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A learning interaction between statistical learning experiments

Abstract: When participants in a statistical learning paradigm are asked to learn from two incompatible or
competing inputs, they often fail to learn from one or both inputs. This study presents the results of two
experiments that were both completed by one group of typically developing four-year-old children. One
experiment targeted word-medial consonant patterns (phonotactics), whereas the other targeted strong-
weak and weak-strong stress patterns (prosody). The order of the experiments was critical for learning
outcomes in the phonotactics experiment: When children learned phonotactics first, their production
accuracy increased following exposure to a high frequency input. When children learned phonotactics
second, however, their production accuracy dropped when they were exposed to the high frequency input.
Results from the prosody experiment were inconclusive, with limited evidence of any learning effect.
Overall, the results suggest that children may conflate learning experiences, and patterns learned from an
initial experimental input compete with patterns in a subsequent experiment. When considering natural
language acquisition, the results suggest that an isolated episode of learning may lead to generalizations

that are incompatible with later input, and possibly, with larger patterns in the language.
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Introduction

Statistical learning has for several decades been a highly productive framework for studying the
learning of a variety of linguistic structures, as well as structured visual input (for an overview
see Saffran & Kirkham, 2018). An emerging area of statistical learning research investigates
learning from an input containing multiple patterns. Multilingual learners represent one instance
of this challenge—their input includes two separate languages that must be segregated such that
each language can be learned. However, even when we consider a monolingual learner who is
only exposed to one dialect of one language, there are myriad linguistic patterns present in that
input. In the domain of phonology, an input contains prosodic and segmental cues, within- and
between-word phonotactics, and morphologically conditioned phonological patterns such as the
patterns for pluralization in English. Although it is clear that infants are able to solve many
learning challenges, and even infants learning three or more languages are ultimately successful,
much remains to be understood about the process of learning from complex, multidimensional

inputs.

The focus of this study is on learning two phonological structures across separate
experiments. More specifically, four- and five-year-old children were tasked with learning
phonotactic patterns in one experiment and prosodic patterns in the other. Anticipating the
results, learning depended on the order in which the experiments were completed. This effect of
order is important because it signals that statistical learning can answer questions about—not
only what can be learned—but how episodes of learning interact with each other. Put slightly
differently, our study suggests that statistical learning research that incorporates multiple patterns
can be used to explore learning of a pattern even when it is absent from, irrelevant to, or in

conflict with the current learning episode.
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In our review of the literature, we cover several studies with multidimensional inputs.
Learners are typically presented with two incompatible or competing inputs. In general, this
literature suggests that it is difficult for learners to simultaneously retain knowledge of both

inputs. Furthermore, success is often driven by the inputs’ phonological properties.

Interactions in Statistical Learning

Weiss, Gerfen, and Mitchel (2009) report four statistical word segmentation experiments
exploring how adults interpret and learn from two inputs presented in sequence. In statistical
word segmentation tasks, participants hear a continuous stream of syllables like
batigusit/ovivoboscetogotfa. Some syllables always occur in a sequence, such as ba, ti, and then
gu, meaning that batigu functions like a word in the stream. However, Weiss et al. interleaved
two inputs in the stream such that batigu functioned as a word during some sections of the stream
but not others. The participants were tested on their ability to discriminate words like batigu from
part-words like tigusi. Adults learned the patterns from both inputs when each input was spoken
by a different talker, but not when the same talker produced both inputs. Weiss et al. suggest that
learning fails when participants conflate the statistics of the two inputs, as may be expected when

all stimuli come from a single talker.

Gebhart, Aslin, and Newport (2009) conducted a similar statistical word segmentation
study with adults. Participants heard just one talker produce both inputs, but the inputs were
blocked such that participants heard one in its entirety and then the other. Participants typically
only learned the pattern in the first input, although learning of the second pattern was observed
when participants were explicitly told to listen for two distinctly patterned inputs, when they
heard a pause between each input, as well as when participants heard the second input for three

times longer than the first. Gebhart et al. conclude that statistical learning from two inputs shows
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a primacy effect—the first of two structurally different streams is likely to be remembered, but
not the second. This primacy effect may reflect a learning bias that favors what comes first (see
Bulgarelli & Weiss, 2016 for additional discussion), but the authors also propose that, beyond

retention, the learning of the first language interferes with learning of the second.

Turning to statistical learning in infants, Benitez, Bulgarelli, Byers-Heinlein, Saffran, and
Weiss (2020) observe that 8-month-olds struggle to learn the statistics of the second of two
syllable streams. Across several experiments, infants failed to reliably extract words from the
second input, even when each input was signaled by a different pitch quality and accent.
Although this study does not provide direct evidence for a primacy effect, the first experiment
demonstrated that each input was learnable when presented in isolation. Thus, it was the
presence of two competing inputs—each with its own phonological patterns—that impeded

learning, consistent with Gebhart et al.’s (2009) proposal of a primacy effect.

In contrast to the work with adults, Benitez et al. (2020) observed that, for infants,
indexical cues like pitch and accent were insufficient to allow learning of the second of two
inputs. A relative weakness of indexical cues was also reported in an infant study by Potter and
Lew-Williams (2019). Those authors explored how infants use different types of cues to attune
to linguistic structure. They exposed infants to one structured input (either AAB as in le-le-di or
ABA as in le-di-le); that input was embedded in the middle of an unstructured input (16
trisyllables without an internal pattern, such as foi-nah-vuh). The authors then varied the cues
that signaled the structure—a unique talker, a unique phoneme inventory, or both. When the
structured input comprised unique phonemes, infants learned it regardless of whether it was
produced by the same talker that produced the unstructured input. Without unique sounds,

however, infants were not able to use talker as a cue to learn the structured language. Potter and
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Lew-Williams conclude that infants can learn a pattern in the presence of a competing input, but
it appears that phonological cues like the phoneme inventory are more informative of the target

pattern than indexical cues like talker.

In a study involving similar phonological cues to those examined here, Thiessen and
Saffran (2003) observe developmental changes to the phonological cues to which learners attend.
Those authors conducted a statistical word segmentation study in which infants were exposed to
just one input, for example, where da was always followed by pu, and bu by go. However, some
infants heard a syllable stream in which stress was consistent with English (weak-strong stress on
DApu and BUgo) whereas other infants heard a stress pattern uncommon in English (strong-
weak stress on daPU and buGO). Nine-month-old infants appeared to ignore statistical cues and
instead segment words based entirely on the stress pattern. In contrast, seven-month-old infants
used the statistical cues regardless of the stress pattern. Thiessen and Saffran argue that the
statistics of syllable order may be an earlier developing phonological cue to word boundaries, but

by nine months, word stress is the primary phonological cue for segmenting the speech stream.

Finally, phonology played a surprising role in what infants learned in a study by Gerken
and Quam (2017). In this study, 11-month-olds were exposed to just one input. Infants heard
novel CVCV words containing a target phonological pattern, either shared place of articulation
(poba contains two labials) or shared voicing (dova contains two voiced consonants). Although
only one pattern was present in the exposure words, some infants heard the words in an order
that allowed for a local phonological generalization, for example, when two or three adjacent
words started with the same consonant. When local generalizations were present, infants did not
appear to learn the more global phonological patterns for place of articulation or voicing. When

those local generalizations were removed, however, infants learned the more general patterns.
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In sum, learning from two incompatible or competing inputs poses a challenge to learners
across the lifespan. Although adults are sometimes able to learn patterns across multiple inputs,
they often only learn the first pattern presented. Furthermore, both adults and infants rely on
phonological cues that signal the pattern in the input. When two patterns are present, phonology
may help learners track both, but some phonological cues appear to outweigh others or lead to
unintended generalizations. This final point, that learners may apply generalizations
unexpectedly, is especially relevant to the present study. Our focus was on the ability of
preschool-aged children to learn and apply two distinct phonological patterns to their own speech
(prosodic and segmental patterns, similar to Thiessen and Saffran, 2003). Although the patterns
were distinct, children completed both experiments, allowing us to examine unintended

generalizations across experiments.

Method

Two experiments—one targeting phonotactics and the other prosody—were originally designed
to be interpreted separately, and they focus on different dependent measures to track learning.
However, individual participants completed both experiments, and the order of experiments was
counterbalanced across participants. This counterbalancing allowed us to examine an interaction
based on experiment order which is most readily interpretable from the perspective of a single

study. Thus, we present both experiments under a single methods section.

Participants

A total of 41 children between the ages of 4 and 5 years (see Table 1) were recruited for the
study. Ten children were not included in the analyses because they did not participate for all five

days, and they left one or both experiments incomplete. Two additional children were removed
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because standardized testing indicated that they had a speech sound disorder. The remaining 29

children (17 females and 12 males) were included in analyses.

All participants met the following criteria for typical development. All children passed a
hearing screening of pure tones at 500, 1000, 2000, and 4000 Hz at 20 dB. All children received
standardized test scores at or above one standard deviation below the mean (standard scores
above 85). Additionally, parents were asked about the child’s development, and for the 29

participants included, no concerns were raised.

Normative data were collected across a range of areas: speech production (Goldman-
Fristoe Test of Articulation-2; GFTA-2; Goldman & Fristoe, 2000), nonverbal skill (Columbia
Mental Maturity Scale; CMMS; Burgemeister, Blum, & Lorge, 1972), receptive vocabulary
(Peabody Picture Vocabulary Test-4; PPVT-4; Dunn & Dunn, 2007), expressive vocabulary
(Expressive Vocabulary Test; EVT; Williams, 2007), expressive syntax (Structured
Photographic Expressive Language Test-3; SPELT-3; Dawson, Stout, & Eyer, 2003), and
nonword repetition accuracy (Dollaghan & Campbell, 1998). Table 1 below provides these
normative data, as well as the participants’ mean age in months, the age range, and average
accuracy in the two experiments. Because the critical variable in this study is the experiment
order, the normative data are presented separately for the phonotactics first and prosody first
groups, and a t-test comparison between the groups is presented in the rightmost column. No
significant difference, where p < .05, was observed. We also note that scores from the CMMS,
PPVT-4, the EVT, and the SPELT-3 indicate that this group of participants possessed above-

average cognitive and language skills.

d0i:10.20944/preprints202105.0777.v1
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Table 1. Averages and standard deviations for age in months, standardized test scores, a nonword
repetition task, and average production accuracy for each experiment. A statistical comparison of

the two experiment order groups appears in the rightmost column.

M (SD) t statistic (p value)*
Phonotactics First  Prosody First

Mean age in months?® 56.4 (52-67) 58.8(45-69) 0.96 (p=0.32)
BBTOP standard scores 99.77 (12.47) 102.88 (9.12) -0.75 (p =0.46)
CMMS standard scores 116.15 (11.51) 111.31 (9.41) 1.2 (p=0.24)
EVT standard scores 109.62 (7.29) 110.88 (9.13) -0.39 (p =0.70)
PPVT-4 standard scores 119.85 (11.65) 114.31 (9.65) 135 (p =0.19)
SPELT-III standard scores 113.85 (7.38) 114.56 (8.22) -0.24 (p=0.82)
Nonword repetition percent

78.68 (7.76) 74.65 (12.47) 094 (p =0.36)
phonemes correct
Average accuracy: Phonotactics® 5.64 (0.25) 5.43 (0.43) 1.49 (p =0.15)
Average accuracy: Prosody® 8.64 (0.39) 8.42 (0.64) 1.05 (p =0.30)

Note. BBTOP = Bankson-Bernthal Test of Phonology, CMMS = Columbia Mental Maturity

Scale, EVT = Expressive Vocabulary Test-1, PPVT-4 = Peabody Picture Vocabulary Test-4,

SPELT-III = Structured Photographic Expressive Language Test-3. *The number in parentheses

for ages in months is the range of ages rather than the standard deviation. "Accuracy in the

phonotactics experiment is on a scale from 0-6. “Accuracy in the prosody experiment was

averaged across 2-syllable words (scale 0-6) and 4-syllable words (scale 0-12), resulting in a

derived scale of 0-9.

*No statistical comparisons of the phonotactics first and prosody first orders were significant.
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Materials

This study relies on speech production to measure learning. Children under the age of six still
produce speech errors and are developing their knowledge of phonology (McLeod & Crowe,
2018). Thus, we ask whether passive, perceptual learning from a familiarization input influences
children’s production accuracy for test items. The target patterns that children produced were
word-medial consonant sequences in the phonotactics experiment, as well as strong-weak and
weak-strong stress patterns in the prosody experiment. The familiarization and test materials for

both the phonotactics and prosody experiments are presented in Table 2.

Table 2. The learning targets, familiarization items, and test items for the two experiments.
Syllable boundaries are indicated with a period. In the high experimental frequency condition,
participants heard all three familiarization items. In the low experimental frequency condition,

participants only heard the italicized familiarization item.

Target Familiarization Items Test Items
/pt/ dap.ton ze1p.tos sep.taf bip.tom
Phonotactics /zm/ koz.mat liz.mas taiz.mak pez.mef
Experiment /mk/ gum.kof  tem.kon  dim.kas fom.kop
/fp/ nif.pon Jerf.pak kof.pat maf.pom
2-syllable SW re.do ti.do do.sa po.fa

Prosody 4-syllable SW  do.lo.re.so  so.a.tiro  la.ta.so.ra mi.fa.po.bo
Experiment  2-syllable WS la.do to.re sa.la bo.mi

4-syllable WS do.ti.ra.la  ro.so.to.do ta.la.sa.re po.famo.be
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In the phonotactics experiment, the learning targets were word-medial consonant
sequences (Munson, 2001). The targets appeared in nonsense words (hereafter referred to as
“items”’) with a CVCCVC shape and stress on the first syllable. All items started with a unique
CV sequence and differed from other items by at least three phonemes. Phonotactics
familiarization and test items were paired with colorful make-believe animals (Ohala, 1999), and
children were told that the nonsense words were the names of the animals. The four target
consonant sequences were chosen because consonant sequences are relatively difficult, making it
likely that children would sometimes produce them in error, and learning could be measured. We
note that data from the phonotactics experiment—when that experiment was completed first—
are reported in Richtsmeier and Goffman (2017). All other data have not been reported

elsewhere.

In the prosody experiment, the learning targets were prosodic contours, that is, one of two
different stress patterns. The first pattern was strong-weak (SW), such as on the noun REC-ord,
the second pattern was weak-strong (WS) as on the verb re-CORD. These patterns appeared in
both 2-syllable and 4-syllable items composed of CV syllables, or four total targets. The prosody
familiarization and test items were paired with colorful aliens (Gupta et al., 2004). Prosodic
contours were chosen because developmental data show that children have not yet reached adult
levels of mastery, as indicated by omissions of unstressed syllables as well as acoustic and motor
analyses of the WS stress pattern (Ballard, Djaja, Arciuli, James, & van Doorn, 2012; Gladfelter
& Goffman, 2013; Goffman, 1999; Goffman, Gerken, & Lucchesi, 2007; Goffman & Malin,

1999).

The phone and biphone frequencies for items from both experiments were calculated

using the online Phonotactic Probability Calculator (Vitevitch & Luce, 2004),

d0i:10.20944/preprints202105.0777.v1
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https://calculator.ku.edu/phonotactic/about). These frequencies were matched across

familiarization and test items. None of the items had phonological neighbors based on a search of
the Washington University Speech and Hearing Laboratory’s Neighborhood Database

(http://128.252.27.56/Neighborhood/NeighborHome.asp). Test items began and ended with

labial consonants, and the word-medial sequences in the phonotactics experiment contained at
least one labial. The purpose of including many labial consonants was to allow for tracking of lip

and jaw movements in kinematic analyses, although those analyses are not reported here.

Recordings of all familiarization and test items were obtained from seven adult female
speakers of a Midwestern dialect of American English. The recordings were made in a sound
booth following model productions made by the first author. This process was implemented to
ensure that acoustic cues for medial consonants and the prosodic contours were produced
faithfully. Recordings were later scrubbed of acoustic artifacts and scaled for intensity using
Praat software (Boersma & Weenink, 2021). Productions from five of the talkers were used for

the familiarization items; productions from the other two talkers were used for the test items.

Experimental Frequency. In both experiments, participants were familiarized with the
learning targets during a perceptual familiarization phase, and the experimental frequency of the
targets varied as a within-subjects factor, with two targets in the low experimental frequency
condition and two in the high experimental frequency condition. Children were familiarized with
low experimental frequency targets in just one familiarization item (the items in italics in Table
2). Participants heard that item five times from a single talker. High experimental frequency
targets appeared in three familiarization items. Participants heard each item five times, each from
a different talker. Thus, high experimental frequency was a combination of high word-type

frequency and talker variability (Richtsmeier, Gerken, & Ohala, 2011).
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Several previous studies suggest that high experimental frequency can lead to greater
production accuracy in children (Edeal & Gildersleeve-Neumann, 2011; Plante, Bahl, Vance, &
Gerken, 2011; Richtsmeier, Gerken, Goffman, & Hogan, 2009; Richtsmeier & Moore, 2020), a
finding that is consistent with the augmentative effect that high natural language frequency has
on production accuracy (Beckman & Edwards, 2000; Edwards, Beckman, & Munson, 2004;
Masdottir & Stokes, 2016; Munson, 2001; Storkel, 2015). The assignment of items to the two
experimental frequencies was counterbalanced across four lists. The four lists also allowed
make-believe animals in the phonotactics experiment and aliens in the prosody experiment to be

assigned to different items.

Procedure

The procedures, including informed consent, were approved by the Internal Review Board at
Purdue University. Children participated over five weeks, one visit per week. The first session
included only testing; participants completed a hearing screening, the SPELT-III language test,
and the CMMT nonverbal skill test. Other normative data were collected following the
experiment during the other four sessions. The first experiment was completed at the start of the
second and third sessions, and the second experiment was completed at the start of the fourth and
fifth sessions. Similar numbers of children completed the phonotactics experiment first (n = 16)
or the prosody experiment first (n = 13). All sessions were held in a quiet room in a university
building. Throughout each session, participants were seated in a Rifton chair with an attachable

tabletop, approximately 10 feet from a monitor and speakers. Caregivers were seated nearby.

Before the start of the phonotactics experiment, the experimenter explained that the child
would hear the names of “funny, make-believe animals”, and that the child’s task during

familiarization was to watch the animals and listen to their names. Before the start of the prosody
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experiment, the experimenter explained that the child would hear the names of “aliens from
another planet” and that they should watch and listen during the familiarization. Thus, the
instructions were similar except for the referents to be learned. The second experiment was

nevertheless described as a new experiment and different from what had come before.

The experiments were controlled by Paradigm software (Paradigm, 2015). Each
experiment began with familiarization, during which Paradigm presented items in random order.
Familiarization was immediately followed by the first test block, and the second test block was
completed in the subsequent session a week later. Test items were presented in a predetermined,

pseudorandom order, and the same word was repeated no more than twice in a row.

During test blocks, participants were told that they would repeat the names of some new
animals or aliens. Children heard and repeated each item immediately. Although children
typically required one or two prompts for the first few productions of the first test block, they
eventually learned the task and were able to proceed without prompts. Children had nine
opportunities to produce each item during a test block. Cases where children did not produce an
item were minimal (20 missing productions for the phonotactics experiment; 13 missing
productions for the prosody experiment; less than 1% of all attempts), and for all participants,

there were always five or more productions of each word in each test block.

Analysis

Children’s productions were recorded digitally for transcription and acoustic analysis. The
dependent measure of interest for the phonotactics experiment was production accuracy of the
word-medial consonant sequence and was based on transcription. Transcriptions were made by

the first author and were converted to points based on a system adapted from Edwards et al.
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(2004). A correctly produced consonant was given a score of 3. A consonant that differed from
the target by one feature (that is, by voicing, place of articulation, or manner of articulation) was
given a score of 2. Any other consonant or a consonant sequence was given a score of 1. If no
consonant was heard, a score of 0 was given. A second transcriber scored 424 word-medial
sequences from 19 of the participants, or approximately 20% of the data. Reliability between the
two sets of transcriptions was 90.0% overall (82.3% for the first consonant; 97.6% for the second
consonant). Lower accuracy for the first consonant is consistent with studies of similar
experimental items (Richtsmeier & Moore, 2020). It likely reflects challenges related to
producing and perceiving codas, as the first consonant of the sequence was the coda of the first

syllable.

Dependent measures of interest for the prosody study included three ratios of different
acoustic markers of stress: ratios of duration, pitch/fundamental frequency, and amplitude (for
example, Kehoe, Stoel-Gammon, & Buder, 1995). Omitted or inaudible syllables—based on
transcriptions by the first author—comprised a fourth dependent measure. The acoustic measures
were analyzed using Praat software (Boersma & Weenink, 2021). The beginning and ending of
vowels were first demarcated. Durations were equivalent to the lengths of the demarcated vowel
regions. Pitch and intensity were operationalized as the averages across the vowel region. Ratios
were then calculated by dividing the value of the first syllable by the value of the second

syllable, or o1/02. For four-syllable words, two ratios were collected: 61/62 and 63/54.

Ratios were not calculated for 555 missing productions (26.6%) including productions
that children did not make, productions in which one syllable was omitted, or productions that
were missing due to experimenter error. From the remaining 1,533 productions, pitch and

intensity ratios were removed if the production was whispered, made in creaky voice, contained
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acoustic artifacts like foot tapping, or was more than 2 standard deviations from the participant’s
mean. There were 48 duration ratios (2.1%), 215 pitch ratios (9.4%), and 53 intensity ratios
(2.3%) removed for these reasons. Due to missing data, mean pitch ratios were missing for 12
words across 8 participants, and mean intensity ratios were missing for 5 words across 4
participants; all mean duration ratios could be calculated. We also note that the recordings for six
participants (all of whom completed the prosody experiment first) contained a high-frequency
artifact resembling a square wave. It was created by a sound mixer for unknown reasons.
Because the noise started at 1000 Hz, it was not expected to interfere with the measures of pitch

and intensity. Data from these six participants were therefore included in the acoustic analyses.

A summary of the inferential statistical analyses is presented in Table 3. The
transcription-based points from the phonotactics experiment, as well as the three acoustic ratios
and the omitted-syllable counts from the prosody experiment, were entered separately into linear
mixed-effects models in R statistical software using the ImerTest package (Kuznetsova,
Brockhoff, Christensen, & Jensen, 2020). Mixed effects models are ideal for evaluating
incomplete data sets such as the prosody dataset here. We followed recommendations for mixed-
model analyses described by Baayen, Davidson, and Bates (2008). In particular, we began with
baseline models of main effects that were then compared with more specific models containing
interactions. For the baseline models, the main effects of experiment order, experimental
frequency, and session were included for both experiments; stress pattern was included as an
additional main effect for the prosody experiment. Random effects for participant intercepts were

included in all models.
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Table 3 — A comparison of the dependent variables, independent variables, and statistical models

used for the phonotactics and prosody experiments.

Phonotactics Experiment

Prosody Experiment

Dependent

Measures

Independent

Variables

Random

Effects

Simple

Model

Alternative

Model

Transcription-based accuracy

Duration Ratios
Pitch Ratios
Intensity Ratios

Omitted Syllables

Experiment order
Experimental frequency

Session

Experiment order
Experimental frequency
Session

Stress pattern

By-subject Intercepts

By-subject Intercepts

Accuracy predicted by
experiment order + experimental

frequency + session

Ratios and omitted syllables
predicted by experiment order +
experimental frequency + session

+ stress pattern

Accuracy predicted by
experiment order X experimental

frequency + session

Ratios and omitted syllables
predicted by experiment order x
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To evaluate the presence of interactions between experimental frequency and experiment
order, a second model was assessed for each experiment in which experimental frequency and
experiment order were allowed to interact. The two models were then compared using a
likelihood ratio test that was implemented with the anova function in R (Kuznetsova, Brockhoff,

& Christensen, 2017), and the optimal model was interpreted for significant effects.

Results

Phonotactics Experiment

Figure 1 presents the average accuracy in both the high and low experimental frequency
conditions across the two experimental orders. In the figure, accuracy is collapsed across
sessions, words, and multiple productions. Mean accuracy across all conditions and participants
was 5.53. Visual analysis of the figure suggests that participants were slightly more accurate in
the high experimental frequency condition when the phonotactics experiment came first (see also
Richtsmeier & Goffman, 2017), but when the phonotactics experiment came second, they were

more accurate in the low experimental frequency condition.


https://doi.org/10.20944/preprints202105.0777.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2021 d0i:10.20944/preprints202105.0777.v1

Experimental Frequency . High |:| Low

.
1

Consonant Sequence Accuracy (out of §)
%]

Phonaotactic Learning First Phonotactic Learning Second

Figure 1 — A comparison of the effect of experimental frequency on consonant sequence
accuracy for the two experiment orders. The bars reflect the full range of accuracy values from

0 to 6. Error bars reflect 95% confidence intervals.

The baseline mixed effects model included experiment order, experimental frequency,
and session as main effects. Using a log likelihood ratio test, the baseline was then compared
with an alternative model in which experiment order and experimental frequency were allowed
to interact. The results of the model comparison appear in Table 4 below. The alternative model
had lower information criterion scores (AIC and BIC) and a lower log likelihood value.

Furthermore, it was significantly better when explaining the data (x*=29.98, df=1, p <.001).
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Table 4 — The results of the model comparison for the phonotactics experiment. The baseline
model with main effects was compared to an alternative model in which experiment order and

experimental frequency were allowed to interact.

Model df AIC BIC Deviance v df p

Baseline model 6 4862.2 4896.0 4850.20

2998 1 <.001
Alternative model 7 4834.2 4873.7 4820.22

As the alternative model was significantly better at explaining the data, it is summarized in Table
5 below. Although there was a main effect of experimental frequency (f = .29, SE = .05, t=5.79,
p <.001), the interaction of experimental frequency and experiment order was significant (8 = -
37, SE=.07,t=-5.50, p <.001). To better understand that interaction, separate mixed-effects
analyses were completed to examine experimental frequency and session in each experiment

order condition.
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Table 5 — Summary of the alternative mixed effects model of the phonotactics experiment.

Statistically significant fixed effects are shown in bold. The number of observations was 2068.

Fixed Effects S SE Df T p ()
Intercept 5.49 0.10 34.37 52.44 <.001
Experiment Order -0.02 0.14 32.66 -0.18 .656
Experimental Frequency 0.29 0.05 203899 579 <.001
Session 0.01 0.03 2039.01  0.45 .862
Experiment Order X Experimental
-0.37 0.07 2039.03 -5.50 <.001
Frequency
Random Effects Variance  Standard
Deviation
Participant (intercept) 0.12 0.35

Accuracy was marginally lower in the low experimental frequency condition for the
phonotactic learning first data (f = -.08, SE = .05, t = -1.66, p = .097); accuracy was significantly
higher in the low experimental frequency condition for the phonotactic learning second data (f =
29, SE=.04,t=6.51, p <.001). The results for the phonotactic learning second condition are
surprising because high experimental frequency has typically been reported to increase
children’s production accuracy relative to low experimental frequency (for example, Plante et al.,

2011; Richtsmeier et al., 2009; Richtsmeier & Goffman, 2017; Richtsmeier & Good, 2018).
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Prosody Experiment

Figure 2 presents a summary of the three acoustic ratios. Mean ratios were calculated by
averaging across productions within and across sessions; for the four-syllable words /mifopouba/
and /pofamaber/, ratios were also averaged across the two syllable groups ([c1/62 + 63/c4] + 2).
Visual analysis of the ratios suggests robust acoustic contrasts when comparing the SW stress

pattern to the WS pattern, but no consistent differences related to experimental frequency.
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Figure 2 — Duration Ratios (top graph), pitch ratios (middle graph), and intensity ratios
(bottom graph). The horizontal black lines in each graph reflects a ratio of 1, or equivalent
measurements for the first and second syllable. Ratios greater than 1 generally indicate a SW

pattern, and ratios less than 1 indicate a WS pattern.
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The baseline mixed effects model included experiment order, experimental frequency,
session, and stress pattern as main effects. Equivalent to the analysis of the phonotactics
experiment, the baseline was then compared with an alternative model in which experiment order
and experimental frequency were allowed to interact using a log likelihood ratio test. For
duration and intensity ratios, the alternative models did not provide a better fit (%duration = 0.25, df
=1, p = .615; intensity = 0.004, df = 1, p = .949). In the case of pitch ratios, the model with the
interaction provided a significantly worse fit compared to the baseline model (?duration = 7.55, df
=1, p=.006). Thus, in the analyses of three acoustic correlates of stress, experimental frequency
did not interact with experiment order. The ANOVAS comparing the baseline and alternative
models, as well as the full baseline models of all three ratios, are presented in Appendix A. Here,

we present a brief summary of the findings.

There were consistent differences between the SW and WS stress patterns for all three
acoustic measures. Regarding durations, participants produced ratios near 1.0 for the SW stress
pattern, but ratios less than .5, or second syllables twice as long as first syllables, for the WS
pattern (Sduration = -0.70, p <.001). Pitch was higher on the first syllable for all items (ratios >
1.0) but highest for the SW pattern (Spitch = -0.06, p <.001). Intensity ratios were greater than 1.0
for the SW pattern, indicating a louder first syllable. Intensity ratios were lower for the WS
pattern and averaged below 1.0 for /pafamaber/ (Bintensity = -0.10, p <.001). Most importantly,
there was no significant effect of experimental frequency in any analysis (all ps > .100). This
final result indicates that the acoustic ratio analyses lacked a learning effect attributable to the

familiarization and the relative frequencies of the different stress patterns.

The final analysis of the prosody experiment considered inaudible or omitted syllables.

Figure 3 presents the number of omitted syllables for each of the four test items. With just 14
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omitted syllables observed, the dataset is quite small. Furthermore, one child provided 8 of the 9

omitted syllables for /pofamaber/ in the high experimental frequency, prosody learning second

condition. The low number of omitted syllables is to be expected given that the children were all

typically developing, and more than half were over the age of four. By that age, syllable

omission is quite rare in typically developing children (Roberts, Burchinal, & Footo, 1990).
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Figure 3 — Omitted syllable counts by word and condition. All omitted syllables were

unstressed, specifically, the /fo/ in /mifopoubao/, the /ba/ in /bomi/, or the /pa/ in /pafamaber/.

Here, we present a summary of the findings from the baseline model because the

alternative model was not better at explaining the results (= 0.50, df =1, p = .481). There was

a trend towards a greater number of omitted syllables in words with the WS stress pattern (f = -

.80, SE = .43, t=-1.85, p = .073); all other effects were not significant (p > .3). The ANOVA

comparison of the two models, as well as the full baseline model, are included in Appendix B.
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To summarize the results of the prosody experiment, there were consistent differences
related to the SW and WS stress patterns, but there was no significant interaction between
experiment order and experimental frequency. More generally, with no observed effect of

experimental frequency, there was limited evidence for learning of the stress patterns.

General Discussion

In this study, children completed two statistical learning experiments—one focused on learning
phonotactics in the form of word-medial consonant sequences, the other focused on learning
prosodic modulation in the form of SW and WS stress patterns. Learning was probed by a
comparison of high and low experimental frequency conditions. In the high experimental
frequency condition, learning targets appeared in multiple items produced by multiple talkers; in
the low experimental frequency condition, targets appeared in a single item produced by one
talker. A relative difference in the high and low experimental frequency conditions was taken to
signal learning. The key finding is that learning of the phonotactic sequences was influenced by
the order in which participants completed the two experiments. When participants completed
phonotactic learning first, there was a trend towards greater accuracy following high
experimental exposure. In contrast, when participants completed phonotactic learning second,
participants were significantly more accurate following the low experimental frequency
exposure. Therefore, the effect of experimental frequency, and by extension learning, varied
depending on the order in which the two experiments were completed. An experiment order by
experimental frequency interaction was not observed in the prosody experiment, nor was there a
main effect of experimental frequency. Below we describe several reasons why the effect may

have been limited to the phonotactics experiment.
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The interaction of experiment order and experimental input frequency is consistent with
the literature reviewed in the Introduction. Benitez et al. (2020), Gebhart et al. (2009), Potter and
Lew-Williams (2019), and Weiss et al. (2009) all found that conflicting language inputs were
challenging for participants. In the adult studies, participants often only learned the first of two
artificial languages presented in succession. The infant study by Benitez et al. was consistent
with the same “primacy effect”. The present study may also reflect a primacy effect. When
participants completed the phonotactics experiment first, the effect of experimental frequency
was consistent with previous findings. It was only when the experiment was completed second

that a surprising finding arose.

The results are also consistent with various phonological cues as central to the
learnability—or difficulty—of a multidimensional input. When searching for word boundaries,
Thiessen and Saffran (2003) find that 7-month-old infants rely on statistical cues, but 9-month-
olds ignore the statistics and instead rely on prosodic cues. Gerken and Quam (2017) report that
infants are sometimes misled by narrow phonological generalizations, such as repeated word-
initial consonants. Potter and Lew-Williams’ (2019) infants demonstrate that learning of a
structured input—surrounded by unstructured input—is possible when the structure is signaled
by a unique inventory of phonemes. Here, the phonotactic and prosody experiments targeted
different phonological structures (Kenstowicz & Kisseberth, 2014). Phonotactic generalizations
often occur at a segmental level. Prosodic generalizations, in contrast, occur at a metrical or
intonational level that spans multiple syllables. Additionally, a variety of cues were given to
participants so that they might treat the experiments as separate. These cues included time (a
week between experiments), visual referents (make-believe animals for phonotactics and aliens

for prosody), and instructions (participants were told that the second experiment was, in fact, a


https://doi.org/10.20944/preprints202105.0777.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 May 2021 d0i:10.20944/preprints202105.0777.v1

different experiment). Given these factors, it would appear that the two experiments were

relatively well distinguished, at least in terms of the phonological aspects to attend to.

The list of differences above notwithstanding, the interaction of experiment order and
experimental frequency informs us that participants did not treat the experiments as separate.
Given the clear phonological distinction between targets, the interference is most readily
attributable to the phonological learning environment. In particular, participants began with an
exposure phase in which they listened to a structured input of nonwords with high and low
experimental frequency conditions. Future research is needed to establish a unified account of
the various types of phonological interference or cue interaction observed by Gerken and Quam
(2017), Potter and Lew-Williams (2018), and here. Furthermore, an account of phonological
interference should also account for the type of segmental and prosodic cue integration studied
by Thiessen and Saffran (2003), as well as the successful input segregation observed in adults by
Gebhart, Weiss, and colleagues. Robust segregation of different statistical learning inputs may
not occur until adolescence or adulthood. Of course, in the real world, infants and children are
exposed to a vast array of inputs reflecting different rules and patterns, so future research is also
needed to better understand the conditions under which even the youngest learners can learn

from and segregate a multidimensional input.

Finally, our study is consistent with proposals by Gebhart et al. (2009) and Bulgarelli and
Weiss (2016) that the primacy effect likely reflects a kind of interference across experiments.
This interference was signaled by a qualitative difference in the direction of the experimental
frequency effect that was determined by experiment order. Despite a surface connection to
previous findings of interference, the accuracy advantage for low experimental frequency

sequences in the phonotactic learning second experiment is remarkable, and to our knowledge, it
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is unprecedented. Consider the logic put forth by Richtsmeier et al. (2011) to explain the benefits
of a high experimental frequency: They argue that this benefit is consistent with the high
frequency advantage seen across language development (Ambridge, Kidd, Rowland, &
Theakston, 2015). In fact, Richtsmeier et al. interpret experimental frequency as a simulation of
the production advantage for high English frequency consonant sequences, such as when
children produce novel words with high-frequency sequences like /blik/ more accurately than
words with low-frequency sequences like /stik/. These effects have been reported by Edwards et
al. (2004), Masdottir and Stokes (2016), Munson (2001), Richtsmeier et al. (2009), Zamuner,
Gerken, and Hammond (2004), and many others. To have obtained the opposite of this well-

established result is striking.

As such, we consider the experiment order by experimental frequency interaction to be
most consistent with the kind of unintended generalization observed by Gerken and Quam
(2016). In other words, a relative advantage for low experimental frequency sequences in the
phonotactic learning second condition may be a case of the wrong generalization being applied.
This is in part because participants in the phonotactic learning second condition probably did not
better learn the low experimental frequency sequences. In some sense, such an explanation defies
the basic notion of learning, which is closely tied to stimulus frequency (Ambridge et al., 2015).
Rather, we argue that high experimental frequency had a kind of damping effect because it was
inconsistent with high experimental frequency from the previous experiment. That is, it was

inconsistent with the high frequency, prosody-focused items from the prosody experiment.

Additional research is necessary to verify that participants were attempting to impose
patterns from the first input onto the second input. Here and in previous studies, the authors have

verified that participants did not exhibit an expected pattern, but they have not specifically

d0i:10.20944/preprints202105.0777.v1
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probed for the unintended generalization. In other words, what is needed is explicit evidence that
participants are applying a pattern from the first experiment to the second experiment. Such a

study is warranted, particularly in the area of child speech development.

Children are known to develop patterns in their speech that never appear in the input.
Phonological processes such as fronting (underlying /k, g/ are produced as [t, d]; [taet] for caf),
stopping (underlying /s, z/ are produced as [t, d]; [tan] for sun), and gliding (underlying /r, 1/ are
produced as [w]; [wak] for rock) are all unexpected patterns in that they are never observed in
the child’s input. That is, adults do not provide models of phonological processes like fronting,
stopping, or gliding. How do children learn these unobserved phonological patterns? One
possibility is that they start out as unintended generalizations from statistical learning. For
example, a child who hears and imitates several words in a row that begin with initial alveolar
stops (foy, tooth, dad, and doll) may draw the generalization that word-initial stops are alveolars.
If they are later exposed to the word car, that generalization could result in a production like
[tar]. This type of generalization is the focus of ongoing experiments in the first author’s lab.
Furthermore, using the statistical learning paradigm to study phonological processes may shed
light on why phonological processes like fronting are relatively common, including in typical
development, whereas processes like backing (underlying /t, d/ are produced as [k, g]; [hak] for

hat) are rare.

A notable limitation of the present study is that no learning effects were observed in the
prosody experiment. More specifically, there was not a significant main effect in any of the
acoustic ratios or in the number of omitted syllables. As such, it may not have been possible to
observe experiment order by experimental frequency interactions to either reinforce or limit the

interpretation of the phonotactics study.
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It may be that our participants were proficient enough when producing strong-weak and
weak-strong contours that the results reflect an aspect of phonology that is less amenable to
learning. There is some support for such a conclusion. For example, Pollock, Brammer, and
Hageman (1993) found that 3- and 4-year-olds were able to consistently use duration, pitch, and
amplitude to distinguish polysyllabic nonwords with strong-weak and weak-strong prosody. In a
larger study with children up to seven years of age, Ballard et al. (2012) found that children
acquiring English were adept at using duration, pitch, and amplitude to signal strong-weak
patterns as young as age three. However, the strong-weak patterns produced by seven-year-olds
did not reach adult levels of contrast. Our data are consistent with Ballard et al.’s protracted
developmental trajectory. In statistical comparisons with the acoustic ratios of the adult model
productions, children differed from the adult norms, particularly in the use of pitch for strong-
weak patterns (see Appendix C). A similar delay for the strong-weak pattern was observed in
kinematic analyses of articulatory stability made by Goffman and Malin (1999). Thus, there was
room for learning to be observed in some of the acoustic parameters of prosody. However,
relative to the impact of phonemic substitution errors common in the phonotactics experiment,
there may have been fewer perceptual consequences to falling short of adult-like prosodic targets
because the basic targets of SW and WS were being achieved. In this more nebulous learning
space, children may have had fewer incentives to improve their production targets for the
prosody items. Regardless of the adequacy of this explanation, further research is needed to
better understand the learnability of various phonological targets within the statistical learning

paradigm and as applied to child speech development.

In conclusion, the results of this study reflect an interesting case of multidimensional

statistical learning. Compared to many previous studies in this area, our study did not include
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stimuli that were inherently in conflict. Phonotactics and prosody are different enough that it
would be reasonable to expect participants to learn them separately. Nevertheless, learners did
not treat the two experiments as separate. When participants completed the phonotactic
experiment first, learning was consistent with previous findings, perhaps reflecting a primacy
effect for initial learning. When participants completed the phonotactic experiment second,
participant accuracy was unexpectedly low for the high experimental frequency condition,
indicating interference from the previously completed prosody experiment. Exactly what this
interference looks like, and whether it reflects overgeneralization of the patterns from the first

experiment, remains to be determined by future studies.
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