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CAN ROLLOVER HEDGING INCREASE MEAN RETURNS? 

ABSTRACT 

Both market advisors and researchers have often suggested rollover hedging as a 

way to increase producer returns. This study determines whether rollover hedging can 

increase expected returns for producers. For rollover hedging to increase expected 

returns, futures prices must follow a mean-reverting process. To test for the existence of 

mean reversion in agricultural commodity prices, this study uses a longer set of price data 

and a wider range of test procedures than past research. Using both the return 

predictability test based on long-horizon regression and the variance ratio test, we find 

that mean reversion does not exist in futures prices for com, wheat, soybeans, soybean oil 

and soybean meal. The findings are consistent with the weak form of market efficiency. 

Simulated trading results for three-year rollover hedges provide additional evidence that 

the expected returns to the rollover hedging strategies are not statistically different from 

the expected returns to routine annual hedges and cash sale at harvest. The results of the 

study imply that rollover hedging should not be seriously considered as a marketing 

alternative. 

Key Words: rollover hedging, mean reversion, random walk, market efficiency 
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CAN ROLLOVER HEDGING INCREASE MEAN RETURNS? 

Introduction 

When agricultural commodity prices are unusually high, producers are tempted to 

try to lock in prices for several years of production at the high levels. Some have argued 

that producers can capture the benefits of higher prices over an extended period of time 

by rollover hedging (Gardner, 1989; Kenyon and Beckman, 1997). Rollover hedging 

recommendations were also made in the popular press and extension literature when crop 

prices were high as recently as 1996. For example, Farm Journal economist, Bob 

Utterback, recommended the following strategy (p, 7, Farm Journal, 1996). 

The trigger for selling multiple years' crops is a close in the lead-month futures 

below the 18-day moving average; we'll buy September put options two strikes 

in the money. My plan is to price 100% of expected 1997 production when the 

trigger is tripped, and the '98 and '99 crops if the trigger occurs above $4. 

Then we'll convert the put options to futures.when weather scares are past, and 

just keep rolling them forward. 

The price changes of agricultural commodities in recent years have been dramatic 

and major crops recorded historical highs in mid-1996 and prices are now quite low. The 

price variability of agricultural commodities is expected to increase since the 1996 farm 

bill is more market-oriented and removes target prices for wheat, feedgrains, and cotton. 

With larger price volatility, the interest in rollover hedging is likely to increase. 
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The available empirical literature (Gardner, 1989; Huang, Turner, and Houston, 

1994; Kenyon and Beckman, 1997; Conley and Almonte-Alvarez, 1998) suggests that 

rollover hedging is poorly understood. This literature has used sample sizes that are too 

small to be conclusive and also generally fails to recognize the connections between 

rollover hedging, market efficiency, and the underlying stochastic process. 

A recent survey of extension marketing economists found that a majority of 

extension economists did not disagree with the statement that rollover hedging can 

increase expected returns (Brorsen and Anderson, 1999). Given the widespread failure of 

hedge-to-arrive contracts, the survey result is surprising. Lenee and Hayenga ( 1998) 

argue that it is infeasible for hedge-to arrive contracts involving interyear rollover 

hedging to lock in high current prices for crops to be harvested one or more years in the 

future. Yet, their results still leave open the possibility of a small increase in returns. 

Rollover hedging is different from standard hedging in that it involves 

continuously switching from a nearby futures contract to a more distant futures contract. 

In rollover hedging, the hedger first opens a position in a nearby futures contract and later 

closes it while simultaneously opening the same position using a more distant futures 

contract. 

For rollover hedging to increase expected returns, futures price movements should 

follow a mean reversion process, where price gradually moves toward its underlying 

fundamental value whenever it deviates from the underlying value (Ross, 1997). A mean 

reversion price process violates the efficient market hypothesis that is associated with the 

assertion that futures price changes are unpredictable. Cash prices should be mean 

reverting as long-run adjustments in supply and demand force cash prices back to their 
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long-term equilibrium. In an efficient market, the mean reversion of cash prices would 

have been foreseen by futures traders, and there would be no mean reversion in 

individual futures contracts. 

This paper primarily aims to determine whether rollover hedging can be used to 

increase mean returns for producers. Specifically, this study will determine if cash and 

futures prices are mean reverting in com, soybeans, and wheat markets using two 

different statistical tests. Futures prices must be mean reverting for rollover hedging to 

increase expected returns. In addition, simulations will be conducted to provide 

additional evidence about whether rollover hedging can increase expected returns. Past 

simulation studies had too few observations to have any confidence in them. This study 

uses more commodities and longer time series than past research. Further, while Irwin, 

Zulauf, and Jackson (1996) have examined mean reversion for a subset of the dataset 

used here, past studies have not included both mean reversion tests and simulation 

studies, which makes it difficult to determine if differences in results are due to 

differences in techniques or differences in data. 

Theories of Mean :a..eversion 

Since Fama's (1970) discussion of efficient capital markets, the efficient market 

hypothesis (EMH) has become the dominant paradigm used by economists to understand 

and investigate the behavior of financial and commodity markets. The efficient market 

hypothesis holds that the market adjusts so quickly to new information that there exist no 

trading rules that consistently outperform the market in terms of expected returns. Even if 
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there are inefficiencies, they are expected to be either too small or too short-lived to be 

exploited by investors. Thus, it is best for investors in the stock market to buy and hold a 

diversified market portfolio rather than attempt to time investments to beat the market. 

The implication of market efficiency for agricultural marketing strategies is that any 

sophisticated marketing strategy is no better than a naive cash sale at harvest. 

However, in contrast to the efficient market hypothesis, a substantial number of 

anomalies in asset prices have been documented by financial researchers. Some have 

found mean reversion in asset prices and further suggested that asset prices are somewhat 

predictable. The literature explaining market inefficiencies and mean reversion in asset 

prices focuses on investor irrationality (noise) and temporary deviations of market price 

from its fundamental value. On the other hand, the mean reversion in stock prices perhaps 

should have been expected and it may not represent an inefficiency. A stock price has 

more in common with a commodity cash price than with a futures price. 

Biases of Judgment and Decision Making 

Various literature on cognitive psychology and behavioral finance has 

documented systematic biases in the way people use information and make decisions. 

There are many systematic errors of judgment and decision making that are relevant for 

investor behavior in financial and commodity markets. 

Kahneman, et al. (1982), and Kahneman and Riepe (1998) argue that first, 

investors tend to be overconfident or overoptimistic in their own abilities, which makes 

them bear more risk or attribute their investment success to skill rather than luck. Second, 

when only a few observations are available, investors tend to place too much weight on 
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the available data and thus make erroneous inferences (fallacy of small numbers). Third, 

investors tend to think backward and consistently exaggerate what they knew in foresight 

(hindsight bias). They not only tend to view what has happened as having been inevitable 

but also to view it as having appeared relatively inevitable before it happened. Thus, 

hindsight is an important element of investor overconfidence and a cause of regret ( or 

myopic loss aversion). Fourth, investors put too little weight on background information 

and too much weight on new information in making inferences, which might lead them to 

overreact to news. Finally, investors tend to extrapolate recent trends into the future that 

are at odds with long-run averages and statistical odds, which can lead them to chase 

trends. When their naive extrapolation of the past time series is not warranted by 

fundamentals, prices reverse toward their long-run mean. 

Behavioral finance offers some theoretical support for mean reversion in futures 

prices. However, previous research on rollover hedging (Gardner, 1989; Huang, Turner, 

and Houston, 1994; Kenyon and Beckman, 1997; Conley and Almonte-Alvarez, 1998) 

may be tainted by the fallacy of small numbers or hindsight bias. 

Overreaction or Overshooting 

Using evidence from cognitive psychology, De Bondt and Thaler (1985, 1987) 

argue that the stock market systematically overreacts to news about fundamentals. 

Rausser and Walraven (1990) also argue that agricultural commodity markets overreact 

to a disturbance (e.g., droughts and other weather-related phenomena) and therefore, 

prices of agricultural commodities overshoot their final equilibrium levels. 
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As a consequence of investor overreaction, asset prices may temporarily depart 

from their underlying fundamental values. When pricing errors due to overreaction bias 

are eventually corrected, asset prices revert to their long-term mean. This investor 

overreaction hypothesis suggests that, on average, assets that have performed poorly 

(well) in one period will earn above-average (below-average) returns in the next period. 

Thus, a contrarian strategy of buying past losers and selling past winners should yield 

abnormal returns. 

Fads or Speculative Bubbles 

Shiller (1981), and Poterba and Summers (1988) argue that asset prices are 

heavily affected by fads or waves of optimistic or pessimistic market psychology. The 

fashions and fads in investor attitudes often drive the market price from its fundamental 

value and induce excess volatility. When the fads end, the prices revert to their mean ( or 

negative autocorrelations in returns) and therefore, the speed of mean reversion depends 

on how quickly fads die out. 

Similarly, Summers (1986), West (1988), and McQueen and Thorley(1994) 

explain anomalies in asset prices by a speculative bubble. A bubble process is 

characterized by a long run-up in price ( or a long run of many small positive abnormal 

returns) followed by a dramatic price drop or crash (relatively few large negative 

abnormal returns). When an explosive or consistently cumulative deviation of an asset 

price from its fundamental value finally ends, price reverts back to its fundamental value. 

According to these explanations, mean reversion in asset prices occurs during the process 

in which transitory pricing errors induced by fads or speculative bubbles are corrected. 
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Time-Varying Risk Premium 

For speculators who act as insurers to be induced to trade, they must be paid risk 

premium for bearing the risks hedgers wish to transfer. This implies that speculators 

receive positive returns as compensation for risk, while hedgers pay to reduce their risks. 

The compensation to the speculator is made by the difference between the current futures 

price and the expected future spot price. 

Hartzmark (1987), and Fama and French (1987, 1988) argue that since the amount 

of risk that speculators must bear varies through the passage of time, asset prices exhibit 

mean reverting behavior. Time-varying risk premium causes asset prices to vary even in 

the absence of new information regarding fundamental values. Kolb (1992) finds that 

futures markets for grains such as wheat, corn and oats do not consistently exhibit a risk 

premium. But, there is stiH the possibility of a risk premium existing only during times of 

high prices. 

While the dominant theory is still efficient markets, there are alternative theories 

that can explain temporary deviations of asset prices from their equilibrium. In financial 

literature, judgment biases, investor overreaction, fads or bubbles, and time-varying risk 

premia are cited as a source of market inefficiencies. However, if such inefficiencies 

existed in the past, by making them known, the actions of traders could cause them to 

disappear and so there is a good reason to be cautious in recommending such strategies 

capitalizing on market inefficiencies to farmers. 
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Data 

The agricultural commodities chosen for the analysis of mean reversion in futures 

prices are com, wheat, soybeans, soybean oil, and soybean meal. Futures prices from the 

Chicago Board of Trade are obtained from the Annual Report of the Board of Trade of 

the City of Chicago and from a computer database compiled by Technical Tools, Inc. The 

sample period extends from January 1891 through December 1999 for corn and wheat, 

from January 1951 through December 1999 for soybeans, and from January 1959 through 

December 1999 for soybean oil and soybean meal. 1 This is the longest set of futures price 

data ever used to study rollover hedging. A long data set increases the power of the 

statistical tests, but it is open to the criticism of not considering the possibility of 

structural change. 

To test for mean reversion in agricultural futures prices, return horizons of 1, 3, 

and 6 months are examined. For each return horizon, the beginning price and ending 

price are taken to calculate the k-month returns. The futures contract used to calculate the 

k-month returns is defined as the nearby futures contract that has enough days to maturity 

to cover the k-month period. The beginning price is the closing price for a given futures 

contract on the first trading day of each calendar month, and the ending price is the 

closing price for the corresponding futures contract on the first trading day of the coming 

month with k-month interval. For example, constructing a 3-month return horizon for 

corn in January, the beginning price is the closing price of May futures observed on the 

1 This study planned to extend the data period of each commodity to the launch date of each futures 
contract. But, in early years after the introduction of futures contracts, the trading volume was extremely 
low and prices of only a few nearby contracts were irregularly reported. These years might be considered as 
a learning period during which markets learn how to price new contracts, and thus, were excluded from the 
price series. The launch dates of futures contracts are as follows: com and wheat, January 2, 1877; 
soybeans, October 5, 1936; soybean oil, July 17, 1950; soybean meal, August 19, 1951. 
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first trading day in January, and the ending price is the closing price for the same May 

futures contract observed on the first trading day in April. The k-month returns are 

defined as the natural logarithmic difference between the beginning price and the ending 

price of the k-month horizon. 

The agricultural commodities chosen for the analysis of mean reversion in cash 

prices are com, soybeans, and wheat. For cash grain prices, monthly data from 1908 to 

1999 were obtained from National Agricultural Statistics Service (NASS) of the U.S. 

Department of Agriculture. The cash prices are U.S. average prices received by farmers 

and denoted in dollars per bushel. Return horizons of 1, 3, 6, 12, 24, and 36 months are 

examined. 

In order to test for mean reversion, the underlying mean value of the commodities 

must be estimated. In this study, 5-year moving averages are used to estimate the mean 

value of each commodity. A 5-year moving average is often used in the literature as a 

reasonable proxy for underlying value since it averages prices across a variety of supply 

and demand conditions and thus smooths out the effect of weather on yield in any one 

crop year. The futures prices used to calculate the 5-year moving averages are closing 

prices for the futures contract nearest to maturity on the first trading day of each calendar 

month. For example, the 5-year moving average for January 1999 is the sum of the 

nearby closing futures prices on the first trading day of each month from January 1994 

through December 1998 divided by sixty. 
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Procedures 

In previous studies, three general approaches are used to test for mean reversion. 

The first approach uses autocorrelation coefficients and involves regressing multiperiod 

returns on lagged multiperiod returns (Fama and French, 1988; Kim, Nelson, and Startz, 

1991 ). That is, the cumulative return from time t to time t + T is regressed on the return 

from t - T to t. If prices are a random walk, then the slope coefficient in the regression 

should be zero. If prices are mean reverting, then the regression slope should be negative. 

The second approach is a return predictability test using information on 

fundamentals (Cutler, Poterba, and Summers, 1991; Irwin, Zulauf, and Jackson, 1996). 

This approach regresses observed market price movements over various return horizons 

on the deviation of current price from an estimate of fundamental value. A positive, 

significant regression slope coefficient is considered evidence of return predictability, 

and implies mean reverting price behavior. 

The third approach uses variance ratios (Poterba and Summers, 1988; Cochrane, 

1988; Lo and Mackinlay, 1988; Kim, Nelson, and Startz, 1991). This approach exploits 

the fact that if the logarithm of prices follows a random walk, then the return variance of 

a random walk is a linear function of the length of the time interval. The variance ratios 

are scaled so that if returns are uncorrelated through time, the ratios converge to 1 

(random walk). While a variance ratio of less than one implies negative serial correlation 

(mean reversion), a ratio greater than one implies positive serial correlation. 

The variance ratio test is closely related to the regression test based on estimated 

autocorrelations. Lo and Mackinlay (1988) show that the variance ratio is equal to a 
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linear combination of autocorrelation coefficients. Poterba and Summers (1988) show 

that the variance ratio tests are more powerful than regression tests based on 

autocorrelation coefficients. Therefore, this study uses the return predictability test and 

the variance ratio test for mean reversion. 

Return Predictability Test 

The return predictability test examines whether the deviation of current market 

prices from estimates of underlying mean value can help predict returns over various 

horizons. We study returns over different horizons by estimating the following regression 

equations: 

(1) 

where P,+k is the market price (cash, futures) at the end of the return horizon, P,is the 

market price ( cash, futures) at the beginning of the return horizon, and M, is an estimated 

mean value at the beginning of the return horizon. The logarithmic price relative 

(ln P,+k - ln P,) is the continuously compounded return over k months. 

The estimated coefficient pk is the rate of mean reversion, meaning the fraction of 

the price deviation from the underlying mean value that is adjusted over a k-month 

horizon. If the current price is one percent below (above) the mean value, then returns 

will be increased (decreased) by O.Olpover the next kmonths. A finding that pk is 

significantly greater than zero is evidence in favor of a mean reversion process. 

Overlapping sample periods are used. Ordinary least squares (OLS) can produce 

consistent parameter estimates in this case, but the usual standard errors estimated are 

biased due to serial correlation in the error terms (Harri and Brorsen, 1998). In this study, 
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the standard errors of regression coefficients are bias-adjusted using Newey-West (1987) 

correction method. The Newey-West method is consistent, but tends to underestimate 

standard errors in small samples. 2 It is possible to correct the standard errors with Monte 

Carlo methods, but there is no need to here since the null hypothesis is not rejected even 

with standard errors that are underestimated. 

Another caution is that since the underlying mean value of commodities is 

estimated imprecisely by using proxy variables, that is, 5-year moving averages, 

measurement error may be present. This measurement error causes a bias towards zero in 

the estimate of the regression coefficient pk, 

In estimating equation (1) using cash prices, the seasonal factors in cash prices 

may affect the slope coefficient of the regression. The seasonality is removed by 

including a set of monthly dummies as regressors. 

Variance Ratio Test 

The variance ratio approach of Lo and MacKinlay (1988) uses the fact that if the 

natural logarithm of a price series P1 follows a random walk process, then the variance of 

k-period returns should equal k times the variance of one-period returns. The general k-

period variance ratio statistic VR(k) is defined as: 

(2) VR(k)= Var[r,(k)] = o-2(k) =l+2f(1-_!_)p(t), 
k · Var[r, (1)] k · o- 2 (1) t=l k 

where r1 (k) = r, + r,_1 + · · ·r,-k+P that is, k-period continuously compounded return, r1 (1) is 

2 Harri and Brorsen (1998) showed that when dealing with the overlapping data problem, generalized least 
squares (GLS) is often superior to the conventional Newey-West estimator. But, since lagged dependent 
variables are used as explanatory variables, GLS is not the preferred estimator here. 
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a one-period return, and p(t) is the tth-order autocorrelation coefficient of return series rt. 

Equation (2) shows that VR(k) is a particular linear combination of the first t-1 

autocorrelation coefficients of return series rt, with linearly declining weights. 

Lo and MacKinlay show that the variance ratio estimator can be calculated as 

follows: 

(3) 

where m = k(nk-k+l{l- :k} 

and 

(4) 

in which 

where Po and Pnk are the first and last observation of the price series. The asymptotic 

variance of the variance ratio under homoskedasticity, \jf(k), is: 

(5) (k) = 2(2k - l)(k -1). 
~ · 3k(nk) 

The standard Z test statistic under the assumption ofhomoskedasticity, Z(k), is: 

(6) Z(k) = VR(k)-1 l a N(O 1) 
~ ' ' 

[~(k)l2 

a 

where ~ indicates that the standardized test statistic is asymptotically normally 

distributed. A variance ratio equal to one implies that futures price follows a random 

walk process, while a variance ratio of less than one implies a mean reversion process. 
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Simulations 

Testing the returns obtained by simulated trading strategies is a more direct test of 

the effectiveness of rollover hedging than statistical tests. The disadvantage of 

simulations is that few signals may be generated and so tests may have low power. The 

objective of the simulation is to determine whether a multiyear rollover hedge can 

increase the hedger's average returns compared to marketing alternatives. The marketing 

alternatives considered are routine annual hedges and cash sale at harvest. 

A basic assumption in the multiyear rollover hedge is that unusually high prices 

occur infrequently and that when they occur, hedgers should lock in these favorable 

prices for several years of production. To identify unusually favorable prices, the 

cumulative frequency distribution of the past sixty months (or five years) of futures 

prices is used. The futures prices used to calculate the 5~year moving frequency 

distribution of historical prices are closing prices for the new crop futures contract 

observed on the first trading day of each calendar month. Specifically, December futures 

prices for com, July futures prices for wheat, and November futures prices for soybeans 

are used to construct the frequency distribution. The futures price series extends the 

period 1948 through 1999 for com and wheat, and 1958 through 1999·for soybeans. 

Before the first year of the sample periods, only old crop futures contracts were reported 

for early months of the year. Therefore, we couldn't go back farther in time to construct 

the frequency distribution using new crop futures prices. At the beginning of each month, 

the frequency distribution of the historical futures prices is updated by adding the price of 

the most recent month and deleting the most distant month's price, thus keeping a 

constant sample size of 60 observations. 
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In this study, the trigger price levels to enter into a rollover hedge are set at the 

upper 5%, 10% and 15% of the frequency distribution, respectively. Three-year rollover 

hedging periods are used. 

In choosing a method of rolling over futures contracts, the first decision to be 

made is the selection of contract months involved in rollovers. The previous studies 

(Gardner, 1989; Huang, Turner, and Houston, 1994; Kenyon and Beckman, 1997; and 

Conley and Almonte-Alvarez, 1998) simply chose to roll over from the maturing new 

crop futures contract to the next new crop futures contract. For example, December 1994 

com futures contract was switched by December 1995 com futures contract at harvest 

time in 1994. 

In this study, two different rollover methods are used. The first method is to 

continuously rollover from the maturing contract to the subsequent contract using every 

contract month ("continuous rollovers"). For example, a three-year rollover hedge for 

com is initiated using the December contract of the first year, and when the December 

contract matures, it is rolled into the March contract of the second year, and then the 

maturing March contract is rolled into the subsequent contract. This process of rolling 

over contracts is continued until the rollover hedge is finally lifted. 

The second method is to roll over from the maturing new crop futures contract to 

the next new crop contract in the following year, as done in the previous studies, but 

includes one intermediate contract month to serve as a bridge between the new crop 

futures contracts ("bridged rollovers"). Specifically, May futures contract for com and 

soybean, and December futures contract for wheat is used as bridge contracts. Thus, for 

example, the maturing December futures contract for com of the first year is rolled into 
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the May contract of the second year, and when the May contract matures, it is rolled into 

the December contract of the second year, and so on. 

The second decision to be made in the method of rolling over contracts is the 

selection of a point in time to roll over, i.e., when to switch from the maturing contract to 

the next contract. Ma, Mercer, and Walker (1992) suggest that the use of first notice day 

as rollover dates is a logical choice for most purposes as well as a popular choice for 

trading purposes. This study also uses the first notice day, i.e., the last business day of the 

month preceding the delivery month, as rollover dates to switch contracts and terminal 

dates to lift the hedge. The three-year rollover hedging rules used in the study are 

summarized as follows: 

First, the producer is assumed to produce 5,000 bushels or one contract of com, 

wheat, or soybeans each year. At the beginning of each calendar month, if a price equal 

to or exceeding the trigger price level is observed, the hedger will sell three contracts to 

execute a three-year rollover hedge. Once a three-year rollover hedge is executed in any 

year, no new additional positions are taken with other price signals within the same year 

since the 5,000 bushels of crop for each year are already priced. However, even when a 

rollover hedge is already in place for the production of the year, the hedger will sell 

additional contracts for the expected crop in the following years to a total of three 

contracts. For example, assume that a three-year rollover hedge is initiated for com in 

May 1995. The producer would sell three December 1995 contracts. Even if another price 

above the trigger price level is observed in July 1995, the producer is not allowed to sell 

additional contracts. However, if a new price exceeding the trigger price level is observed 
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in June 1996, the producer will sell one contract for the expected 1998 crop, besides the 

1996 and 1997 crops already priced in May 1995. 

Second, at rollover dates, the hedger will roll forward to next contract month by 

simultaneously closing the positions on all contracts and opening new positions on the 

remaining unhedged long-term production. 

Trading futures contracts incurs transaction costs, which include brokerage fees 

and liquidity costs. It is assumed that brokerage fees are $50 for a round-tum trade (that 

is, buying and selling) of a 5,000-bushel futures contract. Liquidity costs are payments 

earned by floor traders for the services of filling an order immediately at the market price. 

They are incurred each time a futures contract is traded. Liquidity costs for grain futures 

market is estimated to be one price tick (1/4 cent for bushel) for the more heavily traded 

nearby contracts and two price ticks for the more lightly traded contracts that are more 

than five months from delivery (Brorsen, 1989; Thompson and Waller, 1989). With the 

two components combined, transaction costs are at least $75 (or 1.5 cents for bushel) for 

a round-tum futures trade. 

The expected returns from the three-year rollover hedge can be calculated for 

each year separately. Denote the initial futures price at which a three-year rnllover hedge 

is placed as F;, and assume that crop size for each year is equal to one contract, then the 

producer's revenue for the first year is given by 

(7) 

where B1 is the contemporaneous cash-futures basis at the time the cash sale is made in 

the first year, and C is the futures transaction costs. For com, B1 is the difference between 
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the producer's cash price and the December futures price on the first notice date of the 

December contract in the first year. 

The revenue for the second year is 

N 

(8) Rz =F; + Lsk +Bz -(N +l)C, 
k=I 

where Sk is the spread between the maturing futures contract and the next futures contract 

at a rollover date, B2 is the contemporaneous cash-futures basis in the second year, N is 

the number of rollovers, and C is the futures transaction costs. For example, when 

continuous rollovers are used for com, there are five rollover spreads involved in one 

crop year, i.e., the December-March spread, the March-May spread, the May-July spread, 

the July-September spread, and the September-December spread. 

Finally, the revenue for the third year is 

ZN 

(9) R3 =F;+ Lsk+B3-(2N+I)C, 
k=I 

where B3 is the contemporaneous cash-futures basis in the third year. 

Generalizing to an n-year rollover hedge for any commodity, the revenue in year t 

can be written as 

(10) 
(t-l)N 

R,=F;+ Lsk+B1 -[(t-I)N+1]c, 
k=I 

(t-l)N 

where F; is the initial futures price at which an n-year rollover hedge is placed, LSk 1s 
k=I 

the sum of spreads at rollovers, Bt is the is the contemporaneous cash-futures basis at the 

time the cash sale is made in year t, N is the number of rollovers in one crop year, and 
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[(t- l)N + 1 ]c is the total futures transaction costs. The total revenue for then-year 

n 

rollover hedge is LR,. 
l=l 

For routine annual hedges, the producer would hedge each year's crop by selling a 

new crop contract at or soon after planting. Specifically, December com and November 

soybean contracts are sold on the first trading day of May, and July wheat contract is sold 

on the first trading day of December. The annual hedges are also lifted on the first notice 

day of each new crop futures contract. 

For cash sales at harvest, the producer will sell each year's crop when harvested at 

the harvest-time cash price. In this study, U.S. monthly average prices at harvest for each 

commodity are used. Specifically, November average prices for com, October average 

prices for soybean, and June average prices for wheat are used, since the first notice date 

for December com futures contract, November soybean futures contract, and July wheat 

futures contract is the last business day in November, October, and June, respectively. 

Results 

In this section, the results of mean reversion tests on agricultural futures and cash 

prices, and the results of three-year rollover hedges are reported. 

Return Predictability Test 

The evidence on the forecast power of the difference between fundamental mean 

value and current futures price is presented in Table 1. The estimated p coefficients are 

not statistically significant at the 5 percent level except for com with a one-month return 
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horizon. But, the negative J3 coefficient of-0.02 suggests mean aversion rather than mean 

reversion. Overall, the regression R2 values are extremely low. R2 value represents the 

percentage of the observed change over the return horizon that is explained by the 

difference between futures price and the mean value at the beginning of the return 

horizon. Thus, the deviation of futures price from its estimated mean value explains at 

most 1.0 percent of the observed change in futures price. 

As expected, cash prices do show some evidence of mean reversion in Table 2. 

The estimated J3 coefficients for all commodities over the 6-month return horizon are 

greater than zero at the 5 percent level. The J3 coefficient of corn for 6-month return 

horizon suggests that 11 percent of a price deviation from the mean value is adjusted over 

the subsequent 6 months. Studies in stock markets also tend to find more evidence of 

mean reversion at longer horizons (Fama and French, 1988; Porterba and Summers, 

1988). 

Variance Ratio Test 

The variance ratio test results in Table 3 also find little evidence of mean 

reversion in futures prices. Except for corn with a 3-month return horizon, the variance 

ratios, VR(k), are not significantly different than 1.0. The variance ratio for corn with a 3-

month return horizon is 1.10, implying that there is positive serial correlation (mean 

aversion). 

Table 4 presents the results of variance ratio tests for deseasonalized cash prices. 

The variance ratios for corn are all greater than 1.0, ranging from 1.62 with k=3 to 2.03 

with k=l2. The variance ratios for corn imply that there exists positive serial correlation 
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in multiperiod returns. The variance ratios for wheat and soybeans show that multiperiod 

returns are uncorrelated when return horizons are over 24 months. The results provide 

little evidence for mean reversion in cash prices at these horizons. It may be that because 

of policy interventions during this period those prices were slow to respond. This may be 

especially true for periods of low prices. 

Simulations 

The results of simulations for com, soybeans, and wheat marketing strategies are 

reported in Tables 5, 6, and 7. The expected prices from the three-year rollover hedges 

are higher than the expected prices from the routine annual hedges and cash sales at 

harvest across all three commodities. This result is mainly due to the selective nature of 

the three-year rollover hedges. The three-year rollover hedges are selective in that the 

producer only enters into a rollover hedge when current futures prices at the beginning of 

the month exceed a predetermined percent level of the five-year moving frequency 

distribution. However, the standard deviation of expected prices for the three-year 

rollover hedges are much larger than the routine annual hedges and cash sales at harvest. 

This suggests that three~year rollover hedges are very risky strategies. 

The results for com marketing strategies (Table. 5) show that the expected prices 

for the three-year rollover hedges using a bridge contract are higher than those using 

every contract month continuously, since continuous rollovers involve higher transaction 

costs. Routine annual hedges and cash sales at harvest have almost identical means and 

standard deviations of expected prices. 
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The results for soybean marketing strategies (Table 6) show that three-year 

rollover hedges have the highest expected prices and also the largest standard deviations 

at all trigger price levels. The expected prices from the continuous rollover hedges are 

higher than the expected prices from the bridged rollover hedges, while the standard 

deviations of the bridged rollover hedges are larger than the standard deviations of the 

continuous rollover hedges. Thus, from the mean-variance (EV) criterion, the continuous 

rollover hedges dominate the bridged rollover hedges. 

The results for wheat marketing strategies (Table 7) show that cash sale at harvest 

has the lowest price and lowest standard deviation. The expected prices from the 

continuous rollover hedges are higher than the expected prices from the bridged rollover 

hedges in spite of higher transaction costs. This is mainly due to the larger gains in 

rollover spreads. 

To determine whether the expected prices from the three-year rollover hedges are 

equal to the expected prices from the marketing alternatives, paired-difference tests are 

used. Paired-difference tests use the pairwise differences (di) of the expected prices 

between two marketing strategies. The null hypothesis to be tested is that the mean of the 

paired differences of the expected prices from two marketing strategies is zero, in other 

words, the expected prices of the two marketing strategies are equal. 

The results of the paired-difference tests for corn, soybeans, and wheat are 

presented in Tables 8, 9 and 10. The paired t-tests comparing the expected prices of the 

two marketing strategies are based on the following five pairs of strategies: (1) 

continuous rollover hedges vs. routine annual hedges (CRH-RAH); (2) continuous 

rollover hedges vs. cash sales at harvest (CRH-CSH); (3) bridged rollover hedges vs. 
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routine annual hedges (BRH-RAH); (4) bridged rollover hedges vs. cash sales at harvest 

(BRH-CSH); and (5) routine annual hedges vs. cash sale at harvest (RAH-CSH). 

In Tables 8, 9 and 10, the t-ratios ranging from-0.03 to 1.81 indicate that all these 

pairs for each commodity are not statistically different from each other at the 5% level. 

This implies that the expected prices from the three-year rollover hedges are not different 

from the expected prices from the marketing alternatives across all commodities. The fact 

that even a $0.50/bushel gain is not statistically significant illustrates the low power of 

the simulation approach even with our extensive dataset. While the returns to some of the 

rollover hedging strategies look enticing, they are not statistically significant. Thus, the 

simulation results are consistent with the results of the mean reversion tests. 

Conclusions 

Both market advisors and researchers have often suggested rollover hedging as a 

way to increase producer returns. This study determined whether rollover hedging could 

increase expected returns for producers. For rollover hedging to increase expected 

returns, futures prices must follow a mean.,.reverting process. To test for the existence of 

mean reversion in agricultural commodity prices, this study used a longer set of price 

data and a wider range of test procedures than past research. While rollover hedging 

increasing mean returns is inconsistent with the efficient market hypothesis, there are 

psychological theories that offer some support for rollover hedging being profitable. 

Using both the return predictability test based on long-horizon regression and the 

variance ratio test, we found that mean reversion does not exist in futures prices for corn, 
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wheat, soybeans, soybean oil and soybean meal. The findings on futures prices are 

consistent with the weak form of market efficiency suggested by Fama (1970). 

The simulated trading results for three-year rollover hedges provided additional 

evidence that the expected returns to the rollover hedging strategies are not statistically 

different from the expected returns to routine annual hedges and cash sale at harvest. 

Because of the positive, but statistically insignificant returns to the simulation strategies, 

the results may not be sufficient enough to put the issue of rollover hedging to rest. 

On the basis of this research, we can not recommend rollover hedging as a 

marketing strategy. It is a very risky strategy with returns that are not statistically 

significant. The lack of statistical significance is found across three diverse tests. 
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Table 1. Results of Return Predictability Tests Using Futures Prices 

Commodity 

Com 

Wheat 

Soybeans 

Soybean 
Oil 

Soybean 
Meal 

Return 

Horizon 

(kmonths) 

1 

3 

6 

1 

3 

6 

1 

3 

6 

1 

3 

6 

1 

3 

6 

Data 

Period 

1891-1999 

1891-1999 

1948-1999 

1891-1999 

1891-1999 

1948-1999 

1951-1999 

1951-1999 

1957-1999 

1959-1999 

1959-1999 

1959-1999 

1959-1999 

1959-1999 

1959-1999 

Number 

Of 

Observation 

1,200 

1,198 

618 

1,193 

1,191 

618 

526 

524 

509 

431 

429 

426 

431 

429 

426 

fl 

-0.02 

-0.04 

0.06 

-0.00 

-0.01 

0.06 

0.02 

0.07 

0.07 

-0.01 

0.02 

0.08 

0.02 

0.05 

0.06 

t-statistic 

-2.06* 

-1.65 

1.23 

-0.34 

-0.24 

0.93 

0.81 

1.04 

0.88 

-0.26 

0.26 

0.80 

0.56 

0.66 

0.56 

R2 

0.01 

0.01 

0.01 

0.00 

0.00 

0.01 

0.00 

0.01 

0.01 

0.00 

0.00 

0.01 

0.00 

0.01 

0.00 

Note: The estimated regression equation is (In P,+k - In P1 ) = ak + /Jk (In M 1 - In Pt)+ e1+k where 

(In Pt+k -In P1 ) is the continuously compounded return in futures prices from month t to month t+k, 

and (In M 1 - In Pt) is the natural logarithmic difference between the estimated mean value on the first 
trading day of month t and the closing futures price on the first trading day of month t. The I-statistics 
are bias-corrected using the Newey-West procedure. The test statistics marked with asterisks indicates 
that the corresponding regression coefficients are statistically significant at 5% level. 
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Table 2. Results of Return Predictability Tests Using Cash Prices 

Return Data Number 

Commodity Horizon Period Of /Jk t-statistic R2 

(kmonths) Observation 

1 1908-99 1,043 0.00 0.06 0.21 

3 1,041 0.03 1.43 0.23 

6 1,038 0.11 2.72* 0.20 
Corn 

12 1,032 0.25 5.36* 0.07 

24 1,020 0.53 9.74* 0.17 

36 1,008 0.69 14.98* 0.23 

1 1908-99 1,043 -0.00 -0.28 0.07 

3 1,041 0.01 0.59 0.08 

6 
Wheat 

1,038 0.04 2.12* 0.06 

12 1,032 0.11 2.55* 0.02 

24 1,020 0.33 5.82* 0.07 

36 1,008 0.52 9.96* 0.13 

1 1924-99 851 0.01 0.55 0.11 

3 849 0.05 1.58 0.17 

6 846 0.12 2.50* 0.16 
Soybeans 

12 840 0.24 4.08* 0.06 

24 828 0.38 6.39* 0.09 

36 816 0.37 7.39* 0.08 

Note: The estimated regression equation is {In Pt+k -In P1 ) = ak + /Jk {ln M, -In Pt)+ &t+k where 

{In P,+k -In P1 ) is the continuously compounded return in futures prices from month t to month t+k, 

and {ln Mt -In Pt) is the natural logarithmic difference between the estimated mean value on the first 
trading day of month t and the closing futures price on the first trading day of month t. The t-statistics 
are bias-corrected using the Newey-West procedure. The test statistics marked with asterisks indicates 
that the corresponding regression coefficients are statistically significant at 5% level. 
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Table 3. Results of Variance Ratio Tests Using Nearby Futures Price Series 

Commodity 

Corn 

Wheat 

Soybeans 

Soybean 

Oil 

Soybean 

Meal 

Return 

Horizon 

(kmonths) 

3 

6 

3 

6 

3 

6 

3 

6 

3 

6 

Data 

Period 

1891~1999 

1891-1999 

1951-1999 

1959-1999 

1959-1999 

Number 

Of 

Observation 

1,257 

1,254 

1,250 

1,247 

583 

580 

488 

485 

488 

485 

Variance 

Ratio 

[VR(k)] 

1.10 

1.12 

1.06 

1.03 

1.11 

1.04 

0.98 

0.96 

1.09 

1.04 

Z-statistic 

2.28* 

1.66 

1.45 

0.47 

1.78 

0.41 

-0.28 

-0.39 

1.41 

0.34 

Note: The variance ratio is VR(k) = c;
2 ~k) where cr2(k) is the variance of k-month returns and cr2(1) 

k · c; (1) 
is the variance of one-month returns. The null hypothesis is that VR(k)=l, meaning that futures prices 
follow a random walk process. The Z-statistic marked with asterisk indicates that the corresponding 
variance ratio is statistically different from 1.0 at the 5% level of significance. 
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Table 4. Results of Variance Ratio Tests Using Deseasonalized Cash Prices 

Commodity 

Corn 

Wheat 

Soybeans 

Return 

Horizon 

(kmonths) 

3 

6 

12 

24 

36 

3 

6 

12 

24 

36 

3 

6 

12 

24 

36 

Data 

Period 

1908-99 

1908-99 

1924-99 

Number 

Of 

Observation 

1,101 

1,098 

1,092 

1,080 

1,068 

1,101 

1,098 

1,092 

1,080 

1,068 

909 

906 

900 

888 

876 

Variance 

Ratio 

[VR(k)] 

1.62 

1.92 

2.03 

1.93 

1.68 

1.35 

1.36 

1.48 

1.32 

1.10 

1.35 

1.41 

1.37 

1.19 

0.98 

Z-statistic 

13.73* 

12.40* 

9.11 * 

5.59* 

3.34* 

6.86* 

4.29* 

3.69* 

1.70 

0.44 

7.14* 

5.07* 

2.98* 

1.07 

-0.09 

Note: The variance ratio is VR(k) == u\k) where cr2(k) is the variance of k-month returns and cr2(1) 
k. (J" (1) 

is the variance of one-month returns. The null hypothesis is that VR(k)== I, meaning that cash prices 
follow a random walk process. The Z-statistics marked with asterisks indicate that the corresponding 
variance ratios are different from 1.0 at the 5% level of significance. 
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Table 5. Expected Prices and Standard Deviations for Corn Marketing Strategies, 1948-1999 

3) Rollover Spread 4) Transaction Cost 
5) Expected Returns 

Trigger 1) Initial 2) Cash- Routine 
Cash 

Price 
No. 

Statistics Futures Futures 
(1+2+3+4) 

Annual 
Sale 

Level Obs. 
Price Basis Continuous Bridged Continuous Bridged Continuous Bridged Hedges 

at 
Harvest 

Rollovers Rollovers Rollovers Rollovers Rollovers Rollovers 

Mean 235.68 -22.75 7.34 4.06 -11.85 -5.64 208.42 211.35 194.88 195.10 
5% 29 

Std. Dev. 95.01 15.69 48.92 40.88 5.81 2.33 109.77 104.97 74.56 72.45 

Mean 237.98 -23.53 10.78 7.87 -12.25 -5.80 212.97 216.51 195.93 196.16 
10% 30 

Std. Dev. 94.73 16.01 51.13 44.19 5.80 2.32 110.92 107.27 73.48 71.43 

Mean 245.64 -23.50 11.30 7.09 -12.75 -6.00 220.69 223.23 200.90 200.23 
15% 34 

Std. Dev. 93.20 15.29 50.60 43.47 5.30 2.12 106.54 102.67 71.20 68.29 

Note: Continuous rollovers denote continuously rolling over from the maturing contract to the subsequent contract using every contract month, and 
bridged rollovers denote rolling over from the maturing new crop futures contract to the next new crop contract, with one intermediate contract 
month that serves as a bridge between the new crop futures contracts. 
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Table 6. Expected Prices and Standard Deviations for Soybean Marketing Strategies, 1958-1999 

3) Rollover Spread 4) Transaction Cost 
5) Expected Returns 

Trigger 1) Initial 2) Cash- Routine 
Cash 

Price 
No. 

Statistics Futures Futures 
(1+2+3+4) 

Annual 
Sale 

Level 
Obs. 

Price Basis Continuous Bridged Continuous Bridged Continuous Bridged Hedges 
at 

Harvest 
Rollovers Rollovers Rollovers Rollovers Rollovers Rollovers 

Mean 577.50 -24.08 14.78 -8.64 -15.98 -5.64 552.22 539.14 496.25 492.86 
5% 29 

Std. Dev. 255.37 29.53 108.91 120.34 8.61 2.46 299.09 315.84 194.88 185.96 

Mean 572.40 -25.52 22.19 -12.95 -17.25 -6.00 551.81 527.93 495.17 494.72 
10% 32 

Std. Dev. 250.74 29.96 112.88 136.33 8.00 2.29 295.05 312.78 194.74 184.28 

Mean 564.77 -26.13 24.52 -8.63 -17.25 -6.00 545.91 524.01 500.12 499.32 
15% 34 

Std. Dev. 235.52 29.71 109.81 133.29 7.86 2.25 282.55 299.52 190.01 179.89 

Note: Continuous rollovers denote continuously rolling over from the maturing contract to the subsequent contract using every contract month, and 
bridged rollovers denote rolling over from the maturing new crop futures contract to the next new crop contract, with one intermediate contract 
month that serves as a bridge between the new crop futures contracts. 
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Table 7. Expected Prices and Standard Deviations for Wheat Marketing Strategies, 1948-1999 

3) Rollover Spread 4) Transaction Cost 
5) Expected Returns 

Trigger 1) Initial 2) Cash- Routine 
Cash 

Price No. 
Statistics Futures Futures 

(1+2+3+4) 
Annual Sale 

Level Obs. 
Price Basis Continuous Bridged Continuous Bridged Continuous Bridged Hedges 

At 
Harvest 

Rollovers Rollovers Rollovers Rollovers Rollovers Rollovers 

Mean 350.31 -11.70 29.03 10.11 -10.88 -5.25 356.76 343.47 327.96 302.95 
5% 20 

Std. Dev. 110.06 26.32 79.45 72.85 6.38 2.55 167.95 164.47 107.15 95.28 

Mean 361.16 -9.99 25.95 10.33 -11.50 -5.50 365.62 356.00 327.70 306.38 
10% 24 

Std. Dev. 105.11 24.37 80.48 69.92 6.12 2.45 161.32 156.70 97.44 87.57 

Mean 352.55 -10.99 26.47 13.45 -11.89 -5.65 356.14 349.36 319.77 301.27 
15% 26 

Std. Dev. 102.60 23.83 78.88 68.43 6.03 2.41 157.12 151.00 97.85 86.69 

Note: Continuous rollovers denote continuously rolling over from the maturing contract to the subsequent contract using every contract month, and 
bridged rollovers denote rolling over from the maturing new crop futures contract to the next new crop contract, with one intermediate contract 
month that serves as a bridge between the new crop futures contracts. 
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Table 8. Results of Paired-Difference Tests for Corn Marketing Strategies, 
1948-1999. 

No. Trigger 
)ltatistics CRH-RAH CRH-CSH BRH-RAH BRH-CSH RAH-CSH 

Price Obs. 

Mean 13.54 13.32 16.47 16.25 -0.22 

5% 29 Std. Dev. 82.14 101.01 76.46 95.85 50.61 

t-Ratio 0.89 0.71 1.16 0.91 -0.02 

Mean 17.04 16.81 20.58 20.35 -0.23 

10% 30 Std. Dev. 81.55 100.39 76.05 95.40 49.73 

t-Ratio 1.15 0.92 1.48 1.17 -0.03 

Mean 19.79 20.46 22.33 23.00 0.67 

15% 34 Std. Dev. 77.52 95.46 72.07 90.36 47.71 

t-Ratio 1.49 1.25 1.81 1.48 0.08 

Note: CRH-RAH denotes the paired difference of the expected price between the continuous rollover 
hedges and the routine annual hedges, CRH-CSH denotes the paired difference of the expected price 
between the continuous rollover hedges and the cash sales at harvest, BRH-RAH denotes the paired 
difference of the expected price between the bridged rollover hedges and the routine annual hedges, 
BRH-CSH denotes the paired difference of the expected price between the bridged rollover hedges and 
the cash sales at harvest, and RAH-CSH denotes the paired difference of the expected price between 

the routine annual hedges and the cash sale at harvest. The t-statistic is t = ~ , where d is the 
vsb/n 

average of the paired differences (d;) of the expected prices between two marketing strategies, n is the 

[ ]

2 
n l n 

Ldl-- Ld; 
number of paired differences, and sb = i=l n i=l 

n-1 
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Table 9. Results of Paired-Difference Tests for Soybean Marketing Strategies, 
, 1948-1999. 

Trigger No. 
Statistics 

Price Obs. 
CRH-RAH CRH-CSH BRH-RAH BRH-CSH RAH-CSH 

Mean 55.97 59.35 42.89 46.28. 3.39 

5% 29 Std. Dev. 193.80 239.50 231.78 277.46 112.34 

t-Ratio 1.56 1.34 1.00 0.90 0.16 

Mean 56.65 57.09 32.76 33.21 0.45 

10% 32 Std. Dev. 186.08 229.00 228.10 272.89 109.35 · 

t-Ratio 1.72 1.41 0.81 0.69 0.02 

Mean 45.79 46.59 23.89 24.69 0.80 

15% 34 Std. Dev. 184.26 223.07 222.47 264.14 107.70 

t-Ratio 1.45 1.22 0.63 0.55 0.04 

Note: CRH-RAH denotes the paired difference of the expected price between the continuous rollover 
hedges and the routine annual hedges, CRH-CSH denotes the paired difference of the expected price 
between the continuous rollover hedges and the cash sales at harvest, BRH-RAH denotes the paired 
difference of the expected price between the bridgedrollover hedges and the routine annual hedges, 
BRH-CSH denotes the paired difference of the expected price between the bridged rollover hedges and. 
the cash sales at harvest, and RAH-CSH denotes the paired difference of the expected price between 

-

the routine annual hedges and the cash sale at harvest. The t-statistic is t = ~ , where d is the 
vsb/n 

average of the paired differences (d;) of the expected prices between two marketing strategies, n is the 

( ]
2 

n l n 

1>l-- Ld; 
number of paired differences, and sb = i=l n i=l 

n-1 
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Table 10. Results of Paired-Difference Tests for Wheat Marketing Strategies, 
1948-1999. 

Trigger No. 
Statistics CRH-RAH CRH-CSH BRH-RAH BRH-CSH RAH-CSH 

Price Obs. 

Mean 28.81 53.81 15.51 40.52 25.01 

5% 20 Std. Dev. 155.73 168.29 167.34 173.03 67.29 

t-Ratio 0.83 1.43 0.42 1.05 1.66 

Mean 37.92 59.25 28.30 49.63 21.33 

10% 24 Std. Dev. 150.16 158.38 158.61 161.31 62.56 

t-Ratio 1.24 1.83 0.87 1.51 1.67 

Mean 36.38 54.88 29.59 48.09 18.50 

15% 26 Std. Dev. 146.31 153.98 154.98 157.19 60.98 

t-Ratio 1.27 1.82 0.97 1.56 1.55 

Note: CRH-RAH denotes the paired difference of the expected price between the continuous rollover 
hedges and the routine annual hedges, CRH-CSH denotes the paired difference of the expected price 
between the continuous rollover hedges and the cash sales at harvest, BRH-RAH denotes the paired 
difference of the expected price between the bridged rollover hedges and the routine annual hedges, 
BRH-CSH denotes the paired difference of the expected price between the bridged rollover hedges and 
the cash sales at harvest, and RAH-CSH denotes the paired difference of the expected price between 

the routine annual hedges and the cash sale at harvest. The t-statistic is t = ~ , where d is the 
vs1/n 

average of the paired differences (d;) of the expected prices between two marketing strategies, n is the 

n [ n ]2 Idl-l Idl 
number of paired differences, and s1 = i=I n i=l 

n-l 
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VALUE OF INCREASING KERNEL UNIFORMITY 

ABSTRACT 

This study develops grain sorting strategies for elevators to use to increase kernel 

size uniformity and determine the size of potential benefits from sorting. Kernel size 

uniformity is an important physical quality attribute in terms of processing efficiency, 

quality control, and milling yield. Cluster analysis and nonlinear optimization are used to 

sort loads to increase kernel size uniformity .. Cluster analysis and nonlinear optimization 

increased the percent flour yield relative to no sorting by 0.13% and 0.32% respectively. 

Cluster analysis increased the daily milling income relative to no sorting by 104.99 

dollars (5%), and nonlinear optimization increased the milling income by 265.90 dollars 

(13%). The results show that cluster analysis is vastly inferior to the nonlinear 

optimization. Future grain science research should address the benefits of milling 

efficiency and flour quality from increased kernel uniformity. 

Key Words: kernel uniformity, sorting, cluster analysis, nonlinear optimization 
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Value of Increasing Kernel Uniformity 

Introduction 

While consumers demand diverse food products with higher quality, food 

processors require uniform raw materials with specific quality attributes. Virtually in all 

areas of food processing industry, processors desire uniform raw materials to improve the 

efficiency of production and product quality, and to save costs. Meanwhile, recent 

advances in quality testing and processing technology enable processors to meet their 

rigorous product requirements. 

In the grain industry, the search for equitable, uniform measures of quality has 

established grades and grade requirements, but the appropriate grading factors and factor 

limits for designating numerical grades have been a persistent issue in grain markets 

(Hill, 1990). Moreover, Hill (1988) argues that grain grades lack economic rationale and 

fail to accurately evaluate the product and the value of different qualities. 

Current U.S. standards for wheat determine grades based on test weight, total 

defects, and other material. However, these generic grades and standards are becoming 

less meaningful in effectively describing wheat, because processors are becoming more 

interested in and demanding such characteristics as greater kernel size and kernel size 

uniformity (Lyford et al., 1999). 

For flour millers, kernel size uniformity is an important physical quality attribute 

in terms of processing efficiency, quality control, and milling yield. In the flour milling 

process, the tempered wheat is first ground on a series of rollermills to separate the 

endosperm (starch and protein) from the outer bran skins. When there is a wide variation 
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in kernel size, small kernels pass through the rollermills unground or are only partially 

broken in the initial breaking process, thus requiring additional processing. This 

additional processing requires more milling time and energy costs, and further decreases 

the overall quality of the flour due to higher ash content (Li, 1989). However, with 

uniform wheat, the wheat kernels are ground more evenly in the milling process, which 

leads to higher extraction of flour with a lower ash content. Considering the fact that the 

wheat kernels must pass through five or more of the breaking rollermills before the bran 

is completely removed, the increased kernel size uniformity will significantly contribute 

to an increase in milling efficiency, extraction rate and flour quality. 

However, it is not an easy task to achieve the benefits from increased kernel 

uniformity in the current grain marketing system. Since wheat kernel size uniformity is 

not among the grade determining factors and the increased kernel size uniformity is not 

properly rewarded, grain elevators are not strongly encouraged to develop and implement 

various strategies to increase kernel size uniformity. The kernel size uniformity can be 

increased by sorting rather than blending various truckloads of wheat with different 

kernel sizes when wheat is delivered to grain elevators. 

The previous studies on grain sorting (Johnson and Wilson, 1993; Adam, Kenkel, 

and Anderson, 1994; Hennessy and Wahl, 1997) were largely motivated by the concerns 

about declining U.S. export market share and foreign buyer complaints about poor quality 

grain. These studies focus on the costs and benefits of cleaning wheat to reduce dockage 

levels. 
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This study takes a different direction from past research. The primary objective of 

this study is to develop grain sorting strategies for elevators to use to increase kernel size 

uniformity and determine the size of potential benefits from sorting. 

First, graphical models are presented to illustrate the importance of concavity and 

convexity in making optimal blending and sorting decisions. Cluster analysis and 

nonlinear optimization are used to sort loads to increase kernel size uniformity. To 

evaluate the performance of cluster analysis and nonlinear optimization, percent flour 

yields from cluster analysis and nonlinear optimization are compared to percent flour 

yield from the whole sample without sorting. Finally, to measure the monetary value of 

increasing kernel uniformity, the percent flour yields obtained from cluster analysis and 

nonlinear optimization are evaluated using a daily milling income equation. 

Theory 

When elevators receive grain, they. can blend the grain by mixing the incoming 

loads, resulting in average quality, or they can segregate and sort the loads into different 

quality levels. In this section, graphical models are established to analyze the economics 

of blending and sorting using the framework in Hennessy (1996), and Hennessy and 

Wahl (1997). 

Blending 

Consider two loads of wheat that are different in quality, one is of low quality and 

the other is of high quality. Let low quality wheat be denoted by quality index qL and 
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high quality wheat by q H • Then, any mixture of low quality and high quality wheat can 

be expressed as a convex combination of qL and qH, i.e., Nf.L + (l-A)qH, where 

0 < A < 1 . The yield associated with low quality and high quality wheat is given by 

Y(qL) and Y(qH) respectively. The weighted average of the yields Y(qL) and Y(qH) 

from distinct qualities qL and qH can be expressed by Ji,Y(qL) + (l-A)Y(qH). On the 

other hand, the yield from mixed wheat, i.e., a linear combination of low quality and high 

quality wheat, can be expressed by Y ( NJ L + (1- A )q H) , with A varying from O to 1. 

Figure 1 illustrates a globally concave yield-quality function. The yield from a 

convex combination oflow quality and high quality wheat, i.e., Y(NJ.L + (1-A)qH), is 

higher than the weighted average of yield Y(qL) and Y(qH), i.e., AY(qL) + (1-J)Y(qH). 

This suggests that when the yield-quality function is concave, the yield produced from 

blended wheat with average quality exceeds the average of yields from unhandled wheat 

with different qualities. Thus, in the concave region, the market provides the elevator 

with an incentive to completely blend wheat and sell only loads of wheat with equal, 

mean levels of quality. 

Sorting 

Consider a globally convex yield-quality function as depicted in Figure 2. As 

opposed to the result of a globally concave yield-quality function, the weighted average 

of two yields Y(qL) and Y(qH), i.e., AY(qL) + (l-A)Y(qH), is higher than the yield from 

a convex combination oflow quality and high quality wheat, i.e., Y(NJ.L + (l-Ji,)qH), 

with A varying from O to 1. This suggests that when the yield-quality function is convex, 
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the average of yields produced from sorted wheat with distinct qualities exceeds the yield 

from mixed wheat with average quality. Thus, in the convex region, the market provides 

the elevator with an incentive to sort high quality wheat from low quality. 

The elevator's decisions on blending and sorting are dependent upon the 

curvature attributes of the yield-quality schedule. Generally, the concavity ofyield

quality schedule is associated with blending and the convexity with sorting. On the 

contrary, Hennessy and Wahl (1997) used the discount schedules for dockage in their 

analysis, and thus the convexity of the dockage schedule led to blending and the . 

concavity led to sorting. For kernel uniformity to have a value and cause yield to increase 

from sorting, the property of convex function is necessary. The linear function is a 

concave function as well as a convex function; therefore it is hypothesized that linearity 

of a yield-quality schedule is essentially neutral and can lead to either blending or sorting. 

Data 

Data used in this study were collected over a four-year time period and span all 

major U.S. hard red winter wheat producing areas. From 1995 through 1998, hard red 

winter wheat samples were collected during the Hard Red Winter Wheat (HR W) Crop 

Survey. HRW samples were provided from 22 survey districts when wheat was delivered 

to elevators during harvest. Texas and Oklahoma were covered by 4 districts, Kansas was 

represented by 9 districts, eastern Colorado by 2 districts, Nebraska by 5 districts, and 

South Dakota and Montana were treated as one district for each state. From each district, 
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7 samples on average were randomly collected over 4 years, resulting in a total of 609 

wheat samples. 

Each HR W sample collected was tested using the Single Kernel Characterization 

System (Perten SKCS 4100) in the Grain Science & Industry Department at Kansas State 

University. The Single Kernel Characterization System (SKCS) measures a variety of 

physical characteristics of wheat kernels by individually selecting and analyzing 300 

kernels per sample. This device completes a test in about 3 minutes, and simultaneously 

reports mean and standard deviation data for single kernel weight, single kernel diameter 

(size), single kernel hardness, and single kernel moisture. Besides the single kernel 

characteristics, test weight was measured as a basic wheat quality attribute. 

After initial SKCS tests on the individual survey samples, each sample was 

tempered to 16% moisture for 18 hours. The tempered samples were milled using fixed 

roll settings from the Buhler laboratory mill (MLU-202). Milling performance, reported 

as percent flour yield (PFY), was calculated as the percentage of flour out of total product 

recovered from the Buhler laboratory mill. 

Table 1 presents summary statistics for wheat quality characteristics and average 

percent flour yields. The percent flour yields data used here are from fixed roll settings 

and thus may underestimate the value of kernel uniformity. In practice, flour millers can 

increase the milling yield by optimally adjusting the space of rollermills to different 

kernel sizes. The wheat samples from 22 districts across 7 states may result in an 

overestimation of the variability of kernel size when they are combined. The kernel size 

of wheat from several different regions may be more variable than that from a single 

region or geographically close regions. This study would have benefited from the 
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measurements of ash content during the milling process to accurately evaluate the value 

of kernel uniformity in reducing ash content. 

Procedures 

The first step to develop and evaluate wheat sorting strategies is to estimate an 

equation that relates the percent flour yield ( extraction) to the single kernel characteristics 

and test weight. The data on wheat quality characteristics and percent flour yield consist 

of 609 observations on the 22 cross-sections of districts over the 4-year time period. This 

study pools the time-series and cross-sectional data using the following error components 

model 1: 

where i represents the districts (i = 1, 2, ... , 22), t represents the years (t = 1995, 1996, 

1996, and 1998), P FYit is the percent flour yield (% ), f(D;, is the average single kernel 

diameter (mm), KDSu is the standard deviation of single kernel diameter, KH;, is the 

average single kernel hardness (hardness index), KHSuis the standard deviation of single 

kernel hardness, and TWit is the test weight (lb/bu). The f3s are the fixed-effects 

coefficients, the µ; are the random-effects parameters assumed to be independent and 

identically distributed with E[A] = 0 and E[µ;] = ui , and the sit are independent and 

1 The single kernel diameter (KD) and single kernel weight (KW) may be considered as alternative 
measures of kernel size. To avoid the multicollinearity problem that arises from including two measures of 
the same thing, the following model was estimated separately: 

PFYil = /30 + /3,KWit + /32KWSi1 + /33KHit + /34KHSit + /35TWit + A +sit, 
where KW;, is the average single kernel weight (mg), KWSit is the standard deviation of single kernel 
weight. However, the results oft-tests showed that the estimated coefficients p1 and p2 are not statistically 
significant at the 5% level. 
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identically distributed random variables with E[sit] = 0, E[st] =a};, and uncorrelated with 

the A . That is, E[Asil] = 0. 

The model was fit using PROC NLMIXED in SAS version 8.0. The data are 

assumed normally distributed and the mean (expected value) of the data is linear in terms 

of a set of explanatory variables and the random-effects parameters, i.e., 

The random-effects parametersµ; enter the model linearly. This study also considered 

average single kernel moisture (KM) and standard deviation of single kernel moisture 

(KMS), but dropped them because .they were not statistically significant. Further, the 

standard deviation of single kernel moisture (KMS) should not matter since each sample 

is tempered to 16% moisture. The ordinary least squares (OLS) estimates of the 

coefficients were used as the starting values for the coefficients of the mean model. The 

variance and covariance of the data is an exponential function of a linear combination of 

explanatory variables, i.e., 

Finally, the estimated percent flour yield equation is 

P FY= 48.24 + l .32KD - 2.25KDS - 0.07 KH - 0.04KHS + 0.44TW 
(4) 

(29.58) (3.19) (-2.30) (-7.95) (-1.84) (13.14) 

where PFYis the percent flour yield(%), KD is the average single kernel diameter (mm), 

KDS is the standard deviation of single kernel diameter, KH is the average single kernel 

hardness (hardness index), KHS is the standard deviation of single kernel hardness, and 

TW is the test weight (lb/bu). The !-statistics of the coefficients are presented in 

parentheses: 
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The percent flour yield equation is linear with respect to all quality variables. The 

negative coefficients on the standard deviation terms (KDS, KHS) in equation (4) yield a 

convex function, which will lead to sorting being optimal. 

Equation ( 4) shows that flour yield is expected to increase with increases in single 

kernel diameter (K.D) and test weight (TW), but decrease with increases in single kernel 

hardness (KH), standard deviation of single kernel diameter (KDS), and standard 

deviation of single kernel hardness (KHS).2 The elasticity of percent flour yield with 

respect to the standard deviation of single kernel diameter (KDS), i.e., -2.25, is much 

bigger in absolute value than that with respect to the standard deviation of single kernel 

hardness (KHS), i.e., -0.04. 

This study also evaluated other yield equations that are available in past research. 

One is the dough factor equation estimated by Baker (1998) at Kansas State University. 

The dough factor equation relating the amount of dough to wheat quality attributes is 

expressed as: 

(5) 
DF = 22.45 + 2.94KW -6.87 KWS + 6.8lPT-0.07 KW2 

-0.23PT2 +O.l9KW ·KWS +0.37TW, 

where DFrepresents the amount of flour-water dough that canbe produced from a given 

quantity of wheat, KW denotes kernel weight (mg), KWS denotes standard deviation of 

kernel weight, PT denotes protein(%), and TW denotes test weight (lb/bu). Since the 

dough factor equation is strictly concave with respect to kernel weight (KW) and protein 

2 Milling yield increases when wheat becomes softer in hard wheat. However, milling yield increases as 
hardness increases in soft wheat. 
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(PT), i.e., 82 D~ < O and 82 D~ < 0 , the model resulted in a perfect blending of all 
8KW 8PT 

loads. 

The other is the percent flour yield equation estimated by Lyford (2000) at 

Oklahoma State University. The percent flour yield equation is expressed as: 

(6) 
PFY =37.0l+0.39TW +l.44KW-0.03KW2 -0.0SKH -l.5lKWS 

+ 0.05KW · KWS, 

where P FY denotes percent flour yield, TW denotes test weight (lb/bu), KW denotes 

kernel weight (mg), KH denotes kernel hardness (hardness index), and KWS denotes 

kernel weight standard deviation. The percent flour yield equation is not convex over the 

entire data range, which also lead to blending being optimal. Since the primary interest of 

the study lies in sorting rather than blending, these two models were not used. 

Cluster Analysis 

Cluster analysis is commonly used to group observations into clusters such that 

each cluster is as homogeneous as possible with respect to certain characteristics. 

The clusters formed should be highly internally homogeneous, i.e., observations in each 

cluster are similar to each other, and highly externally heterogeneous, i.e., observations of 

one cluster should be different from the observations of other clusters. 

Cluster analysis is a useful technique for sorting grain. It can be used to group a 

large number of grain loads into a desired number of clusters in which each load is 

similar to one another with respect to kernel size. Since the loads in any cluster are 

homogeneous with respect to kernel size, the variability of kernel size among individual 

loads is minimal. This suggests that the variation of kernel size between loads can be 
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reduced by forming homogeneous groups or clusters, and further implies that the overall 

variation of kernel size can be reduced when various loads of grain are mixed in the bin. 

This study employs a two-stage clustering procedure suggested by Punj and 

Stewart (1983). Two-stage clustering procedure is characterized by the complementary 

use of hierarchical and nonhierarchical clustering techniques. In other words, in a two

stage clustering procedure, nonhierarchical clustering is used to refine the clustering 

solution obtained from the hierarchical method. A two-stage cluster analysis is based on 

the results of simulation studies showing that nonhierarchical clustering techniques are 

quite sensitive to the selection of the initial seeds, i.e., local optima can be numerous. 

However, their performance is much superior when the results from hierarchical 

clustering methods are used to form the initial or starting seeds. 

In the frrst stage, one of the hierarchical.clustering methods that has demonstrated 

superior performance in terms of within-standard deviation and R2 is used to obtain k 

initial cluster centroids or seeds. In this study five primary hierarchical clustering 

methods are evaluated: (1) centroid method, (2) single-linkage or nearest-neighbor 

method, (3) complete-linkage or farthest-neighbor method, (4) average-linkage method, 

and (5) Ward's or minimum variance method. 

For hierarchical clustering, PROC CLUSTER in SAS 8.0 is used. After the data 

are frrst subjected to hierarchical clustering, the PROC TREE is used to specify the 

number of clusters desired (k). Then, the PROC MEANS is used to compute the means of 

each clustering variable for each cluster. The k cluster means or centroids for each 

clustering variable is used as the initial or starting seeds. 
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In the second stage, the k initial cluster centroids or seeds obtained from the 

hierarchical clustering are submitted to the nonhierarchical clustering technique for 

refinement of the clusters. In the nonhierarchical clustering, each observation is initially 

assigned to the cluster to which it is the closest. In the next iterative procedure, the 

observation is reassigned or reallocated to one of the k clusters until the convergence 

criterion is satisfied. Since this nonhierarchical clustering algorithm uses k initial cluster 

centroids or seeds as starting points and produces exactly k different clusters of greatest 

possible distinction, it is commonly referred to ask-means clustering method. For 

nonhierarchical clustering, PROC F ASTCLUS in SAS 8.0 is used. 

Since the primary interest of the study lies in the kernel size uniformity, loads for 

each year are clustered with respect to the average single kernel diameter (KD). Three 

cluster solutions are used because kernel size can be simply classified into three 

categories, i.e., small, medium, and large kernels. 

Nonlinear Optimization 

The basic function of grain elevators is to store grain delivered from farmers and 

then sell it to processors or other merchandisers. The elevators often rearrange grain by 

blending and/or sorting high-quality grain with or from low-quality grain to take 

advantage of profit opportunities. The elevator is assumed to have a prior knowledge of 

the distribution of wheat quality characteristics before the loads of wheat are delivered to 

the elevator. The elevator allocates truckloads of wheat with different quality attributes 

into a number of storage bins such that total flour yield from all wheat stored in the bins 
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is maximized. This optimization problem is solved using a mathematical programming 

approach. 

For a mathematical programming model, truckloads are indexed by i (i = 1, 2, ... , 

N), each containing wheat with different levels of quality attributes. Storage bins are 

indexed by j. Considering the fact that grain grades can be simply classified into three 

categories, i.e., low, medium, and high quality, three storage bins (j = 1, 2, 3) are used. 

Total quantity of wheat in bin} is denoted by QTI'j. 

The objective is to maximize the total flour yield from all wheat contained in the 

bins, and the objective function is defined as: 

Max IPFY(KD1 ,KDS1 ,KH1 ,KHS1 ,TW1 )QT~ 
QTY . 

(7) J 

= Max L ( 48.24 + l .32KD1 - 2.25KDS1 -0.07 KH1 -0.04KHS1 + 0.44TW1 )QT~, 
QTY j 

where KD1 is the average single kernel diameter for wheat in bin}, KDS1 is the standard 

deviation of single kernel diameter in bin}, KH.J is the average single kernel hardness for 

wheat in bin}, KH8.J is the standard deviation of single kernel hardness in bin}, and Tf¥.i 

is the test weight for wheat in bin j. 

The maximization problem is subject to a number of constraints concerning wheat 

allocation and quality attributes. Let Xij denote the quantity of wheat allocated from load i 

to bin}, then the total quantity of wheat available in bin} is: 

(8) 

For simplicity, each truckload is treated as one unit and then the proportion of load i 

allocated into bin j is summed to 1. That is, L Xu = 1. The model allows a load to be 
j 
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partially allocated into different bins to avoid the extra complexity of integer 

programmmg. 

One of the useful properties of grains of different quality is that they can be 

readily mixed, and for many quality characteristics the effects of mixing can be easily 

computed. These quality attributes include kernel diameter, kernel hardness, and test 

weight. This ability to compute the physical quality characteristics of mixed grain arises 

from the linear homogeneity attributes of mixing. Denote the proportion of load i 

allocated into binj by PiJ, and let the average single kernel diameter for wheat in load i be 

KD;, then the average single kernel diameter for wheat in binj is given by 

(9) 

Similarly, the average single kernel hardness for wheat in binj is given by 

(10) 

Finally, the average test weight for wheat in binj is given by 

(11) 

When grain from separate truckloads that differ in kernel size is combined in the 

bin, the variation of kernel size in binj results from two sources. One is the within-load 

variation and the other is the between-load variation. Within-load variation means the 

variation of kernel size within a load, i.e., the difference between each kernel size and its 

load mean, and between-load variation means the variation of kernel size across loads, 

i.e., the difference between the mean kernel size of each load and the overall mean kernel 
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size of the bin. Thus, the total variation of kernel size in the bin is calculated as the sum 

of the variation within each load and the variation between loads. 

The within-load variation is inherent to each load in the sense that it can not be 

altered by rearranging the loads and so it does not influence the optimal solution. 

However, the between-load variation can be reduced by combining the loads of similar 

kernel size when truckloads are allocated into the bins. The smaller between-load 

variation in turn means the smaller total variation of kernel size in the bin. 

In equation (7), the standard deviation of single kernel diameter (KD8.J) reflects 

the variation of kernel size in bin}. There are two methods that can be used to estimate 

the standard deviation of kernel diameter for wheat in bin}. The first method estimates 

the standard deviation of kernel diameter using a similar procedure with the analysis of 

variance. The second method approximates the standard deviation of kernel diameter 

using mean absolute deviations. 

In the first method, the total variation of kernel size is calculated as the sum of 

within-load variation and between-load variation. The total variation of kernel diameter 

about its overall mean for wheat in bin j is measured by 

(12) LL.Pu(KDik -KD)2 = LL.Pu(KDik -KD;)2 + I,300py(KD; -KD)2 , 

i=l k=l i=l k=l i=l 

x .. 
where pij is the proportion ofload i aUocated into bin}, i.e., p!i = L 11 , KD;k denotes 

xij 

the single kernel diameter of the kth kernel in the ith load (k = 1, ... , 300; i = 1, ... , N), 

KDi is the mean of single kernel diameter in the load i, KD1 is the overall mean of single 

kernel diameter in the bin}. 
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With the appropriate degrees of freedom associated, the variance of kernel 

diameter in the bin} is calculated as 

(13) '°''°' pu(KD;k -KD)2 '°''°' py(KD;k -KD;)2 '°' p 1/KD; -KD)2 

L.L.-----= L.L. + L...300-----
i=l k=l (300N -1) i=l k=I N(300-1) i=l (N -1) 

Since the standard deviation of kernel diameter in load i, i.e., KDS; = L ( KD;k - KD; )2 , 
k=I (300 -1) 

we obtain 

(14) '°' '°' pu(KD;k - KD) 2 '°' PuKDS;2 '°' pu(KD, - KD) 2 

L. L.-----~ = L. + L...300~---~-
i=l k=I (300N -1) i=l N i=I (N -1) 

Taking the square root of the equation (14), we finally obtain the standard 

deviation of single kernel diameter in bin j 

(15) 
'°' p . .KDS2 '°' p .. (KD. -KD .)2 

KDS. = L. I} ' + L. 300 I} ' 1 

J i=l N i=I ( N - l) 

In the alternative procedure to approximate the standard deviation of kernel 

diameter, the within-load standard deviation of kernel diameter for wheat in bin} is 

approximated by mean absolute deviation estimator. This is based on the theoretical 

results by Taylor (pp.98-99, 1986). Taylor presented that the expected value of absolute 

deviation is equal to 1/1.25 times the expected value of the standard deviation. Since the 

standard deviation of single kernel diameter in load i is readily available, we can obtain 

the mean absolute deviation estimator as an approximation to the within-load standard 

deviation of kernel diameter. 

On the other hand, the between-load standard deviation of kernel diameter for 

wheat in bin} is estimated by the expected absolute deviation of the load average kernel 

diameter from the bin average kernel diameter. Let the deviation of the average single 
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kernel diameter for wheat in load i from the average single kernel diameter for wheat in 

binj, or KD; - KD1 , be denoted by u; if it is positive, and by u!i if it is negative. Then, 

L (u; + u!i) measures the sum of the absolute deviations for average single kernel 

diameter. Taking the expected value of L (u; + u!i ), we can obtain the mean absolute 
i 

deviation estimator as an approximation to the between-load standard deviation of kernel 

diameter. 

With the within-load standard deviation and the between-load standard deviation 

combined together, the average standard deviation of kernel diameter for wheat in binj is 

I KDS; I ( + -) KDS.= p .. --+ p .. u .. +u .. 
1 ; I) 1.25 ; I) I) I) 

(16) 
I [ KDS; ( + -)~ h Xu = p .. --+u.+u .. ,werep .. =L . 

I. I) 1.25 I) I) I) x .. 
I) 

Similarly, the average standard deviation of kernel hardness for wheat in binj is 

estimated by 

S I KHS; I ( + -) KR . = p .. --+ p .. u .. +u .. 
1 ; I) 1.25 ; I) I) I) 

(17) 
I [KHS; ( + -)~ Xu = p .. --+ u .. +u .. , wherep .. = L 

I. IJ 1.25 IJ !I IJ X .. 
I) 

The elevator's maximization problem is solved using the MINOS5 solver in 

GAMS, a general nonlinear optimizer. Nonlinearities occur in several constraints and the 

feasible region for the problem is not convex. Due to the non-convexity, there is no 

guarantee that a local optimum found is actually global. 

To deal with this problem, a global optimization approach is required. A global 

optimization method solves the non-convex model with numerous different starting 
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values for a selected variable (Brooke, Kendrick, Meerhaus, and Raman, p. 154). In this 

study, the global solution was tracked by randomizing the starting values up to 1000 

times. Specifically, the starting values for variable Xij, i.e., amount of load allocated, were 

varied by random numbers generated from uniform distribution, within a range of O.0001 

and 1/3. The model was repetitively solved and the solution that gave the largest 

objective value was selected as a global maximum. 

Since the global optimization method using random restarts searches for a global 

optimum from a large number of starting values, the computer time is really a matter of 

concern. The problem with the first method of estimating the standard deviation is that it 

imposes heavy nonlinear constraints and thus it is very slow to converge. This study uses 

the alternative method that approximates the standard deviation using the mean absolute 

deviation estimator since it is considerably faster to converge. Even with the alternative 

method, it took more than 35 hours to solve the model using a personal computer 

equipped with an Intel Pentium III processor at 450 MHz in the computer lab at the 

Department of Agricultural Economics at Oklahoma State University. 

· Cluster analysis and nonlinear optimization are evaluated by how much they 

increase the percent flour yield relative to the whole sample without sorting. In addition, 

to measure the monetary value of increasing kernel uniformity, the percent flour yields 

obtained from cluster analysis and nonlinear optimization are evaluated by the following 

milling income equation (Lyford, 2000): 

MI= 15,500*{[TW * PFY*l.018 *(l-(DK +TD))* FP/100] 

(18) + [TW *(DK+ TD)* (MP /2000)] + [(l-PFY) * (MP /2000)] 

-[WP+0.636+0.120* PFY]}, 
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where MI is the milling income per day, denoted in dollars, TW is the test weight, P FY is 

the percent flour yield, DK is the dockage level, TD is the total defects, FP is the flour 

price, and MP is the mill feed price. The estimated milling income equation is based on 

the daily throughput of 15,500 bushels of wheat, represented by a medium-sized mill. It 

is assumed that flour price (FP) is $9.20/cwt, wheat price (WP) $3.10/bushel, dockage 

(DK) 0.5%, total defects (TD) 2.5%, and mill feed price $56/ton. 

Results 

The quality characteristics and flour yield assuming all loads for each year are 

blended are presented in Table 2. The standard deviation of single kernel diameter (KDS) 

and standard deviation of single kernel hardness (KHS) are larger than the average values 

reported in Table 1. This is because the standard deviation of the two variables in Table 2 

reflects the between-load standard deviation as well as the within-load standard deviation. 

The percent flour yield (PFY) predicted by equation (4) is lowest in 1996 with 70.52 an:d 

highest in 1998 with 71.66. The predicted average percent flour yields are generally 

lower than the actual average percent flour yields presented in Table 1, since they are 

based on the increased standard deviation of single kernel diameter and single kernel 

hardness. 

Cluster Analysis 

The cluster solutions from 1995 to 1998 are reported in Tables 3 and 4. The first 

column of Table 3 indicates the hierarchical clustering algorithm that gave the best 
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solution in the first stage of two-stage clustering. There were only slight differences in 

the solutions obtained when the centroids from the single-linkage, complete-linkage, 

centroid, average-linkage, and Ward's methods were used as initial seeds or starting 

points. The R2s ranging from 0.76 to 0.85 are quite large, suggesting that the clusters are 

quite homogeneous and well separated. The low values of within standard deviation 

ranging from 0.05 to 0.06 further confirm this conclusion. 

The cluster solution can be labeled using the cluster means of each cluster. For 

example, considering 1995 sample in Table 4, cluster 1 consists of loads that have 

medium kernels and therefore this cluster can be labeled as medium-kernel cluster. 

Similarly, cluster 2 can be labeled as small-kernel cluster, and cluster 3 as large-kernel 

cluster. 

Table 5 exhibits the average wheat quality attributes of the clusters in each year 

and the estimated percent flour yield. The overall mean of the percent flour yield is 71.13 

for 1995, 70.69 for 1996, 71.46 for 1997, and 71.74 for 1998. The percent flour yields 

obtained from clustering are higher than those without sorting across the board. This 

result is from the fact that by sorting the loads for each year into homogeneous clusters, 

the between-load variations of single kernel diameter and single kernel hardness are 

decreased, and in turn the average standard deviations of single kernel diameter and 

single kernel hardness are decreased. 

Nonlinear Optimization 

Table 6 shows the results of the nonlinear optimization. A small number of loads 

were partially allocated into the bins, and thus the total quantities of loads allocated into 
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each bin are not round numbers. The average percent flour yield is 71.33 for 1995, 70.89 

for 1996, 71.67 for 1997, and 71.91 for 1998. The yields are higher than those from 

cluster analysis as well as whole sample without sorting. 

Table 7 summarizes the results in Tables 2, 5 and 6. The results show slight 

increases in percent flour yield from two sorting methods. Specifically, the cluster 

analysis and nonlinear optimization increase the percent flour yield relative to the whole 

sample without sorting by 0.13% and 0.32% respectively. This implies that when one 

million bushels of wheat are milled, the cluster analysis will increase flour yield by 1,300 

bushels, and the nonlinear optimization will increase flour yield by 3,200 bushels. 

Table 8 reports the milling incomes per day from whole sample without sorting, 

cluster analysis, and nonlinear optimization. Cluster analysis increases the milling income 

relative to the whole sample without sorting by 104.99 dollars (5%) on average, and 

nonlinear optimization increases the milling income relative to whole sample without 

sorting by 265.90 dollars (13%) on average. 

Conclusions 

This study developed grain sorting strategies for elevators to use to increase 

kernel uniformity and determined the size of potential benefits from sorting. Kernel size 

uniformity is an important physical quality attribute in terms of processing efficiency, 

quality control, and milling yield. 

Cluster analysis and nonlinear optimization were used to sort loads to increase 

kernel size uniformity. Cluster analysis and nonlinear optimization increased the percent 
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flour yield relative to no sorting by 0.13% and 0.32% respectively. Cluster analysis 

increased the daily milling income relative to no sorting by 104.99 dollars (5%), and 

nonlinear optimization increased the milling income by 265.90 dollars (13%). The results 

show that cluster analysis is vastly inferior to nonlinear optimization. 

This study was unable to include all the potential values of kernel uniformity. The 

milling yield data used here are from fixed roll settings. In practice, flour millers can 

optimally adjust the space of rollermills to take advantage of the kernel size uniformity. 

Future grain science research needs to look at the possibility of optimally adjusting roller 

settings. There is also the possibility of improving flour quality (reduced ash content) 

from increased kernel uniformity. Future grain science research should also address flour 

quality. These additional benefits of kernel uniformity may need to be considered before 

firms would adopt sorting strategies to increase kernel uniformity. 
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Table 1. Summary Statistics for Wheat Quality Characteristics and Actual 
Percent Flour Yield, 1995-1998 

Single Kernel Characteristics 

Year KW KWS KD KDS KH KHS KM KMS TW PFY 

Mean 27.87 7.74 2.29 0.42 67.56 17.34 10.70 0.64 59.41 71.75 

StDev 2.59 0.81 0.12 0.04 4.28 1.35 0.80 0.19 2.09 1.48 

1995 Min 22.75 5.89 2.03 0.33 56.98 13.66 8.33 0.37 54.00 67.10 

Max 35.53 10.79 2.66 0.55 78.95 21.60 12.57 1.72 63.00 75.07 

Obs 148 148 148 148 148 148 148 148 148 148 

Mean 28.21 8.00 2.23 0.46 70.81 17.18 13.00 0.51 59.40 70.74 

StDev 2.91 0.79 0.14 0.04 6.11 1.37 0.86 0.08 1.38 1.50 

1996 Min 22.19 6.31 1.89 0.38 57.67 13.24 9.46 0.32 55.65 66.01 

Max 34.99 10.24 2.59 0.57 85.09 21.85 14.96 0.78 63.18 73.77 

Obs 156 156 156 156 156 156 156 156 156 156 

Mean 30.23 8.53 2.31 0.47 69.36 17.47 12.58 0.48 60.71 71.29 

StDev 2.82 0.90 0.14 0.04 5.84 1.98 1.05 0.12 1.37 0.93 

1997 Min 22.37 6.77 1.95 0.38 49.24 13.19 9.82 0.33 56.07 67.77 

Max 37.35 11.61 2.65 0.58 81.43 27.00 15.16 1.31 63.42 73.07 

Obs 136 136 136 136 136 136 136 136 136 136 

Mean 30.16 7.67 2.31 0.42 72.78 15.86 12.12 0.47 61.56 71.80 

StDev 1.94 0.47 0.10 0.03 6.70 1.89 0.89 0.09 1.21 1.29 

1998 Min 23.44 6.50 1.93 0.35 50.67 12.21 9.87 0.32 58.30 67.65 

Max 36.99 9.24 2.64 0.48 82.92 27.23 14.09 0.86 63.78 74.65 

Obs 169 169 169 169 169 169 169 169 169 169 

Notes: KW is the average single kernel weight (mg), KWS is the standard deviation of single kernel 
weight, KD is the average single kernel diameter (mm), KDS is the standard deviation of single kernel 
diameter, KH is the average single kernel hardness (hardness index), KHS is the standard deviation of 
single kernel hardness, KM is the average single kernel moisture (%), KMS is the standard deviation of 
single kernel moisture, TW is the test weight (lb/bu), and PFYis the percent flour yield(%). 
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Table 2. Average Wheat Quality Attributes and Predicted Percent Flour Yield 
from Whole Sample without Sorting, 1995-1998 

Year Obs KD KDS KH KHS TW PFY 

1995 148 2.29 0.43 67.56 17.22 59.41 71.01 

1996 156 2.23 0.48 70.81 18.80 59.40 70.52 

1997 136 2.31 0.48 69.36 18.56 60.71 71.32 

1998 169 2.31 0.41 72.78 17.89 61.56 71.66 

Notes: Obs is the number of observations, KD is the average single kernel diameter (mm), KDS is the 
standard deviation of single kernel diameter, KH is the average single kernel hardness (hardness index), 
KHS is the standard deviation of single kernel hardness, and TW is the test weight (lb/bu), and PFY is 
the percent flour yield(%). KDS and KHS are calculated by combining the within-load standard 
deviation and between-load standard deviation. 
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Table 3. Summary Statistics for Two-Stage Cluster Analysis, 1995 - 1998 

Year 
Hierarchical Total Standard Within Standard 

R-Squared 
Clustering Method Deviation Deviation 

1995 Single-Linkage 0.12 0.05 0.81 

1996 Single-Linkage 0.14 0.06 0.85 

1997 Complete-Linkage 0.14 0.06 0.82 

1998 Centroid 0.10 0.05 0.76 

Note: Loads are clustered with respect to average single kernel diameter (KD) in each cluster. 

Table 4. Cluster Means and Standard Deviation, 1995 - 1998 

Year No. of Clusters No. of Loads Cluster Mean Cluster Std. Dev. 

1 62 2.29 0.04 

1995 2 54 2.17 0.05 

3 32 2.46 0.08 

1 78 2.24 0.05 

1996 2 42 2.04 0.06 

3 36 2.42 0.06 

1 27 2.10 0.07 

1997 2 75 2.31 0.05 

3 34 2.48 0.06 

1 88 2.31 0.03 

1998 2 46 2.42 0.06 

3 35 2.17 0.07 

Note: Loads are clustered with respect to average single kernel diameter (KD) in each cluster. 
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Table 5. Clusters, Average Quality Attributes and Percent Flour Yield, 1995-1998 

Year Cluster Obs KD KDS KH KHS TW PFY 
Mean 
PFY 

1 62 2.29 0.37 68.63 17.41 59.66 71.19 

1995 2 54 2.17 0.37 66.05 17.13 57.98 70.48 71.13 

3 32 2.46 0.42 68.02 16.78 61.36 72.12 

1 78 2.24 0.41 68.89 18.45 59.52 70.89 

1996 2 42 2.04 0.39 73.78 18.87 58.33 69.81 70.69 

3 36 2.42 0.45 71.50 17.43 60.37 71.28 

1 27 2.10 0.43 69.80 18.91 59.06 70.39 

1997 2 75 2.31 0.42 70.43 18.18 60.94 71.50 71.46 

3 34 2.48 0.42 66.63 18.60 61.51 72.22 

1 88 2.31 0.36 72.14 18.97 61.58 71.76 

1998 2 46 2.42 0.37 72.43 16.57 62.24 72.26 71.74 

3 35 2.17 0.38 74.81 17.00 60.62 71.00 

Notes: Obs is the number of observations, KD is the average single kernel diameter (mm), KDS is the 
standard deviation of single kernel diameter, KH is the average single kernel hardness (hardness index), 
KHS is the standard deviation of single kernel hardness, and TW is the test weight (lb/bu), PFYis the 
percent flour yield(%), and Mean PFYis the average PFY of the clusters. 
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Table 6. Results of Nonlinear Optimization, 1995-1998 

Bin Number 
Year Variables 

1 2 3 

Quantity 70.92 32.34 44.74 

KD 2.28 2.45 2.17 

KDS 0.20 0.42 0.37 

1995 KH 69.71 66.84 64.67 

KHS 16.71 16.86 16.56 

TW 59.79 61.07 57.62 

Average PFY 71.33 

Quantity 69.02 45.00 41.98 

KD 2.23 2.39 2.04 

KDS 0.41 0.46 0.39 

1996 KH 67.26 72.38 74.98 

KHS 17.87 17.06 18.25 

TW 59.30 60.38 58.50 

Average PFY 70.89 

Quantity 58.54 33.89 43.57 

KD 2.41 2.13 2.33 

KDS 0.44 0.45 0.30 

1997 KH 66.54 68.82 73.53 

KHS 17.47 18.95 16.86 

TW 61.18 59.33 61.16 

Average PFY 71.67 

Quantity 35.85 52.46 80.69 

KD 2.31 2.23 2.37 

KDS 0.39 0.20 0.38 

1998 KH 62.51 75.48 75.57 

KHS 17.98 15.69 15.09 

TW 60.44 61.28 62.25 

Average PFY 71.91 

Notes: Quantity is the total number ofloads allocated into the bin, KD is the average single kernel 
diameter (mm), KDS is the standard deviation of single kernel diameter, KH is the average single kernel 
hardness (hardness index), KHS is the standard deviation of single kernel hardness, and TW is the test 
weight (lb/bu), and PFYis the percent flour yield(%). 
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Table 7. Predicted Average Percent Flour Yield from Whole Sample without 
Sorting, Cluster Analysis, and Nonlinear Optimization, 1995-1998 

Year 
Whole Sample Cluster Analysis Nonlinear Optimization 

Without Sorting PFY Increase PFY Increase 

1995 71.01 71.13 0.12 71.33 0.32 

1996 70.52 70.69 0.17 70.89 0.37 

1997 71.32 71.46 0.14 71.67 0.35 

1998 71.66 71.74 0.08 71.91 0.25 

Average 71.13 71.26 0.13 71.45 0.32 

Note: PFY represents the percent flour yield and increases in PFY are calculated relative to the PFY 
from whole sample without sorting. 

Table 8. Milling Incomes per Day from Whole Sample without Sorting, Cluster 
Analysis, and Nonlinear Optimization, 1995-1998 

(Unit: Dollars) 

Whole Cluster Analysis Nonlinear Optimization 

Year 
Sample 

Milling Dollar Percent Milling Dollar Percent without 
Sorting Income Increase Increase Income Increase Increase 

1995 1,079.58 1,177.23 97.65 9% 1,339.97 260.39 24% 

1996 670.80 809.11 138.31 21% 971.82 301.02 45% 

1997 2,654.47 2,770.96 116.48 4% 2,945.68 291.21 11% 

1998 3,806.23 3,873.75 67.52 2% 4,017.23 211.00 6% 

Average 2,052.77 2,157.76 104.99 5% 2,318.68 265.90 13% 

Note: Dollar increases and percent increases are calculated relative to the milling income from whole 
sample without sorting. 
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Figure 1.: Concave Yield-Quality Schedule 
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Figure 2.: Convex Yield-Quality Schedule 
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MARKET INVERSION IN COMMODITY FUTURES PRICES 

ABSTRACT 

As opposed to a normal market, an inverted market has a negative price of storage 

or spread. Market inversions in nearby spreads rarely occur during early months of the 

crop year since stocks are usually abundant after harvest. However, market inversions 

become more pronounced when the spreads are observed across crop years at the end of 

the crop year or just before new harvest. The regressions of spreads on the logarithm of 

U.S. quarterly stocks show that there exists a positive relationship between the spread and 

the level of stocks, and further implies that when stocks are scarce, markets will be 

inverted. Simulations are conducted to determine whether a market inversion is a signal 

to sell the stocks. The results of the paired-difference tests reveal that as the crop cycle 

advances towards the end of the crop year, market inversions clearly reflect the market's 

signal to release stocks in anticipation of new crop supplies. The regressions of actual 

returns to storage on predicted returns to storage clearly show that a market inversion is a 

signal to sell. The results support the behavioral finance hypothesis that producers are 

choosing to hold excess stocks because of some type of biased expectations. 

Key Words: market inversion, negative price of storage, cost of carry, risk premium, 

convenience yield 
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MARKET INVERSION IN COMMODITY FUTURES PRICES 

Introduction 

A principal theory of futures markets tells that futures prices for storable 

commodities should be higher than spot prices by the carrying charges. Carrying charges 

represent the cost of storage, primarily warehousing and insurance cost plus interest 

foregone. If the spot price is too low relative to the futures price, a cash-and-carry 

arbitrage opportunity arises and the trader who engages in arbitrage reaps a riskless 

profit. Thus, in a normal market, a futures price spread is limited by arbitrage to the full 

cost of carry. 

However, this theory is not always supported by empirical evidence. A puzzling 

phenomenon in actual commodity markets is that processors and merchandisers routinely 

hold inventories in the face of inverse carrying charges. In an inverted market, a 

commodity's price for future delivery is below the price for immediate delivery and 

intertemporal arbitrage conditions fail to apply. Under market inversion, since the price 

spread in futures markets fails to cover commodity-holding costs, stockholders 

apparently gain negative returns to storage. 

This aspect of commodity markets was first noticed by Working (1934), while 

studying the price relationships between old and new-crop wheat futures at Chicago. He 

observes that nationwide wheat stocks are held even when the intertemporal spread (price 

of storage) is inverted, and argues that the price of storage is dependent upon the 

aggregate level of stocks. Later, Working's findings were represented by the supply-of-
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storage curve, which shows that the farther the spot/futures spreads are below full 

carrying charges, the less amount of stocks are held. 

Traditionally, there were two major, but contradictory, theories explaining the 

phenomenon of market inversion. The risk premium theory of Keynes (1930) holds that 

speculators must be compensated for their risk taking by hedgers in the form of a risk 

premium. In markets where speculators are predominantly short, the futures price is 

biased downward relative to the expected future spot price by the amount of a risk 

premium. In contrast, the convenience yield theory, first employed by Kaldor (1939), 

maintains that when processors and merchandisers hold stocks readily available at hand, 

they receive some non-monetary benefits that do not accrue to the holders of futures 

contracts. 

Recently, alternative explanations for market inversions have been suggested, 

notably in articles by Wright and Williams; Benirschka and Binkley; and Brennan, 

Williams, and Wright. According to their view, the apparent relationship between market 

inversions and return to storage is caused by mismeasurement. Wright and Williams 

(1989), and Brennan, Williams, and Wright (1997) argue that market inversions may 

occur when the stocks of very similar but economically distinct commodities in terms of · 

grade or location are aggregated into a composite while the prices for the commodities 

are represented by a single price. Brennan, Williams, and Wright also suggest that the 

market inversion may be caused by the probability of a stock out. Benirschka and 

Binkley (1995) argue that "storage at a loss" illusion exists because the opportunity costs 

of storage are overestimated by using grain prices at the central market, not at the storage 

locations. Frechette and Fackler (1999) examined Benirschka and Binkley's proposition, 
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that is, the location of stocks matters in the intertemporal price relationships of storable 

commodities, for the U.S. com market and found mixed empirical support. 

A market inversion appears to be a situation where the market is begging 

producers to sell, yet many continue to store their stocks. Behavioral finance (Kahneman, 

et al., 1982; Kahneman and Riepe, 1998) offers an alternative explanation that producers 

are choosing to hold excess stocks because of some type of biased expectations. Hurt 

(1987), for example, argues that a market inversion is a signal to sell. 

The studies cited above rationalize the market inversion well, but have not 

provided measurements of the frequency of market inversions or evaluated marketing 

strategies based on market inversions. The primary objective of the study is to determine 

the optimal marketing strategy when agricultural commodity futures markets are 

inverted. First, the frequency of market inversions in com, soybeans, and wheat markets 

will be determined by comparing nearby futures price spreads with the contemporaneous 

costs-of-carry. Then, regression analysis will be used to determine the situations in which 

the market inversions occur. Finally, simulations will be conducted to determine the 

optimal marketing strategy when markets are inverted. 

Theory 

Market inversion is commonly known as backwardation in British terms. 1 It 

1 The term "backwardation" used here has a different meaning than "normal backwardation." The theory of 
normal backwardation originated with Keynes (1930) and holds that the futures price is less than the 
expected future spot price due to a risk premium, and that the futures price should rise over time to equal 
the expected future spot price at expiration. As opposed to normal backwardation, "contango" refers to a 
price process in which the futures price falls over the life of the contract. 
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describes a market situation in which the spot price exceeds the futures price or a nearby 

futures price exceeds a distant futures price. 

The theory of the price of storage that explains intertemporal price relationships 

between spot and futures with respect to the cost of carrying a commodity was first 

proposed by Kaldor (1939). Following Kaldor, Working (1948, 1949), Brennan (1958, 

1991), Telser (1959), Fama and French (1987, 1988), and Heaney (1998) have elaborated 

on the theory of storage. 

The theory of the price of storage explains the price difference between spot and 

futures in terms of interest foregone in storing a commodity (the opportunity cost of 

storage), physical storage costs, risk premium, and convenience yield for holding stocks. 

Let F(t, T) be the futures price at time t for delivery of a commodity at time T, S(t) the 

spot price at time t, S(t)R(t, T) theinterest forgone during storage, W(t, T) the physical 

storage costs, P(t, T) the risk premium, and C(t, T) the convenience yield, then the price 

of storage (basis), F(t, T) - S(t), is defined as: 

(1) F(t, T)-S(t) = S(t)R(t, T) + W(t, T) + P(t, T)-C(t, T). 

The price of storage or basis, F(t, T) - S(t), can be interpreted as the return to 

storage from time period t to T (t < 1), i.e., the return from purchasing the commodity at t 

and selling it for delivery at T. The interest forgone, S(t)R(t, T), is the opportunity cost of 

holding stocks, i.e., the opportunity cost of investing cash in the commodity stock now 

rather than using a futures contract. The physical cost of storage, W(t, T), is the sum of 

rent for storage space, handling or in-and-out charges, insurance, transport, etc. As the 

quantity of stocks held by a firm increases, the physical cost of storage increases. 

However, the marginal physical cost of storage for an additional unit of stocks is 
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approximately constant for a wide range of stocks less than total storage capacity. 

Beyond the level at which the total storage capacity is almost fully utilized, the marginal 

physical cost of storage will rise sharply because of the large fixed costs required to 

construct additional storage facilities. 

The risk premium, P(t, T}, is the compensation for the risk of monetary loss on the 

stocks held. Brennan (1958) incorporated the risk premium originated with Keynes and 

Hicks into the components of the cost of storage. He argues that the market must offer a 

risk premium to encourage firms to hold stocks because the risk of loss of inventory 

value constitutes the net cost of storage. When stock levels are low, the risk of a 

commodity losing its value is small. However, as stock levels increase, the risk of loss of 

inventory value also increases, potentially up to the critical point at which a firm's credit 

position is seriously endangered. The higher the level of stocks, the more risky the 

investment in stocks, and the greater the compensation required for holding the stocks. 

Thus, the risk premium (or risk aversion factor denoted by Brennan (1958)) is assumed to 

be an increasing function of stocks. It rises with increases in stocks at an increasing rate; 

BP 82P . 
- > 0 and - 2- > 0, where X 1s the amount of stocks held. ax ax 

The convenience yield, C(t, T}, refers to a stream of implicit benefits that accrues 

to the owner of a physical stock but not to the owner of a contract for future delivery. 

Stockholders earn the convenience yield because stocks on hand allow them to respond 

more flexibly and efficiently to unexpected supply and demand shocks. Where stocks are 

held, regular customer demands can be met, and sudden and unexpected increases in 

demand can be accommodated without disrupting production schedules. The convenience 

yield may be thought of as a negative price of storage in that it reflects the benefits rather 
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than the cost of stockholding. These benefits are most significant when stocks are scarce. 

When stocks are abundant, the convenience yield approaches zero because the scarcity 

value of stocks is minimal. Empirical evidence presented by Working (1949, 1949), 

Telser (1958), Fama and French (1987, 1988), and Brennan (1991) also suggest that the 

convenience yield is a decreasing (convex) function of stocks. It declines with increases 

in stocks but at a decreasing rate; ec < 0 and e:c > 0, where Xis the amount of stocks ex ex 

held. 

The theory of the price of storage also applies to the relationships between two 

futures contracts of different delivery months. The price of storage or spread between the 

nearby and distant futures contracts is defined as: 

(2) F(t,D)-F(t,N) = F(t,N)R(N,D) + W(N,D) + P(N,D)-C(N,D), D > N, 

where F(t, D) is a distant futures price quoted at time t, maturing at time D, F(t, N) is a 

nearby futures price quoted at time t, maturing at time N (D > N). Thus, F(t, D) -F(t, N) 

is the market spread or the return to storage from time period N to D. F(t, N)R(N, D) is 

the opportunity cost of holding stocks for the period N to D. W (N, D) is the physical costs 

of storage from time N to D. P(N, D) is the risk premium for holding stocks for the period 

N to D. C(N, D) is the convenience yield arising from stockholding from time N to D. 

In equations (1) and (2), two of the components that determine the price of 

storage, i.e., risk premium and convenience yield, are not directly observable. When 

stocks are sufficiently low, the theory of the price of storage predicts a negative price of 

storage (negative spread) or market inversion since the convenience yield overwhelms 

the sum of interest forgone, storage costs and risk premium. On the other hand, if the 

stock levels are sufficiently high, the convenience yield is negligible and the price of 
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storage (spread) is essentially the sum of interest forgone, storage costs and risk 

premium. Here, one testable hypothesis generated by the theory of the price of storage is 

that markets will be inverted when stocks are low. 

When markets are inverted, a negative price of storage (negative spread) can be 

interpreted as a market signal that encourages firms to release their stocks into 

consumption channels. Under market inversion, it is best for stockholders to sell their 

stocks now since storage only occurs at a very high opportunity cost. Another testable 

hypothesis from this argument is that producers will receive highest expected returns by 

selling stocks rather than storing when markets are inverted. 

Data 

The agricultural commodities selected for the analysis of market inversion in 

futures prices are com, soybeans, and wheat. Futures prices from the Chicago Board of 

Trade are obtained from the Annual Report of the Board of Trade of the City of Chicago 

and from a computer database compiled by Technical Tools, Inc. Futures price is the 

closing price of the corresponding contract month observed on the first trading day of 

each calendar month. The sample period extends from 1957 through 1999 for com, and 

from 1958 through 1999 for wheat and soybeans. A long time series is needed because 

market inversions occur infrequently. However, before the first year of the sample 

periods, only nearby futures contracts were reported and a lot of observations, for 

example, March futures prices, were missing. Thus, this study could not go back farther 

in time. 
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For the same periods with the futures price series, monthly cash grain prices are 

obtained from National Agricultural Statistics Service (NASS) of the U.S. Department of 

Agriculture. The cash prices are U.S. monthly average prices received by farmers and 

denoted in dollars per bushel. The average price is the open-market price resulted from 

dividing the total dollars received by all farmers by the total quantity sold. U.S. monthly 

average prices are computed by weighting monthly prices by the estimated percentage of 

monthly sales during the month by State. U.S. quarterly grain stocks, and grain supply 

and demand data are also from National Agricultural Statistics Service of the U.S. 

Department of Agriculture. 

The cost-of-carry or carrying charge from the perspective of off-farm, commercial 

storage consists of two components: physical storage costs charged by elevators and the 

interest opportunity cost. Commercial grain storage rates over the 1970-1999 period, 

characterized as variable cost only, were obtained from Oklahoma Cooperative Extension 

Service at Oklahoma State University. The prevailing commercial grain storage rates in 

recent years are commonly cited as 2.5 to 2.6 cents per bushel per month (Jackson, Irwin, 

and Good, 1997; Kastens and Dhuyvetter, 1999). To create a historical time series of 

storage costs for the period 1957 through 1969, the average commercial grain storage 

cost of2.55 cents per bushel per month is deflated using the producer price index (PPI) 

from Bureau of Labor Statistics. The U.S. prime loan rates from the Federal Reserve 

Bank of St. Louis are used to calculate the opportunity or interest costs for stored grain. 
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Procedures 

The market spread, defined as the difference between two futures prices can be 

constructed within and across crop years. The spread between futures prices for nearby 

and distant delivery dates is defined by 

(3) S(t) = F(t,D)-F(t,N), 

where S(t) represents the spread between two futures prices observed at time t, F(t, DJ 

represents the futures price of a distant delivery month at time t, and F(t, NJ represents 

the futures price of a nearby delivery month at time t. For com, the December-March 

spread in December, the March-May spread in January, February, and March, the May

July spread in April and May, and the July-September spread in June and July are 

examined. In futures contract months for com, December represents harvest, March 

represents preplanting, May represents planting, July represents the middle of the 

growing season, and September represents the late growing season or early harvest. For 

soybeans, the November-January spread in November, the January-March spread in 

December and January, the March-May spread in February and March, the May-July 

spread in April and May, the July-August spread in June and July, and the August

September spread in August are examined. For wheat, the July-September spread in July, 

the September-December spread in August and September, the December-March spread 

in October, November, and December, and the Mar-May spread in January, February, 

and March are examined. 
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The cost of carry or carrying charge necessary to carry the commodity from the 

nearby delivery date to the distant delivery date is defined by 

(4) CC(t,(N,D)) = F(t,N)[er(N,D) -1] + W(N,D), 

where CC(t, (N, D)) is the carrying charges from N to D at time t, F(t, N) is a nearby 

futures price quoted at time t, er(N,D) is continuously compounded rate of return for the 

period N to D, and W(N, D) is the physical cost of storage from time N to D. 

Using equations (3) and (4), this study measures the extent to which the market 

spread between futures prices for nearby and distant delivery dates falls below full 

carrying charges. The degree of being below full carry is classified into six categories 

based on the percentage of market spread to the cost of carry or carrying charge. The 

frequency of market inversions is identified using information on the percentage of 

market spread to the cost of carry. 

An empirically testable hypothesis drawn from the equations (1) and (2) is that 

when stocks are low, the price of storage (basis or spread) becomes negative and markets 

will be inverted. To test the hypothesis, the relationship between the spread and the level 

of stocks is determined using a regression analysis2• 

In this study, two regressions are estimated to examine the spread-stock 

relationship. First, market spreads are regressed on the logarithm of U.S. quarterly stocks: 

(5) 

2 Extensive literature deals with the relationship between the price of storage (spread) and the level of 
stocks. With the difficulty in defining and accurately measuring the relevant inventory, a major difference 
among the studies lies in the measurement of the level of stocks. Telser (1958) showed that the price of 
storage is determined by the total marketable stocks rather than the total level of existing stocks. Weymar 
( 1966) stressed that the expected level of stocks between two futures' time periods is more important than 
the current level of stock for the determination of the price of storage for two distant futures contracts. Gray 
and Peck (1981) demonstrated that the price of storage is determined by the current stocks readily available 
for delivery, rather than by the total level of current stocks. 
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where ln(QSJ is the natural logarithm of U.S. quarterly stocks and 81 is the error term. 

Each quarterly stock estimate is analyzed with respect to the spread corresponding to the 

nearest futures contract. For example, December stocks for com are compared to 

December-March spreads on December 1, March stocks are compared to Mar-May 

spreads on March 1, and June stocks are compared to July-September spreads on June 1. 

Since the quarterly grain stocks estimates are based on the stock levels as of the first day 

of December, March, June, and September, the spread-stock relationships are 

synchronous. A similar regression was also used in coffee and cocoa futures markets 

(Thompson, 1986), and energy futures markets (Cho and McDougall, 1990). The major 

weakness of this regression is that the two variables included in the regression have time 

trends and show some degree of autocorrelation. Spreads tend to grow due to inflation 

and U.S. quarterly stocks tend to increase due to increases in crop production over the 

years. Regressing one trending variable against another trending variable may result in a 

too high estimated regression coefficient. 

Second, the percentage of market spread to the cost of carry is regressed on the 

stocks-to-use ratio: 

(6) 

where %Carry1 is the percentage of market spread to the cost of carry, SUR1 is the stocks 

to use ratio, and 81 is the error term. The stocks-to-use ratio is calculated as a percent of 

end-of-crop-year stocks (ending stocks) to the five-year moving average of total use. The 

five-year moving average of total use is used to smooth out the effect of sudden increases 

in demand in any one crop year. Asynchronicity may be a problem with this regression. 
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Since the ending stock figures are used, the market may not be aware of exact stock 

availability at the point that the percent of spread to cost-of-carry (%Carry1) is computed. 

When markets are inverted, stockholders apparently gain negative returns to 

storage due to inverse carrying charges. Thus, the recommended strategy is 'sell the 

stocks'. To determine whether a market inversion is a signal to sell stocks, simulations 

are conducted. 

Simulation strategies considered are cash sale, unhedged storage, and hedged 

storage. To compare the results of three strategies, net returns to each strategy are 

evaluated at a future date, i.e., when the hedge for a hedged storage is lifted. The hedge is 

lifted on the first trading day of the delivery month for the distant futures contract. For 

example, in the Dec-Mar spread for com observed on December 1, the hedge initiated on 

December 1 is finally lifted on March 1. For this study, the producer is assumed to 

produce 5,000 bushels of com, soybeans, or wheat. The simulation strategies are 

summarized as follows: 

1. Cash sale: At the beginning of each calendar month, ifthe percentage of a 

nearby spread to the cost of carry falls below zero or a predetermined level, e.g., 0.25%, 

the producer will sell 5,000 bushels of grain. The cash price examined in this study is 

U.S. average prices received by farmers during the month the cash commodity is sold. 

Interest is accrued to the proceeds from the cash sale at a continuously compounding rate. 

Thus, net returns to cash sale is calculated as the sum of cash price sold and the accrued 

interest. 

2. Unhedged storage: This strategy involves storing the cash commodity without 

using any hedging instrument. Returns to unhedged storage are determined by the levels 
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of cash prices. This strategy is used as the benchmark against which cash sale and hedged 

storage are evaluated. 

3. Hedged storage: At the beginning of each calendar month, if the percentage of 

a nearby spread to the cost of carry falls below zero or a predetermined level, e.g., 0.25%, 

the producer will sell one lot (5,000 bushels) of distant futures contract. On the first 

trading day of the delivery month for the distant futures contract, the hedge is lifted and 

the cash commodity is sold. Returns to hedged storage are dependent upon changes in the 

cash price relative to changes in the futures price. Futures transaction costs including 

brokerage fees and liquidity costs are assumed to be 1.5 cents per bushel or 75 dollars per 

contract. 

To compare the net returns to three marketing strategies, paired-differences tests 

are conducted. The paired t-tests are based on the following three pairs of strategies: (1) 

cash sale vs. unhedged storage (CS-US); (2) cash sale vs. hedged storage (CS-HS); and 

(3) unhedged storage vs. hedged storage (US-HS). 

As with all simulations, an adequate number of observations to fully specify the 

distribution of net returns to each strategy are a real matter of concern. Since the true 

market inversions with negative spreads are expected to rarely occur during early months 

of the crop year, the number of observations in this study may not be large enough to 

meet the desired number of observations from statistical sampling theory. Thus, this 

study relaxes the decision rule for market inversion such that market spread as a percent 

of the cost-of-carry below 0.25 is considered as a market inversion. 

As another way to deal with a small sample problem for the monthly 

observations, this study pools the monthly observations by commodity. With the 
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aggregated data, this study regresses the actual returns to storage (unhedged and hedged) 

on the predicted returns to storage and a set of dummies representing the distance to 

harvest. The actual returns to unhedged (hedged) storage are computed by subtracting the 

returns to cash sale from the returns to unhedged (hedged) storage, and the predicted 

returns to storage are the corresponding futures price spreads. 

Results 

Table 1 reports summary statistics for the market spreads of three commodities. 

Since the length of spreads is not of equal time intervals, they are standardized to reflect 

equal spread length of one month. To calculate the mean value of spreads per month, 

spreads are adjusted by dividing by the number of months between the near and distant 

futures. For example, the mean of Dec-Mar spread for com is adjusted by dividing by the 

spread interval of three months. To measure the volatility of the spreads per month, 

spreads are adjusted by dividing by the square root of the spread length and subsequently 

computing the standard deviation of the adjusted spreads. 

From Table 1, it can be observed that there is a seasonal pattern in the mean of 

spreads for all three commodities. In general, the mean value of the spreads declines from 

the beginning of the crop year to the end of the crop year. Mean spreads are greatest after 

harvest or during early months of the crop year, then decrease to minimums and even go 

negative on average during the growing season or just before the new harvest. Negative 

spreads or inverse carrying charges are consistently observed in the July-September 

spread for com, the July-August and August-September spreads for soybeans, and the 

88 



March-May spread for wheat. For com and soybeans, the July futures contract is the last 

consistently old crop contract. The September futures contract may be a new crop 

contract if harvest starts early enough and thus is often treated as a transitional contract 

between old and new crop. The results confirm that in grain markets, market inversions 

are most frequent between the last of the old-crop delivery months and the first of the 

new crop delivery months, i.e., across crop years. Contrary to the behavior of mean 

spreads, the volatility of the spreads has a tendency to increase from harvest to the full 

growing season of the crop year. For example, the standard deviation of the Dec-Mar 

spread for com in December is 2.42, while the standard deviation of the Jul-Sep spread 

for com in July is 15.00. 

Table 2 presents summary statistics for spreads as a percent of contemporaneous 

costs-of-carry. The mean of the spread to cost-of-carry ratio falls below one for all 

spreads, indicating that grain markets on average are below full carry. The highest ratio is 

0.96 in the September-December wheat futures spread observed in September. Figures 1, 

2, and 3 present the graphs for selected spreads as a percent of contemporaneous costs-of

carry for com, soybeans, and wheat respectively. 

Table 3 exhibits the occurrences of spreads as a percent of contemporaneous 

costs-of-carry at various levels. Market inversions in nearby spreads rarely occur during 

early months of the crop year. During 3 months after harvest, market inversions occur 

only 2 to 7% of the time. The theory of the price of storage also predicts that negative 

spreads between two new crop futures contracts are less likely to occur because stocks 

are usually plentiful after harvest, and thus convenience yields are small. On the contrary, 

the number of observations with the percent of cost-of-carry greater than one, i.e., above 
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full carry, is relatively large. This implies that there exist substantial cash-and-carry 

arbitrage opportunities because the cost of carry is too low relative to the market spread. 

One reason for being above full carry is that the fixed cost component of grain storage 

costs is missed in calculating the cost-of-carry, and thus the cost-of-carry is 

underestimated. Another possible reason is that market spreads may reflect risk premia 

with buildup in stocks after new-crop harvest or during early months of the crop year. 

Table 4 reports the regression results for spreads against U.S. quarterly grain 

stocks. The R2 values are very low, ranging from 0.01 in the Mar-May spread for wheat 

to 0.20 in the Sep-Dec spread for wheat. The slope terms for the first two spreads in com 

and soybeans are statistically significant at the 5% level. The slope term for,the Sep-Dec 

spread in wheat is statistically· significant at the 5% level and that for the Dec-Mar spread 

is significant at the 10% level. There is a tendency for regressions during early months of 

the crop year to fit better than the regressions towards the end of the crop year, 

suggesting that the spread-stock relationship is more pronounced when stocks are 

abundant. Overall, the results support that there is a positive relationship between the 

spread and the level of stocks, and thus when the stocks are scarce, the spread becomes 

negative and markets are inverted. 

Table 5 summarizes the regressions of the percentage of spread to cost-of-carry 

on the stocks-to-use ratio. The results show that none of the regressions for com and 

soybeans are statistically significant at the 5% level. Three regressions for wheat are 

statistically significant at the 5% level, yet their overall explanatory power is low since 

R 2 values are extremely small. The findings suggest that the market spreads do not 
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closely approximate the price of storage relationships when regressed on the ending 

stocks. 

Tables 6, 7, and 8 report the results of simulations when markets are inverted, and 

Tables 9, 10, and 11 report the results for the corresponding paired-differences tests. 

Across three commodities, net returns to cash sale becomes higher than net returns to 

unhedged storage and hedged storage with the approach of new harvest. 

The results of paired-differences tests for com (Table 9) show that net returns to 

cash sale are greater than that ofunhedged storage or hedged storage after May. For the 

Jul-Sep spread in July, returns to cash sale are higher than returns to both unhedged 

storage and hedged storage. For the Jul-Sep com spread in July, returns to cash sale are 

higher than returns to unhedged storage and hedged storage by 14.07 cents and 10.72 

cents respectively. 

The results of paired-differences tests for soybeans (Table 10) show that returns to 

cash sale are consistently higher than returns to unhedged storage after June. For the 

Aug-Sep soybeans spread in August, returns to cash sale are higher than returns to 

unhedged storage and hedged storage by 32.34 cents and 20.38 cents respectively. Given 

the fact that the full cost-of-carry was not covered on average, the results were expected. 

The results of paired-differences tests for wheat (Table 11) show that returns to 

cash sale are consistently higher than returns to hedged storage after October. One reason 

that net returns to hedged storage should be lower than the returns to cash sale is the costs 

associated with trading futures contracts. 

The results from simulations when markets are inverted show that as the crop 

cycle advances towards the end of the crop year, market inversions clearly reflect the 
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market's signal to release stocks in anticipation of new crop supplies. However, it is not 

conclusive whether a market inversion is a signal to sell during early months of the crop 

year due to the low frequency of market inversions. 

Tables 12, 13, and 14 report the results of simulations when markets are not 

inverted, and Tables 15, 16, and 17 report the results for the corresponding paired

differences tests. For all three commodities, returns to cash sale are lower than returns to 

hedged storage right after harvest. The results of paired-differences tests for wheat 

without market inversion (Table 17) show that returns to hedged storage (HS) are higher 

than that for unhedged storage (US) after October. This is consistent with the findings of 

Zulauf and Irwin (1998), and Kastens and Dhuyvetter (1999) that when using the basis or 

spread to guide storage decisions, only returns to hedged storage are improved, but not to 

unhedged storage. 

Table 18 presents the regression results for actual returns to storage against 

predicted returns to storage. There exists a positive relationship between actual returns to 

storage and predicted returns to storage except the unhedged storage for wheat. The result 

for wheat may come from the difference in crop variety. While the wheat futures contract 

traded on the Chicago Board of Trade is based on soft red winter wheat, U.S. monthly 

cash prices aggregate all varieties and qualities. The results suggest that as predicted 

returns to storage, i.e., spreads, get smaller or even go negative, the actual returns to 

storage decreases, and thus support the argument that a market inversion is a signal to 

sell. 
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Conclusions 

As opposed to a normal market, an inverted market has a negative price of storage 

or spread. Futures price spreads for com, soybeans, and wheat exhibit a seasonal pattern. 

In general, mean spreads gradually decline from the start of the crop year and even go 

negative on average at the end of the crop year or just before the new harvest. In contrast, 

the volatility of spreads measured by the standard deviation of spreads has a tendency to 

increase from harvest to the full growing season of the crop year. The spreads as percent 

of contemporaneous costs of carry are less than one on average, indicating that grain 

markets on average are below full carry. 

Market inversions in nearby spreads rarely occur during early months of the crop 

year since stocks are usually abundant after harvest. During 3 months after harvest, 

market inversions occur only 2 to 7% of the time. However, market inversions become 

pronounced when the spreads are observed across crop years at the end of the crop year 

or just before the new harvest. The regressions of spreads on the logarithm of U.S. 

quarterly stocks show that there exists a positive relationship between the spread and the 

level of stocks, and further implies that when stocks are scarce, markets will be inverted. 

A market inversion appears to be a situation where the market encourages 

producers to release their stocks, yet many continue to store their grain. The simulations 

were conducted to determine whether a market inversion is a signal to sell the stocks. The 

results of the paired-differences tests reveal that as the crop cycle advances towards the 

end of the crop year, market inversions clearly reflect the market's signal to release 

stocks in anticipation of new crop supplies. The regressions of actual returns to storage 
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on predicted returns to storage clearly show that a market inversion is a signal to sell. The 

results support the behavioral finance hypothesis that producers are choosing to hold 

excess stocks because of some type of biased expectations. 
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Table 1: Summary Statistics for Futures Price Spreads, 1957-1999 

Commodity Month Spread 
No. 

Mean 
Standard 

Minimum Maximum 
Obs. Deviation 

December Dec-Mar 43 2.24 2.42 -0.75 18.25 

January Mar-May 43 2.34 1.91 -2.00 12.25 

February Mar-May 43 2.27 2.64 -9.88 13.00 

March Mar-May 43 2.47 2.94 -6.50 14.75 
Com 

April May-Jul 43 1.39 2.94 -12.75 12.25 

May May-Jul 43 0.96 3.80 -21.75 11.50 

June Jul-Sep 43 -2.84 10.42 -77.25 9.25 

July Jul-Sep 43 -2.29 15.00 -122.75 31.25 

November Nov-Jan 42 4.10 4.77 -3.00 29.50 

December Jan-Mar 42 3.74 4.69 -4.75 33.25 

January Jan-Mar 42 3.79 4.48 -4.13 27.50 

February Mar-May 42 3.15 5.52 -23.13 26.00 

March Mar-May 42 3.37 6.38 -37.00 24.75 
Soybeans 

April May-Jul 42 2.50 5.40 -22.25 25.50 

May May-Jul 42 1.42 11.14 -80.88 23.75 

June Jul-Aug 37 -5.43 18.47 -98.50 7.25 

July Jul-Aug 37 -1.57 11.13 -51.00 15.00 

August Aug-Sep 37 -11.01 24.80 -128.00 10.00 

July Jul-Sep 42 2.63 3.35 -6.00 19.50 

August Sep-Dec 42 3.14 4.15 -14.25 31.00 

September Sep-Dec 42 3.38 4.26 -6.00 29.50 

October Dec-Mar 42 2.13 4.46 -15.00 25.25 

Wheat November Dec-Mar 42 1.90 5.31 -18.50 25.25 

December Dec-Mar 42 1.75 5.74 -16.00 30.75 

January Mar-May 42 -2.34 7.66 -29.50 10.50 

February Mar-May 42 -2.20 8.44 -37.50 15.25 

March Mar-May 42 -0.99 9.07 -44.25 13.50 
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Table 2: Summary Statistics for Spreads as a Percent of Contemporaneous Costs-
of-Carry, 1957-1999 

Commodity Month Spread 
No. 

Mean 
Standard 

Minimum Maximum 
Obs. Deviation 

December Dec-Mar 43 0.77 0.32 -0.06 1.60 

January Mar-May 43 0.79 0.38 -0.51 1.54 

February Mar-May 43 0.76 0.64 -2.46 1.73 

March Mar-May 43 0.86 0.58 -0.96 1.91 
Com 

April May-Jul 43 0.53 0.57 -1.17 1.71 

May May-Jul 43 0.40 0.72 -1.83 1.80 

June Jul-Sep 43 -0.71 1.55 -6.69 1.10 

July Jul-Sep 43 -0.53 2.02 -9.78 3.72 

November Nov-Jan . 42 0.81 0.43 -0.26 1.66 

December Jan-Mar 42 0.7.1 0.39 -0.38 1.44 

January Jan-Mar 42 0.70 0.41 -0.90 1.41 

February Mar-May 42 0.54 0.68 -3.12 1.14 

March Mar-May 42 0.64 0.81 -3.97 1.47 
Soybeans 

April May-Jul 42 0.39 0.63 -2.64 1.08 

May May-Jul 42 0.23 1.34 -7.25 1.10 

June Jul-Aug 37 -0.87 2.31 -12.22 0.77 

July Jul-Aug 37 -0.45 1.73 -6.58 2.04 

August Aug-Sep 37 -2.22 3.65 -15.03 1.05 

July Jul-Sep 42 0.73 0.49 -0.70 1.45 

August Sep-Dec 42 0.91 0.48 -1.16 1.47 

September Sep-Dec 42 0.96 0.47 -0.42 1.54 

October Dec-Mar 42 0.61 0.52 -0.90 1.32 

Wheat November Dec-Mar 42 0.53 0.66 -1.41 1.27 

December Dec-Mar 42 0.47 0.74 -1.97 1.37 

January Mar-May 42 -0.57 1.19 -2.60 1.20 

February Mar-May 42 -0.51 1.34 -3.66 1.27 

March Mar-May 42 -0.17 1.42 -4.35 1.86 
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Table 3: Occurrences of Spreads as a Percent of Contemporaneous Costs-of-Carry, 
1957-1999 

No. 
Percent(%) of Market Spread to Cost-of-Carry 

Month Spread 
Obs. 0<% 0.25 <% 0.50 <% 0.75 <% 

0<% 
<0.25 <0.50 - <0.75 < 1.0 

%> 1.0 

Commodity: Com 

Dec Dec-Mar 43 2 1 3 13 14 10 

Jan Mar-May 43 1 1 8 6 17 10 

Feb Mar-May 43 2 1 6 11 12 11 

Mar Mar-May 43 4 1 2 8 6 22 

Apr May-Jul 43 7 4 8 9 9 6 

May May-Jul 43 10 7 8 6 5 7 

Jun Jul-Sep 43 25 2 7 5 3 1 

Jul Jul-Sep 43 21 4 2 9 5 2 

Commodity: Soybeans 

Nov Nov-Jan 42 2 3 5 10 9 13 

Dec Jan-Mar 42 2 2 6 13 12 7 

Jan Jan-Mar 42 3 2 4 10 14 9 

Feb Mar-May 42 4 2 6 14 12 4 

Mar Mar-May 42 3 3 3 10 13 10 

Apr May-Jul 42 3 9 9 10 9 2 

May May-Jul 42 8 4 7 8 11 4 

Jun Jul-Aug 37 21 4 4 7 0 

Jul Jul-Aug 37 17 3 6 3 7 1 

Aug Aug-Sep 37 24 4 2 5 1 

Commodity: Wheat 

Jul Jul-Sep 42 3 4 6 5 9 15 

Aug Sep-Dec 42 3 1 6 9 22 

Sep Sep-Dec 42 3 0 3 4 11 21 

Oct Dec-Mar 42 5 2 9 5 11 10 

Nov Dec-Mar 42 8 4 4 5 10 11 

Dec Dec-Mar 42 10 6 2 3 8 13 

Jan Mar-May 42 26 2 6 5 2 

Feb Mar-May 42 23 2 5 2 4 6 

Mar Mar-May 42 19 5 2 6 9 
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Table 4: Regressions of Spreads on U.S. Quarterly Grain Stocks, 1957-1999 

Quarterly 
Commodity Date Spread No. Obs. ~o ~I R2 

Stocks 

Dec 1 Dec-Mar December 43 -41.10 5.56 0.16 

(-2.36)** (2.74)** 

Com Mar 1 Mar-May March 43 -36.07 4.96 0.14 

(-2.24)** (2.54)** 

Jun 1 Jul-Sep June 43 -65.87 7.66 0.04 

(-1.35) (1.23) 

Dec 1 Nov-Jan December 42 -28.07 5.07 0.15 

(-2.13)** (2.71)** 

Soybeans Mar 1 Mar-May March 42 -35.91 6.47 0.14 

(-2.10)** (2.50)** 

Jun 1 Jul-Aug June 42 -64.14 9.64 0.09 

(-1.99)** (1.83)* 

Sep 1 Sep-Dec September 42 -113.22 16.12 0.20 

(-2.87)** (3.13)** 

Wheat Dec 1 Dec-Mar December 42 -74.67 10.79 0.07 

(-1.63) (1.74)* 

Mar 1 Mar-May March 42 -26.18 3.41 0.01 

(-0.58) (0.54) 

Note: The estimated regression equation is Spread, = Po + P1 ln(QS1) + &1 , where ln(QSJ is the natural 

logarithm of U.S. quarterly stocks and &1 is the error term. The figures in parentheses are !-statistics with 
* * indicating statistical significance at the 5% level, and * statistical significance at the 10% level. 
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Table 5: Regressions of Percent of Spreads to Costs-of-Carry on Stocks-to-Use 
Ratio, 1957-1999 

Commodity Month Spread 
No. 

~o ~I 
R2 

Obs. 

December Dec-Mar 43 0.654 0.004 0.05 

(6.93)* (1.41) 

March Mar-May 43 0.640 0.008 0.05 

Com (3.72)* (1.48) 

May May-Jul 43 0.230 0.006 0.02 

(1.05) (0.88) 

July Jul-Sep 43 -0.660 0.005 0.00 

(-1.07) (0.25) 

November Nov-Jan 42 0.860 -0.004 0.00 

(5.73)* (-0.41) 

March Mar-May 42 0.667 -0.002 0.00 

Soybeans (2.36)* (-0.10) 

May May-Jul 42 0.158 0.005 0.00 

(0.34) (0.18) 

July Jul-Aug 37 -0.869 0.029 0.01 

(-1.33) (0.72) 

July Jul-Sep 42 0.407 0.006 0.16 

(2.95)* (2.74)* 

September Sep-Dec 42 0.620 0.006 0.19 

Wheat (4.78)* (3.04)* 

December Dec-Mar 42 0.050 0.007 0.11 

(0.23) (2.28)* 

March Mar-May 42 -0.342 0.003 0.01 

(-0.78) (0.46) 

Note: The estimated regression equation is %Carry, = Po + P1SUR1 + &1 , where %Carry, is the 

percentage of market spread to the cost of carry, SUR, is the stocks to use ratio, and &1 is the error term. 
The stocks-to-use ratio is calculated as the ratio of end-of-crop-year stocks ( ending stocks) to the five-
year moving average of total use. The figures in parentheses are t-statistics with* indicating statistical 
significance at the 5% level. 
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Table 6: Simulation Results for Corn, 1957-1999 

Month Spread Strategy 
No. 

Mean 
Standard 

Obs. Deviation 

Cash Sale 3 275.59 45.06 

December Dec-Mar Unhedged Storage 3 276.33 46.06 

Hedged Storage 3 271.08 51.25 

Cash Sale 2 229.87 124.54 

January Mar-May Unhedged Storage 2 213.50 74.25 

Hedged Storage 2 236.38 142.31 

Cash Sale 3 215.05 69.53 

February Mar-May Unhedged Storage 3 223.00 55.75 

Hedged Storage 3 206.33 60.91 

Cash Sale 5 267.35 85.80 

March Mar-May Unhedged Storage 5 283.40 95.89 

Hedged Storage 5 256.83 70.23 

Cash Sale 11 242.20 87.67 

April May-Jul Unhedged Storage 11 244.73 93.11 

Hedged Storage 11 235.22 80.00 

Cash Sale 17 228.93 89.91 

May May-Jul Unhedged Storage 17 227.82 91.46 

Hedged Storage 17 219.55 85.63 

Cash Sale 27 214.76 85.15 

June Jul-Sep Unhedged Storage 27 197.89 77.64 

Hedged Storage 27 209.05 90.97 

Cash Sale 25 207.83 92.70 

July Jul-Sep Unhedged Storage 25 193.76 82.89 

Hedged Storage 25 197.11 84.32 
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Table 7: Simulation Results for Soybeans, 1958-1999 

Month Spread Strategy 
No. 

Mean 
Standard 

Obs. Deviation 

Cash Sale 5 514.89 129.46 

November Nov-Jan Unhedged Storage 5 547.80 115.87 

Hedged Storage 5 519.15 121.66 

Cash Sale 4 586.21 200.59 

December Jan-Mar Unhedged Storage 4 623.50 243.56 

Hedged Storage 4 588.75 206.93 

Cash Sale 5 503.35 166.16 

January Jan-Mar Unhedged Storage 5 540.60 192.27 

Hedged Storage 5 481.88 164.27 

Cash Sale 6 549.83 165.63 

February Mar-May Unhedged Storage 6 610.50 212.35 

Hedged Storage 6 532.67 148.87 

Cash Sale 6 493.70 208.43 

March Mar-May Unhedged Storage 6 536.17 260.29 

Hedged Storage 6 492.65 208.03 

Cash Sale 12 496.85 192.72 

April May-Jul Unhedged Storage 12 484.58 183.14 

Hedged Storage 12 471.72 215.97 

Cash Sale 12 578.15 246.08 

May May-Jul Unhedged Storage 12 525.17 191.26 

Hedged Storage 12 542.22 241.05 

Cash Sale 25 525.91 235.37 

June Jul-Aug Unhedged· Storage 25 484.04 195.83 

Hedged Storage 25 516.69 238.28 

Cash Sale 20 474.75 197.56 

July Jul-Aug Unhedged Storage 20 453.20 182.62 

Hedged Storage 20 472.86 199.06 

Cash Sale 28 518.66 199.82 

August Aug-Sep Unhedged Storage 28 486.32 177.21 

Hedged Storage 28 498.29 193.56 
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Table 8: Simulation Results for Wheat, 1958-1999 

Month Spread Strategy 
No. 

Mean 
Standard 

Obs. Deviation 

Cash Sale 7 249.79 98.85 

July Jul-Sep Unhedged Storage 7 293.29 129.76 

Hedged Storage 7 259.20 112.44 

Cash Sale 4 364.20 118.27 

August Sep-Dec Unhedged Storage 4 358.50 103.01 

Hedged Storage 4 316.25 111.83 

Cash Sale 3 406.11 93.91 

September Sep-Dec Unhedged Storage 3 395.00 89.01 

Hedged Storage 3 395.50 118.65 

Cash Sale 7 325.06 110.82 

October Dec-Mar Unhedged Storage 7 322.14 112.73 

Hedged Storage 7 296.84 104.53 

Cash Sale 12 305.60 101.00 

November Dec-Mar Unhedged Storage 12 304.92 108.74 

Hedged Storage · 12 282.49 87.54 

Cash Sale 16 321.82 114.55 

December Dec-Mar Unhedged Storage 16 315.63 117.40 

Hedged Storage 16 302.80 106.28 

Cash Sale 28 289.38 118.43 

January Mar-May Unhedged Storage 28 275.43 109.04 

Hedged Storage 28 277.84 110.42 

Cash Sale 25 294.04 120.00 

February Mar-May Unhedged Storage 25 281.24 108.58 

Hedged Storage 25 281.46 108.15 

Cash Sale 20 291.41 116.34 

March Mar-May Unhedged Storage 20 284.10 111.36 

Hedged Storage 25 283.12 112.72 
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Table 9: Results of the Paired-differences Tests for Corn, 1957-1999 

Month Spread 
Paired No. 

Mean 
Standard 

t-Ratio 
Difference Obs. Deviation 

CS-US 3 -0.74 8.57 -0.15 

December Dec-Mar CS-HS 3 4.51 20.34 0.38 

US-HS 3 5.25 28.87 0.31 

CS-US 2 16.37 50.29 0.46 

January Mar-May CS-HS 2 -6.50 17.76 -0.52 

US-HS 2 -22.88 68.06 -0.48 

CS-US 3 -7.95 13.94 -0.99 

February Mar-May CS-HS 3 8.71 22.66 0.67 

US-HS 3 16.67 21.31 1.35 

CS-US 5 -16.05 26.85 -1.34 

March Mar-May CS-HS 5 10.53 20.84 1.13 

US-HS 5 26.58 42.90 1.39 

CS-US 11 -2.53 34.08 -0.25 

April May-Jul CS-HS 11 6.99 29.24 0.79 

US-HS 11 9.51 54.77 0.58 

CS-US 17 1.11 21.74 0.21 

May May-Jul CS-HS 17 9.38 15.24 2.54* 

US-HS 17 8.27 27.90 1.22 

CS-US 27 16.87 32.34 2.71* 

June Jul-Sep CS-HS 27 5.72 48.89 0.61 

US-HS 27 -11.16 55.05 -1.05 

CS-US 25 14.07 26.85 2.62* 

July Jul-Sep CS-HS 25 10.72 16.62 3.23* 

US-HS 25 -3.35 28.69 -0.58 

Note: CS-US denotes the paired difference of net returns between the cash sale (CS) and unhedged 
storage (US), CS-HS denotes the paired difference ofnet returns between the cash sale (CS) and 
hedged storage (HS), and US-HS denotes the paired difference of net returns between the unhedged 

-

storage (US) and hedged storage (HS). The t-ratio is t = w., where d is the average of the paired 
sb/n 

differences (d;) of the net returns between two marketing strategies, n is the number of paired 

( r n l n 

Ldl-- Ld; . n . 
differences, and s1 = 1=1 1=1 

n-1 
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Table 10: Results of the Paired-differences Tests for Soybeans, 1958-1999 

Month Spread 
Paired No. 

Mean 
Standard 

t-Ratio 
Difference Obs. Deviation 

CS-US 5 -32.91 31.92 -2.31 * 

November Nov-Jan CS-HS 5 -4.26 15.37 -0.62 

US-HS 5 28.65 30.62 2.09* 

CS-US 4 -37.29 78.85 -0.95 

December Jan-Mar CS-HS 4 -2.54 17.61 -0.29 

US-HS 4 34.75 87.21 0.80 

CS-US 5 -37.25 100.47 -0.83 

January Jan-Mar CS-HS 5 21.47 24.41 1.97* 

US-HS 5 58.73 123.65 1.06 

CS-US 6 -60.67 111.61 -1.33 

February Mar-May CS-HS 6 17.17 24.83 1.69 

US-HS 6 77.83 125.31 1.52 

CS-US 6 -42.46 88.74 -1.17 

March Mar-May CS-HS 6 1.06 35.63 0.07 

US-HS 6 43.52 63.10 1.69 

CS-US 12 12.27 47.80 0.89 

April May-Jul CS-HS 12 25.13 118.02 0.74 

US-HS 12 12.86 137.88 0.32 

CS-US 12 52.98 95.43 1.92 

May May-Jul CS-HS 12 35.93 126.05 0.99 

US-HS 12 -17.05 127.09 -0.46 

CS-US 25 41.87 77.36 2.71 * 

June Jul-Aug CS-HS 25 9.23 38.70 1.19 

US-HS 25 -32.65 99.54 -1.64 

CS-US 20 21.55 36.51 2.64* 

July Jul-Aug CS-HS 20 1.89 36.83 0.23 

US-HS 20 -19.66 58.65 -1.50 

CS-US 28 32.34 60.42 2.83* 

August Aug-Sep CS-HS 28 20.38 45.57 2.37* 

US-HS 28 -11.96 50.75 -1.25 

Note: CS-US denotes the paired difference of net returns between the cash sale (CS) and unhedged 
storage (US), CS-HS denotes the paired difference ofnet returns between the cash sale (CS) and 
hedged storage (HS), and US-HS denotes the paired difference of net returns between the unhedged 

-

storage (US) and hedged storage (HS). The t-ratio is t = w., where d is the average of the paired 
. sb/n 

differences ( d;) of the net returns between two marketing strategies, n is the number of paired . (, r Id?-_!_ Id; . n . 
differences, and sb = 1=1 1=1 

n-1 
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Table 11: Results of the Paired-differences Tests for Wheat, 1958-1999 

Month Spread 
Paired No. 

Mean 
Standard 

t-Ratio 
Difference Obs. Deviation 

CS-US 7 -43.49 76.53 -1.50 

July Jul-Sep CS-HS 7 -9.40 20.63 -1.21 

US-HS 7 34.09 79.67 1.13 

CS-US 4 5.70 39.28 0.29 

August Sep-Dec CS-HS 4 47.95 48.18 1.99* 

US-HS 4 42.25 77.55 1.09 

CS-US 3 11.11 25.14 0.77 

September Sep-Dec CS-HS 3 10.61 28.90 0.64 

US-HS 3 -0.50 51.45 -0.02 

CS-US 7 2.92 34.36 0.22 

October Dec-Mar CS-HS 7 28.22 28.47 2.62* 

US-HS 7 25.30 54.31 1.23 

CS-US 12 0.68 28.42 0.08 

November Dec-Mar CS-HS. 12 23.11 33.57 2.38* 

US-HS 12 22.43 52.65 1.48 

CS-US 16 6.20 15.79 1.57 

December Dec-Mar CS-HS 16 19.02 26.16 2.91 * 

US-HS 16 12.82 30.00 1.71 

CS-US 28 13.95 43.57 1.69 

January Mar-May CS-HS 28 11.54 29.77 2.05* 

US-HS 28 -2.41 58.17 -0.22 

CS-US 25 12.80 47.10 1.36 

February Mar-May CS-HS 25 12.58 31.43 2.00* 

US-HS 25 -0.22 58.19 -0.02 

CS-US 20 7.31 38.67 0.85 

March Mar-May CS-HS 20 8.30 18.75 1.98* 

US-HS 20 0.98 63.79 0.07 

Note: CS-US denotes the paired difference of net returns between the cash sale (CS) and unhedged 
storage (US), CS-HS denotes the paired difference ofnet returns between the cash sale (CS) and hedged 
storage (HS), and US-HS denotes the paired difference of net returns between the unhedged storage 

-
(US) and hedged storage (HS). The t-ratio is t = Wn, where d is the average of the paired 

sb/n 
differences (d;) of the net returns between two marketing strategies, n is the number of paired 

[ r idf-_!_ id; 
. n . 

differences, and s1 = 1=1 1=1 

n-I 
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Table 12: Simulation Results for Corn without Market Inversion, 1957-1999 

Month Spread Strategy 
No. 

Mean 
Standard 

Obs. Deviation 

Cash Sale 40 186.30 73.05 

December Dec-Mar Unhedged Storage 40 189.65 73.55 

Hedged Storage 40 191.07 78.26 

Cash Sale 41 196.12 75.56 

January Mar-May Unhedged Storage 41 200.76 78.37 

Hedged Storage 41 195.45 73.09 

Cash Sale 40 196.28 77.65 

February Mar-May Unhedged Storage 40 199.73 79.06 

Hedged Storage 40 197.16 75.48 

Cash Sale 38 189.53 71.90 

March Mar-May Unhedged Storage 38 190.55 69.09 

Hedged Storage 38 189.64 71.33 

Cash Sale 32 188.77 72.37 

April May-Jul Unhedged Storage 32 188.34 71.68 

Hedged Storage 32 184.88 73.02 

Cash Sale 26 188.26 68.46 

May May-Jul Unhedged Storage 26 186.38 69.42 

Hedged Storage 26 184.01 69.67 

Cash Sale 16 196.70 72.40 

June Jul-Sep Unhedged Storage 16 184.38 69.64 

Hedged Storage 16 190.30 65.48 

Cash Sale 18 202.97 67.89 

July Jul-Sep Unhedged Storage 18 191.61 62.47 

Hedged Storage 18 219.72 96.41 

106 



Table 13: Simulation Results for Soybeans without Market Inversion, 1958-1999 

Month Spread Strategy 
No. 

Mean 
Standard 

Obs. Deviation 

Cash Sale 37 467.53 205.52 

November Nov-Jan Unhedged Storage 37 467.54 197.65 

Hedged Storage 37 478.40 212.60 

Cash Sale 38 470.71 196.84 

December Jan-Mar Unhedged Storage 38 472.39 185.06 

Hedged Storage 38 482.88 213.75 

Cash Sale 37 481.83 200.57 

January Jan-Mar Unhedged Storage 37 479.51 194.61 

Hedged Storage 37 486.01 211.10 

Cash Sale. 36 478.91 196.63 

February Mar-May Unhedged Storage 36 485.58 207.54 

Hedged Storage 36 475.22 193.89 

Cash Sale 36 494.05 198.45 

March Mar-May Unhedged Storage 36 497.97 204.73 

Hedged Storage 36 484.38 191.05 

Cash Sale 30 507.73 214.09 

April May-Jul Unhedged Storage 30 502.17 203.93 

Hedged Storage 30 495.27 208.72 

Cash Sale 30 484.03 198.67 

May May-Jul Unhedged Storage 30 485.93 200.18 

Hedged Storage 30 477.54 197.69 

Cash Sale 12 612.51 97.99 

June Jul-Aug Unhedged Storage 12 638.67 114.05 

Hedged Storage 12 589.69 106.83 

Cash Sale 17 614.17 122.98 

July Jul-Aug Unhedged Storage 17 629.47 145.37 

Hedged Storage 17 611.53 161.96 

Cash Sale 9 599.36 142.14 

August Aug-Sep Unhedged Storage 9 603.56 157.84 

Hedged Storage 9 588.83 133.96 
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Table 14: Simulation Results for Wheat without Market Inversion, 1958-1999 

Month Spread Strategy 
No. 

Mean 
Standard 

Obs. Deviation 

Cash Sale 35 261.18 101.38 

July Jul-Sep Unhedged Storage 35 266.26 102.45 

Hedged Storage 35 267.01 104.21 

Cash Sale 38 262.88 104.23 

August Sep-Dec Unhedged Storage 38 271.29 105.35 

Hedged Storage 38 264.80 108.34 

Cash Sale 39 266.89 105.47 

September Sep-Dec Unhedged Storage 39 270.72 104.01 

Hedged Storage 39 265.08 107.12 

Cash Sale 35 278.45 114.42 

October Dec-Mar Unhedged Storage 35 268.14 102.79 

Hedged Storage 35 281.27 121.59 

Cash Sale 30 278.87 116.83 

November Dec-Mar Unhedged Storage 30 266.03 103.30 

Hedged Storage 30 284.84 128.08 

Cash Sale 26 263.79 104.65 

December Dec-Mar Unhedged Storage 26 253.46 91.10 

Hedged Storage 26 272.70 116.19 

Cash Sale 14 284.37 103.62 

January Mar-May Unhedged Storage 14 270.36 92.22 

Hedged Storage 14 290.44 108.31 

Cash Sale 17 271.55 102.66 

February Mar-May Unhedged Storage 17 262.71 95.32 

Hedged Storage 17 278.34 110.33 

Cash Sale 22 271.94 100.46 

March Mar-May Unhedged Storage 22 264.32 95.64 

Hedged Storage 22 273.18 101.00 
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Table 15: Results of the Paired-differences Tests for Corn without Market 
Inversion, 1957-1999 

Month Spread 
Paired No. 

Mean 
Standard 

t-Ratio 
Difference Obs. Deviation 

CS-US 40 -3.35 15.29 -1.39 

December Dec-Mar CS-HS 40 -4.77 14.86 -2.03* 

US-HS 40 -1.42 26.47 -0.34 

CS-US 41 -2.29 15.01 -0.98 

January Mru:-May CS-HS 41 0.25 11.12 0.14 

US-HS 41 2.54 19.20 0.85 

CS-US 40 -3.45 18.24 -1.20 

February Mar-May CS-HS 40 -0.89 11.37 -0.49 

US-HS 40 2.56 25.55 0.63 

CS-US 38 -1.03 11.06 -0.57 

March Mar-May CS-HS 38 -0.12 9.61 -0.07 

US-HS 38 0.91 16.75 0.34 

CS-US 32 0.43 23.78 0.10 

April May-Jul CS-HS 32 3.89 13.42 1.64 

US-HS 32 3.46 30.61 0.64 

CS-US 26 1.87 22.49 0.42 

May May-Jul CS-HS 26 4.25 13.29 1.63 

US-HS 26 2.38 30.93 0.39 

CS-US 16 12.33 30.41 1.62 

June Jul-Sep CS-HS 16 6.40 16.43 1.56 

US-HS 16 -5.92 39.43 -0.60 

CS-US 18 11.36 20.59 2.34* 

July Jul-Sep CS-HS 18 -16.76 64.17 -1.11 

US-HS 18 -28.11 65.61 -1.82 

Note: CS-US denotes the paired difference of net returns between the cash sale (CS) and unhedged 
storage (US), CS-HS denotes the paired difference ofnet returns between the cash sale (CS) and 
hedged storage (HS), and US-HS denotes the paired difference of net returns between the unhedged 

-

storage (US) and hedged storage (HS). The t-ratio is t = ~, where d is the average of the paired 
sb/n 

differences (d;) of the net returns between two marketing strategies, n is the number of paired . (, r Ldf-! Ld; . n . 
differences, and sb = 1=1 1=1 

n-1 
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Table 16: Results of the Paired-differences Tests for Soybeans without Market 
Inversion, 1958-1999 

Month Spread 
Paired No. 

Mean 
Standard 

t-Ratio 
Difference Obs. Deviation 

CS-US 37 -0.01 29.54 0.00 

November Nov-Jan CS-HS 37 -10.87 24.50 -2.70* 

US-HS 37 -10.86 42.69 -1.55 

CS-US 38 -1.69 53.52 -0.19 

December Jan-Mar CS-HS 38 -12.18 36.48 -2.06* 

US-HS 38 -10.49 82.15 -0.79 

CS-US 37 2.31 33.00 0.43 

January Jan-Mar CS-HS 37 -4.19 29.25 -0.87 

US-HS 37 -6.50 50.80 -0.78 

CS-US 36 -6.67 54.53 -0.73 

February Mar-May CS-HS 36 3.70 26.22 0.85 

US-HS 36 10.37 69.33 0.90 

CS-US 36 -3.92 38.23 -0.62 

March Mar-May CS-HS 36 9.67 33.36 1.74 

US-HS 36 13.59 54.88 1.49 

CS-US 30 5.57 85.47 0.36 

April May-Jul CS-HS 30 12.46 34.95 1.95 

US-HS 30 6.90 88.78 0.43 

CS-US 30 -1.90 59.87 -0.17 

May May-Jul CS-HS 30 6.49 37.18 0.96 

US-HS 30 8.40 75.22 0.61 

CS-US 12 -26.15 92.37 -0.98 

June Jul-Aug CS-HS 12 22.82 39.15 2.02* 

US-HS 12 48.98 111.67 1.52 

CS-US 17 -15.30 77.96 -0.81 

July Jul-Aug CS-HS 17 2.64 78.11 0.14 

US-HS 17 17.94 98.27 0.75 

CS-US 9 -4.20 42.95 -0.29 

August Aug-Sep CS-HS 9 10.52 33.05 0.96 

US-HS 9 14.72 62.72 0.70 

Note: CS-US denotes the paired difference of net returns between the cash sale (CS) and unhedged 
storage (US), CS-HS .denotes the paired difference ofnet returns between the cash sale (CS) and 
hedged storage (HS), and US-HS denotes the paired difference ofnet returns between the unhedged 

-
storage (US) and hedged storage (HS). The t-ratio is t = Wn, where d is the average of the paired 

sb/n 
differences (d;) of the net returns between two marketing strategies, n is the number of paired 

( r n l n 

Ldl-- Ld; . n . 
differences, and sb = 1=1 1=1 

n-1 
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Table 17: Results of the Paired-differences Tests for Wheat without Market 
Inversion, 1958-1999 

Month Spread 
Paired No. 

Mean 
Standard 

t-Ratio 
Difference Obs. Deviation 

CS-US 35 -5.07 23.18 -1.29 

July Jul-Sep CS-HS 35 -5.83 17.05 -2.02* 

US-HS 35 -0.75 32.66 -0.14 

CS-US 38 -8.41 30.44 -1.70 

August Sep-Dec CS-HS 38 -1.92 14.76 -0.80 

US-HS 38 6.49 33.29 1.20 

CS-US 39 -3.83 25.88 -0.92 

September Sep-Dec CS-HS 39 1.81 15.96 0.71 

US-HS 39 5.64 31.62 1.11 

CS-US 34 12.21 31.60 2.25* 

October Dec-Mar CS-HS 34 -3.22 18.18 -1.03 

US-HS 34 -15.44 37.71 -2.39* 

CS-US 30 12.83 29.70 2.37* 

November Dec-Mar CS-HS 30 -5.98 24.74 -1.32 

US-HS 30 -18.81 45.68 -2.26* 

CS-US 26 10.33 24.98 2.11 * 

December Dec-Mar CS-HS 26 -8.91 18.64 -2.44* 

US-HS 26 -19.24 37.04 -2.65* 

CS-US 14 14.01 23.41 2.24* 

January Mar-May CS-HS 14 -6.07 14.77 -1.54 

US-HS 14 -20.08 30.99 -2.42* 

CS-US 17 8.85 19.68 1.85 

February Mar-May CS-HS 17 -6.79 19.41 -1.44 

US-HS 17 -15.63 30.36 -2.12* 

CS-US . 22 7.62 15.03 2.38* 

March Mar-May CS-HS 22 -1.24 22.05 -0.26 

US-HS 22 -8.86 21.09 -1.97* 

Note: CS-US denotes the paired difference of net returns between the cash sale (CS) and unhedged 
storage (US), CS-HS denotes the paired difference ofnet returns between the cash sale (CS) and 
hedged storage (HS), and US-HS denotes the paired difference of net returns between the unhedged 

-

storage (US) and hedged storage (HS). The t-ratio is t = w., where d is the average of the paired 
sb/n 

differences ( d;) of the net returns between two marketing strategies, n is the. number of paired 

. ( . )' Idl-_!_ Id; 
differences and s 2 = i=l n i=I 

' D n-1 
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Table 18: Regressions of Actual Returns to Storage on the Predicted Returns to 
Storage,1957-1999 

Commodity 
Returns to 

No. Obs. 
Storage 

Unhedged 93 

(US-CS) 
Com 

Hedged 93 

(HS-CS) 

Unhedged 123 

(US-CS) 
Soybeans 

Hedged 123 

(HS-CS) 

Unhedged 122 

(US-CS) 
Wheat 

Hedged 122 

(HS-CS) 

~o 

5.49 

(0.95) 

4.16 

(0.63) 

14.10 

(1.02) 

6.24 

(0.55) 

2.92 

(0.28) 

9.59 

(1.42) 

~I 

0.68 

(3.80)* 

0.52 

(2.52)* 

1.13 

(3.41)* 

1.66 

(6.00)* 

0.40 

(0.96) 

1.64 

(5.99)* 

R2 

0.25 

0.08 

0.27 

0.27 

0.10 

0.32 

Note: US-CS denotes the difference ofnet returns between unhedged storage (US) and cash sale (CS), 
i.e., actual returns to unhedged storage, and HS-CS denotes the difference of net returns between hedged 
storage (HS) and cash sale (CS), i.e., actual returns to hedged storage. 
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Figure 1. Spread As a Percent of Cost-of-Carry for Corn, 1957-1999 
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Figure 2. Spread As a Percent of Cost-of-Carry for Soybeans, 1958-1999 
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Figure 3. Spread As a Percent of Cost-of-Carry for Wheat, 1958-1999 
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Figure 1. Rollover Hedging Signals and Initial Futures Prices at the 5% Entry 
Level for Corn, 1948-1999 
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Figure 2. Rollover Hedging Signals and Initial Futures Prices at the 10% Entry 
Level for Corn, 1948-1999 
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Figure 3. Rollover Hedging Signals and Initial Futures Prices at the 15% Entry 
Level for Corn, 1948-1999 
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Figure 4. Rollover Hedging Signals and Initial Futures Prices at the 5% Entry 
Level for Soybeans, 1958-1999 
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Figure 5. Rollover Hedging Signals and Initial Futures Prices at the 10% Entry 
Level for Soybeans, 1958-1999 
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Figure 6. Rollover Hedging Signals and Initial Futures Prices at the 15% Entry 
Level for Soybeans, 1958-1999 
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Figure 7. Rollover Hedging Signals and Initial Futures Prices at the 5% Entry 
Level for Wheat, 1948-1999 
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Figure 8. Rollover Hedging Signals and Initial Futures Prices at the 10% Entry 
Level for Wheat, 1948-1999 
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Figure 9. Rollover Hedging Signals and Initial Futures Prices at the 15% Entry 
Level for Wheat, 1948-1999 
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Figure 1. Basis for Corn When Markets are Inverted, 1957-1999 

40 .00 

3 0 .00 6 

20.00 

I 
6 

1 0.00 

6 

6 

0 .00 

-10.00 

-2 0. 0 0 

-3 0. 0 0 

-4 0 .0 0 

-5 0. 0 0 

-6 0. 0 0 

1957 1962 1967 1972 1977 1982 1987 1992 1997 

Year 

[=+-Mar -5-MA-Mar A Sep -5-MA-Sep j 

Note: The March basis was observed on December 1 when the December-March spread showed a market inversion, 
and compared with the 5-year moving average of the March basis. The September basis was observed on June 1 
when the July-September spread showed a market inversion, and compared with the 5-year moving average of the 
September basis. 
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Figure 2. Futures Prices for Corn When Markets are Inverted, 1957-1999 
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Note: The March futures price was observed on December 1 when the December-March spread showed a market 
inversion, and compared with the 5-year moving average of the March futures price. The September futures price was 
observed on June 1 when the July-September spread showed a market inversion, and compared with the 5-year moving 
average of the September futures price. 
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Figure 3. Level of Stocks for Corn When Markets are Inverted (in Million Bushels), 1957-1999 
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Note: December stocks were observed on December 1 when the December-March spread showed a market inversion, 
and compared with the 5-year moving average of the December stocks. June stocks were observed on June 1 when 
the July-September spread showed a market inversion, and compared with the 5-year moving average of the June stocks. 
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Figure 4. Basis for Soybeans When Markets are Inverted, 1958-1999 
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Note: The March basis was observed on December 1 when the January-March spread showed a market inversion, and 
compared with the 5-year moving average of the March basis. The August basis was observed on June 1 when the July
August spread showed a market inversion, and compared with the 5-year moving average of the August basis. 
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Figure 5. Futures Prices for Soybeans When Markets are Inverted, 1958-1999 
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Note: The March futures price was observed on December 1 when the January-March spread showed a market inversion, 
and compared with the 5-year moving average of the March futures price. The August futures price was observed on 
June 1 when the July-August spread showed a market inversion, and compared with the 5-year moving average of the 
August futures price. 
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Figure 6. Level of Stocks for Soybeans When Markets are Inverted (in Million Bushels), 1958-1999 
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Note: December stocks were observed on December 1 when the January-March spread showed a market inversion, 
and compared with the 5-year moving average of the December stocks. June stocks were observed on June 1 when 
the July-September spread showed a market inversion, and compared with the 5-year moving average of the June stocks. 
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Figure 7. Basis for Wheat When Markets are Inverted, 1958-1999 
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Note: The December basis was observed on September 1 when the September-December spread showed a market 
inversion, and compared with the 5-year moving average of the December basis. The May basis was observed on 
March 1 when the March-May spread showed a market inversion, and compared with the 5-year moving average of 
the May basis. 
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Figure 8. Futures Prices for Wheat When Markets are Inverted, 1958-1999 
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Note: The December futures price was observed on September 1 when the September-December spread showed a 
market inversion, and compared with the 5-year moving average of the December futures price. The May futures price 
was observed on March 1 when the March-May spread showed a market inversion, and compared with the 5-year moving 
average of the May futures price. 
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Figure 9. Level of Stocks for Wheat When Markets are Inverted (in Million Bushels), 1958-1999 
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Note: September stocks were observed on September 1 when the September-December spread showed a market 
inversion, and compared with the 5-year moving average of the September stocks. March stocks were observed on 
March 1 when the March-May spread showed a market inversion, and compared with the 5-year moving average of 
the May stocks. 
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