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ABSTRACT

BEERERERE REREEEREEEomesmmmmmee

We prove the double bubble conjecture in the three-sphere S® and hyperbolic
three-space H? in the cases where we can apply Hutchings theory:
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e in S3, each enclosed volume and the complement occupy at least 10% of
the volume of S3;
e in H3, the smaller volume is at least 85% that of the larger.

A balancing argument and asymptotic analysis reduce the problem in S3 and H3
to some computer checking. The computer analysis has been designed and fully
implemented for both spaces.

LisT oF FIGURES

Plot of the Hutchings function F (v, w) where it is positive in S3.
Plot of the Hutchings function F(v,w) where it is positive in H3.

Some important geometrical features of the generating curve for a standard
double bubble.

4 The steps to show that g > h if both are concave increasing functions of
one variable.

The steps needed to show that g > h on a rectangular region.

The triangular domain of the (v,w) where numerical analysis is
implemented.

7 The steps needed to show that ¢ > h on a triangular domain with
hypotenuse along the line w = u.
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8 Showing that the Hutchings function is positive on the rectangles covering
the shaded region shows that the function is positive on the shaded region.

9  An illustration of the steps taken to cover the whole domain of volumes on
S3.

10 The basic steps of the proof that F is positive for v > .85w and w > .85v
in H3.

1. INTRODUCTION

1.1. The double bubble conjecture in S2, H3. In March of 2002, Hutchings,
Morgan, Ritoré, and Ros [HMRR] proved that the area-minimizing way to enclose
and separate two given volumes in R® is by a standard double bubble, defined as
three spherical caps meeting in threes at 120 degree angles. In 2003, Cotton and
Freeman extended these methods to S® and H?, proving that the standard double
bubble is the most efficient way to enclose and separate two equal volumes in these
historically important non-Euclidean spaces, with the added condition that in S®
the exterior of the double bubble takes up at least 10% of the volume of S®. More
recently, Corneli et al. [C3] have proved the double bubble conjecture in spheres
of all dimensions provided the double bubble partitions the sphere into the nearly
equal volumes.

Our Main Theorem in S® (Theorem [6.3) improves upon Cotton and Freeman’s
results when v, w are sufficiently large, showing that that the standard double bub-
ble is the least-area way to enclose and separate two regions of prescribed unequal
volumes, whenever each region and the exterior contains at least ten percent of the
total volume. In H?, our Main Theorem[6.4] extends Cotton and Freeman'’s results,
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FiGURE 1. Plot of the Hutchings function F(v,w) where it is
positive in S3.

showing double bubbles are standard whenever the smallest region has volume at
least 0.85 that of the the larger region. Computer plots [I and [2] show that this
is approximately the largest range on which current methods of proof using the
positivity of the Hutchings function can work. Indeed, the main focus of this paper
is rigorously proving that the Hutchings function is positive on most of the regions
where it appears positive in these plots. The plots suggest that F'(v,w) is always
positive when v is the volume of the larger region. This fact is shown in Remark
[2.16], answering the open question of Cotton and Freeman [CF, Open Question 1.1].
The proof. The main difficulty is showing that both regions of a minimizing double
bubble and the complement all have at most one component each. Given such con-
nectedness, Cotton and Freeman [CF| extend the instability argument of [HMRR]
to show that a minimizing double bubble must be standard. By work of Hutchings
[H], the first region in a minimizer of volumes v, w is known to be connected if a
certain “Hutchings function” F'(v,w), determined implicitly by integral formulas
for volumes of spheres and standard double bubbles (see Definition2.2]), is positive.
In their paper, Cotton and Freeman use asymptotic analysis and intensive compu-
tation to verify this result along most of the line v = w in S*® and all of the line
v = w in H3, thus proving that the standard double bubble is standard for equal
volumes. For the two-dimensional domain of volumes (v, w) in our unequal volume
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FIGURE 2. Plot of the Hutchings function F(v,w) where it is
positive in HS.

conjecture, the proof that F(v,w) > 0 is considerably harder. Sections 3 and 4
contain the requisite asymptotic analysis for the non-compact space H3. For small
volumes, we use a Euclidean approximation (Section 3), and for large volumes we
obtain the interesting result (Proposition [£.12]) that

lim F(yw,w)=27ln 4(#}7:1),
w—00 e

which is positive if and only if 9 > A = e?/4 — 1 < .85. Along the line v = Aw,
F is decreasing in w, when w > 300. Moreover, once w > 150, 8F/8v > 0.
This asymptotic analysis reduces the problem in H? to a bounded domain. We
are able to use a computer to show that the Hutchings function is positive on this
bounded domain. In S, which is a space of finite volume, our conjecture requires
each region to contain at least 10% of the total volume of S3, and we are again
examining a bounded domain. Next we use a new balancing argument (Proposition
[2.13), which says that if F/(*£%, “£%) is positive, so is F(v,w) for v > 2w. This
argument, together with symmetry (used only for S%) and a balancing argument
due to Hutchings (Lemma [2.14]), reduces the size of the domain to check. We then
break up the domain into small rectangles (and triangles). Finally, we decompose
the Hutchings function as the difference of a concave function and an increasing
function, so that it suffices to consider the values on (or beyond) the corners of

the rectangles (see Lemma [5.I). We find values of the parameters to locate such
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points and verify that F(v,w) > 0, allowing a safe margin of error. If necessary,
we subdivide the rectangles and repeat the process.

Though using a computer introduces error, we bound this computation error
and account for it.

A more succinct version of this paper has been submitted to the Journal of
Geometric Analysis [C5].

1.2. Acknowledgments. The authors would like to thank Colin Adams for pos-
ing this problem and for his insightful questions and helpful conversations. We
would also like to thank David Futer, Matt Kudzin, and Pat McDonald for helpful
conversations. Finally, we would like to thank Frank Morgan for his direction and
advice.

This research is the joint work of SMALL undergraduate research Geometry
Group from ’01, ’02 and '03, and was completed by Neil Hoffman (Geometry Group
’03) in his undergraduate thesis work [Ho|. We thank the National Science Founda-
tion, Williams College, and the organizers of the SMALL REU for helping to make
this research possible.

2. THE HUTCHINGS FUNCTION IN S® anp H?

In S® and H?, given volume v, a round ball has least boundary area A(v) ([Schl,
[M}, p. 127]). Similarly, given volumes v, w, there is an area-minimizing double bub-
ble that encloses and separates these two volumes; furthermore, this double bubble
is comprised of smooth constant-mean-curvature hypersurfaces, except possibly for
a set of measure zero ([M, Thm 13.4, Remark before Prop 13.8], [CF| Propostition
2.3]), and it is symetric about some geodesic ([H, Lemma 2.9, Remark 3.8]). Of
course, in S, we assume that v, w satisfy v + w < |S®|, where |S®| denotes the vol-
ume of S3. Also, we put o, w, @ to be v/|S3|, w/|S3|, u/|S3|, respectively. Though
the area of the area-minimizing double bubble is sometimes denoted A(v,w) we
reserve this notation for the area of the standard double bubble. The following
argument shows A(v,w) is well defined.

Lemma 2.1 (Unique standard double bubble). Given volumes v and w:

e Up to isometries of the space, there is a unique double bubble in S3
consisting of three spherical caps meeting at 120° that encloses and
separates a region of volume v and a region of volume w (whenever
v+w<1)

e Up to isometries of the space, there is a unique double bubble in H3
consisting of two spheres (the outer caps) and a sphere, hyposphere,
horosphere or geodesic plane (the inner cap) meeting at 120° that en-
closes and separates a region of volume v and a region of volume w.

Definition 2.2. The Hutchings function in S® is Fss : {(v,w) : +w < 1} —» R,
where

(1) Faa(v,w) = Ass(g) + Aga (w) + Ags (v + w) — Aga (v, w).

The definition of Fyys is similar.
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2.1. The Hutchings component bound. In this section, we recall for the reader
the basic property of the Hutchings function, namely that it can be used to limit
the number of components in an area-minimizing double bubble.

We suppress the subscripts on F' and A, since the results stated here apply to
both S® and HS.

Proposition 2.3. If F(v,w) is positive, then in an area-minimizing double
bubble enclosing and separating volumes v and w, the region V is connected.

Proof. This is a direct consequence of [CFE), Proposition 4.8] since the area of the
standard double bubble has at least as much area as the area-minimizing double
bubble. O

2.2. Area and volume formulas. This section recalls the formulas for area and
volume of area-minimizing single bubbles (Remark [2.4). We have already shown
the existence and uniqueness of a standard double bubble enclosing given volumes
(Proposition [27]), followed by Propositions 2.6, [Z7, 2.8] and [2.9 which set up basic
formulas needed to compute area and volume for standard double bubbles.

Single bubbles. Here we present the standard results on volume and surface area of
spheres in S3 and H3.

Remark 2.4. The formulas for surface area of a sphere of radius r in S® and H3
are

(2) Ags = A4msin®r

(3) Aps = 4msinh®r.

The volume formulas for a ball of radius r in S and H? are

(4) Vgs = m(2r —sin2r)

(5) Vs = mw(sinh2r —2r).

Lemma 2.5. The mean curvatures, %, of spheres of radius r in S® and H?

are 2cotr and 2cothr respectively.

Proof. Volume and area are related by % = A. Thus, in S3, by Remark 2.4,

(6) dA  dA/dr
v~ dV/dr
(7) = Al(r)/A(r)
8msinrcosr
8 = > P
(&) A7 sin®r
(9) = 2cotr.
The proof in H? is analogous. O

Since each standard double bubble in S® and H? is symmetric about a geodesic
line, it is convenient to compute area and volume of a standard double bubble by
considering the revolution of some generating curve consisting of three circular arcs
meeting at 120°. Figure [3 represents an arbitrary generating curve labeled with
relevant measurements.
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FI1GURE 3. Some important geometrical features of the generating
curve for a standard double bubble.

Proposition 2.6 (Area of Spherical Cap in S3). In S® the area of a spherical
cap subtended by an angle 2¢g is

2m pdo
(10) / / sin® r sin ¢ dpdd = 2 sin® (1 — cos ¢y).
o Jo

Proposition 2.7 (Volume of Spherical Cap in S3). The volume of a spherical
cap that is subtended by an angle 2¢q ts

(11) — m(tan"*(cos ¢p tanr) — 7 cos o + (—1 + cos ¢ )(r — cosTsinr)).
Hyperbolic Space.

Proposition 2.8 (Volume of Spherical Cap in H3). The volume of a spherical
cap wn a sphere of radius r subtended by an angle 2¢q s

(12) m(—r + tanh ™" (cos ¢ tanh r) — cos ¢ coshr sinh 7 + cosh 7 sinh7))).

Proposition 2.9 (Area of Spherical Cap in H?). In H® the area of a spherical
cap wn a sphere of radius v subtended by an angle 2¢g s

2 o
(13) / / sinh? r sin dpdd = 2 sinh® r(1 — cos ¢y).
0o Jo
Now we can compute the volume and areas of standard double bubbles.

For each bubble component, we compute the volume and area of the spherical
cap which separates it from the exterior. To find the area of the double bubble, we
simply add the area of the three spherical caps.

To compute the volume of the bubble components we add the volume contained
by the separating cap to that contained by the smaller of the two outer cap to
obtain the volume of the smaller region, and subtract the volume contained by the
separating cap from that contained by the larger of the two outer cap to obtain the
volume of the larger region. (Of course, when the two outer caps are the same size,
the separating cap contains no volume so there is nothing to add or subtract.)

Examining Figure [3] we observe that the angle ¢; has a different orientation
(relative to 75 and r3) depending on the relative size of the two bubbles. When
¢1 is 90°, 5 and r3 are equal causing the volumes enclosed by both regions of the
double bubble to be equal. Tracing back through the equations, we notice that this
happens when

tan(rp) — tan(ry)
tan(rs) + tan(ry)

(14) =1/3 (in S%)
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and
k1 — ko
ki + ko

We make adjustments to ¢; accordingly, and call the adjusted angle ¢;. Using
this angle in the formulas for area and volumes of spherical caps yields the desired
result, i.e., if §; > Z, the formulas return values corresponding to a cap smaller
than a hemlsphere otherw1se the values returned describe a cap that is larger than
a hemisphere.

(15) =1/3 (in H?).

2.3. Properties of Hutchings function. The concavity of A(v) is well-known
in both S® and H3. Hutchings shows that the area of the area-minimizing double
bubble enclosing volumes v and w is a concave function in both variables [H, Rmk
3.8, Thm 3.9]. For our computations, the concavity of the standard double bubble
is relevant.

Proposition 2.10. A(v,w) in S™ and H™ n > 2 are strictly concave functions.

Proof. By uniqueness of standard double bubble (Lem 2], it is the only equilib-
rium and hence the minimizer among spherical surfaces meeting along a sphere.
Given vg, wp, and the standard double bubble, consider the area A; (v, w) of spheri-
cal double bubbles for nearby values of v and w obtained by varying the curvatures
of the two bubbles, but leaving the curvature of the interface unchanged and giving
up the 120-degree-angle condition. Along any line in (v,w) space, if v is strictly
increasing, then the mean curvature H; of the first spherical cap is strictly de-
creasing, and similarly for w and H,. Hence A} = Hidv/dt + Hpdw/dt is strictly
decreasing and A; is strictly concave. Since A(v,w) < A;(v,w), with equality at
(vo, wo), A(v,w) is strictly concave. O

Proposition 2.11. A(v,w) in S® is strictly increasing n v,w on the closed

triangular domain defined by (0, 0), (IS ‘ ‘SS‘) (0, Ex ‘). Furthermore, A(v, w)
18] 1s°1y
)

s also increasing on the line segment with end points (0, ‘Szj),( T

Proof. Since A(v,w) is concave (Propositionm and symmetric in both argu-

ments, A(v,w) in S® attains its maximum at (IS | \s3|)' Since A(v,w) is also

3
concave along lines through (m |S—3‘) it is increasing on the triangular domain
s3 s |s®
and the line segment with end points (0, %), (%, ‘S—l) O

Proposition 2.12. For all v,w, Ags(v,w) is strictly increasing in each vari-
able.

Proof. Aps(v,w) is strictly concave along any line, as shown in Lemma 2I0 in
particular, along any line v = vy or w = wy. Because it is positive for all v,w > 0,
it follows that it can never be non-increasing along any of these lines. O

2.4. Balancing. We call the following useful proposition “S-balancing” because it
relies on the concavity of area of the standard double bubble, in contrast to Hutch-
ings balancing (Lem [2.14]) which relies on the concavity of area of the minimizing
double bubble.

Proposition 2.13 (S-balancing). In R", H", or S", forn >3, if w < v < 2w
and F(*£%,*2) > 0, then F(v,w) > 0.
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Proof. Consider an area pair v > w and suppose that F(HT“’, ngw) is positive, i.e.,
that
(16) 2A<U—Zw>+A<UJ;w>+A(v+w)—2A(UJ;w,U—gw>>0.

Concavity and the symmetry of A implies that for any v not equal to w,

A<v+w v+w> > A(v,w).

2 b

But then we have

v v+w v+w
F(v,w)>2A(§>+A(w)+A(v+w)—2A< 5 g >
So it suffices to show that
v v+w v+w
2A(§)+A(w)+A(U+w)—2A( 5y )
v+ w vt w v+w v+w
2A A A —2A
>(4)+(2)+(v+w) (2,2)
l.e. that
v v+ w v+ w
(17) 2A(§>+A(w)>2A( ; >+A( . )

Consider three spheres, two enclosing volume z/2 < y and one enclosing volume
y. Initially, increasing  and decreasing y while keeping = + y constant will increase
the total surface area (we know this because 2A(z/2) + A(y(z)) is a concave func-
tion). Indeed, area will increase until /2 = y, that is, until all three spheres have
equal volume and any further transition would be unbalancing. In particular, if
w < v < 2w and we put z = y = (v + w)/2, then increasing = until it equals v
while decreasing y until it equals w will increase the total surface area of our three
spheres. This shows (Equation [17]).

Hence F(v,w) > 0 for w < v < 2w.

O

Lemma 2.14 (Hutchings Balancing). In R™, H"®, or S®, forn > 3, if v > 2w
(or in S® if v > 2u), then the region of volume v is connected.

Proof. See [H, Remark 3.8, Theorem 3.5, Corollary 3.9]. O

2.5. Permutation. Permutation utilizes symmetries that exist with the Hutchings
function when applied in compact spaces. Though this argument is applied in S?,
it can be used in any space with finite volume that has a Hutchings function.

Proposition 2.15 (Permutation). F(v,w) = F(v,u) where u s the volume of
the complement.

Proof. First notice that A(v,w) = A(v,u) as it is only a matter of labeling U or W
the exterior. Now, A(v+w) = A(u) and A(v+u) = A(w), since U = (VUW)C, and
similarly, W = (V UU)C. Thus, F(v,w) = 2A(%) + A(w) + A(v +w) — 2A(v,w) =
2A(5) + A(w) + A(u) — 2A(v,w) = F(v,u), as desired. O
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Remark 2.16. S-balancing (Prop 2:13)), Hutchings balancing (Lem [2:14), and per-
mutation (Prop[2.15]) yield a complete answer to a question of Cotton and Freeman
[CF, Open Question 1]. In particular, the larger region of an area-minimizing dou-
ble bubble in H? is always connected. If v > 2w, this follows from Hutchings
balancing (Lem [2.14). Otherwise, connectedness follows from the positivity of the
Hutchings function F(v,w) (Prop[23)). This in turn follows from S-balancing (Prop
[2.13) and the positivity of the Hutchings function F'(v,v) for equal volumes [CF),
Prop 5.11, 5.14,5.19]. In S®, Hutchings balancing (Lem [2.14) shows connectedness
when v > 2w or v > 2u. By Proposition[2.3] it suffices to show that F(v,w) > 0 if
w<v<2woru<v<2u Ifv < .4, F(v,v) > 0([CF), Prop 5.5, 5.8]). S-balancing
(Prop [213) shows that F(v,w) > 0 if w < v < 2w. Finally, permutation (Prop
[2.18) shows F(v,w) > 0if u < v < 2u.

3. POSITIVITY OF THE HUTCHINGS FUNCTION FOR SMALL VOLUMES IN H?3
3.1. Properties of the Hutchings function in H3.

Theorem 3.1 (Double Bubble Theorem in R?® [HMRR]). The unique least-area
enclosure of prescribed volumes v, w in R3 is a standard double bubble.

Remark 3.2. For small prescribed volumes in H?, the space around any standard
double bubble is nearly flat and looks like a portion of R3. By estimating the
amount of distortion carefully, we can use information about the Hutchings function
in R3 to prove that the Hutchings function in H? is positive for certain prescribed
volumes near 0. In the following proof, A is a constant which captures the amount
of distortion, and r represents the radius of a small ball in H® which is only slightly
affected by the curvature of H3.

Lemma 3.3. For any pair of prescribed volumes less than (%’r + #)(zfﬁr)a,

some minimizing double bubble in R® enclosing those volumes fits inside a
ball of radius r.

Proof. Without loss of generality assume that v < w and fix w. The exterior
spherical cap enclosing the region of volume w has a radius, r,,. Consider standard
double bubbles where the radius of this spherical cap is fixed at r,,. In this case,
the equal volumes double bubble has the greatest diameter. However, the region
enclosed by the spherical cap with radius r,, has volume less than w. By increasing
the radius until this region has volume w, the diameter increases. Thus for any
non-equal volume double bubble enclosing volumes v and w, where v < w, there
will be an equal volume double bubble enclosing v’ and w with a bigger diameter.

If ry is the radius of the spherical cap that forms the exterior of W, then the

diameter of the equal volume double bubble is 2r,, + 7,1/3. So, this double bubble

will fit inside a ball of radius r > 74, %

We also know that in R3 a spherical cap of radius 7y subtended by an angle 2¢
has volume:

(18) V(r)= 2%(7'0)3 + mrocosg.
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Since ¢ € [0, ],

(19) we (rpE + 15,

2__r for r, in the above equation gives the desired result.

243

Substituting

Lemma 3.4. If 84w <v < w, then
2ARs (g) + Ars(w) + Ars (v + w) > (2.02676) Ars (v, w)
holds.

Proof. (Modification of [HMRRJ, Proposition 6.2]) By rescaling, we may assume
that v = 1 — w and that w € [, 13;]. Because Ags(v,w) is concave [H, Theorem
3.2], we have

Ars(1 - w,w) < Ars(L,1) = (275 - 3)Ars(1).

Hence, it suffices to prove that

2Ars(35%) + Ars(w) + Agrs > 2.02676(275 - 3)Ars (1),

or equivalently (dividing by Agrs(1) on both sides) that

25(1 - w)? +w? +1>2.02676(2F - 3).

_ 1 _ 1 . . . . .
At w = 5 and w = 135, the left hand side of the above inequality is bigger than

2.4236 and 2.412965, respectively. The right hand side of the above inequality is
less than 2.412966. Hence, the inequality holds for w = % and w = ﬁ; and
because the left hand side is concave in w, the inequality holds for all w € [%, =1,

. 1.84
as desired.
O

Proposition 3.5. If 0 < v,w < .002743 and .84w < v < w, then

(20) 2AHa(g)+AHa(w) + Aps (v + w) — 2413 (v, w) > 0.

Proof. By Lemma [3.3, we can fit a double bubble in R3 with prescribed volumes
v,w < .002743 in a ball B of radius r < .1547.

For ease of notation let A = @ < 1.003994.

Notice that if this ball can enclose a standard double bubble of volumes (A~2v, A~2w)
then it can enclose spheres of volumes:
{2722, 272w, A7?(v + w)}. We may estimate the surface area of any sphere in R3
which fits inside B. Suppose that a sphere enclosing volume A2« fits inside B;
in particular, this holds for a € {¥,w, (v + w)}. The single bubble in H? encloses
a volume o’ < a and has surface area at least Ags(A~2a). Thus,

(21) Aps(a) > Ars(A2a).
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Therefore,

24155 (5) + Ams (w) + Ans (v + w)

> 2Ars(A%v/2) + Arz(A"2w) + Ars (A% (v + w)).
By Lemma [3.4]

2AR3(>\ )+ Ars (A %w) + Arz(A 2 (v + w))
> (2.02676) Ars(A"%v, A% w).

Scaling of double bubbles in R? tells us

(22) Ars(A2v, A 2w) = (A) %% Ags (v, w).

Because B contains some minimizing double bubble Z; in R® enclosing volumes
v, w, we can estimate the surface area of the image of 3; in H3. This double bubble
Yo encloses volumes v, > v and ws > w, with surface area less than or equal to
ARs(v2,wz)A2. Therefore,

(23) ARS (’U,’LU) Z )\_ZAHS (’Ug,’LUz).
By Proposition 212, Ags(z,y) is increasing in each variable, implying that
(24) AHB (’Ug, ’LUz) Z AHS (’U, ’LU)

Combining inequalities (22), ([22]), [23)), and (24) with equality (22]) gives
(25)  2Ams(2) + Aps(w) + Ape (v + w) > (2.0676)(A) 1072 Ag (v, w).

2
Note that (2.02676)A1%/2 > 2, so
(26) 2Ame (% ) + Aps (w) + Aps (v + w) > 245 (v, w)
as desired.

O

Remark 3.6 (Notes on S®). The above argument works for S® as well, although
we do not need it because we are just concerned with volumes greater than 10% of
the total volume of S3. The S® proof uses a different distortion factor, A = 27,
Otherwise the proof follows with very little adjustment. Using Lemma [3.4] the
Hutchings Function is positive for small volumes in S® namely v, w < 0.002738 and
Biw < v <w.

4. POSITIVITY OF THE HUTCHINGS FUNCTION FOR LARGE VOLUMES IN H?

4.1. Introduction. Theorem 423 shows that for sufficiently large v and w, the
Hutchings function in H® is positive whenever ¥ = v/w > A and w > 300.
Throughout this section we set A = e2/4 — 1. The proof of Theorem [£23 uses
three ancillary results:

Proposition @12 . For a fized ratio v/w, the limit of the Hutchings function as
w — o0 s nonnegatiwe if and only if Y > A < .85.

Proposition4.20] . The Hutchings function strictly decreases if one travels out-
ward along the line v = Aw as long as w > 300.

Lemma . The partial deriwvative with respect to v of the Hutchings function
1s positive if w > 150, v > Aw.
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Together, these results show that the Hutchings function is positive for ¢ > A and
w > 300. In order to prove Proposition[4.12, we must describe the limits of various
quantities for standard double bubbles enclosing volumes v, w as v, w grow large.
Proving Proposition [£.20 and Lemma [£.22] require a closer examination of how fast
these quantities converge to their limits. So, the results about the limits appear
alongside various inexact numerical estimates.

4.2. Preliminary material: spheres in H3. If » = r(v) is the radius of a sphere
with volume v, then

(27) 2u/m =€’ — e —dr < ¥

so that
1. 2v

28 —In—.

(28) >z

Lemma 4.1. If r = r(v) is the radius of a sphere with volume v, then
1 2v

29 li ——In— ) =0.

(#) i (r— 507

Proof. By manipulation of the volume formula,
2v

(ez(r_% In ) 1) = e %" 4 4r.
v

(30)

Notice for any € > 0 we can find a sufficiently large r, such that,

(31) e 2" +4r < 2(sinh2r — 2r)(e?* - 1).
Hence, 2¢(e2("=312%) _ 1) is less than 2%(e% — 1) and 2(r — 1 In2Z¥) < 2¢, as
needed. 0

Remark 4.2. When v > 150X > w(sinh(4.4) —4.4), we have r > 2.2 and Inequality
(B1) holds for e = 0.06. Thus, 7 < % In 2% + .06 for such v. We obtain the following
numerical estimate: if v > 150\ < 127.09, then r < %ln 27” + .06.

Lemma 4.3. As v approaches infinity, A(v) tends to 2v + 2wlnv — 27(1 —
In(7/2)).

Proof. Let r = r(v) denote the radius of a sphere with volume v. Since

(32) r= %ln (2?1} +e 4 47‘) ,
we see that,
(33) A(v) = 2v — 21 + 2me ™" + 4nr,
By Lemma [£.7]
(34) Uli)n;or—lln%}:Ulixlgor—%lnv+%lng:0.
Also, lim,_,o, € 2" = 0. The desired result follows easily. O

Lemma 4.4. The curvature of a sphere with volume v and radius r is
2w
v+2mr 4 Fe? — /2

(35) 2+
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Proof. The curvature equals

T -7 4 -7 4
(36) 2eothr=221° —o4 ¢ o5y %
er —e" er —e" e‘r —1
Also, 2vu/m = € — e~2" — 4r. The desired result follows easily. O

Lemma 4.5. A'(z) <2+ ——27

z+7mlnz—3°

Proof. From (28) we have the following bound on the radius 7 of a sphere containing
volume z:

(37) ro> %m@wm

(38) - %mx+umnmym
(39) > %1nw—3/27r+1/4.
By Lemma 44

(40) Alz) =2+ 2n

T +27rr + (w/2)e~2r — /2’

Also, e=2" > 0. Applying these inequalities in the above expression for A’(z) yields
the desired result. O

Lemma 4.6. If z > 150\ then A'(z) > 2 + ez

z+mlnz—1.041"
Proof. By Lemma [£.4]
2T
v+2mr 4+ Fe 7 — 7

(41) Aw) =2+

The denominator is a sum of three terms:

2r

T T
v,27r, —e” " — —.
2 2

Because e 2" < 1, the third term is less than 0. We now approximate the second
term. By Remark [£.2] we have r < %ln%” + 0.06 because v > 150\. Hence, the
second term satisfies

2v 2
(42) 2rr < mln — +0.12r =7lnv+ mln— + 0.127 < mlnv — 1.041.
s ™

With these approximations, we find
2w

4 A 2 .
(43) (v) > +v—|—7r1nv—1.041

Corollary 4.7. If z > 300\ then A'(z +3) > 2+ m

Proof. By Lemmald6] A'(z) > 2+ m, if z > 150).
Because e 2" < 1, the third term is less than 0. We now approximate the second

term. By Remark [£.2] we have r < %lnz?” + 0.06 because v > 150\. Hence, the
second term satisfies

2v 2
(44) 2rr < mln — +0.12r =7lnv+ mln — + 0.127 < wlnv — 1.041.
s ™
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With these approximations, we find
2
v+ mlnv —1.041°

(45) Av)>2+
For =z > 300), we have

3
(46) rln 252 1041 < —1.004.
Hence,
2w 2w
47 A 3)>2 24 —m.
(47) (2+3)> +a:+3-|-7r1na:—1.004> +a:+7r1na:+2

4.3. The Hutchings function has a positive limit.

Lemma 4.8. Gwen a standard double bubble, the radius of the circular inter-
face where the three caps meet is less than cosh™ !(2).

Proof. Consider the disc whose boundary is the circular interface. Let y be the
radius of this disk. It meets the bigger of the outer caps of the double bubble at
an angle o > 27 /3. The radii of this outer cap and the disk come together at an
angle of § > /6 along the circular interface. Let 2¢, be the angle that subtends
this cap. By the formula for the area of a spherical cap in H® (Proposition [2.9)
and the hyperbolic laws of cosines and sines [T] and [St],

(48) cos ¢, = —coshysinf
. sinhy

49 hr =

(49) sinhr = —— 5.

the surface area of the outer cap is

27 sinh?
(50) Tl Y
1 —coshysinfg

The surface are of this cap is positive and finite, implying that coshy < csc 3 <
csc(m/6) = 2. Because t — cosht is increasing for ¢ > 0, y < cosh™*(2).

O

Lemma 4.9. Gwen a spherical cap subtended by an angle of 2¢ on a sphere of
radius v, let @ be the angle the sphere makes with the disk of radius y bounding
the cap from below. The volume of this cap can be expressed as,

(51) 7r< sinhysin 6 tanh_1< sinhysin 6 >>

sechy + cos B coshy + cosf

Proof. This follows from using the identities:

tanh(a +b) = % where (a + b) = (—r + tanh™'(tanhr cos ¢)),

1 —tanh? 2z = sech®z and coshb =
cosh ¢ = coshy cosh b,
cosy = sin ¢ cosh b,
tanh r cosy = tanhy, coshysiny = cos ¢,

sin ¢
cosy’
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sinhy = sin¢sinhr and cosy = t:fl]ﬁf, and
: __ sinhy
sing = sinh 7~

O

Lemma 4.10. Gwven a standard double bubble enclosing volumes v, w, suppose
that 6 is the angle between the separating cap and the disc with the same
boundary, and let y be the radius of the disc. As v,w grow large, 8 approaches
0 and y approaches cosh™(2).

Proof. By Lemma 38, y < cosh™ !(2). The two caps of the region containing the
disk meet the given disc of radius y at angles § € [0,7/3) and o = 27/3 — 4. By
volume formulas, the volume z of this region is the sum of

(52) T M —tanh! M
sechy + cosd coshy + cos @

and

(53) 4 _Sinhysina tanh ! _sinhysina ‘
sechy + cosa coshy + cos o

Notice that coshy + cos@ > 1 + —1 = 0, and similarly coshy + cosa > 0. Hence
the “tanh '” terms are positive, implying that
sinhy sin o sinhysin @
sechy + cosa sechy +cosf /)’

(54) z<m
Because sechy > 1/2 and cosf,cosa > —1/2, the denominators of the above
expression are positive. Hence,
sinh(cosh ™ !(2)) sin(7/2) N sinh(cosh™*(2)) sin(7/2)
T
sechy + cos @ sechy + cosa
. ( V3 V3 )

_I_
sechy +cosf sechy + cosa

T

27r\/§
sechy + cos(27/3 — 0)’

As v, w approach infinity, ¢ > min{v, w} must approach infinity as well, implying

that the positive quantity sechy + cos(2m/3 — #) must approach 0 — that is, y must

approach cosh™*(2), and cos(27/3 — 6) must approach —1. Because 27/3 — 6 €

(m/3,27/3], 8 must approach 0. In particular, when v,w > zg = 300, we have

27r\/§ 27r\/§

55
(55) < sechy + cos(27/3 — 6) < 1/2 + cos(27/3 — 6)
or
2mv/3
(56) cos(21/3 — 6) < 7;\[ —1/2 < —.457.
0
For 6 € [0,7/3), this is true only if § < 1/20. O

We have the following numerical estimate: if v,w > 300\ ~ 254.18, then 8 <
1/20.
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Lemma 4.11. As v,w grow large, the surface area of a standard double bubble
enclosing volumes v,w approaches

(57) Apz (V4 Vo) + Als (W + Vo) — 2600 + Coo
where Voo = T(3/2 —1In2), ase = 3w, and ce = 2.

Proof. Given a standard double bubble enclosing volumes v, w, consider the region
enclosing volume v. Its outer cap lies on a sphere; let the volume of this sphere

be v + vz(,ll)u and let the surface area of the sphere exceed that of the outer cap by

a,(jZU. Define 01(121)” and az(fz)u similarly with respect to the region enclosing volume
w. Finally, let cy,, denote the surface area of the separating cap. Then the surface

area of the standard double bubble is
(58) Aps (v +085,) + Ams (w + v3)) — alt), — al?), + ey

Suppose that 8 is the angle between the separating cap and the disc with the same
boundary, and let y be the radius of the disc. By Lemma [£.10, as v and w grow
large, 6 - 0and y — yp = cosh71(2). Using formulas for volume and surface area,
one can easily check that

i (1 — i (2)
v z]ﬁgloo v'u,w - v }1}5100 vv,w
) )

sinh yg sin(7/3) _1 { sinhygsin(7/3)
=7 — tanh —_——
sechy + cos(7/3) cosy + cos(m/3)

= ’Uoo
i €3 R— i (2)
U,BEOO a’v,w U,BEOO a’v,w
B 27 sinh? ygo
"~ 1+ cos(m/3) coshyo
= aoo
and
) 27 sinh? yo
lim ¢y = ——F——
v,w—00 1 + cos 0 coshyg
= Coo-
Hence,

|A(v + v{,) — A(v + veo)| < A'(v)[vSY), — ool

approaches 0 as v,w grow large. So too does |A(w + vz(,zz),,) — A(w + v)|. From
these computed limits, it follows that the surface area of the standard double bubble
enclosing volumes v, w — as calculated in Equation 58 — approaches A(v + v ) +
A(w + Vo) — 2000 + Coo as v, w get large. O

Proposition 4.12. For each fized ¢ > 0,

lim F(yw,w) = 27rlnw

w— 00 e2

(Note that this limit is nonnegative if and only if ¥ > A which is less than
0.85.)
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Proof. We write v = v(w) = Aw. Let v = m(3/2 —1In2), ase = 37, and ¢ = 27.
By Lemma [£.17], the given limit equals

(Y

(59) lim 2A(2) + A(w) + Alv + w) — 2(A(v + ve0) + AW + Vo) — 2800 + Coo)

w— 00

provided that the latter limit exists. By Lemma [£.3]
(60) lim A(z) =2z + 27lnz — 27(1 — In(7/2))

T—r 00
forz € {§,w,v+w,2vV + Voo, W + Voo }. Substituting these expressions into 59 and
simplifying gives

lim (27(2 ln(g) +lnw+In(v+w) —21In(v + v) — 21In(w + Vo))
w—00 2
—8Voo + 4000 — 2Cc0)

provided that this new limit exists. Indeed, this new limit does exist and equals

_ v2w(v + w)
wh_)ngo(27r In (4(1} I T voo)2> — 8Uoo + 4000 — 2Cc0)
= lim (27ln (H—w> — 8Uoo + 400 — 2Co0)
w—00 4w

1
= 27r1n(¢%> —8-m(3/2—1In2)+4-3m—2-27

— 2em (2D,

e2

Hence the limit in (B9) evaluates to 2 ln(@), which is only positive when
1 > ), finishing the proof. O

4.4. The Hutchings function is decreasing along a line for large volumes.

Lemma 4.13. Given a standard double bubble enclosing volumes v,w, the
outer cap of the region of volume v lies on a sphere, say with volume v + vy
(resp. the outer cap of the region of volume w lies on a sphere with volume
w+ wy). If v,w > 300\ then vy, w; < 3.

Proof. Let vol(y, a) denote the volume of a spherical cap with associated disc of
radius y, where the cap and disc meet at an angle [0, 7]. This volume is increasing
in both y and a. Without loss of generality, assume that v < w. The three caps of
the standard double bubble meet along a circular interface with radius yg; let the
disc with this circle as its boundary meet the separating cap of the double bubble
at angle §. By Lemma &8, yo < cosh *(2). By Lemma &I0, § < 1/20. Both
vy = vol(yo, 7/3+8) — vol(yo,#) and wy = vol(yo, /3 —8) + vol(yo, ) are less than
vol(yo, m/3 + ) + vol(yo, §), which in turn is less than vol(cosh™*(2), 7/3 + 1/20) +
vol(cosh™(2),1/20) < 3. O

We now prove some algebraic lemmas that will be used in the proof of Proposition
[4.20] and later in Proposition [£.21]

1 > 1l _wlnz+a
z+mlnz+a z z2

Lemma 4.14. If rlnz +a > 0, then
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Proof. The left hand side equals

1 mlnz +a
(61) o + ’
z z(z+wlnz+a)
which is greater than 1 — Tlozta, -

Corollary 4.15. For positive numbers p,w with lny+a >0

n 1 1 (7lnw wlop a
(62) > — - — + —— .
pw+ mln(pw)+a - w w? I I I
Proof. Simply apply Lemma 414 with z = pw. O

Lemma 4.16. If z > 150, then
1 < 1 wlnz-3
z+7mlnz—-3 =z 1.1z2
Proof. For such z, we have 1.1z > z + mlnz — 3 > 0. Hence,
1 1 mlnze — 3 1 wlnz-3
(63) —_— = — - <———5
z+mlnz—-3 =z z(z+wlnz-3) =z 1.1z2

as desired. O

Corollary 4.17. For positive u, w , with pw > 150

(64) m <i_i mlnw 7r1n,u_ 3 .
pw+mTln(pw) -3 " w  w? \ 1l.lp 1l 1.1y
Proof. Apply Lemma [£.16] with z = pw. O

Lemma 4.18. For all w > 300,

mlnw wlnA 2
2 + ——+7lnw -2 ) <

A A A
2rlnw  2min(3) 6 N mlnw 3 N
Py A A TN
1.12 112 112 T 1111
mlnw mln(A + 1) 3

10+ T TI0+D) 110+ D)
Proof. For all w > 300,

) 1L1A/2  L1(A+1)

(2111,\ InA/2  In(A+1) >

a2+ 22 2 4).
L1A/2 T 11 1LI(A+1) A

2 + L + L 2 2| mlnw
1.1x/2 1.1 LI(A4+1) A '

Simple algebraic manipulation gives the desired result.
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Lemma 4.19. If w > 300, then

4+ 4N+ 2m 22 + 2
Aw + mln(Aw) +2  w+ 7ln(w) + 2

A 1
Ag +7mln(A%) -3 * w+ wln(w) — 3
+ A+1
A+ Dw+rln(A+Dw) -3/
Proof. By Corollary [4.15]

>4+4)\+27r(

2 2
Aw + 7 ln(Aw) + 2 + w + 7 ln(w) + 2

52 2 1 7r1nw+7r1n()\) 2 1(7r1nw 2)
w o w? A A A w?

+
X X X
115 115 115 1.1 1.1
mlnw +7r1n()\+1) 3
LIA+1)  11(A+1) 1TI1(A+1)
(by Lemma [AT18])

S A N 1 N (1+X)
A A
M 4rln22 -3 wt+rlhw-3 (A+lw+rln((A+1)w)-3
(by Corollary A17). Multiplying both sides of the inequality by 27 and adding
4(1+ ) yields the desired result. O

4 1 (27rlnw 2rin(3) 6 mlnw 3
w

w?

Proposition 4.20. If w > 300, then
d
%F()\w, w) < 0.
Proof. Consider a standard double bubble enclosing volumes Aw and w. Let vy, ws,

be the volumes needed to complete the two outer caps of the double bubble which
enclose volumes Aw and w. Then,

dA
(65) %(Aw,w) =AA'Ow +v1) + A'(w + wy).

The bound on A'(z) given in Lemma .5 tells us that

2m ,
(66) (2+ 1w 7 () _3> > A'(pw).

Hence,

A Aw
22+ 2 AT =
(67) * ”(A%ﬂmu%)—s) > ( 2 )

1

(68) 2+ 2m <w+7rln(w)—3

>>NWL
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A+1
A+ 1w+ 7ln((A+ w) -3

(69) 2+27 ( ) > A'(A+ 1)w).

By Corollary [4.7,

2T
AA' (A A A2
(70) (Aw +3) + A'(w + 3) > ( + )\w+7r1n()\w)+2>

2
+{2+——7——).
w+mTlnw + 2
Since Aw and w are greater than 300\, we can apply Lemma to see that
v1,w; < 3. Hence,
(71) A (Aw +v1) + A'(w +wp) > AA' (Aw + 3) + A'(w + 3).

Therefore,
(72) AA'(Aw +vy) + A'(w + wy) >

A2+ ar + (24 2n
Aw + wlndw + 2 w+rlnw+2)/°

Combining inequalities [72], 67, 68, and Proposition [£.19, we can see for all
Aw,w > 3002,

A
73 AA (Aw + v1) + 24" (w +w1) > A [ 22 1 A'(w) + A Dw + w).
2
Thus,
d , [ Aw , ,
(74) 2EA(MU’W) > AA - )t Al(w) + A'(Aw + w)
as desired. O

4.5. The Hutchings function is increasing in v for large volumes.

Proposition 4.21. For v > Aw, w > 150,

1 1 1

75 2
(75) %-|-7r1n§—1.041+v+w-|-7r1n(v-|—w)—1.041> vrlnv —3

Proof. Since v > Aw, w > 150,

2

(76) % > 4(v + w)(r ln% ~1.041)
and
(77) vtw > mln(v + w).

2
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Hence,
In% —1.041
(78) vi(v+w) > (v+ w)z”zf +v?7ln(v + w)
1
lnv—3
~1.0410% — (v +w)2 TRV 70
1.1
So,
(79) 2 Wln§—1.041+ 1 mln(v + w) — 1.041 >2(1 7r1nv—3)
7)2 v+w v+ w)? v 1.1v2 7
2
Applying Lemmas [£.74] and [£.16] to the above equation yields,
1 1 1
(80) - v + > 2
5+7lng —1.041 v+w+wln(v+w)—1.041 v+mlnu—3

as desired.

Lemma 4.22. For any fized w > 150 and v > Aw,
OF

81 — >0

(81) 5y > 0

Proof. Differentiating the Hutchings function with respect to v yields

oF v , 0 ;U , ,
(82) B0 —A(2)+A(v+w) 28UA(v,w)>A(2)+A(v+w) 2A'(v).
By Lemma and Lemma [£.5]
oF 1
83) 5> Y+mln? —1.041
1 1

-2 .
+v+w-|-7rln(v+w)—1.041 v+mlnv —3

By Proposition [£.21],
oF
84 — >0
(84) 5y > O

as desired.

4.6. Conclusion.

Theorem 4.23 (Hutchings function is positive for large volumes). For all v < w
such that w > 300 and v > .85w (or indeed v > Aw = .841w), the Hutchings

function F(v,w) = 2A(5) + A(w) + A(v + w) — 2A(v, w) s positive.

Proof. Consider (v, w) = (vo, wp), where A = vg/wg > .85 > X and wg > 300. By
Proposition [4.22] the derivative of F' with respect to its first argument is positive

for the volume pairs under consideration, so F'(vg, wo) > F(Awo, wo).

By Proposition d.20] F'(Aw, w) decreases as w increases and by Proposition [4£12]

F(Awg,wp) > lim F(Aw,w) =0.
w— 00

Hence, F(vo,wp) > 0, as claimed.
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Remark 4.24. The ratio A = e?/4 — 1 is sharp in the following sense: for ¢ < A,
there exist arbitrarily large v, w with v/w = 1 such that the Hutchings function is
negative. This is a result of Proposition[4.12

5. THE COMPUTER PROOF OF THE POSITIVITY OF THE HUTCHINGS FUNCTION IN
S3 anDp HS.

5.1. Introduction. Rigorously showing positivity of the Hutchings function is
equivalent to showing that g(v, w) = 2A(3) + A(w) + A(v + w) is strictly greater
than A(v,w) = 2A(v,w). The functions g and h have very similar properties in
S% and H3, but the proofs vary slightly because the area of single bubbles and
standard double bubbles are not increasing for all volumes in S® and the H3 code
has to efficiently calculate the curvatures of double bubbles.

The computer proof relies on the facts that g is concave and h is increasing
on relevant domains (Propositions 2.11] and 2.12) in both spaces and that g is
increasing on all of H2. If g and h were each concave increasing functions of one
variable, we could show that g is bigger than h on the interval [v, v + b], by showing
g(v) > h(v + a) and g(v + a) > h(v + b) (See Figure[d).

The computational lemma (Lemma [E.1]) extends this idea into two dimensions
showing that g > h on a polygonal domain in the vw-plane if the minimum value
of g on the vertex set is bigger than the maximum value of h.

Using a computer does introduce error, which must be accounted for. A com-
puter uses approximations for g and A, which we will call geomp and hcomp. How-
ever if g is underestimated and A is overestimated then the computer test will show
Gcomp > hcomp On]-y if g> h.

The following lemma shows that checking a finite number of points can give a
global inequality.

Lemma 5.1. Gwven a polygonal domain D with vertices tdentified by ordered
pairs (v;,w;), a concave function g(v,w), and another function h(v,w) that
obtains its mazimum at (vo,wp), tf min(g(v;,w;)) > h(vg,wp) then g > h on
D.

Proof. Since g is concave it has a minimum on D at a vertex of the polygon. Thus,
min(g(v;,w;)) is a lower bound for g on D and h(vg, wp) is an upper bound for h
on D. Hence, g > h follows directly. ([

The computer proof in S. In S3, rectangular regions and triangular regions are
considered. There is additional computational complexity in S* because A(v) and
A(v,w) are not increasing for all volume pairs (v, w) in S3. For rectangles where
h(v,w) is strictly increasing in a neighborhood of the rectangle, the area of the
standard double bubble is over-approximated by using radii of the outer spherical
caps corresponding to volumes vy and w, bigger than v and w respectfully (See
Figure []).

For the area of the single bubble each part of g(v,w) is under-approximated.
A(3) and A(w) are always under-approximated by taking radii that correspond to
spheres enclosing volumes less than % and w. Evaluating g; at (vi,w:) in Fig-
ures [ and [7] gives an lower bound on g; (v, w) on the whole polygon. A(v + w) is

under-approximated by considering the minimum of the value of A at a point to
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Y, v+a v+b

FIGURE 4. The steps to show that g > h if both are concave
increasing functions of one variable.

W
{vy;w)
v, W)

wHb,F---------
wHb F---------

Wir----- (AP ! !

(v, W) I I

I I

l l l

I I I V
v v+a, v+a,

FIGURE 5. The steps needed to show that g > h on a rectangular region.

the lower left and a point to the upper right of the rectangle. This is the minimum
of ga(v2, w2) and g2(vs,ws) in Figures [ and [71

If g(v,w) < h(v + az,w + by) (where v + a; and w + by correspond to Figure
[B]), then the inequality is checked on the four rectangles with lower left corners of
(v,w), (v + a1, w), (v,w+by) and (v + a1, w + b1).

Next, we consider the entire region where numerical analysis is necessary (Figure
[B). The triangular domain is first broken into parts: the right triangle (7,w) =
(.1,.1),(.1,2), (3, 3) and the triangle (3, @) = (.1,1),(%, 1) and (.1, .45). The lat-
ter, upper triangle is difficult to deal with because A is increasing up to the hy-
potenuse and decreasing above the hypotenuse. We can assure that we land exactly
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on this line by setting the two parameters 7; and r3 to be equal. Getting an over-
approximation for area on this line just involves overestimating ;. In addition,
A(%, %) must be hard coded into the program. If we want to over-approximate
h(v,w) we move the point (v, w) southeast along the line where w = u to (va, ws)
and use h(vq, ws) as an over-approximation (See Figure[T). For g, we still just take
the appropriate corners of the rectangle containing the triangle. If not, then we
break the triangle into a rectangle and two smaller right triangles by connecting a
point on the hypotenuse to the two legs of the triangle via perpendicular lines. The
desired inequality is then shown to be true on the rectangle and the two smaller
triangles. Similarly for the rectangle if the desired inequality can not be shown
on the large rectangle, the rectangle is split into four smaller rectangles and the
inequality is shown to hold true on them (See Figure[f]). Both subdivisions repeat
until the desired inequality can be shown on each subdivided rectangle or triangle.
In the case where the upper right corner a rectangle is on the line where w = u,
we over-approximate v, w using the same methods as the triangle.

The lower triangle can be replaced by the rectangle containing it, which can
then be subdivided into smaller rectangles by the argument above.

Mathematica uses computer algebra (with infinite precision variables). When
checking inequalities, it reports true, false, or null if it cannot tell for sure [W].

The computer proof in H3. In H3, rectangular regions that tile the area between
two lines through the origin are considered (See Figures[8 and [I0). The function g
is strictly increasing, so g(vo, wo) is less than any value of g(v,w) on a rectangular
region with vg < v and wg < w. We can assure that these two conditions hold if
we take a guess at the curvature that we know to be too low (corresponding to a
volume that is too high). Then, we increase the curvature (decreasing the volume)
of the sphere by multiplying it by some constant. This process is done first with a
relatively large constant until the curvature corresponds to volume that is too low;
then the curvature is divided by the constant and the curvature is increased by a
smaller constant until it corresponds to a a volume that is less then the volume
being approximated. Using this curvature for our surface area calculations under-
approximates the surface area of single bubbles.

For A(v,w), the double bubble is completely determined by the mean curvatures
of the outer caps. Thus, under-approximating the curvatures of these caps (by an
analogous method to the single bubble case) corresponds to a double bubble with
larger volumes and hence more surface area.

We use Mathematica’s built-in Set Accuracy function, which assures accuracy on
25 binary digits right of the decimal point in our important computations. When we
calculate curvature, we check that the calculated associated volume VolSphere[k]
is less than v — 272%, which guarantees that the associated volume is less that v.
Hence the associated area will be less than A. Finally, we subtract 272* from our
calculated area to be sure that we have a lower bound.
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FIGURE 6. The triangular domain of the (v, w) where numerical
analysis is implemented.

We check that the calculated associated volumes VolBubV [k1, k2] and
VolBubW k1, k2] exceed v and w by 2723 = 2. 2724 because sometimes there are
two numbers summed in the calculation. Hence the associated area will be greater
than A. We add 3 - 272* to the calculated area to be sure.

For Claim [B.2]] the proof-function is restricted to showing that the Hutchings
function is positive only on rectangles that include the line v = .85w (See Figure

8).

Remark 5.2. In S?, the proof-function determines the size of each polygon via
a recursive algorithm. Both proof-functions (Claims and (6] complete in well
under six hours each depending on computer speed. In H3, the proof-functions
(Claims E10H5.20) take well over 150 hours to complete. The function is broken
into pieces in order to maximize efficiency by choosing the rectangle size to be
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w+b,

FiGURE 7. The steps needed to show that g > h on a triangular
domain with hypotenuse along the line w = u.

“I

FiGURE 8. Showing that the Hutchings function is positive on
the rectangles covering the shaded region shows that the function
is positive on the shaded region.

relatively large on a given region. Finally, the claim dealing with the ray v = .85w
(Claim [5:27)) completes in under three hours.
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5.2. Program implementation. This section discusses the code in the appendix.
The computer proof in S3 uses two proof functions. The first is called ProofFunc-
tionTriangle. The other is called ProofFunctionRectangle. The following claims can
be proved by examining and running the code in the Appendix (Section [7]). The
proof-functions returns a 1 if the Hutchings function is positive on the rectangle or
triangle it is called upon.

Implementation in S3.

Claim 5.3. The computed function A(v_, error_) returns a lower bound on
the area of a sphere in S with giwen volume v.

Claim 5.4. The function A(v_, w_, VError_, WError_, changeToV_, change-
ToW_) gwes an upper bound on A(v,w).

Claim 5.5. If ProofFunctionRectangle returns a 1, then the Hutchings Func-
tion s positive on this region.

Claim 5.6. If ProofFunctionTriangle returns a 1, then the Hutchings Function
1s positive on this region.

Claim 5.7. ProofFunctionRectangle[lhsF'2, rhsF2, { VolOfS3/10, VolOfS3/10},
{VolOfS3/3, VolOfS3/3}, lhsF2[VolOfS3/10,

VolOfS3/10], rhsF2[VolOfS8/10, VolOfS3/10], IhsF2[VolOfS3/3, VolOfS3/3],
rhsF2[VolOfS3/83, VolOfS3/3], temp] returns a 1 where

lhsF2 = 2x AreaSphereGivenVolumel[v/2,V Error/2] +
AreaSphereGivenV olume|w, W Error] +
AreaSphereGivenV olumelv + w,V Error|

and

rhsF2 =2 x Alv,w,V Error, W Error, ChangeInV, ChangeInW].

Claim 5.8. ProofFunctionTriangle[lhsF2, rhsF2, VolOfS3/10,
VolOfS3/3, VolOfS8/3, 9*VolOfS3/20, lhsF2[VolOfS3/10,
VolOfS3/3], rhsF2[VolOfS38/10, VolOfS3/3], thsF2[VolOfS3/10,
9*VolOfS3/20], rhsF2[VolOfS3/10, 9*VolOfS3/20],
lhsF2[VolOfS8/8, VolOfS3/3], rhsF2[VolOfS3/3, VolOfS3/3],
temp] returns a 1 where

lhsF2 = 2x AreaSphereGivenV olumelv/2,V Error/2] +
AreaSphereGivenV olume|w, W Error] +
AreaSphereGivenVolumelv + w,V Error]

and

rhsF2 =2 x Alv,w,V Error, W Error, ChangeInV,ChangeInW]|.
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Implementation in H®. The following claims can be proved by examining and run-
ning the code in the appendix. The program stops if it finds a rectangle where
g < h. Therefore, if the proof-function completes, the Hutchings function is posi-
tive on the region it was called on (Claim [£.9).

Claim 5.9. If ArrayFillingProof completes then the Hutchings function is pos-
itive on the region i1t was called on.

Claim 5.10. ArrayFillingProof[.002329, .00274, .01, .00001,
.00001,11.46, 10.95, .9999, .9995] completes.

Claim 5.11. ArrayFillingProof[.0085, .01, .1, .00005, .00005, 7.475, 7.15,
.9999, .9995] completes.

Claim 5.12. ArrayFillingProof.085, .1, 1., .0005, .0005, 3.56, 3.415, .9999,
.9995] completes.

Claim 5.13. ArrayFillingProof].85, 1.,15., .005, .005, 1.849, 1.787, .9999,
.9995] completes.

Claim 5.14. ArrayFillingProof[12.75, 15.,25., .01, .01,1.15204, 1.1852, .9999,
.9995] completes.

Claim 5.15. ArrayFillingProof[21.25, 25.,45., .02, .02, 1.1027, 1.09054, .9999,
.9995] completes.

Claim 5.16. ArrayFillingProof[38.25, 45.,65., .02, .02, 1.0687, 1.05562, .9999,
.9995] completes.

Claim 5.17. ArrayFillingProof[55.25, 65., 85., .02, .02, 1.04658, 1.040469,
.9999, .9995] completes.

Claim 5.18. ArrayFillingProof[72.25, 85., 110., .015, .015,
1.03684, 1.031905, .9999, .9995] completes.

Claim 5.19. ArrayFillingProof[93.5, 110., 130., .015, .015,
1.02927, 1.025276, .9999, .9995] completes.

Claim 5.20. ArrayFillingProof[110.5, 130., 150., .015, .015,
1.025161, 1.021693, .9999, .9995] completes.

Finally if we adjust the ArrayFillingProof, so that it only shows that the Hutch-
ings function is positive along the line v = .85w,

Claim 5.21. ArrayFillingProof[127.5, 150., 300., .01, .01, 1.022077, 1.019009,
.9999, .9995] completes.

5.3. Main propositions. The following propositions consolidate the claims that
the computer code runs showing the the Hutchings function is positive on the
desired domains. Proposition uses a modified version of the code that checks
only that the Hutchings function is positive on a small domain that includes the
line v = .85w.

Proposition 5.22. If an area-minimizing double bubble in S® encloses volumes
1 <9 <min{w,1— 2@}, then the Hutchings function Fss(v,w) > 0.

Proof. This follows from implementing the code in the appendix (Claims[5.7, B.8]),
and Claims and O
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Proposition 5.23. If an area-minimizing double bubble in H® encloses vol-
umes v,w such that .002743 < v < w < 150 and v > .85w then the Hutchings
function Fgs(v,w) > 0.

Proof. This follows from Claim and Claims O

Proposition 5.24. The Hutchings function Fys(v,w) > 0, for volume pairs
(v,w), where .85v = w and w € [150, 300].

Proof. This follows from Claim [£.9] and Claim E.21] O

6. DOUBLE BUBBLES IN S anDp H?3

Theorems [6.3 and 6.4 provide our main results on double bubbles in S3 and
H3. They depend on Propositions 6.1 and of Cotton and Freeman [CF]|, af-
ter Hutchings, Morgan, Ritoré, and Ros [HMRR], which reduce the proofs to our
connectivity results of sections 3-5 via the Hutchings Function.

Proposition 6.1. An area-minimizing double bubble in S® for which both en-
closed regions and the exterior are connected must be standard.

Proof. See Cotton and Freeman [CF), Proposition 7.3]. O

Proposition 6.2. An area-minimizing double bubble in H® for which both
enclosed regions are connected must be standard.

Proof. See Cotton and Freeman [CF), Proposition 7.7]. O

Theorem 6.3 (Area-minimizing double bubbles in S3). An area-minimizing dou-
ble bubble in S® is standard if the volume of each of the three regions is larger
than 10% of the total volume of S3.

Proof. By Proposition [6.1] it suffices to show that all regions are connected. By
Lemma 2.74] we know that the region of volume v is connected whenever v > 2w
or v > 2u (Figure @ a). This reduces the problem to showing that the region
of volume v is connected on the pentagonal domain of Figure [0 e defined by the
points: (7,w,a) = (.1,.1,.8),(.1,.8,.1),(.2,.7,.1), (.5,.25,.25), and (.2,.1,.7). By
Proposition 2.3 it suffices to show that the Hutchings Function F(v,w) is pos-
itive on this domain. When .1 < v < w and v < 1 — 2w, computer analysis
(Proposition £.22] see Figure [@b) tells us that the Hutchings Function Fss (v, w)
is positive. In particular, for v < %, Fg3(v,v) is positive. When % > v > wand
v < 2w, by S-balancing (Proposition 2.13] see Figure Bk) Fss (v, w) is positive on
the quadrilateral domain with endpoints: (7,w,a) = (.1, .1, .8), (%, %, %), (g, %, %),
and (.2,.1,.7). Thus F(v,w) > 0 on the pentagonal domain gained by S-balancing
in addition to the region where the computer analysis was done. Hence by permu-
tation (Proposition 2.15] see Figure Bd), F'(v,w) > 0 on the pentagonal domain
with endpoints: (7,@,%) = (.2,.7,.1),(%,%,2),(3, %, %), (.1, 45, 45) and (.1, .8, .1).
In particular, if 7 < .45, F/(v,v) is positive. By S-balancing (Proposition 2.13] see
Figure[Qk) F(v,w) is positive whenever @ < ¥ < 2w. Thus, F(v,w) is positive, for
on the pentagonal domain (v,w,u) = (.1,.1,.8),(.1,.8,.1),(.2,.7,.1), (.5, .25, .25),
and (.2,.1,.7). O
Theorem 6.4 (Area-minimizing double bubbles in H?®). An area-minimizing

double bubble in H? is standard if the volume of the smaller region is at least
85% of the volume of the larger region.
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<I

w a) Hutchings Balancing W b) Computer analysis
New Region: (.2, .1,.7), (.8, .1,.1), New Region: (.1, .1, .8),
(2,.7,.1), (.5, .25, .25) (1/3,1/3, 1/3), (.1, .45, .45)

<I

c¢) Balancing w v
New Region: (.1, .1, .8),

(.2,.1,.7), (479, 2/9, 1/3) , (1/3, 1/3, 1/3)

d) Permutation

(2,.7,.1), (1, .8,.1), (.1, .45, .45)

<l

e) Balancing
New Region: (1/3, 1/3, 1/3)
(4/9, 1.3, 2/9), (.5, .25, .25), (4/9, 2/9, 1/3)

FIGURE 9. An illustration of the steps taken to cover the whole
domain of volumes on S3.

New Region: (1/3, 1/3, 1/3), (4/9,1/3, 2/9),

31
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limF=0 v=w
w
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FicureE 10. The basic steps of the proof that F is positive for
v > .85w and w > .85v in H3.

Proof. By Proposition it suffices to show that the two enclosed regions are
connected. By Proposition 2.3} it suffices to show that the Hutchings Function
F(v,w) is positive for v > .85w (see Figure[I0). Computer analysis (Propositions
(23 £.24) shows that when .002743 < v < w < 150 and v > .85w, the Hutchings
Function Fgs(v,w) is positive. It also shows that the Hutchings function is positive
along the line segment v = .85w,w € [150,300]. Since the partial derivative of
the Hutchings function with respect to v is positive for w > 150 (Lemma [£22)),
F(v,w) > 0 for w € [150,300]. Asymptotic analysis (Theorems[3.5 and [£.23) shows
that Figs(v, w) is positive when v < w < .002743 or v/.85 > w > 300. In particular,
Fys(v,v) is positive. Hence when v > w, Proposition[2.13 shows that Figs (v, w) is
positive. O



DOUBLE BUBBLES IN S AND H® 33

Remark 6.5. In hyperbolic quotient spaces, Theorem [6.4] and [C, Remark 4.4]
prove that the standard double bubble is area minimizing for some small volume
pairs where the smaller volume is at least 85 percent that of the larger.

Future work. It follows from Theorem [6.4] and balancing (Lemma [2.14] Proposition
[2.13) that the largest region in H? is always connected. Connectivity of the largest
region is the key hypothesis for the even more general instability argument used in
R* [R], Section 8]; future work might produce an analog of this result for hyperbolic
space.

7. APPENDIX: PROGRAM CODE

7.1. 8% code.

(*The Volume of the 3-sphere with constant curvature 1)
Vol0£fS3=Pix(2+Pi-Sin[2#Pi]);

(*¥These functions give the relationships of illustrated in Figure 2.1%)
ThetaFN[ri1_,r2_]:=ArcTan[Sqrt[3]*(Tan[r2]-Tan[r1])/(Tan[r1]+Tan[r2])];

xFN[ri_,r2_]:=ArcTan[Tan[r1]*(Sqrt[3]/2*Cos[ThetaFN[r1,r2]]1+1/2*
Sin[ThetaFN[r1,r211)];

r3FN[ri_,r2_]:=ArcCot[Cot[r1]-Cot [r2]];
PhilFN[ri_,r2_]:=ArcSin[Sin[xFN[r1,r2]11/Sin[r1]];

PsilFN[r1_,r2_] :=Module[{Phil},Phi1=Phi1FN[r1,r2];If[(Tan[r2]-Tan[r1])/(
Tan[r1]+Tan[r2])-1/3<0,Pi-Phi1,Phi1]]

Phi2FN[r1_,r2_] :=ArcSin[Sin[xFN[r1,r2]]/Sin[r2]];

Phi3FN[r1_,r2_] :=ArcSin[Sin[xFN[r1,r2]]1/Sin[r3FN[r1,r2]]1];

(*Volume of a spherical cap in S3 of radius r and subtended by an angle
of 2 Phi *)
VolCap[r_,Phi_]:=If[r\[EquallPi/2, (*

then*)0, (*else*)Pi(r-ArcTan[Cos [Phil*Tan[r]]-Cos[r]*Sin[r]+Cos[
Phi]*Cos [r]*Sin[r])];

(*Area of a spherical cap in S3 of radius r and subtended by an angle
of 2 Phi *)
AreaCap[r_,Phi_]:=2Pi*(Sin[r]~2)*(1+Cos[Phil);

(*¥Volume of a sphere of radius r in S$3%)
VolSphere[r_]:=Pix(2*r-Sin[2+r]);

(*Area of a sphere of radius r in S3%)
AreaSphereGivenRadius [r_] :=4*Pi*(Sin[r]) "2

(*Standard double bubbles are compossed of two regions one enclosing the a
smaller volume and a larger volume. The exterior cap of the
smaller-volume-region has a radius of rl. The
exterior cap of the larger-volume-region has radius r2.x)
(*This function gives the volume of the smaller region of a standard double bubble
determined by radii ri1, r2x)
VolOneSDB[r1_,r2_] :=Module[{Psil,r3,Phi3},Psil1=PsilFN[r1,r2];
r3=r3FN[r1,r2];
Phi3=Phi3FN[r1,r2];
(*¥return*)VolCap[r1,Psil]+VolCap[r3,Phi3]]

(xThis function gives the volume of the larger region of a standard double bubble
determined by radii rl, r2%)
VolTwoSDB[r1_,r2_] :=Module [{Phi2,r3,Phi3},Phi2=Phi2FN[r1,r2];

r3=r3FN[r1,r2];

Phi3=Phi3FN[r1,r2];

(*return*)VolCap [r2,Pi-Phi2]-VolCap [r3,Phi3]]

(*When both regions of the double bubble are the same it becomes advantageous
to consider the one parameter function, that give the volume of one region given a
radius r.*)
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EqualVolGivenRadius [r_]:=Pi/2x%(
2r-Sin[2r])*(1+(Sqrt [2]*Cos [r]) / (Sqrt [7+Cos[2r]1]1)) +Pi(ArcTan[Sqrt [2]1Sin[r]\
/(Sqrt [7+Cos[2r]11)1- (Sqrt[2]*r*Cos[r])/(Sqrt[7+Cos[2r]1]));

(*Returns the sum of the areas of the three spherical caps that make up the standard
double bubble corresponding to the two given radiix)
AreaSDBGivenRadii[rl_,r2_]:=Module[{Psil,Phi2,Phi3,r3},Psil=PsilFN[r1,r2];
Phi2=Phi2FN[r1,r2];
Phi3=Phi3FN[r1,r2];
r3=r3FN[r1,r2];
(*return*)AreaCap[r1,Pi-Psil]+AreaCap [r2,Phi2] +AreaCap[r3,Pi-Phi3]]

(*Returns a radius of a sphere in S3 has less area than the sphere of volume v.
If v <= Vol0fS3/2, then this function returns a radius of a sphere with volume in
the interval [v-error, v]. If v > Vol0fS3/2, then
this function returns a radius of a sphere with volume in the interval [v, v+error] x*)
RadiusSphere[v_, error_] :=Module[{minRadius, maxRadius, currentRadius,
counter},

counter =0;
minRadius=0;
maxRadius = Pi;
currentRadius = Pi/2;

If[v VolD£S3/2,

(*This while loop checks to see if the volume is in the interval [v-error, v] if not
then it checks to see if it the volume is two high or low. The While loop

improves the estimates minRadius and maxRadius. While the loop is running

minRadius corresponds to sphere of volume less than v-error and maxRadius
corresponds to a sphere of volume bigger than v.

Finally, the sphere of radius currentRadius corresponds to a sphere of volume

in [v-error, v] and the loop stops.*)

While[VolSphere[currentRadius] > v || (VolSphere[currentRadius] < v \
-error),

If [VolSphere[currentRadius] > v,

maxRadius= currentRadius;
currentRadius = (currentRadius + minRadius)/2;

1;

If [VolSphere[currentRadius] < v-error,

minRadius= currentRadius;
currentRadius = (currentRadius + maxRadius)/2;

1;

counter++;

1,
(xelse if v > volofs3/2%)
(*This while loop checks to see if the volume is in the interval [v, v+error] if not
then it checks to see if it the volume is two high or low. The While loop
improves the estimate minRadius and maxRadius. While the loop is running
minRadius corresponds to sphere of volume less than v and maxRadius
corresponds to a sphere of volume bigger than v+error. Finally, the sphere of

radius currentRadius corresponds to a sphere of volume in [v, v+error]
and the loop stops.*)

While[VolSphere[currentRadius] < v || (VolSphere[currentRadius] > v \
+error),
If [VolSphere[currentRadius] < v,

minRadius= currentRadius;
currentRadius = (currentRadius + maxRadius)/2;

1;
If [VolSphere[currentRadius] > v + error,

maxRadius= currentRadius;
currentRadius = (currentRadius + minRadius)/2;



DOUBLE BUBBLES IN S AND H®

1;
counter++;
1;
1;
(#Print["It took ", counter, "steps."];
Print["Radius is ", N[currentRadius]];*)
currentRadius

H

(*Gives an overestimate for the sphere of volume v*)
AreaSphereGivenVolume[v_, error_]:=AreaSphereGivenRadius[RadiusSpherel[v, \
error]];

(* This function returns a pair of radii corresponding to a standard double bubble
with volumes bigger than v,w by making very small adjustments to the radii of the
exterior caps. This function will only work for v<= w < u. *)

RadiiSDB[v_, w_, vError_, wError_, vChangingFactor_,

wChangingFactor_] :=Module[{VRadius, WRadius, madeChangeToV, \
madeChangeToW, adjustedVError,

adjustedWError, vAdjustment, wAdjustment,volOne, volTwo, counter},

VRadius = Pi/4;
WRadius = Pi/4;
counter=0;

vAdjustment = vChangingFactor;
wAdjustment =wChangingFactor;

(*These variables make sure the v, w we approximate are in the region
we where A(v,w) increases in v and wx)

adjustedVError = vError;

adjustedWError = wError;

(*assurance that we are below line w =u and above line v=wx)
If[v+2w >= Vol0£fS3 || v >= w,

Print ["ERROR RadiiSDB: v and w are not in increasingRegion!"];

Print["v+ 2w = " ,N[v+2wl]l;
Print["Vol of S3 = ", N[Vol0fS3]];
Print["v =" ,v];

Print["w =",w];

While[v+adjustedVError + 2(w+adjustedWError) > VolOfS3 || \
v+adjustedVError > w+adjustedWError,

If [vtadjustedVError > VolOfS3 - 2xw,
adjustedVError= adjstedVError/2;
1;
If [2(w+adjustedWError) > Vol0fS3 - (v + adjustedVError),

adjustedWError= adjustedWError/2;
adjustedVError= adjustedVError/Sqrt[2];

1
If [vtadjustedVError > w+adjustedWError,
adjustedVError = adjustedVError/2;
1
1;
While[(VolOneSDB[VRadius, WRadius] < v || (VolOneSDB[VRadius,
WRadius]> v+
adjustedVError) | [VolTwoSDB[VRadius,

WRadius] < wl| (VolTwoSDB[VRadius, WRadius]> \
w+adjustedWError)),

(*These two variable prevent infinite while loop from occuringx)

35
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madeChangeToV = False;
madeChangeToW = False;

If[VolOneSDB[VRadius, WRadius]< v,

VRadius = VRadius*vAdjustment;
madeChangeToV= !madeChangeToV;

1;

(*xThis set of if statements adjusts one or both of the radii. If it can
not change one of the radii then it refines the amount that the radii
are adjusted by.*)

If[VolOneSDB[VRadius, WRadius]> v+adjustedVError,

VRadius = VRadius/vAdjustment;
madeChangeToV= !madeChangeToV;

1;

If[VolTwoSDB[VRadius, WRadiusl< w,

WRadius = WRadius*wAdjustment;
madeChangeToW= !madeChangeToW;

1;
If[VolTwoSDB[VRadius, WRadius]> w+adjustedWError,

WRadius = WRadius/wAdjustment;
madeChangeToW= !madeChangeToW;

1;

If [!madeChangeToV,
vAdjustment=(vAdjustment+1)/2;
1;

If [!madeChangeToW,
wAdjustment=(wAdjustment+1)/2;
1;

(#Print["Volume V at ", N[VolOneSDB[VRadius, WRadius]]];
Print["Volume W at ", N[VolTwoSDB[VRadius, WRadius]]];

Print["While Loop test
is ", (VolOneSDB[VRadius, WRadius] < v || (VolOneSDB[VRadius, \
WRadius]> v+adjustedVError) | |[VolTwoSDB[VRadius, WRadius] <
w || (VolTwoSDB[VRadius, WRadius]>
w+adjustedWError))];*)

1
1;

(#Print["It took this many steps: ", counter];*)

{VRadius, WRadius}

1

(*By symmetry the standard double bubble enclosing volumes (v,w,u) has the same
area of the standard double bubble enclosing volumes (u,w,v). So, when w=u we can
get an overestimate for the area of the standard double bubble enclosing volumes
(v,w,u) by geting an overestime for the area of the standard double bubble
enclosing volumes (u,w,u). This function returns a pair of radii that correspond to
double bubble where the larger volume is equal to the exterior and
both are bigger than or equal to wk)
RadiiWhenWEqualsU[w_,
error_] :=Module[{radius, minRadius, maxRadius, counter, adjustedError},
minRadius =0;
maxRadius=3Pi/2;
radius = (minRadius+maxRadius/2);
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adjustedError=error;
counter=0;
If[3w< VolOfS3,
Print["W is too small."],
While[3(w-adjustedError)< VolOfS3,
adjustedError = adjustedError/2;
1;
(*Print ["Target Range = (", N[w-error],",", N[wl,")" 1;%)
While [EqualVolGivenRadius [radius]>w| |
EqualVolGivenRadius[radius] <w-adjustedError,
(*counter++;
Print["counter = ", counter];*)
1f [EqualVolGivenRadius [radius]>w,

maxRadius =radius;
radius = (minRadius+radius)/2;

1;
If [EqualVolGivenRadius [radius]<w-adjustedError,

minRadius =radius;
radius = (maxRadius+radius)/2;

1;
(*Print["Vol = ",N[EqualVolGivenRadius[radius]]];*)
1;
(*xPrint ["It took this many steps: ", counter];x*)
1;
{radius, radius}

1;

(xThis piece of code should be used when v=w*)
RadiiWhenVEqualsW[v_, error_]:=Module[{radius,
minRadius, maxRadius, counter, adjustedError},

minRadius =0;

maxRadius=Pi;

radius = (minRadius+maxRadius/2);

adjustedError=error;
counter=0;
(*Print["radius= ", radius];*)

If [3v>= VolOfS3,

Print["V is too big."],

While[3(v+adjustedError)> VolOfS3,
adjustedError = adjustedError/2;
1;
(*Print ["Target Range = (", N[v-error],",", N[vl],")" 1;%)

While[EqualVolGivenRadius [
radius]<v|| EqualVolGivenRadius[radius]>v+adjustedError,

(*counter++;
Print["counter = ", counter];*)

If [EqualVolGivenRadius [radius]>v+adjustedError,

maxRadius =radius;

AND H?®
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radius = (minRadius+radius)/2;
1
If [EqualVolGivenRadius [radius]<v,

minRadius =radius;
radius = (maxRadius+radius)/2;

1;
(*#Print["Vol = " ,N[EqualVolGivenRadius[radius]]];*)
1;
(xPrint["It took this many steps: ", counter];x*)

1;

{radius, radius}
1;

(*¥This function returns an overestimate for the area of a
standard double bubble of volumes v, w.*)

Alv_,w_, vError_,
wError_, vChangingFactor_, \
wChangingFactor_] :=Module [{radii,u,rl,r2,area},

u=Vol0£fS3-v-w;

(*when all three volumes are equalx)
If [v==w && w==u,

area = 6%Pi;

(xone the line v=wx)
If[v==w,

radii = RadiiWhenVEqualsW[v, vError];
area = AreaSDBGivenRadiilradiil[[1]], radiil[2]1];

s
(*on the line w=ux)
If [w==u,

radii = RadiiWhenWEqualsU[w, wError];
area = AreaSDBGivenRadiilradiil[1]], radiil[[2]1];

(*If all volumes are distinctx)

radii = RadiiSDB[v, w, vError, wError, vChangingFactor,
wChangingFactor] ;
area = AreaSDBGivenRadiilradiil[1]], radiil[2]1];

1;

area

1

(*This function is described in Section 4 of the paper. It shows that either

the Hutchings function is on a rectangular domain or it breaks up the

rectangle into 4 smaller rectangles and checks the code again. The function

completes and returns a 1 if the function is positive on the rectangular domain

and 0 if the approximated function is negative on any part of the domainx)

ProofFunctionRectangle[lhs_,rhs_,pl_,p3_,leftll_,right11_,left33_,
right33_,depth_] :=Module [{decision,x1,y1,x2,y2,x3,
y3,1left12,right12,left13,right13,
left21,right21,left22,right22,1eft23,right23,1eft31,

right31,left32,right32,d1,d2,d3,d4},depth=1;

x1=p1[[11];
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yi=p1[[2]];

x3=p3[[11];
y3=p3[[21];

x2=(x1+x3)/2;
y2=(y1+y3)/2;

left12=1hs[x1,y2];right12=rhs[x1,y2];
left13=1lhs[x1,y3];right13=rhs[x1,y3];
left21=1hs[x2,y1];right21=rhs[x2,y1];
left22=1hs[x2,y2] ;right22=rhs[x2,y2];
left23=1hs[x2,y3];right23=rhs[x2,y3];
left31=1hs[x3,y1];right31=rhs[x3,y1];
left32=1hs[x3,y2] ;right32=rhs[x3,y2];

(xif x1 > y3 then balancing
covers the region and we don’t need to check it.*)
If[x1 > y3,

decision =1,

(xotherwise we dox)
If[left11>right11&&left33>right33,

(*then*)

If[Min[left1l,left13,left31,left33]>right33, (*then*)Print ["Points \
",pl," and ",p3," -- Direct hit!"];
decision=1,

(*else*)Print ["Points ",p1," and ",
p3," -- Splitting into four."l;

If [ProofFunctionRectangle [1hs,rhs,{x1,y1},{x2,y2},left11,right11,
left22,right22,d1]\ [Equall 1&&
ProofFunctionRectangle[lhs,rhs,{x2,y1},{x3,y2},left21,right21,\

left32,right32,d2]\ [Equall 1&&

ProofFunctionRectangle[

lhs,rhs,{x1,y2},{x2,y3},left12,right12,1left23,right23,
d3]\ [Equal] 1&&ProofFunctionRectangle [1hs,rhs,{x2,y2},{
x3,y3},left22,right22,1left33,right33,d4]\ [Equalll,

(xthenx*)

Print["Points ",p1," and
",p3," -- Hit after checking four! Depth: ",Max[depth,
di+1,d2+1,d3+1,d4+11];

decision=1,

(*elsex)Print ["Proof function failed"];

decision=0;
(xendif*)];
depth=Max [depth,d1+1,d2+1,d3+1,d4+1];
(¥endif*)],Print["Oh no for ",p1l," and ",p3,"!"];
Print [N[left11]];
Print [N[right11]];
Print [N[1eft33]];
Print [N[right33]];
decision=0;

(xendif*)
1
(xreturn*)decision

1

(*This function is described in Section 4 of the paper. It shows that either

the Hutchings function is on a triangular domain or it breaks up the

triangle into 2 smaller triangles and a rectangle and checks the code again. The function
completes when it has broken the domain into small enough domains to see that the function
is postive and returns a 1 or if the approximated function is negative on any part of the
domain the function returns a 0.%)

ProofFunctionTriangle[lhs_,rhs_,x1_,y1_,x3_,y3_,left1l_,right11l_,left13_,\
right13_,1left31_,right31_,depth_] :=Module [{decision,x2,y2,left12,right12,\
left21,right21,left22,right22,d1,d2,d3},depth=1;

Print["starting up the process"];

x2=(x1+x3)/2;
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y2=(y1+y3)/2;
Print["whoa now!"];
If [left11>right11&&left13>right13&&left31>right31, (*thenx)

If [Min[leftil1,
left13,left31]>right31, (¥then*)Print ["Points ",{x1,y1},", ",{x1,
y3},", and ",{x3,y1}," -- Direct triangle hit!"];

decision=1,

(*¥else*)Print ["Points ",{x1,y1},", ",{x1,y3},", and ",{x3,y1}," --
Splitting into three."];

left12=lhs[x1,y2];right12=rhs[x1,y2];
left21=1hs[x2,y1];right21=rhs[x2,y1];
left22=1hs[x2,y2];right22=rhs[x2,y2];

If [ProofFunctionRectangle [1hs,rhs,{x1,y1},{x2,y2},left11,right11,\
left22,right22,d1]\ [Equall 1&&ProofFunctionTriangle [1hs,rhs,x1,y2,x2,y3,left12,
right12,left13,right13,left22,right22,d2]1\ [Equal] 1&&\
ProofFunctionTriangle[lhs,rhs,x2,y1,x3,y2,left21,
right21,left22,right22,left31,right31,d3]\[Equalll, (*then*)
Print["Points ",{x1,y1},", ",{x1,y3},", and ",{x3,y1}," --
Hit after checking three! Depth: ",Max[depth,d1+1,d2+1,d3+1]];
decision=1, (*else*)Print[
"Points ",{x1,y1},", ",{x1,y3},", and ",{x3,y1}," -- Failed
after checking three!"];
decision=0;
(*endif*)];
depth=Max [depth,d1+1,d2+1,d3+1] ;
(¥endif#*)], (*else*)Print["Oh no for " {x1,y1},",
", {x1,y3},", and ",{x3,y1},"!"];
Print [N[left11]];
Print [N[right111];
Print [N[left13]];
Print [N[right13]];
Print [N[left31]];
Print [N[right311];
decision=0;
(*endif*)];
(*return)decision]

H3 Code

(*error control in computation the default value of maching*)
WorkingPrecision->MachinePrecision;

COMPUTERERROR= 2°-24;

ACCURACY = 25;

LargestSingCurvature = 16.8;

AreaSphere [k_Real] :=SetAccuracy[(4*Pi)/(-1+k~2)-COMPUTERERROR, ACCURACY];

VolSphere [k_Real] :=SetAccuracy [Pi*(-2*
ArcCoth[k]+Sinh[2*ArcCoth[k]]),ACCURACY];

ASCiclose[kl_Real,k2_Reall :=SetAccuracy [(2*Pi*(1+Sqrt[-((k1~2*(-1+Cos [(1/6)*(\
Pi-6*ArcTan[(Sqrt [3]*(k1-k2))/(
k1+k2)1)172))/(
k1°2-Cos [(1/6)*(
Pi-6%ArcTan[(
Sqrt [3]*(ki-
k2))/(k1+k2)1)1°2))1))/ (-1+k172), \

ACCURACY+1] ;

AsCifar[k1_Real,
k2_Real] :=SetAccuracy [~ ((2*Pi* (-1+Sqrt [- ((k1~2%(-1+Cos [(1/6)* (Pi-6%\
ArcTan[(Sqrt [3]*(k1-k2))/(
k1+k2)1)172))/ (k172-Cos [(
1/6) % (Pi-6xArcTan[ (
Sqrt [3]*(
k1-k2))/(k1+k2)1)17°2))1))/(-1+
k1°2)), ACCURACY+1];

ASC1[k1_Real,k2_Reall :=SetAccuracy[If[(k1-k2)/(k1+k2)-1/3<0,ASCiclosel[
k1,k2] ,ASCifar[k1,k2]], ACCURACY+1];

ASC2[k1_Real,k2_Real]:=SetAccuracy[(2+Pi*(1+Sqrt [(k1"2-k2"2*Cos[(1/6)*(Pi-6%
ArcTan[(Sqrt [3]1*(k1-k2))/ (k1+
x2)1)1°2)/(
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k1-2-Cos[(1/
6)*(Pi-6%ArcTan[(Sqrt [3]*(k1-k2))/(k1+
k2)1)1°2)1))/(-1+k2°2), ACCURACY+1];

ASC3[k1_Real,k2_Reall :=SetAccuracy [(2*Pi*(1-Sqrt [(k1~2-(k1-k2)~2*Cos[(
1/6)* (Pi-6%
ArcTan[(Sqrt [3]*(
k1-k2))/(ki1+
k2)1)172)/ (k172-
Cos [(1/6)*(
Pi-6xArcTan[(
Sqrt [3]*(k1-
k2))/(k1+k2)1)1°2)1)) /(-1+(k1-k2)"2), \
ACCURACY+1] ;

AreaDblBubble [k1_Real,k2_Real] :=SetAccuracy [ASC1[k1,k2]+ASC2[k1,
k2] +ASC3[k1,k2] +3*COMPUTERERROR, ACCURACY];

VolCapiclose[kl_Real,k2 Reall:=-((1/(-1+k172))*(Pi*((-1+k1"2)*
ArcCoth[k1]+(-1+k1~2)*ArcTanh [Sqrt [-((k1~2*(-1+Cos [(1/6) * (Pi-6xArcTan[(\
Sqrt [31*(k1-k2))/(k1+k2)1)1°2))/(k1~2-Cos [(1/6)* (Pi-6%ArcTan[(Sqrt [3]*(k1-k2))\

/(k1+k2)1)1°2))1/k1] -k1* (1+Sqrt [~ (
k172%(-1+Cos [(1/6) * (Pi-6*ArcTan[(Sqrt [\
3]*(k1-k2))/(k1+k2)1)1°2)) /(k1~2-Cos [(1/6) * (Pi-6*ArcTan[(
Sqrt [3]1*(k1-k2))/(k1+k2)1)1°2))1))));

VolCapifar[kl_Real,k2_Real]:=Pi*(-ArcCoth[k1]+(1/(-1+k172))*(k1+(-1+k1"2)*\
ArcTanh [Sqrt [-((k1"2*(-1+Cos [(1/6) * (Pi-6*ArcTan[(Sqrt [
3% (k1-k2))/(
k1+k2)1)1°2))/(k1°2-Cos [(1/6)* (Pi-6%ArcTan[(Sqrt[
3]*(k1-
k2))/(k1+
k2)1)1°2))1/
k1]-ki1x
Sqrt [-((k1"2%(-1+Cos [(1/6)* (Pi-6%\
ArcTan[(Sqrt [3]*(k1-k2)) /(k1+k2)]1)]"2)) /(k1~2-Cos [(
1/6)*(Pi-6xArcTan[(Sqrt [3]*(k1-k2))/(k1+
k2)1)1°2))1));

VolCapl[k1_Real,k2_Reall] :=If [(k1-k2)/(k1+k2)-1/3<0,
VolCapiclose[k1,k2],VolCapifar[ki,k2]];

VolCap2[k1_Real,k2_Real] :=Pi*(-(k2/(1-k2°2))-ArcCoth[k2]-
ArcTanh [Sqrt [(k172-k2"2xCos [(1/6) * (Pi-6xArcTan[(Sqrt [3]*(
k1-k2))/(k1+k2)])]1"2)/(k1"2-Cos [(
1/6)*(Pi-6x
ArcTan[(Sqrt [3]*(
k1-k2))/(k1+k2)1)172)1/k2] - (k2*Sqrt [(k1~2-\
k2°2%Cos [(1/6) * (Pi-6xArcTan[(Sqrt [3]1*(k1-k2))/ (k1+k2)1)]1"2)/(k1"2~
Cos[(1/6) *(Pi-6%ArcTan[(Sqrt [
31x(k1-k2))/(k1+k2)1)]1°2)1) /(1-k2°2)) ;

VolCap3[k1_Real,
k2_Real] :=Re [Pi* (ArcTanh [Sqrt [(k1~2-(k1-k2) “2%Cos[(1/6)*(Pi-6%ArcTan[(\
Sqrt [3]1*(k1-k2))/ (k1+k2)1)]1~2) /(k1~2-
Cos[(1/6)*(Pi-6*ArcTan[(Sqrt[
3]*(k1-k2))/(k1+k2)1)]172)1/ (k1-k2)I+(1/(-\
1+k172-2%k1xk2+k2"°2) ) * (k1-k2- (-1+k1°2-2%*
k1¥k2+k2"2) *
ArcCoth[
k1-k2]+(-ki+
k2)*Sqrt [(k172-(k1-k2) “2*Cos [(1/6)* (Pi-6%ArcTan[\
(Sqrt [3]*(k1-k2))/ (k1+k2)1)]~2) /(k12-Cos [(1/6)* (Pi-6*ArcTan[(
Sqrt [3]*(k1-k2)) /(k1+k2)1)]1"2)1))];

VolBubl[kl_Real,k2_Real] :=If[k1 < 1 || k2 < 1,
Print["VolBubl Error : k1 or k2 too small"];
Print["k1 = ", k1, " k2 = ", k2 ];
,If[k1 \[Equal] k2,VolCapi[k1,k2]

VolCapi [k1,k2]+VolCap3[k1,k2]
]
1;
VolBub2[k1_Real,k2_Reall :=If [k1\[Equallk2, VolCap2[ki,k2]

VolCap2[k1,k2]-VolCap3[k1,k2]

VolBub1A[k1_Real, k2_Reall:=If[k1>= k2,

VolBubi[ki, k2]
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(*Print ["VolBublA curvatures switched"];x)

VolBub2[k2, k1]
1;

VolBub2A[k1_Real, k2_Reall:=If[k1>= k2,
VolBub2[k1, k2]

(*Print ["VolBub2A curvatures switched to ", VolBubil[k1, k2]];*)
VolBubil[k2, ki]
1;

VolBubV[k1_Real, k2_Reall := SetAccuracy[VolBubiA[kl, k2], ACCURACY];

VolBubW([k1_Real, k2_Reall] := SetAccuracy[VolBub2A[k1, k2], 15];

(*gives an underappoxiamation for the curvature of a sphere in H3%)
CurvatureEstimatorSingle[v_Real] := If[v > .0001,
If[ v < .008,
8.109,

If[ v<.02,
6.,

If[
(.02 v < 1%)
v <1,

1.84871,

If[
(¥1 v < 10%)
v<10,
1.19394,

If[
(%20 v < 30 *)
v < 30,
1.08108,

If[
(¥30 v < 50%)
v<50,

1.05231,

If[
(*¥50 v < 60%)
v< 60,

1.04456,

If[
(x60 <= v < T70%)
v< 70,

1.03883,

If[
(¥70 v < 80%)
v< 80,

1.03437,

If[
(¥80 v < 90%)
v< 90,

1.03086,

If[
(¥90 v < 110%)
v<110,

1.0256,

If[
(¥110< v < 200%)
v < 200,
1.01468,
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(xelse 550>v 110%)
1.00509

(xelse if v < .0001%)
Print["volume to small"l;
(*return%)

-1

1;

(*¥This function uses interpolation to get asure that the curvature used in \
the approximation is less than the given v within
an interval that is small. The constant term COMPUTERERROR assures that \
the precision of the computer does not affect our lower bound*)
CurvaturefromVolSingle[v_Real, error_Real]:=Module[{
curvature, smallK = CurvatureEstimatorSinglelv], bigk= \
LargestSingCurvature, counter =0},

curvature = smallK;
(%)
While[VolSphere[curvature] > v - COMPUTERERROR || VolSphere[curvature] \

< v-error ,

curvature = (bigK+smallK)/2;
counter = counter +1;

(xthis tightens the interval that curvatures can be ink)
If [VolSphere[curvature] > v - COMPUTERERROR,

smallK= curvature;

,If [VolSphere [curvature] < v - error,

bigk = curvature;
1;
1;
1
(*Print["It took ", counter, "steps." ;%)
curvature

1;

(*this function returns curvature pair that is at least one box size over \
then returns the array with the new curvature pair and the changes for each \
curvature though this seems to do the same thing as CurvaturesfromVolDouble[] \
this doesn’t limit the size of the changex)

MakeChangeOneBoxSizeOver [k1_Real, k2_Real, volumel_Real, BoxSize_Real, \
changel_Real] := Module[{minVolChange, maxVolChange,adjCurvaturel, \
adjCurvature2, adjChangel, finalArray, counter, slope, closestOverShot, \
closestUnderShot, lastCurvatureGuess},

minVolChange = .8*BoxSize;
maxVolChange = 1.7+%BoxSize;

adjCurvaturel = changelxkl;
adjCurvature2 = k2;
adjChangel = changel;

counter=0;

closestOverShot= k2;
closestUnderShot = ki;

slope = (VolBublA[adjCurvaturel, adjCurvature2] - \
volumel)/(adjCurvaturel - ki);

adjCurvaturel = adjCurvaturel + BoxSize/slope;

(*Print ["curvatures, ki = ",adjCurvaturel, " k2 is ", k2];%)
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While[ (VolBublA[adjCurvaturel,adjCurvature2]- volumel< minVolChange || \
VolBublA[adjCurvaturel,adjCurvature2] - volumel > maxVolChange) && \
adjCurvaturel > 1 && counter < 10,

If [VolBublA[adjCurvaturel,adjCurvature2]- volumel< minVolChange,

(*Print["hi test 1 is ", VolBublA[
adjCurvaturel,adjCurvature2]- volumel< minVolChange];*)

lastCurvatureGuess = adjCurvaturel;
adjCurvaturel = (adjCurvaturel + closestOverShot)/2;

closestOverShot = lastCurvatureGuess;

1

If[VolBubiA[adjCurvaturel,adjCurvature2]- volumel> maxVolChange,

(*Print["hi test 2 is ", VolBublA[adjCurvaturel,adjCurvature2]-
volumel> maxVolChange] ;*)

lastCurvatureGuess = adjCurvaturel;
adjCurvaturel = (adjCurvaturel + closestUnderShot)/2;

closestUnderShot = lastCurvatureGuess;

1;

(*Print["trial", counter, " vol is \
",VolBub[adjCurvaturel,adjCurvature2]];*)

counter= counter+l1;
(*Print["counter = ", counter];
Print["voll =",
VolBublA[adjCurvaturel,adjCurvature2] 1J;
Print["change = \
", adjChangell;
Print["curvature

*)

", adjCurvaturel ];

1;
If [adjCurvaturel <= 1,

Print ["MakeChangeOneBoxSizeOver error curvature too small"l;

1;
(*
Print["voll =", VolBubl[adjCurvaturel,adjCurvature2] 1;
Print["change = ", adjChangell;
Print["curvature ", adjCurvaturell;
*)

adjChangel = adjCurvaturel/ki;

{adjCurvaturel, adjChangel}
1;

(*this function returns curvature pair that is at least one box size over \
then returns the array with the new curvature pair and the changes for each \
curvature though this seems to do the same thing as CurvaturesfromVolDouble[] \
this doesn’t limit the size of the changex)

MakeChangeOneBoxSizeUp [k1_Real, k2_Real, volume2_Real, BoxSize_Real, \
change2_Real] := Module[{minVolChange, maxVolChange,adjCurvaturel, \
adjCurvature2, adjChangel, counter, slope, lastCurvatureGuess, \
closestUnderShot, closestOverShot},

minVolChange = 1.*BoxSize;
maxVolChange = 2.*BoxSize;

adjCurvaturel = ki;
adjCurvature2 = k2xchange2;
adjChange2 = change2;
closestUnderShot=k2;
closestOverShot = 1.;

(*Might want to change this!*)

counter=0;
(*Print["hi"];

Print["test =", (VolBub2[adjCurvaturel,adjCurvature2]- volume2<
minVolChange || VolBub2[adjCurvaturel,

-
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adjCurvature2] - volume2 > maxVolChange) &&
adjCurvature2 > 1 && counter < 10];
*)

slope = (
VolBub2A[adjCurvaturel, adjCurvature2] - volume2)/(adjCurvature2 - k2);

adjCurvature2 = adjCurvature2 + BoxSize/slope;

While[ (VolBub2A[adjCurvaturel,

adjCurvature2] - volume2< minVolChange || \
VolBub2A[adjCurvaturel,adjCurvature2] -

volume2 > maxVolChange) && adjCurvature2 > 1 && counter < 10,

counter= counter+1;

(*Print["counter = ", counter];
Print["vol2 =", VolBub2[adjCurvaturel,adjCurvature2] 1;
Print["change = ", adjChange2];
Print["curvature ", adjCurvaturel ];
*)

If [VolBub2A[adjCurvaturel,adjCurvature2]- volumel< minVolChange,
lastCurvatureGuess = adjCurvature2;
adjCurvature2 = (adjCurvature2 + closestOverShot)/2;
closestOverShot = lastCurvatureGuess;
1;
If [VolBub2A[adjCurvaturel,adjCurvature2]- volumel> maxVolChange,
lastCurvatureGuess = adjCurvaturel;
adjCurvature2 = (adjCurvature2 + closestUnderShot)/2;
closestUnderShot = lastCurvatureGuess;
1;
1;
(xPrint["counter = ", counter];*)
If [adjCurvature2 <= 1,

Print ["MakeChangeOneBoxSizeUp error curvature too small"l;

1;
(*
Print["vol2 =", VolBub2[adjCurvaturel,adjCurvature2] 1;
Print["change = ", adjChange2];
Print["curvature ", adjCurvature2];
*)

adjChange2 = adjCurvature2/k2;

{adjCurvature2, adjChange2}
1;

(*This function tells whether the point is in given rectangle with lower left \
corner xvalueBox, yValueBox and width boxWidth and heigh boxHeight*)
IsPointinBox[xValuePoint_Real, yValuePoint_Real, xValueBox_Real, \
yValueBox_Real, boxWidth_Real, boxHeight_Real] :=
(xValuePoint> xValueBox+ COMPUTERERROR && xValuePoint < (xValueBox + \
boxWidth) && yValuePoint > yValueBox + COMPUTERERROR &&
yValuePoint < (yValueBox + boxHeight));

(*This function tells whether the point has a x value and a yalue bigger than \
a given x, and y value *)
IsPointToUpperRight [xValuePoint_Real, yValuePoint_Real, xValueBox_Real, \
yValueBox_Real] :=

(xValuePoint> xValueBox) && yValuePoint > yValueBox ;

(xThis function is supposed manipulate a given curvature pair for volumes \
voll and vol2 and get a curvature pair corresponding to volumes in inside a \
box with vl, v2 as its lower left corner*)

(*right now this method needs to dyanically choose its changing size to avoid \
infinite loops*)

(*Returns a two element list of curvatures*)

45
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(*v1, v2 should correspond to the point in the lower right of the rectangle \
containing VolBubiA[k1l, k2], VolBub2A[kl, k2]

the curvatures k1, k2 should be a point in the middle of the rectangle*)

NextCurvaturePairinArray[ k1_Real, k2_Real,vl_Real, v2_Real, changel_Real, \
change2_Real, scalingFactorl_Real, scalingFactor2_Reall \

:=Module [{curvatureComponent11, curvatureComponentl2, curvatureComponent21, \
curvatureComponent22, startingVolumel, startingVolume2, volumeComponentll, \
volumeComponent12, volumeComponent21, volumeComponent22, alpha, beta, \
volumeOneTarget, volumeTwoTarget, curvaturePair, volumeChangeMatrix,

startingVoltoTargetMatrix, alphaBetaMatrix, counter, \

oneBoxSizeOverArray, oneBoxSizeUpArray},

(*adjustment arrays¥)

oneBoxSizeOverArray =
MakeChangeOneBoxSizeOver[k1, k2,

VolBub1A[k1,k2], changel, scalingFactoril];

oneBoxSizeUpArray = MakeChangeOneBoxSizeUp[k1, k2, VolBub2A[ki, k2], \

change2, scalingFactor2];

(*Declaration of initial curvaturevectors*)
curvatureComponent11 = oneBoxSizeOverArray[[1]];
curvatureComponent12 = k2;

curvatureComponent21 = ki;
curvatureComponent22 = oneBoxSizeUpArray[[1]];

counter=0;

(*Print["c11 = ", curvatureComponentii];
Print["c12 = ", curvatureComponenti2];
Print["c21 = ", curvatureComponent21];
Print["c22 = ", curvatureComponent22];*)

(*declaration of initial volumevectorsx)
startingVolumel = VolBublA[k1, k2];

startingVolume2 = VolBub2A[k1, k2];
volumeComponent11l = VolBublA[

curvatureComponent11, curvatureComponent12];
volumeComponent12 = VolBub2A[curvatureComponentil, \

curvatureComponent12] ;

volumeComponent21 = VolBublA[
curvatureComponent21, curvatureComponent22];
volumeComponent22 = VolBub2A[curvatureComponent21, \

curvatureComponent22] ;

(*Print["v11l = ", volumeComponent11];
Print["vi2 = ", volumeComponent12];
Print["v21 = ", volumeComponent21];
Print["v22 = ", volumeComponent22];*)

(xdeclaration of target Volumes*)
volumeOneTarget = vl + .5*changel;
volumeTwoTarget = v2 + .5*change2;

(*Print ["volumeOneTarget = ", volumeOneTarget];
Print["volumeTwoTarget = ", volumeTwoTarget];
*)

(*declaration of Matricies*)
startingVoltoTargetMatrix= {{volumeOneTarget -
startingVolumel}, {volumeTwoTarget - startingVolume2}};

(+Print["first test =
",IsPointinBox [volumeComponent11, volumeComponenti2, vi+changel, \

v2, changel, change2]];

*)
If [IsPointinBox [volumeComponent1l, volumeComponent12, v1, v2, changel,
change2] ,
(#Print["vil = ", volumeComponent11];
Print["v12 = ", volumeComponent12];
Print["changel = ", changell;
Print["change2 = ", change2];

*)

curvaturePair = {curvatureComponentll, curvatureComponenti12},
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(#Print["2nd test = ",IsPointinBox[volumeComponent21, \
volumeComponent22, vi+changel, v2, changel, change2]];

Print["v21 = ", volumeComponent21];

Print["v22 = ", volumeComponent22];

Print["changel = ", changell;

Print["change2 = ", change2];

*)

If [IsPointinBox [volumeComponent21, volumeComponent22, vl, v2, changel,
change2] ,

(*Print["case II"];
Print["v21 = ", volumeComponent21];
Print["v22 = ", volumeComponent22];
Print["changel = ", changell;
Print["change2 = ", change2];*)

curvaturePair = {curvatureComponent21, curvatureComponent22},

(*Print["while loop test", \
!IsPointinBox [volumeComponent11,volumeComponent12,vi+changel, v2, changel,
change2]];
*)

volumeChangeMatrix = {{volumeComponentll - startingVolumel, \
volumeComponent12 - startingVolume2}, {volumeComponent21 -
startingVolumel, volumeComponent22 - startingVolume2}};

(*Print ["volumeChangeMatrix = ",volumeChangeMatrix//MatrixForm];

*)

alphaBetaMatrix = Inverse[volumeChangeMatrix]
startingVoltoTargetMatrix;
(*Print["alphaBetaMatrix = ", alphaBetaMatrix//MatrixForm];
*)

alpha = alphaBetaMatrix[[1,1]];
beta = alphaBetaMatrix[[2,1]];

curvatureComponent11 = (curvatureComponentii-ki)*alpha + \
(curvatureComponent21-k1)*beta +ki1;

curvatureComponent12= (curvatureComponent12-k2)*

alpha + (curvatureComponent22-k2)*beta + k2;

(*#Print["inside while loop"];

Print["c11l = ", curvatureComponent11];
Print["c12 = ", curvatureComponenti2];
Print["alpha = ", alphal;
Print["beta = ", beta];*)

volumeComponent11l = VolBubilA[
curvatureComponent11, curvatureComponent12];

volumeComponent12 = VolBub2A[

curvatureComponent1l, curvatureComponent 12];

(*Print["v1l = ", volumeComponent11];
Print["vi2 = ", volumeComponent12];*)

1;

curvaturePair = {curvatureComponentll, curvatureComponent12};
(xPrint ["after loop"];

Print["vll = ", volumeComponenti11];
Print["v12 = ", volumeComponent12];
Print["changel = ", changell;
Print["change2 = ", change2];
Print["2nd
test = ",IsPointinBox[volumeComponentil, \

volumeComponent12, vi+changel, v2, changel, change2]];*)

1;

If[!
IsPointinBox[VolBubl [curvatureComponentll, curvatureComponent12], \
VolBub2[curvatureComponent1l, curvatureComponent12], vi+changel, v2, \
changel, change?2],

curvaturePair = {-1, -1};
H

*)
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curvaturePair

1

(*This returns a lower bound on the positive part of the Hutchings function \
for a given volume pairx)

LowerBoundOnPosHutchingFunction[voll_Real, vol2_Real, errorl_Real, \
error2_Reall:=

2xAreaSphere [CurvaturefromVolSingle[vol1/2, errori]l+
AreaSphere [CurvaturefromVolSingle [vol2, error2]]+
AreaSphere [CurvaturefromVolSingle [voli+vol2, error2]];

(*This returns an array of areas is indexed by its volume pair *)
ArrayBuilderForSingAreasandCurvatures[vMin_Real, vMax_Real, boxSize_Real, \
error_Real] :=Module[

{AreaArray, volumeArray, n, g},

gli_Integer]= AreaSphere[CurvaturefromVolSingle[vMin+ i*boxSize, \
error]];

n[i_Integer]=VolSphere [CurvaturefromVolSingle [vMin+ i*boxSize, errorll;

AreaArray= Array[g, Ceiling[(vMax-vMin)/boxSize], 0];
volumeArray=Array[n, Ceiling[(vMax-vMin)/boxSizel, 0];

{volumeArray,AreaArray}

1

(*This returns an array of areas is indexed by its volume pair *)
ArrayBuilderForSingAreasandVolumes [vMin_Real, vMax_Real, boxSize_Real, \
error_Real] :=Module[

{AreaArray, volumeArray, n, g},

gli_Integer]= AreaSphere[CurvaturefromVolSingle[vMin+i*boxSize,
error]];
n[i_Integer]=vMin+i*boxSize;

AreaArray= Array[g, Ceiling[(vMax-vMin)/boxSize], 0];
volumeArray=Array[n, Ceiling[(vMax-vMin)/boxSizel, 0];

{volumeArray,AreaArray}

1

(*This returns an array of areas is indexed by its volume pair *)
ArrayBuilderForSingAreas[vMin_Real, vMax_Real, \
boxSize_Real, error_Real]:=Module[

{AreaArray, g},

gli_Integer]= AreaSphere[CurvaturefromVolSingle[vMin+ixboxSize, \
error]];

AreaArray= Array[g, Ceiling[(vMax-vMin)/boxSize], 0];

AreaArray

1;

(*This code fills an array with curvature pairs. It moves on to the next \
region after verifying that 2 the area of the double bubble enclosing volumes \
v,w is less than the concave part of the Hutchings function for v, W)
ArrayFillingProcf[vMin_Real, wMin_Real,wMax_Real,rectangleHeight_Real, \
rectangleWidth_Real,startingCurvaturel_Real, startingCurvature2_Real, \
adjustmentMainVcl_Real,adjustmentSecondVol_Real] :=Module [{smallerVolume, \
largerVolume,nextRowStartingCurvatures, curvaturePair, failSafe,

nextRowStartingPosition,counter, insideCounter, failingVolumeV, \
singAreasArray, singAreasArrayStart},

failSafe=True;
counter=0;
insideCounter =1;

singAreasArrayStart=(vMin-rectangleWidth)/2;
singAreasArray= ArrayBuilderForSingAreas[(vMin-rectangleWidth)/2, \
2 (wMax+rectangleWidth), rectangleWidth/2, rectangleWidth/2];
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Print["Array completed, evaluating Hutchings Function"];
(*Print ["singAreasArray =", singAreasArray];*)

(*Print["hi"];
Print[failSafe];*)

(*nextRowStartingPosition keeps tract of the x position that \
starts a new row
initially it is set to O and then set to correct position*)
nextRowStartingPosition = 0.0;
nextRowStartingCurvatures = curvaturePair;

curvaturePair = {startingCurvaturel, startingCurvature2};
smallerVolume = vMin;

largerVolume=wMin+rectangleHeight;

(*Print["first test", largerVolume wMax +rectangleHeight && \
failSafe] ;*)

While[largerVolume wMax +rectangleHeight && failSafe,

(*¥While the vl is less than v2x)
While[smallerVolume largerVolume +rectangleWidth && failSafe ,

failSafe = IsPointinBox[VolBubV[curvaturePair[[
111, curvaturePair[[2]]],
VolBubW [curvaturePair[[1]],curvaturePair[[2]]], smallerVolume, \
largerVolume, 2*rectangleWidth, 2*rectangleHeight];

If[!failSafe,

Print["( ",
VolBubV[curvaturePair[[1]], curvaturePair[[2]]1], ", ",
VolBubW [curvaturePair[[1]],
curvaturePair[[2]]], ") is not in the
box defined by (", smallerVolume,", ", largerVolume,") \
and (", rectangleWidth, ", ", rectangleHeight, ")" ];
1;
(*markerx)

(*this sets up moving one row upx)
If[ nextRowStartingPosition \[EquallO &% .85 * largerVolume \
smallerVolume+rectangleWidth,
nextRowStartingPosition = smallerVolume;
nextRowStartingCurvatures = curvaturePair;

1;

(*Print["hi! 11"];%)
(*If[insideCounter <= 5,

Print["target volume pair = {", smallerVolume, ",", largerVolume,
BOT
Print["actual volume
pair = {", \
VolBubV[curvaturePair[[1]],curvaturePair[[2]] 1, ",", \

VolBubW[curvaturePair[[1]],curvaturePair[[2]] 1, "}"];
Print["curvatures are ", curvaturePair];
insideCounter++;

Print["failSafe ", failSafel;

15%)

(*if there is a problem with the curvature function or the \
hutchings function is negative then the program should failk)

(+Print["v/2 from array =", \
singAreasArray[ [Floor[((smallerVolume-rectangleWidth)/2-singAreasArrayStart)/(\
rectangleWidth/2)+1]1111;
Print["index =", \
Floor[((smallerVolume-rectangleWidth)/2-singAreasArrayStart)/(rectangleWidth/\
2)+111;

Print["v/2 not from array = " ,

AreaSphere [CurvaturefromVolSingle [(
smallerVolume-rectangleWidth)/2, \
rectangleWidth/2]11];
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Print["w from array =",
singAreasArray [ [Floor [
2+(largerVolume-rectangleWidth-singAreasArrayStart)/(\
rectangleWidth/2)111];

Print["index =", \
Floor [2+(largerVolume-rectangleWidth-singAreasArrayStart)/(rectangleWidth/2)]]\

Print["w not from array = " \
,AreaSphere [CurvaturefromVolSingle[largerVolume-
rectangleWidth, rectangleWidth/2]]];

Print["v+w from array =", \
singAreasArray[[Floor[1+(smallerVolume+largerVolume-rectangleWidth-
singAreasArrayStart)/(rectangleWidth/2)]111];

Print["index =", \
Floor[1+(-rectangleWidth+smallerVolume+largerVolume-singAreasArrayStart)/(\
rectangleWidth/2)]];

Print [

"v+w not from array = " \
,AreaSphere [CurvaturefromVolSingle [smallerVolume+largerVolume-rectangleWidth, \
rectangleWidth/2]11];

Print["v + w =", smal1erVo1ume+1argerVolume—rectangleWidth];
Print["v = ", smallerVolume];

Print["w = ", largerVolume-rectangleWidth];

*)

If [curvaturePair[[1]] < 1 \

| |2xsingAreasArray [[Floor [((smallerVolume-rectangleWidth)/2-\

singAreasArrayStart)/(rectangleWidth/2)+1]]]+singAreasArray[[
Floor[2+(largerVolume-rectangleWidth-\

singAreasArrayStart)/(rectangleWidth/
2)11]+singAreasArray [ [Floor [1+(smallerVolume+\

largerVolume-rectangleWidth-singAreasArrayStart)/(rectangleWidth/2)111+ - \

2*AreaDblBubble [curvaturePair[[1]], curvaturePair[[2]]] < O,

Print["curvaturePair =", curvaturePair];

Print["hutchings function = ", \
2xsingAreasArray[[Floor[((smallerVolume-rectangleWidth)/2-

singAreasArrayStart)/(rectangleWidth/2)+1]]]+singAreasArray [[\
Floor[2+(largerVolume-rectangleWidth-singAreasArrayStart)/(rectangleWidth/2)1]\
J+singAreasArray [ [Floor [1+(smallerVolume+largerVolume-rectangleWidth-\
singAreasArrayStart)/(rectangleWidth/2)]]] - 2%AreaDblBubble[

curvaturePair[[1]], curvaturePair[[2]]1]];
failSafe = False;
failVolumeV =smallerVolume;

Print ["upper
bound on dbl bubble", 2*AreaDblBubble [curvaturePair[[1]], \
curvaturePair[[2]11]1];
Print["lower bound on concave",singAreasArray[[
Floor[((smallerVolume-rectangleWidth)/2-\
singAreasArrayStart)/(rectangleWidth/2)+1]]]+singAreasArray [ [Floor [2+(\
largerVolume-—
rectangleWidth-singAreasArrayStart)/(rectangleWidth/2)111+\
singAreasArray[[Floor[1+(smallerVolume+largerVolume-rectangleWidth-
singAreasArrayStart)/(rectangleWidth/2)111];

1;

(*Print["inside while loop"];*)

curvaturePair = NextCurvaturePairinArray[curvaturePair[[1]], \
curvaturePair[[2]], smallerVolumet+rectangleWidth, largerVolume,

rectangleWidth, rectangleHeight, adjustmentMainVol, \
adjustmentSecondVol] ;

(*#Print ["upper bound on dbl bubble", 2*AreaDblBubble \
[curvaturePair[[1]], curvaturePair[[2]1]1]];

Print["lower bound on \
concave",LowerBoundOnPosHutchingFunction[smallerVolume, largerVolume, \
rectangleWidth, rectangleHeightl];

*)
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smallerVolume = smallerVolume+ rectangleWidth;

1;

If [failSafe,
(*Print ["smallerVolume", smallerVolume];*)
smallerVolume = nextRowStartingPosition;

nextRowStartingPosition =0.0;
counter++;
insideCounter= 1;

If [counter \[Equalli00,
Print["w at ", largerVolume];
counter=0;

1;

(*#Print ["SETTING the curvature pair"];

Print["Volumes before {", \
VolBubV[nextRowStartingCurvatures[[1]],nextRowStartingCurvatures[[2]1]1], " , \
" ,VolBubW [nextRowStartingCurvatures[[1]],

nextRowStartingCurvatures[[2]1], "}" 1;

Print["target box { (", smallerVolume ",", \
smallerVolume+rectangleHeight , ") X (
", (largerVolume+rectangleHeight), ", ", \
(largerVolume+2*rectangleHeight)") }"];
*)

largerVolume = largerVolume+ rectangleHeight;

While[!IsPointinBox [VolBubV [curvaturePair[[1]],
curvaturePair[[2]]], VolBubW[curvaturePair[[1]],curvaturePair[[
2111, smallerVolume, largerVolume, 2*rectangleWidth, \
2*rectangleHeight],
curvaturePair = NextCurvaturePairinArray[curvaturePair[[1]], \
curvaturePair[[2]], smallerVolume, largerVolume+rectangleHeight, \
rectangleWidth, rectangleHeight, adjustmentMainVol, adjustmentSecondVoll;
(*Print ["VOL1 =",VolBubV[curvaturePair[[1]], curvaturePair[[2]]] ];
Print["VOL2 =",VolBubW[curvaturePair[[1]], curvaturePair[[2]]] 1;
*)

failSafe=IsPointinBox[VolBubV[curvaturePair[[1]],curvaturePair[[2]1]\

, VolBubW[curvaturePair[[1]],curvaturePair[[2]]], smallerVolume, largerVolume, \

2*rectangleWidth, 2*rectangleHeight]&&smallerVolume/largerVolume.85;
If[!failSafe,

Print["error at end ( ",VolBubV[
curvaturePair[[1]], curvaturePair[[2]]], ",
", VolBubW[curvaturePair[[1]],curvaturePair[[2]]1], ")
is not in the box defined
by (", smallerVolume,", ", largerVolume,")
and (", rectangleWidth, ", ", rectangleHeight, ")" ];

(*Print["test ",IsPointinBox[VolBubV[curvaturePair[[1]],

curvaturePair[[

2111, VolBubW[curvaturePair[[1]],curvaturePair[[2]]], smallerVolume,
largerVolume, rectangleWidth, rectangleHeightl]];x*)

1;

1;

(*Print["while loop test ", smallerVolume largerVolume && failSafe, \
failSafe];
Print["first part of test", smallerVolume largerVolume] ;

*)

If[failSafe,
Print["done"],
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Print["failed at (",smallerVolume, ", ", largerVolume, ")"];
Print["ratio =",smallerVolume/largerVolume];
1;
Print["failSafe = ", failSafe];
1;
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