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Abstract

Understanding the trend of landslide occurrence in eastern Oklahoma and western

Arkansas is crucial to the human and social development of the region. Studies

suggest rainfall is one of the major landslide triggering mechanisms in the area.

However, the association of landslides and rainfall is yet to be fully understood.

Here, I analyze rainfall patterns at numerous landslide locations to better charac-

terize the major rainfall conditions that can trigger landslides in the study area.

The rainfall-landslide association was determined based on empirical threshold

analysis and statistical machine learning approaches. The empirical threshold

curve implemented aligns with similar curves developed for regions around the

globe.

The developed empirical threshold captures 95 % of the landslide events above

the threshold but fails to discriminate over half of non-landslide rainfall events

from the landslide rainfall events. The empirical threshold trend also indicates

that a small rainfall intensity can trigger landslides in the region.

Five machine learning approaches including K-nearest neighbor, logistic re-

gression, random forest, gradient boost classifier, and voting ensemble classifier

were used to determine important rainfall conditions that can trigger landslides.

Rainfall features such as rainfall intensity, cumulative rainfall and antecedent

rainfall conditions were integrated as input features for the models.
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The ensemble classifier model correctly predicted all landslide events in the

test dataset with a recall of 100%. The two–week antecedent rainfall data is

ranked as the most important feature for forecasting landslide occurrence. Re-

sults from this study can be used in developing a landslide early warning and

forecasting system as well as in making decisions for hillslope and natural re-

sources management.
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Chapter 1

Introduction

Landslide events are generally a natural phenomenon that occur when a body of

rock or earth debris slides down a slope under the effect of gravity (Highland &

Bobrowsky, 2008) (USGS, 2004). Synonymous to and interchanged with slope

failure and mass movement, landslides are mainly acted upon by external fac-

tors such as earthquakes, rainfall, volcanic eruptions, flooding, prolonged intense

precipitation and human influences in addition to the intrinsic geological and ge-

omorphologic causes such as substrate type, slope gradient, and hillslope relief

(Densmore et al., 1997). The human and socio-economic impacts of landslides

can be devastating (Petley, 2012). The consequences result in catastrophes rang-

ing from loss of lives to destruction of infrastructure. Hence, there is need to

incorporate landslide studies into regions with growing infrastructure and pop-

ulation especially regions dominated by steep and unstable terrain (Highland et

al., 2008).

The majority of known natural landslide events are mostly triggered by heavy

precipitation (Larsen & Simon, 1993; Jakob & Weatherly, 2003) and earthquakes

(Rodrıguez et al., 1999). Precipitation increases pore water pressure which initi-
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ates the needed disturbance for gravity to displace a body of the earth from its in-

situ state. Understanding the relationship between landslides and rainfall charac-

teristics is thus important to develop a landslide forecasting system (NASA Earth

Observatory,2016) https://earthobservatory.nasa.gov/images/92018/predicting-landslide-

hazards-in-near-real-time).

Landslides are one of the major geohazards in the Ozark and Ouachita Moun-

tains of eastern Oklahoma and western Arkansan and have the potential to cause

social and economic losses each year. For example, a large landslide that oc-

curred in the Ouachita Mountains near Red Oak severely damaged Oklahoma

State Highway 82 and a forest road (Cerato et al., 2014). The goal of this study

is to determine the rainfall characteristics that trigger landslides in eastern Okla-

homa through the help of empirical hydroclimatic threshold methods and machine

learning methods. Objectives that were met to achieve this goal include:

1. map spatiotemporal characteristics of landslides based on remote sensing

products,

2. determine rainfall threshold that trigger landslides based on the empirical

approach of computing rainfall intensity-duration threshold, and

3. determine important rainfall conditions for triggering landslides using ma-

chine learning approaches.
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Figure 1.1: A photograph of a mountainous terrain, identifying exposed earth at
the landslide site at Sugarloaf Mountain, Arkansas. (Modified after Regmi and
Walter, 2020)
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Chapter 2

Literature Review

An Empirical rainfall threshold are lower bounded lines constructed from rainfall

datasets that initiate landslide events (Giannecchini, 2005). Coupled with non-

landslide related rainfall datasets, empirical thresholds are used as separators for

landslide and non-landslide rainfall.

Campbell (1975) was one of the pioneer researchers in the studies of rainfall

threshold analysis for landslide initiation. Campbell illustrated how antecedent

precipitation (which is related to the magnitude of prior precipitation) is a func-

tion of soil moisture and how it triggers landslide events. (Taylor, 1975) analyzed

the effect of rainfall intensity and antecedent rainfall on the occurrence of land-

slides along slopes in San Francisco, California and computed the threshold curves

for the study area. Caine (1980) studied 73 natural shallow landslides (approxi-

mately 3m deep) triggered by rainfall in Sierra Norte de Puebla, Mexico. With

the help of local rainfall records, Caine (1980) devised the first upper rainfall

threshold for landslide initiation (equation 2.1);

I = 14.82D0.39 (2.1)
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where I is the mean rainfall intensity (mm/hour), and D is the rainfall duration

(hours).

Over the decades, with the increase in research interest and improvement

in data acquisition techniques such as the Shuttle Radar Topography Mission

(SRTM) system, the study of natural landslides has evolved. In an effort to

improve landslide early warning systems, different methodologies have been pro-

posed for computing rainfall thresholds across a range of scales. For example,

empirical thresholds peculiar to climatic and geographic conditions (Guzzetti et

al., 2020). (Komac, 2005) computed rainfall thresholds for different lithologi-

cal units on the entire Slovenia territory by applying the statistical chi-square

method. To account for precipitation effects from excess discharge from other

neighboring regions, (Jakob & Weatherly, 2003) incorporated streamflow data

with precipitation data to develop a discriminant functions analysis model that

scores the chance of landslides and non-landslides.

Recently machine learning methods have been used to develop a landslide

warning system. These approaches have the capability to integrate various envi-

ronmental covariates (landslide conditioning factors) with precipitation data to

build a more robust landslide early warning system. Chen et al. (2018) used

95 landslide locations with 14 landslide conditioning factors as input features to

train Bayes’ net model, radial basis function, logistic model tree, and, random

forest model for the landslide susceptibility model in Chongren County, China.

To understand the effect of static environmental covariates such as slope, ele-

vation, and curvatures on landslide initiation, Jacquemart and Tiampo (2021)

developed a system that assessed landslide susceptibility using InSAR interfero-

metric coherence data and Normalised Difference Vegetation Index (NDVI).

The role of antecedent rainfall on soil moisture prior to landslide events has
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been studied and identified as a critical factor for landslide occurrence. With the

high water-retentive nature of the lithology in the mountainous region of Puerto

Rico, antecedent rainfall events play a huge factor in landslide occurrence (Larsen

& Simon, 1993). Recently, Jordanova et al. (2020) identified rainfall as the most

prevalent mechanism for slope failure in Slovenia and developed a probabilistic

empirical threshold scheme. Jordanova classified the area of study based on two

classes, mean annual rainfall and lithological units.

In the study area, (Regmi & Walter, 2020) provides a background study of

landslide dynamics. With 185 shallow landslides mapped across approximately

150 km2 area of Cavanal Hill and Sugarloaf Mountains. They investigated the

nature of soil-mantled hillslopes, landslide frequencies, magnitudes, and their

approximate ages using historical aerial photographs. Their study shows that

the timing of most of the mapped landslide occurrences correspond to the period

of extreme and high-frequency precipitation that occurred between May 2015

to December 2015. Their study did not establish a relationship between the

landslide events and the rainfall datasets. This study is an expansion of their

findings and to establish a relationship between precipitation data and landslide

occurrence.
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Chapter 3

Study Area

The study area is located around the Ouachita Mountains and Ozark Mountains

in eastern Oklahoma and western Arkansas (Figure 3.1).
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Figure 3.1: A map showing the distribution of landslides in the Ozark Mountains
and the Ouachita Mountains region in eastern Oklahoma and western Arkansas.
The red bounding polygon is the study area. The landslide points were recorded
by the Oklahoma Geological Survey (Regmi and Walter, 2020)

3.1 Geology and Geomorphology

The Ozark and Ouachita Mountains in eastern Oklahoma and western Arkansas

are underlain by sedimentary rocks, including Quaternary alluvium to Devonian-

Silurian marine sandstone, shale, and Quaternary deposits (Tyrl et al., 2007;

Stoeser, 2003). The main lithologies found on outcrops are thinly bedded to

medium-grained sandstones and thick-bedded and weathered fossiliferous shales

to deformed shales. (Regmi & Walter, 2020). These rocks are highly fractured
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and weathered. Given its diverse geomorphologic structures, the Ozark uplift

is comprised of mountains, domes, highlands, and plateaus (Foti & Bukenhofer,

1999). The Arkansas River valley is a 40-mile-wide trough that separates the

Ozark Mountains in the north and the Ouachita Mountains in the south. The

Ouachita Mountain region is a mountainous, geologically complex area located

between the West Gulf Coastal Plain region to the south and the Arkansas Valley

region to the north.

The orogeny of Ouachita was developed during the Pennsylvanian period re-

sulting in folding deformations of the strata. The Ozark Mountains were devel-

oped as an asymmetrical uplift during the orogeny making the strata relatively

horizontal (Adamski & NWQAP, 1995). Some mountains around this region like

St. Francois Mountains had originally existed as a result of volcanic intrusion

almost 1.5 billion years ago before the orogeny. Since its formation, the Ozark

has been frequently eroded by streams and valleys, therefore, creating several

isolated steep-sided plateaus.

The region consists of several plateaus: The Boston Mountains, Springfield

Plateau, and Salem Plateau. It begins in Oklahoma and ends in the central part

of Arkansas. River gorges abound and some are up to 1,500 feet deep, created

through the years by streams currents, cutting through the region.

9



Figure 3.2: A map showing parts of Oklahoma, Arkansas, Missouri, and Kansas
accommodating the extent of the Ozark province and the Ouachita Province and
some landmarks around them (Modified from Foti and Bukenhofer, 1999

3.2 Climate and Vegetation

In terms of climatic conditions, Oklahoma’s seasonal and geographical variation

is controlled by temperature and precipitation. Relative to western Oklahoma,

the moisture from the Gulf of Mexico strongly affects the climatic conditions of

eastern Oklahoma (Tyrl et al., 2007). This also dominates the regional climatic

condition of Western Arkansas. The huge variation in climatic conditions ranges

from 20 inches of annual precipitation in northwestern Oklahoma to 52 inches of
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annual rainfall in southeast Oklahoma from 1971 to 2000 (Figure 3.3). Maximum

precipitation is recorded during summer (June - August) and minimum precipita-

tion is recorded during winter (December, January, and February) (Johnson and

Luza, 2008) The vegetation primarily consists of various Oak species and short-

leaf pine. Oak-pine forest is dominant in upland slopes and blackjack forest is

dominated in lowlands. Other vegetation includes bluberries, flowering dogwood,

hophorn beam, sugar maple, and redbud service berry (Johnson, 2008).
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Figure 3.3: A map showing the mean annual precipitation (inches) in Oklahoma
based on 1971 – 2000 precipitation data (modified after Johnson and Luza, 2008)

12



3.3 Landslide

The study area shows clear evidence of landslides including old deep-seated land-

slides, recent shallow landslides, and soil creep (Regmi & Walter, 2020; He et

al., 2014). For example, (Regmi & Walter, 2020) mapped hundreds of shallow

landslides (depth of slip surface less than the tree root depth) including soil creep,

debris flow, debris slide, soil slide, rock slide, and rock fall across the study area.

They suggest most of these landslides are small in size and could have been trig-

gered by intense precipitation (i.e., record precipitation of May 2015) alone or in

conjunction with Oklahoma earthquakes.
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Chapter 4

Materials and Methods

4.1 Materials

The majority of the dataset used is hourly and daily time series rainfall datasets

associated with both landslide and non-landslide events. The datasets are used

to develop empirical threshold models and machine learning models.

4.1.1 Data Sources

We used the landslide inventory of landslides developed by the Oklahoma Geolog-

ical Survey (Figure 2.1). The inventory consists of over 700 landslide occurrences.

The timing of 9 of the landslide events was sourced from local news while 23 were

sourced from time series Landsat 7 ETM+, Landsat 8, and Planet imagery. The

timing of landslide occurrence in terms of hourly precision is mostly unknown.

Hence, the time of the peak rainfall within the day landslide occurred is estimated

as the landslide time. Hence, there is a margin of error for analysis using hourly

rainfall data. In summary, the sources for landslide information are;

1. Landslide events from the local news: The most accurate landslide infor-
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mation in terms of time, magnitude, and scale are obtained from local news. The

event is captured in news reports at an hourly approximation.

2. Rainfall data was sourced from Mesonet, and National Oceanic and Atmo-

spheric Administration, NOAA . Over 144 stations provide rainfall information

across the state of Oklahoma and western Arkansas

3. Mapping landslides events and timing was conducted using Landsat im-

agery from the United States Geological Survey (USGS). Regular field trips to

the study area were conducted to validate landslides mapped based on remote

sensing data as well as geologic details like soil types and geomorphology.

Data Collection

Two datasets (hourly and daily) comprising a total of 214 events (32 landslides

and 184 non-landslide), the date of the rainfall event, and coordinates of the rain-

fall stations were prepared. Sample datapoint location and sampling frequency

are crucial to the success of this research, hence a need to evaluate which dataset

will be effective for the research. Rain-gauge stations in Oklahoma and Arkansas

are spread evenly and they capture daily and hourly rainfall information. Table 1

in the appendix shows an example of raw daily and hourly rainfall data obtained

from the Mesonet database.

Estimation of rainfall at Datapoint

A rainfall station is not always stationed at landslide locations. Computing the

amount of precipitation at a specific landslide location requires a form of inter-

polation from neighboring rainfall stations. Inverse Distance Weighting (IDW)

interpolation is a deterministic and mathematical way of estimating rainfall val-

ues at unknown data points. The IDW technique assumes that the rainfall station

15
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with rainfall information is uniform and closely located to the unknown point (i.e.,

the landslide location) (Lu & Wong, 2008). The rainfall value Zp at location p

is computed by summing rainfall of the rainfall value Zi at i stations located at

distance di from the landslide location divided by the inverse of their respective

distance, di (equation 4.1). The IDW estimated rainfall value, Zp is the linear

combination of the weight which is the inverse of the distance from station i, and

the observed rainfall value at station i.

Zp =

∑n
i=1

zi
di∑n

i=1
1
di

(4.1)

Creating Non-landslide event datasets

Creating datasets of rainfall events that did not result in landslides is crucial to

the development of the rainfall threshold. A logical procedure with sets of rules

was adopted in the choice of location and time of selecting the rainfall event

that did not trigger landslides. At each landslide location, prior records of non-

landslide rainfall events were selected if the event and its antecedent rainfall did

not trigger any landslide. The absence of a landslide in the given location and

its surrounding is also confirmed using the Landsat imagery. Locations of the

landslide event are used to calibrate the creation of non-landslide datasets. A

schematic of the procedure is shown in Figure 4.1. The figure shows the sequence

for creating non-landslide observations and is articulated below:

• Pick a landslide event, its location, and time.

• Plot rainfall events at the location for the period (90 days) before the land-

slide event.

16



• At the same location, use LANDSAT and Planet imagery to check for any

landslide event.

• If no landslide is recorded, iterate at an interval of 90 days backward.

• At each iteration, pick a peak rainfall event or prolonged rainfall period.

• Compute intensity and antecedent rainfall at the selected location.

Figure 4.1: A Schematic illustrating steps involved in creating non-landslide rain-
fall events. For daily rainfall datasets (above), rainfall events are assessed daily
from the profile. For the hourly rainfall dataset (below), rainfall events are as-
sessed daily from the profile

4.1.2 Antecedent rainfall data

These are soil moisture conditions created by cumulative rainfall over a specified

time before a rainfall event that can trigger a landslide. Studies have shown

that they are important phenomena for landslide-induced rainfalls (Campbell,

1975; Glade, Crozier, & Smith, 2000). Due to the orographic effect, landslide-

prone mountainous terrain in the islands of Puerto Rico experienced trade-winds

that delivered a relatively continuous flow of moisture-filled air, coupled with
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low intensity, frequent precipitation (Larsen & Simon, 1993). The Antecedent

Precipitation Index (API) is the summation daily estimate of the catchment

wetness calculated from the rainfall that occurred over the preceding days. A

decay, k parameter (lies within 0.85 - 0.98) which is a function of the type of the

topsoil moisture and rainfall-runoff model (Fedora & Beschta, 1989) is multiplied

by each prior day’s cumulative rainfall (Heggen, 2001). Antecedent precipitation

Index is defined in equation 4.2 as:

APIt = k.APIt−∆t − P∆t (4.2)

where APIt is the antecedent precipitation index (mm) at time t, P∆t is the

cumulative precipitation during the period from t − ∆t to t, K is the decay

parameter related to soil moisture.

The following 10 antecedent precipitation index features were computed, one

day rain (1 D R), two days rain (2 D R), three days (3 D R), four days rain

(4 D R), five days rain (5 D R), six days (6 D R), one week rain (1 W R), two

weeks(2 W R), three weeks (3 W R), and four weeks (4 W R).

4.1.3 Cumulative rainfall

This is the total amount of precipitation (mm) per episode of the rainfall event.

For landslide events, it is the total precipitation measured from the start of a

rainfall event to the time of landslide occurrence for landslide event. For non-

landslide events, it is the total precipitation measured from the start of the rainfall

event to the end of the rainfall event.
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4.1.4 Rainfall Intensity

Rainfall intensity is the rate of precipitation recorded over a period commonly

measured in mm per hour or inches per hour. Depending on the frequency of

rainfall observation, the intensity can be computed as hourly rainfall intensity

or daily rainfall intensity per event. The period of precipitation for the hourly

dataset is the duration (in hours) of non-zero rainfall values during events. The

period of precipitation for the daily dataset is the duration (in days) of non-

zero rainfall values recorded during events. Hence, these two datasets produce

differing threshold curves.
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4.2 Methods

4.2.1 Empirical Rainfall Threshold

A minimum rainfall intensity threshold is the least amount of rainfall amount

within a period below which a landslide event does not occur. Hence, a minimum

threshold line is derived to distinguish rainfall events that initiate landslides from

those that do not initiate landslides. The datapoints are mainly plotted on a

cartesian or a logarithmic scale, the rainfall intensity (mm/hour) on the vertical

axis and the duration (hours) on the horizontal axis.

Various methods have been applied to determine this threshold line. For

Example, (Caine, 1980) proposed and applied a visual inspection methodology

whereby the line is fitted optimally by visually fitting the line on the landslide

datapoints. Adopting this method is not statistically rigorous and can be prone

to overfitting as the line is fitted only to optimize only the landslide events.This

method was adopted for the study. Another methodology is by using Bayesian

inference (Guzzetti, Peruccacci, Rossi, & Stark, 2007)(Guzzetti, 2007).

Rainfall Intensity threshold Method

A relationship between the rainfall intensity-duration and cumulative rainfall-

duration has been used as an empirical approach to evaluating the pattern of

landslide events. A line that separates rainfall events that induced landslides and

rainfall events that did not induce landslides can be considered a threshold line.

This line or minimum threshold aligns with the minimum rainfall necessary to

trigger a landslide over a period (of hours). This line is determined either visu-

ally (Caine, 1980) or using Bayesian inference through the power curve equation

(Jakob & Weatherly, 2003). The most common variables used to characterize
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landslide events are rainfall intensity-duration (ID) and cumulated event rainfall-

rainfall duration (ED). Empirical rainfall thresholds created across the world are

summarized in table 4.2 and plotted in Figure 4.2

4.2.2 Exploratory Data Analysis

Rainfall datasets are preprocessed and prepared as input features for the empir-

ical threshold model analysis and the machine learning models. Some critical

procedures are followed to validate and preprocess the dataset for modeling.

Class Imbalance

It is necessary to capture all the unique instances of rainfall events in the region to

train the model on a broad range of events that could occur. Hence, several non-

landslide events were acquired which created an unequal proportion of landslide

events to non-landslide events (from Figure 4.3). Such a skewed distribution

(Figure 4.3) can introduce a bias in the predictive power of the model as the model

will poorly predict the minority test data (Brownlee, 2020). Hence, this situation

requires us to prioritize the recall metric during training and the evaluation of

the machine learning models. A solution to this challenge is to create a synthetic

dataset. A popular method is called Synthetic Minority Oversampling Technique

(SMOTE) (Das et al., 2020). The SMOTE technique generally identifies the

k-nearest neighbors to the minority sample that will be used to generate sets

of synthetic observation neighbors (Chawla et al., 2002). The technique was

implemented in this study to generate additional landslide event datasets.

22



T
ab

le
4.
2:

A
li
st

of
th
re
sh
ol
d
s
ge
n
er
at
ed

fr
om

ac
ro
ss

th
e
w
or
ld

id
en
ti
fi
ed

as
lo
ca
l,
re
gi
on

al
,
an

d
gl
ob

al
(M

o
d
ifi
ed

fr
om

G
u
zz
et
ti
et

al
.,
20
07
)

#
E
X
T
E
N
T

A
R
E
A

L
A
N
D
S
L
ID

E
T
Y
P
E

T
h
re
sh
ol
d
E
q
u
at
io
n

R
an

ge
(h
ou

rs
)

1
G
lo
b
al

W
or
ld

S
h
al
lo
w
,
D
eb
ri
s

I
=

14
.8
2
∗
D

−
0
.3
9

0.
16
7
<
D
<
50
0

2
R
eg
io
n

C
ar
in
th
ia

an
d
E
T
y
ro
l,
A
u
st
ri
a

S
oi
l
S
li
d
e

I
=

41
.6
6
∗
D

−
0
.7
7

1
<
D
<
10
00

3
L
o
ca
l

V
al
te
ll
in
a,

L
om

b
ar
d
y,

N
It
al
y

S
oi
l
S
li
d
e

I
=

44
.6
68

∗
D

−
0
.7
8

1
<
D
<
10
00

4
L
o
ca
l

S
an

F
ra
n
ci
sc
o
B
ay

R
eg
io
n
,
C
al
if
or
n
ia

D
eb
ri
s

I
=

6.
9
+
38

∗
D

−
1
.0
0

2
<
D
<
24

5
R
eg
io
n

In
d
on

es
ia

D
eb
ri
s

I
=

92
.0
6
−
10
.6
8
∗
D

1
.0

2
<
D
<
4

6
R
eg
io
n

P
u
er
to

R
ic
o

D
eb
ri
s

I
=

66
.1
8
∗
D

−
0
.5
2

0.
5
<
D
<
12

7
R
eg
io
n

B
ra
zi
l

D
eb
ri
s

I
=

63
.3
8
−
22
.1
9
∗
D

1
.0

0.
5
<
D
<
2

8
R
eg
io
n

C
h
in
a

D
eb
ri
s

I
=

49
.1
1
−
6.
81

∗
D

1
.0

1
<
D
<
5

9
L
o
ca
l

H
on

g
K
on

g
D
eb
ri
s

I
=

41
.8
3
∗
D

−
0
.5
8

1
<
D
<
12

10
R
eg
io
n

J
ap

an
D
eb
ri
s

I
=

39
.7
1
∗
D

−
0
.6
2

0.
5
<
D
<
12

11
L
o
ca
l

M
ay
on

,
P
h
il
ip
p
in
e

L
ah

ar
I
=

27
.3
∗
D

−
0
.3
8

0.
16
7
<
D
<
3

12
R
eg
io
n

S
w
it
ze
rl
an

d
A
ll
ty
p
es

I
=

32
∗
D

−
0
.7
0

1
<
D
<
45

13
G
lo
b
al

W
or
ld

S
h
al
lo
w

sl
id
e

I=
0.
48

+
7.
2
∗
D

−
1
.0
0

0.
1
<
D
<
10
00

14
L
o
ca
l

M
os
ca
rd
o
T
or
re
n
t,
N
E
It
al
y

A
ll
ty
p
es

I
=

15
∗
D

−
0
.7
0

1
<
D
<
30

15
R
eg
io
n

E
as
te
rn

J
am

ai
ca

S
h
al
lo
w

sl
id
es

I
=

11
.5
∗
D

−
0
.2
6

1
<
D
<
15
0

16
R
eg
io
n

S
h
ik
ok

u
Is
la
n
d
,
J
ap

an
A
ll
ty
p
es

I
=

1.
35

+
55

∗
D

−
1
.0

24
<
D
<
30
0

23



10
0

10
1

10
2

10
3

Du
ra

tio
n 

(h
ou

rs
)

10
0

10
1

10
2

Intensity (mm/hr)

W
or

ld
 - 

Gl
ob

al
 - 

Sh
al

lo
w,

 D
eb

ris
 F

lo
w

Au
st

ria
 - 

Re
gi

on
 - 

So
il 

Sl
id

e
Ita

ly
 - 

Lo
ca

l -
 S

oi
l S

lid
e

Ca
rli

fo
rn

ia
 - 

Lo
ca

l -
 D

eb
ris

 F
lo

w
In

do
ne

sia
 - 

Re
gi

on
 - 

De
br

is 
Fl

ow
Pu

er
to

 R
ico

 - 
Re

gi
on

 - 
De

br
is 

Fl
ow

Br
az

il 
- R

eg
io

n 
- D

eb
ris

 F
lo

w
Ch

in
a 

- R
eg

io
n 

- D
eb

ris
 F

lo
w

Ho
ng

 K
on

g 
- L

oc
al

 - 
De

br
is 

Fl
ow

Ja
pa

n 
- R

eg
io

n 
- D

eb
ris

 F
lo

w
Sw

itz
er

la
nd

 - 
Re

gi
on

 - 
Al

l T
yp

es
Ph

illi
pi

ne
- L

oc
al

 - 
Sh

al
lo

w
wo

rld
 - 

Gl
ob

al
 - 

Sh
al

lo
w 

Sl
id

es
Ita

ly
 - 

Lo
ca

l -
 D

eb
ris

Ja
m

ai
ca

 - 
Re

gi
on

 - 
Sh

al
lo

w 
Sl

id
e

Ja
pa

n 
- R

eg
io

n 
- A

ll 
Ty

pe
s

F
ig
u
re

4.
2:

A
p
lo
t
of

em
p
ir
ic
al

th
re
sh
ol
d
p
ro
fi
le
s
li
st
ed

in
T
ab

le
4.
3.

E
ac
h
p
ro
fi
le

is
la
b
el
ed

in
te
rm

s
of

th
e
ar
ea
,
ex
te
n
t,

an
d
la
n
d
sl
id
e
ty
p
e
in

th
e
le
ge
n
d
(M

o
d
ifi
ed

fr
om

G
u
zz
et
ti
et

al
.,
20
07
)

24



Figure 4.3: A histogram of the distribution of the target class. The landslide is
highly imbalanced

Outlier Analysis

Most statistical techniques are sensitive to outliers. Outliers are values that are

abnormally different from other values in a dataset. Finding extreme datapoints

that are significantly different from other datapoints is important as they can

distort the distribution of univariate or multivariate data. For our study, we

implemented the Grubbs test (Urvoy & Autrusseau, 2014) analysis to detect

a single outlier for each univariate dataset. By estimating the test statistic G

(in Equation 4.3), Grubbs’ test finds extreme deviates from the mean ȳ in the

datasets. Here, yt is the extreme value while s is the standard deviation.

G =
maxi=n |Yt − ȳ|

s
(4.3)

Given a significance level α (0.05) for any univariate data, the null hypothesis

that there is no outlier in the data is not rejected if the critical value of the test
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statistic G is more than the α value and will be rejected if the critical value of

the test statistics G is less than the α.

Scaling and Normalization

Scaling a dataset involves shifting and rescaling the dataset so that values range

between 0 and 1. Two popular scaling techniques are min-max scaling and stan-

dard scalar. The standard scalar was used in this study. The mean of the scaled

dataset is set to 0 with a unit variance ranging from -2.5 to +2.5 (Regmi &

Rasmussen, 2018).

A normally distributed dataset is preferred for statistical analysis to reduce

the effect of outliers and skewness (Armstrong, 1998; Varouchakis, 2021). Hence,

normalization is apt for our dataset given that none of the features in the dataset

has a normal distribution. This can also be useful for algorithms that do not as-

sume any distribution of the data like K-Nearest Neighbors and Neural Networks

(Park, Kim, & Lee, 2014). A log transformation of each feature is done using the

Yeo-Johnson power transformation (Atkinson, Riani, & Corbellini, 2021). Figure

4.4 and Figure 4.5 show the distribution of the data before and after scaling and

normalizing the dataset.
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Figure 4.4: The distribution of the independent features of the dataset before
any pre-processing steps.
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Figure 4.5: The distribution of the independent features of the dataset after
scaling and normalizing the dataset.
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Analysis of Variance Analysis (ANOVA)

This is a statistical test used to detect whether the difference between independent

features is statistically significant. A two-way ANOVA is used to determine the

impact of two independent features (for example, rainfall intensity and one-week

rainfall) on a dependent feature (like landslide occurrence) and to detect possible

interactions between the two independent features.

Feature selection and reduction

In preparing features as model input, it is important to rank important features

and avoid redundancy in the datasets (Darst, Malecki, & Engelman, 2018). The

Recursive Feature Elimination (RFE) method is used to rank important features

(Darst et al., 2018). As a wrapper-based method, it uses a learning algorithm

to select subsets of features from all available features recursively. Based on the

performance of the desired number of features, features are concurrently added

and removed from the subset features used for modeling until an optimal subset of

features is reached. Using a greedy optimization technique, the best-performing

feature subsets are kept and ranked. RFE allows for the choice of the number of

features to keep and thus helps to reduce model complexity.

Pearson’s Correlation is a common method used to identify correlated numeric

features pair (Bairey Merz et al., 2016). The correlation value is the sum of the

product of differences in the feature means divided by the sum by the product

of the squared differences from the feature means. With the presence of high

correlation pairs in the input features as seen in Figure 4.6, it is imperative to drop

less important features that correlate with important ones. Highly correlated

features possess the same predictive power and would be redundant, therefore
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compromising the performance of the model

Figure 4.6: A display of the correlation metrics between the rainfall intensity and
Antecedent Rainfall Index features.

30



4.2.3 Statistical machine Learning methods

I introduce a statistical machine learning model to find different types of relation-

ships between the dependent variable (like landslide event outcome) and indepen-

dent variables (like rainfall intensity and antecedent rainfall features). Statistical

models also find the significance of each feature relationship (Sugiyama, 2015).

By minimizing their respective loss function, machine learning methods learn

data patterns that help to improve their predictive power (Jatau, Melnikov, &

Yu, 2021) .

Suppose that we observe a quantitative response Y and p with different pre-

dictors, X1, X2, ..., Xp. We assume that there is some relationship between Y and

X = (X1, X2, ..., Xp), which can be written in the very general form in equation

4.4

Y = f(X) + ϵ (4.4)

Here f is some fixed but unknown function (linear or non-linear) of X1, ..., Xp

and ϵ is a random error term, which is independent of X and has an ideal mean

value of zero. In this formulation f(x) is any machine learning method applied

to train the model that predicts the binary outcome of a rainfall event, Y . The

input features for the methods that will be explored for the study are 1D con-

tinuous numerical datasets. The Python Sci-Kit Learn library provides tools to

implement all the methods discussed in the section.

Training the model

The prepared datasetX is taken as input by a training statistical ML model which

has intrinsic tunable parameters called hyperparameters (Song et al., 2017). The
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model produces a set of parameters ϕ, which defines the model that takes inX and

produces an outcome y as; f(ϕ): X −→ y. During model training, ϕ is optimized

by minimizing the loss function ψ. Function ψ penalizes the misclassifications

between the actual class y and the predicted class by the model f(ϕ) and can be

expressed as ( 1
n

∑n
i=i ψ(yi, fϕ(xi)).

Cross-validation (CV) is a statistical process of evaluating model training

performance. The data is split in a particular pattern to be trained on one part

of the dataset and tested on the other. Data splitting is mostly random and

trained concurrently with testing. CV averages out overfitted estimations during

training and assesses the performance of the method adopted. A frequently used

CV technique is the K-fold CV. K-fold CV splits the dataset into k equal folds

(10 folds in this study), then trains the model on 9 folds and uses the last fold to

test the model. This process is done in several iterations until all folds are used

for testing. The performance metrics of the model are the average performance

of all the test folds used. Figure 4.7 shows the schematic steps for K-fold cross-

validation.

Figure 4.7: A schematic showing the iteration process starts from the top to
bottom during training as each fold is used for validation from left to right for
k-Fold cross-validation.
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Model performance and evaluation

We explored different types of machine learning approaches. We used paramet-

ric, non-parametric, tree-based, and linear regression approaches. To assess the

performance of the model using the classification evaluation techniques we used

the receiver operating characteristics and the Precision-Recall (PR) Curve.

Receiver operating characteristics curve

The Receiver Operating Characteristic (ROC) curve defines the performance of

a binary classifier system as its discrimination threshold changes (Kuhn & John-

son, 2013). The Area Under the Receiver Operating Characteristic Curve (AUC-

ROC) is a technique that evaluates the model performance given any possible

variable thresholds for the model parameters. The ROC curve represents sen-

sitivity as a function of the false positive rate (1-specificity) FPR. It can be

generated by plotting sensitivity or true positive rate (TPR) in the y-axis against

the cumulative distribution function of the false positive rate on the x-axis as

seen in Figure 4.8.

The following four (4) quantities are used to compute the AUC-ROC param-

eters;

1. True Negative: The number of negative outcomes classified accurately.

2. True Positive: The number of positive examples classified accurately.

3. False Positive: The number of actual negative outcomes classified as posi-

tive.

4. False Negative: The number of actual positive outcomes classified as nega-

tive.
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TPR and FPR are defined in equation 4.5 and equation 4.6 as

TPR =
TP

TP + FN
(4.5)

and

FPR =
FP

FP + TN
(4.6)

where TP = True positive, FP = False positive, TN = True Negative, and FN

= False negative.

It has been widely used as a standard tool for evaluating the general perfor-

mance of models (Chen et al., 2018). The AUC–ROC is a quantitative measure

of the quality of the model, which can be categorized as poor (0.5–0.6), average

(0.6 – 0.7), good (0.7 – 0.8) (Hosmer Jr, Lemeshow, & Sturdivant, 2013), very

good (0.8 – 0.9), and excellent (0.9 – 1) (Chen et al., 2018). A low AUC value for

model training with a low AUC value for model testing value indicates a model

that performs poorly. A high AUC value for model training with a low AUC

value for model testing value indicates a model that is overfitted. A high AUC

value for model training and a high AUC value for model testing value indicates

a good model and no overfitting is suspected. ROC curve is useful when the

observations are balanced between each class, while the precision-recall curve is

applicable for imbalanced datasets. Given the class imbalanced nature of our

dataset, generating synthetic data for model training is important, making it

possible to assess the model with the ROC curves.
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Figure 4.8: A typical AUC–ROC profile showing the range of decision thresholds
for the model.

Precision-Recall (PR) Curve

Another way of diagnosing and fine-tuning model performance is through the

Precision-Recall (PR) curve. Through the PR curve, we assess how optimal the

model can get, and the trade-offs involved whenever we prioritize any metrics.

Given the class imbalanced nature of the dataset reviewing both precision and

recall is important as we can choose which metric to prioritize. In the original

dataset, there are many non-landslide events and only a few landslide events,
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hence the recall metric is important. Prioritizing the recall metric is because

the cost of false negatives is more costly than the false positives. The optimal

threshold point for any model on the PR curve is the shortest distance from the

PR curve to the edge of the perfect model curve.

Evaluation Metrics

We assessed the performance of the classification models using 4 evaluation met-

rics: precision, recall, accuracy, and F–1 score.

Precision

The measure of the correctly predicted positive landslide cases is divided by the

predicted positive (landslide event) cases both correct and incorrect (Equation

4.7). With precision, we assess how efficiently our model can be useful to build a

landslide warning system. It is defined mathematically in equation 4.7 as

Precision =
True Positive

True Positive+ False Positive
. (4.7)

Recall

The measure of the correctly predicted positive landslide cases was divided by all

the actual positive landslide cases that were predicted correctly and incorrectly.

It is important when the cost of False Negatives is high. Recall helps to assess if

the model is predicting landslide events as expected. It is defined mathematically

in equation 4.8 as

Recall =
True Positive

True Positive+ False Negative
. (4.8)

36



Accuracy

The measure of all the correctly identified landslide cases and non-landslide cases.

This metric is effective if all the target classes are equally distributed. It is defined

mathematically in equation 4.9 as

Accuracy =
True Positive+ True Negative

True Positive+ False Positive+ True Negative+ False Negative
.

(4.9)

F-1 Score

It measures the harmonic mean of the precision and recall. It helps to mea-

sure the nature of the misclassified observations. It gives a better measure of

the incorrectly classified cases than the accuracy metric. Whenever the costs of

misclassification differ, the F-1 score is a more critical metric than the accuracy

metric. It is defined mathematically in equation 4.10 as

F − 1 score = 2

(
Recall × Precision

Recall + Precision

)
. (4.10)

Confusion Matrix

For binary classification problems, a confusion matrix is an array-like representa-

tion of values used to summarize the performance of a supervised classifier model

in terms of the count of true positives, false negatives, false positives, and true

negatives. Table 4.3 shows the template of a confusion matrix.
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Table 4.3: Confusion Matrix for binary classification
Predicted Class

Negative Positive

True Class
Negative True Negative (TN) False Negative (FN)
Positive False Positive (FP) True Positive (TP)

38



4.2.4 K-Nearest Neighbors (KNN) Classifier

The K nearest neighbor is one of the simplest non-linear supervised learning algo-

rithms. This method is an instance-based method that predicts a new observation

based on the closest K neighbor observation from the training dataset (Cover,

1967). KNN method is developed by using individual samples within a predictor

space of the training dataset to predict new observations (Kuhn, M. and John-

son, K., 2013). This method first stores all the datasets and then classifies new

observations based on similarities within the available categories. The predicted

outcome of the new observation is the mean of the response of the K neighbors.

The neighborhood of the predictor space is determined mostly by the Minkowski

distance defined in equation 4.11 where p is the degree of choice for Minkowski

distance measured for k nearest neighbors of the sample majority class of the

dataset. The equation is an estimation of the Euclidean geometry when p = 2.

An advantage of the KNN algorithm is that there are no assumptions required

about the distribution or the relationship between the dataset features hence it

is a non-parametric method. Since the method relies on the distance between

observations, scaling the input dataset is important

d(x̄, x) =

(
k∑

j=i

(x̄a − xaj)
p

) 1
p

(4.11)

Algorithm implementation

1. Scale and normalize the dataset.

2. Initialize the k for a chosen number of neighbors.

3. Pick the first k entries from the sorted collection.
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4. Get the labels of the selected k entries.

5. Calculate the distance between the n observations feature and the current

observation feature.

6. Estimate and return the mode of the k labelss

For KNN model optimization, 3 model hyperparameters can be optimized:

• the number of k neighbors,

• the choice of distance metric, and

• The weight of the sample observations.
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4.2.5 Logistic Regression Classifier

Given the linear relationship of the rainfall features with the target class, the

logistic regression method is considered as a classifier method in this study. Lo-

gistic regression is a method that computes the probability of a discrete outcome

given an independent variable (Edgar & Manz, 2017). Like linear regression, it is

built on the conditional probability distribution of the predictors given the values

of the predictors. When fitting a straight line to a binary outcome, there is a

validation that computes and predicts the probability of event X as p(X) < 0

for some values of X and p(X) > 1 for others (unless the range of X is limited).

To avoid this problem, we must model p(X) using a logistic function that gives

outputs between non-landslide rain, 0 and non-landslide rain, 1 for all values of

X (equation 4.12 and equation 4.13). The right hand side of equation 4.13 is the

Logit or log-odds function. Because the desired outcome is binary, a non-linear

log transformation to compute the log odds of the probability that ranges from

minus infinity to plus infinity.

odds =
p

1− p
−→ logit(p) = ln

p

1− p
(4.12)

logit(p) = mx+ c = ln
p

1− p
(4.13)
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Figure 4.9: A schematic plot of a sigmoid function for the logistic regression
method.

Compared to other highlighted methods, the logistic regression method is the

most interpretable method as the relationship between predictors and dependent

variables is evaluated and the loss function is statistically explained.

The critical hyper-parameters to be optimized for the logistic regression method

are:

• regularization penalty: [L1, L2, elasticnet],

• the C parameter to control the strength of penalty: [100, 10, 1, 0.1, 0.01],

and

• solver: [newton-cg, lbfgs, liblinear].
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4.2.6 Random forest (RF) Classifier

Random forest is a classification method that uses multiple decision tree predic-

tors whereby each tree depends on the values of randomly chosen vectors that are

distributed evenly among all trees in the forest (Herrera, 2019). A decision tree is

a set of conditions for optimal classification of outcomes in a hierarchical pattern

using leaves and nodes. In standard trees, each node is split using the best split

among all variables (landslide conditioning factors). In a random forest, each

node is split using the best split among a subset of predictors that are randomly

chosen by the node. It has become a popular method for finding hidden patterns

within large volumes of data. To determine the best node to split, there are n

variables that can be chosen as random subsets from the training data. One can

compute the best node split using Gini criteria (Breiman, 2001). These criteria

measure the correlation degree between variables and results. According to the

random forest algorithm, the lowest Gini Criteria value is considered to be the

best split for each node (Kausar & Majid, 2016). Gini criteria is expressed in

equation 4.14 as

GiniCriteria = 1−
∑
j

P 2
j . (4.14)

pj represents the distribution of j class labels at a node. At node k, the Gini

criteria is minimum 0 when all the rainfall events belongs to one unique class.

Hence, the feature to split at the node k will be the feature with the least gini

index. A summary of building a random forest model is itemized below;

Algorithm Implementation

• input dataset features is sub-sampled with replacement
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• use random features for each node partition optimization

• aggregate all decision trees built independently. The probability of the

outcome of a rainfall event is the proportion of the tree that classifies the

outcome.

For model optimization, the random forest hyperparameters to be tuned are;

1. n estimators: The n estimators hyperparameter is the number of decision

trees the method considers as maximum voting inputs and based on the

aggregate average of the tree makes a prediction. A higher number of trees

reduces the model variance and increases the model performance. A trade-

off would increase the computation time.

2. max features: Give a value as the maximum number of features that the

algorithm picks to split at the node.

3. min sample leaf: This determines the minimum number of leafs required to

split at an internal node of a decision tree.
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4.2.7 Gradient Boost Classifier

Gradient Boost Classifier (GBC) is a decision tree ensemble machine learning

method that relies on the intuition that the perfect possible next model com-

bines with the previous models to minimize the overall prediction error (Kuhn &

Johnson, 2013). The concept of boosting is initiated as a sequence that converts

weak learners to strong ones by adding trees to them. A new tree output y that

is scaled down by the learning rate v is added to a weak learner F0 for the dataset

x (equation 4.15) as

F1(x) = F0(x) + vy. (4.15)

Generally, the GBC method depends on the information from patterns of

model residuals of weak models and improves on subsequent models. At each

stage of learning, GBC uses a greedy strategy of selecting the optimal learner

which produces an optimal solution that sometimes overfits. There are ways to

curtail these drawbacks through optimizations of the method hyperparameters

like the shrinkage value.

Algorithm implementation

1. Initialize the model with a constant value prediction

2. for m = 1 to M iterations:

- Calculate the residual rm by taking the derivative of the loss function with

respect to the previous prediction

- Train the classification tree with features x dataset against residual r.

- Compute a function Fi(x) that minimizes the loss function at each terminal

node.
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3. Update the prediction of the combined model.

The critical hyper-parameters to be optimized for the GBC method are:

• Criterion: This is the loss function chosen to search for the best feature and

the threshold required to split the data.

• learning rate: This parameter controls the amount of contribution from

each new tree. A general range for the learning rate is 0.1 – 0.3.

• max depth: The maximum depth of each tree estimator.

• n estimators: This is the number of trees to build.

• init: The initial estimator is the log(odds) prediction that is converted into

a probability by using the logistic function.
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4.2.8 Model Optimization: Ensemble Voting Classifier

The Voting Classifier model is an estimator that optimizes the performance of all

the individual models to build a meta-classifier and cancels out their weaknesses.

It introduces the intuition of optimizing the diversity of the individual models to

reduce the variance (Lim, 2022). A final voting classifier model is designed based

on the use case for the research which is the recall metric.

The recall value of each individual model is used as their weights for the voting

classifier.The weights are quantified relative to the magnitude of other individual

model weights and can take any numerical value weight (Liu et al., 2020; Brown-

lee, 2021). The outcome of a voting classifier is the average of the integration of

the individual weights and their respective prediction. This classifier is developed

in the following three steps:

Algorithm implementation

1. Build two or more individual predictive models.

2. Train individual predictive models with similar datasets.

3. Predict the result using the average of the individual predictions.
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Chapter 5

Results

Summary of Rainfall characteristics

The statistics for all the rainfall events recorded and used for the study are

summarized in Table 5.1. The mean, standard deviation, minimum, maximum,

25th, 50th, and 75th percentile are provided.

Table 5.1: Statistics of all event features (landslide and non-landslide events in
mm

mean std min 0.25 0.5 0.75 max
CUMM 44.94 43.34 0.36 17.02 31.32 60.83 253.18
DURATION (hrs) 13.44 10.89 1.00 6.00 9.50 15.00 61.00
INTENSITY 3.37 2.10 0.21 1.92 3.28 4.48 10.37
1 day R 1.87 1.74 0.01 0.72 1.36 2.41 8.42
2 day R 2.05 1.98 0.01 0.73 1.52 2.91 9.97
3 day R 2.20 2.06 0.01 0.82 1.59 3.51 10.43
4 day R 2.26 2.09 0.01 0.82 1.62 3.51 10.98
5 day R 2.37 2.19 0.02 0.83 1.72 3.52 12.71
6 day R 2.41 2.20 0.07 0.86 1.83 3.52 12.71
1 wk R 2.48 2.21 0.07 0.88 1.95 3.52 12.71
2 wk R 3.40 2.67 0.17 1.57 2.82 4.96 12.82
3 wk R 4.59 3.58 0.19 2.02 3.88 6.22 20.42
4 wk R 5.58 4.12 0.40 2.22 4.20 8.05 21.71
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Table 5.2: Statistics of all event features for landslide events in mm.
mean std min 25% 50% 75% max

CUMM 68.44 54.06 1.74 32.70 60.86 86.03 249.45
INTENSITY 4.53 1.90 0.87 3.48 4.37 4.98 10.36
1 day R 2.80 1.88 0.07 1.29 2.41 3.98 8.42
2 day R 3.36 2.28 0.07 1.52 3.39 4.59 9.82
3 day R 3.61 2.55 0.07 1.52 3.54 4.61 10.43
4 day R 3.75 2.64 0.07 1.52 3.56 5.41 10.98
5 day R 4.11 2.88 0.07 1.55 3.63 5.71 12.71
6 day R 4.17 2.96 0.07 1.56 3.63 5.71 12.71
1 wk R 4.33 2.98 0.07 2.17 3.64 5.85 12.71
2 wk R 5.52 3.60 0.25 2.71 4.48 8.42 12.82
3 wk R 8.15 5.14 0.26 4.46 7.04 9.57 20.42
4 wk R 9.53 5.29 0.89 6.68 8.32 12.58 21.71
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5.1 Empirical Rainfall Threshold

Two datasets, the hourly and the daily rainfall dataset were used to develop a

regional threshold for the study area. A total of 216 rainfall events are plotted on

the rainfall intensity duration curve. A minimum threshold relation was devel-

oped for minimum landslide-rainfall event using hourly and daily rainfall records.

For the hourly and daily dataset, the optimal threshold fitted to capture the lower

boundary of the landslide points and has a power curve equation expressed in

equation 5.1 and 5.2 respectively as

I = 1.531 + (8.9D−0.9064) (5.1)

I = 0.01 + (9.13D−0.6454) (5.2)

where I represents the rainfall intensity and D is the duration in the threshold

equation.

The range of duration of the rainfall datapoints for threshold for the hourly

data is 1 hour ≤ Duration ≤ 64 hours, while the range of duration of the rainfall

datapoints for threshold for the daily data is 24 hours ≤ Duration ≤ 432 hours.

The striation seen in the datapoints of the daily rainfall data in Figure 5.2 is a

result of the frequency of sample collection (24hrs). The low sampling frequency

of data makes it challenging to accurately estimate rainfall intensity. Figure 5.1

shows the moderate estimate of the empirical threshold of the study area.
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Figure 5.1: A rainfall intensity-duration scatterplot used to build an empirical
threshold curve using the hourly dataset.

Figure 5.2: A rainfall intensity-duration scatterplot used to build an empirical
threshold curve using the daily dataset.
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Figure 5.3: A plot showing the new threshold curve for the study area overlain
on the thresholds developed for all the landslide regions mentioned in table 4.3.
The dataset used is the hourly dataset.

Figure 5.4: A plot showing the new threshold curve for the study area overlain
on the thresholds developed for all the landslide regions mentioned in table 4.3.
The dataset used is the daily dataset.
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5.2 Statistical Machine Learning Models

We assess the performance of the models using the confusion matrix and ROC

curve. We explore the PR curve and hyperparameters optimization for all the

models. From PR curves, events of overfitting during training are checked by

plotting both the test and training AUCs together. The individual models, KNN,

LR, RF, GBC were trained and tested using the same training and testing dataset.

Feature importance

From the ranking in Figure 5.5, the top five features, which are two week rain, six

day rain, four week rain, rainfall intensity, and two day rain, were used as input

features for the machine learning methods. The choice is also validated using the

correlated pair information in Figure 4.5 as none of the features had the closest

correlated pair in the input features.

Figure 5.5: A plot showing the rank of the features’ importance in descending
order. The top 5 features are selected.
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Model optimization

The model optimization approach for this study is hyper-parameter optimization.

The hyperparameters of all four models are used to increase their predictive power

based on the recall metric. Performance of the models derived based on the use-

case of the research application (recall), is used as a weight average for individual

models for the voting ensemble classifier model.

Model Evaluation

From the PR curve, a model’s optimal performance is the shortest point along

the PR curve closest to the top right corner of the perfect model profile. We

adopted a baseline random guess as the least acceptable model performance with

a precision of 50%. From the confusion matrix figures, 1 denotes landslide events

while 0 denotes non-landslide events.

The default KNN model performance is optimal as a precision of 75% and

recall of 42.85% from the confusion matrix (Figure 5.8) is on the same point as

the best point on the PR curve (Figure 5.6). The AUC-ROC value of the training

and testing differ by a margin of 13%. Hence, model overfitting is suspected

during model training.

The default LR model is sub-optimal as the model precision is 50% and recall

is 14.285% (Figure 5.11) which are lower than the optimal LR model values of

65% precision and recall of 55% as the point in the PR curve (Figure 5.9). AUC-

ROC for training and AUC-ROC for testing differ by approximately 2%. Hence,

overfitting is not suspected during training (Figure 5.10).

The default RF model is sub-optimal as the model precision is 66.66% and re-

call is 28.57% from the confusion matrix (Figure 5.14). The performance metrics
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are lower than the optimal RFC model values of 65% precision and 100% recall

respectively as the point in the PR curve (Figure 5.12). AUC-ROC for training

and AUC-ROC for testing differ by approximately 4%. Hence, overfitting is not

suspected during training (Figure 5.13).

The default GBC model’s performance on the test dataset is 80% precision

and recall is 57.14% from the confusion matrix(Figure 5.17). These performance

metrics are lower than the optimal RFC model values of 75% precision and 70%

recall, respectively, as the point in the PR curve (Figure 5.16). AUC-ROC for

training and AUC-ROC for testing differ by approximately 10%. Hence, overfit-

ting is suspected during training (Figure 5.15).

For weight voting in the ensemble classifier, the weighted average of all four

models is given as [0.14, 0.15, 0.45, 0.35] for KNN, LR, RF and GBC respectively.

On the same test dataset, the voting ensemble model performed at a recall of

100% and precision of 70% (Figure 5.20)
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Results KNN Classifier

Figure 5.6: A plot of the PR curve showing the performance of the KNN model
in terms of possible range of precision and recall it can achieve. The optimal
KNN would perform at recall of 42.85% and precision of 75%. The default model
achieved an optimal performance at recall of 42.85% and precision of 75%.
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Figure 5.7: A Plot showing the ROC-AUC curves of the KNN model. The AUC
for the training is larger than AUC of testing. Model overfitting is inferred.

Figure 5.8: A confusion matrix showing the performance of the KNN model on
the test data.
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Result Logistic Regression Classifier

Figure 5.9: A plot of the PR curve showing the performance of the LR model in
terms of possible range of precision and recall it can achieve. The optimal LR
would have a recall of 58% and a precision of 70%. The default LR model did
not achieve an optimal performance at recall of 14.285% and precision of 50%.
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Figure 5.10: A Plot showing the ROC-AUC curves of the LR model. The AUC
for the training is larger than AUC of testing. Both training and testing have
relatively the same threshold profile and same AUC.
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Figure 5.11: A confusion matrix showing the performance of the LR model on
the test data.
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Result Random Forest Classifier

Figure 5.12: A plot of the PR curve showing the performance of the RF model
in terms of possible range of precision and recall it can achieve. The default RF
model did not achieve an optimal performance at recall of 28.57% and precision
of 66.66%.
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Figure 5.13: A Plot showing the ROC-AUC curves of the LR model. The AUC
for the training is larger than AUC of testing. Both training and testing have
relatively the same threshold profile and same AUC.
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Figure 5.14: A confusion matrix showing the performance of the RF model on
the test data.
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Result Gradient Boost Classifier

Figure 5.15: A Plot showing the ROC-AUC curves of the GBC model. The AUC
for the training is larger than AUC of testing. Model overfitting is inferred.
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Figure 5.16: A plot of the PR curve showing the performance of the GBC model
in terms of possible range of precision and recall it can achieve. The default
model did not achieve an optimal performance as the recall is at 57.14% and the
precision is 80%.

Figure 5.17: A confusion matrix showing the performance of the GBC model on
the test data.
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Result Voting Classifier

Figure 5.18: A plot of the PR curve showing the performance of the Voting
classifier model in terms of possible range of precision and recall it can achieve.
The model is optimized for recall performance, and it achieved an optimal recall
of 100% and precision of 70%.
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Figure 5.19: A Plot showing the ROC-AUC curves of the Ensemble voting clas-
sifier model. The AUC for the training is approximately the same as the AUC of
testing.
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Figure 5.20: A confusion matrix showing performance of the Voting Classifier
model on the test data.

5.3 Discussion

Using only rainfall intensity-duration relationship, the emprical threshold analysis

barely distinguished landslide events from non-landslide events. We can infer

from the threshold curves that the average rainfall intensity required to initiate

landslide event in the study area is relatively lower than majority of the rainfall

intensity thresholds obtained for various locations around the world.

Integrating antecedent features with other rainfall features shows a distinct

difference in model performance. The ML models performed better than empiri-

cal methods in the forecast of landslide events (Figure 5.6 to Figure 5.20). With

the ranking of feature importance in Figure 5.5, three antecedent rainfall fea-

tures have been identified to be more related to landslide initiation than rainfall

intensity.

With high and frequent antecedent rainfall events, landslide initiation occur-
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ring with little rainfall intensity is possible. Machine learning models have better

results and several parameters to tweak to achieve efficient performance. With

an ensemble of all the models, we achieved 100% recall.
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Chapter 6

Conclusions

The empirical rainfall intensity-duration threshold developed for this study sug-

gests that the landslides in the region are initiated with minimal rainfall intensity

values. In addition, comparison of the curve with similar curves obtained for dif-

ferent regions across the world indicates alignment with that trend.

This study implemented different ML approaches to determine major rainfall

conditions that can trigger landslides in the study area. From the ML model

analysis, the two-week antecedent rainfall events play a crucial role in triggering

landslides. Results suggests there are more than one feature that affect landslide

initiation. Compared to the individual machine learning models’ performance,

there is marginal improvement in the ensemble classifier model as the recall and

the accuracy are improved in the final model used. In order to suit the desired

project’s use case, the hyperparameters of the ensemble classifier model is opti-

mized in favor of the recall metrics to obtain a recall of 100%.

Both the empirical threshold model and machine learning models have been

able to establish statistical relationships between landslide events and precipita-

tion data (at prior events and at current time).
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Chapter 7

Future Work

There are models that can be expended to accommodate various complexities

in mapping and forecasting landslides. To develop a regional landslide hazard

emergency management system, a more robust landslide forecast warning system

that considers spatial variations of other environmental factors is crucial. These

environmental covariates include geomorphology, land-use development, eleva-

tion, distance to stream, composition of soil cover, aspect ratio of slope, drainage

pattern, type of vegetation, and slope geometry. These provide extensive data

about the terrains that strongly connect to landslide occurrences.

Upon incorporating other static environmental covariates, we can consider

other dynamic environmental covariates like earthquake vibrations. A fitting

machine learning method to explore for this challenge is time series analysis and

recurrent neural network modifications like long-short term memory (LSTM).
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https://www.5newsonline.com/article/news/local/outreach/back-to-school/i-40-lane-closed-due-to-landslide-in-johnson-county/527-40f9f900-4ce2-431e-9d21-ca99082e235c
 http://www.news9.com/story/5e34c66ce0c96e774b34bb09/flooding-causes-road-closures-damage-across-oklahoma
 https://www.muskogeephoenix.com/news/local_news/mudslide-traps-woman-at-home/article_eec1e4f0-5355-58fa-8d81-993d17a08f87.html
https://www.5newsonline.com/article/news/local/outreach/back-to-school/highway-23-in-franklin-county-closed-due-to-landslide/527-2685b325-3ccc-47d0-90a4-1ae3ca668276
 https://www.mcalesternews.com/news/local_news/heavy-rains-bring-mudslide-highway-closure/article_37f53eb3-0afb-56a8-b9fd-30ab091d9367.html
 https://www.kltv.com/story/29356021/major-oklahoma-texas-highway-partly-reopened-after-landslide/
 https://www.odot.org/research/FinalRep_2241_FHWA-OK-14-06.pdf
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