsw L−1 = Q([1, p/q], [k, 1,m/ℓ], [−2]) = Q( q−p
q , kℓ−km−ℓ

ℓ−m ,−2)

For each of these Montesinos links to be two-bridge, we need at least one of the numerators of their factors
to be ±1. Hence at least one of the conditions in each of the following three rows must hold.

L0 k = 1 k = 3 m/ℓ = [0, j] p/q = [0, j′]
sw = 0 sw = 2

3 ne = − 1
j se = − 1

j

L∞ k = 1 k = −1 m/ℓ = [1,−1, i] p/q = [i]
sw = 0 sw = 2 ne = 2i+1

i+1 se = i

L−1 m/ℓ = [0,−1,−k, h] p/q = [1, h]
ne = hk−2h+1

hk−h+1 se = h−1
h

Bearing in mind that nw = −1, the conditions on k in the first two columns above imply the filling
simplifies. Therefore either two of the conditions on ne or two of the conditions on se above must hold.
Note that the all three of the conditions on se cannot hold. We examine the six situations now.

If se = − 1
j = i then se = 1 or se = −1.

If se = − 1
j = h−1

h then h = 0 or h = 2 and hence se = ∞ or se = 1
2 .

If se = i = h−1
h then h = 1 or h = −1 and hence se = 0 or se = 2.

If ne = − 1
j = 2i+1

1+i then i = −1 or i = 0 and hence ne = ∞ or ne = 2.

If ne = − 1
j = hk−2h+1

hk−h+1 then h(k − 2) = 0 or −2. Thus either h = 0, k = 2 or (h, k) ∈ {(1, 0)(−1, 4),

(2, 1), (−2, 3)}. Hence either ne = 0, sw = 1
2 , or (ne, sw) ∈ {(∞,∞), (32 ,

3
4 ), (3, 0), (

5
3 ,

2
3 )}.

If ne = 2i+1
1+i = hk−2h+1

hk−h+1 then 2i+ 1 = ǫ(hk − 2h+ 1) and i+ 1 = ǫ(hk − h+ 1) for ǫ = ±1. Eliminating

i, we obtain that hk = ǫ− 1. Thus either h = 0, k = 0, or (h, k) ∈ {(1,−2), (−1, 2), (2,−1), (−2, 1)}. Hence
either ne = 0, sw = ∞, or (ne, sw) ∈ {(12 ,

3
2 ), (∞, 1

2 ), (
1
3 , 2), (−1, 0)}.

Keeping in mind that nw = −1, it follows that every conclusion of the six situations implies the filling
simplifies.
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3.1.3. Case (4): wxnw, nxne, fxsw. This case gives the constraints nw = [0, h], ne = [ℓ], and sw = [1, k].
Let us set se = p/q. This gives us the three following Montesinos links.

wxnw L0 = Q([−1, h, 1, k], [ℓ], [p/q]) = Q(− hk−h−1
hk−h−k , ℓ, p/q)

nxne L∞ = Q([1, ℓ, h], [0, p/q], [0, 1, k]) = Q(hℓ−h−1
hℓ−1 ,−q/p,− k

k−1 )

fxsw L−1 = Q([1, p/q], [k, 1, ℓ], [−1, h]) = Q(− p−q
q , kℓ−k−ℓ

ℓ−1 , h+1
h )

For each of these Montesinos links to be two-bridge, we need at least one of the numerators of their factors
to be ±1. Hence at least one of the conditions in each of the following three rows must hold. (The first
three of these conditions in each row are derived from the conditions h(k− 1) = 1± 1, h(ℓ− 1) = 1± 1, and
(k − 1)(ℓ− 1) = 1± 1 respectively.)

L0 h = 0 k = 1 (h, k) ∈ {(1, 3), (−1,−1), (2, 2), (−2, 0)} ℓ = 1 ℓ = −1 p/q = [0, j]
nw = ∞ sw = 0 (nw, sw) ∈ {(−1, 23 )(1, 2), (−

1
2 ,

1
2 ), (

1
2 ,∞)} ne = 1 ne = −1 se = − 1

j

L∞ h = 0 ℓ = 1 (h, ℓ) ∈ {(1, 3), (−1,−1), (2, 2), (−2, 0)} k = 1 k = −1 p/q = [i]
nw = ∞ ne = 1 (nw,ne) ∈ {(−1, 3), (1,−1), (− 1

2 , 2), (
1
2 , 0)} sw = 0 sw = 2 se = i

L−1 k = 1 ℓ = 1 (k, ℓ) ∈ {(2, 3), (3, 2), (0,−1), (−1, 0)} h = 0 h = −2 p/q = [1, h]
sw = 0 ne = 1 (sw,ne) ∈ {(12 , 3), (

2
3 , 2), (∞,−1)(2, 0)} nw = ∞ nw = 1

2 se = h−1
h

Many of these conditions imply the filling simplifies. We pare down these conditions to the following ones
which do not alone imply that the filling simplifies.

L0 ℓ = −1 p/q = [0, j]
ne = −1 se = − 1

j

L∞ k = −1 p/q = [i]
sw = 2 se = i

L−1 h = −2 p/q = [1, h]
nw = 1

2 se = h−1
h

Any two conditions of the middle column imply the filling simplifies. Also all three conditions on se

cannot simultaneously hold. Thus exactly two of the conditions on se must hold and the other condition in
the remaining row must hold.

If se = i = − 1
j then se = 1 or se = −1. Since nw = 1

2 by the third row, the filling simplifies.

If se = − 1
j = h−1

h then h = 0 or h = 2 and so se = ∞ or se = 1
2 . Since sw = 2 by the second row, the

filling simplifies.
If se = i = h−1

h then h = ±1 and so se = 0 or se = 2. Since ne = −1 by the first row, the filling
simplifies. �

3.1.4. Case (5): wxsw, nxnw,fxne. This case gives the constraints sw = [0, k], nw = [n], and ne = [1,m].
Let us set se = p/q. This gives us the three following Montesinos links.

wxsw L0 = Q([−1, k, n], [p/q], [1,m]) = Q(1−n−kn
kn−1 , m−1

m , p/q)

nxnw L∞ = Q([1, n+ 1,m], [0, 0, k], [0, p/q]) = Q( mn−1
mn+m−1 , k,−q/p)

fxne L−1 = Q([1, n], [m, 1, 0, k], [−1+ p/q]) = Q(n−1
n , mk+m−1

k+1 , p−q
q )

For each of these Montesinos links to be two-bridge, we need at least one of the numerators of their factors
to be ±1. Hence at least one of the conditions in each of the following three rows must hold. (The first
set of three conditions in each row are derived from the conditions n(k + 1) = 1 ± 1, mn = 1 ± 1, and
m(k + 1) = 1± 1 respectively.)

L0 n = 0 k = −1 (n, k) ∈ {(1, 1), (−1,−3), (2, 0), (−2,−2)} m = 0 m = 2 p/q = [0, j]
nw = 0 sw = 1 (nw, sw) ∈ {(1,−1), (−1, 13 ), (2,∞), (−2, 12 )} ne = ∞ ne = 1

2 se = − 1
j

L∞ m = 0 n = 0 (m,n) ∈ {(1, 2), (−1,−2), (2, 1), (−2,−1)} k = −1 k = 1 p/q = [i]
ne = ∞ nw = 0 (ne,nw) ∈ {(0, 2), (2,−2), (12 , 1), (

3
2 ,−1)} sw = 1 sw = −1 se = i

L−1 m = 0 k = −1 (m, k) ∈ {(1, 1), (−1,−3), (2, 0), (−2,−2)} n = 0 n = 2 p/q = [1, h]
ne = ∞ sw = 1 (ne, sw) ∈ {(0,−1), (2, 13 ), (

1
2 ,∞), (32 ,

1
2 )} nw = 0 nw = 2 se = h−1

h
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Many of these conditions imply the filling simplifies. We pare down these conditions to the following ones
which do not alone imply that the filling simplifies.

L0 m = 2 p/q = [0, j]
ne = 1

2 se = − 1
j

L∞ k = 1 p/q = [i]
sw = −1 se = i

L−1 n = 2 p/q = [1, h]
nw = 2 se = h−1

h

Any two conditions of the middle column imply the filling simplifies. Also all three conditions on se

cannot simultaneously hold. Thus exactly two of the conditions on se must hold and the other condition in
the remaining row must hold.

If se = − 1
j = i then se = 1 or se = −1. Since nw = 2 by the third row, the filling simplifies.

If se = i = h−1
h then h = ±1 and so se = 0 or se = 2. Since sw = −1 by the second row, the filling

simplifies.
If se = − 1

j = h−1
h then h = 0 or h = 2 and so se = ∞ or se = 1

2 . Since ne = 1
2 by the first row, the

filling simplifies. �

3.1.5. Case (9): exne, nxnw, fxne. This case gives the constraints ne = [0,m], nw = [n], and ne = [1,m′].
The first and last imply that ne = ∞ or 1

2 . The filling simplifies if ne = ∞ so we take ne = 1
2 (and so

m = −2 and m′ = 2). Let us also set sw = r/s and se = p/q. This gives us the three following Montesinos
links.

exne L0 = Q([−1,−2, p/q], [n], [r/s]) = Q(−3p+q
2p−q , n, r/s)

nxnw L∞ = Q([1, n,−2], [0, r/s], [0, p/q]) = Q(2n−1
2n+1 ,−s/r,−q/p)

fxne L−1 = Q([1, n], [−2, 1, r/s], [−1 + p/q]) = Q(n−1
n , r−2s

r−s ,
p−q
q )

For each of these Montesinos links to be two-bridge, we need at least one numerator of their factors to be
±1. Hence at least one of the conditions in each of the following three rows must hold.

L0 n = 1 n = −1 r/s = [0, j] p/q = [0, 2,−1, j]

nw = 1 nw = −1 sw = − 1
j se = j−1

3j−2

L∞ n = 0 n = 1 r/s = [i] p/q = [i]
nw = 0 nw = 1 sw = i se = i

L−1 n = 0 n = 2 r/s = [1,−1, h] p/q = [1, h]
nw = 0 nw = 2 sw = 2h+1

h+1 se = h−1
h

Since ne = 1
2 , we see that the filling simplifies if any of the nw conditions above hold. Therefore either two

of the sw conditions or two of the se conditions above must hold.

If sw = − 1
j = i then sw = ±1.

If sw = − 1
j = 2h+1

h+1 then 2h+ 1 = ±1 and so h = 0 or −1. Hence sw = 1 or sw = ∞.

If sw = i = 2h+1
h+1 then h+ 1 = ±1 and so h = 0 or −2. Hence sw = 1 or sw = 3.

If se = j−1
3j−2 = i then 3j − 2 = ±1 and so j = 1. Hence se = 0.

If se = j−1
3j−2 = h−1

h then −2j+1
3j−2 = − 1

h . Thus −2j + 1 = ±1 so that j = 0, 1 and hence se = 2 or se = 1.

If se = i = h−1
h then h = ±1 and hence se = 0 or se = −2.

Since ne = 1
2 , these pairs of conditions all show that the filling simplifies.

�

3.1.6. Case (10): exne, nxnw, fxsw. This gives us the constraints ne = [0,m], nw = [n], and sw = [1, k].
Let us set se = p/q. This gives us the three following Montesinos links.

exne L0 = Q([−1,m, p/q]), [n], [1, k] = Q(− pm−q+p
pm−q , n, k−1

k )

nxnw L∞ = Q([1, n,m], [0, 1, k], [0, p/q]) = Q(mn−m−1
mn−1 ,− k

k−1 ,−q/p)

fxsw L−1 = Q([1, p/q], [k, 1, 0,m], [n− 1]) = Q(p−q
q , km+k−1

m+1 , n− 1)
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For each of these Montesinos links to be two-bridge, we need at least one numerator of their factors to be
±1. Hence at least one of the conditions in each of the following three rows must hold.

L0 n = −1 n = 1 k = 0 k = 2 p/q = [0,−m, 1, j]

nw = −1 nw = 1 sw = ∞ sw = 1
2 se = j−1

mj+j−m

L∞ m = 0 n = 1 k = 1 k = −1 p/q = [i]
ne = ∞ nw = 1 sw = 0 sw = 2 se = i

(m,n) ∈ {(1, 3), (2, 2), (−1,−1), (−2, 0)}
(ne,nw) ∈ {(−1, 3), (− 1

2 , 2), (1,−1), (12 , 0)}
L−1 k = 0 m = −1 n = 0 n = 2 p/q = [0,−1, h]

sw = ∞ ne = 1 nw = 0 nw = 2 se = h
h+1

(k,m) ∈ {(1, 1), (2, 0), (−1,−3), (−2,−2)}
(sw,ne) ∈ {(0,−1), (12 ,∞), (2, 1

3 ), (
3
2 ,

1
2 )}

Discarding the constraints that directly imply the filling simplifies, we are left with the following con-
straints.

L0 n = −1 k = 2 p/q = [0,−m, 1, j]

nw = −1 sw = 1
2 se = j−1

mj+j−m

L∞ k = −1 p/q = [i]
sw = 2 se = i

L−1 n = 2 p/q = [0,−1, h]
nw = 2 se = h

h+1

Since the filling simplifies if (nw, sw) ∈ {(−1, 2), (2, 12 ), (2, 2)}, two of the constraints on se must hold.

If se = j−1
mj+j−m = i then j(m + 1) −m = ±1 and hence j = m±1

m+1 . Thus either m = 0 or m = −2. If

m = 0 then ne = ∞. If m = −2 then ne = 1
2 and either j = 1 or j = 3 and so se = 0 or (ne, se) = (12 ,−2).

Hence the filling simplifies.
If se = j−1

mj+j−m = h
h+1 then j−1 = ǫh and mj+ j−m = ǫ(h+1) for ǫ = ±1. Thus m(j−1) = −1+ ǫ = 0

or −2. Thus either m = 0, j = 1, or (m, j) ∈ {(1, 3), (2, 2), (−1,−1), (−2, 0)}. Therefore either ne = ∞,
se = 0, or (ne, se) ∈ {(∞, 1

2 ), (2, 1), (
1
2 ,−

1
2 ), (

2
3 ,−1)}. Hence the filling simplifies.

If se = i = h
h+1 then h = 0 or h = −2 and hence either se = 0 (so that the filling simplifies) or se = −2.

Since these constraints on se imply that L∞ and L−1 are two-bridge, to have L0 two-bridge we must have
either nw = −1, sw = 1

2 , or se = j−1
mj+j−m . The last of these three puts us in the previous two cases. The

first two with se = −2 imply the filing simplifies.

3.1.7. Case (11): exne, nxne, fxne. This case gives the constraints ne = [0,m] = [ℓ] = [1,m′]. But this has
no solution for integers ℓ,m,m′.

3.1.8. Case (14): exse,nxnw,fxsw. This case gives the constraints se = [0, p], nw = [n], and sw = [1, k].
Let us set ne = m/ℓ. This gives us the three following Montesinos links.

exse L0 = Q([−1, p,m/ℓ], [n], [1, k]) = Q(pm+m−ℓ
−pm+ℓ , n, k−1

k )

nxnw L∞ = Q([1, n+m/ℓ], [0, 1, k], [0, 0, p]) = Q(nℓ+m−ℓ
nℓ+m , k

−k+1 , p)

fxsw L−1 = Q([1, 0, p], [k, 1,m/ℓ], [n− 1]) = Q(p+ 1, kℓ−km+m
ℓ−m , n− 1)

For each of these Montesinos links to be two-bridge, we need at least one numerator of their factors to be
±1. Hence at least one of the conditions in each of the following three rows must hold.

L0 n = 1 n = −1 k = 0 k = 2 m
ℓ = [0,−p, 1, j]

nw = 1 nw = −1 sw = ∞ sw = 1
2 ne = j−1

j−p+jp

L∞ k = 1 k = −1 p = 1 p = −1 m
ℓ = [−n,−1, i]

sw = 0 sw = 2 se = −1 se = 1 ne = i−n−ni
1+i

L−1 n = 0 n = 2 p = 0 p = −2 m
ℓ = [0,−1,−k, h]

nw = 0 nw = 2 se = ∞ se = 1
2 ne = 1+kh

1−h+kh
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Figure 12.

One observes that either the filling simplifies or at least one of the conditions in the following three rows
must hold and in at least two rows the condition for ne holds. (The cases with nw, sw, se ∈ {0, 1,∞} from
above are discarded below. Then note that any pair of conditions on nw, sw, se from two of the following
rows implies the filling simplifies.)

L0 n = −1 k = 2 m
ℓ = [0,−p, 1, j]

nw = −1 sw = 1
2 ne = j−1

j−p+jp

L∞ k = −1 p = 1 m
ℓ = [−n,−1, i]

sw = 2 se = −1 ne = i−n(1+i)
1+i

L−1 n = 2 p = −2 m
ℓ = [0,−1,−k, h]

nw = 2 se = 1
2 ne = 1+kh

1+kh−h

Finally we show that if two of the above equations for ne hold simultaneously, then the filling simplifies.

Case 0,∞: If j−1
j+p(j−1) = i−n(1+i)

1+i then j − 1 = ǫ(i − n(1 + i)) and j + p(j − 1) = ǫ(1 + i) for ǫ = ±1.

Eliminating j we obtain i = ǫ−1−n−np
n−p+np . Thus (n − 1)(p + 1) + 1 = ±1 and hence (n − 1)(p + 1) = 0 or

−2. Therefore either n = 1, p = −1, or (n, p) ∈ {(2,−3), (3,−2), (0, 1), (−1, 0)} which implies that either
nw = 1, se = 1, or (nw, se) ∈ {(2, 13 ), (3,

1
2 ), (0, 1), (−1,∞)}. These each imply the filling simplifies.

Case 0,−1: If j−1
j+p(j−1) = 1+kh

1+kh−h then j − 1 = ǫ(1 + kh) and j + p(j − 1) = ǫ(1 + kh − h) for ǫ = ±1.

Eliminating j we obtain h = − e+p
1+kp . Thus 1 + kp = ±1 and hence kp = 0 or −2. Therefore either

k = 0, p = 0, or (k, p) ∈ {(1,−2), (−1, 2), (2,−1), (−2, 1)} which implies that either sw = ∞, se = ∞, or
(sw, se) ∈ {(0, 12 ), (2,−

1
2 ), (

1
2 , 1), (

3
2 ,−1)}. These each imply the filling simplifies.

Case ∞,−1: If i−n(1+i)
1+i = 1+kh

1+kh−h then i− n(1 + i) = ǫ(1 + kh) and 1 + i = ǫ(1 + kh− h).

Eliminating i we obtain h = − ǫ+n
1−n(k−1) . Thus 1− n(k − 1) = ±1 and hence n(k− 1) = 0 or 2. Therefore

either n = 0, k = 1, or (n, k) ∈ {(1, 3), (−1,−1), (2, 2), (−2, 0)} which implies either nw = 0, sw = 0, or
(nw, sw) ∈ {(1, 23 ), (−1, 2), (2, 12 ), (−2,∞)}. These all imply the filling simplifies. �

3.2. One-cusped hyperbolic fillings of the Magic Manifold with two or three lens space fillings.

Recall that M3, the magic manifold, is the exterior of the (2, 2, 2)–pretzel link. For each boundary component
of its presentation as the exterior of this pretzel link, use the standard meridian-longitude coordinates of the
corresponding unknot component. Martelli-Petronio classified all the non-hyperbolic fillings of M3 [MP06],
though there they used the mirror N of M3. We use the present orientation to be consistent with Martelli-
Petronio-Roukema [MPR] (who acknowledge this difference in the sentence preceding their Theorem 2.3).
Also note that [MP06] does not keep track of orientations of lens spaces.

Theorem 19. A one-cusped hyperbolic manifold obtained by filling M3 that has two lens space fillings is
homeomorphic to one of the following manifolds with the given filling slopes. These are the double branched
covers of the tangles shown in Figure 12.
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(0) X0
m,n = M3(n, 4 − n − 1

m ), n ∈ Z − {0, 1, 2, 3}, (m,n) 6= (−1, 4) or (−1, 5), with lens space fillings
0,∞:

X0
m,n(0) = M3(0, n, 4− n− 1

m ) = L(6m− 1, 2m− 1)
X0

m,n(∞) = M3(∞, n, 4− n− 1
m ) = L(−n(1−m(4− n))−m, 1−m(4− n))

(1) X1

m,
p
q

= M3(3−
1
m , p

q ), m ∈ Z− {0, 1}, p
q ∈ “Q− {0, 1, 2, 3,∞}, with lens space fillings 1,∞:

X1

m,
p
q

(1) = M3(1, 3−
1
m , p

q ) = L(2m(p− 3q) + p− q,m(p− 3q)− q)

X1

m,
p
q

(∞) = M3(∞, 3− 1
m , p

q ) = L(−n(3p− q) + p, 3p− q)

(2) X2

m,
p
q

= M3(2−
1
m , p

q ), m ∈ Z− {−1, 0, 1}, p
q ∈ “Q− {0, 1, 2, 3,∞}, with lens space fillings 2,∞:

X2

m,
p
q

(2) = M3(2, 2−
1
m , pq ) = L(3m(p− 2q)− 2p+ q,m(p− 2q)− p+ q)

X2

m,
p
q

(∞) = M3(∞, 2 − 1
m , p

q ) = L(−n(2p− q) + p, 2p− q)

(3) X3
m,n = M3(1−

1
m , 1− 1

n ), m,n ∈ Z− {−1, 0, 1}, with lens space fillings 3,∞:

X3
m,n(3) = M3(3, 1−

1
m , 1− 1

n ) = L((1 + 2m)(1 + 2n)− 4,m(1 + 2n)− 2)
X3

m,n(∞) = M3(∞, 1− 1
m , 1− 1

n ) = L(m+ n− 1,−1)

Remark 20. Generically these hyperbolic manifolds have exactly 5 non-hyperbolic fillings occurring on the
slopes {0, 1, 2, 3,∞}. Martelli-Petronio fully describe the cases when there are more than 5 [MP06].

Theorem 21. A one-cusped hyperbolic manifold obtained by filling M3 that has three lens space fillings is
homeomorphic to one of the following manifolds with the given filling slopes.

(1) Am,n = M3(2 −
1
m , 3− 1

n ), m ∈ Z− {−1, 0, 1}, n ∈ Z− {0, 1}, with lens space fillings {1, 2,∞}:

Am,n(1) = M3(1, 2−
1
m , 3− 1

n ) = L(2mn+m+ 2n− 1,mn+m+ n)
Am,n(2) = M3(2, 2−

1
m , 3− 1

n ) = L(3mn− 3m− 5n+ 2,mn−m− 2n+ 1)
Am,n(∞) = M3(∞, 2− 1

m , 3− 1
n ) = L(5mn− 2m− 3n+ 1, 3− 5m)

(2) Bp
q
= M3(

5
2 ,

p
q ),

p
q ∈ “Q− {0, 1, 3/2, 2, 3,∞}, with lens space fillings 1, 2,∞:

Bp
q
(1) = M3(1,

5
2 ,

p
q ) = L(−3p+ 11q, 2p− 7q)

Bp
q
(2) = M3(2,

5
2 ,

p
q ) = L(8p− 13q, 3p− 5q)

Bp
q
(∞) = M3(∞, 5

2 ,
p
q ) = L(5p− 2q, 2p− q)

Remark 22. As stated in the introduction, we define the two families of manifolds

A = {Am,n|m,n ∈ Z} and B = {Bp/q = {Bp/q|p/q ∈ “Q}

without the constraints that ensure their hyperbolicity. These manifolds with their triples of lens space
fillings may be viewed as the double branched covers of the tangles given in Figures 3 and 4.

Remark 23. Further note the relationships from [MP06] of these families with the Whitehead Sister Man-
ifold and the Berge Manifold.

(1) Am,−1 is a filling of M3(4) and A2,n is a filling of M3(
3
2 ). The manifolds M3(4) and M3(

3
2 ) are

mirrors and are homeomorphic to the Whitehead Sister Manifold.
(2) Bp

q
is a filling of the Berge Manifold M3(

5
2 ) and M3(

5
2 , 1),M3(

5
2 , 2),M3(

5
2 ,∞) are all solid tori.

Proof of Theorem 19. This follows from synthesizing the classification of non-hyperbolic fillings of the Magic
Manifold [MP06]. Our M3 has the opposite orientation as the Magic Manifold N as it appears in that article.
This will cause an over-all sign change for the slopes. For this proof we will use N to ease reference to [MP06]
and then switch to M3 at the end.
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By [MP06, Theorem 1.1], N(α) is hyperbolic unless α ∈ {∞,−3,−2,−1, 0}. By [MP06, Theorem 1.2],
N(α, β) is hyperbolic unless {α, β} ∈ {{1, 1}, {−4,− 1

2}, {−
3
2 ,−

5
2}} or either α or β ∈ {∞,−3,−2,−1, 0}.

Lastly, by [MP06, Theorem 1.1], the closed manifold N(α, β, γ) is hyperbolic unless one slope is ∞ (and
hence is a lens space) or it appears in Tables 2, 3, or 4 of [MP06] with {α, β, γ} = { p

q ,
r
s ,

t
u}. In these tables

the non-hyperbolic manifold produced is also described. With the exception of RP3 and connect sums of lens
spaces where one summand is actually S3, lens spaces are described in the common form L(a, b) for coprime
a, b; the parameters are partitioned whereever small Seifert fibered spaces or graph manifolds degenerate to
lens spaces or connect sums.

We may thus determine the hyperbolic manifolds N(α, β) with two lens space fillings by listing the lens
spaces that appear in Tables 2, 3, and 4 of [MP06], and then discarding any for which their surgery description
as N(α, β, γ) has either two of the slopes α, β, γ in {∞,−3,−2,−1, 0} or one slope in {∞,−3,−2,−1, 0} with
the other two in {{1, 1}, {−4,− 1

2}, {−
3
2 ,−

5
2}}. This ensures that for each lens space N(α, β, γ) remaining

in the list, one of the surgeries may be drilled to result in a hyperbolic manifold. This leaves us with the
following list of hyperbolic manifolds N(α, β) with (at least) two lens space fillings:

(1) N(−1 + 1
m ,−1 + 1

n ), m,n ∈ Z− {−1, 0, 1}, with lens space fillings −3,∞;

N(−3;−1 + 1
m ,−1 + 1

n ) = L((2n+ 1)(2m+ 1)− 4, (2n+ 1)m− 2)

N(∞;−1 + 1
m ,−1 + 1

n ) = L(m+ n− 1, 1)

(2) N(−2 + 1
m , t

u ), m ∈ Z− {−1, 0, 1}, t
u ∈ “Q− {−3,−2,−1, 0,∞}, with lens space fillings −2,∞;

N(−2;−2 + 1
m , t

u ) = L(−3n(t+ 2u) + 2t+ u, n(t+ 2u)− t− u)

N(∞;−2 + 1
m , t

u ) = L(m(2t+ u)− t, 2t+ u)

(3) N(−3 + 1
m , t

u ), m ∈ Z− {−1, 0, 1}, t
u ∈ “Q− {−3,−2,−1, 0,∞}, with lens space fillings −1,∞;

N(−1;−3 + 1
m , t

u ) = L(−2m(t+ 3u)− t− u,m(t+ 3u) + u)

N(∞;−3 + 1
m , t

u ) = L(m(3t+ u)− t, 3t+ u)

(4) N(n,−4− n+ 1
m ), n ∈ Z − {−3,−2,−1, 0}, (m,n) 6= (−1,−4) or (−1,−5), with lens space fillings

0,∞.

N(0;n,−4− n+ 1
m ) = L(6m− 1,−2m+ 1)

N(∞;n,−4− n+ 1
m ) = L(n(1−m(4 + n))−m, 1−m(4 + n))

These four all appear in Table 2 of [MP06], though for N(0;n,−4 − n + 1
m ), N(−2;−2 + 1

n ,
t
u ), and

N(−3;−1 + 1
m ,−1 + 1

m) we obtained the mirror of what is listed in Table 2. (Recall that [MP06] expressly
does not keep track of orientations of lens spaces.) The lens space fillings in Table 3 are discarded. There
are no lens space fillings in Table 4.

With a flip of signs of surgery slopes to switch to M3 and then a reparametrization, we have the stated
result. �

Proof of Theorem 21. By the Cyclic Surgery Theorem [CGLS87] we only need to determine constraints on
the parameters of pairs of the fillings given in Theorem 19 whose lens space filling slopes contain adjacent
integers. Since the only orientation preserving automorphism of M3 that preserves one cusp and its slopes
exchanges the other two, we have three cases.

Case 1: X0
m,n = X1

m′,p′/q′

Thus M3(n, 4− n+ 1
m ) = M3(3 +

1
m′

, p′

q′ ).

Case 1a: n = 3 + 1
m′

and 4− n+ 1
m = p′

q′

Since n and m′ are integers, m′ = ±1. For this manifold to be hyperbolic we cannot have m′ = −1. Thus

m′ = 1, n = 4 and p′

q′ =
1
m giving the manifold M3(4,

1
m ) with lens space fillings 0, 1,∞.

Case 1b: n = p′

q′ and 4− n+ 1
m = 3 + 1

m′
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The second equation yields n − 1 = 1
m − 1

m′
. For the right side to be integral, we must have m,m′ ∈

{−2,+2} or m,m′ ∈ {−1,+1}. Every one of these choices results in n ∈ {0, 1, 2, 3} except m = −1,m′ = +1
for which n = −1. This gives the manifold M3(−1, 4) which is included among the manifolds of Case 1a.

Case 2: X1

m′,
p′

q′

= X2

m′′,
p′′

q′′

M3(3 +
1
m′

, p′

q′ ) = M3(2 +
1

m′′
, p′′

q′′ )

Case 2a: 3 + 1
m′

= 2 + 1
m′′

and p′

q′ =
p′′

q′′

The first equation gives 1 = − 1
m′

+ 1
m′′

from which we conclude m′ = −2 and m′′ = 2. This gives the

manifold M3(
5
2 ,

p
q ) with lens space fillings 1, 2,∞.

Case 2b: 3 + 1
m′

= p′′

q′′ and p′

q′ = 2 + 1
m′′

This gives the manifold M3(3 +
1
m , 2 + 1

n ) with lens space fillings 1, 2,∞.

Case 3: X2

m,
p
q

= X3
m,n

M3(2 +
1

m′′
, p′′

q′′ ) = M3(1 +
1

m′′′
, 1 + 1

n′′′
)

Case 3a: 2 + 1
m′′

= 1 + 1
m′′′

and p′′

q′′ = 1 + 1
n′′′

The first equation gives 1 = 1
m′′′

− 1
m′′

from which we conclude m′′′ = 2 and m′′ = −2. This gives the

manifold M3(
3
2 , 1 +

1
m) with lens space fillings 2, 3,∞.

Case 3b: 2 + 1
m′′

= 1 + 1
n′′′

and p′′

q′′ = 1 + 1
m′′′

This is equivalent to Case 3a.

Finally, we note that the manifold M3(3+
1
m , 2+ 1

n ) with lens space fillings {1, 2,∞} of Case 2b subsumes
Cases 1a and 3a. In both situations we apply the orientation reversing homeomorphism of [MP06, Proposi-
tion 1.5(1.3)] which equates M3(

3
2 , α, β) with M3(4,

1−α
2−α , 3− β). Setting n = −1, β = 3 + 1

m , and α = 1, 2,

or ∞, this homeomorphism takes Case 2b to M3(4,−
1
m ) with lens space fillings 0,∞, 1 respectively. Then

send m to −m to obtain Case 1a. Alternatively, setting m = 1, β = 2 + 1
n , and α = 1, 2, or ∞, the inverse

of this homeomorphism takes Case 2b to M3(
3
2 , 1 − 1

m ) with lens space fillings ∞, 3, 2 respectively. Then
sending m to n produces Case 3a. �

4. Alternative surgeries on GOFK knots

Families VII and VIII of Berge’s doubly primitive knots in S3 are comprised of the knots that embed in
the fiber of a trefoil or the figure eight knot respectively [Ber]. Collectively these knots may be regarded as
those that embed in the fiber of a genus one fibered knot in S3, and we refer to them as GOFK knots for
short.

Given a doubly primitive knot K with framing of slope p, let us say a lens space surgery on K of slope
p + 1 or p− 1 is an alternative surgery. (Note that a torus knot does not have an alternative surgery.) As
mentioned in the introduction, it is conceivable that an alternative surgery does not come from a doubly
primitive framing. The goal of this section is to show that any alternative surgery on a GOFK knot indeed
arises from a doubly primitive framing.

Theorem 24. Let K be a non-trivial GOFK knot with an alternative lens space surgery. Then K is either
the pretzel knot P (−2, 3, 7) or the knot obtained as −1–surgery on the unknotted component of the Whitehead
Sister Link.

4.1. A few technical tools. Our proof of Theorem 24 requires a few technical tools which we collect here.

4.1.1. Simple knots. The surgery duals to doubly primitive knots in S3 belong to a special class of (1, 1)–
knots [Ber].

If K is a (1, 1)–knot and there are meridional disks of the Heegaard solid tori Vα and Vβ disjoint from
K whose boundaries intersect minimally in the torus Vα ∩ Vβ , then we say K is a simple knot. One may
show that for each (torsion) first homology class in L(p, q) there is a unique oriented simple knot K(p, q, k)
representing kµ where µ is the homology class of the core of, say, Vβ with some choice of orientation and
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qµ is the homology class of the core of Vα. (Note that the trivial knots are the only simple knots in S3

and S1 × S2.) We will not be concerned with orientations on our simple knots. We say two simple knots
K(p, q, k) and K(p′, q′, k′) are equivalent if there is an orientation preserving homeomorphism from L(p, q)
to L(p′, q′) that takes K(p, q, k) to K(p′, q′,±k′). The following lemma is fairly straightforward.

Lemma 25 (Lemma 2.5 [Ras07]). Assume p, p′ > 0. The simple knots K(p, q, k) and K(p′, q′, k′) are
equivalent if p = p′ and either q = q′ mod p and ±k = k′ mod p or q−1 = q′ mod p and ±q′k = k′

mod p. �

Simple knots are also Floer simple, meaning that their knot Floer homology is as simple as possible
[Hed11, Ras07]. This is manifested by the fact that simple knots admit a “grid number one” presentation
for which the knot Floer homology chain complex has no differentials (see e.g. [BGH08] or the Example at
the end of [Ras07, Section 3.5]). This permits the easy calculation of the Euler characteristic of a simple
knot by using Theorem 1.1 of [NI09]. (The Euler characteristic of a knot — null homologous or not — is
the maximal Euler characteristic among its generalized Seifert surfaces: the properly embedded, connected,
oriented surfaces with coherently oriented boundary in the exterior of the knot.) This is well known to the
experts but we have not found it written out explicitly in any references. Since it will be of use to us in our
proof of Theorem 24, we record it here and sketch its proof.

Theorem 26. The Euler characteristic of the simple knot K(p, q, k) is

χ(K(p, q, k)) = p
gcd(p,k) · (1 − 2maxAp,q,k)

where

• Ap,q,k is the set {Ai}
p−1
i=0 symmetrized about 0,

• the rational numbers Ai are relatively defined by Ai −Ai+1 = 1
p (iq

−1 − (i + k)q−1), and

• n denotes the residue of n mod p in the set {0, 1, . . . , p− 1}.

Sketch of Proof. The grid number one diagram of K(p, q, k) gives a knot Floer homology chain complex
with p generators and no differentials. The numbers p

gcd(p,k)Ai are the relative Alexander gradings of these

generators. Symmetrizing the set of these gradings about 0 makes them the absolute Alexander gradings
(which may alternatively be computed by way of their Maslov gradings). Note that p

gcd(p,k) is the homological

order of the knot and equivalent to the minimal number of times a meridian of the knot intersects a generalized
Seifert surface for the knot. We then apply Theorem 1.1 of [NI09] to obtain the Euler characteristic. In our
situation the term y(h) of that theorem is p

gcd(p,k) maxAp,q,k. �

4.1.2. Simple knots dual to GOFK knots. From Greene’s presentation [Gre13] of Rasmussen’s tabulation
[Ras07] of Berge’s doubly primitive knots [Ber91]: a doubly primitive knot in S3 with framing of positive
slope p in the GOFK family VII or VIII is surgery dual to the simple knot K(p, q, k) where

(⋆) k2 + ǫ(k + 1) = 0 mod p

has a solution for some integer 0 < k < p and q ≡ −k2 mod p. Here ǫ = +1 or −1 for family VII or VIII
respectively. Note that any integer congruent to k mod p works equivalently. We will use equation (⋆) to
determine if a lens space contains a knot dual to a GOFK knot and, if so, its homology class and hence the
particular simple knot.

4.1.3. Exponent sums of genus one fibered knots. The exponent sum, an invariant of once-punctured torus
bundles and genus one fibered knots (and 3–braids) helps to determine when two lens spaces may contain
genus one fibered knots with monodromies that differ by a Dehn twist.

Let T be the oriented torus minus an open disk, and let a, b be two oriented simple closed curves in the
interior of T intersecting once transversally so that a · b = +1. For a curve c in the interior of T , let τc be
a positive Dehn twist along c. The mapping class group M(T ), the group of isotopy classes of orientation
preserving diffeomorphisms of T that act as identity on ∂T , is well known to be isomorphic to the three
strand braid group B3. Indeed,

M(T ) = 〈τa, τb|τaτbτa = τbτaτb〉.

Given φ ∈ M(T ), we may therefore write φ as a word in τa and τb (with positive and negative powers).
From the presentation above, any such word for φ has the same exponent sum. Define E(φ) to be this
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exponent sum. Observe that E(φ) is actually an invariant of the conjugacy class of φ. Thus for a genus
one fibered knot J with monodromy φ — that is, a knot whose exterior is the once-punctured torus bundle
T × [0, 1]/(x, 1) ∼ (φ(x), 0) — further define E(J) = E(φ). Indeed, viewing a genus one fibered knot as the
lift of the braid axis in the double branched cover of a closed 3–braid, this exponent sum agrees with the
standard exponent sum for braids.

For ǫ = ±1, let Jǫ be the genus one fibered knot in S3 with monodromy τ ǫb τa. Then J+ is the positive
trefoil and J− is the figure eight knot. Note that E(Jǫ) = 1 + ǫ.

4.1.4. Constraints on alternative surgeries.

Lemma 27. Assume K ⊂ S3 is a non-trivial doubly primitive GOFK knot of slope p > 0 in family VII or
VIII. If p± 1–surgery on K is a lens space L(p± 1, q) then

(a) p± 1 is even and at least 18,
(b) q 6= 1 mod p,
(c) L(p± 1, q) contains a (nullhomologous) genus one fibered knot J ′ with E(J ′) ∈ {−1, 1, 3},
(d) there is a doubly primitive knot K ′ ⊂ S3 of slope p± 1 in a Berge-Gabai family (I,II, III, IV, V) or a

sporadic family (IX,X) such that p± 1 surgery on K ′ is L(p± 1, q), and

(e) ÷HFK(K ′) ∼=÷HFK(K) — in particular K and K ′ have the same genus and Euler characteristic.

Here ±1 denotes a consistent choice of either +1 or −1.

Proof. (a) Berge shows that p must be odd for knots in families VII and VIII [Ber91]. The first author shows
that any knot in S3 with an odd lens space surgery of order less than 19 must be a torus knot [Bak08a].
Non-trivial torus knots do not have alternative surgeries.

(b) Positive surgery on a knot gives a lens space L(n, 1) only if the knot is trivial [KMOS07].
(c) Since K is a knot in the fiber of a genus one fibered knot Jǫ in S3 and the fiber gives K a framing of

slope p, p± 1 surgery effects a ∓1 Dehn twist along K in the monodromy of Jǫ. Thus Jǫ is sent to a genus
one fibered knot J ′. In particular there exists ζ ∈ M(T ) such that the monodromy of J ′ is conjugate to
(τ ǫb τa)(ζ

−1τ∓1
a ζ). Hence E(J ′) = 1 + ǫ∓ 1.

(d) Greene shows that any lens space obtained by a positive integral surgery on a knot in S3 must be
obtained by that surgery on one of Berge’s doubly primitive knots along its doubly primitive slope [Gre13].
Due to (a), this means K ′ must belong to a Berge-Gabai family or a sporadic family. (As Rasmussen notes
[Ras07], families VI, XI, and XII of Berge’s original list of doubly primitive knots may be absorbed into the
other families.)

(e) Greene also shows that the surgery duals to K and K ′ in L(p ± 1, q) must be homologous (after
reorienting one if needed) and the hat version of their knot Floer homologies must be isomorphic [Gre13].
Hence they have the same genus [NI09, Ghi08]. �

4.2. Norm Sequences for Lens Spaces. The lens space L(p, q) is obtained by −p/q surgery on the
unknot. Whenever we have a continued fraction expansion p/q = [a1, a2, . . . , an] with integer coefficients
the lens space L(p, q) may also be obtained surgery on the linear chain link of n components where the ith
component has surgery coefficient −ai. To this continued fraction and surgery descriptions we correspond
the integer sequence (a1, . . . , an). If ai ≥ 2 for all i, we say (a1, . . . , an) is a norm sequence for the lens
space L(p, q). If ai ≥ 0 for all i or the sequence is the empty sequence (), then we say it is a weak norm
sequence for the lens space. (Our terminology is chosen to be similar to what appears in [Gre13]. There
Greene obtains a vertex basis {x1, . . . , xn} for a linear lattice Λ(p, q) where the associated sequence of norms
ν = (|x1|, . . . , |xn|) gives the coefficients for a continued fraction expansion of p/q.) Observe that, through
the surgery description correspondence, a weak norm sequence and its reverse may be regarded as equivalent.
Also a non-empty weak norm sequence in which some ai = 0 or 1 may be reduced to a shorter such sequence
except for the sequences (0) and (1). The sequence (0) corresponds to the lens space S1 × S2, and (1)
corresponds to S3 as does () = (a1, 0). Further note that if (a1, . . . , an) is a norm sequence for a lens space
then its reverse (an, . . . , a1) is the only other positive sequence of the same lens space. We consider norm
sequences up to this reversal.

A word on notation. As does Greene, we use Lisca’s convention that 2[t] stands for the number 2 repeated
t times in a sequence; e.g. (. . . , 2[3], . . . ) = (. . . , 2, 2, 2, . . . ). This should be clear when t > 0. The cases
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t = 0 and t = −1 will also arise. A 2[0] in a sequence may simply be omitted. Hence (. . . , a, 2[0], b, . . . ) =
(. . . , a, b, . . . ) and (. . . , a, 2[0]) = (. . . , a). For 2[−1] use the relations (. . . , a, 2[−1], b, . . . ) = (. . . , a+ b− 2, . . . )
and (. . . , a, b, 2[−1]) = (. . . , a). (One may understand these relations through the associated continued
fractions or paths in the Farey Tesselation, for example.)

Lemma 28. Assume L(p, q) contains a genus one fibered knot. Then either L(p, q) ∼= S3 or S1 × S2 or
L(p, q) has one of the norm sequences in Table 1 with corresponding exponent sum for some integers r, s ≥ 2.

Norm Seq. (r, 2, s) (r) (r, 3) (r, 3, 2[s−1]) (2[r−1]) (4, 2[s−1]) (2[r−1], 4, 2[s−1])
Exponent Sum

of GOFK
r + s− 1

r ± 1, or
−3 if r = 4

r − 2 r − s− 1 −r ± 1 −r − 2 −r − s− 1

Table 1.

Remark 29. Note the norm sequences (r) and (2[r−1]) each have two exponent sums. These correspond to
the genus one fibered knots obtained by positive and negative Hopf bands onto an annular open book. The
norm sequence (4) has a third exponent sum associated to it since L(4, 1) has a third genus one fibered knot.

Proof. If L(p, q) contains a genus one fibered knot, then the corresponding two-bridge link has braid index at
most 3 [Bak05]. Any 3–string braid whose closure is a two-bridge link is conjugate to the braid σa

1σ
−2
2 σb

1σ2

for some integers a, b as one may observe from Murasugi’s classification of two-bridge links with braid index
3 [Mur91] (see also [Sto06]) and Birman-Menasco’s study of multiple presentations of links as closed 3 braids

[BM93]. (Also note that the mirror σ−a
1 σ2

2σ
−b
1 σ−1

2 is conjugate to σ−a−1
1 σ−2

2 σ−b−1
1 σ2.) This braid has

exponent sum a+ b−1, and its closure may be isotoped into the two-bridge plat closure of the braid σa
1σ

2
2σ

b
1.

Hence this two-bridge link has the associated continued fraction [a, 2, b] for some integers a, b. This gives the
first norm sequence (a, 2, b) in Table 1 if both a, b ≥ 2.

So assume it is not the case that both a, b ≥ 2. By reversal of the sequence we may assume both a ≥ b
and 1 ≥ b. The (weak) norm sequences for these cases are given in the chart below from which one may
produce the rest of Table 1. Recall that the sequences (1) and () correspond to S3 while (0) corresponds to
S1 × S2.

(a, 2, b) b = 1 b = 0 b = −1 b = −c ≤ 2

a ≥ 2 (a− 1) (a) (a, 3) (a, 3, 2[c−1])

a = 1 (0) (1) (2) (2[c])
a = 0 (0) () (2[c−1])

a = −1 (4) (4, 2[c−1])
a = −d ≤ 2 (2[d−1], 4, 2[c−1])

�

Lemma 30. If a lens space both contains a genus one fibered knot and may be obtained by positive integral
surgery on a knot in S3, then up to orientation preserving homeomorphism the lens space L(p, q) and the
homology class k mod p of some orientation of the surgery dual knot satisfy

(p, q, k) ∈ {(n, 1, 1), (7, 3, 2), (13, 4, 3), (13, 9, 2), (18, 11, 5), (19, 3, 4), (27, 11, 4), (32, 7, 5), (9t+ 14,−9, 3)}

where n and t range over the integers.

Proof. Greene lists all the norm sequences of lens spaces that may be obtained by positive surgery on some
knot in S3. In particular he divides them into large types and small types. We refer the reader to Sections
9.3 and 9.4 [Gre13] for their descriptions.

For the small types, one may compare the sequences ν in Tables 2 and 3 [Gre13] directly with the sequences
of Lemma 28. Most all of the sequences in these tables have three or more elements that are 3 or greater (for
any valid choice of a, b, c), and thus cannot appear in the Table 1. Let us list those that may have at most
two elements that are 3 are greater by their associated Proposition in Tables 2 and 3: 6.4(5), 6.5(1), 6.5(2),
7.5(3), 8.7(2), 8.7(3), 8.8(1), 8.8(3). Among these, one then finds only four sequences also appearing in
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Prop in [Gre13] Sequence Lens space and homology class

6.5(1) (2[n]), n ≥ 1 L(n+ 1, 1), k = 1
6.5(2) (2, 2, 3, 5) L(32, 7), k = 5
8.7(2) (4, 3, 2) L(18, 11), k = 5
8.7(3) (2, 3, 4) L(18, 5), k = 7

Table 2. Norm sequences of small type lens spaces containing genus one fibered knots.

Table 1. The sequences and their associated lens space L(p, q) and homology class k mod p are in Table 2.
An orientation preserving homeomorphism relates the last two.

For the large types, Greene gives the following six norm sequences which we list in Table 3 by the
associated proposition number in [Gre13]. For each, the integers a1, . . . , aℓ ≥ 2 and b1, . . . , bm ≥ 2 satisfy

Prop in [Gre13] Sequence
6.5(3) (a1, . . . , aℓ, 2, bm, . . . , b2)

8.3(1),(3) (a1, . . . , aℓ + bm, . . . , b2)
8.3(2) (a1, . . . , aℓ, 5, bm, . . . , b2)
6.2(3) (a1, . . . , aℓ + 1, 2, 2, bm + 1, . . . , b2)
7.5(1) (a1, . . . , aℓ, bm, . . . , b1)
8.2 (a1, . . . , aℓ + bm + 1, . . . , b1).

Table 3. Norm sequences of large type lens spaces

1/[a1, . . . , aℓ] + 1/[b1, . . . , bm] = 1. Note that a choice of integers a1, . . . , aℓ ≥ 2 determines the integers
b1, . . . , bm ≥ 2 by the Riemenschneider point rule [Rie74] (or equivalently by taking a “dual path” in the
Farey Tessellation). By the point rule, exactly one of aℓ and bm equals 2.

We split the argument into the cases where m = 1 and m > 1. For the lens spaces L(p, q) obtained here,
the homology class k mod p of the surgery dual may be determined from the property that −k2 = q mod p.

Case m = 1: Then bm = b1 so that (a1, . . . , aℓ) = (2[b1−1]), and we have six types of sequences. To the
right of them, we give any constraints on b1 ≥ 2 needed to produce a sequence in Table 1, the resulting
sequence, and the associated lens space.

Prop in [Gre13] Sequence Constraint Sequence in Table 1 Lens Space

6.5(3) (2[b1]) b1 ≥ 2 (2[b1]) L(b1 + 1, 1)

8.3(1),(3) (2[b1−2]) b1 ≥ 3 (2[b1−2]) L(b1 − 1, 1)

8.3(2) (2[b1−1], 5) b1 = 3 (2, 2, 5) L(13, 9)
6.2(3) (2[b1−2], 3, 2, 2) b1 = 2 (3, 2, 2) L(7, 3)

7.5(1) (2[b1−1], b1) b1 = 3, b1 = 4 (2, 2, 3), (2, 2, 2, 4) L(7, 5), L(13, 10)
8.2 (2[b1−1], b1 + 3) b1 = 3 (2, 2, 5) L(13, 9)

Table 4. Norm sequences with m = 1 of large type lens spaces containing a genus one
fibered knot.

Case m > 1:
Let us observe two things for a sequence (c1, . . . , cn) in Table 1. First, if ci = ci+1 = 2, then either cj = 2

for all j < i or cj = 2 for all j > i+ 1 as well. Next, if ci 6= 2, then one of the following occurs:

• i = 1 or n,
• ci = 4 and cj = 2 for j 6= i, or
• ci = 3 and either i = 2 or i = n− 1 and cj = 2 for j > 2 or j < n− 1 respectively.

We now examine the implications of these for the large type lens space surgery sequences listed in Table 3.

Type (a1, . . . , aℓ, 2, bm, . . . , b2):
If aℓ = 2 and bm 6= 2, then for the sequence to be in Table 1 we must have (a1, . . . , aℓ) = (2[t]) for some

integer t due to the consecutive 2s. The point rule implies m = 1, a contradiction.
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If aℓ 6= 2 and bm = 2, then the same reasoning implies ℓ = 1 and (b1, . . . , bm) = (2[a1−1]). Thus the
sequence is (a1, 2, 2

[a1−2]). For this to be in Table 1, we must have either a1 = 3 or a1 = 4 which give the
sequences (3, 2, 2) and (4, 2, 2, 2) respectively. The associated lens spaces are L(7, 3) and L(13, 4).

Type (a1, . . . , aℓ + bm, . . . , b2):
Since aℓ + bm ≥ 5, for the sequence to be in Table 1 either ℓ = 1 or m = 2. If ℓ = 1 then the point rule

implies (b1, . . . , bm) = (2[a1−1]) so that the sequence is (a1 + 2, 2[a1−3]). Hence a1 = 5, yielding the sequence
(7, 2, 2) and associated lens space L(19, 3).

So assume ℓ 6= 1 and m = 2. Then since aℓ + b2 ≥ 5 and ℓ 6= 1 we have (a1, . . . , aℓ) = (a1, 2, a3)
or (2[t], 3, aℓ). By the point rule and m = 2, the former implies (a1, 2, a3) = (2, 2, 3) or (3, 2, 2) with
(b1, b2) = (4, 2) or (2, 4) respectively. Thus the sequence is either (2, 2, 5) or (3, 2, 6) respectively. Their
associated lens spaces are L(13, 9) and L(27, 11)

For the latter, the point rule and m = 2 imply aℓ = 2 and (b1, b2) = (t+ 1, 3) with t ≥ 1. The sequence
is then (2[t], 3, 5) and its associated lens space is L(9t+ 14,−9). (Here, 9t+ 14 = ik − 1 with k = 3.)

Type (a1, . . . , aℓ, 5, bm, . . . , b2):
Since m > 1, the 5 cannot be at the beginning or end of the sequence. This sequence cannot be in Table 1.

Type (a1, . . . , aℓ + 1, 2, 2, bm + 1, . . . , b2):
The middle pair of 2’s imply that either aℓ = 1 or bm = 1. This is a contradiction.

Type (a1, . . . , aℓ, bm, . . . , b1):
By reversal and appealing to Case m = 1, we may assume both m > 1 and ℓ > 1. Also by reversal, we

may assume aℓ = 2 and bm 6= 2. Since m > 1, (a1, . . . , aℓ) 6= (2[t]) for any t > 0. Thus ak > 2 for some
k < ℓ. Since aℓ = 2 is between bm and ak, for the sequence to be in Table 1 we must have ℓ = 2 and m = 1.
This is a contradiction.

Type (a1, . . . , aℓ + bm + 1, . . . , b1):
Since aℓ + bm + 1 ≥ 6, the argument for Type (3) applies. �

4.3. Proof of Theorem 24.

Proof. Let L(p, q) be the lens space obtained by positive doubly primitive surgery on a Berge knot in family
VII or VIII. Assume the lens space L(p± 1, q′) can be obtained as an alternative surgery on this knot. By
Lemma 27(3), it contains a genus one fibered knot. By Lemma 27(4) this lens space may only be among the
lens spaces listed in Lemma 30. Lemma 27(1) and (2) reduces this list to the lens spaces L(18, 11), L(32, 7),
and L(18t′ + 14,−9) for t′ ≥ 1.

If L(p ± 1, q′) = L(18, 9) then p = 19. (The proof of Lemma 27(1) shows p 6= 17.) The only non-torus
knot in family VII and VIII for which 19–surgery yields a lens space is the pretzel knot P (−2, 3, 7). This
knot has the required 18–surgery.

If L(p ± 1, q′) = L(32, 7), then either p = 31 or p = 33. Equation (⋆) has no solution when p = 33.
When p = 31, equation (⋆) has the solutions (p, q, k) = (31, 6, 5), (31, 26, 25), (31, 17, 18), and (31, 11, 12).
By Lemma 25, the first two give orientation preserving homeomorphic knots. These are torus knots (e.g. by
Saito [Sai08]). The last two knots are also orientation preserving homeomorphic by Lemma 25. There the
corresponding knot is surgery dual to the knot WSL+1 which also has the required 32–surgery.

For L(p ± 1, q′) = L(18t′ + 14,−9) with t′ ≥ 1, the lens space has the positive surgery description
(2t′ + 2, 3, 2, 2, 2). From Table 1, a genus one fibered knot in this lens space has exponent sum 2t′ − 3.
Lemma 27(3) then implies t′ ∈ {1, 2, 3} giving the lens spaces L(32,−9), L(50,−9), and L(68,−9). Since
L(32,−9) is orientation preserving homeomorphic to L(32, 7) which we addressed in the previous case, we
only need to handle the last two.

If p ± 1 = 50, then either p = 49 or p = 51. Equation (⋆) has no solution when p = 51. When
p = 49, equation (⋆) has the solutions (p, q, k) = (49, 19, 18) and (49, 31, 30). These correspond to orientation
preserving homeomorphic knots by Lemma 25 that have genus 17 by Theorem 26. HoweverL(50,−9) contains
no primitive simple knots of this genus which we also calculate by Theorem 26, so this case does not occur.

If p ± 1 = 68, then either p = 67 or p = 69. Equation (⋆) has no solution when p = 69. When
p = 67, equation (⋆) has the solutions (p, q, k) = (67, 30, 29) and (67, 38, 37). These correspond to orientation
preserving homeomorphic knots of genus 25. However L(68,−9) contains no primitive simple knots of this
genus, so this case does not occur. Again we use Lemma 25 and Theorem 26. �
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5. Knots with once-punctured torus Seifert surfaces

In [Bak11], the first author classifies the non-nullhomologous knots in lens spaces (other than S1×S2) with
once-punctured torus surfaces properly embedded in their exterior. We call such surfaces once-punctured
torus Seifert surfaces.

Let W be the Whitehead link , and let Y be the link that covers W in the double cover of S3 branched
over one component of W . These are both pictured in Figure 13. Let Ks

r be the core of r–surgery in
W (r, s) = W (s, r). Let Ka,b

c be the core of the c–surgery in Y (a, b; c) = Y (b, a; c) where the c–surgery is on
the “axis” component of Y . (This was written as Y (c; a, b) in [Bak11].)

Theorem 31 (Baker [Bak11]). If K is a non-nullhomologous knot in a lens space with an incompressible
once-punctured torus Seifert surface, then up to homeomorphism K is one of the following knots:

(1) K−1
−6+1/k ⊂ L(6k − 1, 2k − 1) = W (−1,−6 + 1/k),

(2) K−2
−4+1/k ⊂ L(8k − 2, 2k − 1) = W (−2,−4 + 1/k),

(3) K−3
−3+1/k ⊂ L(9k − 3, 3k − 2) = W (−3,−3 + 1/k),

(4) K
−3+1/k
−3 ⊂ L(9k − 3, 3k − 2) = W (−3 + 1/k,−3) for k 6= 0, or

(5) K
1/k,1/ℓ
−2 ⊂ L(8kℓ− 2, 4kℓ− 2k − 1) = Y (1/k, 1/ℓ;−2) for k, ℓ 6= 0.

Furthermore:

(1) each of these knots is a simple knot,
(2) the first three families are all torus knots and are thus fibered,

(3) K
−3+1/k
−3 is fibered only if |k| = 1, and

(4) K
1/k,1/ℓ
−2 is fibered only if |k| = |ℓ| = 1.

Remark 32. As noted in [Bak11], observe that

(1) K
1/k,1
−2 = K

−4+1/k
−2 ⊂ L(8k − 2, 2k − 1) and

(2) K
1/k,−1
−2 is the mirror of K

−4−1/k
−2 .

Remark 33. The exterior of W is hyperbolic and orientation reversing homeomorphic to M3(−1). The

exterior of Y is also hyperbolic. Hence the knots K
−3+1/k
−3 and K

1/k,1/ℓ
−2 of the last two families of Theorem 31

are generically hyperbolic.

From this theorem we easily obtain a classification of non-nullhomologous knots with once-punctured
torus Seifert surfaces admitting lens space surgeries.

Theorem 34. The following families of pairs of knots are surgery dual for every k, ℓ ∈ Z.

(1) K−1
−6+1/k ⊂ L(6k − 1, 2k − 1) and K−1

−6+1/ℓ ⊂ L(6ℓ− 1, 2ℓ− 1)

(2) K−2
−4+1/k ⊂ L(8k − 2, 2k − 1) and K−2

−4+1/ℓ ⊂ L(8ℓ− 2, 2ℓ− 1)

(3) K−3
−3+1/k ⊂ L(9k − 3, 3k − 2) and K−3

−3+1/ℓ ⊂ L(9ℓ− 3, 3ℓ− 2)

(4) K
−3+1/k
−3 ⊂ L(9k − 3, 3k − 2) and K

−3+1/k
∞ ⊂ L(3k − 1,−k)

(5) K
−4+1/k
−2 ⊂ L(8k − 2, 2k − 1) and K

−4+1/k
∞ ⊂ L(4k − 1,−k)

(6) K
−6+1/k
−1 ⊂ L(6k − 1, 2k − 1) and K

−6+1/k
∞ ⊂ L(6k − 1,−k)

Every non-nullhomologous knot in a lens space other than S1 × S2 with an incompressible once-punctured
torus Seifert surface and a non-trivial lens space surgery belongs to one of the first five families above.
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Remark 35.

(1) The surgery duals in the fourth and fifth families consist of a null-homologous and non-nullhomologous
pair.

(2) The surgery duals in the sixth family consist of pair of nullhomologous genus one knots.
(3) In these last three families, the knots are not fibered if |k| > 1 (since only integral filling of one

component of the exterior of W can produce a once-punctured torus bundle).

Problem 36. Classify lens space surgeries on nullhomologous genus one knots in lens spaces.

Remark 35(3) gives the following corollary.

Corollary 37. There are infinitely many non-fibered hyperbolic knots in lens spaces with non-trivial lens
space surgeries. �

Remark 38. Corollary 37 should be contrasted with Theorem 6.5 of [BBCW12] (attributed to Rasmussen)
which shows that any primitive knot in a lens space with a non-trivial lens space surgery has fibered exterior.
Here, a knot is primitive if, when oriented, it represents a generator of homology.

Proof of Theorem 34. The list of surgery duals is immediate from Theorem 31. The first three families are
torus knots and these are the lens space surgeries on torus knots. The last three families result from W
being a link of unknots so that the trivial filling on one component is necessarily a lens space. To see that
these are all the lens space surgeries on such non-nullhomologous knots it remains to address the lens space

surgeries on the knots K
−3+1/k
−3 and K

1/k,1/ℓ
−2 . When these knots are not torus knots, any lens space surgery

must be distance 1. Furthermore, by the classification of Theorem 31 such surgery slopes must have distance
at most 3 from the boundary slope of the Seifert surface.

For K
−3+1/k
−3 this means that the dual knot is either K

−3+1/k
−2 or K

−3+1/k
∞ . The former is not a knot in a

lens space.

For K
1/k,1/ℓ
−2 the dual knot must be either K

1/k,1/ℓ
−3 , K

1/k,1/ℓ
−3/2 , K

1/k,1/ℓ
−1 , or K

1/k,1/ℓ
∞ . Since the first two

duals have order 3, if they are indeed knots in lens spaces they would have to be the knot K
−3+1/m
−3 or its

mirror for some m 6= 0, 1. However, by the former case, such knots are not dual to knots in lens spaces
of order 2. For the last two duals, we must determine for which k, ℓ are the manifolds Y (1/k, 1/ℓ;−1) and
Y (1/k, 1/ℓ;∞) lens spaces.

First note that, by performing the −1 and∞ surgeries, Y (−1/k,−1/ℓ;−1) is the mirror of Y (1/k, 1/ℓ;∞).
Hence we may work with the latter of the two. Observe that this is 1/k and 1/ℓ surgery on the (2, 4)–torus
link. Performing the 1/ℓ surgery gives the (2, 1−2ℓ)–torus knot with surgery coefficient −4ℓ+1/k. If ℓ = 0, 1
then this torus knot is actually an unknot and any k gives a lens space. But recall we discard ℓ = 0 since the

once-punctured torus would compress and if ℓ = 1, then K
1/k,1
−2 = K

−4+1/k
−2 ⊂ L(8k − 2, 2k − 1). If ℓ 6= 0, 1

then the (2, 1− 2ℓ)–torus knot is not the unknot and only 2− 4ℓ+1/n surgery for n ∈ Z yields a lens space.

Hence we must have −4ℓ+ 1/k = 2− 4ℓ+ 1/n and thus k = ±1. With k = 1 we have the knot K
−4+1/ℓ
−2 as

before (when we had ℓ = 1). With k = −1 we have the mirror of K
−4−1/ℓ
−2 . �

Corollary 39. The only non-torus, non-trivial knot exterior with an once-punctured torus Seifert surface
and three lens space fillings is the Figure Eight Knot Sister manifold, K−5 = W (−5, ·). Its three lens space
fillings are given in the fifth and sixth family of Theorem 34 with the knots K−5

−2 ⊂ L(10, 3), K−5
∞ ⊂ L(5,−1),

and K−5
−1 ⊂ L(5, 1) as cores of the fillings.

Proof. By the Cyclic Surgery Theorem [CGLS87], if a manifold has three lens space fillings then either the
manifold is reducible or a Seifert fibered space or the three fillings are mutually distance 1. By Theorem 12
the only non-hyperbolic manifolds with at least three lens space fillings are the exteriors of torus knots and
trivial knots. If the lens space knots K1,K2,K3 are duals to one another by distance 1 surgeries, then
all three cannot be nullhomologous. Thus, assuming they are not torus knots, up to homeomorphism and

reindexing we may take K1 to be the knot K
−3+1/k
−3 or K

−4+1/k
−2 for some integer k 6= 0, 1. These have

surgeries to the nullhomologous knots K
−3+1/k
∞ and K

−4+1/k
∞ respectively as described in Theorem 34. From

the proof of that theorem, the knots K
−3+1/k
−3 do not have any other lens space surgery when k 6= 0, 1. The

28



same proof also shows that among the knots K
1/k,1/ℓ
−2 , only the knot K−1,1

−2 = K1,−1
−2 = K−5

−2 has the extra

lens space surgery K−5
−1 . The manifold K−5 = W (−5, ·) is the Figure Eight Knot Sister manifold. �
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