
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

QUESTION-ANSWERING FOR SEGMENT RETRIEVAL ON PODCAST

TRANSCRIPTS

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

ANDREW ELARYAN

Norman, Oklahoma

2022

QUESTION-ANSWERING FOR SEGMENT RETRIEVAL ON PODCAST

TRANSCRIPTS

A THESIS APPROVED FOR THE

SCHOOL OF COMPUTER SCIENCE

BY THE COMMITTEE CONSISTING OF

Dr. Christan Grant, Chair

Dr. Dean Hougen

Dr. Amy McGovern

© Copyright by ANDREW ELARYAN 2022
All Rights Reserved.

Dedication

This thesis is dedicated to my advisor Dr. Christan Grant for his guidance these past few

years. Thank you for pushing me out of my comfort zone, for believing in my abilities,

and, most importantly, for your patience.

I would also like to thank my wonderful committee members, Dr. Dean Hougen

and Dr. Amy McGovern. Dr. Hougen introduced me to research my sophomore year,

sparking an initial interest in the field of machine learning which has stayed with me

to this day. Dr. McGovern’s fantastic Artificial Intelligence class provided me with

the theoretical background that was monumental in my ability to properly review and

understand the literature behind this thesis. Thank you both.

Thank you to all of the friends I’ve made these past five years at OU, as well as my

peers in the School of Computer Science and Department of Mathematics. Specifically,

I’d like to thank Keegen Hart and Trey Crump, who are currently working on defending

Masters theses of their own, for helping me navigate this entire process and motivating

me to make this work the best that I can.

I would like to thank my family for supporting me in my education and providing me

the opportunity to pursue the life that I want. Although Oklahoma is quite far away, and

California will be even further, I know that I’ll always be a phone call away from home

in Virginia.

Finally, I would like to thank the fantastic canines in my life, Brad and Giorgio, may

he rest in peace, for their unwavering loyalty, priceless companionship, and intellectual

contributions to this thesis.

iv

Acknowledgements

The computing for this project was performed at the OU Supercomputing Center for

Education & Research (OSCER) at the University of Oklahoma (OU). Thank you to

Henry Neeman, Horst Severini, Jason Speckman, and all of the wonderful OSCER staff

members for their valuable technical expertise. Thank you to NIST and the TREC

Podcast Track maintainers for providing the dataset, test topics, and task guidelines for

this project. Thank you to Spotify for providing their transcripts, transcript indices, and

baseline results. Thank you to the developers and maintainers of the Bertserini library,

which was used extensively for retrieval.

v

Table of Contents

Dedication iv

Acknowledgements v

List Of Tables ix

List Of Figures x

Abstract xii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 1

1.3 Proposed Approach . 2

2 Background 5

2.1 Podcasts . 5

2.2 Ranking Evaluation . 6

2.2.1 Precision and Recall . 7

2.2.2 Normalized Discounted Cumulative Gain (nDCG) 8

2.3 BM25 Ranking . 9

2.4 Transformer Models for Natural Language Tasks 11

2.4.1 Encoder-Decoder Architecture 11

2.4.2 Attention . 12

2.4.3 Self-attention and the Transformer 14

vi

2.4.3.1 Computing Attention 17

2.4.3.2 Multi-Head Attention 17

2.4.3.3 Benefits of Self-Attention 19

2.4.4 Bidirectional Encoder Representations from Transformers . . . 19

2.4.4.1 BERT’s Architecture 19

2.4.4.2 Pre-training . 23

2.4.4.3 Fine-tuning and Task-specific Application 24

2.5 End-to-end Question-Answering . 24

2.5.1 Stanford Question Answering Dataset (SQuAD) 25

2.5.2 Bertserini . 26

3 Methods 28

3.1 Data . 28

3.2 Topics . 28

3.3 QA Segment Retrieval . 32

4 Experiments 34

5 Results 37

5.1 Segment Relevance . 37

5.2 Ranking Effectiveness . 42

6 Discussion 45

6.1 Effectiveness Differences Between Topic Types 45

6.2 Hard Queries . 46

6.3 Relevant Documents for Answer Extraction 47

7 Conclusion 50

vii

7.1 Limitations . 50

7.2 Future Work . 51

7.3 Segment Retrieval for Answering Questions 52

Bibliography 54

Appendix 56

A Selected Source Code 57

B Segment Grading Rubric 62

C Output of trec_eval for all Test Topics, QA Retrieval 63

D Output of trec_eval for all Test Topics, BM25 Retrieval Baseline 67

viii

List Of Tables

5.1 Percentage of segments of each type from the QA run that were graded

as relevant with a relevance score > 0. 37

5.2 Percentage of segments of each type from the baseline that were graded

as relevant with a relevance score > 0. 39

5.3 Average scores and standard deviations for segments of each type re-

trieved with QA, including and excluding irrelevant segments. 39

5.4 Average scores and standard deviations for segments of each type re-

trieved with the BM25 baseline, including and excluding irrelevant seg-

ments. 41

5.5 nDCG, precision, and recall results at ranking depths of 20 and 10 for

the QA and baseline runs. 42

ix

List Of Figures

2.1 Encoder-decoder model using attention. Attention weights are repre-

sented by arrow density. Adapted from (Bahdanau, Kyunghyun Cho,

and Bengio, 2014). 12

2.2 The encoder-decoder architecture for the Transformer. Reproduced di-

rectly from Vaswani et al. (2017). 15

2.3 Illustration of self-attention. Adapted from (Vaswani et al., 2017) 16

2.4 A BERT sequence representing a pair of contiguous sentences. Adapted

from (Devlin et al., 2018). 20

2.5 The input representation in BERT for a sequence containing one sen-

tence. Adapted from (Devlin et al., 2018). 20

2.6 The BERTmasked languagemodeling (MLM) and next sentence predic-

tion (NSP) tasks were conducted simultaneously. The MLM task selects

the word with the highest predicted probability, which in this case is

“dog”. The NSP task predicts whether or not Sentence B directly fol-

lows Sentence A, which in this case is false as indicated by the NotNext

label. Adapted from (Devlin et al., 2018). 21

2.7 Sample question and answer pair for a document in the SQuAD v1.1

development set (id: 56ddde6b9a695914005b962a). 25

3.1 Example of a transcript chunk from the Spotify Podcast Dataset. 29

3.2 Example of a query topic. 30

3.3 Example of a retrieved segment for Topic 13 containing the keyword

query “drug addiction recovery”. 31

x

3.4 Diagram showing the two-stage QA retrieval process. 31

4.1 Diagram showing the baseline BM25 retrieval process on the topic’s

keyword query. 35

5.1 Number of relevant segments in the QA run for each topic differenti-

ated by relevance level, with topics grouped by type: topical (36-42),

refinding (50-47), and known-item (53-54). 38

5.2 Number of segments in the QA run at each relevance level for each topic

type (topical, refinding, known-item). 39

5.3 Number of relevant segments in the baseline run for each topic differen-

tiated by relevance level, with topics grouped by type: topical (15-42),

refinding (45-47), and known-item (57-52). 40

5.4 Number of segments in the baseline run at each relevance level for each

topic type (topical, refinding, known-item). 41

5.5 Recall@n = 5, 10, 15, 20 for QA retrieval and the BM25 baseline. . . . 43

A.1 Configuration file config.json containing arguments for the experiment. . 58

A.2 SBATCH job for topic 9 on OSCER topic_9_bert.sbatch. 58

A.3 Main function for the segment retrieval process qa_searcher.py. 59

A.4 Modified Answer class in bertserini_modified/base.py. 60

A.5 Snippet of modified BERT reader in bertserini_modified/bert_reader.py. 61

xi

Abstract

Podcasting has rapidly ascended as one of the primary forms of spoken-word media in

the 21st century. The Spotify Podcast Dataset has compiled transcripts of over 100,000

podcast episodes, making it one of the largest repositories of spoken word data. The

segment retrieval task aims to find the most relevant segments to a given query from

the set of episode transcripts. This thesis presents a two-stage approach to segment

retrieval using an end-to-end question-answering (QA) deep learning architecture with

an additional step to expand answers to segments. Standard BM25 retrieval on an index

of predetermined segments from each episode serves as a baseline retrieval system.

Experiments for both approaches involved producing and evaluating a ranked list of 20

relevant segments for 50 test topics. Comparison between the two retrieval methods

shows that the QA retriever trails the baseline in nDCG@10 by 0.128, precision@10 by

0.184, and average segment relevance score by 0.461. QA retrieval slightly outperforms

the baseline by 0.024 in recall@10 while slightly underperforming it by 0.102 in average

segment relevance score when discounting irrelevant segments. The results suggest

that the QA retrieval approach in this thesis can adequately identify and rank relevant

segments within a relevant input text. However, for some queries, it may struggle

to find enough relevant candidate documents during the first stage of retrieval. QA

retrieval shows promise in handling informational queries for the user goal of answering

a question. Future work includes improving processes such as candidate document

retrieval, answer span expansion, and data annotation.

xii

Chapter 1

Introduction

1.1 Motivation

The advent of the Internet has catalyzed the rapid expansion of novel entertainment

mediums. One such medium that gained prominence in the late 2000s, and continues

to grow into the 2020s, is podcasting. Podcasts are a form of program-oriented spoken-

word audio, generally available on-demand and online. Podcasts boasted an estimated

104 million monthly consumers in the United States in 2020 (Edison Research, 2020).

ListenNotes, a podcast aggregator, reports over 2.7 million shows and 124 million

episodes as of the start of 2022 (Listen Notes, 2022). This large, and continually

growing, catalog of podcasts presents challenges in the fields of information retrieval,

natural language processing, and search.

1.2 Problem Statement

Conventional methods for podcast search rely on metadata such as show title, show

description, episode title, and episode description. This metadata, usually provided by

the podcast creator, often lacks information on the salient points of the podcast episode

(Clifton et al., 2020). Evidence in the literature suggests that search methods that include

the episode transcript significantly outperform those which rely solely on metadata (Yu

et al., 2020). Advances in automated speech recognition have unlocked the podcast

1

domain as a corpus of spoken-word documents so that podcast search can be approached

as a text search problem (Chelba, Hazen, and Saraclar, 2008). Thus, researchers are

interested in finding effective and efficient ways to integrate podcast transcripts into the

search process.

1.3 Proposed Approach

Users often turn to query-based search to find information in podcasts when they have

a specific question (Besser, Hofmann, Larson, et al., 2008). They may wish to not only

find a podcast episode covering the topic but the specific portion of the episode’s content

which answers their question as well. These segments derived from the original episode

should represent an episode’s discussion on the query topicwhile holding comprehensible

meaning on their own. The task of finding relevant segments to a query from a large

corpus of text is referred to as segment retrieval in the TREC podcasts track (Jones,

Carterette, et al., 2021; Karlgren et al., 2021). Working towards this user goal motivated

the development of this thesis.

Existing segment retrieval approaches focus on ranking or reranking predetermined

segments (Jones, Carterette, et al., 2021; Karlgren et al., 2021; Yu et al., 2020). However,

arbitrarily predefining segments based on audio time markers or word count may not

capture the optimal segment for a given query. The segmentmay start too early, including

irrelevant content, or start too late, missing out on valuable context. The same applies to

segment ending times. Additionally, predefined segments are isolated from the context of

the rest of their source episode. This allows for segments to be ranked highly even if the

episode containing the segment is mostly irrelevant, which is not necessarily desirable.

This thesis aims to address these drawbacks by implementing a question-answering

(QA) approach for segment retrieval on a large corpus of full podcast episode transcripts

2

and investigating its effectiveness for the task. The QA paradigm effectively models

the aforementioned user journey for the segment retrieval task, aiming to extract the

best answer span in relation to a given query. Recent developments in natural language

processing, particularly the Transformer and BERT (Vaswani et al., 2017; Devlin et al.,

2018), have advanced the state-of-the-art1 for modern QA systems.

The answer spans extracted by existing QA pipelines are often short and lack context

from the rest of the document. As such, they are not well suited to act as standalone

segments for the segment retrieval task. The retrieval system implemented in this thesis

adds an additional step after extraction to expand answers into longer, individually

comprehensible segments using the surrounding context.

With answer expansion, a segment’s location is flexible, defined by the location of

the best answer in the document rather than a predefined segment. Additionally, retrieval

on full episode transcripts allows for the inclusion of episode-level context in ranking

segments, prioritizing relevant segments derived from relevant episodes.

Thus, this thesis proposes an extended end-to-end question-answering pipeline to

perform segment retrieval on podcast episode transcripts and presents a discussion

around experimental results. The contributions of this thesis are as follows:

• Segment retrieval is conducted by extracting answer spans from full podcast tran-

scripts and expanding them to into comprehensive segments (Section 3.3). This

differs from existing approaches which operate on predefined segments.

• Experiments involved segment retrieval on the set of test topics from TREC 2020

(Chapter 4). The proposed approach’s effectiveness is compared to the commonly

used BM25 information retrieval ranking function.

1https://rajpurkar.github.io/SQuAD-explorer/

3

https://rajpurkar.github.io/SQuAD-explorer/

• Analysis of experimental results identified limitations, future work, and applica-

tions to user goals for the proposed approach (Chapter 6, Chapter 7).

Chapter 2 provides a general overview of podcasts as well as the theoretical basis in

ranking and language modeling for QA. Chapter 3 describes the implementation details

of the proposed QA segment retrieval system. Chapter 4 specifies the methods for

experimentation with results presented in Chapter 5. Chapter 6 discusses outcomes and

takeaways from the experimental results, with closing remarks and ideas for future work

in Chapter 7.

4

Chapter 2

Background

2.1 Podcasts

Amajor reason to study podcasts, as they relate to search, is that they provide an extensive

corpus of spoken word. One prominent example, the Spotify Podcast Dataset1, claims to

be “orders of magnitude larger than previous speech corpora used for search” (Clifton et

al., 2020), with over 100,000 podcast episode transcriptions representing 60,000 hours of

audio. This vast collection of podcast transcripts and audio reflects the rising popularity

of podcasts and provides researchers with ample data for work in numerous fields, such

as search and summarization.

Podcasts may appear in a diverse set of formats and contain a variety of content

(Clifton et al., 2020). Audio recordings classified as podcasts do not all come in the

same shape and size. They can be long or short, formal or informal, and consist of varying

levels of audio quality. Many popular podcasts involve a discussion or interview with

multiple speakers, while others are monologues by a single voice. Additionally, podcasts

may also be informal and unscripted. These characteristics can lead to difficulties in

transcription and challenge existing search methods (Clifton et al., 2020).

Furthermore, podcasts cover a vast array of topics, some of which are niche or

obscure. This is especially relevant if the speaker uses terms that are out-of-vocabulary

for a speech model but are related to the podcast episode’s subject (Chelba, Hazen, and

1https://podcastsdataset.byspotify.com/

5

https://podcastsdataset.byspotify.com/

Saraclar, 2008). In fact, these are often the terms that provide the finest granularity in

search. Thus, podcasts can serve to test search methods for contexts that are not in the

domain of the evaluating model.

Blogs are often referred to as a comparison for podcasts, as user goals for blog

search and podcast search show similarities (Besser, Hofmann, Larson, et al., 2008;

Jones, Zamani, et al., 2021; Jones, Carterette, et al., 2021). Podcasts “can be viewed

as audio blogs” (Jones, Zamani, et al., 2021), with both mediums falling under the

category of user-generated content for amateur producers. However, most other user-

generated content is characterized by short documents (Weerkamp, Balog, and Rijke,

2009). Podcasts are generally long-form content, leading to wordier transcripts. Longer

podcast transcripts may challenge information retrieval methods and models originally

intended for use with shorter documents, such as blogs (Jones, Zamani, et al., 2021).

Users may wish to search for information both on the repository of podcast episodes

and within a podcast episode itself. This latter goal is especially relevant for podcasts

measured on the scale of hours, as it can be difficult to pinpoint the location of information

in an audio stream. Some creators add timestamps in the description of their episode

to delimit topics or chapters, but these are not guaranteed to reflect the granularity of

information that a user is searching for. The desire for specific information from a

podcast, rather than combing through an entire episode, serves as the motivation for

exploring segment retrieval, the discovery of information within an episode.

2.2 Ranking Evaluation

To properly evaluate a search engine or recommendation system, it is important to assess

the results provided by the system through multiple metrics. In this thesis, the focus

of evaluation is the retrieval system’s effectiveness, which “measures the ability of the

6

search engine to find the right information” (Croft, Metzler, and Strohman, 2010). This

process involves comparing the ranking of documents retrieved by the search engine

with ground-truth relevancy judgments from human evaluators (Croft, Metzler, and

Strohman, 2010). The following sections discuss three common effectiveness metrics

for search evaluation: precision, recall, and normalized discounted cumulative gain, all

of which are suggested measures for evaluating podcast search (Jones, Zamani, et al.,

2021).

2.2.1 Precision and Recall

Precision and recall assume binary relevance, meaning that a retrieved document is seen

as either relevant or not relevant. The set 𝐴 is defined to include all relevant documents,

while the set 𝐵 is the set of documents actually retrieved. Then, precision and recall are

defined as follows (Croft, Metzler, and Strohman, 2010):

Precision =
|𝐴 ∩ 𝐵 |
|𝐵 | (2.1)

Recall =
|𝐴 ∩ 𝐵 |
|𝐴| (2.2)

Thus, “precision is the proportion of retrieved documents that are relevant”, while

“recall is the proportion of relevant documents that are retrieved” (Croft, Metzler, and

Strohman, 2010).

Since the goal of podcast segment retrieval is not to find all possible relevant doc-

uments, and instead to return a ranked list of a specified length with the most relevant

documents early on in the list, it is useful to evaluate precision and recall at different

rank positions (Croft, Metzler, and Strohman, 2010). For example, if the entire returned

document list is of length 20, one can evaluate the precision and recall of sublists, start-

ing from rank position 1, of length 5, 10, 15, and 20, the entire list. This method of

7

evaluation helps to differentiate the ranking effectiveness of the top-ranked documents

from the effectiveness over the entire set of retrieved documents. Note that precision can

increase and decrease as rank position increases, but recall is monotonically increasing.

2.2.2 Normalized Discounted Cumulative Gain (nDCG)

In practical use of a search engine, the documents at the top of the ranked list carry more

weight than those at the bottom. For cases such as web search, question-answering,

and navigational search, it is unlikely that a user will look at all retrieved documents,

and they may only look at the top one or two (Croft, Metzler, and Strohman, 2010).

A relevant segment that is highly ranked during retrieval is much more useful than a

relevant segment that shows up later in the rankings. Evaluating precision and recall at

earlier ranking positions can help with examining document retrieval performance with

an emphasis on the relevancy of earlier documents.

However, document relevancy may not be a binary function, as it is treated in

calculating precision and recall, and some documents may be classified as more relevant

than others. For example, a highly ranked document at a given rank position should

contribute more to the search engine’s effectiveness score than a less relevant segment at

the same position. Thus, the normalized discounted cumulative gain metric (nDCG) is

used to evaluate the non-binary relevance of retrieved segments along with the accuracy

of their retrieved order.

Discounted cumulative gain aims tomeasure the cumulative effectiveness of a ranking

list up to a specified ranking position using human-judged relevancy grades. It is

calculated as follows (Croft, Metzler, and Strohman, 2010):

DCG𝑝 = rel1 +
𝑝∑︁
𝑖=2

rel𝑖
log2 𝑖

(2.3)

8

where 𝑝 ≥ 2 is the ranking being evaluated and rel𝑖 is a human graded relevance

score for the document at rank position 𝑖. The denominator log2 𝑖 is used to reduce the

impact of later documents on the ranking’s DCG score. This reduction factor can be

modified to increase or decrease the discounting rate in the function (Croft, Metzler, and

Strohman, 2010).

The ideal DCG, or IDCG, is calculated the same way as standard DCG. However,

the ranking list is sorted in decreasing relevance order (Croft, Metzler, and Strohman,

2010). This is the hypothetical perfect relevance order for this set of retrieved documents.

IDCG is used to normalize the nDCG score among retrieval runs that retrieve different

numbers of relevant documents. Thus, nDCG can be seen as a measure of how closely

the retrieved ranking order resembles the perfect ranking order of those documents.

nDCG is calculated as follows (Croft, Metzler, and Strohman, 2010):

nDCG𝑝 =
DCG𝑝
IDCG𝑝

(2.4)

2.3 BM25 Ranking

BM25, or Best-Match 25, is a probabilistic document scoring function, ranking docu-

ments by the probability that they are relevant to a given query (Robertson, Zaragoza,

et al., 2009). As a bag-of-words model, BM25 does not take into account word order,

punctuation, or grammar, instead operating solely on terms and their frequencies. This

function improves upon other bag-of-words search approaches, such as TF-IDF, by nor-

malizing term frequency and document length. This thesis uses the implementation from

the Java search engine library Lucene2 (Robertson, Zaragoza, et al., 2009; Pérez-Iglesias

et al., 2009), as follows:

2https://lucene.apache.org

9

https://lucene.apache.org

BM25 (𝑞, 𝑑) =
∑︁
𝑡∈𝑞

tf (𝑡, 𝑑)

𝑘1

(
(1 − 𝑏) + 𝑏 |𝑑 |

AVG(𝐷)

)
+ tf (𝑡, 𝑑)

· idf (𝑡) (2.5)

with

idf (𝑡) = log 𝑁 − df (𝑡) + 0.5
df (𝑡) + 0.5 (2.6)

where 𝑡 is a term in 𝑞, the query; 𝑡𝑓 (𝑡, 𝑑) is the term frequency of 𝑡 in the document

𝑑, where 𝑑 is a document in the collection 𝐷; 𝑁 is the number of documents in the

collection; 𝑑𝑓 (𝑡) is the document frequency of the term.

The parameter 𝑘1 > 0 defines an asymptotic limit to the contribution of any one term

to the ranking score (Robertson, Zaragoza, et al., 2009). This is known as saturation

and normalizes the effects of high-frequency terms. A higher 𝑘1 means that subsequent

term occurrences will continue to have a high impact on the score. Since the asymptote

will be the same for all terms, the asymptote’s actual value does not matter so much as

the rate at which additional term occurrences increase the score (Robertson, Zaragoza,

et al., 2009).

The parameter 𝑏 ∈ [0, 1] handles document length normalization, as seen in the

component (1 − 𝑏) + 𝑏 |𝑑 |
AVG(𝐷) in Equation 2.5 (Robertson, Zaragoza, et al., 2009).

Setting 𝑏 = 0 will turn off document-length normalization, while 𝑏 = 1 will include full

normalization.

10

2.4 Transformer Models for Natural Language Tasks

2.4.1 Encoder-Decoder Architecture

The encoder-decoder architecture is a framework for solving computing tasks and is

often used in computer vision and natural language processing. Given some input data,

an encoder is tasked with reading the input and representing it as a fixed length vector,

generally of lesser dimension than the input sequence, to represent features (Bahdanau,

Kyunghyun Cho, and Bengio, 2014). The decoder, in turn, reads in the encoded feature

vector and produces some desired output, depending on the task (Bahdanau, Kyunghyun

Cho, and Bengio, 2014).

An example of an encoder-decoder model for machine translation from English to

French is presented in KyungHyun Cho et al. (2014). The encoder takes as input a

variable-length sentence in English and encodes it as a fixed-length vector. The decoder

takes as input the encoder’s fixed-length vector and translates it to a variable length output

in French autoregressively, one word at a time (KyungHyun Cho et al., 2014; Bahdanau,

KyunghyunCho, andBengio, 2014). Since the size and structure of the encoder input and

decoder output are isolated by the encoded sequence, the encoder-decoder architecture

can handle differences in input and output sequence length, as well as different syntax

and grammar rules between languages (KyungHyun Cho et al., 2014).

The example described above uses recurrent neural networks, RNNs, and convolu-

tional neural networks, CNNs, in both the encoder, to learn to identify features from

the English text, and the decoder, to learn to translate features into the target language,

French (KyungHyun Cho et al., 2014). Note that the details of these networks are out of

scope for this thesis since the focus is placed on the improvements that the attention and

self-attention mechanisms provide, as described below.

11

Figure 2.1: Encoder-decoder model using attention. Attention weights are represented
by arrow density. Adapted from (Bahdanau, Kyunghyun Cho, and Bengio, 2014).

2.4.2 Attention

The single fixed-length vector output by encoders posed issues for improving perfor-

mance in language processing tasks. In the machine translation example above, perfor-

mance rapidly decreased as sequence length increased (KyungHyun Cho et al., 2014).

Investigation of this decline suggested that long sequences were difficult for the system

since the encoder has to “compress all the necessary information of a source sentence

into a fixed-length vector” (Bahdanau, Kyunghyun Cho, and Bengio, 2014).

The attention mechanism was introduced to alleviate the bottleneck of encoding a

fixed-length vector in the encoder-decoder architecture (Bahdanau, Kyunghyun Cho, and

Bengio, 2014). Encoders and decoders using attention showed significant improvement

over existing models in the machine translation task for long sentences (Bahdanau,

Kyunghyun Cho, and Bengio, 2014). Figure 2.1 shows an overview of attention in the

encoder-decoder architecture.

12

Rather than using a single vector to represent the entire input, an encoder in a

model using attention encodes a sequence of vectors at each token to represent the input

(Bahdanau, Kyunghyun Cho, and Bengio, 2014). For example, an encoder operating

on an input sentence would encode each word in the sentence into a neural network.

Bahdanau, Kyunghyun Cho, and Bengio (2014) use a bidirectional neural network so

that each word’s encoding includes context from both the previous and following words,

with a focus on nearby words.

Decoders for language tasks make predictions token by token, rather than trying to

predict an entire output sentence at once. Thus, at each prediction step 𝑖, the word being

predicted has access to the previously predicted word, as well as the state of the previous

hidden layer in the neural network.

Since the decoder’s input is a sequence of vectors, the decoder can weigh how much

a particular vector contributes to deciding a new network state (Bahdanau, Kyunghyun

Cho, and Bengio, 2014). This is the actual attention mechanism. In the translation

example, the decoder is determining how related the current word in the target language

is to each word in the source language (Bahdanau, Kyunghyun Cho, and Bengio, 2014)

and, therefore, how much it should attend to them.

When determining word 𝑦𝑖 in the output sequence, there is a probability 𝛼𝑖 𝑗 that 𝑦𝑖

is related to word 𝑥 𝑗 in the input sequence. In Bahdanau, Kyunghyun Cho, and Bengio

(2014), the vector of probabilities, the attention vector, is computed by applying the

softmax function to a feedforward neural network jointly trained with the rest of the

system. This is known as additive attention (Vaswani et al., 2017). Note that this is only

one way of computing attention and does not represent the only approach.

With the encoded representation of 𝑥 𝑗 denoted as ℎ 𝑗 , the result of the attention

mechanism is the sum of the encoded words weighted by the attention vector, producing

13

a context vector. In Bahdanau, Kyunghyun Cho, and Bengio (2014), the context vector

for 𝑦𝑖 is computed as follows:

𝑐𝑖 =

𝑇𝑥∑︁
𝑗=1
𝑎𝑖 𝑗ℎ 𝑗 (2.7)

where𝑇𝑥 is the length of the input sequence. Prediction of the hidden state for word 𝑦𝑖

is a function of the context vector, the previous hidden state, and the previous word. This

state is used to compute a probability distribution over the set of possible words, followed

by the system choosing the word with the highest probability (Bahdanau, Kyunghyun

Cho, and Bengio, 2014).

In the case of attention, the machine learning term attention aligns well with the

concept of human attention. Certain parts of the decoder’s output sequence are “paying

attention” to specific parts of the input sequence vectors from the encoder (Bahdanau,

Kyunghyun Cho, and Bengio, 2014).

2.4.3 Self-attention and the Transformer

While adding the attention mechanism into the encoder-decoder architecture improved

performance on long input sequences, the use of RNNs and CNNs held some drawbacks

to further improvements. Models using RNNs process neural layers sequentially, where

the state at time 𝑡 is dependent on the state at time 𝑡 − 1. Their sequential computation

limits models’ abilities to parallelize computation, making them difficult to train without

struggling with memory constraints. Additionally, it becomes expensive to map rela-

tionships from token dependencies that are distant in the input or output text, which is

an issue when trying to model longer sequences (Vaswani et al., 2017).

The arrival of transformer models sparked a paradigm shift in the NLP world. Pro-

posed by Google Brain and Google Research in the paper “Attention Is All You Need”

14

Figure 2.2: The encoder-decoder architecture for the Transformer. Reproduced directly
from Vaswani et al. (2017).

15

Figure 2.3: Illustration of self-attention. Adapted from (Vaswani et al., 2017)

(Vaswani et al., 2017), the Transformer was the first transduction language model to

rely solely on attention mechanisms. Specifically, the Transformer follows the encoder-

decoder architecture but adds the mechanism of self-attention to “relat[e] different posi-

tions of a single sequence in order to compute a representation of the sequence” (Devlin

et al., 2018). Figure 2.2 presents the original Transformer architecture published by

Vaswani et al. (2017). The rest of this section will focus on the application of attention

in the Transformer.

Where earlier encoder-decoder models with attention mechanisms focused solely on

a decoder’s ability to pay attention to parts of the encoded representation, the Transformer

supplements this with a self-attentionmechanism that allows a sequence to attend to itself

during the encoding and decoding stages. The vector representation of the sentence itself

encodes the relationship between the words in the sentence. Figure 2.3 illustrates the

self-attention mechanism at a high level.

16

2.4.3.1 Computing Attention

An attention function “map[s] a query and a set of key-value pairs to an output, where

the query, keys, values, and output are all vectors” (Vaswani et al., 2017). These queries,

keys, and values are vectors derived from the input (Vaswani et al., 2017). To perform

computation simultaneously for a set of queries, the query, key, and value vectors are

packed into the matrices Q, K, and V, respectively (Vaswani et al., 2017).

The Transformer uses a scaled dot-product function, as opposed to the additive

attention described by Bahdanau, Kyunghyun Cho, and Bengio (2014), to compute

attention (Vaswani et al., 2017):

Attention (𝑄, 𝐾,𝑉) = softmax
(
𝑄𝐾𝑇
√
𝑑𝑘

)
𝑉 (2.8)

where 𝑑𝑘 is the dimension of the queries and keys. Taking the dot-product of 𝑄

and 𝐾 finds the compatibility of each key with each query. Since the softmax function

struggles with large dot products (Vaswani et al., 2017), this result is scaled down. Then,

the softmax function is applied to produce a probability distribution. This probability

distribution is multiplied by the value matrix𝑉 to produce a set of value vectors weighted

by their respective attention coefficients.

2.4.3.2 Multi-Head Attention

The Transformer can create a more powerful language representation by using multiple

attention heads. An attention head is a block that performs the attention mechanism as

described in Equation 2.8. However, each attention head operates on a different, learned

linear projection of the matrices 𝑄, 𝐾 , and 𝑉 . Operating on multiple projections allows

each attention head to focus on “different representation subspaces at different positions”

17

(Vaswani et al., 2017). As such, each head attends tomore fine-grained linguistic features

that may be lost when averaging attention over the entire sequence.

Each attention head, head𝑖, learns parameter matrices𝑊𝑄

𝐼
, 𝑊𝐾

𝐼
, and𝑊𝑉

𝐼
. Then, the

attention for each head is computed as (Vaswani et al., 2017):

head𝑖 = Attention
(
𝑄𝑊

𝑄

𝐼
, 𝐾𝑊𝐾

𝐼 , 𝑉𝑊
𝑉
𝐼

)
(2.9)

with the full multi-head attention block as follows (Vaswani et al., 2017):

MultiHead (𝑄, 𝐾,𝑉) = Concat (head1, ..., headℎ)𝑊𝑂 (2.10)

where ℎ is the number of attention heads and 𝑊𝑂 is a matrix that re-projects the

concatenated attention heads to the output dimensions.

Analysis of attention heads in the Transformer and in the Transformer-based model

BERT, described later in this chapter, has shown that different heads attend to different

linguistic features (Vaswani et al., 2017; Clark et al., 2019). Most substantially, BERT

pays attention to syntax such as punctuation or relative position. However, some indi-

vidual heads show understanding of deeper language concepts such as noun modifiers,

direct objects, and coreferent mentions (Clark et al., 2019). No single head is able to

capture an overall representation of language details, further solidifying the usefulness

of multiple attention heads in creating a deep understanding of language.

There are three distinct types of attention heads in the Transformer (Vaswani et al.,

2017) represented by the three blocks of attention in Figure 2.2. The encoder’s attention

heads take 𝑄, 𝐾 , and 𝑉 from the previous layer of the encoder, or the input sequence.

The decoder has two types of attention heads. One set of attention heads attends to

all positions in the decoded output sequence to the left of the current position using

a masked version of multi-head attention. There is also a traditional encoder-decoder

18

attention head in the decoder which attends to 𝑄 from the previous layer in the decoder,

but takes 𝐾 and 𝑉 from the encoder’s output.

2.4.3.3 Benefits of Self-Attention

There are threemain benefits to using self-attention over recurrence or convolution. First,

self-attention performs a constant amount of work per layer, whereas recurrent layers

operate in linear time (Vaswani et al., 2017). If the sequence length is shorter than its

dimensionality, as is the case in WordPiece (KyungHyun Cho et al., 2014) used in BERT

(Devlin et al., 2018), self-attention will work faster than a recurrent layer. Second,

since recurrent networks are inherently sequential, they are limited in their ability to

parallelize within training examples (Vaswani et al., 2017). The Transformer, on the

other hand, is able to parallelize work among its multiple attention heads for a single

sequence. Third, self-attention keeps themaximum path length of dependencies between

positions constant (Vaswani et al., 2017). In contrast, the path lengths in convolutional

and recurrent networks grow with the number of layers. Thus, the Transformer is better

able to learn long-range dependencies in a sequence.

2.4.4 Bidirectional Encoder Representations from Transformers

The benefits of self-attention and the Transformer allowed researchers to build more

powerfulmodelswith deeper understanding of language. One of the preeminent language

models based on the Transformer is the Bidirectional Encoder Representations from

Transformers (BERT) model developed by Google AI Language (Devlin et al., 2018).

2.4.4.1 BERT’s Architecture

BERT’s representation of input text has two main structures: the sentence and the se-

quence. Any continuous interval in the input can be treated as a sentence, so while

19

Figure 2.4: A BERT sequence representing a pair of contiguous sentences. Adapted
from (Devlin et al., 2018).

Figure 2.5: The input representation in BERT for a sequence containing one sentence.
Adapted from (Devlin et al., 2018).

20

Figure 2.6: The BERT masked language modeling (MLM) and next sentence prediction
(NSP) tasks were conducted simultaneously. The MLM task selects the word with the
highest predicted probability, which in this case is “dog”. The NSP task predicts whether
or not Sentence B directly follows Sentence A, which in this case is false as indicated by
the NotNext label. Adapted from (Devlin et al., 2018).

21

sentences may fit the linguistic definition, they do not have to. A sequence is a to-

ken sequence made up of either a single sentence or a concatenated pair of sentences.

Computing on pairs of sentences is useful for the next sentence prediction pre-training

objective, described later. Pairs of sentences are also useful for structuring some down-

stream tasks, such as pairing a question with its answer. Each sequence is prepended

by a [CLS] token, while each sentence is appended with a [SEP] token. Figure 2.4

demonstrates the structure of a sequence.

The structure of a sequence embedding with one sentence is presented in Figure

2.5. Each token in the sequence, including the structural tokens [CLS] and [SEP], is

represented by an embedding vector. The token embedding is made up of three parts.

First, there is the word embedding, or vector representation of the word itself. BERT

uses the word embeddings pre-trained by WordPiece as presented by Wu et al. (2016).

Second, there is a learned sentence level embedding to differentiate a pair of sentences

in a sequence, referred to as sentence A and sentence B. Third, there is a positional

embedding that encodes the token’s position in the sequence. The token’s encoded

representation is the sum of the word, sentence, and position embeddings. Thus, the full

sequence’s encoded representation is the sequence of these token embeddings.

BERT implements the Transformer in blocks almost identical to the original Trans-

former from Vaswani et al. (2017). However, it differs from the original Transformer

in that BERT removes the decoder and stacks multiple layers of encoder blocks (Devlin

et al., 2018). This allows BERT to provide a language model with a “unified architec-

ture across different tasks” (Devlin et al., 2018) with minimal “task-specific architecture

modifications” (Devlin et al., 2018).

Devlin et al. (2018) describe their implementation details for two model sizes. BERT

Base has 12 Transformer layers, a hidden size of 768, and 12 attention heads per layer.

BERT Large has 24 Transformer layers, a hidden size of 1024, and 16 attention heads

22

per layer. The BERTmodel described in Section 2.5.2 uses BERT Base as its pre-trained

model.

2.4.4.2 Pre-training

Contemporary language models train for word prediction either from left to right or from

right to left, since doing both would allow a word to “see itself” (Devlin et al., 2018) in

the encoded representation of other words, making the task trivial (Devlin et al., 2018).

BERT, however, is able to avoid this issue and pre-train bidirectionally, both from left

to right and from right to left, on unlabeled text using the masked language model, or

MLM, objective (Devlin et al., 2018).

In theMLM task, some of the tokens in the input are randomly masked, or concealed,

and the systemmust use context to predict the original token. Since the predicted token is

masked, the other tokens in the sequence are unable to include it in their representations.

By pre-training bidirectionally, BERT builds a more powerful language model than

simply concatenating a left-to-right model with a right-to-left model.

Pre-training BERT also involves a next-sentence prediction, or NSP, objective to

capture the relationship between sentences (Devlin et al., 2018). This objective shows

substantial benefits for downstream tasks such as QA. When creating each training

example, two sentences are chosen: sentence A and sentence B. Sentence B has a 50%

chance to be the true next sentence after A, and is labeled “IsNext”. The rest of the

time, sentence B will be a randomly chosen sentence, and be labeled “NotNext”. The

NSP objective, then, is to predict whether or not sentence B is the true next sentence for

sentence A.

The authors of BERT used the BooksCorpus and English Wikipedia corpora, which

both provide long, contiguous documents rather than shorter sentence-level texts (Devlin

et al., 2018), as the input texts for the pre-training tasks. Both BERT pre-training tasks,

23

MLM and NSP, are conducted simultaneously. Figure 2.6 shows an overview of the

pre-training tasks.

2.4.4.3 Fine-tuning and Task-specific Application

The deep, bidirectional pre-training of BERT makes it a versatile language model, as it

only requires one transformer layer of fine-tuning to be suitable for a wide array of NLP

tasks. Fine-tuning for a specific downstream task involves loading the pre-trained model

and training the parameters in another layer using labeled data (Devlin et al., 2018),

essentially acting as the decoder stage. At the time of its publishing, BERT improved

the state-of-the-art in eleven such tasks, including question-answering on the dataset

SQuAD v1.1 (Devlin et al., 2018). As a result, BERT has become a standard for the

development of language models in QA.

2.5 End-to-end Question-Answering

While traditional information retrieval, or IR, techniques such as BM25 are useful, they

generally retrieve a ranked set of raw documents (Voorhees and Tice, 2000). The goal

of question-answering is to provide answers directly from the input text based on a

user’s question, which is a common user goal (Voorhees and Tice, 2000). QA systems

should be open-domain (Voorhees and Tice, 2000), meaning that their answer extraction

capabilities are not restricted to a certain set of documents.

There exist multiple tasks that fit under the umbrella of QA, though they can each be

boiled down to the following goal: given a question, find the best answer, or a ranked

set of answers. The answer selection task aims to choose the most fitting candidate

from a predetermined list of candidate answers (Yang et al., 2019), returning the original

candidate document. Reading comprehension, on the other hand, takes as input a single

24

Paragraph: The Normans (Norman: Nourmands; French: Normands; Latin: Nor-
manni) were the people who in the 10th and 11th centuries gave their name to Normandy,
a region in France. They were descended from Norse ("Norman" comes from "Norse-
man") raiders and pirates from Denmark, Iceland and Norway who, under their leader
Rollo, agreed to swear fealty to King Charles III of West Francia. Through generations
of assimilation and mixing with the native Frankish and Roman-Gaulish populations,
their descendants would gradually merge with the Carolingian-based cultures of West
Francia. The distinct cultural and ethnic identity of the Normans emerged initially in the
first half of the 10th century, and it continued to evolve over the succeeding centuries.
Question: From which countries did the Norse originate?
Answer: Denmark, Iceland and Norway

Figure 2.7: Sample question and answer pair for a document in the SQuAD v1.1
development set (id: 56ddde6b9a695914005b962a).

document and aims to identify answer spans within that document (Yang et al., 2019).

These two tasks assume that the set of candidate documents, or the single document, is

predefined, eschewing the step of document retrieval.

A third QA task, end-to-end QA, brings the IR step back into the picture. In end-to-

end QA, the goal is to find the best answer spans from a large document corpus. Due

to the impracticality of “apply[ing] inference exhaustively to all documents in a corpus

with current models” (Yang et al., 2019), end-to-end QA is generally implemented in two

major stages. First, traditional IR is used to identify a subset of candidate documents,

“restrict[ing] the input text” (Yang et al., 2019). Second, a neural model reads the

candidate documents, extracting and ranking potential answers.

2.5.1 Stanford Question Answering Dataset (SQuAD)

A prominent dataset for use in reading comprehension and question-answering tasks is

the Stanford Question Answering Dataset (SQuAD)3 (Rajpurkar et al., 2016). SQuAD

v1.1 consists of 107,785 pairs of questions and answers sourced from a corpus of 536

Wikipedia articles separated into 23,215 paragraphs, with up to 5 QA pairs per paragraph

3https://rajpurkar.github.io/SQuAD-explorer/

25

https://rajpurkar.github.io/SQuAD-explorer/

(Rajpurkar et al., 2016). Wikipedia offers high subject variability on a large collection

of documents, making SQuAD a candidate for training and evaluating open-domain QA

models.

The structure of SQuAD differs from previous question-answering datasets in that it

does not offer a question and a set of predefined candidate answers. Rather, SQuAD’s

candidates stem from all possible spans in the source article, producing a much larger

domain for candidate answers (Rajpurkar et al., 2016). Questions and answer pairs on

the set of articles were sourced from human judgment using crowdworkers (Rajpurkar

et al., 2016). A sample question-answer pair is presented in Figure 2.7.

SQuAD has been used to evaluate and train reading comprehension models. Reading

comprehension differs from full end-to-end QA in that reading comprehension only

finds answer spans in one document. However, SQuAD is used to fine-tune pre-trained

language models for the second portion of the end-to-end QA task which conducts the

reading and extraction of answers (Yang et al., 2019).

2.5.2 Bertserini

Bertserini4 is an “end-to-end question answering system that integrates BERT with the

open-source Anserini information retrieval toolkit” (Yang et al., 2019), specifically the

Pyserini5 (Lin et al., 2021) Python toolkit. This system provides a tool for answering

questions in large text corpora end-to-end (Yang et al., 2019), as opposed to ranking

shorter, pre-processed segments of input text as does answer selection.

Bertserini, as an end-to-end QA system, is structured as a two-stage pipeline. The

first stage uses traditional IR, namely BM25, to identify candidate documents within

the corpus. The second stage finds the optimal answer span within each document,

4https://github.com/rsvp-ai/bertserini
5https://github.com/castorini/pyserini

26

https://github.com/rsvp-ai/bertserini
https://github.com/castorini/pyserini

producing a ranked list of answers. Answers are ranked using a linear weighted sum

combining the answer span’s score from a BERT reader and the document’s context

score from BM25 retrieval (Yang et al., 2019), as follows:

𝑆 = (1 − `) · 𝑆Document + ` · 𝑆Answer (2.11)

where the value ` ∈ [0, 1] is a hyperparameter. ` has a learned default value of

0.5, meaning that the answer score and the document context score are evenly weighted

(Yang et al., 2019).

Bertserini’s answer extraction stage uses a pre-trained BERT model, based on the

original BERT Base in Google’s paper (Devlin et al., 2018). The model was fine-tuned

for QA on the SQuAD v1.1 dataset (Yang et al., 2019). The authors of Bertserini provide

the BERT model used for their experiments through HuggingFace6.

Although Bertserini was developed to operate onWikipedia articles, its open-domain

nature makes it applicable to other types of documents, including podcast transcripts.

The segment retrieval approach described in Chapter 3 uses Bertserini and the provided

fine-tuned BERT model.

6https://huggingface.co/rsvp-ai/bertserini-bert-base-squad

27

https://huggingface.co/rsvp-ai/bertserini-bert-base-squad

Chapter 3

Methods

3.1 Data

This QA segment retrieval system operates on the Spotify Podcast Dataset, which is

“orders of magnitude larger than previous speech corpora used for search” (Clifton et

al., 2020), and includes over 100,000 podcast episode transcriptions representing nearly

60,000 hours of audio. The dataset was created through a partnership between NIST and

Spotify and was distributed to participants in the TREC 2020 Podcast Track. Podcasts

were uniformly sampled from Spotify’s English podcast catalog and transcribed using

Google’s Cloud Speech-to-Text API (Clifton et al., 2020).

Each podcast episode’s audio recording is transcribed into sequential, 30-second

long chunks along with some metadata attributes. An example of a transcript chunk is

shown in Figure 3.1. Each chunk provides a transcript of 30-seconds worth of audio, a

confidence probability for the transcription’s accuracy, and a list of all of the words in the

chunk. Along with each word in the list are the word’s start and end times. Chunks vary

in size between sentence-length and paragraph-length, although they are not necessarily

delimited by either. The full transcript for an episode can be obtained by concatenating

the sequence of chunks in order.

3.2 Topics

28

{
"transcript": "Hello, y’all, this is Premier
from the fifth floor in are you tired of your
Barber pushing your hairline back worse than
a bad boy artist album, or maybe you wanted
them guys to just let anybody walk up in the
shop and Skip they line up in the seat or did
you walk up in your Barbershop For A Part in
Jesus Christ that man had you woke up with a
Widow’s Peak. Well, I’m here to tell you
over a lifestyle Salon. We ain’t having that.
We ain’t condoning that located at 5321.",

"confidence": 0.8640950322151184,
"words": [
{
"startTime": "3s",
"endTime": "3.300s",
"word": "Hello ,"

},
{
"startTime": "3.300s",
"endTime": "3.800s",
"word": "y’all,"

},
...,
{
"startTime": "28.800s",
"endTime": "29.800s",
"word": "5321."

}
}

Figure 3.1: Example of a transcript chunk from the Spotify Podcast Dataset.

29

<topic>
<num>1</num>
<query>Higgs boson</query>
<type> topical </type>
< description >Im looking for news and discussion about the discovery of
the Higgs boson. When was it discovered? How? Who was involved?
What are the implications of the discovery for physics?

</ description >
</ topic>

Figure 3.2: Example of a query topic.

The training and test queries provided byTREC in 2020, hereafter referred to as topics

(Jones, Carterette, et al., 2021), were used as input for the retriever. An example topic

from the training set is provided in Figure 3.2. Each topic is made up of four attributes:

the query number, the topic query, the type label, and the detailed description, tagged

“num”, “query”, “type”, and “description”, respectively. The topic number refers to

the index of the topic in the entire set of topics. Topics 1-8 are training topics, while

topics 9-58 make up the test set. The keyword query is a short text containing the

most important keywords or the main focus of the topic. The type label categorizes

the query into one of three types: topical, refinding, or known-item. Topical queries

look for “general information about the topic”, refinding queries are “searching for a

specific episode the user heard before”, and known-item queries look to find “something

that is known to exist but under an unknown name” (Clifton et al., 2020). The detailed

description may provide additional information about the topic, ask specific questions,

or discuss preferences regarding the retrieved segment.

30

shelter something or you may be in some temporary place, but it may not you know,
Doug do what you have to do be willing to get dirty too many nights. We get dirty drunk
roll on the floor and we don’t care who we rolling around where we don’t care how dirty
we get so don’t don’t don’t don’t think you too good for the for detox. Don’t think you
too good to go through the program. Don’t think you’re too good to be with her the less
fortunate. You’re going to have to probably sit in some places for a while, but you’re
going to have you’re going to be you’re going to be happy later on. All right, so don’t
be afraid to talk to your church. Don’t be afraid to talk to somebody within the church.
Okay, if you if you have teachers or professors or someone that you could trust from your
high school or your old school reach out to them reach out to our old guidance counselor
you Don’t forget you reach out to your local police, you know, if you’re female reach out
to fax the speech to speak to a female detective. I mean, these are extreme but trust me
you can walk into a police station say listen. I’m a recovering addict and I just want help
and I don’t know where to go to. I don’t have no family or may not have anyone that
I could trust. Can you help me? Can you point me in the right direction? Could you
get me in touch with an addiction Clinic? Could you help me out right alas? Ashley do
not undercut the power of Alcoholics Anonymous or Narcotics Anonymous. If you’re
struggling with addiction and you get old you going to detox the first thing you should
be doing I asked or even before once you make that decision is go talk to people at AA
you could just you just go on Google and put in your zip code and look

Figure 3.3: Example of a retrieved segment for Topic 13 containing the keyword query
“drug addiction recovery”.

Figure 3.4: Diagram showing the two-stage QA retrieval process.

31

3.3 QA Segment Retrieval

This QA segment retrieval system follows the two-stage approach for end-to-end QA, as

described in Section 2.5, with an additional answer expansion step, shown in Figure 3.4.

The first stage uses BM25 to retrieve a set of candidate documents for a topic, while the

second stage finds the best answers from that document set. Once retrieved, each answer

in the ranked set is expanded by a constant number of words, resulting in a segment

containing the answer with its surrounding context.

Selected sections from the QA retriever’s main function are presented in Appendix

A in Figure A.3. The end-to-end QA pipeline was built using components from the

Bertserini library, described in Section 2.5.2. Answer expansion logic was built around

the pipeline in Python to create comprehensible segments from raw answers. The QA

retriever operates on a single topic, so work on the entire set of test topics can be

parallelized across multiple nodes using a scatter and gather approach.

There are two reasons to use BM25 to narrow down the documents of interest before

using QA. First, BM25 is much less computationally expensive than span prediction with

a BERT model (Yu et al., 2020). It is infeasible to evaluate each episode’s transcript

using QA, so the system needs to exclude irrelevant documents. Second, BM25 has been

shown to slightly outperform another prominent IR technique, query likelihood, for the

segment retrieval task on this dataset (Yu et al., 2020).

In the first stage, BM25 ranks potentially relevant episodes using the keyword phrase

from the topic as its query. BM25 search operates on an index of the full episode

transcripts. This results in a set of the top 500 episode transcripts, ranked by their BM25

score. While other podcast segment retrieval experiments in the literature retrieved

1000 candidate segments (Yu et al., 2020), the use of longer, full episode transcripts

necessitates a reduction to 500 candidates.

32

The second stage takes the results from the bag-of-words stage and uses QA to

find a set of answers among the candidate episodes. The retriever uses the Bertserini

BERT Base model and tokenizer fine-tuned for QA1. The input question for the QA

stage is a concatenation of the topic’s keyword query and detailed description. This

ensures emphasis on themost important keywords while also including themore nuanced

information included in the description. The result is a set of the 20 highest ranked answer

spans found in the set of candidate episodes. Answers are scored by linearly weighting

the BM25 score of the source episode with the answer’s relevancy score.

Each answer is then expanded to a full segment to aid in evaluation and better resemble

the segments evaluated in the TREC Podcast tracks, as well as providing a result with

more context than a shorter answer span. To expand an answer into a segment, the answer

was prepended by the previous 170 tokens and appended with the following 170 tokens.

This token radius was chosen to resemble the average two-minute segment length found

in the Spotify Podcast Dataset of 340 words (Clifton et al., 2020).

To facilitate this approach, two files were edited from the Bertserini library. First,

the Answer class was modified to add fields for the start and end indices of the answer in

the original document. Second, the BERT reader was modified to add the start and end

indices to each answer produced by the reader’s prediction. Additionally, each answer’s

original document ID was added to the answer’s existing metadata field, which was

previously unused. These modifications helped to accurately relocate each answer in its

original document during the segment expansion process. The modified portion of each

file can be seen in Appendix A in Figures A.4 and A.5.

1https://huggingface.co/rsvp-ai/bertserini-bert-base-squad

33

https://huggingface.co/rsvp-ai/bertserini-bert-base-squad

Chapter 4

Experiments

The segment retrieval process was executed on the 50 test topics provided by TREC 1.

Retrieval for each topic resulted in a set of 20 relevant segments, with the exception of

Topic 21, which only produced 13 relevant segments.

In Appendix A, Figure A.1 shows the configuration file for the QA run. In this

experiment, two arguments for the BERT reader were changed from their default values

to better suit the longer questions resulting from the topics’ detailed descriptions. The

maximum query length was changed from 64 to 128 and the maximum answer length

was changed from 30 to 64.

The jobs for this experiment ran at the OU Supercomputing Center for Education

& Research (OSCER) at the University of Oklahoma (OU). Work was parallelized by

performing retrieval for each topic individually as an independent job. This paralleliza-

tion greatly reduced the runtime and memory usage of the retrieval job, as compared to

retrieving all topics sequentially. Each job was completed in under 24 hours with 20 GB

of memory per job. Performing single-topic retrieval also more accurately mirrors the

use case for segment retrieval, as a user is likely to search for information one query at a

time. A sample SBATCH file used to define a single-topic job on OSCER is presented

in Appendix A in Figure A.2.

The segment retrieval baseline for this experiment consisted of solely BM25 ranking,

similar to Spotify’s RERANK-QUERY baseline (Yu et al., 2020). A diagram of the

1https://trecpodcasts.github.io/resources/podcasts_2020_topics_test.xml

34

https://trecpodcasts.github.io/resources/podcasts_2020_topics_test.xml

Figure 4.1: Diagram showing the baseline BM25 retrieval process on the topic’s keyword
query.

BM25 baseline retrieval process is shown in Figure 4.1. Rather than an index of

full episode transcripts, the baseline performed retrieval on an index of pre-separated

potential segments. A potential segment was defined as “a two-minute chunk starting on

the minute” (Jones, Carterette, et al., 2021) in an episode. Thus, each segment included a

one-minute overlap with the previous segment and the following segment. The baseline

used BM25 on the topic’s keyword query to retrieve the 20 most relevant segments from

the index of all potential segments in the corpus. The BM25 parameters were set to

𝑘1 = 0.9 and 𝑏 = 0.4, the same values as in Spotify’s RERANK-QUERY baseline (Yu

et al., 2020) and the QA retriever. The execution of the baseline followed the same

procedure as QA retrieval.

The evaluation process was designed to resemble the evaluation process for the TREC

2020 podcast track. Each segment was graded using the evaluation rubric from TREC

2020 (Jones, Carterette, et al., 2021), shown in Appendix B. Segments were assessed

on a four-point Excellent, Good, Fair, Bad (EGFB) scale, representing scores of 3, 2, 1,

35

and 0, respectively. For “known-item” or “refinding” topic types, there is also a 4-point

“Perfect” score. Segment evaluation was based on human judgment, specifically the

assessment of the author of this thesis. Along with the topic and segment pair, the entire

transcript of the segment’s source episode was provided to add context.

36

Chapter 5

Results

5.1 Segment Relevance

Figure 5.1 shows the total number of relevant segments, omitting irrelevant segments

with a score of 0, along with the topic’s distribution of relevance scores for the QA

run. This figure demonstrates that retrieval performance varies from topic to topic,

even within the same topic type. Additionally, the distribution of relevance levels is

not uniform for all topics. These observations hold for the BM25 baseline run on the

segments index as well, as seen in Figure 5.3.

For example, in the QA run, the topic with the most relevant segments, Topic 36,

shows a relatively even distribution of Fair, Good, and Excellent segments. Some topics,

such as Topic 21, do not produce many relevant segments, but those which are retrieved

are highly relevant. In contrast, topics such as Topic 28 produce a moderate number of

relevant segments, but few are graded as highly relevant.

Topic Type Total Relevant Percent Relevant
Topical 693 314 45.31%
Refinding 160 26 16.25%
Known-item 140 21 15.00%

All 993 361 36.35%

Table 5.1: Percentage of segments of each type from the QA run that were graded as
relevant with a relevance score > 0.

37

Figure 5.1: Number of relevant segments in the QA run for each topic differentiated
by relevance level, with topics grouped by type: topical (36-42), refinding (50-47), and
known-item (53-54).

38

Figure 5.2: Number of segments in the QA run at each relevance level for each topic
type (topical, refinding, known-item).

Topic Type Total Relevant Percent Relevant
Topical 700 431 61.57%
Refinding 160 60 37.50%
Known-item 140 77 55.00%

All 1000 568 56.80%

Table 5.2: Percentage of segments of each type from the baseline that were graded as
relevant with a relevance score > 0.

Topic Type Avg. Score Std. Dev. Avg. Score (Relevant) Std. Dev. (Relevant)
Topical 0.8831 1.130 1.949 0.8618
Refinding 0.3313 0.8635 2.038 1.172
Known-item 0.3357 0.9072 2.238 1.109

All 0.7170 1.093 1.972 0.9045

Table 5.3: Average scores and standard deviations for segments of each type retrieved
with QA, including and excluding irrelevant segments.

39

Figure 5.3: Number of relevant segments in the baseline run for each topic differentiated
by relevance level, with topics grouped by type: topical (15-42), refinding (45-47), and
known-item (57-52).

40

Figure 5.4: Number of segments in the baseline run at each relevance level for each topic
type (topical, refinding, known-item).

Topic Type Avg. Score Std. Dev. Avg. Score (Relevant) Std. Dev. (Relevant)
Topical 1.179 0.5090 1.914 0.8287
Refinding 0.9875 1.458 2.633 1.128
Known-item 1.393 1.428 2.532 1.118

All 1.178 0.5927 2.074 0.9034

Table 5.4: Average scores and standard deviations for segments of each type retrieved
with the BM25 baseline, including and excluding irrelevant segments.

41

Run nDCG@20 nDCG@10 Prec.@20 Prec.@10 Recall@20 Recall@10
QA 0.619 0.492 0.361 0.426 0.900 0.556

Baseline 0.745 0.620 0.568 0.610 0.940 0.532

Table 5.5: nDCG, precision, and recall results at ranking depths of 20 and 10 for the QA
and baseline runs.

For each topic type, there were many irrelevant retrieved segments. Table 5.1 shows

that just over a third of graded segments for the QA run were found to be relevant, using a

binary relevance judgment, and Table 5.2 shows just over half the segments retrieved by

the baseline to be relevant. In both the QA run and the baseline, topical queries showed

a higher percentage of their segments to be relevant than refinding and known-item

queries.

Table 5.3 shows that the average relevance in the QA run for topical queries is close

to a fair score of 1, whereas refinding and known-item queries have an average close

to 0, or Bad relevance. Isolating analysis to only the set of relevant segments shows

that all topic types have a Good average score of around 2. Table 5.4 displays the same

information as Table 5.3 for the baseline run. With baseline retrieval, known-item types

boasted the highest average score, with topical and refinding types trailing. Here, topical

and refinding queries had an average score around or slightly above 1, or Fair, with

known-item types showing a score closer to 1.5. Isolating for only relevant segments,

the relevance for topical queries moves closer to 2, or Good, and refinding and known-

item relevance jumps to over 2.5, almost an Excellent rating. Differences between topic

types are discussed further in Section 6.1.

5.2 Ranking Effectiveness

However, inspecting only the average score for the population, topic type, or a single

query ignores information about the internal ranking of segments for a topic, which is

42

Figure 5.5: Recall@n = 5, 10, 15, 20 for QA retrieval and the BM25 baseline.

43

important for evaluating a retrieval system’s performance. Ranking effectiveness was

evaluated by calculating nDCG, precision, and recall at different ranking depths, as

described in Section 2.2. These metrics were computed using the trec_eval tool1. A full

view of the trec_eval results on the entire set of topics is available in Appendix C for QA

retrieval and Appendix D for the BM25 baseline. nDCG2, precision3, and recall4 use

the implementations provided by the trec_eval tool.

nDCG, precision, and recall results at different rank positions are shown in Table

5.5. The nDCG scores of 0.619 and 0.745 at rank position 20 for the QA run and the

baseline, respectively, show that the rankings produced by both runs generally agree with

the ideal ranking, although more so for the baseline. The baseline outperforms the QA

run in precision at all ranking depths. In recall, the QA run outperforms the baseline up

to ranking depth 10, but the baseline overtakes the QA run after that, as seen in Figure

5.5. These differences are discussed further in Section 6.3. Note that the recall@20

does not reach 1.0, as there are topics that retrieved zero relevant segments at all, which

contribute a recall value of 0 to the average.

1https://github.com/usnistgov/trec_eval
2https://github.com/usnistgov/trec_eval/blob/master/m_ndcg.c
3https://github.com/usnistgov/trec_eval/blob/master/m_Rprec.c
4https://github.com/usnistgov/trec_eval/blob/master/m_recall.c

44

https://github.com/usnistgov/trec_eval
https://github.com/usnistgov/trec_eval/blob/master/m_ndcg.c
https://github.com/usnistgov/trec_eval/blob/master/m_Rprec.c
https://github.com/usnistgov/trec_eval/blob/master/m_recall.c

Chapter 6

Discussion

6.1 Effectiveness Differences Between Topic Types

In both theQAand baseline runs, retrieval found a higher percentage of relevant segments

per query topic for topical query types than both refinding and known-item types. The

average scores for topical queries exceeded those for refinding and known-item queries,

except for known-item topics in the baseline, but trailed their average scores when only

looking at relevant segments.

A topical query may have many segments which are somewhat relevant to the query,

however none can be considered a perfect match. Refinding and known-item queries,

on the other hand, can have a perfect match to their query, since they are looking for a

specific item.

Since refinding and known-item queries are looking for a specific piece of informa-

tion, there may be only one episode that contains any relevant segments. This suggests

that refinding and known-item queries may have only a few segments that are relevant

at all, but those which are deemed relevant are scored highly. For example, refinding

Topic 46 and known-item Topic 58 only have two and one relevant segments in the QA

run, respectively. However, each of these segments represents a perfect relevance grade,

meaning that the system retrieved the exact item that the query was looking for.

45

Furthermore, there may actually be no relevant episodes or segments at all for a given

topic. For Topics 42, 47, and 52, both the QA and baseline runs failed to retrieve a single

relevant segment.

6.2 Hard Queries

Some queries can be considered “harder” for the segment retrieval task (Karlgren et al.,

2021), both for the QA retriever and the baseline retriever. A partial explanation for

performance loss on some queries lies in the difficulty of handling certain terms at both

the transcription and retrieval levels. Topic 42’s keyword query was “fyre festival”,

referring to a specific failed music festival in 2017, but the word “fyre” was often

mistranscribed as “fire”. As a result, retrieval on Topic 42 produced a mix of segments

related to music festivals and segments related to fire, but none related to the actual Fyre

Festival.

At the retrieval stage, the two retrievers also struggled with homonyms and phrases

with multiple meanings. For example, Topic 23 aimed to find segments related to

the 2019 fire at the Notre Dame Cathedral in Paris. However, retrieval mainly returned

segments from college football podcasts discussing theUniversity ofNotreDame football

team, as well as recent firings of head coaches at other schools. Since both the QA run

and the baseline run struggled with Topic 42 and Topic 23, the difficulty may present

itself during the BM25 ranking.

Another factor in making certain queries more difficult than others is the addition

of negative qualifiers. Many of the topic descriptions contain some sort of discussion

on what kind of information is relevant to the query. One description may specify that

first-hand accounts are highly relevant, while another may be looking for news reports.

Some descriptions explicitly define types of segments that are not relevant. For example,

46

a topic description may specify that it is specifically not looking for a historical account

of an event. Thus, any podcasts which may be otherwise relevant but contain historical

accounts are instead graded as irrelevant.

These negative qualifiers only appear in topical queries, in which 9 out of 35 topic

descriptions contain a negative qualifier. The average number of relevant segments

retrieved from a topical query in the QA run is 8.971. Of the 9 negatively qualified

topics, only two of them resulted in more than the average number of relevant segments.

Thus, seven topics fall below the average. This suggests that adding negative qualifiers

impacts relevancy by restricting the domain of segments, making the query harder than

one which relaxes its definition of relevancy to the topic.

6.3 Relevant Documents for Answer Extraction

QA retrieval outperformed the BM25 baseline in recall@5 and recall@10, though the

baseline outperformed QA in recall@15 and recall@20, as seen in Figure 5.5. From

Equation 2.2, recall is defined as the number of relevant documents retrieved by a search

engine divided by the total number of relevant documents in the set of documents.

A higher recall value at an earlier ranking position means that more of the relevant

documents, proportional to the number of relevant documents in the set, appear earlier in

the ranking. This is why the QA run can have a higher recall at earlier ranking positions

while retrieving 20.45% less relevant documents than the baseline in total.

Indeed, more of the QA run’s relevant documents are clustered towards the top of

the rankings. QA retrieval placed 31.30% of its relevant documents in the top 5 rank

positions, making up 33.14% of total relevance scores. Contrast this with the baseline

placing 26.94% of its relevant documents in the top 5, making up 29.97% of its total

relevance scores.

47

Furthermore, Tables 5.3 and 5.4 show that the baseline’s average score for relevant

segments is only 0.102 higher than the QA run. In fact, QA retrieval actually outperforms

the baseline in topical queries by 0.035 in this metric. This suggests that the relevant

documents retrieved by QA and the baseline are comparably relevant. However, QA

finds less of these relevant documents than the baseline.

The high recall at early ranking positions, the clustering of relevant documents to-

wards the top of the rankings, and the similar average scores among the QA run and

the baseline for relevant documents suggest that QA retrieval is effective at finding and

properly ranking relevant segments within input text that contains relevant information.

However, the comparatively low number of total relevant documents for the QA run sug-

gests that QA retrieval fails to find an adequate number of relevant candidate documents

during first-stage BM25 retrieval on the index of full episode transcripts. Exploring this

deficiency allows for the identification of two potential causes.

First, as shown in Lv and Zhai (2011), BM25 can “overly penalize very long docu-

ments”, leading to inaccurate rankings. This becomes an issue when the length of doc-

uments varies, as episode lengths do. In contrast, segment lengths are time-constricted,

whichmakes their transcript lengthsmore uniform. Additionally, the length of an episode

is strictly greater than or equal to the length of each of its segments. Thus, BM25 may

struggle to accurately rank long episodes with portions that are very relevant, but that

switch between multiple discussion topics throughout the episode.

Second, and perhaps more critically, the QA system only retrieves one segment per

episode. In contrast, the BM25 baseline can retrieve multiple segments from the same

episode. An average of 7.78, or 38.9%, of segments per topic in the baseline’s rankings

are not from unique episodes. Thus, there exist multiple relevant segments in some

episodes. This makes sense in the context of podcasts, as a conversation that mentions a

48

topic may last longer than a minute. A podcast may also mention a topic multiple times

scattered throughout the episode.

The QA retriever, as currently implemented, extracts one optimal answer per candi-

date document. Thus, an answer from a document with multiple relevant segments will

be ranked highly, but it will only contribute one segment. Instead of adding additional

relevant segments to the set of ranked documents, as the baseline does, the QA retriever

will look for answers in less relevant documents, depressing its score for some evaluated

metrics.

This last point brings up the question of user goals in segment retrieval. If users

are interested in finding the single most representative snippet from a corpus, as in

the featured snippets used by search engines today, then multiple segments from the

same episode are not as useful. Discussion regarding the difference that this makes in

addressing user goals takes place in Section 7.3.

49

Chapter 7

Conclusion

This thesis explored the use of end-to-end question-answering for segment retrieval on

a large dataset of podcast transcripts. Experimentation showed that while QA retrieval

was able to effectively rank relevant segments, it failed at identifying enough candidate

documents containing relevant information to outperform a BM25 baseline in overall

ranking evaluation metrics. Some of the limitations affecting experimentation and

implementation design are mentioned in Section 7.1. Based on the background explored

in Chapter 2, the approach using end-to-end QA has theoretical merit, and further work

to improve performance is described in Section 7.2. Finally, Section 7.3 discusses the

implications of certain user goals and presents closing remarks.

7.1 Limitations

The evaluation process was limited to a human-judged annotation depth of one for each

segment. Segments retrieved by QA were expanded from arbitrary answer spans in the

text, so they did not correspond with the predetermined segment index. Thus, each

segment needed to be judged by a human annotator. To maintain a consistent grading

standard, the human annotator also graded the baseline results rather than using the

results from TREC. Adding additional annotation depth through crowdsourcing would

increase confidence for segments’ scores but at the cost of many hours of labor.

50

At TREC 2020 and TREC 2021, most other approaches to segment retrieval, much

like the retrieval system implemented in this thesis, involved transfer learning by fine-

tuning a pre-trained model like BERT without further model training for the podcast

domain (Jones, Carterette, et al., 2021; Karlgren et al., 2021). The small number of

training and test topics, 108 in total between the two years, along with the scarcity of

segment annotations makes it difficult to train models to operate on the salient points of

the podcast dataset. The podcast track has been paused for 2022 to reevaluate participant

tasks and focus more on the podcast domain. In future years, the track may provide

participants with more richly labeled data.

7.2 Future Work

Asmentioned in Section 6.3, the QA retriever may struggle to accurately rank transcripts

for long episodes in the first stage of retrieval. A possible solution to this would be using

a different IR model for the first stage, such as the BM25L model described by Lv and

Zhai (2011), that improves performance for long documents. Another issue from Section

6.3 was the selection of only one answer per candidate document. The retriever could

be modified to retrieve more than one answer per document. However, extra care would

need to be taken to ensure that the answer spans are not overlapping or so close together

as to be redundant. An approach that would address both issues could be to operate

on the index of predetermined segments directly. However, the aim of this thesis was

to investigate the viability of end-to-end question-answering. Simply using the answer

span’s score to determine a segment’s ranking would turn the process into an answer

selection task or a segment reranking task.

It is also not guaranteed that the two-minute long segments starting on the minute are

always the best segments. They may include irrelevant information, begin in the middle

51

of a discussion, or cut off relevant information at the end of the segment. The answer

expansion method for the QA retriever was chosen for ease of comparison with the

predetermined segments, so these segments suffer from the same drawbacks. Building

more sophisticated models to handle answer span expansion would improve segment

quality, as well as provide a distinct advantage for QA retrieval over answer selection or

segment reranking.

The BERT Base reader has a sequence length of 768 (Devlin et al., 2018), meaning

that long documents are operated on in chunks to preserve the effectiveness of the

attention mechanism. To better handle answer extraction from long episodes, it may

be beneficial to explore using a model specialized for long sequences. One such model

is Longformer, which can process sequences up to 4,096 tokens long by mixing local

attentionwindowswith a global attentionmechanism (Beltagy, Peters, andCohan, 2020).

7.3 Segment Retrieval for Answering Questions

Podcast search has been compared to blog search in the literature (Besser, Hofmann,

Larson, et al., 2008; Jones, Zamani, et al., 2021; Jones, Carterette, et al., 2021). Blog

search differs from conventional web search in that the user goal mainly consists of

informational queries (Besser, Hofmann, Larson, et al., 2008) as opposed to navigational

or transactional queries (Broder, 2002). The similarity in user goals between blog search

and podcast search is reflected in the topical type query topics in the segment retrieval

task that are looking for relevant information, but not necessarily a specific resource.

A fundamental motivation for an informational query is the need to answer a question.

In the podcast domain, a user may want to find a podcast segment that answers their

question with the option to listen to the rest of the podcast. If the user wishes to answer

a question using segment retrieval, it is highly unlikely that they look at the entire list of

52

results (Croft, Metzler, and Strohman, 2010). In all likelihood, they will only concern

themselves with the few highest ranked items (Croft, Metzler, and Strohman, 2010).

The segment retrieval task as described by TREC may not be the ideal use case

for a question-answering segment retriever. However, if the user goal is to retrieve

a representative segment for a podcast episode’s relevance to a query, then retrieving

multiple segments from the same episode, as the baseline does, is not desirable. Although

research has been conducted on user goals for podcast search, it would be beneficial to

further investigate the user goals of segment retrieval on podcasts, specifically. The

benefits of the QA segment retriever’s architecture may present themselves more clearly

for this alternate definition of segment retrieval.

While the QA retriever described in this thesis underperformed the baseline for the

defined segment retrieval task, it shows promise in its ability to retrieve and properly

rank relevant segments for the most relevant documents. As noted above, this is the

most important attribute of a good search system in relation to the actual user goal in

informational queries, especially so when the query is a question. When the user’s goal

is to answer questions, question-answering shows promise as a viable tool for segment

retrieval on podcast transcripts.

53

Bibliography

Bahdanau,Dzmitry,KyunghyunCho, andYoshuaBengio (2014). “Neuralmachine trans-

lation by jointly learning to align and translate”. In: arXiv preprint arXiv:1409.0473.

Beltagy, Iz, Matthew E Peters, and Arman Cohan (2020). “Longformer: The long-

document transformer”. In: arXiv preprint arXiv:2004.05150.

Besser, Jana, Katja Hofmann, Martha A Larson, et al. (2008). “An Exploratory Study of

User Goals and Strategies in Podcast Search.” In: LWA. Citeseer, pp. 27–34.

Broder, Andrei (2002). “A taxonomy of web search”. In: ACM Sigir forum. Vol. 36. 2.

ACM New York, NY, USA, pp. 3–10.

Chelba, Ciprian, Timothy J Hazen, and Murat Saraclar (2008). “Retrieval and browsing

of spoken content”. In: IEEE Signal Processing Magazine 25.3, pp. 39–49.

Cho, KyungHyun et al. (2014). “On the Properties of Neural Machine Translation:

Encoder-Decoder Approaches”. In: CoRR abs/1409.1259. arXiv: 1409.1259. url:

http://arxiv.org/abs/1409.1259.

Clark, Kevin et al. (2019). “What does bert look at? an analysis of bert’s attention”. In:

arXiv preprint arXiv:1906.04341.

Clifton, Ann et al. (Dec. 2020). “100,000 Podcasts: A Spoken English Document Cor-

pus”. In: Proceedings of the 28th International Conference on Computational Lin-

guistics. Barcelona, Spain (Online): International Committee on Computational Lin-

guistics, pp. 5903–5917. doi: 10.18653/v1/2020.coling- main.519. url:

https://aclanthology.org/2020.coling-main.519.

Croft, W Bruce, Donald Metzler, and Trevor Strohman (2010). Search engines: Infor-

mation retrieval in practice. Vol. 520. Addison-Wesley Reading.

54

https://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
https://doi.org/10.18653/v1/2020.coling-main.519
https://aclanthology.org/2020.coling-main.519

Devlin, Jacob et al. (2018). “Bert: Pre-training of deep bidirectional transformers for

language understanding”. In: arXiv preprint arXiv:1810.04805.

Edison Research (2020). The Infinite Dial 2020. Tech. rep.

Jones, Rosie, Ben Carterette, et al. (2021). “TREC 2020 Podcasts Track Overview”. In:

arXiv preprint arXiv:2103.15953.

Jones, Rosie, Hamed Zamani, et al. (2021). “Current Challenges and Future Directions

in Podcast Information Access”. In: arXiv preprint arXiv:2106.09227.

Karlgren, Jussi et al. (2021). “TREC 2021 Podcasts Track Overview”.

Lin, Jimmy et al. (2021). “Pyserini: A Python Toolkit for Reproducible Information

Retrieval Research with Sparse and Dense Representations”. In: Proceedings of the

44th Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval (SIGIR 2021), pp. 2356–2362.

Listen Notes (2022). Podcast stats: How many podcasts are there? url: https://www.

listennotes.com/podcast-stats/.

Lv, Yuanhua and ChengXiang Zhai (2011). “When Documents Are Very Long, BM25

Fails!” In:Proceedings of the 34th International ACMSIGIRConference on Research

and Development in Information Retrieval. SIGIR ’11. Beijing, China: Association

for Computing Machinery, pp. 1103–1104. isbn: 9781450307574. doi: 10.1145/

2009916.2010070. url: https://doi.org/10.1145/2009916.2010070.

Pérez-Iglesias, Joaquín et al. (2009). “Integrating the probabilisticmodels BM25/BM25F

into Lucene”. In: arXiv preprint arXiv:0911.5046.

Rajpurkar, Pranav et al. (2016). “Squad: 100,000+ questions for machine comprehension

of text”. In: arXiv preprint arXiv:1606.05250.

Robertson, Stephen, Hugo Zaragoza, et al. (2009). “The probabilistic relevance frame-

work: BM25 and beyond”. In: Foundations and Trends® in Information Retrieval

3.4, pp. 333–389.

55

https://www.listennotes.com/podcast-stats/
https://www.listennotes.com/podcast-stats/
https://doi.org/10.1145/2009916.2010070
https://doi.org/10.1145/2009916.2010070
https://doi.org/10.1145/2009916.2010070

Vaswani, Ashish et al. (2017). “Attention is all you need”. In: Advances in neural

information processing systems, pp. 5998–6008.

Voorhees, Ellen M. and Dawn M. Tice (May 2000). “The TREC-8 Question Answer-

ing Track”. In: Proceedings of the Second International Conference on Language

Resources and Evaluation (LREC’00). Athens, Greece: European Language Re-

sources Association (ELRA). url: http://www.lrec-conf.org/proceedings/

lrec2000/pdf/26.pdf.

Weerkamp, Wouter, Krisztian Balog, and Maarten de Rijke (2009). “A generative blog

post retrieval model that uses query expansion based on external collections”. In:

Proceedings of the joint conference of the 47th annual meeting of the ACL and the

4th international joint conference on natural language processing of the AFNLP,

pp. 1057–1065.

Wu, Yonghui et al. (2016). “Google’s neural machine translation system: Bridging the

gap between human and machine translation”. In: arXiv preprint arXiv:1609.08144.

Yang, Wei et al. (2019). “End-to-end open-domain question answering with bertserini”.

In: arXiv preprint arXiv:1902.01718.

Yu, Yongze et al. (2020). “Spotify at the TREC 2020 Podcasts Track: Segment Retrieval”.

In: Proceedings of the Twenty-Ninth Text REtrieval Conference (TREC 2020).

56

http://www.lrec-conf.org/proceedings/lrec2000/pdf/26.pdf
http://www.lrec-conf.org/proceedings/lrec2000/pdf/26.pdf

Chapter A

Selected Source Code

The full source code for this thesis can be found at https://github.com/oudalab/

EQUIP.

57

https://github.com/oudalab/EQUIP
https://github.com/oudalab/EQUIP

{
"topics": "topics/podcasts_2020_topics_test.json",
"index": "podcast_pyserini_indices/lucene-index.podcasts-
full-transcript.pos+docvectors+rawdocs",

"bert_model": "rsvp-ai/bertserini-bert-base-squad",
"bert_tokenizer": "rsvp-ai/bertserini-bert-base-squad",
"results": "results/bert/",
"num_hits": 500,
"num_answers": 20,
"score_weight": 0.5,
"segment_radius": 170,
"args_to_change": {
"max_query_length": 128,
"max_answer_length": 64

}
}

Figure A.1: Configuration file config.json containing arguments for the experiment.

#!/ bin /bash
#
#SBATCH −−partition=normal
#SBATCH −−ntasks=1
#SBATCH −−mem=20G
#SBATCH −−output=output/topic_9_output_bert.txt
#SBATCH −−error=output/topic_9_error_bert.txt
#SBATCH −−time=24:00:00
#SBATCH −−job−name=Topic_9_Bert_Retrieval
#SBATCH −−mail−user=andrewelaryan@ou.edu
#SBATCH −−mail−type=ALL
#SBATCH −−chdir=/work/andrewe/EQUIP
#
###
module load Java /11.0.2
module load Python/3.7.4−GCCcore−8.3.0
time python src / qa_searcher .py 9

Figure A.2: SBATCH job for topic 9 on OSCER topic_9_bert.sbatch.

58

def main():
Load configs and command line arguments
...

Initialize the BERT reader using the model and tokenizer
bert_reader = BERT(model, tokenizer)
Update certain arguments in the BERT Reader
bert_reader.update_args(args_to_change)
Build a Pyserini searcher (defaults to BM25)
searcher = build_searcher(index)
Keyword query
keyword = Question(topic[’query’])
Detailed description
description = topic[’description’]
Concatenate the keyword to the description to create the

question for QA
question = Question(keyword.text + " " + description)
Retrieve the k best candidate episodes using BM25
candidate_episodes = retriever(keyword, searcher , k)
Use the BERT reader to find answers to the question in the

context
candidate_answers = bert_reader.predict(question,

candidate_episodes)
Register the top n best answers using the configured weight
answers = get_n_best_answers(candidate_answers , n, weight)
Retrieve the full episode transcipts
docs = [searcher.doc(answer.metadata).raw() for answer in

answers]
Expand the answers to include the specified radius of text

in the document
segments = construct_segments(docs, answers, segment_radius)
Format the results object
results = build_results(segments, answers, docs)
Write all results to a single file
write_results(results_folder , topic_num , results)

Figure A.3: Main function for the segment retrieval process qa_searcher.py.

59

class Answer:
"""
Class representing an answer.
A answer contains the answer text itself and potentially other

metadata.
Parameters

text : str

The answer text.
metadata : Mapping[str, Any]

Additional metadata and other annotations.
score : Optional[float]

The score of the answer.
ctx_score : Optional[float]

The context score of the answer.
total_score : Optional[float]

The aggregated score of answer score and ctx_score.
start_idx: Optional[int]

The answer’s start index in the original document.
end_idx: Optional[int]

The answer’s end index in the original document.
"""

def __init__(self,
text: str,
language: str = "en",
metadata: Mapping[str, Any] = None,
score: Optional[float] = 0,
ctx_score: Optional[float] = 0,
total_score: Optional[float] = 0,
start_idx: Optional[int] = 0,
end_idx: Optional[int] = 0):

self.text = text
self.language = language
if metadata is None:

metadata = dict()
self.metadata = metadata
self.score = score
self.ctx_score = ctx_score
self.total_score = total_score
Added fields to store answer’s start and end indices from

original document
self.start_idx = start_idx
self.end_idx = end_idx

Figure A.4: Modified Answer class in bertserini_modified/base.py.

60

...

answers, _ = compute_predictions_logits(
all_examples=examples,
all_features=features,
all_results=all_results ,
n_best_size=self.args["n_best_size"],
max_answer_length=self.args["max_answer_length"],
do_lower_case=self.args["do_lower_case"],
output_prediction_file=self.args["output_prediction_file"],
output_nbest_file=self.args["output_nbest_file"],
output_null_log_odds_file=self.args["

output_null_log_odds_file"
],

verbose_logging=self.args["verbose_logging"],
version_2_with_negative=self.args["version_2_with_negative"],
null_score_diff_threshold=self.args["

null_score_diff_threshold"
],

tokenizer=self.tokenizer ,
language=question.language

)

all_answers = []
for idx, ans in enumerate(answers):

all_answers.append(Answer(
text=answers[ans][0],
score=answers[ans][1],
ctx_score=contexts[idx].score,
Add the docid to the answer’s metadata
metadata=contexts[idx].metadata[’docid’],
language=question.language,
Add the answer’s start index
start_idx=answers[ans][2],
Add the answer’s end index
end_idx=answers[ans][3]

))
return all_answers

Figure A.5: Snippet of modified BERT reader in bertserini_modified/bert_reader.py.

61

Chapter B

Segment Grading Rubric

Perfect (4): this grade is used only for “known-item” and “refinding” topic types. It

reflects the segment that is the earliest entry point into the one episode that the user is

seeking.

Excellent (3): the segment conveys highly relevant information, is an ideal entry

point for a human listener, and is fully on topic. An example would be a segment that

begins at or very close to the start of a discussion on the topic, immediately signaling

relevance and context to the user.

Good (2): the segment conveys highly-to-somewhat relevant information, is a good

entry point for a human listener, and is fully to mostly on topic. An example would be a

segment that is a few minutes “off” in terms of position, so that while it is relevant to the

user’s information need, they might have preferred to start two minutes earlier or later.

Fair (1): the segment conveys somewhat relevant information, but is a sub-par entry

point for a human listener and may not be fully on topic. Examples would be segments

that switch from non-relevant to relevant (so that the listener is not able to immediately

understand the relevance of the segment), segments that start well into a discussion

without providing enough context for understanding, etc.

Bad (1): the segment is not relevant.

62

Chapter C

Output of trec_eval for all Test Topics, QA Retrieval

runid all oudalab_bert

num_q all 50

num_ret all 993

num_rel all 361

num_rel_ret all 361

map all 0.5262

gm_map all 0.1655

Rprec all 0.4451

bpref all 0.3936

recip_rank all 0.6228

iprec_at_recall_0.00 all 0.6770

iprec_at_recall_0.10 all 0.6711

iprec_at_recall_0.20 all 0.6538

iprec_at_recall_0.30 all 0.5999

iprec_at_recall_0.40 all 0.5633

iprec_at_recall_0.50 all 0.5531

iprec_at_recall_0.60 all 0.5289

iprec_at_recall_0.70 all 0.5054

iprec_at_recall_0.80 all 0.4752

iprec_at_recall_0.90 all 0.4527

63

iprec_at_recall_1.00 all 0.4482

P_5 all 0.4520

P_10 all 0.4260

P_15 all 0.3880

P_20 all 0.3610

P_30 all 0.2407

P_100 all 0.0722

P_200 all 0.0361

P_500 all 0.0144

P_1000 all 0.0072

recall_5 all 0.2960

recall_10 all 0.5560

recall_15 all 0.7291

recall_20 all 0.9000

recall_30 all 0.9000

recall_100 all 0.9000

recall_200 all 0.9000

recall_500 all 0.9000

recall_1000 all 0.9000

infAP all 0.5262

gm_bpref all 0.0242

Rprec_mult_0.20 all 0.5233

Rprec_mult_0.40 all 0.5032

Rprec_mult_0.60 all 0.4759

Rprec_mult_0.80 all 0.4490

Rprec_mult_1.00 all 0.4451

64

Rprec_mult_1.20 all 0.4218

Rprec_mult_1.40 all 0.3953

Rprec_mult_1.60 all 0.3705

Rprec_mult_1.80 all 0.3446

Rprec_mult_2.00 all 0.3290

utility all -5.4200

11pt_avg all 0.5571

binG all 0.4723

G all 0.3869

ndcg all 0.6193

ndcg_rel all 0.5220

Rndcg all 0.4735

ndcg_cut_5 all 0.4057

ndcg_cut_10 all 0.4919

ndcg_cut_15 all 0.5560

ndcg_cut_20 all 0.6193

ndcg_cut_30 all 0.6193

ndcg_cut_100 all 0.6193

ndcg_cut_200 all 0.6193

ndcg_cut_500 all 0.6193

ndcg_cut_1000 all 0.6193

map_cut_5 all 0.2315

map_cut_10 all 0.3675

map_cut_15 all 0.4537

map_cut_20 all 0.5262

map_cut_30 all 0.5262

65

map_cut_100 all 0.5262

map_cut_200 all 0.5262

map_cut_500 all 0.5262

map_cut_1000 all 0.5262

relative_P_5 all 0.4920

relative_P_10 all 0.6226

relative_P_15 all 0.7394

relative_P_20 all 0.9000

relative_P_30 all 0.9000

relative_P_100 all 0.9000

relative_P_200 all 0.9000

relative_P_500 all 0.9000

relative_P_1000 all 0.9000

success_1 all 0.5000

success_5 all 0.7800

success_10 all 0.8600

set_P all 0.3648

set_relative_P all 0.9000

set_recall all 0.9000

set_map all 0.3648

set_F all 0.4775

num_nonrel_judged_ret all 632

66

Chapter D

Output of trec_eval for all Test Topics, BM25 Retrieval

Baseline

runid all oudalab_bm25

num_q all 50

num_ret all 1000

num_rel all 568

num_rel_ret all 568

map all 0.6976

gm_map all 0.3416

Rprec all 0.6390

bpref all 0.5553

recip_rank all 0.7850

iprec_at_recall_0.00 all 0.8320

iprec_at_recall_0.10 all 0.8099

iprec_at_recall_0.20 all 0.7891

iprec_at_recall_0.30 all 0.7499

iprec_at_recall_0.40 all 0.7187

iprec_at_recall_0.50 all 0.7177

iprec_at_recall_0.60 all 0.6959

iprec_at_recall_0.70 all 0.6844

67

iprec_at_recall_0.80 all 0.6772

iprec_at_recall_0.90 all 0.6566

iprec_at_recall_1.00 all 0.6465

P_5 all 0.6120

P_10 all 0.6100

P_15 all 0.5853

P_20 all 0.5680

P_30 all 0.3787

P_100 all 0.1136

P_200 all 0.0568

P_500 all 0.0227

P_1000 all 0.0114

recall_5 all 0.2861

recall_10 all 0.5319

recall_15 all 0.7495

recall_20 all 0.9400

recall_30 all 0.9400

recall_100 all 0.9400

recall_200 all 0.9400

recall_500 all 0.9400

recall_1000 all 0.9400

infAP all 0.6976

gm_bpref all 0.1627

Rprec_mult_0.20 all 0.7100

Rprec_mult_0.40 all 0.6623

Rprec_mult_0.60 all 0.6488

68

Rprec_mult_0.80 all 0.6410

Rprec_mult_1.00 all 0.6390

Rprec_mult_1.20 all 0.5668

Rprec_mult_1.40 all 0.5099

Rprec_mult_1.60 all 0.4622

Rprec_mult_1.80 all 0.4267

Rprec_mult_2.00 all 0.4021

utility all 2.7200

11pt_avg all 0.7253

binG all 0.6405

G all 0.4842

ndcg all 0.7450

ndcg_rel all 0.6532

Rndcg all 0.6123

ndcg_cut_5 all 0.5570

ndcg_cut_10 all 0.6200

ndcg_cut_15 all 0.6831

ndcg_cut_20 all 0.7450

ndcg_cut_30 all 0.7450

ndcg_cut_100 all 0.7450

ndcg_cut_200 all 0.7450

ndcg_cut_500 all 0.7450

ndcg_cut_1000 all 0.7450

map_cut_5 all 0.2543

map_cut_10 all 0.4238

map_cut_15 all 0.5673

69

map_cut_20 all 0.6976

map_cut_30 all 0.6976

map_cut_100 all 0.6976

map_cut_200 all 0.6976

map_cut_500 all 0.6976

map_cut_1000 all 0.6976

relative_P_5 all 0.6540

relative_P_10 all 0.7353

relative_P_15 all 0.8231

relative_P_20 all 0.9400

relative_P_30 all 0.9400

relative_P_100 all 0.9400

relative_P_200 all 0.9400

relative_P_500 all 0.9400

relative_P_1000 all 0.9400

success_1 all 0.7200

success_5 all 0.8800

success_10 all 0.9200

set_P all 0.5680

set_relative_P all 0.9400

set_recall all 0.9400

set_map all 0.5680

set_F all 0.6523

num_nonrel_judged_ret all 432

70

	Dedication
	Acknowledgements
	List Of Tables
	List Of Figures
	Abstract
	Introduction
	Motivation
	Problem Statement
	Proposed Approach

	Background
	Podcasts
	Ranking Evaluation
	Precision and Recall
	Normalized Discounted Cumulative Gain (nDCG)

	BM25 Ranking
	Transformer Models for Natural Language Tasks
	Encoder-Decoder Architecture
	Attention
	Self-attention and the Transformer
	Computing Attention
	Multi-Head Attention
	Benefits of Self-Attention

	Bidirectional Encoder Representations from Transformers
	BERT's Architecture
	Pre-training
	Fine-tuning and Task-specific Application

	End-to-end Question-Answering
	Stanford Question Answering Dataset (SQuAD)
	Bertserini

	Methods
	Data
	Topics
	QA Segment Retrieval

	Experiments
	Results
	Segment Relevance
	Ranking Effectiveness

	Discussion
	Effectiveness Differences Between Topic Types
	Hard Queries
	Relevant Documents for Answer Extraction

	Conclusion
	Limitations
	Future Work
	Segment Retrieval for Answering Questions

	Bibliography
	Appendix
	Selected Source Code
	Segment Grading Rubric
	Output of trec_eval for all Test Topics, QA Retrieval
	Output of trec_eval for all Test Topics, BM25 Retrieval Baseline

