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COMMENSURABILITY CLASSES CONTAINING THREE KNOT

COMPLEMENTS

NEIL HOFFMAN

Abstract. This paper exhibits an infinite family of hyperbolic knot comple-

ments that have three knot complements in their respective commensurability

classes.

1. Introduction

The study of the commensurability classes of hyperbolic knot complements that

contain other knot complements has attracted some recent interest (see [BBW],[CD],

[GHH] [HS],[MM], [NR1],[Re], [RW]). A particularly interesting set of examples re-

sults from cyclic surgeries on hyperbolic knot complements, since the cyclic surgeries

give rise to cyclic covers by other knot complements (see [GW]). Moreover, The

Cyclic Surgery Theorem [CGLS] shows that there are at most two non-trivial cyclic

surgeries on a hyperbolic knot complement and so a hyperbolic knot complement

has at most two non-trivial, finite sheeted covers which are other knot comple-

ments. Similarly, if a hyperbolic knot complement, S3 − k1 is covered by another

knot complement, S3 − k2, then S3 − k1 admits a cyclic surgery. There are known

examples of hyperbolic knot complements with exactly three knot complements in

their commensurability classes. For example, the (−2, 3, 7) pretzel knot of [FS] fa-

mously admits two non-trivial cyclic surgeries and is therefore covered by two other

hyperbolic knot complements.

An infinite family of pairs of commensurable hyperbolic knot complements was

constructed by W. Neuman.

For a discussion of this construction, see [GHH].

Finally, two hyperbolic knot complements can be commensurable if they both

have hidden symmetries. This property is equivalent to both knot complements

Date: November 19, 2018.

1

http://arxiv.org/abs/0905.1672v1


2 NEIL HOFFMAN

non-normally covering the same orbifold (see § 2.2). The dodecahedral knots of [AR]

admit the only known examples of non-arithmetic knot complements with hidden

symmetries (see [NR1]) and the figure 8 knot complement is the only arithmetic

knot complement (see [Re]).

This discussion motivates the following conjecture of Reid and Walsh (see [RW,

Conj 5.2]).

Conjecture. Let S3−K be a hyperbolic knot complement. Then, there are at most

two other knot complements in its commensurability class.

It has been announced by Boileau, Boyer, and Walsh ([BBW, Thm 1.3]) that the

conjecture holds for knot complements without hidden symmetries. In their paper,

they show that if a hyperbolic knot complement does not admit hidden symmetries,

then any commensurable hyperbolic knot complement will cover a common orbifold.

Furthermore, this orbifold admits a finite cyclic surgery for each knot complement

that covers it. This paper presents a family of such orbifolds that are covered by

exactly three hyperbolic knot complements. Specifically, the main theorem of this

paper is the following (see § 2 for definitions):

Theorem 1.1. Let n ≥ 1 and (n, 7) = 1. For all but at most finitely many

pairs of integers (n,m), the result of (n,m) Dehn surgery on the unknotted cusp of

the Berge manifold is a hyperbolic orbifold with exactly three knot complements its

commensurability classes.

The infinite family of orbifolds described by Theorem 1.1 which we refer to as

βn,m (see §2) also has the property that for n 6= 1, each knot complement covering

βn,m admits an n-fold symmetry which does not fix any point on the cusp. In

particular, even when n = 2, this symmetry is not a strong involution. By [WZ],

such a knot complement cannot admit a lens space surgery and so, by the above

discussion, is not covered by any other knot complement.

The paper is organized as follows. In addition to some background material

and definitions, § 2 we prove a lemma about possible orbifold quotients of the

Berge manifold. In § 3, we show that the orbifolds βn,m are shown to admit three
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cyclic surgeries, and the proof of the main theorem is contained in §4. In § 5, we

provide a partial classification of commensurability classes containing three knot

complements.

2. Preliminaries

2.1. Two hyperbolic 3-orbifolds, H3/Γ1 and H3/Γ2, are said to be commensurable

if they share a common finite sheeted cover. In terms of groups, ∃g ∈ PSL(2,C) so

that Γ1 and gΓ2g
−1 have a common subgroup which is finite index in both groups.

Let Comm+(Γ) = {g ∈ PSL(2,C)|[Γ : Γ ∩ gΓg−1] < ∞ and [gΓg−1 : Γ ∩

gΓg−1] < ∞} and N+(Γ) be the normalizer of Γ in PSL(2,C). We say that a group

Γ has hidden symmetries if [Comm+(Γ) : N+(Γ)] > 1. A hyperbolic orbifold, M,

has hidden symmetries if πorb
1 (M) has hidden symmetries. For this discussion, we

consider only orientable manifolds and orbifolds.

2.2. When a hyperbolic knot group has hidden symmetries the associated knot

complement non-normally covers some orbifold with a rigid cusp i.e. the cusp is

C × [0,∞) where C is S2(2, 3, 6), S2(3, 3, 3) or S2(2, 4, 4) (see [Re, Lemma 4]).

By [NR1, Prop 2.7], the cusp field of a hyperbolic orbifold is a subfield of the

invariant trace field. Thus, if a hyperbolic orbifold has a S2(3, 3, 3) or S2(2, 3, 6)

cusp, Q(
√
−3) must be a subfield of the orbifold’s invariant trace field and if the

cusp is S2(2, 4, 4), Q(i) must be a subfield of the orbifold’s invariant trace field (see

[NR1, Proof of Thm 5.1(iv)]).

Proposition 2.1. Let p : O1 → O2 be a covering of orbifolds such that O1 has a

rigid cusp C1. Then, O2 has a rigid cusp C2 such that p(C1) = C2 and if x ∈ C2

then |p−1(x) ∩ C1| = n2 for some integer n unless C1 is S2(3, 3, 3) and C2 is

S2(2, 3, 6) then |p−1(x) ∩ C1| = 2n2 for some integer n.

Proof. First consider the case where C1 is an S2(2, 4, 4). In this case, C2 must

also be a S2(2, 4, 4) cusp. The peripheral subgroup corresponding to C2 is P2
∼=

(Z × Z) ⋊φ Z/4Z, and so P2 has an element of order 4 acting on the cusp. Thus,

φ : Z/4Z → Aut(Z× Z) is a faithful representation. Let P1 ⊂ P2 be the peripheral

subgroup corresponding to C1. So P1
∼= (nZ ×mZ) ⋊φ Z/4Z. However, the order
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4 automorphism switches the two generators for the Z × Z subgroup of P2. Thus,

n = m and the degree of the covering is n2.

A similiar proof carries through if C1 and C2 are both either S2(3, 3, 3) or

S2(2, 3, 6) cusps.

In the case, where C1 is a S2(3, 3, 3) and C2 is a S2(2, 3, 6) cusp, the Z/3Z

subgroup of P1 is index 2 in the Z/6Z subgroup of P2. Hence, the covering degree

is 2n2.

�

2.3. For n ≥ 1 and (n, 7) = 1, let βn,m be the orbifold obtained by (n,m) Dehn

surgery on the unknotted cusp of the Berge manifold (see Figure 1) using a standard

framing on the cusps of this link complement as in [Ro].

Figure 1. The Berge manifold is the complement of this link.

The Berge manifold admits several surgery slopes of interest. First if we perform

Dehn surgery along the (1, 0) slope of the unknotted cusp of the Berge manifold,

we will obtain the (−2, 3, 7) pretzel knot (see [FS]). Also, if we drill out a solid

solid torus along the unknotted cusp of the manifold we would obtain the one of

the knots in the solid torus that admits three D2 × S1 fillings (see [Be, Cor 2.9]).

Furthermore, if we perform Dehn surgery along the (1, r) slope and then drill along

the core of the surgered torus, we would also obtain a knot complement in D2×S1

that admits three D2 × S1 surgeries. In fact, by the above mentioned corollary,

these are the only knots in solid tori with this property.
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The above constuction shows that Dehn surgery along a (1, r) slope of the un-

knotted cusp of the Berge manifold produces knot complements that admit three

lens space surgeries. In fact, it is well known that the (1, 0), (18, 1) and (19, 1)

surgery slopes on the (−2, 3, 7) pretzel knot admit lens space surgeries (see [FS]).

By drilling out the unknotted cusp of the Berge manifold, these are also the surgery

slopes that produce a solid torus filling. Since the linking number of the knotted

cusp and the unknotted cusp is 7, the longitude gets sent to the curve (49r, 1) after

(1, r) Dehn surgery on the unknotted cusp while the meridian (1, 0) remains fixed

(see [Ro, Sect 9.H]). So the (1, 0), (18, 1), and (19, 1) surgery parameters get sent

to (1, 0), (49r + 18, 1), and (49r + 19, 1) respectively after (1, r) Dehn surgery on

the unknotted cusp. Furthermore, we can use the surgery paramters to compute

the homology of the manifolds resulting from lens space surgeries on the knot com-

plements. In fact, we see that for these knots we obtain S3 and two lens spaces -

one with fundamental group of order |49r + 18| and another of order |49r + 19|.

More generally, if we allow Dehn surgery along any (p, q) slope of the unknotted

cusp of the Berge manifold where (p,q)=1, and either (1, 0), (18, 1), or (19, 1) Dehn

surgery on the knotted cusp, we will also get lens spaces. Again, by [Ro, Sect 9.H],

we see that the (1, 0) surgery slope corresponds to a lens space of order |p|, (18, 1)

surgery slope corresponds to a lens space of order |49q + 18p|, and (19, 1) surgery

slope corresponds a lens space of order |49q + 19p|.

2.4. Denote v0 ≈ 1.01494146 as the volume of the regular ideal tetrahedron. The

Berge manifold is comprised of four such tetrahedra and therefore its volume is

4v0. Denote by ΓL as the fundamental group of the Berge manifold. Since the

complement of the Berge manifold is comprised of four regular ideal tetrahedra,

ΓL ⊂ Isom+(T) ∼= PGL(2,O3), where T is a tesselation of H3 by regular ideal

tetrahedra. Hence, the Berge manifold is arithmetic.

The proof of the following lemma takes advantage of the fact that the Berge

manifold has relatively low volume in order to show that it cannot cover an orbifold

with a torus cusp and a rigid cusp. Where necessary, we consider all groups as

subgroups in PSL(2,C).
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Lemma 2.2. The Berge manifold does not cover an orbifold with a torus cusp and

a rigid cusp.

Proof of 2.2. Assume QT is an orbifold with a torus cusp and a rigid cusp covered

by the Berge manifold. Since the invariant trace field of the Berge manifold is

Q(
√
−3), the rigid cusp of QT must be either S2(3, 3, 3) or S2(2, 3, 6). In either

case, consideration of the unknotted torus cusp of the Berge manifold covering the

rigid cusp shows the degree of such a cover is 3k for some integer k ≥ 1. Also,

since the Berge manifold is arithmetic and the class number of Q(
√
−3) is 1, it

follows from [CLR, Thm 1.1], that any maximal group commensurable with the

Berge manifold has exactly one cusp. Thus, there exists a one-cusped orbifold QM

covered by QT . By consideration of the cusps of QT covering the rigid cusp of QM

(see Prop 2.1), we see that the covering degree of such a map would be 3l + n2 or

3l+ 2n2 for some integers l, n (In the later case, l must be even).

Thus, the covering of QM by the Berge manifold is of order d = 3k(3l + n2) or

d = 3k(3l+2n2). Now, d ≤ 48 (see [Me]) and since k, l, n ≥ 1, we have that d ≥ 12.

Hence, vol(QM ) ≤ v0/3 if QM has a S2(3, 3, 3) cusp and vol(QM ) ≤ v0/6 if QM

has a S2(2, 3, 6) cusp.

3

2

6

2

2
3

w

Figure 2. The fundamental domain for Γ together with the in-
volution w

It follows that this orbifold must appear on the lists in [A, Thm 3.3, 4.2] and

[NR2]. However, none of the orbifolds with S2(3, 3, 3) cusps appearing on these lists

correspond to maximal groups commensurable with the Berge manifold, so we may
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assume that QM has a S2(2, 3, 6) cusp. After combining the above restrictions on

the degree of a cover and the restrictions from Adams’ list, there are two possiblities

for QM :

either QM has volume v0/6 and a S2(2, 3, 6) cusp (here k = 1, l = 2, n = 1) or

QM has volume v0/12 and a S2(2, 3, 6) cusp (here k = 2, l = 2, n = 1).

First, consider the case where QM has volume v0/6. By noting that πorb
1 (QM )

has an index 2 subgroup Γ :=< x, y, z|x2, y2, z3, (yz−1)2, (zx−1)6, (xy−1)3 > and

πorb
1 (QM ) =< Γ, w > where w is the order 2 rotation on the fundamental domain

of Γ, we obtain a presentation for πorb
1 (QM ) (see [NR1], [MR] and Figure 2).

Thus, we obtain the following presentation

πorb
1 (QM ) =< w, x, y, z|x2, y2, z3, w2, (yz−1)2, (zx−1)6, (xy−1)3, (wx)2, wywyz−1 > .

However, using GAP, the above group does not have any index 8 subgroups. Thus,

there can be no orbifold QT .

In second case, QM
∼= H3/PGL(2,O3) and the [PGL(2,O3) : πorb

1 (QT )] = 8.

If πorb
1 (QT ) ⊂ PSL(2,O3), [PSL(2,O3) : πorb

1 (QT )] = 4. Using GAP, there is a

unique index 4 subgroup G of PSL(2,O3). However, G has finite abelianization,

and therefore cannot be the orbifold group of QT .

Thus, we may assume that πorb
1 (QT ) 6⊂ PSL(2,O3) and deduce that there is a

unique subgroup Λ of index 2 in πorb
1 (QT ) such that Λ ⊂ PSL(2,O3). By covolume

considerations Λ has index 8 in PSL(2,O3). Also, H3/Λ has a torus cusp and an

S2(3, 3, 3) cusp. Since H3/PSL(2,O3) has an S2(3, 3, 3) cusp, the degree of the

covering p : H3/Λ → H3/PSL(2,O3) has to be 3l + n2 (see Prop 2.1), which is

never 8.

This completes the proof. �

3. Cyclic Surgeries on βn,m

In this section, we show that for fixed n and m, βn,m admits three finite cyclic

surgeries. We also show directly it is covered by three knot complements if n 6= 7.
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Lemma 3.1. The orbifolds βn,m are covered by three knot complements. Further

more, the degrees of the corresponding covering maps are distinct.

Proof. For a fixed βn,m, let r = (n,m) and consider βn,m as the union of the

complement of a knot in a solid torus, T1 and a solid torus with core a singular

locus of order r, T2 (see Figure 3).

T1
T2

r

Figure 3. The decomposition of a surgered βn,m along a torus

By [Be, Cor 2.9], T1 admits three Dehn surgeries that result in a solid torus.

Thus, βn,m admits three Dehn surgeries that are homeomorphic to T2 and a solid

torus glued together along their boundaries. Each orbifold Oj (j ∈ {1, 2, 3}) re-

sulting from one of these Dehn surgeries has underlying space a lens space with

πorb
1 (Oj) finite cyclic.

In fact, |πorb
1 (Oj)| is distinct for each choice of j. To see this we observe, as

noted above, that Oj is an orbifold with underlying space a lens space. Moreover,

this underlying space is a lens space with fundamental group of order either n
r
,

|49m
r
+ 18n

r
|, or |49m

r
+ 19n

r
| depending on the choice of surgery on T1 (see § 2).

Splitting Oj into a solid torus coming from the Dehn surgery on T1 and T2 the

solid torus core a singular curve, we can compute πorb
1 (Oj) using van Kampen’s

theorem. Thus, the orders of the each fundamental group increase by a factor of r

and |πorb
1 (Oj)| is either n, r · |49m

r
+ 18n

r
| or r · |49m

r
+ 19n

r
| which take on three

distinct values for fixed n, m and r.

In addition, by the Orbifold Theorem (see [BP, Thm 2]) and the above argument

that πorb
1 (Oj) is finite cyclic, each Oj has S3 as its universal cover. Denote this
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covering map φj : S
3 → Oj . We may view Oj as the union of the solid torus torus

coming from the cusp Dehn filling of βn,m and the complement of this solid torus,

which we denote by B.

Hence φ−1
j (B) is a knot or link exterior in S3. Since (n, 7) = 1 and the singular

set of T2 has linking number 7 with the knotted cusp of βn,m, the boundary of

φ−1
j (B) is connected. Hence, if (n, 7) = 1, βn,m will be covered by three knot

complements in S3. Also, since the orders of |πorb
1 (Oj)| are distinct, the covering

degree of φj will take on a distinct value for each j.

�

Remark 3.2. When n = 1, the classification of exceptional Dehn surgeries in [MP,

Table A.1, Rem A.3] shows that βn,m is hyperbolic. Hence, β1,m is a hyperbolic knot

complement that admits three cyclic surgeries.

4. Proof of The Main Theorem

In this section, we prove Theorem 1.1. Also for this section, we consider Ωn,m,

∆n,m, and ΩL as subgroups of PSL(2,C).

Proof of Theorem 1.1. Using Lemma 3.1, each βn,m is covered by three knot com-

plements such that the covers are of distinct degrees. Also, the Hyperbolic Dehn

Surgery Theorem [Th, Thm 5.8.2] shows that all but at most finitely many of the

βn,m are hyperbolic. For the rest of the proof we only consider those βn,m that are

hyperbolic. Given this condition, each βn,m we consider is covered by three distinct

knot complements. By [BBW, Thm 1.3], to prove Theorem 1.1 it suffices to show

that the knot complements covering βn,m do not have hidden symmetries.

Suppose an infinite number of the hyperbolic knot complements that cover βn,m

admit hidden symmetries. By the discussion in §2.2, every such a knot complement

will non-normally cover an orbifoldQn,m with a rigid cusp. Furthermore, on passage

to a subset of the βn,m, we can assume that the orbifoldsQn,m have the same type of

rigid cusp, C. Let Ωn,m = πorb
1 (βn,m), ∆n,m = πorb

1 (Qn,m) and let P ⊂ PSL(2,C)

be the peripheral subgroup of ∆n,m. We may assume that each Ωn,m is conjugated
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so that P has a fixed representation in PSL(2,C). Since βn,m has one cusp, notice

that ∆n,m = P · Ωn,m

By Thurston’s Hyperbolic Dehn Surgery Theorem [Th, Thm 5.8.2], the volumes

of the βn,m are bounded from above by the volume of the Berge manifold. In

addition, the minimum volume of a non-compact oriented hyperbolic 3-orbifold is

v0
12 (see [Me]). Hence, vol(Qn) ≥ v0

12 . Thus, we can further subsequence to arrange

that βn,m covers Qn,m, that the Qn,m’s have the same type of rigid cusp, and that

the covering degree is fixed, say d.

Since βn,m is obtained by Dehn surgery on the Berge manifold, the Ωn,m will

converge algebraically and geometrically to ΩL, the fundamental group of the Berge

manifold (see [Th, Thm 5.8.2]). As P was a fixed group in our construction, ∆n,r

also converges algebraically and geometrically to P · ΩL.

We have the following diagram:

∆n,m

(n,m)→∞

// P · ΩL

Ωn,m

?�

d

OO

(n,m)→∞

// ΩL

?�

d

OO

Note, [P · ΩL : ΩL] = d < ∞. Let QT = H3/P · ΩL. QT has two cusps: a

torus cusp, corresponding to the cusp created by geometric convergence from Dehn

surgery, and a rigid cusp, corresponding to the cusp with peripheral group P .

However by Lemma 2.2, such a limiting QL cannot exist. Hence, at most finitely

many of the βn,m have hidden symmetries.

�

Remark 4.1. To find explicit examples of hyperbolic knot complements with three

knot complements in the commensurability class, we can use the computer program

snap to show directly that there are no hidden symmetries. Specifically, for m=0

and n=2,3,4,5,6,7, βn,m is hyperbolic and snap show us that βn,m has an invariant

trace field with real embeddings. These fields cannot contain Q(i) or Q(
√
−3) as

subfields. Thus, these knot complements do not have hidden symmetries (recall §

2.2) and there are exactly three knot complements in the commensurability classes.
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5. Remarks

The following theorem provides a partial classification of hyperbolic orbifolds

covered by three knot complements. It can be seen as a direct corollary to a result

of [BBW]. However, a proof is provided below for completeness.

Theorem 5.1. Let O be a closed 3-orbifold and let K be a knot in O that is disjoint

from singular locus of O. If O −K is:

(1) hyperbolic,

(2) covered by 3 knot complements,

(3) does not admit hidden symmetries, and

(4) O has non-empty singular locus,

then O −K ∼= βn,m for some pair (n,m).

Proof. Let γ be the singular locus of O. Denote |O| the underlying space of O.

By [BBW, Thm 1.2] and the assumptions, we know that |O| is a lens space, γ is a

non-empty subset of the cores of a genus 1 Heegaard splitting of |O|, and if S3−K

covers O −K then it does so cyclically and corresponds to a finite cyclic filling of

O −K. Finally, denote M = O − γ −K

First assume γ has one component. Each of the three knot complements covering

O−K will correspond to a S1×D2 filling on knotted cusp of M . Again, we appeal

to the fact that there is a a unique family of knots in solid tori that admits 3 non-

trivial S1 × D2 fillings (see [Be, Cor 9.1]). Hence, M is obtained by performing

(1,m) surgery on the unknotted cusp of the Berge manifold then drilling out the

core of the surgered torus. Gluing back in the neighborhood of the fixed point set

of 〈γ〉 gives us βn,m for some n,m.

Now, assume that γ has two components γ1 and γ2. M = T 2 × I −K ′, where

K ′ is a knot. Each of the three finite cyclic on O −K corresponds M admitting a

T 2 × I filling. Hence, Dehn filling along the cusp corresponding to γ1 will produce

a knot complement in D2 × S1 with three D2 × S1 fillings.

Denote l1 to be the linking number of γ1 and K ′ and l2 to be the linking number

of γ2 and K ′. If l1 is zero, K ′ would be a knot in a solid torus that is not a 1-braid
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Figure 4. The K(7,5,2,-1)

after (1, 0) on γ2 but has two non-trivial S1×D2 fillings. This contradicts [Be, Cor

9.1]. Hence, we may assume l1 6= 0 and l2 6= 0.

Also, (1, n) surgery on γ2 will produce a knot K ′′ in a solid torus that has linking

number l2 + n · l1 with γ2. In particular for large enough n l2 + n · l1 6= 7. Hence,

in cannot be in the family of knots that admit two non-trivial S1 ×D2 fillings. �

One might hope to relax condition (4) above. However, Brandy Guntel pointed

out that the K(7, 5, 2,−1) knot complement (see Figure 4) is hyperbolic and admits

two non-trivial cyclic surgeries. The fundamental group of one of these lens spaces

is of order 32. By our original discussion in §2.3, knot complements obtained by

Dehn surgery on the unknotted cusp of the Berge manifold have lens spaces of

order |49r−18| and |49r−19| neither of which can be 32. Hence, the K(7, 5, 2,−1)

complement is not one of the βn,m. However, since the invariant trace field of the

K(7, 5, 2,−1) is an odd degree extension of Q, we see that this knot complement

does not admit hidden symmetries and the K(7, 5, 2,−1) has exactly three knot

complements in its comensurability class (see [RW, Cor 5.4]).

As mentioned above (1,m) surgery on the unknotted cusp of the Berge mani-

fold produces Berge knots. It seems natural to ask if any hyperbolic Berge knots

can have hidden symmetries. More generally, we might ask if any hyperbolic knot

complements can have hidden symmetries and admit non-trivial lens space surg-

eries. As discussed in § 1, there are three hyperbolic knot complements known

to have hidden symmetries: the complements of the two dodecahedral knots of

Aitchison and Rubinstein, and the figure eight knot complement (see [AR],[NR1]).
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Using SnapPea one can see that both dodecahedral knots are amphichiral. Thus,

by [CGLS, Cor 4] they cannot admit a lens space surgery. Additionally, it is well

known that the figure eight knot complement does not admit a lens space surgery

(see [Ta] for example).
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