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Islet autoantibody seroconversion in type-1
diabetes is associated with metagenome-
assembled genomes in infant gut microbiomes
Li Zhang1,2, Karen R. Jonscher 1,3, Zuyuan Zhang4, Yi Xiong2, Ryan S. Mueller5, Jacob E. Friedman1,3,6 &

Chongle Pan 1,2,4✉

The immune system of some genetically susceptible children can be triggered by certain

environmental factors to produce islet autoantibodies (IA) against pancreatic β cells, which

greatly increases their risk for Type-1 diabetes. An environmental factor under active

investigation is the gut microbiome due to its important role in immune system education.

Here, we study gut metagenomes that are de-novo-assembled in 887 at-risk children in the

Environmental Determinants of Diabetes in the Young (TEDDY) project. Our results reveal a

small set of core protein families, present in >50% of the subjects, which account for 64% of

the sequencing reads. Time-series binning generates 21,536 high-quality metagenome-

assembled genomes (MAGs) from 883 species, including 176 species that hitherto have no

MAG representation in previous comprehensive human microbiome surveys. IA ser-

oconversion is positively associated with 2373 MAGs and negatively with 1549 MAGs.

Comparative genomics analysis identifies lipopolysaccharides biosynthesis in Bacteroides

MAGs and sulfate reduction in Anaerostipes MAGs as functional signatures of MAGs with

positive IA-association. The functional signatures in the MAGs with negative IA-association

include carbohydrate degradation in lactic acid bacteria MAGs and nitrate reduction in

Escherichia MAGs. Overall, our results show a distinct set of gut microorganisms associated

with IA seroconversion and uncovered the functional genomics signatures of these IA-

associated microorganisms
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Type 1 diabetes (T1D) is an autoimmune disease that often
manifests during childhood and adolescence and is char-
acterized by insulin deficiency resulting from destruction

of pancreatic β cells1 Over 2/3 of children with seroconversion to
multiple islet autoantibodies (IA) progress to T1D within 10
years2,3 IA seroconversion is characterized by the presence of
autoantibodies to antigens of pancreatic β cells, including insulin
(IAA), glutamic acid decarboxylase (GADA), insulinoma-
associated autoantigen 2 (IA2A), and/or zinc transporter 8
(ZnT8A)2 The risk of developing islet autoimmunity declines
with age, and the influence of major genetic factors on this risk is
limited to the first few years of life4

Increasing evidence shows that environmental factors play an
important role in the onset of IA autoimmunity and the pro-
gression of T1D in children and young adults5–8 The gut
microbiota is a key environmental factor that interacts with the
immune system to trigger IA seroconversion or T1D
pathogenesis6–9 A number of longitudinal studies, including
TEDDY6,10, DIABIMMUNE11, FINDIA12 and ABIS13, char-
acterized the role of the gut microbiota in the development of
autoimmunity using large, at-risk cohorts. These studies found
that the fecal microbiota of individuals with IA seroconversion or
recent T1D onset display a lower taxonomic diversity, with a
larger representation of Bacteriodetes, than those of control
individuals, although the association with specific taxa varied
among the studies7,8,11

The Environmental Determinants of Diabetes in the Young
(TEDDY) study was designed to identify the environmental risk
factors for T1D by monitoring children at high genetic risk for
development of T1D. In the TEDDY study, fecal samples were
collected monthly from 887 subjects, beginning at 3 months of
age. A total of 12,276 fecal microbiomes were sequenced using
both 16 S rRNA amplicon sequencing and metagenomic shotgun
sequencing strategies. Analysis of the 16 S sequence data10

revealed subtle, but significant, changes in the relative abundances
of bacterial species’ 16 S gene copies between IA or T1D cases and
controls. 16 S genes from an unclassified Erysipelotrichaceae were
more prevalent in IA cases than in controls. T1D cases had a
higher abundance of Parabacteroides and lower abundances of 11
genera, including four unclassified Ruminococcaceae, Lactococcus,
Streptococcus, and Akkermansia, than controls. Analyses of the
metagenomic data in Vatanen, et al.6 found that IA cases had a
higher prevalence of metagenome reads assigned as Streptococcus
group mitis/oralis/pneumoniae, while controls had higher abun-
dances of reads from Lactobacillus rhamnosus and Bifidobacter-
ium dentium. T1D cases had a higher abundance of reads from
Bifidobacterium pseudocatenulatum, Roseburia hominis, and
Alistipes shahii, while controls had a higher prevalence of Strep-
tococcus thermophilus and Lactococcus lactis reads. Comparison
of gene abundances and pathway analysis supported protective
effects of short-chain fatty acids against T1D6 Overall, these
studies revealed weak associations between T1D and IA ser-
oconversion and several bacterial taxa.

Metagenomic data from the TEDDY study were analyzed in
Stewart, et al.10 and Vatanen, et al.6 using a two-step read-
mapping approach. In the first step, the taxonomic composition
of a metagenome was estimated with MetaPhlAn214 by mapping
reads onto a database of clade-specific marker genes. In the
second step, the functional profile of a metagenome was inferred
with HUMAnN215 by mapping reads onto selected reference
genomes and UniRef90. However, many human gut micro-
organisms are not represented by reference genomes and large
protein sequence spaces are not captured in protein
databases16–18 This creates large “blind spots” when applying the
read-mapping approach, because short reads from undescribed
microorganisms and divergent protein-coding genes cannot be

confidently mapped and, therefore, cannot be accounted for in
subsequent statistical comparisons.

Here, we use a genome-resolved metagenomics approach to re-
analyze the TEDDY microbiome data to accomplish the following
objectives. First, we aimed to determine whether metagenome
assembly and binning can be effectively achieved in a large-scale
longitudinal microbiome study. While this approach has been
carried out in small-scale longitudinal microbiome studies19,20,
here we used data from the TEDDY study and demonstrated that
this approach is scalable to hundreds of subjects over multiple
years. A total of 21,536 high-quality metagenome-assembled
genomes (MAGs) were obtained from TEDDY cohort data,
including 176 previously undescribed human microbiome spe-
cies, which further expand the diversity of human MAG
collections18,21,22 Second, we aimed to test the hypothesis that a
core microbiome within the TEDDY microbiomes can be iden-
tified from metagenome assemblies based on protein families.
These protein families in the core microbiome are represented in
the majority of subjects and can account for the majority of the
microbiome genetic content. Third, while Stewart, et al.10 and
Vatanen, et al.6 have investigated the association of bacterial
lineages or functions with IA seroconversion, we aimed to iden-
tify MAGs significantly associated with IA seroconversion. These
MAGs were compared with background MAGs in adjacent
lineages to identify metabolic pathways over-represented in the
MAGs with IA association.

Results
Longitudinal binning of metagenome-assembled genomes. The
TEDDY project shotgun-sequenced the metagenomes of 12,276
fecal samples donated by a cohort of 887 subjects when they were
between 3 and 72 months of age6,10 We obtained the metage-
nomic sequencing data from the dbGap database. All fecal sam-
ples from the same subject were combined and co-assembled into
a composite metagenome for each respective subject. The 887
subject-specific metagenomes containing scaffolds larger than
2 kbps had a median size of 142 million base pairs (Mbps) with a
first-quartile (Q1) size of 78Mbps and a third-quartile (Q3) size
of 221Mbps. L50 is the scaffold length threshold above which
longer scaffolds add up to 50% of the total metagenome size, and
the median L50 of the metagenomes was 15,244 bps
(Q1= 12,736 bp and Q3= 18,944 bp). Importantly, the median
mapping rate of the reads from 12,276 fecal samples to each
respective assembly was 89% (Q1= 85% and Q3= 92%). The
high percentage of read mapping to each assembly indicates that
high-quality and near-complete metagenome assemblies, repre-
senting the majority of microbial populations within the fecal
microbiomes, were obtained for most subjects across the devel-
opmental stages surveyed by this study (Supplementary Data 1).

The relative abundances of all scaffolds in an individual fecal
sample were estimated by mapping reads from each fecal sample
onto the respective composite metagenome assembly of the
subject from whom the fecal sample was obtained. These coverage
data represented the longitudinal abundance profiles of every
scaffold for each subject, which were used for binning MAGs
from each subject’s composite metagenome. From 887 subject-
specific composite metagenomes, 21,536 high-quality MAGs
(completeness > 90%; contamination < 5%) and 15,796
medium-quality MAGs (completeness >= 50%; contamination
<10%) were obtained (Supplementary Fig 1; Supplementary
Data 2). Quality assessment was based on the minimum
information about a metagenome-assembled genome (MIMAG)
standard23 Assembly statistics of the MAGs in this study are
summarized in Supplementary Fig 1. The median mapping rate of
a subject’s time-specific metagenomic reads onto all of the high-
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quality MAGs generated from the respective composite meta-
genome is 51% (Q1= 37% and Q3= 65%). Thus, the high-
quality MAGs represented common microbial populations in
many fecal samples. For brevity, we focus on only the high-
quality MAGs below, unless otherwise noted.

21,276 of the 21,536 high-quality MAGs were assigned to
taxonomies of 706 bacterial reference species and two archaeal
reference species in the Genome Taxonomy Database (GTDB).
The remaining 260 high-quality MAGs were clustered, based on
95% average nucleotide identity (ANI) between scaffolds of each
MAG, into 175 distinct metagenomic species not found within
the GTDB. In total, the high-quality MAGs represented 883
distinct species (Fig. 1a and Supplementary Data 3). The five most
prevalent orders were Lachnospirales (n= 253 species), Oscillos-
pirales (n= 121), Coriobacteriales (n= 120), Bacteroidales
(n= 81) and Lactobacillales (n= 69) (Fig. 1b). On average, the
high-quality MAGs from a given subject’s composite metagen-
ome represented 24 species. The 15 most prevalent species
identified in this study, across the 887 subjects, are shown in
Fig. 1c. Four species in the Firmicutes phylum were widely
distributed across individuals and were present in more than half
of the composite metagenomes of all subjects (Fig. 1c). These
species include Erysipelatoclostridium ramosum
(n= 662 subjects), Ruminococcus_B gnavus (n= 649), Blautia_A
wexlerae (n= 628) and Anaerostipes hadrus (n= 565).

Species-level assignments were compared with three previous
large-scale surveys of MAGs in human gut microbiota18,21,22

Almeida, et al.21 recovered 39,891 high-quality MAGs from
13,133 human gut metagenomic datasets from 75 different
studies. Nayfach, et al.18 recovered 60,664 MAGs from 3,810
human gut metagenomic datasets, which were clustered to
2,935 species together with reference genomes from PATRIC24

and IMG25 Pasolli, et al.22 recovered 154,723 microbial genomes
(70,178 high quality) from 9,428 metagenomes spanning body
sites, ages, countries, and lifestyles. In general, taxonomic
distributions of the MAGs were consistent between our study
and the three previous studies. Of the 883 species recovered in
our MAG analysis of the TEDDY data, 567 species matched to
Almeida, et al.21, 458 matched to Nayfach, et al.18, 626 matched
to Pasolli, et al.22, and 707 matched to their union (Fig. 1a). A
total of 176 species represented by 356 MAGs were not recovered
in any of these existing datasets, nor were these species found in
the reference genomes of human gut microbiomes from the
PATRIC and IMG databases. Therefore, we recovered 356 high-
quality MAGs for 176 previously undescribed species in human
gut microbiomes (Supplementary Data 3). These species further
expand the taxonomic range of microbial genomes found to
inhabit the human gut.

The TEDDY metagenome project provided a genome-resolved
longitudinal profile of gut bacterial development. We evaluated
species abundance profiles across eight time-periods, including 3
to 5 months of age, 6 to 8 months of age, 9 to 11 months of age,
12 to 15 months of age, 16 to 19 months of age, 20 to 23 months
of age, 24 to 29 months of age, and 30 to 35 months of age. The
883 species were clustered into seven groups with similar profiles
of temporal abundance changes (Fig. 2a and Supplementary
Data 4). The seven clusters all featured a single peak of species
abundance in different time periods: months 3–5 for cluster 1,
months 6–8 for cluster 2, months 9–11 for cluster 3, months
16–19 for cluster 4, months 20–23 for cluster 5, months 24–29 for
cluster 6, and months 30–35 for cluster 7 (Fig. 2a). Each cluster
was comprised of distinct groups of microorganisms (p-value=
1.23E-17, Chi-square test, two-sided), shown at the order level in
Fig. 2b. For example, the abundance of Actinomycetales and
Enterobacterales were higher in cluster 1–2 than the other clusters
(p-value= 1.90E-4 and 1.92E-3, respectively, Student’s t-test,

two-sided), the abundance of Lactobacillales was higher in
clusters 1–3 (p-value= 0.003, Student’s t-test, two-sided), and
Oscillospirales had increased abundances in clusters 4–7 com-
pared with clusters 1–3 (p-value= 0.007, Student’s t-test, two-
sided).

Core protein families in childhood gut microbiota. A total of
~156 million protein-coding sequences were predicted from the
metagenome assemblies. On average, function annotation can be
assigned to 40% of the proteins by KEGG Orthology (KO) terms,
37% by MetaCyc reactions, and 54% by at least one of the two
annotation systems (Supplementary Fig 2a). Genes encoding
proteins with KEGG, MetaCyc, or either annotation accounted
for 42%, 39%, and 54% of the reads from an average metagenome,
respectively (Fig. 3a). This assembly and gene prediction
approach produced a more comprehensive annotation profile
than read-based annotations, as less than 10% of the metage-
nomic reads had MetaCyc annotation when this dataset was
analyzed using a read mapping approach6

Predicted protein-coding sequences from all metagenomes
were clustered into 2,885,868 homologous protein families. ~91%
of the families were found in <10% subjects, ~7% in 10%~50%
subjects, and ~2% in >50% subjects (Fig. 3c and Supplementary
Fig 2b). The 64,142 protein families (~2% of all families) that
were present in >50% subject metagenomes contained 63% of
predicted proteins encoded by these metagenomes and accounted
for 64% of the reads on average (Fig. 3b, c; Supplementary
Data 5). The 50 most frequent Enzyme Commission (E.C.)
number annotations of the protein families and their genus-level
taxonomic distributions are shown in Supplementary Fig 2c. The
read mapping rate to these 64,142 conserved and widely-
distributed protein families decreased from 67% to 60% over
the time course of the TEDDY study (Fig. 3d). These findings
indicate that the proteome of each fecal microbiome is comprised
of a few well-conserved and widely-distributed core protein
families coupled with many rare and poorly conserved families.
The core protein families have functional annotations enriched in
fundamental cellular functions, such as amino acid metabolism,
carbohydrate metabolism and energy metabolism (Supplemen-
tary Data 6). The small set of genes encoding these core protein
families were also the dominant fraction of the metagenomes,
accounting for more than 60% of reads over the first 3 years of
life. A median of 201,911 protein-encoding genes were predicted
in each subject’s metagenome (Q1= 129,145 and Q3= 282,546),
of which a median of 129,328 putative protein sequences
belonged to the core protein families defined across the study
data (Q1= 86,034 and Q3= 174,161).

Each core protein family consisted of protein-encoding genes
obtained from an average of 548 subject metagenomes with
varied geographic locations (United States or Europe), genders
(male or female) and delivery modes (Cesarean section or
vaginal). For each core protein family, the median percentage of
subjects in the United States was 29%, the median percentage of
male subjects was 54%, and the median percentage of subjects
delivered vaginally was 74% (Supplementary Fig 3). These values
closely approximate the demographic metadata of the entire
subject cohort, indicating that important subject variables
(geographic location, gender and delivery mode) are well-
represented in the core protein families.

Core protein families were clustered based on the longitudinal
profiles of their average abundances over eight developmental
stages from 3 to 35 months of age. The 64,142 core protein
families were clustered into 10 clusters with distinct temporal
patterns (Supplementary Fig 4). Divergent KEGG modules were
found to be over-represented in these clusters (Supplementary
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Data 7). This reflected the companion functional changes along
with the community composition changes (Fig. 2) during early
childhood.

We then investigated the longitudinal changes of functional
capacity in major orders of the microbiomes over the 8
developmental stages (Fig. 3e). The Enterobacterales and

Clostridiales orders had shifting functional profiles over time as
shown in the first two principal components of the KEGG
categories. However, the other major orders showed stable
functional profiles over time (p-value= 1.0, Multiple response
permutation procedure). In contrast, there were significant
longitudinal changes of taxonomic compositions in major

Fig. 1 Phylogeny and taxonomy distribution of high-quality MAGs from TEDDY. a Taxonomy tree of the 883 species represented by TEDDY MAGs.
Branches are colored at the phylum level. The four rings mark the 567 species matched to Almeida, et al.21 in blue, the 458 species matched to Nayfach,
et al.18 in green, the 626 species matched to Pasolli, et al.22 in brown, and the 176 species only identified from TEDDY in red. b Order-level composition of
the 883 TEDDY species (left) and the number of species per subject in each order (right). Only the five most common orders, Lachnospirales
(n= 823 subjects), Oscillospirales (n= 648), Coriobacteriales (n= 321), Bacteroidales (n= 698), and Lactobacillales (n= 615), are shown individually, while
the remaining orders are grouped as ‘other’ (n= 3752). Most subjects had less than 10 species from each of the orders except Lachnospirales. Boxplots
show the median (center), the first and third quartile (bounds of box), and 1.5X interquartile ranges (whiskers). Points beyond the ends of whiskers are
outliers. c Species identified in the largest numbers of subjects in TEDDY, colored by orders. Source data are provided as a Source Data file.
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functional categories of the microbiomes over time (p-value=
0.001, Multiple response permutation procedure) (Fig. 3f),
reflecting major changes in community composition during early
childhood.

Association of IA seroconversion with microbiota dysbiosis. A
subject was considered to have IA seroconversion if one of the
three islet autoantibodies, MIAA, GAD or IA2A, was detected.
We hypothesized that seroconversion of many subjects may be
associated with the metagenomic abundance changes of certain
microorganisms and functions (i.e., MAGs and protein families,
respectively) in the gut microbiota. Generalized linear mixed
models (GLMM)26 were used to identify core protein families

that were significantly associated with the IA seroconversion
status of fecal samples as a fixed effect. The TEDDY cohort
contained 660 subjects who donated at least 4 samples and had IA
seroconversion status information available. Of the 660 subjects,
IA seroconversion was observed in 253 subjects, who donated
3,129 fecal samples before seroconversion (IA status= 0) and
1,504 fecal samples after seroconversion (IA status= 1). Ser-
oconversion was not observed in 307 subjects before they exited
the study and these subjects donated 5951 samples (IA status=
0). The subject-specific effects were controlled by including
subject IDs as a random effect in the GLMM models. Sample
collection age and subject HLA haplotype were included as fixed
effects in the GLMMmodels. The effect of IA status and the effect
of age at sample collection can be resolved in the GLMM models
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because the 5951 samples from the 307 subjects without ser-
oconversion served as the baseline for IA status= 0 across all the
developmental stages. Core protein families were tested for
associations because these were present in more than half of the
subjects, allowing for sufficient statistical power. GLMM identi-
fied 5346 core protein families with an estimated false discovery
rate of 0.03, which showed significantly different gene abun-
dances between the post-seroconversion samples and the control
samples (Supplementary Data 8). Positive association with IA
seroconversion was found in 2190 families, while 3156 families
were negatively associated with IA seroconversion.

Similar to 16 S rRNA genes from a microbial clade, protein-
coding genes from a core family were considered in this study as a
proxy for the metagenomic abundances of the microorganisms
harboring these genes. As would be expected, based on this

approximation, there were no MAGs containing both positively
IA-associated protein families and negatively IA-associated
protein families (Supplementary Data 9). A total of 2373 MAGs
were significantly enriched in positively IA-associated protein
families and 1549 MAGs in negatively IA-associated protein
families (Fisher’s exact test, one-sided, q-value < 0.01; Supple-
mentary Data 9).

While this approach considered every MAG as a collection of
proteins in core protein families, the distributions of the 2373
MAGs with positive IA-association and the 1549 MAGs with
negative IA-association were highly clustered based on their
taxonomy classification (Fig. 4, Supplementary Fig 5 and
Supplementary Data 10). The positively IA-associated MAGs
belonged to 41 species in the orders Bacteroidales, Lachnospirales
and Oscillospirales. The negatively IA-associated MAGs primarily
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Fig. 3 Construction of protein core families from human gut microbiota. a Mapping rates of metagenomic reads onto protein-coding genes with
functional annotations. Violin plots show the distributions of annotation mapping rates across samples (n= 12,854 metagenomic sequencing runs). Over
half of the genetic potential in a sample have functional annotations from MetaCyc or KEGG. Violin plots indicate median (white dot), the first and third
quartile (black bar in the center), and the 1.5X interquartile ranges (black lines stretched from the bar). bMapping rates of metagenomic reads onto protein
families present in more than certain percentages of subjects in each metagenomic sequencing run (n= 12,854). All protein families (0% on the x-axis)
accounted for 82.4% of the metagenomic reads. The core protein families were defined to be families found in >50% of subjects (50% on the x-axis),
which accounted for 63.6% of the metagenomic reads. c Distribution of proteins across protein families. The core protein families in >50% of subjects
represented 2.2% of all families, but included 62.7% of all proteins. The peripheral protein families in less than 10% of subjects represented 91.2% of all
families, but included only 13% of all proteins. d Mapping rates of metagenomic reads onto the core protein families across the following developmental
stages defined by the months of age: 3 to 10 (n= 4,645), 11 to 18 (n= 3,634), 19 to 26 (n= 2,252), 27 to 34 (n= 1,385), and ≥35 (n= 938). The mapping
rates only decreased slightly as the subjects matured and their microbiomes diversified. e Principal component analysis (PCA) of the functional profiles of
major orders over time. The functional profile of an order is the gene abundances of core families in this order in every KEGG category. f PCA of the
taxonomic profiles of KEGG categories over time. The taxonomic profile of a KEGG category is the gene abundances of core families in this KEGG category
in every order. Boxplots show the median (center), the first and third quartile (box), and 1.5X interquartile ranges (whiskers). Source data are provided as a
Source Data file.
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originated from 90 species in the orders Lactobacillales,
Burkholderiales and Enterobacterales.

Comparative genomics analysis of MAGs associated with IA
seroconversion. We hypothesized that MAGs with positive or
negative association with IA seroconversion are enriched in cer-
tain taxa-specific metabolic pathways that may play a role in
triggering or delaying seroconversion. Comparative genomics
analyses were conducted on five taxonomic clades that contained
MAGs positively associated with IA seroconversion, including the
Acutalibacteraceae family, the Ruminococcaceae family (including
the Faecalibacterium genus and Ruthenibacterium genus), the
Bacteroides genus, the Anaerostipes genus, and the Fusicateni-
bacter genus. The positive MAGs in these taxa accounted for
96.25% of all positive MAGs. Positive MAGs from these taxa were
compared with MAGs with insignificant IA-association that were
assigned to the same taxonomic ranks from adjacent lineages.
Table 1 shows KEGG modules that were significantly over-
represented in the MAGs with positive IA-association, according
to both enrichment analysis and phylogenetic logistic regression.

Similarly, comparative genomic analyses were conducted on two
taxonomic clades that contained a large number of MAGs
negatively associated with seroconversion, including the Lacto-
bacillaceae and Enterococcaceae families in the Lactobacillales
order and the combined Burkholderiales and Enterobacterales
orders (Table 2). The negative MAGs in these taxa accounted for
98.97% of all negative MAGs. For both positive and negative
MAGs, a separate GLMM analysis was conducted using MAG
abundances to independently validate the statistical significance
of these MAG groups’ association with seroconversion. The
abundances of the MAGs in the five positive groups and the two
negative groups were found to have significant association with
IA seroconversion as a fixed effect, while those in the control
groups did not (Supplementary Data 11).

The Bacteroides genus contained 1196 MAGs, of which none
were negatively associated with IA seroconversion and 422 were
positively associated with seroconversion. 413 of the 422 positive
MAGs originated from five species: Bacteroides uniformis,
Bacteroides cellulosilyticus, Bacteroides intestinalis, Bacteroides
stercoris and Bacteroides ovatus. Positive IA-association was
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found with 312 out of 327 MAGs in Bacteroides uniformis, 41 out
of 43 MAGs in Bacteroides cellulosilyticus, all 11 MAGs in
Bacteroides intestinalis, 31 out of 44 MAGs in Bacteroides stercoris
and 18 out of 170 MAGs in Bacteroides ovatus. Elevated
abundances of the Bacteroides genus, including Bacteroides
uniformis and Bacteroides ovatus at the species level, have been
reported in seroconverted and T1D subjects8,27,28 Findings of
elevated abundance of Bacteroides cellulosilyticus, Bacteroides
intestinalis and Bacteroides stercoris have been reported in T1D

patients29 Our analysis of MAGs confirmed the positive and
consistent signal of IA-association with Bacteroides uniformis,
Bacteroides cellulosilyticus, Bacteroides intestinalis, Bacteroides
stercoris, and Bacteroides ovatus.

In the Bacteroides genus, genes involved in the ADP-L-glycero-
D-manno-heptose biosynthesis pathway, a key step in the
biosynthesis of lipopolysaccharides (LPS), were enriched in 422
positively IA-associated MAGs compared with 774 MAGs lacking
significant association with IA seroconversion. Moreover, the

Table 1 Comparative genomics of the taxa containing MAGs positively associated with IA seroconversion.

Major species containing positive
MAGs (Positive MAGs/Total MAGs)

Module ID Function description Enrichment analysisb Phylogenetic
regression analysisc

Effect size Q value Estimate Q value

Comparison within g_Bacteroides (a #9)
Bacteroides uniformis (312/ 327) M00064 ADP-L-glycero-D-manno-heptose biosynthesis 0.43 2.16E–32 1.95 6.74E–4
Bacteroides cellulosilyticus (41/ 43)
Bacteroides intestinalis (11/11)
Bacteroides stercoris (31/ 44)
Bacteroides ovatus (18/ 170)

Comparison within g__Anaerostipes (a #8)

Anaerostipes hadrus (540/ 565) M00616 Sulfate-sulfur assimilation 1.00 3.05E–40 7.22 2.53E–26
M00307 Pyruvate` oxidation, pyruvate => acetyl-CoA 0.97 4.52E–38 9.26 3.80E–13
M00620 Incomplete reductive citrate cycle, acetyl-CoA

=> oxoglutarate
0.95 8.18E–39 24.47 5.60E–05

M00173 Reductive citrate cycle (Arnon-Buchanan cycle) 0.79 3.69E–33 11.32 7.04E–15
M00596 Dissimilatory sulfate reduction, sulfate => H2S 0.78 6.96E–30 12.67 4.67E–18
M00176 Assimilatory sulfate reduction, sulfate => H2S 0.71 2.71E–23 17.31 2.24E–21
M00374 Dicarboxylate-hydroxybutyrate cycle 0.62 9.19E–22 11.02 4.57E–12
M00632 Galactose degradation, Leloir pathway, galactose

=> alpha-D-glucose-1P
0.58 8.72E–15 11.47 9.30E–16

M00125 Riboflavin biosynthesis, GTP => riboflavin/
FMN/FA

0.48 1.97E–14 7.84 1.03E–15

M00376 3-Hydroxypropionate bi-cycle 0.47 4.68E–12 7.67 3.67E–17
M00565 Trehalose biosynthesis, D-glucose 1P =>

trehalose
0.45 3.87E–12 10.52 6.69E–18

M00017 Methionine biosynthesis, apartate =>
homoserine => methionine

0.45 2.50E–14 8.07 1.40E–14

M00159 V-type ATPase, prokaryotes 0.43 2.37E–14 14.89 7.99E–23
M00082 Fatty acid biosynthesis, initiation 0.43 1.23E–11 7.08 9.69E–16
M00028 Ornithine biosynthesis, glutamate => ornithine 0.41 4.15E–10 12.05 2.11E–12

Comparison within f__Acutalibacteraceae (a #7)
Ruminococcus_E bromii (16/16) M00616 Sulfate-sulfur assimilation 1.11 2.52E–159 12.24 4.48E–11
Ruminococcus_E bromii_B (357/372) M00596 Dissimilatory sulfate reduction, sulfate => H2S 0.85 3.90E–112 9.18 2.17E–12
Ruminococcus_E sp003526955 (95/96) M00176 Assimilatory sulfate reduction, sulfate => H2S 0.80 3.79E–112 8.84 6.1793E–13
Ruminococcus_H sp003531055 (64/78)
GCA-900066995 sp900291955 (33/33)
Ruminococcus_E sp900314705 (24/25)

Comparison of g__Fusicatenibacter (a #13) versus g__Ruminococcus_A(a #14)
Fusicatenibacter saccharivorans
(335/346)

M00019 Valine/isoleucine biosynthesis, pyruvate =>
valine / 2-oxobutanoate => isoleucine

0.65 2.31E–17 9.50 1.50E–06

M00570 Isoleucine biosynthesis, threonine =>
2-oxobutanoate => isoleucine

0.62 1.20E–14 9.11 1.37E–06

M00432 Leucine biosynthesis, 2-oxoisovalerate =>
2-oxoisocaproate

0.57 1.48E–14 9.97 2.93E–05

M00535 Isoleucine biosynthesis, pyruvate =>
2-oxobutanoate

0.57 2.06E–12 28.20 1.09E–05

M00115 NAbiosynthesis, aspartate => NA 0.56 1.55E–12 2.05 8.11E–05
M00346 Formaldehyde assimilation, serine pathway 0.52 3.52E–10 4.69 3.79E–04
M00017 Methionine biosynthesis, apartate =>

homoserine => methionine
0.46 8.56E–08 30.33 6.47E–13

M00007 Pentose phosphate pathway, non-oxidative
phase, fructose 6P => ribose 5P

0.45 1.12E–08 6.96 2.05E–07

Comparison of g__Faecalibacterium (a #10) and g__Ruthenibacterium (a #12) versus g__Gemmiger (a #11)
Faecalibacterium prausnitzii_C (34/36) M00651 Vancomycin resistance, D-Ala-D-Lac type 0.45 6.08E–12 3.49 1.69E–07
Faecalibacterium prausnitzii_D(134/137) M00173 Reductive citrate cycle (Arnon-Buchanan cycle) 0.42 2.40E–11 7.69 1.36E–07
Faecalibacterium prausnitzii_G (111/114)
Faecalibacterium sp900539885 (12/12)
Ruthenibacterium lactatiformans (42/99)

aThe numbers correspond to the numbered taxa shown in the caption of Fig. 4.
bWilcoxon test (two-sided), Benjamini-Hochberg adjusted
cPhylogenetic linear modeling (two-sided), Benjamini-Hochberg adjusted
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other three module pathways of LPS biosynthesis, including
M00060 (KDO2-lipid A biosynthesis, LpxL-LpxM type), M00063
(CMP-KDO biosynthesis) and M00866 (KDO2-lipid A biosynth-
esis, non-LpxL-LpxM type), were positively associated with IA
seroconversion using phylogenetic logistic regression, although
not detected using enrichment analysis (Supplementary Data 12).
LPS is a major component of the outer membranes of Gram-
negative bacterial species, and many studies implicate bacterial
LPS in the modulation of the host immune system in ways that
influence the onset of T1D8,30,31 and T2D32,33 In particular,
Vatanen, et al.30 showed that the LPS produced by the Bacteroides
species in gut microbiota has immunoinhibitory properties that
may impede early immune education and contribute to the
development of T1D. Our finding of a positive IA-association
with genes of Bacteroides LPS biosynthesis not only supports
these previous findings, but also validates our comparative
genomics approach for targeting key MAGs and functions related
to IA seroconversion in a taxa-specific manner.

Dissimilatory sulfate reduction, assimilatory sulfate reduction,
and sulfate-sulfur assimilation pathways were enriched in MAGs
with positive IA-association from both the Anaerostipes genus
and the Acutalibacteraceae family (Table 1). These positive MAGs
were concentrated in strains of Anaerostipes hadrus and several
unclassified species related to Ruminococcus bromii. These
metabolic pathways lead to the reduction of sulfate to form
either hydrogen sulfide (H2S) through anaerobic respiration or
the sulfur-containing amino acids cysteine and methionine
through assimilation into biomass. Previous studies have shown
that high concentrations of H2S from sulfate-reducing bacteria in
gut microbiota can adversely affect the bowel environment by
increasing toxicity and lowering pH, contributing to the immune
response and to inflammatory activation in the gut34–37 Excessive
H2S may break the crosslinking disulfide bonds in intestinal
mucins, leading to decreased mucus viscosity and increased
permeability across the mucus layer38,39 We hypothesize that
elevated abundance of sulfate-reducing bacteria from Anaeros-
tipes hadrus may contribute to gut barrier disruption and
immune response activation in the gut, promoting IA
seroconversion.

MAGs that were negatively associated with seroconversion
were concentrated in a few taxa, including the Enterococcaceae
and Lactobacillaceae families in the Lactobacillales order and two
Proteobacteria orders, Burkholderiales and Enterobacterales. The
metabolic pathways enriched in these negatively IA-associated
MAGs were identified in two comparative analyses (Table 2).
Negatively IA-associated MAGs in the family Enterococcaceae
were mostly from Enterococcus or related genera, including 228 in
Enterococcus faecalis, 76 in Enterococcus_A avium, 51 in
Enterococcus_B faecium, and 40 in Enterococcus_D gallinarum.
Negatively IA-associated MAGs in the family Lactobacillaceae
were mostly from Lacticaseibacillus genera, including 100 in
Lacticaseibacillus paracasei, 153 in Lacticaseibacillus rhamnosus
and 33 in Lactiplantibacillus plantarum. Notably, Lacticaseiba-
cillus rhamnosus was previously found to have higher abundance
in control subjects in comparison with IA-seroconverted subjects6

Many pathways enriched in these negatively IA-associated MAGs
were involved in carbohydrate degradation (Table 2). These
Enterococcus and Lactobacillaceae species are lactic acid bacteria
with probiotic properties40–42 When supplemented in diets of
both mice and humans, Enterococcus faecalis and Enterococcus_A
avium increased SCFA production via modulation of the gut
microbiome40 Lactobacillus plantarum (Lactiplantibacillus plan-
tarum subsp. plantarum) restored the impaired mucus barrier of
the proximal colon in a mouse model of accelerated aging43 These
findings suggest IA seroconversion may be delayed or prevented
by these known probiotic microorganisms.

The Enterobacterales order contained 410 MAGs from the
Enterobacteriaceae family negatively associated with seroconver-
sion, including 296 MAGs in Escherichia coli and 114 MAGs in
Escherichia flexneri. The Burkholderiales order contained 76
negative MAGs from the Parasutterella species. Escherichia coli
LPS was shown to induce protective endotoxin tolerance and
delay T1D onset in the non-obese diabetic (NOD) mouse model
of spontaneous development of T1D30 In a longitudinal
microbiome study, Tetz, et al.44 showed that Escherichia coli
was depleted prior to seroconversion. Findings of diminished
abundance of Parasutterella species has been described in
children with T1D29 The negatively IA-associated MAGs in
these two orders were compared with MAGs from the adjacent
Akkermansia order which were not associated with seroconver-
sion (Fig. 4 and Supplementary Fig 5). Our comparative genomics
analysis identified denitrification as the most enriched pathway in
these MAGs. As dietary nitrate intake is a risk factor for
T1D45–47, we hypothesize that these microorganisms may offer
protective effects against T1D by reducing the nitrate level in the
gut through denitrification.

Discussion
Due to the strong variability in gut microbiome composition
persistently observed across individuals48,49, a central objective in
human gut microbiome research has been to define a ‘core’
microbiome at a population scale. While the idiosyncratic com-
ponents of an individual’s microbiome may causally contribute to
his/her phenotype, only the findings from core microbiomes can
be generalized across many individuals and can form the basis for
future dietary or therapeutic interventions in general populations.
Many studies have used bacterial lineages as the units to define
core gut microbiomes, based on 16 S rRNA amplicon sequencing
or metagenomics sequencing results of large cohorts50–54 How-
ever, even within a bacterial species, there is substantial strain
variability represented by core genomes and pan-genomes in
comparative genomics studies55,56 Ideally, one may define core
microbiomes as the core genomes of core bacterial lineages. Our
median mapping rate to the metagenome assemblies was 89%,
indicating that most of the genes encoded in the TEDDY gut
microbiomes can be captured by the metagenome assemblies.
Thus, we tested the hypothesis that there was a core microbiome
defined by a set of highly prevalent protein families that were
shared across the majority of subjects (>50%) in the TEDDY
cohort. We found there were 64,142 protein families that met this
standard and that were present without significant representa-
tional biases in terms of developmental stages, genders, geo-
graphic locations and delivery modes. Based on the read mapping
rates for an average subject in this cohort, 64% of their sequenced
microbiome DNA can be attributed to genes in these core protein
families, 25% of their microbiome DNA to genes in peripheral
protein families, and 11% to unassembled genes, supporting our
hypothesis of a large core microbiome and a small peripheral
microbiome in this cohort. This represented an alternative
approach to defining core microbiomes in large-scale metage-
nomic sequencing datasets.

A total of 21,536 high-quality MAGs were recovered from
887 subjects, including high-quality MAGs for 176 previously
undescribed species. This further expanded the diversity of the
human gut MAG collection, especially for early childhood
microbiomes. While efforts by Almeida, et al.21, Nayfach, et al.18

and Pasolli, et al.22 combined a large number of mostly cross-
sectional studies, our results showed the advantage of subject-
specific metagenome co-assembly and temporal co-variance
binning in a long-term, multi-center, longitudinal metage-
nomics study. This approach achieved high mapping rates of
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Table 2 Comparative genomics of the taxa containing MAGs negatively associated with IA seroconversion.

Major species containing negative
MAGs (Negative MAGs/
Total MAGs)

Module ID Function description Enrichment analysisb Phylogenetic
regression analysisc

Effect size Q value Estimate Q value

Comparison of f__Enterococcaceae (a #4) and f__Lactobacillaceae (a #6) versus f__Streptococcaceae (a #5)
Enterococcus faecalis(228/245) M00550 Ascorbate degradation, ascorbate => D-xylulose−5P 1.07 3.78E–125 3.92 1.97E–10
Enterococcus_A avium(76/79) M00061 D-Glucuronate degradation, D-glucuronate => pyruvate

+ D-glyceraldehyde 3P
0.79 4.94E–89 4.95 8.80E–18

Enterococcus_B faecium(51/55) M00631 D-Galacturonate degradation (bacteria),
D-galacturonate => pyruvate + D-glyceraldehyde 3P

0.76 1.40E–83 6.43 2.15E–18

Enterococcus_B faecium_B(18/20) M00008 Entner-Doudoroff pathway, glucose-6P =>
glyceraldehyde-3P + pyruvate

0.73 1.48E–76 5.45 1.25E-12

Enterococcus_D casseliflavus (19/21) M00006 Pentose phosphate pathway, oxidative phase, glucose
6P => ribulose 5P

0.68 1.85E–67 8.24 4.79E–28

Enterococcus_D gallinarum (40/42) M00003 Gluconeogenesis, oxaloacetate => fructose-6P 0.65 1.68E–75 6.53 1.12E–15
Enterococcus_D sp002850555 (12/12) M00116 Menaquinone biosynthesis, chorismate => menaquinol 0.61 4.76E−50 10.07 2.55E–10
Lacticaseibacillus paracasei(100/111) M00153 Cytochrome bd ubiquinol oxidase 0.60 3.42E–59 9.35 1.31E–05
Lacticaseibacillus rhamnosus(153/165) M00308 Semi-phosphorylative Entner-Doudoroff pathway,

gluconate => glycerate-3eP
0.54 9.00E–48 6.59 3.99E–21

Lactiplantibacillus plantarum (33/33) M00004 Pentose phosphate pathway (Pentose phosphate cycle) 0.53 2.15E–51 14.10 1.88E–28
Lactobacillus gasseri (19/21) M00165 Reductive pentose phosphate cycle (Calvin cycle) 0.52 1.99E–47 7.70 3.94E–18
Lactobacillus paragasseri (8/13) M00011 Citrate cycle, second carbon oxidation, 2-oxoglutarate

=> oxaloacetate
0.47 7.77E–32 7.83 7.86E–28

Limosilactobacillus fermentum (44/49) M00532 Photorespiration 0.46 1.02E–36 6.28 6.63E–39
`Limosilactobacillus oris (16/16) M00001 Glycolysis (Embden-Meyerhof pathway), glucose =>

pyruvate
0.46 1.63E–43 19.39 7.62E–26

Lactococcus lactis (16/28) M00167 Reductive pentose phosphate cycle, glyceraldehyde-3P
=> ribulose-5P

0.43 6.08E–28 13.87 1.93E–19

M00345 Formaldehyde assimilation, ribulose monophosphate
pathway

0.43 5.47E–31 19.86 6.85E–10

Comparison of o__Burkholderiales (a #3) and o__Enterobacterales (a #2) versus o__Verrucomicrobiales (a #1)
Parasutterella excrementihominis(45/
45)

M00529 Denitrification, nitrate => nitrogen 1.20 1.15E–137 20.59 9.55E–08

Parasutterella sp000980495 (26/27) M00880 Molybdenum cofactor biosynthesis, GTP =>
molybdenum cofactor

1.08 3.82E-128 11.37 2.60E-17

Sutterella wadsworthensis (14/14) M00550 Ascorbate degradation, ascorbate => D-xylulose-5P 0.96 3.08E–105 3.87 5.24E–09
Enterobacter himalayensis (15/18) M00804 Complete nitrification, comammox, ammonia => nitrite

=> nitrate
0.81 8.55E-83 8.19 4.38E-29

Escherichia coli (226/255) M00150 Fumarate reductase, prokaryotes 0.78 2.43E–88 15.61 9.55E–09
Escherichia coli_D (69/76) M00616 Sulfate-sulfur assimilation 0.69 1.12E–72 4.31 1.12E–22
Escherichia flexneri (114/130) M00095 C5 isoprenoid biosynthesis, mevalonate pathway 0.69 5.94E–71 5.76 2.92E–16
Klebsiella_A oxytoca (12/13) M00718 Multidrug resistance, efflux pump MexAB-OprM 0.67 5.63E–61 21.27 3.85E–43
Klebsiella pneumoniae (19/25) M00546 Purine degradation, xanthine => urea 0.65 8.20E–58 4.92 1.44E–19

M00167 Reductive pentose phosphate cycle, glyceraldehyde-3P
=> ribulose-5P

0.64 2.99E–56 16.59 1.08E–44

M00879 Arginine succinyltransferase pathway, arginine =>
glutamate

0.63 3.97E–64 3.93 4.92E–21

M00087 beta-Oxidation 0.62 1.39E–61 3.42 9.28E–09
M00761 Undecaprenylphosphate alpha-L-Ara4N biosynthesis,

UDP-GlcA => undecaprenyl phosphate alpha-L-Ara4N
0.56 5.70E–51 2.89 4.27E–08

M00417 Cytochrome o ubiquinol oxidase 0.55 3.85E–51 2.89 2.06E–08
M00170 C4-dicarboxylic acid cycle, phosphoenolpyruvate

carboxykinase type
0.53 5.49E–42 15.96 9.14E–50

M00004 Pentose phosphate pathway (Pentose phosphate cycle) 0.52 2.09E–40 22.59 1.10E–17
M00088 Ketone body biosynthesis, acetyl-CoA =>

acetoacetate/3-hydroxybutyrate/acetone
0.51 6.75E–43 17.61 1.11E–11

M00006 Pentose phosphate pathway, oxidative phase, glucose
6P => ribulose 5P

0.50 7.30E–40 5.24 5.18E–16

M00615 Nitrate assimilation 0.49 4.46E–38 13.86 2.17E–37
M00008 Entner-Doudoroff pathway, glucose-6P =>

glyceraldehyde-3P + pyruvate
0.48 7.42E–39 9.68 7.37E–08

M00165 Reductive pentose phosphate cycle (Calvin cycle) 0.48 1.03E–38 18.87 7.92E–22
M00061 D-Glucuronate degradation, D-glucuronate => pyruvate

+ D-glyceraldehyde 3P
0.47 2.22E–40 2.89 8.20E–15

M00345 Formaldehyde assimilation, ribulose monophosphate
pathway

0.45 3.02E–30 19.62 3.65E–03

M00034 Methionine salvage pathway 0.43 4.56E–27 18.65 3.89E–38
M00579 Phosphate acetyltransferase-acetate kinase pathway,

acetyl-CoA => acetate
0.42 2.03E–30 4.47 1.24E–13

M00631 D-Galacturonate degradation (bacteria),
D-galacturonate => pyruvate + D-glyceraldehyde 3P

0.41 6.69E–31 4.41 9.77E–26

aThe numbers correspond to the numbered taxa shown in the caption of Fig. 4.
bWilcoxon test (two-sided), Benjamini-Hochberg adjusted
cPhylogenetic linear modeling (two-sided), Benjamini-Hochberg adjusted
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metagenomic reads, including 89% on metagenome assemblies,
70% on median- or high-quality MAGs, and 51% on high-quality
MAGs. It is important for a metagenomics analysis to obtain a
high mapping rate, because the reads not accounted for by the
metagenomics analysis represent genes and organisms that may
be omitted in subsequent investigations. The streetlight effect57 of
a metagenomics analysis results in missed discoveries in the
unobserved parts of microbiomes and increased variabilities when
comparing the observed parts of microbiomes. Here, we
demonstrated that high mapping rates can be achieved to reduce
the streetlight effect in a long-term, multi-center, longitudinal
metagenomics study using subject-specific metagenome co-
assembly and temporal co-variance binning.

To identify microorganisms associated with IA seroconversion,
subject-specific metagenomes were compared based on a core
microbiome defined by protein families. The metagenomic
abundances of a protein family in different microbiomes are
proxies of the relative abundances of their originating micro-
organisms that may or may not have corresponding MAGs. Thus,
a significant core protein family can be considered to represent a
single-gene-based grouping of microorganisms that have different
abundances in the fecal metagenomes in association with IA
seroconversion. A total of 2373 MAGs were significantly enriched
in the 2190 protein families with positive IA-association and
1,549 MAGs were enriched in the 3156 protein families with
negative IA-association. The IA-association of these MAGs
grouped by their taxonomy were confirmed by the abundance
changes of the MAGs themselves. While previous association
studies implicated specific taxa or functions in T1D pathogenesis
or IA seroconversion, our study implicated specific MAGs. In
comparison with taxa- or function-defined associations in pre-
vious studies, an advantage of MAG-defined association is that it
enables comparative genomics analyses that control for broad
evolutionary differences between taxa and specifically identify the
functional biases associated with IA for a clade of
phylogenetically-related organisms. Here, these analyses allowed
for detection of functions specific to a given set of IA-associated
strains, as compared with a closely related sister clade without IA
association. This approach was validated by our re-discovery of
the association of Bacteroides LPS biosynthesis with IA ser-
oconversion in the TEDDY cohort8,30,31 This approach was then
used to generate hypotheses regarding IA seroconversion,
including the potential detrimental effects of Anaerostipes sulfate
reduction, and the potential protective effects of lactic acid bac-
teria and Escherichia nitrate reduction.

By its nature, our analysis only suggests association, rather than
causation, whereby the IA-associated MAGs could be the cause or
the effect of IA seroconversion of the subject. As shown in
Vatanen, et al.30 and Han, et al.31, the value of an association
analysis is to provide specific hypotheses that can be tested in
mechanistic experiments. An advantage of MAG-defined asso-
ciations over taxa- or function-defined associations is to enable a
more precise selection of microbial strains for validation experi-
ments in animal models. Because of the large strain heterogeneity
in many microbial species58,59, we postulate that future validation
studies will be more likely to succeed using strains whose gen-
omes closely match MAGs with disease association. Eventually,
this may lead to strain-level precision intervention strategies
against Type-1 diabetes by promoting or suppressing specific
microbial strains in personal microbiota using probiotics and/or
prebiotics during critical windows of disease progression.

Methods
Retrieval of TEDDY data. All metagenome sequencing data and clinical data were
obtained from The Environmental Determinants of Diabetes in the Young
(TEDDY) Study, a longitudinal study of subjects with either a genetic

predisposition for T1D or at least a first-degree relative with T1D. A total of 13,245
metagenome sequencing runs from a time-course collection of 12,276 fecal samples
from 887 subjects were downloaded from NCBI dbGap using SRA Toolkit tools
v2.9.6. The fecal samples were collected approximately monthly from 3 to
48 months of age, thereafter every three months until 72 months of age. Collections
were carried out by six clinical centers in four countries (Finland, Germany,
Sweden, and the United States). The clinical data were obtained from the NIDDK
Central Repository at https://repository.niddk.nih.gov/studies/teddy/.

Metagenome assembly and abundance-series binning. The raw reads of all
samples from each subject were co-assembled using SPAdes v3.13.1 in the
metaSPAdes mode60 Scaffolds longer than 2 kb were used to bin the metagenome-
assembled genomes (MAGs) using MetaBAT 2 v2.12.161 with default parameters.
Binning was based on the abundance co-variation of an organism’s scaffolds across
all samples from a subject. Pullseq v1.0.2 was used to filter scaffolds by a minimum
length. Sequencing reads in the individual samples were mapped onto their cor-
responding metagenome with Bowtie 2 v2.3.5.1. After removal of the unmapped
reads using shrinksam v0.9.0, coverage depths of scaffolds were calculated using
samtools v0.1.19 (‘samtools view -Sbu’ followed by ‘samtools sort’) and the jgi_-
summarize_bam_contig_depths function from MetaBAT 2 v2.12.1. The quality of
MAGs was estimated using CheckM v1.1.2 with lineage_wf workflow. Based on the
criteria established in the minimum information about a metagenome-assembled
genome (MIMAG) standard23, the MAGs obtained were classified into high-
quality MAGs (completeness > 90% and contamination <5%) and medium-quality
MAGs (completeness >= 50% and contamination <10%). The Reads Per Kilobase
per Million reads (RPKM) of a MAG in every sample was calculated based on the
total number of reads mapped onto its scaffolds and the total length of its scaffolds.
All the high-quality MAGs have been deposited in the European Nucleotide
Archive (ENA) under accession PRJEB40730 (https://www.ebi.ac.uk/ena/browser/
view/PRJEB40730).

Taxonomy assignment and clustering of MAGs. Taxonomy classifications of
high-quality MAGs were inferred using GTDB-Tk v1.3.0 based on reference species
in the Genome Taxonomy Database (https://gtdb.ecogenomic.org/; GTDB Release
95)62 If multiple MAGs were assigned to a GTDB species, the MAG with the
highest quality score, defined as completeness – (5 × contamination)63, was
selected as the representative MAG for the species. If multiple MAGs had the same
highest quality score, the MAG with the largest genome length was selected. MAGs
assigned to the genus level or above were clustered into metagenomic species based
on 95% average nucleotide identity (ANI) using dRep v2.4.0 (gANI -pa 0.9 -sa 0.95
-nc 0.6). A representative MAG was selected for each cluster based on quality
scores and genome size as described above. In total, this procedure generated
883 species from 21,536 high-quality MAGs in the TEDDY dataset. A phylogenetic
tree of the 883 species were inferred based on their representative MAGs using
PhyloPhlAn 2.064 The phylogenetic tree was plotted and annotated using iTOL v5
(https://itol.embl.de/).

Identification of new species in the human gut microbiome. MAGs recovered in
this study were compared with MAGs obtained from three previous large-scale
surveys of the human gut microbiome [Almeida, et al.21, Nayfach, et al.18 and
Pasolli, et al.22] and used as reference databases. Almeida, et al.21 recovered 39,891
high-quality MAGs from 13,133 human gut microbiome datasets from 75 different
studies. Nayfach, et al.18 recovered 24,345 high-quality MAGs from 3810 globally
distributed, diverse human subjects and clustered these MAGs, along with the
reference genomes from PATRIC and IMG, into 23,790 species, which included
2935 human gut species with a high-quality genome18 Pasolli, et al.22 recovered
154,723 microbial genomes (70,178 high quality) from 9428 metagenomes span-
ning body sites, ages, countries, and lifestyles. A new species was defined as a
species not detected in any of the reference genomes at a threshold of ANI > 95%.
The function ‘mash sketch’ from Mash version 2.2 was used to convert the
reference genomes into a MinHash sketch with default k-mer and sketch sizes.
Then, the Mash distance between each MAG and the set of reference genomes was
calculated with ‘mash dist’ to find the best match (i.e., the reference genome with
the lowest Mash distance) requiring distance < 0.2, corresponding to identity >
80%. Subsequently, each MAG and its closest relative were aligned using an ANI
calculation tool, ANIcalculator v1.0, to compare each pair of genomes, reporting
the fraction of the MAG that was aligned (aligned query, AQ) and ANI.

Time-course clustering of species. The abundance of a species within a devel-
opmental stage was estimated as the average RPKM of all the MAGs from the
species that were obtained from all fecal samples collected during the develop-
mental stage. Eight developmental stages were considered, including 3–5 months of
age, 6–8 months of age, 9–11 months of age, 12–15 months of age, 16–19 months
of age, 20–23 months of age, 24–29 months of age, and 30–35 months of age.
Species were clustered to seven clusters based on their abundances across the 8
developmental stages using the fuzzy C-means clustering algorithm in the R library
‘Mfuzz’ version 2.54.065,66 The number of clusters was selected using the elbow
method based on the Ball-Hall index67, which was calculated using the R package
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clusterCrit (version 1.2.8)68 Species with missing abundance values in more than
25% of the time points were filtered.

Construction, function annotation, and time-series clustering of core protein
families. Using Prodigal v2.6.3 (option –p meta)69, proteins were predicted from
all scaffolds >1 kbps that were assembled from subjects with at least four meta-
genome samples. A total of 158,247,178 proteins were generated. The minimum
length cutoff was 50 amino acids. These proteins were clustered using a hierarchical
clustering procedure for metagenomic sequence analysis as described in Li, et al.70

Briefly, proteins were clustered first at 90% identity, then at 65% identify, and
finally at 40% identity using CD-HIT v4.8.1. In each step, proteins were divided
into full-length open read frames (ORFs) with both start and stop codons, as well
as fragmented ORFs with missing start and/or stop codons. Full-length ORFs were
clustered with the following alignment coverage requirement on both long and
short sequences: cd-hit -n 5 -d 0 -g 1 -p 1 -T 35 -M 0 -G 0 -aS 0.9 -aL 0.9. The
fragmented ORFs were then recruited with the following partial alignment cov-
erage requirement: cd-hit -n 5 -d 0 -g 1 -p 1 -T 35 -M 0 -G 0 -aS 0.9. Subsequently,
cluster results from full-length ORFs and fragmented ORFs in each identity level
were merged using the following parameters with -c to define the identity level: cd-
hit-2d -n 5 -d 0 -g 1 -p 1 -T 35 -M 0 -G 0 -aS 0.9. This procedure generated a total
of 288,586 protein families.

Protein functions were annotated using KO terms and MetaCyc reactions71 KO
terms were assigned with KofamScan v1.0.072 using default parameters. The top-
ranked KO terms with scores above default thresholds were selected. Metacyc
reactions were assigned to proteins based on homology searches against MetaCyc
reference proteins in the MetaCyc database (https://metacyc.org/)73 The homology
searches were conducted using DIAMOND (v0.9.26.127)74 with default
parameters, with the exception of setting e-value < 0.0001 to use the sensitive mode.
MetaCyc reactions of top-ranked reference proteins were included in the protein’s
annotation information.

The gene abundance of a core protein family within a developmental stage was
estimated as the average RPKM of all the protein-coding genes from this family in
all fecal samples collected from this developmental stage. The core protein families
were clustered to 10 clusters using the fuzzy C-means clustering algorithm in the R
library ‘Mfuzz’ v2.54.065,66 The number of clusters was selected using the elbow
method based on the Ball-Hall index67, which was calculated using the R package
clusterCrit (version 1.2.8)68 The KEGG modules enriched in each cluster of protein
core families were identified by clusterProfiler (version 4.0.5, adjusted p-
value < 0.05), using all the core protein families as the background annotation. The
gene abundance of a KEGG functional category from an order was computed as the
sum of the gene abundance of all the core protein families from this functional
category in this order. Principal component analysis (PCA) analysis and Multiple
Response Permutation Procedure (MRPP) were carried out using the ‘vegan’
package (version 2.5–7)75 PCA was performed on the functional category
dimension in Fig. 3e and on the taxonomy dimension in Fig. 3f.

Statistics & reproducibility. Generalized linear mixed modeling (GLMM)26 was
used to test the statistical association between IA seroconversion and gene abun-
dance changes within protein families. The read count, Kij, for protein family i in
fecal sample j from subject h was expressed as a GLMM of the negative binomial
family with a logarithmic link function76:

Kij � NegativeBinomialðmean ¼ μij; dispersion ¼ δiÞ ð1Þ

logðμijÞ ¼ ∑6
k¼1bikxjk þ rih þ log sij

� �
ð2Þ

rih � Normalðmean ¼ 0; variance ¼ σ2i Þ ð3Þ

sij ¼
tij

mean
j

ðtijÞ ð4Þ

xjk and bik represented the seven fixed effects and their coefficients, respectively.
The seven fixed effects were: [1] age at collection (an integer number of months),
[2] delivery method (a categorical variable of caesarian or vaginal), [3] collection
center (a categorical variable of SWE, FIN, GER, WAS, COL and GEO), [4]
breastfeeding status (a categorical variable of yes or no), [5] solid food status (a
categorical variable of yes or no), [6] HLA category (a categorical variable of
DR4*030X/0302*DR3*0501/0201, DR4*030X/0302*DR8*0401/0402, DR4*030X/
0302*DR1*0101/0501, DR4*030X/0302*DR4*030X/0302, DR3*0501/
0201*DR3*0501/0201, DR4*030X/0302*DR13*0102/0604, Not*Eligible,
DR4*030X/0302*DR9*030X/0303, DR3*0501/0201*DR9*030X/0303) and [7]
seroconversion status (a categorical variable of yes or no). Breastfeeding status,
solid food status and IA seroconversion status were coded based on the actual
states of the subjects at the time of sample collection and, therefore, were varying
during the time course of a subject. rih represented a random effect for subject h. sij
is a sequencing-depth normalization factor for protein family i in sample j and it is
calculated as the total number of reads of sample j, divided by the average total
number of reads across all samples that are present in protein family i.

The R package ‘glmmTMB’ Version 0.2.377 was used for fitting a GLMM model
of the negative binomial family (family= nbinom2) for all fecal samples from each
protein family. The p-values of the seroconversion fixed effect were extracted from
the GLMM model fitting results. The p-values were adjusted using the Benjamini-
Hochberg method78 for multi-comparison correction across all protein families.

Permutation testing79 was used to estimate an empirical false discovery rate for
the fixed effect of IA seroconversion as follows: First, a decoy time series of the
seroconversion status for every subject was generated using a random shuffling
procedure. Samples collected before seroconversion were marked with 0 s and
samples collected after seroconversion were marked with 1 s. Random shuffling was
conducted by swapping the seroconversion time series of two semi-randomly
selected subjects. The two subjects were required to have similar total numbers of
samples in the time series and the number of seroconverted samples in either
subject was required to be larger than the total number of samples in the other
sample. These two requirements were designed to ensure that the swapping could
simply exchange the 1 s in the back of the two time-series and pad 0 s in the front
to maintain the lengths of the two time-series. The random shuffling did not alter
the total number of samples before and after seroconversion in the cohort but
changed the time of seroconversion for every subject. Many subjects were changed
from having no seroconverted samples to having some seroconverted samples, or
vice versa.

Next, the GLMM models were used to estimate the adjusted p-values of the
seroconversion fixed effect for all protein families. The randomly shuffled time
series of seroconversion status was used, but all other input data were not changed.
All protein families in the permutation datasets which met the same filtering
criteria as in the original dataset were considered to be false positives. The false
discovery rate was calculated as the ratio of the number of false positive families
identified in the permutation dataset to the number of positive families identified in
the original dataset. This process was repeated ten times to estimate an average
false discovery rate of the selected filtering criteria. Here, an adjusted p-value less
than 10−5 and an effect size estimate larger than log2(1.3) were set as the filtering
criteria, resulting in an estimated false discovery rate of 0.03.

Statistical tests, data analysis, and data visualization were conducted in R v3.6.3,
Python v2.7.15, and Python v3.6.3. No statistical method was used to pre-
determine the sample size. The experiments were not randomized and the
allocation of subjects was not blind. Subjects with no clinical information on their
IA seroconversion status or who donated less than 4 fecal samples were excluded
from the analyses.

KEGG module enrichment analysis for comparative genomics. An enrichment
analysis was conducted to identify KEGG modules enriched in MAGs significantly
associated with IA seroconversion, relative to reference MAGs in closely related
lineages. Protein-coding sequences within all MAGs were annotated with KEGG
KO terms. The protein frequency of a KEGG module in a MAG was calculated by
counting the proteins annotated with KO terms belonging to the KEGG module.
KEGG modules from plants, animals, fungi, and archaea were disregarded. Dif-
ferential abundance analysis of protein frequencies in each KEGG module was
conducted using the compositional data analysis tool ALDEx2 v1.18.080 P-values
were corrected to q-values using multiple testing with the Benjamini-Hochberg
method. Phylogenetic logistic regression81,82 was performed using R package
‘phylolm’ (version 2.6)83 The dependent variable was a binary variable for the IA
status (1 for IA-associated MAGs and 0 for non-associated). The gene counts in
each KEGG module were defined as the independent variable. Significant modules
that passed the filtering by both enrichment analysis (q-value < 10−2 and effect
size > 0.4) and phylogenetic logistic regression (q-value < 10−2) are listed in
Tables 1 and 2.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All high-quality MAGs generated in this study have been deposited in the European
Nucleotide Archive (ENA) at EMBL-EBI under accession code PRJEB40730. The raw
metagenomic sequencing data are available in the NCBI database of Genotypes and
Phenotypes (dbGaP) under accession phs001442.v3.p2 (https://www.ncbi.nlm.nih.gov/
projects/gap/cgi-bin/study.cgi?study_id=phs001442.v3.p2) with the dbGaP controlled-
access authorization. The clinical data are available in the NIDDK Central Repository at
https://repository.niddk.nih.gov/studies/teddy/. Taxonomic annotation for the MAGs
was based on the Genome Taxonomy Database (https://gtdb.ecogenomic.org/; GTDB
Release 95). MetaCyc reactions were assigned to proteins based on homology searches
against MetaCyc reference proteins in MetaCyc database (https://metacyc.org/). Source
data are provided with this paper.

Code availability
Codes are freely available under the GNU General Public License v3.0 at https://github.
com/thepanlab/Seq2MAG84
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