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We study two models of correlated bond- and site-disorder on the kagome lattice considering
both translationally invariant and completely disordered systems. The models are shown to exhibit
a perfectly flat ground state band in the presence of disorder for which we provide exact analytic
solutions. Whereas in one model the flat band remains gapped and touches the dispersive band,
the other model has a finite gap, demonstrating that the band touching is not protected by topol-
ogy alone. Our model also displays fully saturated ferromagnetic groundstates in the presence of
repulsive interactions, an example of disordered flat band ferromagnetism.

I. INTRODUCTION

The physics of flat bands has generated considerable
excitement over the years1–3 In a flat band, the kinetic
energy is completely suppressed; thus, transport is hin-
dered by a vanishing group velocity, and any kind of in-
teraction is non-perturbative in nature and can mix the
extensive number of degenerate states in the flat band,
with the potential to create complex many-body states
and phenomena. One well known example of this mecha-
nism at work is the fractional quantum Hall effect, where
interactions induce highly non-trivial behaviour of the
electrons in the degenerate Landau levels of a magnetic
field.

Thus, flat band systems are well-suited for pro-
ducing unconventional phenomena2,4,5. For both
fermions and bosons, they allow to realise the frac-
tional quantum hall effect in absence of a magnetic
field6–9, i.e. fractional Chern Insulators, and at po-
tentially high temperatures10. Other contexts in-
clude high-temperature superconductivity11,12, Wigner
crystalisation13,14, realising higher-spin analogs of Weyl-
fermions15, bands with chiral character16, lattice super-
solids17, fractal geometries18, magnets with dipolar-
interactions19, and Floquet physics20,21. Flat bands of
magnons also play a crucial role in determining the be-
haviour of quantum magnets in magnetic fields22–25.

Interest in flat band physics is not restricted to the
presence of interactions, but also extends to their re-
sponse to disorder, as the flat band states can turn
out to be critical displaying multifractality26, or un-
conventional localisation behaviour27–29. They also ap-
pear in purely classical mechanical systems30, and in the
field of photonics31,32. Quite recently, flat bands have
been experimentally demonstrated in a realistic Kagome
material33 as well as in optical lattices34.

In this work consider non-interacting nearest neigh-
bour hopping models on the Kagome lattice with corre-
lated bond- and site-disoder, as illustrated in Fig. 1. The
simple nearest neighbour hopping model on the Kagome
lattice is known to host a degenerate flat band35–39 with
a quadratic band touching point believed to be topolog-
ically protected40. However, in interacting many-body
physics it is often preferable to work with a gapped flat
band to protect it from ’Landau-level mixing’, i.e. from

FIG. 1. Kagome lattice with lattice vectors a1 and a2,
shown is a finite-size lattice with Lx = Ly = 3, opposite
edges are identified for periodic boundary conditions. The
model contains site-dependent nearest-neighbour tunnelings
tij and chemical potentials µk. The highlighted sites corre-
spond to a zero-energy flat band-state of the MCM, hexagon
and system-spanning loop (dark gray) or the BDM, double
hexagon (black).

interactions with the dispersive bands.
Here, we explicitly construct a gapped flat band on the

Kagome lattice. The simplest setting in which it appears
contains modulated bond and site-disorder, both in pres-
ence of translational symmetry (where one can speak of a
band) and in absence of it, i.e. in the presence of random
disorder, where one may still identify an extensive man-
ifold of degenerate states. In fact, we find that a local
perturbation to the Hamiltonian can open a gap above
the flat band. This indicates that the band-touching is
protected not just by topology but requires also symme-
try.

We obtain exact solutions for the flat band states of all
of these models, facilitating a clear interpretation of why
the chosen type of correlated site-bond-disorder does not
lift the extensive degeneracy of the flat band, and pro-
viding new insight into the stability of the flat bands and
the protection of the quadratic band-touching point. Our
study also adds an example where compactly localised
Wannier-states can be explicitly constructed for a disor-
dered flat band model.

Our treatment extends previous observations on the
flat band in kagome, such as the observed stability of
the flat band and band-touching points to breathing
anisotropy41, and opens up new perspectives: We show
how to selectively gap out the flat band, or the Dirac
cones, or all bands. Thus, our results reinforces the role
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of the kagome lattice as a platform for the study of topo-
logical physics and flat band physics in general, in par-
ticular the physics of perturbations and disorder in flat
bands.

II. MODEL

We study non-interacting particles on the kagome lat-
tice

H =
∑
〈i,j〉

(
tij ĉ
†
i ĉj + c.c.

)
+
∑
i

µin̂i , (1)

with nearest-neighbour (complex) hoppings tij between
sites i, j and site-dependent chemical potentials µi at site
i. In the models we consider µi is given as a function
of the couplings tij . The specific correlation between the
hopping and potential terms is motivated by a connection
to bond-disordered Heisenberg models42 where it natu-
rally arises via an exact rewriting of the Hamiltonian.

The Hamiltonian can be compactly written via its ma-

trix elements Hij as H =
∑
ij c
†
iHijcj . Noting that this

only connects nearest neighbours, and that every nearest
neighbour pair belongs either to an up or down triangle
of the Kagome lattice, we rewrite the Hamiltonian in the
following way

H = HM +HO (2)

H
M/O
ij =

{
γ̄
M/O
i γ

M/O
j + |γM/Oi |2δij , for i, j ∈ α

0, otherwise
(3)

where we first split it into its contribution on the up
and down triangles, and then define all couplings within
a triangle α via site and triangle dependent (complex)

factors γ
M/O
i .

This form makes the correlation between the hop-
pings and chemical potentials explicit. Specifically, we
have tij = γ̄αi γ

α
j for sites i, j in the triangle α and

µi = |γMi |2 + |γOi |2. In the presence of lattice-inversion
symmetryHM = HO and these factors become solely site-
dependent. We will refer to the model with lattice inver-
sion symmetry as the maximal Coulomb model (MCM),
and with broken lattice inversion symmetry as the bond-
disordered model (BDM).

This also allows us to make an insightful connection to
the Hamiltonian of the non-disordered model, essentially
the disordered model can be understood as a rescaling of
the clean model by the γ factors. Using that the Hamil-
tonian is fully specified by its matrix elements Hij , we
can further split them as a product of three matrices as

HM/O = Γ̄M/OH
M/O
0 ΓM/O (4)

with Γ
M/O
ij = δijγ

M/O
i , a diagonal matrix containing the

scaling factors, and H0 the matrix of the clean system
with γαi ≡ 1, describing the nearest neighbour hopping
on the kagome lattice.

Making use of the form H =
∑
ij c
†
iHijcj the ac-

tion of the Hamiltonian on single particle states |Ψ〉 =∑
i ψic

†
i |vac〉 is simply

H|Ψ〉 =
∑
i

Hikψkc
†
i |vac〉 =

∑
i

(Hψ)ic
†
i |vac〉 . (5)

From this we obtain the expectation value as

〈Ψ|H|Ψ〉 =
∑
ij

ψ̄iHijψj =
∑
α

∣∣∣∣∣∑
i∈α

γαi ψi

∣∣∣∣∣
2

=
∑
α

|ψα|2 ,

(6)
where in the second equality we used the explicit form
of the Hamiltonian, Eq. 3, which splits into a sum over
triangles α, and in the last equality defined the sum of
scaled amplitudes within a triangle ψα =

∑
i∈α γ

α
i ψi.

Thus, exact zero-modes are states with ψα = 0 on all
triangles α. This condition is typically referred to as a
groundstate constraint in the theory of frustrated mag-
nets and is intimately connected to height-mappings and
emergent gauge theory descriptions of the groundstate
phase. For spins the condition ψα = 0 is more stringent
and can only be fulfilled for not too disparate bond val-
ues due to the unit length constraint which is found to
lead to a phase transition of the model. In contrast, here
it can be fulfilled for arbitrary choices.

III. CONSTRUCTION OF FLAT BAND STATES

Exact Mapping of flat band for the MCM: The clean sys-
tem is known to host an exactly flat band at E = 0 which
touches the dispersive band at q = 040.

In the non-disordered model (γαi = 1), the ground state
condition ψα =

∑
i∈α ψi = 0 reduces to the simple sum of

amplitudes in every triangle vanishing. It is easy to check
that the states illustrated in Fig. 1, a hexagon loop with
alternating +,−, and a system-spanning loop with alter-
nating +,− amplitudes, satisfy this, and (less-trivially)
that these yieldNs/3+1 linearly independent zero-energy
states. Since the kagome lattice has 3 sites in the unit
cell and thus 3 bands, finding Ns/3+1 states at the same
energy then also implies the band-touching.

For the MCM all these zero-modes of the clean system
can be mapped to zero-modes of the disordered model
via

ΨFB
MCM = Γ−1ΨFB

0 , (7)

which follows directly from HM = HO in the MCM to-
gether with Eq. 4 and Eq. 5, e.g. the observation that
the disordered model can be understood as a rescaling of
the clean model. Thus, we obtain an exactly flat band
at E = 0. This further implies that the band touching
point is preserved as well.

The flat band states of the MCM can therefore be char-
acterised the same way as in the clean system40: The
MCM (a) Ns/3 + 1 zero-modes, (b) of which (Ns/3− 1)
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FIG. 2. A double hexagon of the kagome lattice. The wave-
function of a BDM zero energy state is localised on the black
sites. Note that the state occupies 11 sites, and is part of
10 triangles, thus, there are 11 degrees of freedom and 10
constraints, in addition to the wavefunction normalisation,
implying that there is a unique solution for such a localised
state.

can be chosen as lin. independent localised hexagon loop
modes and 2 as system-spanning delocalised loops (both
types arising via the mapping from the zero-modes of the
clean system), and (c) the flat band is gapless touching
the dispersive band. The two different types of states are
schematically illustrated in Fig. 1.

We emphasise that this is completely independent of
the specifics of γi, e.g. it holds true for translation-
ally invariant, completely disordered, positive, negative
and sign-changing, and real or complex choices. In fact,
it holds true for a slightly more general model, where
ΓM = cΓO which in particular includes the model with
breathing anisotropy.

Construction of flat band for BDM: We note that such a
mapping is not possible for the BDM where Γ differs non-
trivially between up- and down-triangles. Thus, it is not
immediately obvious that the BDM should host an ex-
tensively degenerate groundstate band and if so whether
the band-touching point is preserved.

We first summarise the findings and then provide a
construction of the flat band states. We find that (a) the
BDM has Ns/3 exact zero-modes/flat band, (b) the flat
band states states can all be localised and (c) the flat
band is generically gapped.

We emphasise the last point, stating that it is possi-
ble to maintain the flatness of the band while gapping
it from the dispersive bands in contrast to the claimed
topological protection40. We will analytically show this
in the next section for translationally invariant model,
and provide numerical evidence for disordered systems.
In fact, it is sufficient to break inversion symmetry by
changing a single coupling γMi to create a gap to the flat
band.

We now explicitly construct the Ns/3 linearly indepen-
dent localised states forming the degenerate flat band. To
do so, we consider a double hexagon of the kagome lattice

shown with our conventions for the site labels in Fig. 2.
We note that such a state occupies 11 sites and these
sites are part of 10 triangles of the kagome lattice. Each
triangle contributes one scalar constraint Ψα = 0, in ad-
dition to one normalisation constraint, thus, we might
expect a unique solution on every hexagon-pair.

The resulting linear system of equations can be solved
explicitly (see SM43), and the wave-function amplitudes
may be written as a function of the coupling terms γαi as
Ψi = Ψ1 fi(γ

α
i )/D(γαi ). This solution is only valid if the

determinant D given by

∆ = γO3 γ
O
5 γ

O
7 γ

O
9 γ

O
11 γ

M
2 γ

M
4 γ

M
6 γ

M
8 γ

M
10 − (O↔M) , (8)

is non-zero. This manifestly vanishes in the presence of
inversion symmetry (γM = γO), but is non-zero if inver-
sion symmetry is broken (γM 6= γO). Therefore, in the
BDM there is a unique localised state on every double-
hexagon.

We have checked (numerically) that taking L2 such
double-hexagons tiling the full kagome lattice does yield
L2 independent states, thus, providing a full basis for the
zero-energy states of the BDM, in contrast to the MCM
and the clean system which requires the system spanning
loop states40.

It is also easy to show that no such solution for a lo-
calised state is possible on a single heaxagon (see SM43),
thus, proving that these found states indeed form a max-
imally localised basis of the flat band manifold.

Typically, in presence of interactions the size of the
maximally localised basis states strongly affects the be-
haviour of the model, and here we find that this size
doubles in presence of infinitesimal disorder. In fact, the
existence of a compactly localised basis for flat bands is
an open question of research with relations to the topol-
ogy of the corresponding Bloch bands44–46.

IV. GAPPED FLAT BANDS

It remains to show that the BDM flat band states are
indeed gapped and do not touch the dispersive bands,
which we will show in the next sections both for transla-
tionally invariant and generic disordered models.
Translationally invariant systems: We begin by consider-
ing translationally invariant systems with real couplings.

In that case the model has 6 (3) free parameters γ
M/O
A,B,C

for BDM (MCM), e.g. the couplings on the three sites
(A,B,C) in a triangle of the Kagome lattice, with differ-
ent couplings on the up and down triangle for the BDM
model.

In this case, one can analyse the model in momentum
space, and analytical results can be obtained (see SM43).
We find that for every q there is exactly one zero-mode,
i.e. we find a flat band at E = 0 for both the BDM
and MCM as anticipated from the construction of the
zero-modes above. Importantly, this allows us to obtain
an analytic expression for the gap of the BDM, thus,
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FIG. 3. Dispersion along high-symmetry lines in the Bril-
louin zone. From top left to bottom right: clean system,
MCM with γA = γM

A = γO
A <

√
2, BDM with γA = 2 and

BDM with γM
A = 1

γO
A

= γO
B = 1

γM
B

= 0.5.

proving our claim that the BDM flat band can indeed be
gapped.

We will consider illustrative examples for the gap be-
low, please see SM43 for the general expression of the
gap. As the simplest model consider just γMA 6= 1, then
the gap scales as

∆gap =
1

2

(
5 + γMA

2 −
√(

γMA
2 + 1

)2
+ 16γMA + 16

)
(9)

showing a quadratic scaling for small deviations away
from the homogeneous system.

A more symmetric arrangement can be obtained by
considering γMA = 1

γO
A

= γOB = 1
γM
B

= x, which yields the

gap to the flat band as

∆gap = x2 + x−2 − 2 . (10)

We note that this allows to cleanly separate the flat band
by an (arbitrarily) large gap from all dispersive bands,
making the Kagome lattice a prime platform to study
physics in flat bands.

We show dispersion relations along high-symmetry
lines in the Brillouin zone for the clean model, the MCM
and the BDM in Fig. 3. We emphasise that clearly both
models retain an exactly flat band at E = 0. As discussed
above the MCM always retains the band-touching point
at q = 0 (Γ point), but the Dirac-points can be gapped
for large perturbations (not shown).

In contrast in the BDM, the flat band is always gapped
as seen in the lower panel of Fig. 3, already for infinitesi-
mal changes in the couplings. Just changing a single cou-
pling generically gaps both the flat band and the Dirac
points (lower left panel). For the symmetric choice de-
scribed above, the flat band is gapped, but the Dirac
points remain gapless (lower right panel).

In summary, we have shown that we can selectively gap
out the flat bands and keep the Dirac cones or gap out
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FIG. 4. (a) Gap of the flat band in presence of a local per-
turbation versus inverse number of sites Ns on a log-log scale
showing a linear scaling with inverse number of sites ∼ N−1

s .
(b) Gap of the flat band for the fully disordered system versus
inverse number of sites for different disorder strengths δ.

the Dirac cones, but keep the quadratic band touching
point, or gap out all bands.
Local Perturbation: Before considering fully disordered
models it is insightful to understand the effect of a local
perturbation to the system. For a topologically protected
band-crossing one would expect the resulting gap to scale
to zero exponentially in system size.

We modify the Hamiltonian locally by changing a sin-
gle coupling γM affecting one site potential µ and two
tunnel couplings t. As a result, in Fig. 4(a) we observe
a linear decrease of the gap with inverse number of sites
∼ N−1s , consistent with the gap closing in the thermody-
namic limit. However, the decay is clearly not exponen-
tial as would be expected for a topologically protected
degeneracy.
Disordered Systems: Next, we consider fully disordered

models with random choices for γ
M/O
i . As an example

we consider a box-uniform distribution γ ∈ [1− δ, 1 + δ].
However, we emphasise that this specific choice is not
relevant and the conclusions hold true for any generic
disorder distribution.

The gap to the flat band versus inverse system size for a
range of values of δ is shown in Fig. 4(b). It extrapolates
to a finite value in the thermodynamic limit for δ < 1,
and scales as δ2 for small disorder strengths. Thus, we
conclude that disorder of this type gaps out the flat band,
even for infinitesimal disorder strength.

We also note in passing that the finite gap implies that
the projector into the flat band decays exponentially for
the BDM model, but decays algebraically for the gapless
MCM.
Flat Band Ferromagnetism in a disordered model: Flat
bands are known to host ferromagnetic phases in pres-
ence of repulsive interactions35–39,47. The presence of
a gap to the flat band in our model ensures that the
many-body groundstate at filling n = 1/6 is the unique
fully-saturated ferromagnetic state.

To see this in our model of disordered flat bands, we
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consider a fermionic version with repulsive Hubbard in-
teractions,

H =
∑
〈i,j〉,σ

(
tij ĉ
†
iσ ĉjσ + c.c.

)
+
∑
i

µin̂i + U
∑
i

n↑n↓ ,

(11)
for spin 1/2 fermions, ni = ni↑+ni↓, tij and µi are chosen
as above, and we consider the BDM to have a flat gapped
non-interacting band.

Since for U > 0 the interaction term is positive, and the
kinetic energy is positive-definite by construction, many
body states with E = 0 are necessarily groundstates.

One groundstate is easily obtained by filling the non-
interacting flat band completely with polarised spins
which do not interact. Thus, we have at filling n = 1/6 a
ferromagnetic groundstate with maximal spin S = L2/2,
with the full 2S(2S + 1) degeneracy due to the SU(2)
symmetry of the model. The main question to obtain
ferromagnetism is whether this groundstate is unique, or
if there are additional non-magnetic states as well. Here,
it turns out that the groundstate is gapped, since the
non-interacting band-structure has a finite gap for the
BDM.

We performed exact diagonalisation of the Hubbard
model, Eq. 11, on small finite-size Kagome clusters (2×2,
2 × 3) to confirm that the groundstate is indeed of the
described form.

Finally, due to the presence of a spectral gap, we expect
the ferromagnetism to be stable to finite perturbations
and fluctuations in the particle number. Indeed, ferro-
magnetism is expected to be enhanced compared to the
usual Kagome case, since the localised non-interacting
states now contain two hexagons.

V. OUTLOOK

Demonstrating that the flat bands of the kagome lat-
tice can be gapped opens up the kagome lattice as a prime
platform for the clean, i.e. isolated from the dispersive
bands by an arbitrarily large gap, study of topological
and more general flat band phenomena.

In addition, the presence of a flat band in a disordered
model is highly non-trivial and of general interest even
if it requires fine-tuning between the hopping and site-
potential terms.

In terms of realisations of the specific type of couplings:
We recall that this model is naturally realised in the
large-N limit48,49 of a classical nearest-neighbour bond-
disordered Heisenberg-(Anti)ferromagnet, where the cor-
relation between site- and bond-disorder arrises from the
spin length constraint. In other settings it is unlikely
that bond- and site-disorder is correlated in the required
way, thus, the system would need to be specifically de-
signed. In this case we envision it would be considerably
easier to realise the translationally invariant model reduc-
ing the required number of parameters that have to be
tuned. (For the minimal model we would require tuning
1 site-potential and 2 tunneling couplings in each unit
cell). This might be feasible in cold-gas setups where
control over individual sites and bonds is possible by the
use of quantum gas microscopes.

In terms of topological properties of the flat band, we
note that fluxes in the MCM model are trivial by con-
struction (since they can be removed by a unitary gauge
transformation). The BDM model in contrast supports
non-trivial fluxes along the hexagon loops of the lattice.
However, since in the BDM model all states of the flat
band can be chosen localised, the non-interacting model
is necessarily topologically trivial50.

Our model also presents a natural realisation of flat
band ferromagnetism on the Kagome lattice, where the
gap of the single particle spectrum results in a unique
gapped fully saturated ferromagnetic many-body state
in presence of repulsive on-site interactions. We reserve
the further discussion of interacting many-body phases
in the gapped flat band and the effects on the magnon
bands of magnets for future work.

It might also be interesting to explore the effect of
longer-range interactions on the flat bands of this model
which have recently been found to be remarkably stable
for the non-disordered model19.
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FIG. S1. A double hexagon of the kagome lattice. The wave-
function of a BDM zero energy state is localised on the black
sites. Note that the state occupies 11 sites, and is part of
10 triangles, thus, there are 11 degrees of freedom and 10
constraints, in addition to the wavefunction normalisation,
implying that there is a unique solution for such a localised
state. Same as Fig. 2 in main text, reproduced here to be
self-contained.

Supplemental Material:

S1. CONSTRUCTION OF FLAT BAND STATES
FOR BDM

In this section we provide additional detail on the ex-
plicit construction of the zero-modes of the BDM model.
The conventions are illustrated in Fig. S1, same as in
main text.

A. Single Hexagon

We begin by showing that for the BDM it is impossible
to localise a state on a single hexagon.

An intuitive picture of how states can be localised is
as follows: Selecting a subset of sites from the lattice, a
necessary condition for a state with amplitudes only on
these sites is that the hoppings to sites outside the chosen
subset interfere destructively.

For a single hexagon loop, this requires that the tun-
nelling to all the points of the “star of david” vanishes.
Starting at say site 1, this then fixes all the amplitudes
of the wavefunction going around the loop step by step.
However, after going around the full loop, again arriving
at site 1, we require that the amplitude turns out to be
the same we started with. This then sets a necessary con-
dition on the values of the couplings for single hexagon
localised states to exist.

Starting at say site 1, we require γO1 Ψ1 + γO2 Ψ2 = 0,

which we can solve for Ψ2 = −γ
O
1

γO
2

Ψ1, continuing with

γM2 Ψ2 + γM3 Ψ3 = 0, which we solve for Ψ3 =
γO
1

γO
2

γM
2

γM
3

Ψ1,

and similiarly along the loop until we again arrive at Ψ1.

Writing the final condition out explicitly yields

γO1
γO2

γM2
γM3

γO3
γO4

γM4
γM5

γO5
γO6

γM6
γM1

Ψ1 = Ψ1 , (S1)

or by rearrangement

γM1
γO1

γM3
γO3

γM5
γO5

=
γM2
γO2

γM4
γO4

γM6
γO6

(S2)

We note that this condition, in a slightly different nota-
tion and context, has been derived previouslyS51.

Eq. (S2) immediately shows that for the BDM for
which γM 6= γO, e.g. for broken inversion symmetry,
single hexagon loops cannot exist. In the presence of
inversion symmetry, e.g. for the MCM, this condition is
satisfied and states can be localised on a single hexagon
as is well known for the clean model.

B. Double Hexagon

Next we consider the double hexagon loop. As for the
single hexagon we have some sites on the periphery for
which we require destructive interference (8 conditions),
in addition we have two internal triangles (2 conditions),
for in total 10 conditions for 11 wavefunction amplitudes,
which considering the normalisation choice, can uniquely
determine the wavefunction if a solution is possible at all.

We have equations of the form

γM2 Ψ2 + γM3 Ψ3 = 0 (periphery) (S3)

γO1 Ψ1 + γO2 Ψ2 + γO7 Ψ7 = 0 (internal triangle) (S4)

To determine the solubility of the resulting linear sys-
tem of equations, one may set Ψ1 = 1 and consider the
determinant of the matrix which turns out to be

D = γO3 γ
O
5 γ

O
7 γ

O
9 γ

O
11 γ

M
2 γ

M
4 γ

M
6 γ

M
8 γ

M
10−

γM3 γ
M
5 γ

M
7 γ

M
9 γ

M
11 γ

O
2 γ

O
4 γ

O
6 γ

O
8 γ

O
10 . (S5)

In the absence of inversion symmetry (γM 6= γO), this de-
terminant is generically non-zero, and we obtain a unique
solution for the state localised on a double-hexagon.

We also note that in presence of inversion symme-
try this determinant vanishes as expected, since then we
would have two linearly independent localised states on
each hexagon, and any linear combination of them would
also form a state localised on the double hexagon.

S2. TRANSLATIONALLY INVARIANT
MODELS

In this section we present the explicit expression for
the Hamiltonian in momentum space, the flat band eigen-
states at generic momentum and the gap at the Γ-point
for the BDM model discussed in the main text.

The Hamiltonian in momentum space reads



2 |γOA|
2

+ |γMA|
2

γOAe
−ik·δAB (γOB)

∗
+ γMAe

ik·δAB (γMB)
∗
γOAe

−ik·δAC (γOC)
∗

+ γMAe
ik·δAC (γMC)

∗

eik·δABγOB (γOA)
∗

+ e−ik·δABγMB (γMA)
∗ |γOB |

2
+ |γMB |

2
γOBe

−ik·δBC (γOC)
∗

+ γMBe
ik·δBC (γMC)

∗

eik·δACγOC (γOA)
∗

+ e−ik·δACγMC (γMA)
∗
eik·δBCγOC (γOB)

∗
+ e−ik·δBCγMC (γMB)

∗ |γOC |
2

+ |γMC |
2


(S6)

with the site and triangle dependent couplings γ
M/O
i

which can generically be complex, the momentum k and
the difference vectors in the unit cell, δxy = rx − ry

Since the expressions for complex couplings and gen-

eral k get rather unwieldy, we present them for real cou-
plings only below.

The zero-mode at generic k is given by

{
e−

1
4 i(k1+

√
3k2)

(
γMBγ

O
Ce

1
2 i
√
3k2 − γMCγOBe

ik2
2 i
)
, e−i

1
4 (k1+

√
3k2)γMCγ

O
A − γMAγOCe

1
4 i(k1+

√
3k2), γMAγ

O
Be

ik1/2 − e−
ik1
2 γMBγ

O
A

}
(S7)

which explicitly shows that both models have a flat band
at E = 0.

These account for Ns/3 of the zero-modes. The re-
maining missing zero-mode for the MCM is found at
k = 0 where the dispersive band touches the flat band

which we discuss next.

Computing the eigenvalues at k = 0 allows us to see
how the gap opens for the BDM and remains closed for
the MCM. These are given by 0 and

1

2

(
∆±

√
∆2 − 4γO2

C (γM2
A + γM2

B )− 4γO2
B (γM2

A + γM2
C )− 4γO2

A (γM2
B + γM2

C ) + 8γMCγ
O
C(γMAγ

O
A + γMBγ

O
B) + 8γMAγ

M
Bγ

O
Aγ

O
B

)
(S8)

with ∆ = γM2
A + γO2

A + γM2
B + γO2

B + γM2
C + γO2

C .

This manifestly shows that for the MCM where γM =
γO the second eigenvalue is also zero corresponding to
the band-touching point.

Further, for the BDM where lattice-inversion symme-
try is broken, a gap is seen to open up. Eq. (S8) reduces
to the expressions given in the main text for the corre-
sponding choices of couplings.

S3. DISORDERED MODELS

Here we provide some additional details on the struc-
ture of the flat band states in the disordered models
which are not immediately apparent from our explicit
construction of all states.

A. Structure of flat band states

We next turn to analyse the structure of the new flat
band states in the disordered model.

To this end we consider the total weight of the dis-
persive states of the clean model in the disordered flat

band

〈FB|NFB0〉 =
∑

ψ0∈NFB

1

NFB

∑
ψ∈FB

|〈ψ|ψ0〉|2 (S9)

and the corresponding state resolved-quantity, e.g. the
projection of the disordered flat band states ψ onto the
dispersive states of the clean model ψ0 averaged over the
flat band

1

NFB

∑
ψ∈FB

|〈ψ|ψ0〉|2 . (S10)

The total weights and the state/energy resolved results
for the MCM and BDM are shown in the top and bottom
of Fig. S2 respectively. For both models we observe the
same scaling 〈FB|NFB0〉 ∼ δ2 for the total weights.

However, the state/energy resolved weights differ qual-
itatively between BDM and MCM. The BDM disordered
flat band contains dominantly low-energy states of the
clean model and the squared amplitudes decay as a pow-
erlaw ∼ 1/E with increasing energy. In contrast, the
MCM disordered flat band contains states of all energies
of the clean model with equal amplitudes independent of
energy.

This can be traced to the fact that the matrixelements
〈FB|H|ψ(E)〉 scale as E1/2 and E1 for BDM and MCM
respectively, which when combined with the expected
E−1 scaling in second order perturbation theory explains
the observed behaviour.
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FIG. S2. Top: Total weight of the dispersive states
of the clean model of the flat band of the disordered
model for MCM (circles) and BDM (x’s) Bottom: En-
ergy resolved weight of the dispersive states in the flat
band states of the disordered model for MCM (left)
and BDM (right), for δ = 10−5, 10−4, 10−3, 10−2, 10−1

(squares,circles,x’s,triangles,diamonds) normalised by the ob-
served scaling ∼ δ2. Note that the BDM is on a log-log scale
and the MCM on a linear-log scale.
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