COMMENSURABILITY CLASSES CONTAINING THREE KNOT COMPLEMENTS

NEIL HOFFMAN

Abstract

This paper exhibits an infinite family of hyperbolic knot complements that have three knot complements in their respective commensurability classes.

1. Introduction

The study of the commensurability classes of hyperbolic knot complements that contain other knot complements has attracted some recent interest (see [BBW], CD , GHH HS , MM, NR1, Re, RW]). A particularly interesting set of examples results from cyclic surgeries on hyperbolic knot complements, since the cyclic surgeries give rise to cyclic covers by other knot complements (see [GW). Moreover, The Cyclic Surgery Theorem CGLS shows that there are at most two non-trivial cyclic surgeries on a hyperbolic knot complement and so a hyperbolic knot complement has at most two non-trivial, finite sheeted covers which are other knot complements. Similarly, if a hyperbolic knot complement, $S^{3}-k_{1}$ is covered by another knot complement, $S^{3}-k_{2}$, then $S^{3}-k_{1}$ admits a cyclic surgery. There are known examples of hyperbolic knot complements with exactly three knot complements in their commensurability classes. For example, the $(-2,3,7)$ pretzel knot of [FS] famously admits two non-trivial cyclic surgeries and is therefore covered by two other hyperbolic knot complements.

An infinite family of pairs of commensurable hyperbolic knot complements was constructed by W. Neuman.

For a discussion of this construction, see GHH.
Finally, two hyperbolic knot complements can be commensurable if they both have hidden symmetries. This property is equivalent to both knot complements

[^0]non-normally covering the same orbifold (see §(2.2). The dodecahedral knots of AR admit the only known examples of non-arithmetic knot complements with hidden symmetries (see NR1) and the figure 8 knot complement is the only arithmetic knot complement (see $\underline{\mathrm{Re}}$).

This discussion motivates the following conjecture of Reid and Walsh (see RW, Conj 5.2]).

Conjecture. Let $S^{3}-K$ be a hyperbolic knot complement. Then, there are at most two other knot complements in its commensurability class.

It has been announced by Boileau, Boyer, and Walsh ([BBW], Thm 1.3]) that the conjecture holds for knot complements without hidden symmetries. In their paper, they show that if a hyperbolic knot complement does not admit hidden symmetries, then any commensurable hyperbolic knot complement will cover a common orbifold. Furthermore, this orbifold admits a finite cyclic surgery for each knot complement that covers it. This paper presents a family of such orbifolds that are covered by exactly three hyperbolic knot complements. Specifically, the main theorem of this paper is the following (see $\S 2$ for definitions):

Theorem 1.1. Let $n \geq 1$ and $(n, 7)=1$. For all but at most finitely many pairs of integers (n, m), the result of (n, m) Dehn surgery on the unknotted cusp of the Berge manifold is a hyperbolic orbifold with exactly three knot complements its commensurability classes.

The infinite family of orbifolds described by Theorem 1.1 which we refer to as $\beta_{n, m}$ (see 42) also has the property that for $n \neq 1$, each knot complement covering $\beta_{n, m}$ admits an n-fold symmetry which does not fix any point on the cusp. In particular, even when $n=2$, this symmetry is not a strong involution. By WZ, such a knot complement cannot admit a lens space surgery and so, by the above discussion, is not covered by any other knot complement.

The paper is organized as follows. In addition to some background material and definitions, § 2 we prove a lemma about possible orbifold quotients of the Berge manifold. In \S 3 we show that the orbifolds $\beta_{n, m}$ are shown to admit three
cyclic surgeries, and the proof of the main theorem is contained in $\S 4$ In \S.5 we provide a partial classification of commensurability classes containing three knot complements.

2. Preliminaries

2.1. Two hyperbolic 3 -orbifolds, $\mathbb{H}^{3} / \Gamma_{1}$ and $\mathbb{H}^{3} / \Gamma_{2}$, are said to be commensurable if they share a common finite sheeted cover. In terms of groups, $\exists g \in P S L(2, \mathbb{C})$ so that Γ_{1} and $g \Gamma_{2} g^{-1}$ have a common subgroup which is finite index in both groups.

Let $\operatorname{Comm}^{+}(\Gamma)=\left\{g \in \operatorname{PSL}(2, \mathbb{C}) \mid\left[\Gamma: \Gamma \cap g \Gamma g^{-1}\right]<\infty\right.$ and $\left[g \Gamma g^{-1}: \Gamma \cap\right.$ $\left.\left.g \Gamma g^{-1}\right]<\infty\right\}$ and $N^{+}(\Gamma)$ be the normalizer of Γ in $P S L(2, \mathbb{C})$. We say that a group Γ has hidden symmetries if $\left[\operatorname{Comm}^{+}(\Gamma): N^{+}(\Gamma)\right]>1$. A hyperbolic orbifold, M, has hidden symmetries if $\pi_{1}^{\text {orb }}(M)$ has hidden symmetries. For this discussion, we consider only orientable manifolds and orbifolds.
2.2. When a hyperbolic knot group has hidden symmetries the associated knot complement non-normally covers some orbifold with a rigid cusp i.e. the cusp is $C \times[0, \infty)$ where C is $S^{2}(2,3,6), S^{2}(3,3,3)$ or $S^{2}(2,4,4)$ (see [Re, Lemma 4]).

By NR1, Prop 2.7], the cusp field of a hyperbolic orbifold is a subfield of the invariant trace field. Thus, if a hyperbolic orbifold has a $S^{2}(3,3,3)$ or $S^{2}(2,3,6)$ cusp, $\mathbb{Q}(\sqrt{-3})$ must be a subfield of the orbifold's invariant trace field and if the cusp is $S^{2}(2,4,4), \mathbb{Q}(i)$ must be a subfield of the orbifold's invariant trace field (see [NR1, Proof of Thm 5.1(iv)]).

Proposition 2.1. Let $p: O_{1} \rightarrow O_{2}$ be a covering of orbifolds such that O_{1} has a rigid cusp C_{1}. Then, O_{2} has a rigid cusp C_{2} such that $p\left(C_{1}\right)=C_{2}$ and if $x \in C_{2}$ then $\left|p^{-1}(x) \cap C_{1}\right|=n^{2}$ for some integer n unless C_{1} is $S^{2}(3,3,3)$ and C_{2} is $S^{2}(2,3,6)$ then $\left|p^{-1}(x) \cap C_{1}\right|=2 n^{2}$ for some integer n.

Proof. First consider the case where C_{1} is an $S^{2}(2,4,4)$. In this case, C_{2} must also be a $S^{2}(2,4,4)$ cusp. The peripheral subgroup corresponding to C_{2} is $P_{2} \cong$ $(\mathbb{Z} \times \mathbb{Z}) \rtimes_{\phi} \mathbb{Z} / 4 \mathbb{Z}$, and so P_{2} has an element of order 4 acting on the cusp. Thus, $\phi: \mathbb{Z} / 4 \mathbb{Z} \rightarrow \operatorname{Aut}(\mathbb{Z} \times \mathbb{Z})$ is a faithful representation. Let $P_{1} \subset P_{2}$ be the peripheral subgroup corresponding to C_{1}. So $P_{1} \cong(n \mathbb{Z} \times m \mathbb{Z}) \rtimes_{\phi} \mathbb{Z} / 4 \mathbb{Z}$. However, the order

4 automorphism switches the two generators for the $\mathbb{Z} \times \mathbb{Z}$ subgroup of P_{2}. Thus, $n=m$ and the degree of the covering is n^{2}.

A similiar proof carries through if C_{1} and C_{2} are both either $S^{2}(3,3,3)$ or $S^{2}(2,3,6)$ cusps.

In the case, where C_{1} is a $S^{2}(3,3,3)$ and C_{2} is a $S^{2}(2,3,6)$ cusp, the $\mathbb{Z} / 3 \mathbb{Z}$ subgroup of P_{1} is index 2 in the $\mathbb{Z} / 6 \mathbb{Z}$ subgroup of P_{2}. Hence, the covering degree is $2 n^{2}$.
2.3. For $n \geq 1$ and $(n, 7)=1$, let $\beta_{n, m}$ be the orbifold obtained by (n, m) Dehn surgery on the unknotted cusp of the Berge manifold (see Figure 1) using a standard framing on the cusps of this link complement as in Ro.

Figure 1. The Berge manifold is the complement of this link.

The Berge manifold admits several surgery slopes of interest. First if we perform Dehn surgery along the $(1,0)$ slope of the unknotted cusp of the Berge manifold, we will obtain the $(-2,3,7)$ pretzel knot (see [FS]). Also, if we drill out a solid solid torus along the unknotted cusp of the manifold we would obtain the one of the knots in the solid torus that admits three $D^{2} \times S^{1}$ fillings (see [Be, Cor 2.9]). Furthermore, if we perform Dehn surgery along the $(1, r)$ slope and then drill along the core of the surgered torus, we would also obtain a knot complement in $D^{2} \times S^{1}$ that admits three $D^{2} \times S^{1}$ surgeries. In fact, by the above mentioned corollary, these are the only knots in solid tori with this property.

The above constuction shows that Dehn surgery along a $(1, r)$ slope of the unknotted cusp of the Berge manifold produces knot complements that admit three lens space surgeries. In fact, it is well known that the $(1,0),(18,1)$ and $(19,1)$ surgery slopes on the $(-2,3,7)$ pretzel knot admit lens space surgeries (see [FS]). By drilling out the unknotted cusp of the Berge manifold, these are also the surgery slopes that produce a solid torus filling. Since the linking number of the knotted cusp and the unknotted cusp is 7 , the longitude gets sent to the curve $(49 r, 1)$ after $(1, r)$ Dehn surgery on the unknotted cusp while the meridian $(1,0)$ remains fixed (see [Ro, Sect $9 . H]$). So the $(1,0),(18,1)$, and $(19,1)$ surgery parameters get sent to $(1,0),(49 r+18,1)$, and $(49 r+19,1)$ respectively after $(1, r)$ Dehn surgery on the unknotted cusp. Furthermore, we can use the surgery paramters to compute the homology of the manifolds resulting from lens space surgeries on the knot complements. In fact, we see that for these knots we obtain S^{3} and two lens spaces one with fundamental group of order $|49 r+18|$ and another of order $|49 r+19|$.

More generally, if we allow Dehn surgery along any (p, q) slope of the unknotted cusp of the Berge manifold where $(p, q)=1$, and either $(1,0),(18,1)$, or $(19,1)$ Dehn surgery on the knotted cusp, we will also get lens spaces. Again, by [Ro, Sect 9.H], we see that the $(1,0)$ surgery slope corresponds to a lens space of order $|p|,(18,1)$ surgery slope corresponds to a lens space of order $|49 q+18 p|$, and $(19,1)$ surgery slope corresponds a lens space of order $|49 q+19 p|$.
2.4. Denote $v_{0} \approx 1.01494146$ as the volume of the regular ideal tetrahedron. The Berge manifold is comprised of four such tetrahedra and therefore its volume is $4 v_{0}$. Denote by Γ_{L} as the fundamental group of the Berge manifold. Since the complement of the Berge manifold is comprised of four regular ideal tetrahedra, $\Gamma_{L} \subset \operatorname{Isom}^{+}(\mathbb{T}) \cong \operatorname{PGL}\left(2, \mathbb{O}_{3}\right)$, where \mathbb{T} is a tesselation of \mathbb{H}^{3} by regular ideal tetrahedra. Hence, the Berge manifold is arithmetic.

The proof of the following lemma takes advantage of the fact that the Berge manifold has relatively low volume in order to show that it cannot cover an orbifold with a torus cusp and a rigid cusp. Where necessary, we consider all groups as subgroups in $\operatorname{PSL}(2, \mathbb{C})$.

Lemma 2.2. The Berge manifold does not cover an orbifold with a torus cusp and a rigid cusp.

Proof of 2.2. Assume Q_{T} is an orbifold with a torus cusp and a rigid cusp covered by the Berge manifold. Since the invariant trace field of the Berge manifold is $\mathbb{Q}(\sqrt{-3})$, the rigid cusp of Q_{T} must be either $S^{2}(3,3,3)$ or $S^{2}(2,3,6)$. In either case, consideration of the unknotted torus cusp of the Berge manifold covering the rigid cusp shows the degree of such a cover is $3 k$ for some integer $k \geq 1$. Also, since the Berge manifold is arithmetic and the class number of $\mathbb{Q}(\sqrt{-3})$ is 1 , it follows from [CLR, Thm 1.1], that any maximal group commensurable with the Berge manifold has exactly one cusp. Thus, there exists a one-cusped orbifold Q_{M} covered by Q_{T}. By consideration of the cusps of Q_{T} covering the rigid cusp of Q_{M} (see Prop 2.1), we see that the covering degree of such a map would be $3 l+n^{2}$ or $3 l+2 n^{2}$ for some integers l, n (In the later case, l must be even).

Thus, the covering of Q_{M} by the Berge manifold is of order $d=3 k\left(3 l+n^{2}\right)$ or $d=3 k\left(3 l+2 n^{2}\right)$. Now, $d \leq 48$ (see Me]) and since $k, l, n \geq 1$, we have that $d \geq 12$. Hence, $\operatorname{vol}\left(Q_{M}\right) \leq v_{0} / 3$ if Q_{M} has a $S^{2}(3,3,3)$ cusp and $\operatorname{vol}\left(Q_{M}\right) \leq v_{0} / 6$ if Q_{M} has a $S^{2}(2,3,6)$ cusp.

Figure 2. The fundamental domain for Γ together with the involution w

It follows that this orbifold must appear on the lists in A. Thm 3.3, 4.2] and NR2. However, none of the orbifolds with $S^{2}(3,3,3)$ cusps appearing on these lists correspond to maximal groups commensurable with the Berge manifold, so we may
assume that Q_{M} has a $S^{2}(2,3,6)$ cusp. After combining the above restrictions on the degree of a cover and the restrictions from Adams' list, there are two possiblities for Q_{M} :
either Q_{M} has volume $v_{0} / 6$ and a $S^{2}(2,3,6)$ cusp (here $k=1, l=2, n=1$) or Q_{M} has volume $v_{0} / 12$ and a $S^{2}(2,3,6)$ cusp (here $k=2, l=2, n=1$).

First, consider the case where Q_{M} has volume $v_{0} / 6$. By noting that $\pi_{1}^{\text {orb }}\left(Q_{M}\right)$ has an index 2 subgroup $\Gamma:=<x, y, z \mid x^{2}, y^{2}, z^{3},\left(y z^{-1}\right)^{2},\left(z x^{-1}\right)^{6},\left(x y^{-1}\right)^{3}>$ and $\pi_{1}^{o r b}\left(Q_{M}\right)=<\Gamma, w>$ where w is the order 2 rotation on the fundamental domain of Γ, we obtain a presentation for $\pi_{1}^{o r b}\left(Q_{M}\right)$ (see [NR1, MR and Figure 2).

Thus, we obtain the following presentation
$\pi_{1}^{o r b}\left(Q_{M}\right)=<w, x, y, z \mid x^{2}, y^{2}, z^{3}, w^{2},\left(y z^{-1}\right)^{2},\left(z x^{-1}\right)^{6},\left(x y^{-1}\right)^{3},(w x)^{2}, w y w y z^{-1}>$.

However, using GAP, the above group does not have any index 8 subgroups. Thus, there can be no orbifold Q_{T}.

In second case, $Q_{M} \cong \mathbb{H}^{3} / P G L\left(2, \mathbb{O}_{3}\right)$ and the $\left[P G L\left(2, \mathbb{O}_{3}\right): \pi_{1}^{o r b}\left(Q_{T}\right)\right]=8$. If $\pi_{1}^{o r b}\left(Q_{T}\right) \subset P S L\left(2, \mathbb{O}_{3}\right),\left[P S L\left(2, \mathbb{O}_{3}\right): \pi_{1}^{o r b}\left(Q_{T}\right)\right]=4$. Using GAP, there is a unique index 4 subgroup G of $\operatorname{PSL}\left(2, \mathbb{O}_{3}\right)$. However, G has finite abelianization, and therefore cannot be the orbifold group of Q_{T}.

Thus, we may assume that $\pi_{1}^{\text {orb }}\left(Q_{T}\right) \not \subset P S L\left(2, \mathbb{O}_{3}\right)$ and deduce that there is a unique subgroup Λ of index 2 in $\pi_{1}^{\text {orb }}\left(Q_{T}\right)$ such that $\Lambda \subset P S L\left(2, \mathbb{O}_{3}\right)$. By covolume considerations Λ has index 8 in $\operatorname{PSL}\left(2, \mathbb{O}_{3}\right)$. Also, \mathbb{H}^{3} / Λ has a torus cusp and an $S^{2}(3,3,3)$ cusp. Since $\mathbb{H}^{3} / P S L\left(2, \mathbb{O}_{3}\right)$ has an $S^{2}(3,3,3)$ cusp, the degree of the covering $p: \mathbb{H}^{3} / \Lambda \rightarrow \mathbb{H}^{3} / \operatorname{PSL}\left(2, \mathbb{O}_{3}\right)$ has to be $3 l+n^{2}$ (see Prop 2.1), which is never 8 .

This completes the proof.

3. Cyclic Surgeries on $\beta_{n, m}$

In this section, we show that for fixed n and $\mathrm{m}, \beta_{n, m}$ admits three finite cyclic surgeries. We also show directly it is covered by three knot complements if $n \neq 7$.

Lemma 3.1. The orbifolds $\beta_{n, m}$ are covered by three knot complements. Further more, the degrees of the corresponding covering maps are distinct.

Proof. For a fixed $\beta_{n, m}$, let $r=(n, m)$ and consider $\beta_{n, m}$ as the union of the complement of a knot in a solid torus, T_{1} and a solid torus with core a singular locus of order r, T_{2} (see Figure 3).

Figure 3. The decomposition of a surgered $\beta_{n, m}$ along a torus

By [Be, Cor 2.9], T_{1} admits three Dehn surgeries that result in a solid torus. Thus, $\beta_{n, m}$ admits three Dehn surgeries that are homeomorphic to T_{2} and a solid torus glued together along their boundaries. Each orbifold $O_{j}(j \in\{1,2,3\})$ resulting from one of these Dehn surgeries has underlying space a lens space with $\pi_{1}^{o r b}\left(O_{j}\right)$ finite cyclic.

In fact, $\left|\pi_{1}^{o r b}\left(O_{j}\right)\right|$ is distinct for each choice of j. To see this we observe, as noted above, that O_{j} is an orbifold with underlying space a lens space. Moreover, this underlying space is a lens space with fundamental group of order either $\frac{n}{r}$, $\left|49 \frac{m}{r}+18 \frac{n}{r}\right|$, or $\left|49 \frac{m}{r}+19 \frac{n}{r}\right|$ depending on the choice of surgery on T_{1} (see § 2). Splitting O_{j} into a solid torus coming from the Dehn surgery on T_{1} and T_{2} the solid torus core a singular curve, we can compute $\pi_{1}^{o r b}\left(O_{j}\right)$ using van Kampen's theorem. Thus, the orders of the each fundamental group increase by a factor of r and $\left|\pi_{1}^{\text {orb }}\left(O_{j}\right)\right|$ is either $n, r \cdot\left|49 \frac{m}{r}+18 \frac{n}{r}\right|$ or $r \cdot\left|49 \frac{m}{r}+19 \frac{n}{r}\right|$ which take on three distinct values for fixed n, m and r.

In addition, by the Orbifold Theorem (see [BP, Thm 2]) and the above argument that $\pi_{1}^{o r b}\left(O_{j}\right)$ is finite cyclic, each O_{j} has S^{3} as its universal cover. Denote this
covering map $\phi_{j}: S^{3} \rightarrow O_{j}$. We may view O_{j} as the union of the solid torus torus coming from the cusp Dehn filling of $\beta_{n, m}$ and the complement of this solid torus, which we denote by B.

Hence $\phi_{j}^{-1}(B)$ is a knot or link exterior in S^{3}. Since $(n, 7)=1$ and the singular set of T_{2} has linking number 7 with the knotted cusp of $\beta_{n, m}$, the boundary of $\phi_{j}^{-1}(B)$ is connected. Hence, if $(n, 7)=1, \beta_{n, m}$ will be covered by three knot complements in S^{3}. Also, since the orders of $\left|\pi_{1}^{o r b}\left(O_{j}\right)\right|$ are distinct, the covering degree of ϕ_{j} will take on a distinct value for each j.

Remark 3.2. When $n=1$, the classification of exceptional Dehn surgeries in MP, Table A.1, Rem A.3] shows that $\beta_{n, m}$ is hyperbolic. Hence, $\beta_{1, m}$ is a hyperbolic knot complement that admits three cyclic surgeries.

4. Proof of The Main Theorem

In this section, we prove Theorem 1.1. Also for this section, we consider $\Omega_{n, m}$, $\Delta_{n, m}$, and Ω_{L} as subgroups of $\operatorname{PSL}(2, \mathbb{C})$.

Proof of Theorem 1.1. Using Lemma 3.1, each $\beta_{n, m}$ is covered by three knot complements such that the covers are of distinct degrees. Also, the Hyperbolic Dehn Surgery Theorem [Th, Thm 5.8.2] shows that all but at most finitely many of the $\beta_{n, m}$ are hyperbolic. For the rest of the proof we only consider those $\beta_{n, m}$ that are hyperbolic. Given this condition, each $\beta_{n, m}$ we consider is covered by three distinct knot complements. By BBW, Thm 1.3], to prove Theorem [1.1 it suffices to show that the knot complements covering $\beta_{n, m}$ do not have hidden symmetries.

Suppose an infinite number of the hyperbolic knot complements that cover $\beta_{n, m}$ admit hidden symmetries. By the discussion in $\$ 2.2$ every such a knot complement will non-normally cover an orbifold $Q_{n, m}$ with a rigid cusp. Furthermore, on passage to a subset of the $\beta_{n, m}$, we can assume that the orbifolds $Q_{n, m}$ have the same type of rigid cusp, C. Let $\Omega_{n, m}=\pi_{1}^{o r b}\left(\beta_{n, m}\right), \Delta_{n, m}=\pi_{1}^{o r b}\left(Q_{n, m}\right)$ and let $P \subset P S L(2, \mathbb{C})$ be the peripheral subgroup of $\Delta_{n, m}$. We may assume that each $\Omega_{n, m}$ is conjugated
so that P has a fixed representation in $\operatorname{PSL}(2, \mathbb{C})$. Since $\beta_{n, m}$ has one cusp, notice that $\Delta_{n, m}=P \cdot \Omega_{n, m}$

By Thurston's Hyperbolic Dehn Surgery Theorem Th, Thm 5.8.2], the volumes of the $\beta_{n, m}$ are bounded from above by the volume of the Berge manifold. In addition, the minimum volume of a non-compact oriented hyperbolic 3-orbifold is $\frac{v_{0}}{12}$ (see Me $)$. Hence, $\operatorname{vol}\left(Q_{n}\right) \geq \frac{v_{0}}{12}$. Thus, we can further subsequence to arrange that $\beta_{n, m}$ covers $Q_{n, m}$, that the $Q_{n, m}$'s have the same type of rigid cusp, and that the covering degree is fixed, say d.

Since $\beta_{n, m}$ is obtained by Dehn surgery on the Berge manifold, the $\Omega_{n, m}$ will converge algebraically and geometrically to Ω_{L}, the fundamental group of the Berge manifold (see Th, Thm 5.8.2]). As P was a fixed group in our construction, $\Delta_{n, r}$ also converges algebraically and geometrically to $P \cdot \Omega_{L}$.

We have the following diagram:

Note, $\left[P \cdot \Omega_{L}: \Omega_{L}\right]=d<\infty$. Let $Q_{T}=\mathbb{H}^{3} / P \cdot \Omega_{L} . Q_{T}$ has two cusps: a torus cusp, corresponding to the cusp created by geometric convergence from Dehn surgery, and a rigid cusp, corresponding to the cusp with peripheral group P.

However by Lemma 2.2, such a limiting Q_{L} cannot exist. Hence, at most finitely many of the $\beta_{n, m}$ have hidden symmetries.

Remark 4.1. To find explicit examples of hyperbolic knot complements with three knot complements in the commensurability class, we can use the computer program snap to show directly that there are no hidden symmetries. Specifically, for $m=0$ and $n=2,3,4,5,6,7, \beta_{n, m}$ is hyperbolic and snap show us that $\beta_{n, m}$ has an invariant trace field with real embeddings. These fields cannot contain $\mathbb{Q}(i)$ or $\mathbb{Q}(\sqrt{-3})$ as subfields. Thus, these knot complements do not have hidden symmetries (recall § (2.2) and there are exactly three knot complements in the commensurability classes.

5. Remarks

The following theorem provides a partial classification of hyperbolic orbifolds covered by three knot complements. It can be seen as a direct corollary to a result of BBW . However, a proof is provided below for completeness.

Theorem 5.1. Let O be a closed 3-orbifold and let K be a knot in O that is disjoint from singular locus of O. If $O-K$ is:
(1) hyperbolic,
(2) covered by 3 knot complements,
(3) does not admit hidden symmetries, and
(4) O has non-empty singular locus,
then $O-K \cong \beta_{n, m}$ for some pair (n, m).

Proof. Let γ be the singular locus of O. Denote $|O|$ the underlying space of O. By $\overline{\mathrm{BBW}}$, Thm 1.2] and the assumptions, we know that $|O|$ is a lens space, γ is a non-empty subset of the cores of a genus 1 Heegaard splitting of $|O|$, and if $S^{3}-K$ covers $O-K$ then it does so cyclically and corresponds to a finite cyclic filling of $O-K$. Finally, denote $M=O-\gamma-K$

First assume γ has one component. Each of the three knot complements covering $O-K$ will correspond to a $S^{1} \times D^{2}$ filling on knotted cusp of M. Again, we appeal to the fact that there is a a unique family of knots in solid tori that admits 3 nontrivial $S^{1} \times D^{2}$ fillings (see [Be, Cor 9.1]). Hence, M is obtained by performing $(1, m)$ surgery on the unknotted cusp of the Berge manifold then drilling out the core of the surgered torus. Gluing back in the neighborhood of the fixed point set of $\langle\gamma\rangle$ gives us $\beta_{n, m}$ for some n, m.

Now, assume that γ has two components γ_{1} and $\gamma_{2} . M=T^{2} \times I-K^{\prime}$, where K^{\prime} is a knot. Each of the three finite cyclic on $O-K$ corresponds M admitting a $T^{2} \times I$ filling. Hence, Dehn filling along the cusp corresponding to γ_{1} will produce a knot complement in $D^{2} \times S^{1}$ with three $D^{2} \times S^{1}$ fillings.

Denote l_{1} to be the linking number of γ_{1} and K^{\prime} and l_{2} to be the linking number of γ_{2} and K^{\prime}. If l_{1} is zero, K^{\prime} would be a knot in a solid torus that is not a 1-braid

Figure 4. The $\mathrm{K}(7,5,2,-1)$
after $(1,0)$ on γ_{2} but has two non-trivial $S^{1} \times D^{2}$ fillings. This contradicts Be, Cor 9.1]. Hence, we may assume $l_{1} \neq 0$ and $l_{2} \neq 0$.

Also, $(1, n)$ surgery on γ_{2} will produce a knot $K^{\prime \prime}$ in a solid torus that has linking number $l_{2}+n \cdot l_{1}$ with γ_{2}. In particular for large enough $n l_{2}+n \cdot l_{1} \neq 7$. Hence, in cannot be in the family of knots that admit two non-trivial $S^{1} \times D^{2}$ fillings.

One might hope to relax condition (4) above. However, Brandy Guntel pointed out that the $K(7,5,2,-1)$ knot complement (see Figure (4) is hyperbolic and admits two non-trivial cyclic surgeries. The fundamental group of one of these lens spaces is of order 32. By our original discussion in 2.3, knot complements obtained by Dehn surgery on the unknotted cusp of the Berge manifold have lens spaces of order $|49 r-18|$ and $|49 r-19|$ neither of which can be 32 . Hence, the $K(7,5,2,-1)$ complement is not one of the $\beta_{n, m}$. However, since the invariant trace field of the $K(7,5,2,-1)$ is an odd degree extension of \mathbb{Q}, we see that this knot complement does not admit hidden symmetries and the $K(7,5,2,-1)$ has exactly three knot complements in its comensurability class (see RW, Cor 5.4]).

As mentioned above $(1, m)$ surgery on the unknotted cusp of the Berge manifold produces Berge knots. It seems natural to ask if any hyperbolic Berge knots can have hidden symmetries. More generally, we might ask if any hyperbolic knot complements can have hidden symmetries and admit non-trivial lens space surgeries. As discussed in $\S 1$ there are three hyperbolic knot complements known to have hidden symmetries: the complements of the two dodecahedral knots of Aitchison and Rubinstein, and the figure eight knot complement (see AR, NR1).

Using SnapPea one can see that both dodecahedral knots are amphichiral. Thus, by [CGLS, Cor 4] they cannot admit a lens space surgery. Additionally, it is well known that the figure eight knot complement does not admit a lens space surgery (see [Ta] for example).

6. Acknowledgments

First, I would like to thank Alan Reid for raising the questions that lead to this paper and thoughtfully guiding this work from its formative stages to completion. I also would like to thank Cameron Gordon for showing me the family of knot complements with three lens space surgeries $\beta_{1, m}$. Third, I would like to thank Genevieve Walsh and Steve Boyer for a number of enlightening conversations and their suggestions on early versions of this paper. Finally, I would like to thank my fellow graduate students for a number of helpful conversations.

References

[A] C. Adams, Non-compact 3-orbifolds of small volume in Topology '90, Ohio State Univ. Math. Res. Inst. Publ. Vol. 1, de Gruyter (1992) pp. 273-310.
[AR] I. R. Aitchison and J. H. Rubinstein, Combinatorial cubings, cusp and the dodecahedral $k n o t s$, in Topology '90, Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992), pp. 17-26.
[Be] J. Berge, The knots in $D^{2} \times S^{1}$ with nontrivial Dehn surgeries yielding $D^{2} \times S^{1}$, Topology. Appl. Vol. 38, (1991) pp. 1-19.
[BBW] M. Boileau, S. Boyer, and G. Walsh, On commensurability of knot complements, preprint.
[BP] M. Boileau, J. Porti, Geometrization of 3-orbifolds of cyclic type, Astérsique 272 (2001).
[CD] D. Calegari and N. M. Dunfield, Commensurability of 1-cusped hyperbolic 3-manifolds, Trans. Amer. Math. Soc. Vol. 354 (2002), pp. 2955-2969.
[CGLS] M. Culler, C.McA Gordon, J. Leucke and P. Shalen, Dehn surgery on knots, Ann. of Math. Vol. 125 (1989) pp. 237-300.
[CLR] T. Chinburg, D. Long, and A. W. Reid, Cusps of minimal non-compact arithmetic hyperbolic 3-orbifolds, Pure and Applied Math Quarterly, Vol. 4 (2008) pp. 1013-1031.
[FS] R. Fintushel and R. Stern, Constructing lens spaces by surgery on knots, Math. Z. Vol. 175 (1980) pp. 33-51.
[GHH] O. Goodman, D. Heard, and C. Hodgson, Commensurators of Cusped Hyperbolic Manifolds, Experimental Mathematics, Vol. 17 no 3 (2008), pp 283-306.
[GW] F. González-Acuña and W.C. Whitten, Imbeddings of three-manifold groups, Mem. Amer. Math. Soc. Vol. 474 (1992).
[HS] J. Hoste and P. Shanahan, Commensurability classes of twist knots, J. Knot Theory Ramifications Vol. 14 no. 1,(2005) pp. 91-100.
[MR] C. Maclachlan and A. W. Reid, The Arithmetic of Hyperbolic 3-Manifolds, Springer New York (2003).
[MP] B. Martelli and C. Petronio, Dehn filling of the "magic" 3-manifold, Comm. Anal. Geom. Vol. 14, No. 5 (2006), p. 969-1026.
[Me] R. Meyerhoff, The cusped hyperbolic 3-orbifold of minimum volume, Bull. Amer. Math. Soc. Vol. 13 (1985) pp. 154-156.
[MB] J. W. Morgan and H. Bass (editors), The Smith Conjecture, Academic Press, New York (1984).
[MM] M. Macasieb and T. Mattman, Commensurability classes of (-2,3,n) pretzel knot complements, Alg. \& Geom. Top. 8(3) (2008), pp. 1833-1853.
[NR1] W. D. Neuman and A. W. Reid, Arithmetic of hyperbolic manifolds, in Topology '90, Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992), pp. 273-310.
[NR2] W. D. Neuman and A. W. Reid, Notes on Adams' small volume orbifolds, in Topology '90, Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992), pp. 311-314.
[Re] A. W. Reid, Artimeticity of knot complements, J. London Math. Soc. (2) (1991), pp. 171-184.
[RW] A. W. Reid, G. S. Walsh, Commensurability classes of 2-bridge knot complements, Alg. \& Geom. Top. Vol. 8 No. 2 (2008), pp. 1031-1057.
[Ro] D. Rolfsen, Knots and Links. Publish or Perish Press, Berkeley, (1976).
[Ta] M-o Takahashi, Two-bridge knots have property P, Mem. Amer. Math. Soc. 29 (1981)
[Th] W. Thurston, The geometry and topology of 3-manifolds, Princeton University, 1977, Mimeographed lecture notes.
[WZ] S. Wang and Q. Zhou, Symmetry of knots and cyclic surgery, Trans. Amer. Math. Soc. Vol. 330 No. 2 (1992), pp. 665-676.

Department of Mathematics, Universtiy of Texas, Austin, TX 78712, U.S.A.
E-mail address: nhoffman@math.utexas.edu

[^0]: Date: November 19, 2018.

