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We study a bulk fermionic dipolar molecular gas in the quantum degenerate regime confined in
a two-dimensional geometry. Using two rotational states of the molecules we encode a spin 1/2
degree of freedom. To describe the many-body spin dynamics of the molecules we derive a long-
range interacting XXZ model valid in the regime where motional degrees of freedom are frozen.
Due to the spatially extended nature of the harmonic oscillator modes, the interactions in the spin
model are very long-ranged and the system behaves close to the collective limit, resulting in robust
dynamics and generation of entanglement in the form of spin squeezing even at finite temperature
and in presence of dephasing and chemical reactions. We discuss how the internal state structure
can be exploited to realise time-reversal and enhanced metrological sensing protocols.

Introduction: Systems of dipolar molecules [1, 2] have
been shown to be versatile simulators of long-range quan-
tum spin models [3–8], with prospects ranging from the
study of fundamental physics [9] to applications in quan-
tum devices [10] and quantum metrology [11].

While the complex internal structure of molecules
makes these systems particularly attractive, it also re-
sults in inelastic lossy collisions [12–15]. A lot of progress
has been made in 3D optical lattices [16–19], where these
losses are suppressed, from the demonstration of long-
range spin exchange [20] and control over the interac-
tions [8] to the study of Zeno suppression [21]. However,
these studies have been limited to non-degenerate gases
which suffer additional heating mechanisms when loaded
into an optical lattice. The recent realization of a quan-
tum degenerate gas of fermionic molecules in a bulk sys-
tem [22, 23], where chemical reactions inherent to dipo-
lar molecules [24–27] can be suppressed by confining the
gas to two dimensions [17, 28–31] opens untapped op-
portunities. These include the exploration of many-body
physics with tunable elastic long-range dipolar interac-
tions in regimes not accessible before.

Here, we study the dynamics of a dipolar molecular
gas prepared in the quantum degenerate regime and con-
fined in a two dimensional harmonic potential with two
relevant rotational levels that form an effective spin 1/2
degree of freedom. We derive a long-range interacting
XXZ spin model describing the many-body dynamics of
this system in the regime where molecules remain frozen
in the harmonic oscillator modes. We point out 3 ma-
jor advantages of these systems. Firstly, the quasi-2D
confinement enhances elastic interactions and protects
the molecules against undesirable chemical reactions [31].
Secondly, the spatially extended nature of the motional
states results in a very long-range spin model which fea-
tures spin dynamics robust to thermal noise, dephasing,
and s-wave losses. In fact, the model is very close to
the one-axis twisting model [32], known to produce spin-

FIG. 1. a) Dipolar molecules confined in a 2D harmonic trap
in oscillator modes n = (nX , nY ) are mapped to a XXZ spin
model in mode space. b) Internal rotational levels |N ,NZ〉
and the two different spin-bases used in this work. c) Dipolar
molecules interact via long-range 1/R3 dipole-dipole interac-
tions. d) Histogram of all pairwise interactions normalised to
the mean interaction strength for N = 1000 molecules in a
single plane of a 3D optical lattice (’lattice’) or in harmonic
oscillator (’ho’) modes of a 2D harmonic trap.

squeezed states useful for quantum metrology [11, 33] as
demonstrated in a variety of different platforms [11, 34–
38]. Indeed, we predict up to 19 dB of spin-squeezing
with 1000 molecules. Finally, time-reversal can be re-
alised by tuning an applied electric field, or by state
transfer between rotational molecular levels, allowing for
the implementation of robust metrological protocols for
precise electromagnetic field sensing, that fully take ad-
vantage of entanglement without the need of single pho-
ton detection capabilities [39, 40].

Model: We now turn to deriving the spin model for dipo-
lar fermionic molecules in quasi-2D occupying harmonic
oscillator states and interacting via long-range dipolar
interactions as illustrated in Fig. 1a)-c).

The effective spin 1/2 degree of freedom is encoded in
the internal rotational levels of the molecules. We as-

ar
X

iv
:2

01
1.

08
20

2v
2 

 [
qu

an
t-

ph
] 

 1
3 

Fe
b 

20
22



2

sume coupling to nuclear levels is suppressed, e.g. by a
strong magnetic field [5]. In this case, the level structure
is described by the molecular rotor Hamiltonian in the
presence of an electric field, Ĥrot = BN̂2−d̂0E [5], where
B is the rotational constant, N̂ the angular momentum
operator of the molecule, E the strength of the electric
field oriented along the Z-direction, and d̂0 = d̂ · eZ the
projection of the dipole operator along the field direc-
tion. The eigenstates |N ,NZ〉 labelled by two rotational
quantum numbers satisfy at vanishing field N̂2|N ,NZ〉 =
N (N + 1)|N ,NZ〉 and N̂Z |N ,NZ〉 = NZ |N ,NZ〉 where
N̂Z = N̂ · eZ . In this work we will work with two dis-
tinct spin 1/2 bases either |↓〉 = |0, 0〉 and |↑〉 = |1, 1〉
(basis I) or |↓〉 = |0, 0〉 and |↑〉 = |1, 0〉 (basis II) as
shown Fig. 1b). Note that quadrupolar interactions pre-
vent coupling of these states to other rotational levels
allowing us to restrict the dynamics to only 2 levels.

Projected into this internal state basis the single par-
ticle Hamiltonian reduces to Ĥ0 =

∑
i Eα,iĉ

†
i,αĉi,α, where

ĉ†i,α creates a fermionic molecule in internal state α =↑, ↓
and harmonic oscillator mode i = (niX , n

i
Y , n

i
Z) with en-

ergy Eα,i = Erotα + ~(ωα,Xn
i
X + ωα,Y n

i
Y + ωα,Zn

i
Z). We

assume isotropic confinement within the plane, ωα =
ωα,X = ωα,Y , and the confinement along Z to be the
largest energy scale, larger than the Fermi Energy, εF ,
and the thermal energy, kBT , such that molecules only
occupy the corresponding ground state, niZ = 0.

We express the dipolar interactions in this basis as

1/2
∑

ijkl

V klij
∑

αβ

µαµβ f̂
lk†
βα f̂

ij
βα+µ↓↑µ↑↓(f̂

lk†
↑↓ f̂

ij
↓↑+h.c.) (1)

where we ignored the dependence of the spatial modes
on the internal molecular state. Here V klij = 〈ij|V̂dd|kl〉
with 〈R|V̂dd|R〉 = 1

4πε0R3 (1 − 3 cos2(θ)), and θ the an-
gle between the vector connecting the pair of interacting
molecules R and eZ (see Fig.1). We used the abbre-

viation f̂ ikαβ = ĉiαĉkβ , and defined the dipole moments,

µα = 〈α|d̂0|α〉, and µ↑↓ = µ↓↑ = 〈↑|d̂0|↓〉 for basis II,

µ↓↑ = 〈↓|d̂−|↑〉/
√

2, µ↑↓ = 〈↑|d̂+|↓〉/
√

2 = −µ↓↑ for basis

I, with the spherical components d̂0,± of d̂.
In the collision-less regime in which the internal spin

dynamics is faster than collisional processes relaxing the
motional degrees of freedom [41, 42] and assuming at
most one molecule per mode (achievable by initializing a
spin polarized gas), interaction induced mode changing
processes can be neglected [43, 44] and only couplings
between states at the same single-particle energy, e.g.
i = k, j = l or i = l, j = k, need to be kept in Eq. 1
to leading order. In this limit, the Hamiltonian can be
reduced to a long-range interacting XXZ spin model [41]

H = 1/2
∑

ij

Jzij ŝ
z
i ŝ
z
j + J⊥ij

(
ŝxi ŝ

x
j + ŝyi ŝ

y
j

)
+
∑

i

ŝzi h
z
i (2)

where ŝνi = 1/2
∑
α,β ĉ

†
iασ

ν
αβ ĉiβ are pseudo-spin 1/2 op-

erators defined via the Pauli matrices σx,y,z. The spin

couplings are given by Jzij = ηV jiij − (ν − ζ)V ijij , J⊥ij =

(η − ν)V ijij + ζV jiij and hzi = η
∑
k

(
V kiik − V ikik

)
/2 + ∆Ei

with η = (µ↓ − µ↑)2, ν = (µ↓ + µ↑)2, ζ = 2µ↓↑µ↑↓, and
∆Ei = Erot↑ − Erot↓ + ~(ω↑ − ω↓)(niX + niY ).
Interactions in mode space: We next discuss the form of
the interactions in the spin model for spatially delo-
calised molecules in a harmonic trap compared to spa-
tially localised molecules in deep real space lattices. We
first note that in contrast to localised Wannier orbitals
for which the terms V ijij are exponentially suppressed
[5], they are non-negligible for harmonic oscillator eigen-
modes. In particular, the finite V ijij terms lead to a
non-vanishing Jz term even at zero-applied electric field,
where µ↓ = µ↑ = 0, which is absent in the lattice system.

To study the interaction between modes i, j in more
detail we consider V = V ijij − V jiij . Explicit numeri-
cal evaluation shows this to decay only very slowly, see
Fig. S3 [41], and a semiclassical calculation [41] predicts
significantly weaker scaling than for real space interac-
tions which decay as R−3 with the distance R. To vi-
sualise all resulting interactions in the spin-model and
show the advantage of working with spatially delocalised
molecules, we consider two physically distinct scenarios:
a unit filled 2D array of N dipoles, localised at lattice
sites i = (iX , iY ), or a 2D harmonic trap, where dipoles
occupy modes i = (niX , n

i
Y ) up to the Fermi-level. We

show the resulting distribution of all pair-wise interac-
tions in Fig. 1d). We observe a wide distribution of cou-
plings spanning many orders of magnitude for the real
space lattice, compared to a sharply peaked distribution
for the harmonic trap. This small variance of couplings is
key to the collective nature of the spin model facilitating
robust spin dynamics.
Collective limit: Given this weak mode-dependence much
of the physics of the spin model can be understood by
considering the fully collective limit. Defining collective
spin operators Ŝα =

∑
i ŝ
α
i and the averaged couplings

J̄α = 1
N2

∑
i,j J

α
ij and h̄z = 1

N

∑
i h

z
i we obtain a one-axis

twisting Hamiltonian [32]

Hc = J̄⊥Ŝ
2 + χŜ2

z + h̄zŜz (3)

with χ ≡ J̄z − J̄⊥ = µ(E)(V̄ ijij − V̄ jiij ) with µ(E) ≡(
−(µ↓ − µ↑)2 + 2µ↓↑µ↑↓

)
. We note that through the

dipole moments the interactions depend both on the elec-
tric field and the chosen set of coupled rotational states.
In particular, by choosing either basis I or II we obtain a
factor of −2 in the effective interactions [5, 45], allowing
us to reverse the dynamics.
Parameters and methods: For specificity and to make
predictions of value to near-future experiment, we spe-
cialise our calculations to dipolar KRb molecules [22, 31]
and parameters accessible to current experiments: ωZ =
20 kHz, ω = 50 Hz and distinct trapping frequencies of
the internal states due to their AC polarisability set by
∆ω ≡ 2(ω↑ − ω↓)/(ω↑ + ω↓) ≈ 0.05 − 0.2, [31, 46]. We
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a) b)

FIG. 2. Dynamical phase transition. a) Time-average con-

trast, Cav = 1/Tav
∫ Tav
0

dtC(t)/C(0) (Tav = 15 ms), versus
single-particle dephasing, ∆ω, and electric field E in units of
B/d. White dashed lines indicate the transition. b) Contrast
C(t) at fixed E = 5B/d, ∆ω = 0, 0.05, 0.02, 0.5, 1.0 (top to
bottom). Mean field dynamics starting from a coherent state
of N = 1000 molecules along x at T/TF = 0.

present results for N = 100 up to 1000 molecules at tem-
peratures ranging from T/TF = 0 up to T/TF = 1.0. The
spin dynamics is obtained by solving the full spin model,
Eq. 2, via the discrete truncated Wigner approximation
[47, 48] averaging over 104 initial states and sampling the
occupied modes from the Fermi-Dirac distribution. We
also include s-wave losses from chemical reactions that
take place as the gas decoheres [41].

Robustness of dynamics to dephasing: We first discuss
the robustness of the dynamics to dephasing. In the
J̄⊥ = 0 limit, the time-scale of dephasing is set by the
standard deviation of the inhomogeneous z-fields propor-
tional to ∆ω. In this limit losses from chemical reactions
due to s-wave collisions between molecules in the α = 0
and α = 1(1̃) states play an important role too [41].
In contrast, when J̄⊥ dominates the dynamics, the de-
phasing and s-wave losses are strongly suppressed by the
opening of a many-body gap [49] proportional to NJ̄⊥.
The gap facilitates spin locking along the collective spin
direction, a mechanism referred to as spin-self rephas-
ing [42]. The competition between dephasing and collec-
tive interactions has been shown to result in a dynami-
cal phase transition (DPT) with two distinct dynamical
behaviors as the system crosses a critical value of inter-
action strength J̄c⊥ [43]. The DPT is observed by an

abrupt change in the the contrast C(t) =
√
S2
x + S2

y at

J̄c⊥. Fig. 2a) shows the long-time average of the con-
trast as a function of the dephasing term ∆ω and applied
electric field E for an initial coherent spin-state prepared
in the xy plane for an ideal system at zero temperature.
Note that the energy gap J̄⊥ depends on E, and vanishes
around E ≈ 7B/d (B/d = 3.9 kV/cm for KRb) [41].
Consequently, we observe robust interaction protected
spin dynamics in the region of |J̄⊥(E)| > J̄c⊥(E,∆ω)
and an abrupt change to fast dephasing and subsequent
chemical reaction losses for |J̄⊥(E)| < J̄c⊥(E,∆ω) sepa-
rated by a critical region indicated by the dashed line in
Fig. 2a). We illustrate the qualitatively different dynam-
ics in Fig. 2b) via time-slices at fixed electric field and

a) b)

FIG. 3. Dynamics and robustness of spin squeezing. a)
Ramsey squeezing parameter ξ2s versus time t for N =
1000, 400, 200, 100 (solid, dashed, dotted, dashed-dotted)
molecules. b) Optimal Ramsey squeezing parameter ξ2opt
versus temperature for different dephasing strengths ∆ω =
0.0, 0.05, 0.1, 0.2 (squares, circles, diamonds, crosses). Both
at zero electric field E = 0.

dephasing ∆ω below, at, and above this transition.
Besides single-particle dephasing and losses, the so far

neglected mode changing collisions also disrupt the col-
lective spin. To account for both single particle and in-
teraction induced dephasing, we develop a kinetic model
[41]. We find a decay time of the collective spin due to
collisions of τ ≈ 11 ms at T/TF = 1.0, see Fig. S4 in [41],
which is rapidly increasing at lower temperatures (Fig. S5
in [41]), and thus, largely negligible for the time-scales of
interest in the quantum degenerate regime.
Spin squeezing: Next we consider the generation of en-
tangled many-body states during the time-evolution and
their robustness to thermal fluctuations and dephasing.
In particular, we study the generated spin squeezing as
characterised by the Ramsey squeezing parameter [50, 51]

ξ2
s = N

minφ〈Var[Ŝ⊥φ ]〉
|〈Ŝ〉|2

(4)

which measures the minimal variance of spin noise dis-
tribution taken over all axes parametrised by the angle φ
perpendicular to the mean collective spin 〈Ŝ〉. We focus
on states initially prepared fully polarised along +x on
the Bloch sphere. The squeezing dynamics at zero tem-
perature without dephasing is shown in Fig. 3a) and the
optimal spin-squeezing in Fig. 3b) for experimentally re-
alistic parameters of particle number, temperatures and
dephasing, with a maximal squeezing of ξ2

s ≈ 19 dB for
N = 1000 molecules at low temperatures. This shows
the robustness of the observed squeezing for molecules in
the quantum degenerate regime T/TF . 0.5 for a broad
range of single particle imhomogeneities.
Time-Reversal and robust sensing: While in principle
squeezed states are ideal for enhanced sensing, in prac-
tice, taking full advantage of their enhanced sensitivity is
challenging due to measurement noise limitations. How-
ever, it has been pointed out that by reverting the time-
evolution and “untwisting” the state, it is possible to
realize robust Heisenberg limited phase sensitivity with-
out the need of single-particle-resolved state detection
[39, 40]. Below we discuss how to implement the desired
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a)

b) c)

untwistingphase acc.twisting

FIG. 4. Robust measurement via time-reversal. a) Illustra-
tion of the protocol: State preparation in a coherent state

along x, evolution for time t, Uχ(t) = eitχŜ
2
z , resulting in a

spin-squeezed state in the |0, 0〉 and |1, 1〉 basis, signal rota-

tion Ry(φ) = eiφŜy , state transfer from |1, 1〉 to |1, 0〉 realising
χ→ −2χ, evolution for t/2 ’untwisting’ the state, followed by
measurement of 〈Sy〉. Colour plots are Wigner functions for
N = 10 spins for the ideal protocol. b) Realisation of Ry(φ)
via transfer to a non-interacting state |2, 0〉, and accumulation
of the phase due to free evolution via a compound sequence

Rφy = R−π/2
x RφzRπ/2x c) Metrological gain 1/(N∆φ2) compar-

ing the angular sensitivity ∆φ to the standard quantum limit
1/
√
N versus measurement error ∆Sz computed from the full

spin dynamics.

“untwisting” protocol and robustly use polar molecules
for precise sensing of electromagnetic fields.

The basic protocol consists of the following steps, il-
lustrated in Fig. 4. After preparation of a coherent
state along x, evolvution for a time t by the dipolar

Hamiltonian, U1 = e−itχŜ
2
z , generates a spin squeezed

state. This state is highly sensitive to rotations along
the squeezed direction (which has a large projection along
the y axis). To perform precise measurements of a phase
φ accumulated under free evolution due to the energy
difference of the internal states, which depends on ex-
ternal electromagnetic fields (see Fig. S1 [41]), one just
needs to align the state along the sensitive quadrature

via R−π/2x RφzRπ/2x . To exclude undesirable dipolar in-
teractions and many-body dephasing during phase accu-
mulation one can first transfer the state |1, 1〉 via a mi-
crowave π pulse to |2, 0〉 (or alternatively |0, 0〉 to |1, 0〉).
This compound sequence to realise Rφy is illustrated in
Fig 4b). The “untwisting” protocol is performed by re-

versing the dynamics U2 = eitχŜ
2
z , followed by a mea-

surement of 〈Ŝy〉. Its final value is non zero due to the
z-dependent spin precession induced by φ. Time reversal
at zero electric field can be effectively accomplished in
our system by coherently transfering all molecules in the
|2, 0〉 state to |1, 0〉 via another microwave π pulse. Since
µ↑↓µ↓↑ → −2 × µ↑↓µ↓↑ letting the system evolve for t/2
reverses the dynamics. We additionally require π pulses,
Rπy , at the middle of the twisting and untwisting steps to

cancel inhomogeneous z-fields.

The advantage of untwisting protocols is the amplifica-
tion of the spin rotation signal while keeping the quantum
noise at the coherent state level, ∆Sy ∼

√
N/4. There-

fore the sensitivity realised for a perfect noise-free mea-

surement ∆φ0 =
∆Sy(φ)
∂φ〈Sy(φ)〉φ=0

is only reduced by a fac-

tor
√

1 + (∆Sz/∆Sy)2 in presence of measurement noise
∆Sz [39]. In Fig. 4c) we show the metrological gain en-
abled by the realisation of the protocol in our molecule
system using the full spin model, Eq. 2. There we show
the enhancement of sensitivity over the standard quan-
tum limit versus final measurement noise in Sz, and ob-
serve the same gain as expected from an ideal implemen-
tation with a perfect unitary one-axis twisting dynamics.

Summary: We have studied the spin dynamics of dipo-
lar Fermi gases confined in a quasi-two-dimensional ge-
ometry, in regimes where losses can be effectively sup-
pressed. By using delocalised eigenstates we obtain a
highly collective spin model resulting in dynamics robust
to single-particle dephasing, generated e.g. by inhomoge-
neous local fields, and chemical reactions in many cases
unavoidable in experiments. We predict the stabilization
of many-body coherence which allows for the generation
of large spin squeezing. By combining long-range dipolar
interactions [2, 5–8, 20], tunable via electric fields, and
mode space lattices [43, 44, 52], our proposal mitigates
major limitations, such as losses and decoherence, and
opens a path for the near term exploration of collective
many-body physics in dipolar molecules.

Finally, we discuss how coherent state-transfer between
rotational levels allows for the implementation of time-
reversal protocols that facilitate the utilization of the
quantum advantage of spin squeezed states, without the
need of single-photon detection capabilities. Under cur-
rent experimental conditions, the ideal implementation
of our protocol, can lead to a metrological gain ≈ 19
dB beyond the standard quantum limit for systems of
1000 molecules, yielding an electric field sensitivity of
∆E ≈ 188 (nV/cm)/

√
Hz at E = 1 kV/cm, assuming 10

ms phase accumulation time [53]. This is comparable
to state-of-the-art demonstrated electric field sensitivi-
ties in trapped ion crystals [54], and Rydberg setups [55]
and could be improved with better electric field stabil-
ity and rotational state coherence. Beyond electric field
sensing, the realisation of a spin squeezed molecular gas
could have a major impact on precision measurements
where the specific advantages of molecules for fundamen-
tal physics tests can be leveraged in addition to the quan-
tum advantage brought by spin squeezing.

The proposed protocol not only opens a path towards
the use of quantum degenerate molecular fermionic gases
for enhanced electromagnetic field sensing, but in paral-
lel the ability of time-reversal opens up opportunities to
study many-body non-equilibrium dynamics and quan-
tum chaos via out-of-time ordered correlators.
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Orientation-dependent entanglement lifetime in a
squeezed atomic clock, Phys. Rev. Lett. 104, 250801
(2010).

[37] J. G. Bohnet, B. C. Sawyer, J. W. Britton, M. L. Wall,
A. M. Rey, M. Foss-Feig, and J. J. Bollinger, Quantum
spin dynamics and entanglement generation with hun-
dreds of trapped ions, Science 352, 1297–1301 (2016).
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FULL HAMILTONIAN

The Hamiltonian describing dipolar molecules in an optical lattice is given by Ĥ = Ĥrot + Ĥsp + Ĥdd, where Ĥrot

describes the internal rotational state structure, Ĥsp the kinetic energy and optical lattice potentials, and Ĥdd the
dipolar interactions between the molecules.

Following Ref. [S1] we describe the internal level structure of a single molecule via the Hamiltonian

Ĥrot = BN̂2 − d̂0E (S1)

where B is the rotational constant, N̂ the angular momentum operator of the rotation of the molecule, and d̂0 = d̂ ·ez
is the projection of the dipole moment operator along the electric field E which is oriented along z. For KRb the
permanent dipole moment is d = 0.566 Debye, and B/h = 1.114 GHz.

We label the eigenstates of this Hamiltonian by the quantum numbers of the states they connect to in the limit
of E = 0 where N̂2|N ,NZ〉 = N (N + 1)|N ,NZ〉 and N̂z|N ,NZ〉 = NZ |N ,NZ〉. Note that at non-zero E states
with different N are mixed in the dressed eigenstates. We show a schematic structure of the eigenstates and their
eigenenergies in Fig. S1.

For this work the relevant states are |0, 0〉 and |1, 0〉 and |1, 1〉. For these states we show in Fig. S2a) the non-

vanishing dipole moments µ0 = 〈0, 0|d̂0|0, 0〉, µ1 = 〈1, 0|d̂0|1, 0〉, µ01 = 〈0, 0|d̂0|1, 0〉, and µ1̃ = 〈1, 1|d̂0|1, 1〉, µ1̃0 =

−µ1̃0 = 〈1, 1|d̂+|0, 0〉/
√

2, as a function of the applied electric field.

Since we always work in one of the spin 1/2 sub-spaces given by either |↓〉 = |0, 0〉 and |↑〉 = |1, 1〉 (basis I) or
|↓〉 = |0, 0〉 and |↑〉 = |1, 0〉 (basis II) µ↑, µ↓ and µ↑↓ are understood to refer to the corresponding matrix elements
just defined depending on the spin basis.

α = 0

|0, 0〉

|1,−1〉

α = 1

|1, 0〉
α′ = 1

|1, 1〉

|2,−2〉 |2,−1〉 |2, 0〉 |2, 1〉 |2, 2〉

0 5 10 15 20
E [B/d]

15
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E
α
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H
z]

E00

E10

E11

FIG. S1. a) Eigenstates of H = BN2 − d0E, the states we consider are marked as α = 0, 1 and α′. b) Eigenenergies of the
|0, 0〉, |1, 0〉 and |1, 1〉 states as a function of the applied external electric field E in units of B/d where for KRb d = 0.566
Debye, and B/h = 1.114 GHz, B/d = 3.9 kV/cm.
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FIG. S2. a) Dipole moments µ0 = 〈0, 0|d̂0|0, 0〉, µ1 = 〈1, 0|d̂0|1, 0〉, µ01 = 〈0, 0|d̂0|1, 0〉 and µ1̃ = 〈1, 1|d̂0|1, 1〉, µ01̃ =

〈0, 0|d̂−|1, 1〉/
√

2 in units of d as a function of applied electric field E in units of B/d evaluated for the basis described in
the text. b) Averaged couplings in the spin model J̄z and J̄⊥, J̄α = 1/N

∑
i,j Jα(i, j) is the average over all occupied states, as

a function of the applied electric field for the |0, 0〉 and |1, 0〉 configuration. For KRb d = 0.566 Debye, and B/h = 1.114 GHz,
B/d = 3.9 kV/cm.

In this basis the Hamiltonian is written as

Ĥsp =

∫
d3r

∑

α

ψ̂†α(r)

(
−∇

2

2m
+ U3D

α (r)

)
ψ̂α(r) (S2)

Ĥdd = 1/2

∫ ∫
d3rd3r′ V 3d

dd (r− r′)×
{∑

α,α′

µαµα′ ψ̂†α(r)ψ̂†α′(r
′)ψ̂α′(r′)ψ̂α(r) + µ↓↑µ↑↓

[
ψ̂†↓(r)ψ̂†↑(r

′)ψ̂↓(r
′)ψ̂↑(r) + H.c.

]}

(S3)

where ψ̂†α(r) creates a fermionic molecule at position r in internal state α =↑, ↓.
The non-interacting Hamiltonian Hsp describes the kinetic energy of the molecules subject to an internal state

dependent trapping potential Uα(r), taken to be cylindrically symmetric and strongly confining along the Z-direction,
i.e. U(r) = 1/2m

(
ωα(X2 + Y 2) + ωαZZ

2
)

with ωαZ/ω
α � 1.

The second line describes the elastic interactions between molecular dipoles in states α,α′ with the dipole elements
defined above. We further assume that the dipoles are aligned along the Z-direction, e.g. by the applied electric field,
such that the dipole-dipole interactions depend on the spatial separation as

V 3d
dd (r) =

1

4πr5
(r2 − 3Z2) (S4)

Reduction to quasi-2D

We will in the following consider the quasi-two-dimensional limit, where the confinement along Z sets the largest
energy scale, e.g. ~wα,Z � ~wα, εF , kBT . Then the fermionic molecules only occupy the lowest harmonic oscillator
state in the Z-direction, such that we can work with a reduced model in 2D by integrating over the axial degrees of
freedom.

In this limit we can express the field operator as ψ̂(r) = ψ̂(X,Y )φ0(Z), where φ0(Z) = 1
(
√
πaZ)1/2

e−1/2(Z/aZ)2 is

the harmonic oscillator ground state wavefunction along the Z axis. Performing the integrations over the Z direction
yields the two-dimensional Hamiltonian

Ĥ2D =

∫
d2r

∑

α

ψ̂†α(r)

(
−∇

2

2m
+ U2D

α (r)

)
ψ̂α(r) + 1/2

∫ ∫
d2rd2r′ V 2D

dd (r− r′)

×
{∑

α,α′

µαµα′ ψ̂†α(r)ψ̂†α′(r
′)ψ̂α′(r′)ψ̂α(r) + µ↓↑µ↑↓

[
ψ̂†↓(r)ψ̂†↑(r

′)ψ̂↓(r
′)ψ̂↑(r) + H.c.

]} (S5)
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where the trapping potential is just the in-plane part U2D
α = 1/2mωα(X2 +Y 2) and we dropped the zero-point energy

of the harmonic oscillator along Z.
The reduced two-dimensional interaction is explicitly given by the following integral

V 2D
dd (r− r′) =

∫ ∫
dZdZ ′V 3D

dd (r− r′, Z − Z ′)|φ0(Z)|2|φ0(Z ′)|2 , (S6)

with the analytic result

V 2D
dd (r) =

1√
32π3

1

2a3
Z

er
2/(4a2Z)

[(
2 +

r2

a2
Z

)
K0

(
r2

4a2
Z

)
− r2

a2
Z

K1

(
r2

4a2
Z

)]
(S7)

where Ki is the modified Bessel function of the second kind.
Correspondingly, we obtain in momentum space

V 2D
dd (q) =

1

2aZ

[
2

3

√
2/π − qaZErfc

(
qaZ√

2

)]
(S8)

where Erfc is the complementary errror function.

Reduction to spin model

In the next step we expand the field operator in a single-particle basis as ψ̂(r) =
∑
i φi(r)ĉi, where i enumerates the

single-particle states, and φi is the corresponding wavefunction, which we take to be the harmonic oscillator states of
the weak transverse trap.

We further assume that the interactions are sufficiently weak to not mix different single particle states i 6= j, such
that only the Hartree and Fock contributions of the interaction are relevant. Finally, we assume that the single-
particle states are either empty or singly occupied, allowing us to use a pseudo-spin 1/2 representation defined by

ŝzi = (ĉ†↑iĉ↑i − ĉ
†
0iĉ0i)/2, ŝ+

i = ĉ†↑iĉ↑i and 1 = ĉ†↑iĉ↑i + ĉ†0iĉ0i.
The single-particle part of the Hamiltonian then reduces to

Ĥ0 =
∑

α,i

Eαi c
†
α,iĉα,i (S9)

where we account for the internal state dependent energies Eαi in motional state i.
The dipolar interactions in turn reduce to

Ĥdd = 1/2
∑

ijkl

V klij

[∑

α,α′

µαµα′ ĉ†αkc
†
α′lĉα′iĉαj + µ↓↑µ↑↓

(
ĉ†↓k ĉ

†
↑lĉ↓iĉ↑j + h.c.

)]
(S10)

with the interaction matrix elements V klij of the dipolar interactions in the chosen single particle basis

V klij =

∫
d2rd2r′φ̄i(r)φ̄j(r

′)Vdd(r− r′)φk(r′)φl(r) . (S11)

Note that for simplicity we ignore the dependence of the wavefunctions on the internal state α here, which will result
in a slight renormalisation of the matrix elements.

Finally, we will assume that the interactions are sufficiently weak, such that they do not mix distinct single-particle
states. Thus, we only retain terms in the interactions that conserve the total single-particle energy, i.e the Hartree
and Fock terms. This leads to pairing the states as l = i, j = k, and l = j, i = k for the Hartree and Fock terms
respectively.

Within these approximations we obtain

Ĥdd = 1/2
∑

ij

[
(µ2
↓ n̂↓in̂↓j + µ2

↑ n̂↑in̂↑j + 2µ↓µ↑ n̂↓in̂↑j)V
ji
ij −

(
µ2
↓ n̂↓in̂↓j + µ2

↑ n̂↑in̂↑j + µ↓µ↑(ŝ
−
i ŝ

+
j + ŝ+

i ŝ
−
j )
)
V ijij

+ 2µ2
↓↑
(
ŝ−i ŝ

+
j V

ji
ij − n̂↓in̂↑jV ijij

) ]

(S12)
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Rewriting this in terms of the spin operators we obtain a long-range interacting XXZ type model in mode space given
by

Ĥ = 1/2


∑

i,j

ŝzi ŝ
z
jJ

z
ij + 1/2

∑

i,j

(
ŝ−i ŝ

+
j + ŝ+

i ŝ
−
j

)
J⊥ij


+

∑

i

ŝzi (∆Ei + hzi ) (S13)

where we dropped a constant energy shift and and ∆Ei = E↑,i − E↓,i. The coupling constants are given in terms of
the interaction matrix elements of the dipolar interactions in the single particle basis as

Jzij =
[
−
(
V ijij − V jiij

)(
µ2
↓ + µ2

↑
)
− 2µ↓µ↑V

ji
ij + 2µ↓↑µ↑↓V

ij
ij

]
(S14)

J⊥ij = 2
[
−µ↓µ↑V ijij + µ↓↑µ↑↓V

ji
ij

]
(S15)

hzi = 1/2
∑

j

[
−
(
V ijij − V jiij

)(
µ2
↑ − µ2

↓
)]

(S16)

Harmonic oscillator space model

In the harmonic oscillator basis the spin model is explicitly given as

Ĥ = 1/2

(∑

n1,n2

ŝzn1
ŝzn2

Jzn1n2
+ 1/2

∑

n1,n2

(
ŝ−n1

ŝ+
n2

+ ŝ+
n1
ŝ−n2

)
J⊥n1,n2

)
+
∑

n1

ŝzn1
(hzn1

+ ∆En1
) (S17)

with couplings

Jzn1n2
=
[
−
(
V n1n2
n1n2

− V n2n1
n1n2

)(
µ2
↓ + µ2

↑
)
− 2µ↓µ↑V

n2n1
n1n2

+ 2µ↓↑µ↑↓V
n1n2
n1n2

]
(S18)

J⊥n1n2
= 2

[
−µ↓µ↑V n1n2

n1n2
+ µ↓↑µ↑↓V

n2n1
n1n2

]
(S19)

hzn1
= 1/2

∑

n2

[
−
(
V n1n2
n1n2

− V n2n1
n1n2

)(
µ2
↑ − µ2

↓
)]

(S20)

This basis has the distinct advantage of working in real space which makes it easy to include potential differences
between the internal levels. Unfortunately, the matrix elements of the interactions have to be evaluated numerically,
making the interpretation of the couplings more difficult and limiting accessible system sizes, and thus temperature
ranges and particle numbers. However, we will derive below approximate expressions in the semi-classical limit which
allow us to understand the asymptotic scaling of the interactions.

Interactions in mode space

We next study form of the interactions of the spin-models in mode-space, and contrast their behaviour to the real-
space 1/R3 decay. We characterise the interactions and their range by considering the behaviour of V = V ijij − V jiij
where the mode indices i, j denote harmonic-oscillator modes i = (nX , nY ).The interactions in harmonic oscillator
mode space are shown in Fig. S3 where we consider the interactions of mode (nX , nY ) with the mode (0, 0). We
observe a weak i−1/2 (grey-dashed line) decay along the diagonal (nX = nY = i), and almost constant interactions
along the edges (nX = 0, nY = i). Thus, the interactions are considerably more longed-ranged in this basis than
in real space (black dashed lined and right inset) which is shown for comparison. In particular, note that for the
shown range, the interactions in mode space are 4 orders of magnitude larger due to the more favourable scaling with
distance.

COMPUTATION OF MATRIX ELEMENTS IN OSCILLATOR BASIS

As there is no analytic expression for the matrix elements of the interaction in the oscillator basis, we will in
the following simplify these as much as possible and reduce them to a semi-closed expression as sums over known
coefficients.
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FIG. S3. Scaling of the interaction terms. Top: cuts of VHO(i, j) = V
(i,j),(0,0)

(0,0),(i,j) − V
(0,0),(i,j)

(0,0),(i,j) along an edge j = 0 (blue), and

the diagonal i = j (orange), dashed lines powerlaws in distance, i−1/2 (grey), and i−3 (black). Left inset: Harmonic oscillator

mode space, full two-dimensional dependence of VHO(nX , nY ) Right inset: Real space basis, Vdd(X,Y ) ∼ (X2 + Y 2)−3/2

The interaction matrix element itself is given by

V n3n4
n1n2

=

∫
d2rd2r′φ̄n1(X ′, Y ′)φ̄n2(X,Y )V 2D

dd (r − r′)φn3(X,Y )φn4(X ′, Y ′)) (S21)

=
1

(2π)2

∫
d2qF [φn1φn4 ] (q)F [φn2φn3 ] (−q)V (q) (S22)

(S23)

where

F [φn1φn2 ] (q) =

∫
d2reiqrφn1,X

(X)φn1,Y
(Y )φn2,X

(X)φn2,Y
(Y ) (S24)

is the Fourier-Transform of the product of HO wavefunctions. This integral of course separates over (X,Y ), (qX , qY )
respectively, since the wavefunction separates. However, the interaction integral itself does not separate since the
interaction depends on |q| and does not separate in (qX , qY ).

Explicitly the one-dimensional integrals are given by

∫
dXeiqXφn1

(X)φn2
(X) =

√
2n2n2!

2n1n1!
eiπ(n1−n2)/2e−a

2
⊥q

2/4
(
−a⊥q

2

)n2−n1

Ln2−n1
n1

(a2
⊥q

2/2) (S25)

where Lmn is an associated Laguerre polynomial, and a⊥ =
√

~/(mω⊥) is the harmonic oscillator length in the
transverse/plane direction.
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Quasi-closed expression

The integral for the interaction matrix elements thus contains terms of the form

Ls1r1(q cos(φ))Ls2r2(q cos(φ))Ls3r3(q sin(φ))Ls3r3(q sin(φ)) (S26)

Multiplying the polynomials out we get integrals of the type

I(n1, n2) =

∫
dφ sin(φ)n1 cos(φ)n2 =

(
1 + (−1)n2

)(
1 + (−1)n1+n2

)Γ
(

1+n1

2

)
Γ
(

1+n2

2

)

2Γ
(

2+n1+n2

2

) (S27)

where Γ(x) is the Gamma function.
Each such term also has a factor qn1+n2 , leading to the remaining integral

J(n1, n2) =

∫
dq qqn1+n2V (az/a⊥q)e

−q2/2 =
1

3
2−

n
2− 3

2

(
2n+3Γ

(
n
2 + 1

)
√
π

− 3c−n−2
1 Γ(n+ 3) 2F̃1

(
n+ 3

2
,
n+ 4

2
;
n+ 5

2
; 1− 1

ĉ21

)) (S28)

where n = n1 + n2 and c1 = aZ/a⊥, and 2F̃1 is the regularized hypergeometric function
Thus, the full integral is given by sums over these terms multiplied by the coefficients of the Laguerre polynomials

at the corresponding order.

Hartree Term

To illustrate the closed form expression motivated above, we here provide explicit expressions for the Hartree term
V n2n1
n1n2

.
For brevity we explicitly define the m-th polynomial coefficient of the associated Laguerre Polynomial Lkn(q), e.g.

the prefactor of the qm term, as

fkn(m) =
(−1)m(k + n)!

(m!(k +m)!(n−m)!)
(S29)

and we also define fn(m) = fk=0
n (m) which is the corresponding coefficient for the usual Laguerre polynomials.

In total, we get

V
(n2X ,n2Y ),(n1X ,n1Y )
(n1X ,n1Y ),(n2X ,n2Y ) =

n1X+n2X∑

lX=0

n1Y +n2Y∑

lY =0

I(2lX , 2lY ) J(2lX + 2lY )
∑

0≤m1X≤n1X
0≤m2X≤n2X
m1X+m2X=lX

fn1X
(m1X)fn2X

(m2X)

2m1X 2m2X

×
∑

0≤m1Y ≤n1Y
0≤m2Y ≤n2Y
m1Y +m2Y =lY

fn1Y
(m1Y )fn2Y

(m2Y )

2m1Y 2m2Y

(S30)

where I(n1, n2) and J(n) are the integrals defined above.
Note that to evaluate these sums still requires extremely high numerical precision since the individual terms have

alternating signs and a magnitude growing extremely fast with the maximal oscillator number, while the total sum is
of order 1 and decreasing with the oscillator number.

SEMI-CLASSICAL CALCULATION

In addition to the exact calculation presented above, we also consider a semi-classical calculation to understand the
scaling behaviour of the interaction matrix elements.
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Starting from the direct (Hartree) integral

Vd =

∫
d3r

∫
d3r′ |φi|2 (r)V (r − r′) |φj |2 (r′) (S31)

and making use of the Wigner transform

W (r, k) =

∫
d3r′ ¯̂

ψ(r + r′/2)ψ̂(r − r′/2)eikr (S32)

normalised as
∫
d3r

∫
d3k

(2π)3 W (r, k) = 1 we can rewrite this as

Vd =

∫
d3k

(2π)3

∫
d3k′

(2π)3

∫
d3k′′

(2π)3
W̃i(−k′′, k)W̃j(k

′′, k′) Ṽ (k′′) (S33)

where W̃ (k1, k2) =
∫
d3r e−irk1W (r, k2) and Ṽ (k) =

∫
d3r e−irkV (r) are the Fourier-transform of the Wigner function

and of the three-dimensional dipolar interactions respectively.

For the one-dimensional harmonic oscillator the classical limit of the Wigner function is given by [S2]

W
(1D)
E (X, kX) = Aδ

(
E − mω2X2

2
− ~2k2

X

2m

)
(S34)

with the normalisation factor A = 4~ω.

Thus, for a 3D separable potential we have

W
(3D)
Ex,Ey,Ez

(X,Y, Z, kX , kY , kZ) =
∏

i

Aiδ

(
Ei −

mω2
iX

2
i

2
− ~2k2

i

2m

)
(S35)

We approximate this further as

W
(3D)
E (r, k) = Aδ

(
E −

∑

i

mω2
i

2
r2
i −

∑

i

~2k2
i

2m

)
(S36)

with the normalisation constant A = 2(~ω)3

E2 with ω = (ωXωY ωZ)1/3.

Now using V (r) = 1
4πr3 (1− 3 cos(θ)2), Ṽ = cos(θk)2 − 1/3, we can solve the integrals analytically to obtain

Vd = Nd
√

2E2/(~ω)g(
√
E1/E2)G(ωZ/ωX , ωZ/ωY ) (S37)

assuming that E2 > E1 with Nd = 1
(2π)3

16
E1/(~ω)E2/(~ω)

1
a3ho

and

g(b) =
16
(
b4 − b2 + 1

)
E
(
b2
)
− 8

(
b4 − 3b2 + 2

)
K
(
b2
)

15πb2
(S38)

where K and E are complete elliptic functions of the first and second kind, and the anisotropy function G is defined
as

G(a, b) =
4π

3

(
3ab(E(φ, k)− F (φ, k))√

1− a2 (1− b2)
+ 1

)
(S39)

with φ = arcsin(
√

1− a2), k = (1− b2)/(1− a2) and E(φ, k) (F (φ, k)) are the incomplete elliptic integrals of the first
(second) kind.

We note that based on this result we have Vd ∼
√

max{E1,E2}
E1E2

implying V ∼ 1/E3/2 for E1 = E2 = E and

V ∼ 1/
√
E2 for E1 = const and E2 > E1. To connect with the discussion of mode space lattices, note that since

E = i~ω for mode i, this translates into a scaling V ∼ 1/i3/2 and V ∼ 1/
√
i respectively.
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FIG. S4. Spin dynamics within the kinetic theory model for a system of N = 1000 particles at T/TF = 1.0. Left column
non-interacting with dephasing ∆ω/ω = 0.05, right column including dipolar interactions, dephasing and relaxation with
γ = 5000 1/s. Panels a), b) show the dynamics of the x, y, z components of the average spin-density S̄, and its norm

∣∣S̄
∣∣.

Panels c), d) show the dynamics of Sx(Ei, t) for a range of different energies again comparing the non-interacting (left) to the
interacting (right) system.

SPIN SELF-REPHASING WITHIN KINETIC MODEL

To understand the relevance of collisions on the spin dynamics, in particular, collision-induced decoherence, we
consider a simple kinetic model adopted from Ref. [S3]. In this approach the dynamics of the spin density S(E) as a
function of the energy E is described by

∂tS(E, t) + γ
[
S(E, t)− S̄(t)

]
≈
[
∆(E)ez +

∫ ∞

0

dE V (E,E′)S(E′, t))

]
× S(E, t) (S40)

where γ describes the relaxation of the spin-density due to collisions to its average S̄(t) =
∫
dEρ(E)nF (E)S(E, t) with

ρ(E) the density of states, and nF (E) the Fermi-Dirac distribution, ∆(E) = ω1−ω0

(ω0+ω1)/2E accounts for the different

trapping potentials of the internal states, and V (E,E′) is the matrix-valued interaction kernel given in terms of
Eqs S14–S16 or Eqs S18–S20 respectively. Without interactions the single-particle term ∆(E) will lead to quick
dephasing and decay of the collective spin over a time-scale set by the variance of ∆(E). We defer the computation
of the relaxation rate γ to the next section.

We show the resulting dynamics in Fig. S4 comparing the non-interacting theory (left column) to the interacting
dynamics (right column). Note that in the non-interacting case for the chosen parameters the collective spin decays
on a time-scale of t ≈ 5 ms due to single-particle dephasing (∆(E)). In contrast, this decay is significantly suppressed
by the dipolar interactions. In fact, we observe that the individual energy levels stay quite coherent throughout the
dynamics, and the observed decay of the collective spin is due to the interaction induced loss of coherence (γ) over a
significantly longer timescale instead.
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COMPUTATION OF SPIN-RELAXATION TIME WITHIN KINETIC THEORY

To include effects of collisions not included in the spin-model we employ a kinetic approach to obtain a relaxation
rate of the spin-degrees of freedom.

Following Refs. [S4–S7] we describe the semi-classical dynamics of the two-dimensional Fermi gas via the Boltzmann
equation

(
∂t +

p

m
· ∇r −∇rU(r) · ∇p

)
fα = −I[fα] (S41)

for the distribution function fα(r, p) of internal state α.
We now linearise the Boltzmann equation around the (non-interacting) equilibrium solutions

f (0)(r, p) =
1

e
β
(

p2

2m +U(r)−µ
)

+ 1

(S42)

as f(r, p) = f0(r, p) + f (0)(r, p)
[
1− f (0)(r, p)

]
φσ(r, p). Since we are interested in the relaxation of the spin-degrees

of freedom due to collisions, we choose φσ = ±pX with opposite signs for the different internal states.
The linearised Boltzmann equation reads as

f (0)(1− f (0))
(
∂t +

p

m
· ∇r −∇rU(r) · ∇p

)
φσ = −I[φσ] (S43)

and the collision integral is given by

I[φσ] =

∫
d2p

(2π)2

mr

2

∫ 2π

0

dθ′ |T |2 f0
1,σf

0
2,σ̄(1− f (0)

3,σ)(1− f (0)
4,σ̄) (φ1,σ + φ2,σ̄ − φ3,σ − φ4,σ̄) (S44)

where 1, 2 denote the particles before the collision 3, 4 the particles after the collision fi = f(r, pi), etc. The T-matrix
T describes the scattering process of particles 1 and 2 with momenta p1, p2, relative momentum pr = (p2 − p1)/2
and center of mass momentum P = p1 + p2 scattering to states 3, 4 with momenta p3, p4 under conservation of total
momentum, where θ′ describes the angle between P and the final relative momentum p′r = (p4 − p3)/2. We use the
low-energy form of the T-matrix for s-wave scattering in 2D given by

T (εpr ) =
2π

mr

1

ln(εb/εpr ) + iπ
(S45)

depending on the kinetic energy of the relative motion of colliding particles εpr =
p2r

2mr
and the bound state energy εb =

~2

ma2D
. The two-dimensional s-wave scattering length in the quasi-2D limit is given as a2D = az

√
π/Be−

√
π/2az/a3D

in terms of the 3D scattering length a3D and the harmonic oscillator length az =
√

~/(mωz) and B ≈ 0.905.
Finally, we use the relaxation time approximation writing I[φ] ≈ φ/τ , and average the linearised Boltzmann equation

to get

1

τ
=

∫
d2rd2p φσI[φσ]∫
d2rd2p φ2

σ

(S46)

Using the symmetries of the collision integral we can slightly simplify the enumerator to

mr

∫
d2P

(2π)2

d2pr
(2π)2

d2rdθdθ′ |T |2 p2
r(1− cos(θ − θ′))f0

1 f
0
2 (1− f (0)

3 )(1− f (0)
4 ) (S47)

The denominator can integrated analytically as
∫

d2p

(2π)2
d2r p2

Xf
(0)(1− f (0)) = − m

β3ω2
Li2(−z) (S48)

where Li2 is a polylogarithm.
Using these expressions, we can numerically obtain the spin-relaxation time. To make connection with the dipolar

quasi-2D gas we approximate the collisions due to the dipolar interactions between different internal states as s-wave
scattering with scattering length a3D =

√
σdd/(4π) from the universal scattering cross section σdd = 32π/15a2

dd ,

where add =
(µ↓↑d0)2

8πε0
M
~2 is the dipole-length [S8]. The resulting spin relaxation time as a function of temperature is

shown in Fig. S5 for N = 1000 particles confined by a ωz = 20 kHz harmonic potential along z.
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FIG. S5. Spin relaxation time τ in units of the Fermi-Energy EF versus temperature in units of TF in the s-wave approximation,
for realistic experimental parameters, N = 1000, ωZ = 20 kHz.

S-WAVE LOSSES

Finally, we consider the inclusion of lossy s-wave collision in our description. While collisions of particles in the
same state, e.g. particles in α = 0, can only occur in the p-wave (and higher angular momentum) channel, which is
suppressed at low temperatures by the centrifugal barrier, a molecule in α = 0 can collide with a molecule in α = 1, 1̃
via s-wave collisions without such suppression. Note that s-wave collisions are still forbidden as long as the molecules
remain in the same collective spin-state. Therefore, these s-wave losses are only relevant if the system dephases.
As we have shown above, dipolar interactions can generate strong spin-locking thanks to the many-body gap which
suppresses dephasing and therefore s-wave losses as well.

To model these s-wave losses, we consider the evolution of the full density matrix ρ evolving according to

ρ̇ = − i
~

[ρ,H] + 1/2
∑

ijkl

Γklij

(
AijρAkl − 1/2

{
A†ijAkl, ρ

})
(S49)

where H is the dipolar Hamiltonian of the elastic interaction already discussed and Aij are jump operators modelling
the s-wave collisional loss as Aij = ce,icg,j , with g, e denoting the states α = 0 or α = 1, 1̃ respectively. The coefficients
Γklij are given by s-wave integrals over the harmonic oscillator wave-functions as

Γklij =
4π~asc
M

∏

r=X,Y,Z

∫
dr

∫
dr′ φ̄ni,r (r)φ̄nj,r (r)δ(r − r′)φnk,r

(r′)φnl,r
(r′) (S50)

with asc the s-wave scattering length. Following Ref. [S9] we assume the s-wave losses to be determined universally
directly by the s-wave scattering length of KRb, asc = 118a0 in term of the Bohr radius. We note that these integrals
can be analytically expressed in closed form.

Starting from the master equation we can now derive equations of motion for the observables in the spin model,
similar to Ref. [S10], and we again use the no-mode changing collision approximation and a mean-field decoupling.
We consider the evolution of the components of the density matrix given by, ρmmee = 〈ĉ†emĉem〉, ρmmgg = 〈ĉ†gmĉgm〉,
ρmmeg = 〈ĉ†emĉgm〉 and ρmmge = 〈ĉ†gmĉem〉.
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For completeness we first reproduce the equations of motion stemming from the Hamiltonian part

(dρmmee
dt

)
H

= −i
∑

i

(ρiigeρ
mm
eg − ρiiegρmmge )

(
µegµgeV

mi
im − µgµeV imim

)
(S51)

(ρmmgg
dt

)
H

= i
∑

i

(ρiigeρ
mm
eg − ρiiegρmmge )

(
µegµgeV

mi
im − µgµeV imim

)
(S52)

(dρmmeg
dt

)
H

= i
∑

i

µ2
g(V

mi
im − V imim )ρiiggρ

mm
eg − µ2

e(V
mi
im − V imim )ρiieeρ

mm
eg (S53)

+ ρiiegρ
mm
ee

(
µegµgeV

mi
im − µgµeV imim

)
+ ρiiegρ

mm
gg

(
µgµeV

im
im − µegµgeV miim

)
(S54)

+ (−µgµeV miim + µegµgeV
im
im )ρiiggρ

mm
eg + (µgµeV

mi
im − µegµgeV imim )ρiieeρ

mm
eg (S55)

The lossy s-wave collisions result in the following contribution to the equations of motion

dρmmee
dt

=
(dρmmee

dt

)
H

+
1

2
ρmmge

∑

i

γimρ
ii
eg +

1

2
ρmmeg

∑

i

γmiρ
ii
ge − ρmmee

∑

i

γimρ
ii
gg (S56)

ρmmgg
dt

=
(dρmmgg

dt

)
H

+
1

2
ρmmge

∑

i

γimρ
ii
eg +

1

2
ρmmeg

∑

i

γmiρ
ii
ge − ρmmgg

∑

i

γimρ
ii
ee (S57)

dρmmeg
dt

=
(dρmmeg

dt

)
H

+
1

2
(ρmmee + ρmmgg )

∑

i

γimρ
ii
eg −

1

2
ρmmeg

∑

i

γim(ρiiee + ρiigg) (S58)

where we defined γim = Γimim = Γmiim for s-wave interactions.

Rewriting the equations of motion in terms of sxm = (ρmmeg +ρmmge )/2, sym = (ρmmeg +ρmmge )/(2i), szm = (ρmmee −ρmmgg )/2
and ρm = (ρmmee + ρmmgg ) we obtain for the Hamiltonian part

(dsxm
dt

)
H

=
∑

i

szi s
y
m

(
(µ2
g + µ2

e)(V
mi
im − V miim )− 2µeµgV

mi
im + 2µegµgeV

im
im

)
+ syi s

z
m

(
2µgµeV

im
im − 2µegµgeV

mi
im

)
(S59)

− 1

2
sym(µ2

g − µ2
e)(V

mi
im − V imim )ρi (S60)

(dsym
dt

)
H

=
∑

i

−szi sxm
(
(µ2
g + µ2

e)(V
mi
im − V miim )− 2µeµgV

mi
im + 2µegµgeV

im
im

)
− sxi szm

(
2µgµeV

im
im − 2µegµgeV

mi
im

)

(S61)

+
1

2
sxm(µ2

g − µ2
e)(V

mi
im − V imim )ρi (S62)

(dszm
dt

)
H

=
∑

i

(
2µegµgeV

mi
im − 2µgµeV

im
im

)
(sxi s

y
m − syi sxm) (S63)

(dρm
dt

)
H

= 0 (S64)

Note that the density per mode ρm has explicitly no dynamics in the Hamiltonian evolution due to the no-mode-
changing collisions approximation. Thus, we recover the equations of motion obtained from the spin-hamiltonian,
Eq. S13, with the only modification that the z field, previously defined in Eq. S16, is now given by

hzi = 1/2
∑

j

[
−
(
V ijij − V jiij

)(
µ2
e − µ2

g

)]
ρj (S65)

which explicitly depends on ρj .
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FIG. S6. Dynamics of the total number of molecules N versus time t in presence of s-wave losses at different temperatures
T/TF = 0.1, · · · , 1.0 and different single-particle dephasing strengths ∆ω as indicated in the panels. Starting from an initially
coherent spin state of N0 = 1000 molecules polarized along x.

The lossy s-wave collisions contribute in addition

dsxm
dt

=
(dsxm
dt

)
H

+ 1/2

(
ρm
∑

i

γmis
x
i − sxm

∑

i

γmiρi

)
(S66)

dsym
dt

=
(dsym
dt

)
H

+ 1/2

(
ρm
∑

i

γmis
y
i − sym

∑

i

γmiρi

)
(S67)

dszm
dt

=
(dszm
dt

)
H

+ 1/2

(
ρm
∑

i

γmis
z
i − szm

∑

i

γmiρi

)
(S68)

dρm
dt

=
(dρm
dt

)
H

+ 1/2

(
4

(
sxm
∑

i

γmis
x
i + sym

∑

i

γmis
y
i + szm

∑

i

γmis
z
i

)
− ρm

∑

i

γmiρi

)
(S69)

where now the density per mode ρm acquires dynamics. However, we note that for a fully collective state the equation
for ρm vanishes identically, and the density is also conserved, as expected due to the s-wave nature of the collisions.

Decay dynamics

Solving the generalised spin-model including the dipolar interactions and the s-wave losses, allows us to answer
whether the many-body gap protecting from single-particle dephasing in the spin model also suppresses the s-wave
losses for the time-scales of interest.

Based on this expecation we study the dynamics of the total particle number in the spin model as a function of
the single-particle dephasing ∆ω and temperature T in Fig. S6. Indeed for vanishing dephasing ∆ω = 0 (upper left
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panel) we observe no relevant particle loss. In contrast for the largest dephasing ∆ω = 0.2 there is significant particle
loss, which is successively reduced at lower dephasing strength. We also note that the particle loss decreases with the
temperature of the gas. Most importantly, the squeezing time is on the order of 1.5 ms at the lowest temperatures
to about 2 ms at the largest temperatures here. Thus, the particle loss can be fully suppressed for the time-scales of
interest if the temperature is low enough even for finite dephasing strength.
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