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CHAPTER I 

· INTRODUCTION 

1.1 BACKGROUND 

Air filter housings in cars are designed with more attention to space utilization 

than to good fluid dynamics. Consequently the flow paths through the housing tend to 

have abrupt bends and sudden expansions, as shown in Figure 1.1. Flow is not delivered 

uniformly over the filter surface and separated flows cause fluid to move away from the 

filter for a significant part of its surface. For better performance there remains broad 

room for improvement. There are two issues that are very important for filters' filtration 

efficiency. First is the effect of the non-uniform distributed flow on the filtration when 

the mean velocity is not normal to the surface of the filter. Second is the effect of the 

velocity fluctuations, especially within the separated region where the velocity fluctuates 

violently with relatively small average velocity. Up to now these issues have not been 

addressed in sufficient depth. The OSU ~roup has done much research about the flow 

inside a test housing with both LDA (Laser Doppler Anemometer) measurements and 

numerical simulations (see Liu, 1995). Gurumoorthy (1990) calculated a three

dimensional flow field inside a car air filter housing using the K-s turbulent model. These 

investigations were about flows with the main flow perpendicular to the surface of the 

filter; and on the time averaged flow field. Separated flow and the dynamic behavior of 

the filter with large fluctuating velocity have not been studied to this author's knowledge. 



There are many publications about the heat or mass transfer of flow fields or temperature 

fields with porous media present. Most researches in that category are with the main flow 

parallel to the interface of the pure fluid and the porous media. This is the first work to 

study the flow that impinges into the air-filter with the filter located inside a s~parated 

flow area. 

Chwang and Chan (1998) reviewed studies of the use of Darcy's law to analyze 

waves that are moving past a porous structure. The research emphasizes the wave motion 

and its basic equation is inviscid. Thus the research does not help much in understanding 

the interaction of separated viscous flows with porous media. 

Better understanding of the interaction between separated flows and porous media 

can help us design not only better air filter housings but also provides more design 

choices when perpendicular main flow is not possible. However it is very hard to 

measure all the details of the real flow field and it would be too costly to build models to 

cover most geometrical parameters that need to be investigated. Additionally the real 

flow fields are still too complicated to simulate numerically. We need to find a simplified 

model that can cover the most important features and that can also be solved. Therefore a 

backward-facing step flow, as shown in Figure 1.2, was selected for numerical study and 

a similar setup was built for velocity measurements and flow visualization. The details of 

the flow were observed with and without an air filter present at adjustable distances from 

the step. It was investigated experimentally and numerically how the filter affects the 

flow fields with circulation. The velocity and pressure distributions across the surface of 

the filter will be presented. 

The step flow configuration was motivated by an actual car air filter housing, 
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which is shown in Figure 1.1. In the actual automotive air-filter,housing, two features are 

dominant according to our measurements. The mean flow impinges on the filter with a 

not normal angle and the separated flow takes a large portion of the entire flow domain 

due to a sudden expansion at the inlet. The structure is aerodynamically similar to a 

backward facing step. 

Figure 1.1. Schematic of an actual car air-filter housing 

Newman et al. (1997) measured the velocity distributions upstream of a filter in 

different automotive air filter test housings by LDA (Laser Doppler Anemometer). Filter 

initial efficiency was estimated using the measured velocity fields and filtration models. 

They concluded that differences in velocity distributions resulted in small differences in 

filter initial efficiency. Modifications made to the test housings had small effects on the 

velocity distributions, which presented a very non-uniform flow to the filter. One should 

note that the test housing in their experiment is very different from real vehicle housings. 

With housings that were similar in shape to a real air-filter housing, Al-Sarkhi et 

al. (1997) measured the velocity fields upstream of the filter. Their results indicate that 

3 



the flow fields upstream of an automotive air filter can have a significant effect on the 

filtration performance of the.filter. The mean velocity distribution entering the filter is 

important to the efficiency, restriction and capacity of the filter. Filter performance can 

be improved by improving the velocity distribution, preferably uniform flow impinging 

directly into the filter. However in most engineering conditions, uniform flow normal to 

the filter surface is not easy to achieve. Many filter housings are configured in the way 

that the flow enters the housing with its largest component parallel to the upstream 

surface of the filter. Therefore, their experiments were performed with fully developed 

rectangular duct flow and a rectangular housing. The main flow entered the housing in 

the direction parallel to the filter surface and was forced to change its direction 90 

degrees inside the housing. Three different housing configurations were established to 

control the flow distribution just upstream of the filter. LDA was used to measure the 

velocity fields throughout the plane 13 Illm above the filter. It was found that with some 

minor changes in the housing, flow distributions could be changed significantly for the 

better, that is less separated area and flatter mean velocity distributions. Al-Sarkhi et al. 

(1999) predicted the filtration efficiency theoretically based on the real flow distribution 

obtained by LOA measurements for housings of different configurations. They found that 

the mean velocity distributions with filter present are flatter than the distributions without 

filter due to the resistance added by the filter. The flow fields with less separated areas 

provided much better filtration results for 1 µm diameter particles with higher filtration 

efficiency at higher velocity regions. The filtration efficiency of 10 µm diameter particles 

appeared independent of velocity distributions for the cases in which particle adhesion to 

the fibers of the filter was assumed perfect. With the application of an adhesion model, 
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the efficiency for large particles also exhibited a dependence on the velocity distribution. 

A large amount of experimental data is available for the flow over a backward-

facing step, therefore it is very good to serve as a prototype for laminar and turbulent 

flows in complex geometry, as noted by Kaiktsis et al. (1991). Step flow is a classic 

separation flow that served as a stiff test case_ for numerical codes and experimental 

techniques, as noted by Scarano and Riethmuller (1999) and Badran and Bruun (1999). It 

has three important properties: strong velocity shear at the edge of the step, strong 

separation flow behind the step and downstream developing channel flow with boundary 

layer flow recovery from the separation. A typical flow domain of a backward facing step 

flow is shown in Figure 1.2. Reynolds number is defined as Re = 4U max D /(3v) . In the 

low-Reynolds number regime, a unique relationship exists between the Reynolds number 

(Re), the expansion ratio and the normalized length of the circulation zone ( X1 IS). In the 

high-Reynolds number regime, the reattachment length is determined by the expansion 

ratio and weakly correlated with the Reynolds number. So numerical methods and 

experimental results in the step flow can be tested on some basic aspects. 

Umax 

s 

Xr 

X4 X5 

iding Streamline 2h 
Downstream 
Boundary 

Reattachment Point 

tUmax2D 
Figure 1.2. Backward facing step flow. Re = ----

v 
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Most information about turbulent separation flows was gained visually (Abbott 

and Kline, 1961, cited from Armaly etal. 1983) or inferred from hot-wire anemometer 

and pressure measurements (Bradshaw et al. 1972, Kim, 1978, cited from Armaly et al. 

1983) in the early days. The detailed structure of the flows was not given until the 

development of the LOA in the 1970s, when potentially accurate measurements 

throughout a turbulent separated flow could be made. Armaly et al. (1983) used a single 

component LOA to study the flow over a backward facing step. The Reynolds number 

range was 70<Re<8000, including laminar, transitional and turbulent flow regimes. 

Additional regions of flow separation downstream of the step were found on the flat side 

of the channel where no step was present. The experiment showed that the flow 

downstream of the step was two-dimensional at low and high Reynolds numbers, and was 

three-dimensional at Reynolds numbers in between. Two-dimensional numerical 

predictions were also made at low Reynolds numbers and agreed reasonably well with 

their experimental results. 

Driver et al. (1985) did experimental and numerical studies on the flow over a 

backward facing step. Wall static pressure and time averaged surface skin-friction were 

measured and the instantaneous velocity was detected by a two component LOA. Two

dimensional k-E model and algebraic-stress turbulence model computations were carried 

out. The experiment provided extensive data for the mean velocity field and turbulence 

intensity distribution for a two-dimensional step flow. However the numerical results · 

displayed only qualitative agreement with the experiment; quite large discrepancies 

existed at the strong shear zone near the step edge. 

Kim and Moin (1985) studied two-dimensional step flow at low Reynolds 
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numbers by the numerical method that will be used in this paper. The results agreed well 

with Armaly' s experimental results. They developed a special procedure that 

significantly reduced the computation time. Details will be discussed later. 

Adams et al. (1988) studied experimentally the subsonic backward step flow. A 

single component LDA was used to measure the inlet flow and the velocity profile along 

the channel. The results indicated that upstream initial conditions were very important to 

the development of the shear layer downstream of the step. A thick boundary layer at 

inlet caused a lower pressure rise to reattachment and a lower pressure gradient at 

reattachment than cases with thinner initial separating boundary layers. 

Low Reynolds number step flow was studied by Ku et al. ( 1989) with the direct 

numerical simulation (DNS) method. The flow domain was divided into a few 

subdomains, each of simple geometry, with the continuity equation as the boundary 

condition at the overlapped interfaces. Their results were in good agreement with 

experiments for low Reynolds numbers. 

Kaiktsis et al. ( 1991) used a high-order-accurate mixed spectral/spectral element 

DNS model to investigate three-dimensional transitional flow over a backward step. By 

observing the instantaneous and time averaged velocity field aided with correlation 

methods, three dimensional bifurcation and secondary instabilities were studied. Very 

good agreement with experimental results was obtained on the relationship between the 

reattachment length with respect to Reynolds number. At low Reynolds number, Re=500, 

(Re= U max SI v, where U max is the maximum velocity at inlet, Sis the step height and v 

the viscosity of fluid), three different inlet velocity profiles were introduced to observe 

the effects of the initial conditions. Compared with the uniform inlet flow, a triangle 
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velocity profile produced a reattachment length X, about 18% longer and a parabolic 

inlet condition decreased the length about 27%. It should be noted that the definition of 

Reynolds number here is different than the definition in Figure 1.2. The definition in 

Figure 1.2, the same as in Armaly et al. (1983), will be used in this paper. The Reynolds 

number of Kaiktsis et al. is equivalent to about 660 in Armaly et al. This is consistent 

with Armaly' s results that it is in the transitional regime. 

By pitot tubes and hot-wire anemometer Yoo et al. (1992) measured the velocity 

and the fluctuating statistics beyond the separation and reattachment for a transitional 

flow over a backward step. The flow was a boundary layer flow, not a channel flow as 

others. They found that the wall pressure continued to reverse even slightly after the 

reattachment, reaching a maximum at x/S=8; eight times the step height. A discrepancy 

of the velocity profile from the universal law of the wall was observed after reattachment. 

The profile is gradually recovered until x/S=25, where the log law applied to y+=500 in 

the direction normal to the wall. However in the outer region, the effect of the upstream 

mixing layer still existed even at x/S=50. The energy dissipation rate was obtained 

through numerical integration of the second moment of the energy spectrum. A non

equilibrium state was shown to exist near the wall after reattachment. Farther 

downstream the turbulence generation and pressure-strain terms were balanced so that at 

x/S=50 an equilibrium turbulent boundary layer distribution was attained. 

With both direct and large eddy simulations, Silveira et al. (1993) investigated the 

shedding of coherent vortices in the mixing layer in an isothermal two-dimensional and 

three-dimensional backward step flow. The computations, corresponding to the geometry 

of Eaton and Johnston's laboratory experiment (Eaton & Johnston, 1980, cited from 
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Silveira et al. 1993), gave turbulence statistics in better agreement with the experimental 

data than Smagorinsky's method and K-s modeling. At the near wall region the log law 

was applied as the boundary condition and inlet flow condition was the profile 

corresponding to the experimental profile of Eaton and Johnston ( 1980) superimposed 

with a white noise of amplitude of 10-4 Max < U(y) >. The Reynolds number of the 

simulated turbulent flow is 38000 based on the step height. 

Table 1: Typical reattachment length for turbulent flows. 

Experimental Result X, IS =7.8 

(Eaton & Johnston, 1980, Cited from Siveira et al., 1993) 

LES (fine grid, Silveira, 1993) X, IS= 8.1 

K-s model X, IS= 8.1 

(grid independent result, Silveira et al., 1993) 

Karniadakis et al. (1993) studied the flow over a backward-facing step by re

normalization group (RNG) theory, the results are in fair agreement with the 

experimental data of Annaly et al. (1983). However some error existed in the order of 8% 

in the prediction of the reattachment length. It may be caused by the effects of mesh 

irregularities, inflow boundary conditions and numerical resolution, which need to be 

addressed as the authors noted. 

Durbin (1995) used a K-s-u model in which an equation was added to the 

standard K-s model to modify the turbulence velocity scale near the wall. The u can be 

regarded as a turbulent intensity scale for the velocity normal to the wall. Turbulent 

separated flows over a backward step were computed. Compared with experimental 
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results of Jovic and Driver (1994) (cited from Durbin, 1995) and Driver and Seegmiller 

( 1985), the profiles of the U component of velocity agreed very well inside the separation 

zone and at the top edge of the step where very strong shear was present. Nevertheless, 

the model solution for the boundary layer downstream of the reattachment recovered 

more slowly than that of experimental data. This slow recovery downstream of the 

reattachment is, as noted by Durbin (1995), who cited Ko (1993), a universal problem of 

turbulent models shown by Reynolds stress models as well as K-s models. If considering 

only the mean velocity flow field, the results of Durbin ( 1995) are quite satisfying. 

Jovic and Driver (1995) employed the Laser-Oil Flow Interferometry technique to 

directly measure the shear stress at the wall over a backward facing step flow. They 

found that the skin friction coefficient magnitude decreases extensively in the flow as the 

Reynolds number increases (Reh = U 0 h Iv, U O is the reference velocity upstream the 

step, h is the step height). By measuring the minimum skin-friction coefficient inside of 

the re-circulating region, they suggested that the flow near the wall in the re-circulating 

region is a viscous-dominant laminar-like flow. 

Le et al. (1997) studied the turbulent flow over a backward facing step by using 

the DNS method. The Reynolds number is 5,100 based on the step height and the inlet 

free velocity. The grid points used were 768, 192 and 64 in the x, y and z directions 

respectively. The expansion ratio of the step flow channel is 1.2. The reattachment 

location varies in the span-wise direction and oscillates about a mean value of 6.28 S, 

which agreed well with the experimental results of Jovic and Driver (1994, cited in Le et 

al. 1997). Large negative skin-friction coefficient is found in the re-circulating zone at a 

relatively low Reynolds number. The velocity profiles in the recovery region fell below 
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the universal log-law, which indicated the flow is not fully recovered at 20 times step 

height behind the step. This is similar with the experimental results of Yoo et al. ( 1992). 
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1.2 REMAINING PROBLEMS AND GOALS 

As shown in the previous section, there are not many results about the flow field 

in air filter housings and its effects on the filtration efficiency of the filter, and the results 

are mostly obtained from mean flow field. Because of the complexity of the flows in real 

filter housings, the interactions between separated flow and the filter have not been 

studied in depth. A step flow is a proper flow to model the important features in a real air 

filter housing. 

Although a large amount of experimental and numerical data are available now in 

flows over a backward-facing step, some important problems remain unclear. One of 

them is how the inlet flow affects the separation flow downstream of the step. In 

engineering applications, fully developed flow is often difficult to achieve, as bends and 

abrupt expansions just ahead of the step are sometimes not avoidable. The design of car 

air-filter housings needs specially to consider the effects of inflow conditions. 

Most research of porous media with fluid flows are about either the micro-scale 

flow inside porous media or the heat and mass transfer of the flows that pass through the 

media. There are no published results about the interaction between separated fluid flow 

and porous media that are known to this author. It is important and critical for fine air

filter housing design to understand how the presence of the air-filter can alter the flow 

field, especially when a significant portion of the flow domain is inside a circulation 

zone. How and why the velocity and pressure field can be altered by the presence of an 

air-filter will be studied extensively. 

At first the velocity field will be observed without an air filter. The separation 

lines (where the stream-wise velocity is zero) and velocity distributions will be measured 
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or computed for different Reynolds numbers. Then the filter will be placed downstream 

of the step and mounted normal to the side wall. Its position with respect to the 

reattachment location will be adjusted to study the interaction of the filter and the 

recirculation flow. In the experiments a filter will be placed at two given locations. The 

more delicate adjustment of the filter's location with respect to the reattachment position 

is achieved by adjusting the Reynolds number, since the reattachment position is related 

to Reynolds number. In computations the filter can be placed at more locations. The 

velocity and pressure profiles along the surface will be studied. Presently we can not 

measure the pressure distribution across the filter surface. However the pressure 

distribution across the filter surf ace can be handily studied by numerical simulation. 

When the filter is placed inside the recirculation zone, the flow between the step and the 

filter is likely separated. The main flow is not normally impinging on the filter since the 

main flow turns to the step side, in the manner of the dividing streamline shown in Figure 

1.2. 

For experiments at very low Reynolds number, we were not able to obtain flow 

that is two-dimensional and at the same time has the seeding particles well mixed with 

the airflow. Therefore, the experimental results will be presented in the Reynolds number 

range of 2,000 to 10,000, that is the regime of transitional and turbulent flow. 

At very low Reynolds number, the flow is truly two-dimensional, which is the 

case the present CFD analysis can readily model. In the turbulent regime, the mean flow 

is two-dimensional, but the turbulence structures are inevitably three-dimensional. A two

dimensional model can predict the main flow field in some extent. Three-dimensional 

flow needs to be studied for flow structure details in the future. Additionally, with a 
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three-dimensional CFD model, more sophisticated LES models can be introduced. 

Numerically,three-dimensional problems will need much more computing power. 

In this thesis the Low Reynolds number step flow with and without the air filter 

downstream of the step is numerically studied in great details. The effects of the filter on 

the separating flow behind the step will be reported. Turbulent flow at Reynolds number 

of 10000 was simulated with two dimensional LES model, further study is needed for 

satisfying results. 
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CHAPTER II 

NUMERICAL METHOD 

In most engineering problems, flows are turbulent. However still much is 

unknown about the physics of turbulence. Understanding the mechanism of turbulent 

flows has been one of the greatest changes for engineers and scientists for more than 100 

years. It is extremely difficult to solve theoretically because of the non-linearity of the 

governing equations and it is also hard numerically because of the large range of scales 

involved in turbulent flows, which are mostly of high Reynolds numbers. The purely 

analytical solutions are not ready for engineering applications. Presently numerical 

methods still cannot handle the wide range of scales for flows of complex geometry, 

largely because the near wall region needs very fine grid to solve the shear stresses. 

Although very high Reynolds number flows can be studied with experiments, as Rogallo 

and Moin ( 1984) pointed out, the primary difficulty with experimental turbulence data is 

the lack of it. Some of the statistical quantities needed for theoretical analysis are difficult 

to measure, such as those involving the pressure. It is also very hard to measure a flow 

field over a two-dimensional or three-dimensional domain for time series with good 

resolutions of space as well of time, even with the powerful PIV .(Particle Image 

Velocimeter) technique. Numerical techniques can provide some qualitative, not very 

fine but with certain accuracy, velocity distributions over a two or three-dimensional 
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domain over a time period. Therefore numerical study by some approximation is 

inevitable for high Reynolds number flows of complex geometry. For low Reynolds 

number flow, numerical study in many cases costs less and provides more information 

than experiments. Numerical simulation is more and more popular, especially with the 

rapid development of computers. 

There are three categories of numerical simulation of turbulence. The classical 

one is the Reynolds stress average, a time average of the Navier-Stokes equations, 

equations (2.1). Occasionally other types of averaging are used, such as space average. 

With the whole velocity decomposed as in (2.2), time averaging of the Navier-Stokes 

equations results in the Reynolds equations (2.3). 

t3 ui t3 t3 p 1 t32u; 
--+--(u.u.) = ---+----
o t t3 xi I J t3 xi Re t3 xio xi 

(2.1) 

u=ii+u' (2.2) 

ou'. u'. 
I J (2.3) 

where u is the whole velocity, u;, i = 1,2,3 is the velocity component in i-direction. The 

time averaging procedure and the resultant fluctuating velocity are as follows: 

1 IT ii=- u(t)dt, T~oo, 
. T o 

I -u =u-u 

Reynolds number is a non-dimensional term defined as Re = pUL . U and L are the 
µ 

characteristic scales of velocity and length for the flow respectively; pis the density and 

µ is the viscosity of the fluid. The Reynolds equations contain higher order terms that are 

time-averaged products of the fluctuating fields: Reynolds stresses. One can repeat the 
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process again on equation (2.3) to obtain equations of the second order moments, which 

will result in third order moments. This process always ends up producing higher order 

terms, more unknowns than equations regardless of how many moments one takes. This 

is known as the closure problem of turbulence. 

To close the system of equations, a model or a closure assumption is required, 

assuming that higher order moments of velocity fluctuations can be expressed as the 

function of lower order moments. The simplest example is to predict Reynolds stresses 

by the mean velocity shear, the Boussinesq approach, for example the Prandtl's mixing 

length. This one is a zero equation or algebraic model, since there are no extra differential 

equations to solve. The next level of modeling, one-equation model generally employs a 

differential equation for the turbulent kinetic energy u'; u'; 12 and a prescribed length 

scale or dissipation rate. This level is limited by the skill of prescribing the length scale. 

Two-equation models use one equation for turbulence kinetic energy and one for a length 

scale or dissipation rate. This type of model has been very popular for Reynolds stresses 

average methods and one example is the K-E model. The big problem for this method is 

that it needs several empirical constants, which are different for different flows. 

Generally it does not work well when the flow involves separations. 

Reynolds average models model all scales of turbulence, from the smallest to the 

largest. Since the large eddies largely depend on the geometry, it is not practical 

(Ferziger, 1993) to find a universal model for this kind of method. In engineering 

problems of complex geometry, some specific constants have to be found. For a flow that 

is totally unknown it is very hard to find appropriate constants for numerical calculations. 

In the K-E model, since the velocity scale represented by K is not appropriate for 

17 



turbulence transport toward the wall, it gives unacceptable results when integrated to a 

no-slip solid boundary (Rodi et al., 1986 and Durbin, 1995). In the K-s-u model of 

Durbin (1995) a third equation was introduced to supplement the original K-s model. It 

had more constants to manipulate, which can give difficulty if one wants to change the 

geometry as in the present study. 

A second method of numerical simulation is Direct Numerical Simulation (DNS), 

which is to solve the Navier-Stokes equations directly over a large enough time period 

and to compute every detail of the flow from the smallest scales to the largest without any 

modeling. This requires very fine computing grids to solve the small scales and a large 

computing domain as well to cover the large scales. The DNS is good for accurate 

prediction but it is too expensive in terms of required computational resources and now 

only can be a good choice for some simple flows in a small flow region. With computing 

capacity nowadays, this will not be practical for engineering problems in the near future. 

For flows over backward facing steps, DNS is now most limited to moderately low 

Reynolds numbers. In the latest published simulation done by Le et al. (1997) the 

Reynolds number is 5,100 as described in section 1.2. 

A third method is somehow between the above two methods: Large Eddy 

Simulation (LES). LES offers an approach to mathematically distinguish 'large' and 

'subgrid' scale components of a turbulent flow field. The equations for the 'large' scales 

can be derived by 'filtering' the Navier-Stokes equations, but due to the non-linearity, 

subgrid scale terms appear and these must be modeled. Filtering is a special average for 

LES and will be addressed later. The large energy-carrying scales are directly computed. 

Since the small scales of turbulence tend to be more homogeneous and isotropic than 
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large ones, it is quite reasonable and possible to have one model for flows of different 

geometry. Generally LES is not ready for wide applications to engineering problems yet; 

however for some flows of not very complex geometry at moderate Reynolds number or 

with some tolerable approximations focusing on some important aspects, LES is a 

feasible choice. There already are some quite successful applications in flows over 

backward-facing steps as Silveira et al. (1993) and Karniadakis et al. (1993) up to 

Reynolds number Re=38,000, as mentioned previously in section 1.2. 

DNS requires too much computing power for practical engineering problems. 

Reynolds average methods do not work well for flows with recirculation or at the near 

wall regions. Therefore LES was used as the numerical model to close the turbulent 

equations in this study for higher Reynolds number flows. Comparison will be made with 

existing experimental and numerical results. 
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2.1 GRID SIZE AND COMPUTING CAPACITY NEEDED 

The first step in LES is to define the variables that can be resolved and their 

governing equations, as Rogallo et al. (1984) pointed out. 

The values at discrete mesh points of a simulation represent flow variables only in 

some average sense. For example the popular 2nd-order center difference formula for the 

derivatives of a continuous variable gives exactly the derivative of the variable's average 

over the involved mesh range, that is: 

l x+h; 

uj = - f u(l')dl' 
x-h; ,x+h; 2h. ':, ':, 

I X-h; 

du = ~{-1 xr~(()d(} = -· 1 ~ xr~(()d( = u(x + h;) - u(x - h;) 
dx dx 2h x-h· 2h; dx x-h- 2h; 

I I 

This indicates that a discrete operator filters out scales less than the mesh size h;. If all 

the averages give the same values, the direct approach may be applicable. At very high 

Reynolds number it is hardly appropriate to employ the direct approach (Rogallo et al. 

1984). However by explicitly filtering the Navier-Stokes equations, the analyzed scales 

can be limited to a resolvable size. This formally defines the averaging process that 

separates resolvable scales from the subgrid scales. Then the SGS (subgrid scale) stresses 

must be modeled. 

If the smallest scale, O(h), that the mesh can resolve is sufficiently smaller than 

the smallest scale 0(..1) of the filter and the LES model, the computation results are 

dependent only on the filter and SGS model and independent of the numerical algorithm. 

It is still very costly in LES to completely satisfy the above condition, therefore choosing 

the right mesh size is very important for LES. 
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In LES the resolution requirements are determined directly by the range of scales 

one wants to study in detail and iridirec::tly by the accuracy of the model. The less accurate 

· the model, the further the modeled scales must be separated from the scales of interest. In 

engineering problems the important scales contain the events that are important for the 

heat and mass transfer or for the production of turbulence energy. In the near wall regions 

the large-scale coherent structures are the primary events and provide the most turbulence 

energy production. Simulating the basic mechanisms in the region would require a grid 

size of five wall units in the span-wise direction and 20 to 30 wall units in the stream

wise direction for a complete resolution as stated in Moin and Kim (1982). On average 

the coherent structures are about 100 wall units wide in the span,-wise and 1000 wall units 

long in the stream-wise direction for a flat plane boundary layer flow or channel flow. 

We may choose the computing domain parallel to the wall to cover a whole event and use 

64 points in the direction normal to the wall. The total number of grid points for three-

dimensional simulation is in the order of .06 Re~ , Rem = U max h Iv , h is the half width of 

the channel (Rogallo et al., 1984). This is quite too large for engineering applications of 

high Reynolds numbers. However for the present case with the Reynolds numbers less 

than 20,000, it is feasible to use LES on current computers. If a reliable wall model can 

be used to decrease the grid resolution required near the wall, the number of grid points 

could be significantly reduced, and could be low enough for many engineering 

applications. Silveira et al. (1993) successfully used a 200*30*30 mesh system to 

compute by LES a step flow at Re=38,000 with the aid of a wall model. Without the wall 

model, 64 points would be the least needed as mentioned in the previous paragraph for 

the direction normal to the wall; Silveira et al. used only 30 in that direction. 

21 



2.2 LARGE EDDY SIMULATION 

2.2.1. Filtering Operation and Basic Equations 

In large eddy simulation the large scales are directly computed, and only the small 

ones are modeled. The filter operation defines the large-scale quantities (indicated by an 

over bar), which are supposed to be energy carrying. 

](x) = J f(x')G(x,x')dx', (2.4) 

in which G is the filter function and the integral is extended over the entire domain. Filter 

functions commonly used include the Gaussian, the sharp Fourier cutoff and the top hat 

(Leonard, 1974, cited from Piomelli, 1993a). One can obtain the filtered set of governing 

equations by applying the filtering operation to the appropriate governing equations. For 

incompressible, isothermal flows these are the continuity and Navier-Stokes equations. In 

dimensionless form and after filtering they are given as: 

OU; =0 
oxi 

oU; +~(u.u.) =-op_ orij +-1- 0 2zi; 
o t o xi ' 1 o xi o xi Re o xl xi 

(2.5) 

(2.6) 

Equations (2.5)-(2.6) govern the evolution of the large scales. The effects of the small 

scales appear in the subgrid-scale (SGS) stresses, 

(2.7) 

The SGS stresses are often decomposed into three parts (Leonard, 1974, cited from 

Piomelli, 1993a): the resolvable part, also known as "Leonard stresses", Lij = zi;uj - zi;uj; 

the cross terms, Cij = ii;u~ + uju;, and the SGS Reynolds stresses, Rij = u;u~ . Most 
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existing models are eddy viscosity types: assuming the anisotropic part of the SGS stress 

tensor, 'tij = 'tij -6ii -rkk/3 is dependent proportionally on the large-scale strain rate 

tensor, sij: 

- ou. ou. . - 1 
r~ =-2vrS .. =-vr(--1 +--J); r .. =-2vrS .. +-8 .. rkk 

I) 1) O O I) _I) 3JJ 
xj xi 

(2.8) 

where vT is the SGS eddy viscosity. Equation (2.7) can be decomposed and then each 

. term can be treated differently for a better modeling, however it costs too much and the 

benefit may not be large enough to justify the practice (Lesieur and Metais, 1996). More 

and more authors prefer the simple approach to SGS modeling, treating the r ij as a whole 

(Ferziger, 1993), which is easy to apply and requires less computation. Although vT 

could be a fourth rank tensor, it is generally assumed to be a scalar quantity as in 

Reynolds Stress modeling. Then equation (2.6) becomes: 

Here a modified pressure is introduced. This term can be determined by taking the 

divergence of equation (2.9) with the help of the continuity equation. 

The simplest top hat filter will be employed in this paper. Another widely used 

filter is the Gaussian filter, which is more complicated. The formula of a top hat filter 

applied to non-uniform mesh systems is given in Appendix A. 

2.2.2 Smagorinsky's Eddy Viscosity Model 

LES was first applied by Deardorff (1970), who used the eddy viscosity model 

introduced by Smagorinsky (1963), as reported by Ferziger (1993). By assuming tha~ the 
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small scales are in equilibrium and that energy production and dissipation are in balance, 

this yields: 

(2.10) 

where dis the length scale associated with typical SGS eddy and Cs is the single model 

parameter. A number of arguments based on some fundamental considerations suggest 

that the length scale be (Ferziger, 1993): 

d = (L!:l) 113 

where L is the integral length scale of the turbulence and the I).. is the length scale used in 

the filter. However the integral length is difficult to compute, in most cases I).. is used as 

the length scale d. When the flow is anisotropic, the most common choice is 

where the /)..xi is the filter width in the i-th direction and usually it is the mesh size 

(Piomelli, 1993a). 

Although many new subgrid scale models have been developed, the Smagorinsky 

model is still successfully and widely used, such as the recent LES applications of 

homogeneous shear stratified simulation by Kaltenbach et al. ( 1994) and a backward step 

flow by Amal and Friedrich (1993); reported by Lesieur et al. (1996). The value of the 

parameter Cs predicted by theories (about 0.2) does a good job for isotropic turbulence, 

since the theories are based on isotropic flows. For inhomogeneous shear flows, many 

authors have used values that are half of 0.2 or less. Deardorff ( 1970) used .0094 as Cs. 

It is still not clear why Cs should be smaller for inhomogeneous shear flows, although it 

' appears to be related to the backscatter ( energy transfer from small scales to large scales) 
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in flows with mean shear (Ferziger, 1993 citing McMillan et al., 1980). It is reported by 

Lesieur et al. (1996) citing Friedrich and Nieuwstadt, (1994) that using the Smagorinsky 

model, there were problems in reproducing the experimental data, due to their inability to 

predict the energy transfer mechanism at the wall. In particular, Lesieur and Metais 

(1996) further noted that it does not work for _transition in a boundary layer over a flat 

plate for flows that start with a laminar profile to which a small perturbation is added. 

Due to excessive eddy viscosity coming from the mean shear the flow remains laminar 

when the Reynolds number is in the transitional regime. 

By considering the transport equation for the resolved kinetic energy q2 = U;U; ; 
2 

we can see the principle effect of the SGS model on the resolved scales (Piomelli, 

1993a): 

21ilii = EsGs is the SGS dissipation, representing the energy transfer between resolved 

and subgrid scales. If it is negative, the subgrid scales remove energy from the resolved 

ones (forwardscatter). If it is positive, the subgrid scales give back energy into the 

resolved scales (backscatter). In most three-dimensional engineering problems, 

turbulence energy transfers from the large to the small scales on average. In the eddy 

viscosity model: 

As long as the eddy viscosity is non-negative, there is no backscatter and the model is 

said to be 'dissipative' since it is always providing dissipation. 
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Clark et al. (1979, cited from Piomelli, 1993a), using DNS results to testthe LES 

models, found that eddy viscosity models of the Smagorinsky type predicted the global 

energy transport from large eddies to small scales with acceptable accuracy, but failed to 

predict the local stresses. However the Smagorinsky model was fairly good for 

homogeneous flows. Kaltenbach et al. (1994), reported by Lesieur et al. (1996), 

compared their Smagorinsky model results with DNS and experimental data. The results 

were very good. When the same mesh resolution was used as DNS, better results were 

obtained by the Smagorinsky model than DNS. This indicates that when mesh resolution 

is not fine enough for DNS, modeling can provide better computation results. 

There are many more complicated LES models, such as the Dynamic Eddy 

Viscosity model (Piomelli, 1991). · Those models are not very popular in engineering 

applications yet since the models are not as easy to use as the Smagorinsky model. 

2.2.3 The Wall Region 

In the wall region, all the turbulent structures are small, even the energy-carrying 

structures. The velocity gradients are very steep. Very fine grids are needed to simulate 

the wall region if natural non-slip boundary conditions are applied. It is well known that 

the shear flows near solid boundaries contain alternating streaks of high and low speed 

fluid, which are very thin and active in turbulence energy production. If they are not 

adequately simulated, the turbulence energy production in the vicinity of the wall (which 

is a large fraction of the total energy production) is under-predicted (Kim and Moin 

1986). Then some of the overall parameters of the flow will not be predicted correctly. 

However some simulations suggest that wall-region turbulence and turbulence far 

from the wall are relatively loosely coupled. Chapmann and Kuhn (1986) showed that a 
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simulation in the·wall region displayed most of the characteristics of the wall layer found 

in a simulation that computed the entire flow: They put artificial boundary conditions at 

the top of the buffer layer (at approximately y+=lOO). This indicates that accurate 

prediction of the flow near the wall does not require accurate simulation of the outer 

flow. On the other hand, Ferziger (1993) noted that Piomelli et al. (1987) and others had 

shown that by using relatively crude lower boundary conditions to represent the effect of 

the wall region; one could accurately simulate the central part of the flow in a channel. 

That implies that the outer region flow can be simulated without knowing the details of 

the flow in the wall region. Therefore it is possible either region can be well simulated if 

the correct shear stress and a reasonable approximation of the fluctuations are given at the 

.. interface between it and the other zone. 

These results suggest that useful simulation can be done without resolving the 

entire flow. This is important because a very fine grid in every direction is required to 

resolve the wall region. If a model can represent the stresses in the wall region, it may 

result in huge savings, which makes it possible to extend LES to practical engineering 

applications . .This approach allows one to place the first grid point in the logarithmic 

region (y+=50 - 200, Piomelli et al., 1989), and there is no need to resolve the wall 

region. The subgrid scale turbulence structures in the core region are more isotropic and 

easier to model . 

. A still widely used wall region model was first introduced by Deardorff (1970) 

and then modified by Schumann (1975). It assumes that the instantaneous velocity at the 

first grid point from a wall is exactly correlated with the wall shear directly below it: 
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where y1 is the first grid point from wall, < 'tw > is the mean wall shear stress and 

U 1 (y·1) is the mean velocity at the-first grid point, determined by the log law from 

Deardorff (1970). The boundary condition for the velocity normal to the wall is 

impermeable. The mean wall stress was set to be equal to the driving pressure gradient 

for channel flow, as in Schumann (1975) who obtained considerably improved results. 

Due to the way the wall stress is computed, the model is limited to flows for which the 

pressure field is previously known. 

Mason and Callen ( 1986) assumed the conventional logarithmic law velocity 

· profile near the wall instead of the log law of Deardorff (1970). We know that the 

logarithmic law holds true only as the mean velocity profile, not locally and 

instantaneously. Citing Piomelli et al. (1987), Ferziger (1993) found it inadequate for 

engineering applications. Piomelli et al. (1989) used direct simulation results to test 

models for the wall layer and constructed two new models based on boundary layer 

research results of both experiments and direct simulations. 

The first model of Piomelli et al. ( 1989) was derived from the idea that Reynolds 

stress producing events at near the wall region move away form the wall at a small angle 

to the wall, not vertically as assumed by Schumann (1975). This leads to the so-called 

shifted model, an improvement of Schumann's: 

where l:l. 5 = y1 I cos8° is a spatial shift, 8° is the observed mean angle of event 

trajectories. 

The second model of Piomelli et al. ( 1989) is based on the observation that events 
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containing significant Reynolds stresses involve vertical movement, so that itis the 

vertical component of the velocity rather than the horizontal one that should be correlated 

with the wall shear stress. 

r w (x, z) =< r w > -Cu ·v (x + ll s, Yi, z) 

Both these models gave improved results that agreed better with experiments and 

direct simulations for channel flow, including cases with transpiration from the walls and 

high Reynolds number flows. 

All these models mentioned above have been applied only to flow over flat walls 

with very mild pressure gradients. They are almost certainly inadequate for separated 

flows or flows over complex-shaped walls. Ferziger (1993) pointed out that no reliable 

simulations of fully turbulent flows in complex geometry have yet been modeled. 

Because experimental data are scarce and lack detail, the development of trustworthy 

methods for simulating these flows will probably require simulation with non-slip 

conditions. However Silveira et al. (1993} used the conventional log law in the near wall 

region for separated step flow and the results were quite good. 

For the flow inside the separation zone or near the reattachment location, the 

mean velocity in the wall region is not truly boundarylayer like flow. Another problem is 

that the pressure gradient in the separated flow region is very different from those of 

straight pipe flow or flat plate boundary layer flow. If the log law applies here, different 

parameters of the law may need to be found accordingly. Discrepancy from the universal 

law does exist in the velocity profiles at reattachment location as reported by Yoo et al. 

(1992). Silveira et al. (1993) believed that using the log law profile does not introduce a 

significant error in the development of the turbulent flow in the shear layer just 
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downstream of the step and the recirculation region away from the immediate vicinity of 

the wall. In most parts of the flow domain, the flow characteristics are largely controlled 

by the inflectional instabilities close to the entrance, where the velocity profile is very 

unstable. 
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· 2.3 INLET CONDITIONS AND OUTLET CONDITIONS. 

To limit the number of the computational grid points, the inlet channel is not 

simulated. The inflow conditions are imposed at the step ridge corresponding to 

measured experimental data. For laminar flow at low Reynolds numbers, a parabolic 

profile will be used. For turbulent flows the inflow will consist of a mean velocity field 

on which a white noise is superimposed with a given magnitude as the fluctuating 

velocity. The mean velocity profile is a fourth order polynomial to match the measured 

velocity profile for the Reynolds number. It is reported by Silveira et al. (1993) that 

precisely matching the experimental inflow fluctuating conditions, demonstrated by 

Amal and Friedrich (1993), is very difficult. Synthetic white noise with a uniform 

probability distribution therefore will be introduced, as did Silveira et al. (1993). 

At the outlet, the longitudinal velocity gradient will be set to zero, the fully 

developed condition. When the air filter is present, the outlet condition will not affect the 

upstream flow very much due to the very high resistance of the filter. For the cases 

without the filter, the outlet will be placed far from the region of interest to let .the flow 

recover from the re-circulation. In most cases the outlet condition will be applied at 30 

step heights behind the step. Since the current emphasis is on the interaction between 

separation flow and the presence of a filter, there is no need to simulate precisely the 

recovering flow downstream. According to the experiments of Yoo et al. ( 1992) and the 

computation of Silveira et al. (1993), 30 step heights away from the step are quite 

enough. Le et al. ( 1997) also applied the outlet conditions at 30 times step heights 

downstream of the step at Re=5,100 in their direct numerical simulation. 
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2.4 FINITE DIFFERENCE SCHEME 

2.4.1 Equations for Pure Fluids 

For laminar flows, the governing equations are the Navier-Stokes equations. The 

equations for turbulent flows with LES models are similar and can be solved by the same 

numerical method. The procedure therefore will be developed upon the non-dimensional 

Navier-Stokes equations. 

c,u. ip 1 o2u. 
-' +-=H.+---' a- OX; ' Re o.xj 2 

c,u. 0 
H. =-u.-' =--(u.u.) 

I 1c3.x, ax. I J 
J J 

The two-step time-split method is used. The first step is to split the velocity into the sum 

of predicted and corrected values. The predicted velocity is determined by time 

integration of the momentum equation without the pressure term. 

(2.16) 

The viscous term is treated by Crank-Nicholson scheme and the convective term by an 

Adams-Bashforth scheme (Kim et al. 1985, Ku et al. 1989). Then it is second order 

accurate in both time and space. The first order temporal approximation has an error term 

which is diffusive. This may cause problems for the LES model since an extra numerical 

diffusion term is introduced. 

The second step is to develop the pressure and corrected velocity fields that 

satisfy the continuity equation by using the relation: 
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I 

(2.17) 

The pressure is found by taking the divergence of equation (2.17) and by invoking the 

incompressibility continuity condition. This results in the Poisson equation that is going 

to be solved by an over-relaxation iteration method. With the second-order staggered 

finite difference scheme (Harlow, F. H. et. al. 1965), the need for pressure boundary 

conditions does not arise. The continuity equation at the interior cells together with the 

momentum equations (at the interior grid points) and the velocity boundary conditions, 

leads to a closed system of algebraic equations for pressure. 

Details about how to apply the above schemes to the equations (2.5) and (2.9) for 

turbulent flows are in Appendix C. 

2.4.2 The Flow within the Air-Filter 

The flow inside the air filter is treated as laminar flow, since its Reynolds number 

is less than one if the characteristic length is taken as the diameter of the fibers of which 

the filters are made. For simplicity the filter will be considered as a homogeneous porous 

medium and an extended Darcy's law will apply. The equations for the porous medium 

are (Chen and Chen, 1992): 

In the equations the subscript m denotes quantities pertaining to the porous medium and 

um denotes the filtration velocity. Where ~m is the porosity, K is the permeability and 
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two additional terms have been included in Darcy's equation. One is the Brinkman term 

~m V2um to account for the viscous effect. This term is important in the neighborhood 

of solid boundaries and interfaces where viscous shear is strong. The Forchheimer term 

% jum jum takes into account the inertial effects when the filtration velocity becomes 

large. The coefficient B is independent of the properties of the fluid, but depends on the 

properties of the medium. It will be determined from the experimental data of Tebbutt 

(1995) who worked on the same filters that are used in this research. The flow domain 

including the regions with and without air filters will be solved simultaneously. At the 

interfaces the boundary conditions are the continuities of velocity, shear stresses and 

normal stress (Chen and Chen, 1992). For the two-dimensional case: 

The subscript m presents variables inside the filter. The coordinates are shown in Fig. 2.1. 

y, V 
Flow t X,U 

> 

Figure 2.1. The placement of the filter in the flow domain. 
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The-static pressure at the interface should be the same at both sides, that is 

p =Pm. Since the flow inside the filter is considered laminar, at the interface, the eddy 

viscosity should be zero. Hence the viscosity there is constant. Then we have: 

0V 0V 
-=-m-
ax ax 

. . au au 
and U=U -=-m-

m ax ax 

The velocity outside of the filter will be the velocity of the LES filtered field. At the solid 

boundary non-slip conditions apply. 

To compute the entire flow field simultaneously, we need to apply the time-split 

method to the equations of the porous medium. Although the equations for porous media 

are different from the Navier-Stokes equations for pure fluids, they are similar in the 

basic forms. Some modifications ·are necessary. The porosity affects the relation between 

velocity and the pressure gradients and the term for inertial effects caused by the. porous 

medium. Therefore the inertial term in the numerical method will have two terms here to 

make the resultant equations have the same form. The same length and velocity 

characteristic scales as for the pure fluid are used to normalize the equations for the 

porous medium. The details can be found in Appendix F.2. Then the non-dimensional 

equations are the following, where the bar represents normalized terms: 

,.. n+l n · 

umi -um; =.I.(3H~ -H~-l)+-1-_ V2(u ~+I +u ~) 
/J..t 2 ' 1 2Re m, m, 

n BI n' 1 n Hi =-</Jm(-=Um. +-=)Um. 
K I ReK ' 

And the Poisson equation for pressure will have changes as follows: 

n+I -Un+I 
Let umi mi = <Pm V rpn+I and we have V • u;;1 = 0. 

/J..t 
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2 n+l A n+l lit 2 
Then:¢ V rp =(v'•um. )/!it and Pm =(l+ V )rp 

m I 2¢m Re 

The porosity has to be taken into consideration for the relation between pressure gradient 

and the velocity. Then we yield the same form of equations and the same CFD procedure 

to solve the flow inside the porous medium as for the pure fluid. The entire flow field 

now can be treated as one by the same governing equations numerically and be solved 

simultaneously. However since the coefficients are different at the right side of the 

Poisson equations for pressure and the continuity conditions at the interface, the entire 

flow domain is divided into three divisions as pure fluids, porous medium and pure fluids 

again. All the coefficients of the numerical equations are computed respectively for the 

three domains and the two interfaces between them. At the interfaces the relations are 

steady state, therefore they are very easily combined into the whole procedure. Then the 

entire flow domain is solved at the same time. More details can be found in Appendices 

E andF. 
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CHAPTER III 

EXPERIMENTAL SETUP AND MEASUREMENT TECHNIQUES 

3.1 Two DIMENSIONAL STEP FLOW 

Step flow.is a good prototype for separation and turbulence research and it is a 

simple model to simulate some important aerodynamic features of a real automotive air

filter housing. A transparent model has been constructed for LDA measurement and flow 

visualization. It is an open air-driven flow channel which incorporates a two dimensional 

backward-facing step, as shown in Figure 3.1. The expansion ratio is 1 :2 with the large 

channel 50 mm in height and an aspect ratio of 10: 1 to ensure a two-dimensional mean 

flow field. The airflow passes through a 25-mm thick regular air filter to enter a mixing 

chamber. The solution of seeding particles, the concentration of which is approximately 

400 ppm, is introduced through a vertical pipe of 100 mm in diameter by a TSI 9306 

atomizer into the mixing section of the wind tunnel. The atomizer produces water 

droplets together with the particles. Since the water droplets are not good particles for 

LDA measurement and may condense on the wall of the tunnel or on the filter to cause 

problems, the air is heated slightly to remove the water droplets. The particles have a 

very small speed at the exit of the pipe; therefore it has little effect on the flow. The 

particles are very small, .5 to 1 micrometer, of which the density is very close to water. 

They are very well mixed into the airflow at the developing chamber when the mean 

37 



velocity in the chambers is larger than .1 mis. The mixing chamber is about .75 meters 

long to let the flow develop. The sedimentation velocity of the particles is very small; 

approximately 3 x 1 o-s mis compared with the .4 mis mean velocity inside the test section. 

It has virtually no effect on the flow field. Details will be discussed in section 3.2. Then 

the seeded airflow is fed through flow straighteners and two screens. To maintain a 

uniform and non-separated flow upstream of the step, a contraction nozzle was designed 

and built based on the formula of Morel (1977). The curve and the parameters are shown 

in Fig. 3.2. The inlet to outlet area ratio is 10. The outlet nozzle is connected to the inlet 

of the test section. The first part of the test section is 25 mm high and .5 meter long to 

provide a fully developed inlet flow for the step. 

An air filter can be placed either at 4.25 or 6.75 times the step height downstream 

of the step, normal to the side wall. The separated flow downstream of the step when the 

filter is not present was first observed and will serve as a comparison base. Then the filter 

is added to the flow field at the positions either inside the separation zone or outside the 

separation zone. Since the reattachment location is a function of Reynolds number for a 

large range of Reynolds numbers, we can control the filter's position relative to the 

reattachment location by changing the Reynolds number, that is, changing the flow rates. 

The flow rates are adjusted by regulating valves available in the blower control system 

and monitored by a TSI 2-21 mass flowmeter. 
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Two-Dimensional Backward Facing Step 

All units are in millimeters 

Figure 3 .1. Step flow test section of the experimental set up, expansion ratio 1 :2. 

X=Xm'L 
Hl 

Match Point 

Xm 

Figure 3.2. Contraction curve of the channel inlet nozzle and its parameters. 
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Because of the reversing flow behind the step, the main flow is not parallel to the 

side wall close to the step. When the filter is inside the separated flow zone, the mean 

flow is not impinging normally on the air filter. The Reynolds number can be adjusted 

between 5,00 to 10,000 by changing the mean velocity, covering both the laminar and 

turbulent regimes. The LDA technique was used to measure the instantaneous velocity 

throughout the flow domain. Measurements were conducted at .5 step height (12.5 mm) 

away from the surface of the filter. Since the velocity measured is normal to the surface 

of the filter, the effective velocity to drive particles through the air filter then can be 

obtained. The entire experiment setup is shown in Figure 3.3. 

Contraction design is centered on finding the optimum wall shape and the 

minimum nozzle length for a given purpose. A short nozzle tends to have higher. 

acceleration that leads to thinner boundary layer at the throat. However if it is too short 

the exit flow may not be steady or have thick boundary layers due to its tendency to 

separation. A good wall shape produces uniform exit flow without separation. Morel 

(1977) provided charts of one-parameter family of wall shapes for two-dimensional wind 

tunnel contractions. The shapes were based on two cubic arcs and were developed using 

inviscid flow analysis and separation criteria. The two cubic functions are: 

H-H 2 1 (x)3 
---=1-~2 - ·········xlL<X 
H 2 -H1 X L 

= (!-~)' (1- ;)' •·····x/L > X 

The curves and the parameters are shown in Figure 3.2. The exit of the contraction was 

given by the test section's inlet. The contraction ratio is usually specified due to other 

considerations such as the size of the channel upstream of the contraction. In the present 
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design the contraction ratio CR was chosen as 10. With H 1 and H 2 known, the 

parameters left for design is the nozzle length.and the shape parameter X. 

As stated in Morel (1977), since all the wall shapes are specified by a single one-

parameter X, all the wall pressure distributions and the velocity profiles in the end zones 

are quite similar for all the shapes in the family. Then it is quite enough to avoid flow 

separation by choosing the appropriate values of the two wall-pressure coefficients 

defined as 

where V is the wall velocity ( this is inviscid analysis, velocity at the wall is not zero), i 

and e refer to the point of maximum and minimum velocity respectively. For different 

purposes the two coefficients are different. Morel (1977) found that the non-uniformity 

velocity is u2 = . l 9C pe. If C pe = .05, the non-uniformity will be less than 1 %. To avoid 

separation in the exit of the nozzle, Morel suggested that C pi = .16 for laminar flow. 

Since turbulent flow is less likely to separate compared with laminar flow; the value for 

laminar is chosen for the present design. With the two coefficients known, two 

parameters could be found in a chart provided in Morel, which are F; = . 72 and Fe = .18. 

Then we have 

X =(!+ ! (FJF,)"5 r 
F'; = m-1 x-2(L/ H1r3 

m 

The equations above yield X = .83 and LI H 1 = 1.22 . This completes the contraction 

design. The flow channel and LDA system are shown schematically in Figure 3.3. 
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Figure 3.3. Schematic of apparatus and instrumentation. 
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3.2 LASER DOPPLER ANEMOMETER 

The LDA system used to measure the velocity was an Aerometrics, Inc. two

component fiber optic system. Doppler signals are processed by a Doppler Signal 

Analyzer (DSA) using Fast Fourier Transforms (FFT). A Coherent Innova 70-A 4-watt 

argon ion laser provides the four laser beams. One pair of the beams is green and another 

pair is blue, the two pairs measure two velocity components respectively. The frequency 

of one beam in each pair is shifted 40 MHz by a Bragg cell, this enables us to measure 

velocity in reversing flow regions. 

A fiber optic transceiver focuses the system's four beams at a 500 mm focal point, 

producing a probe volume that is 737 µm long and 66 µm in diameter. The measuring 

point is located at the crossing point of the four beams. When a moving particle passes 

through the measuring volume, it scatters light to all the directions. The forward 

direction, the direction of the laser beams travel, has the strongest scattering light while 

the backward direction has relatively weak light. The backward scattering light is 

collected by the transceiver lens and then transmitted to two photomultipliers through a 

fiber optic cable. The backward-scatter mode is designed so that the beam transmitting 

and scattered light collecting can be at one probe, and thus can be at one side of the test 

section. This mode does not require two sides of the test section to be transparent and is 

much easier to arrange the setup and to move the probe. The scattered light has two 

colors and the two photo~multipliers process the light respectively by its color and 

transform the light Doppler signals into analog electronic signals. Then the electronic 

signals, which carry the Doppler signals, are analyzed by the two-channel DSA and 

Doppler frequencies with respect to two velocity components are found by the FFf 
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method. The FFf method can pick up the Doppler frequencies even when the signal to 

noise ratio is as low as -5 dB. This is critical to getting the right measurement when the 

measuring point is close to a wall or in a recirculating flow region where noise could be 

very strong. 

LDA has three distinguishing features. One is that the relation between the 

velocity and the Doppler frequency is theoretically given once the system's optical 

configurations are given, regardless of the room temperature or humidity. There is no 

need of calibration. Another one is that in most cases it has nearly no direct effect on the 

flow field. The third feature is that it measures the velocity components directly and 

independently. Practically there is no effect of the velocity components in other 

directions on the measured component. This is critical when we measure velocity in the 

recirculation area where the velocity direction is hard to know a priori and may be in any 

direction. However LDA requires transparent wall and media at the measuring area and it 

needs seeding when the measured medium is clear. 

The flow medium is air and seeded with .966 µm or .505 µm diameter 

polystyrene latex particles in an approximate 400 ppm solution in water by a TSI model 

9306 atomizer. The density of the latex particles is 1.05 g I cm 3 , which is very close to 

the density of water so that little sedimentation may happen in the atomizer. The particle 

solution is introduced to the entrance flow upstream of the contraction and heated slightly 

to remove or significantly reduce the sizes of the water droplets. The setup for seeding is 

shown as part of Figure 3.3. If the density of the seeded particles is the same as the flow 

medium, the particles can follow the flow motion precisely. However the current seeded 

particles have far larger density than the flow medium. Then two issues need to be 
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addressed. 

First, can the particles follow the airflow? Since the step flow is not steady state 

and large fluctuations exist, we need to see how fast the particles can respond to the 

ambient flow changes. The standard way is to examine the step response time constant, 

which is, for very small particles (Re<<l) and particle density much larger than the flow 

medium: 

where p Pis the particle density, d Pis the particle diameter and µ 1 is the fluid viscosity. 

The frequency response, indicating how fast the particles can follow the flow motion, is: 

f=-l-. 
2m1 

For the current particles, d P = .996µm, t 1 = 3µs, f = 52kHz. For most incompressible 

turbulent flows the cut off frequency is less than 10 kHz. This implies that the particles 

can follow even the fastest changes in the flow motions. A second issue about the seeded 

particles is the sedimentation of the particles. The maximum falling velocity is referred to 

as the settling velocity, which is computed by the equilibrium of the particle weight, 

buoyant force and the drag for a sphere with very slow motions: 

(3.1) 

The particles used here are spheres. Since the particles are very small and the velocity is 

likely small too, the Reynolds number is very small and then the drag coefficient C v can 

be determined by the equation (Schlichting 1975): 

45 



24 3 . Vsd 
C =-(l+-R) for R=--p ~5 

D R 16 ' v 
(3.2) 

Substituting (3.2) into (3.1) yields: 

Vs =2.95xl0-5 m/s, R=l.96xl0-6 

for 1 µm particles. The settling velocity is negligible since the mean velocity is about .4 

mis in the test section for the lowest Reynolds number. For .5 µm particles the settling 

velocity will be even smaller according to the equations (3.1) and (3.2). Their ability to 

follow the flow motion will be better. Then we can conclude that the particles introduced 

into the flow can follow the flow motion very well and their sedimentation has no 

practical effects on the flow field and the LDA measurements. 

The measuring position is adjusted by moving the transceiver probe. The fiber 

optic cable and the backward-scatter mode make the moving much easier. The 

transceiver probe is mounted on a three-direction traversing table with motion provided 

by stepping motors under computer control. The whole setup is shown in Fig. 3.3. Since 

the flow inside the housing is not uniform and a large portion is reversing flow, the 

seeding is not uniformly distributed either. The wall that the laser beams pass through 

may have some moisture or fine dust on some spots so that the wall conditions may vary 

a bit at different locations. When measuring points close to the wall, the background 

light, mainly reflecting from the wall, makes the signal to noise ratio of the Doppler 

signal much smaller compared with the core region. For all the reasons above the signal 

processing parameters of the LDA need to be adjusted as the measuring point was moved 

in the flow field. Therefore the data rates and validation rates were varied in different 

regions of the flow field. In order to obtain consistent velocity measurement across the 
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flow field, all measurement results presented here were obtained from the average of 500 

validated samples. As tested by Newman (1995), the LDA system can yield an accuracy 

of 1 %, which is adequate for the present research. No bias corrections were applied to the 

measurements. As stated by Adams and Eaton ( 1988) the velocity bias of LDA 

measurements is negligible when the mean velocity is very small. In this thesis the most 

important measurements were performed around the separation line of the step flow, 

where the mean velocity is close to zero. For the velocity profiles measured upstream of 

the filter, the bias would have similar effects on the profiles with and without the filter. 

Therefore the velocity bias is not a concern for this thesis. At low Reynolds number when 

the velocity is very small, the sampling rates of the LDA can be as high as 200 valid data 

per second, which implies the total sampling time would be as small as 2.5 second for 

500 valid data. That time appears not sufficient to compute an accurate time average for 

the flow with the step height of .025 meter and the average velocity across the channel of 

A mis. Therefore the data rates were voluntarily reduced by lower the laser power or the 

high voltage of the photo-multipliers so that the total time to collect 500 validated 

samples would incorporate some low frequency fluctuations. In most cases the total 

sampling time was controlled between 20 to 60 seconds. 
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3.3 ACTUAL AUTOMOTIVE HOUSING 

A model to investigate the flow field upstream of the filter inside a real 

automotive air filter housing was built based on an actual air-filter housing of a Chrysler 

minivan. The model has the size of the real one. The part downstream of the filter and the 

inlet pipe were the original parts of the real housing and the upstream part is made of 

transparent plastic. Its geometry is schematically shown in Figure 1.1. To measure the 

velocity normal to the filter surface, the model has to be mounted in a way that the optical 

axis of LDA transceiver is in line with the plane of the filter. Since the housing is not 

rectangular, its side walls are not normal to the filter plane, and consequently the four 

LDA beams may not be able to focus exactly on the same point since the refraction of the 

tilted wall is not symmetrical. The thickness of the wall and the angles between the wall 

and the optical axis of the LDA transceiver are the two main factors in this matter. 

However the angles are given since the real housing provides the geometry of the model. 

Therefore we need to determine the wall thickness to make the distance between two 

focused points close enough to be considered as one point. 

The LDV used in this study is a four-beam system to measure two velocity 

components. A typical 4-beam system is as shown in Figure 3.4. 

+ 

~ End View 
I of 4-beam 

Figure 3.4. Set up of the four-beams of a two dimensional LDA 
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The model shown in Figure· 1.1 has tilted walls at all sides, so the wall can nQt be 

normal to the optical axis, which is horizontal given by the way the LDA transceiver is 

mounted for measuring the vertical velocity component. Since the four beams come into 

the transparent wall from different angles, the focus point of the horizontally arranged 

beams is not the same as the focus point of the vertically arranged beams. This means 

that the vertical velocity component, measured at the focus point of the two vertical 

beams, is not precisely at the same point as the horizontal velocity component is 

measured. 

The shift distance between the two focus points is a function of the wall tilt angle 

a, the half angle between two beams e and the thickness of the wall, given the refraction 

index of the wall. The present e was about 4.5 degrees and a was about 35 degrees. 

Refraction index n for the transparent wall was 1.5. The wall was 2.5mm (0.1 inch) thick. 

Thus the two focused points were 1.2 mm apart. For a filter with upwind surface of 114 

mm by 170 mm the difference in measuring points is reasonably tolerable. The error is 

not critical since u and v are analyzed separately. Reynolds stress was not measured. The 

derivation of the calculation can be found in Appendix G 
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CHAPTER IV 

FLOW FIELD OF AN ACTUAL AUTOMOTIVE AIR FILTER HOUSING 

Two components of the velocity field in the model automotive air filter housing, 

shown in Figure 1.1, are measured by the LDA techniques. The two velocity components 

are u and w, which are parallel and perpendicular to the surface of the filter respectively. 

Flow visualization was also conducted to observe the flow patterns at different sections. 

A conventional· humidifier was used to generate water droplets and a laser sheet light was 

used to illuminate the section to observe. Strongly separated flows are found at a large 

portion of the filtration area, by flow visualization and LDA measurements. 

Air 1lter 

(a) The front view. (b) The top view. 

Figure 4.1. Schematic diagram of the coordinates in the model air filter housing. ( a) The 
vertical cross section (x-z plane). (b) The top view of measured area, the x-y plane. 

The coordinates and the measured area are depicted in Figure 4.1. There is a 

section about 62.5 mm long in the x direction behind the inlet tube, upstream of the exit 

of the inlet pipe. That section is not measured. The flow domain is symmetric with 
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respect to the central x and z plane and preliminary tests showed that the flow field is also 

symmetric.-The measurements reported here were conducted at half of the plane 13 mm 

above the surface of the air filter starting from the inlet, as shown in Figure 4.1 (b ). The 

measurement grid was spaced at increments 6.3mm in the x and y directions. The mean 

velocity distributions of u and ware shown in Figure4.2(a) and (b). The vertical velocity 

w, which is normal to the surface ofthe air filter, decreases significantly along the 

stream-wise (axial) direction and decreases even more in the span-wise (y) direction. A 

large portion of the area is covered by small and negative velocity. Negative velocity 

· implies that the flow is going away from the filter. Since the filtration efficiency of a 

filter for small particles can decrease rapidly when the filtration velocity, the velocity that 

is normal to the surface of the filter, is small, the velocity distributions presented are not 

considered good for filtration. Another observation can be made that the axial velocity is 

much higher, about 2 times higher, and more uniform than the vertical velocity. However 

the axial velocity is parallel to the air filter surface, it does not contribute directly to the 

filtration. 

It can be seen from Figure 4.2 thatthe velocities u and w are large in the center 

and decrease nearly monotonically as y increases. A separation line, where the mean 

velocity is zero, is the dividing streamline between positive mean velocity area and the 

negative mean velocity area. The separation line is determined by finding the location 

where the velocity is zero. It is interpolated between two points of velocities with 

opposite signs, assuming that the velocity is linearly distributed between two adjacent 

measured points. In Figure 4.3, the solid line is where the axial velocity is zero and the 

dotted line is where the vertical velocity is zero. The x starts from 62.5 mm. The area 
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where x is less than 62.5 mm is behind the inlet and visualization showed the flow there 

is recirculating. To take all the above into consideration, we may estimate that separated 

flow takes about 40% of the filtration area 12.5 mm above the air filter surface. Since in 

the separation zone, even in the vicinity of the separation line,' fluctuating velocities are 

quite large, it is still not clear how the filtration is working under these conditions. 

However it is understood that wheri the mean velocity increases at the small velocity 

range the filtration efficiency can go up and when the velocity exceeds a given value, the 

filtration efficiency will saturate and then even go down as the result of poor adhesion, 

for certain particle sizes. Therefore when part of the flow domain is of higher velocity at 

the expense of the other part having very low velocity, it may not be good for the general 

filtration. When the flowrate is given, if part of the cross section is in a reversing region 

where the velocity is negative, the velocity at the other area will be much higher than the 

mean velocity. While the higher velocity flow is not necessarily improving the filtration 

there, the reversing flow area is certainly not considered good for filtration. In most cases 

the uniform velocity distribution is preferred. 

When the average velocity is zero while the fluctuation RMS (root mean square) 

is large as in a separation region, there is still some filtration going on. If the mean 

velocity is used to assess the filtration efficiency, there will be a problem since very small 

velocity with some filtration will have very big particle concentration at the area and 

yield confusing efficiency results. In a separated flow region, different methods should be 

used to evaluate the efficiency-velocity relation. It is important to identify the filtration 

regions where flow is separated. 
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Figure 4.2. Velocity distributions 12.5 mm above the filter surface. (a) Axial velocity. (b) 
Vertical velocity. 
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Figure 4.3. Separation lines 12.5 mm above the filter of the air-filter housing model. 

From the results above, it should be noted that the flow inside an actual 

automotive air-filter housing has two dominant features. One is that the flow is very 

separated mostly because of a sudden expansion at the inlet, which is similar to a 

backward facing step flow aerodynamically and geometrically. The second is that the 

flow is not impinging on the filter surface normally, the axial velocity (parallel to the 

filter surface) is relatively larger. The flow and the geometry of a real air filter housing 

are too complicated to simulate numerically. It is also difficult to study the flow 

experimentally since so much is happening at the same time and so little is known about 

the fundamental properties of the flow. It would cost too much to build experimental 

setups to model a real housing that can incorporate an air filter at different positions with 

different geometry surroundings. A step flow could be considered to simulate the two 

most important features of the actual housing. The step flow has a separated flow region. 
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Inside the circulation zone the main flow is not parallel to the side walls and therefore is 

not normal to the filter surface that is mounted normal to the side wall. 

The flow with an air filter present is very interesting and different from the pure 

fluid flows. Little is known about the interaction between the air filter and separated 

flows. It is very important for air filter and filter housing designs since it is very hard to 

avoid separated flows in engineering applications. A backward facing step flow is a good 

prototype to study the interaction of separated flows and air filters. It has the most 

important features of the flow of a real housing and it is relatively easy for numerical and 

experimental study. A filter can be placed at different locations downstream of the step, 

inside or outside of the recirculating region behind the step, so that its effects on the 

separation flow can be studied under different flow conditions. A two dimensional 

backward facing step flow was therefore studied both numerically and experimentally 

and the results will be presented in the later chapters. 
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CHAPTERV 

CFD RESULTS OF TWO-DIMENSIONAL STEP FLOWS WITH AND 

WITHOUT AIR FILTER 

5.1 NUMERICAL RESULTS OF STEP FLOW FOR HOMOGENEOUS PURE FLUIDS 

Study of backward facing step flow preceding an air filter can help us understand 

better the flow inside a real automotive air filter housing. Numerical methods have the 

advantage that the parameters can be changed easily compared with experiments. The 

numerical methods described in section 2.4 will be applied to a two dimensional step 

flow. A FORTRAN program was developed to perform the computations. First of all the 

code is used to compute the step flow without filter at low Reynolds number. 

Comparisons will be made with existing experimental and numerical results to validate 

the code. For this purpose, the geometry of the flow domain is exactly the same as the 

experimental set-up of Armaly et al. (1983) and the CFD parameters of Kim and Moin 

(1985). 

For laminar flows the reattachment length depends directly on Reynolds number 

and the expansion ratio. This relation can be used to check the numerical methodology. 

At low Reynolds numbers, the reattachment of the step flow is largely controlled by the 

momentum transfer through viscous diffusion, especially at the near sidewall region or 

the strong shear layer near the step edge. Excessive numerical smoothing, such as extra 

numerical diffusion, may incorrectly enhance the viscous effects and will not predict the 
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right reattachment length {Kim and Moin, 1985). In this section the results are reported 

for low Reynolds number laminar flow. The geometry and boundary conditions are 

shown in Figure 1.2. The inlet velocity profile was given as parabolic, as the fully 

developed channel flow profile from Annaly et al. (1983) in the laminar flow regime. 

Outflow boundary was located 30 step heights away from the step and the fully 

developed condition was prescribed, with the velocity gradients in the axial direction zero 

in the cross section. These inlet and outlet conditions are the same as used by Kim and 

Moin (1985). In the present computation, convergence is considered to be reached when 

the velocity u and pressure Pare constant within .01 % for a time period of one non-

dimensional time unit, namely ~ . The computation procedure starts from initial 
2Umax 

conditions of zero velocity and uniform pressure fields to compute the lowest Reynolds 

number flow reported here. The inlet velocity profile is normalized parabolic, with the 

maximum velocity being one. This initial condition is an aerodynamically true condition, 

the case that a constant flowrate flow is suddenly introduced into a still flow domain. 

Therefore the flow oscillates violently at the beginning and then converges to a steady 

state flow. After the first Reynolds number flow converges, the known flow field is used 

as the initial condition for the next higher Reynolds number flow; and so forth. The inlet 

profiles are always the same since it is normalized; it is just the Reynolds number that 

needs to be changed every time. Every time that the Reynolds number is increased there 

are significant fluctuations when the flow acts like a higher flow rate is introduced to an 

existing flow of lower flow rate. The velocity and pressure fluctuates more than 100% at 

the very beginning. It takes many time steps to get a stable flow. The computing accuracy 

is also examined for all cases by applying the continuity condition. For each and every 
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mesh cell, the continuity equation is applied. That is if !ill= au+ ov :::; 0(~.2x + /y,.2y). ax 8y 

For all the cases presented here, the accuracy of all the results is 

!ill:::; .05 when /).x = .3 and !).y = .02. 

All the variables are non-dimensional, as the non-dimensional equation in Chapter 2. The 

flux at each and every cross section for the entire flow field is calculated by adding up the 

axial velocities in all the vertical grid locations at the section. The difference between the 

maximum flux and the minimum flux is less than .1 %, which indicates the computation is 

also accurate for the overall mean flow field. There are two reasons for applying 

continuity conditions to check the numerical accuracy. First one is that it is easy to 

implement and it is generally applicable. The second is that in the present numerical 

method, the continuity equation is not explicitly solved. Continuity is implicitly applied 

in the process of the numerical procedure. It can demonstrate whether the entire 

computation procedure is working properly or not by checking the continuity at each and 

every grid cell. 

100 by 101 grid points were used in all the results reported for laminar flows with 

and without filter, with !).x = .3 and !).y = .02. The 101 grid points in the vertical direction 

were chosen to match exactly the parameters of Armaly's experimental setup, in which 

the channel is 10.1 mm wide and the step is 4.9 mm height. 101 ensures the step starts at 

a grid point. The mesh size and the outlet location were chosen based on the CFO model 

of Kim and Moin (1985). The same results were obtained with finer and coarser mesh 

sizes and farther.downstream outlet locations at Re=600, which can verify that the 

computed results are independent of difference scheme at present conditions. The 
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Reynolds number of 600 was chosen because it is the highest Reynolds number that 

currently can yield good-results for the two-dimensional laminar flow regime. The higher 

Reynolds number flow needs better resolution and bigger computing domain since the 

stronger shear and the longer reattachment length at the present range of Reynolds 

numbers. For the same computed domain of 30h by 2h, 41x41, 81x81, lOlxlOl, 

126x126 and 202x202 grid points were used to compute the flow field at Re= 600. As 

shown in Figure 5 .1, the two cases of 101x101, 126x 126 and 202x202 yielded about the 

same results while the other two cases are not good enough. 
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Figure 5 .1. The effects of the grid size on the computed flow fields. 

Then with the same mesh size as lOlxlOl, the outlet was located at 36h by 

employing 121 grids and at 45h by employing 151grids in the x-direction. The locations 
I 

of the two dominant vortices were found at Xl = 1 l.13S, X4= 9.16S, and XS= 16.37S 

for 36h and Xl = 11.16S, X4= 9.18S, and XS= 16.37S for 45h. With the outlet at 45h, 

they were 11.16S, 9.18S and 16.37S and with the outlet at 30h, they were 11.19, 9.24 and 
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16.37 respectively. We can see clearly that 30h is adequate for the current purposes. The 

symbols of the vortex locations were described in Figure 1.2 and will be explained more 

in the later text. 

To further examine the computing algorithm, the velocity profiles of the flow 

fields at Reynolds numbers of 100 and 400 are shown in Figure 5.2. Figure 5.2 (a) 

presents the velocity profiles measured by Armaly el al. (1983) at Reynolds numbers of 

100 and 400, (b) presents the current computed profiles for the same Reynolds numbers. 

The locations of the computed profiles are not exactly the same as of the measured ones, 

however they are very close. If we overlap the two plots of the same Reynolds number, 

we can see that the computed and measured profiles at both. Reynolds numbers match 

reasonably well. There are some differences, however the agreement is satisfactory for 

the present purpose. 
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Figure 5.2. Comparison of computed flow fields with the flow fields measured by 
Armaly et al. (1983) at Reynolds numbers of 100 and 389. 
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Figure 5.3 depicts the dependence of the reattachment length on Reynolds number 

at 800 and less. Xl is the reattachment length, measured from the step to the reattachment 

location. It is found by locating the zero axial velocity at the first grid point away from 

the step side wall. Up to Reynolds number 600, the results are in very good agreement 

with the experimental results of Armaly et al. However the present results are a bit 

different from the computations of Kim and Moin. Their results are close to the 

experimental results at lower Reynolds number. The present results yield a better 

agreement at Reynolds numbers from 400 to 600. The two computational curves are 

almost parallel while the present reattachment length is about .5 step height farther than 

Kim and Moin's. It is not clear what caused the discrepancy between the present results 

and theirs. As pointed out by Armaly et al., the experimental step flow exhibits 

significant three-dimensionality around Reynolds numbers between 600 to 6600. Most 

likely the three-dimensionality caused the deviation of the numerical results from the 

experiments at Reynolds number above 600, since the present CFD model is two

dimensional. 

Armaly et al. (1983) also reported the existence of a secondary separation region 

on the non-step wall in the range of Re=400 to 6600, mostly when the flow is not purely 

two-dimensional. As shown in Figure 1.2, the location of the secondary vortex is 

measured by X4 and X5, which are respectively the locations of the upstream edge and 

the downstream edge of the non-step side vortex. In the computations of Armaly et al. 

and Kim and Moin ( 1985) there is no quantitative comparison of the locations of the non

step side vortex with experiments. It was reported by Kim and Moin that the vortex exists 

at Re=lOOO. Figure 5.2 shows the computed locations of the vortex compared with 
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Armaly' s experimental results for Reynolds number 450 to 800. The present CFD results 

are in fairly good agreement with the experiment. This indicates that the present CFD 

model and codes are working properly for quantitative details. 

The secondary vortex is very delicate, with very small negative velocities. Its 

reversing area is very thin in the vertical direction. The contours of the computed flow 

field, shown in Fig 5.5, clearly demonstrate the existence of the secondary vortex on the 

non-step wall at Reynolds numbers 450 and 600. At low Reynolds number, such as 

Re=300, the curvature of the contour at the top wall at the vicinity of x=7h is not big 

enough to cause recirculation at the area. AtRe=450, the flow is curved further and the 

circulation starts to form at the upper side, though it is a very small area. From Figure 5.4 

we can see that the secondary vortex forms at Reynolds number about 400. This is very 

close to the experimental results of Armaly et al. (1983) in which the vortex begins to 

appear at Re=400. As the Reynolds number increases, the vortex at the non-step side 

stretches longer in the streamwise direction and the center of the vortex moves further 

downstream due to the increase of the inlet velocity. At low Reynolds number the 

contour lines are very straight far downstream, which indicates the flow is smooth there. 

However at 600, visible oscillation appears. At Re=800, the computed flow is no longer 

stable. It is not clear what caused the instability. This Reynolds number is in the 

transitional flow regime, so the flow is no longer stable. The instability also may be the 

result of numerical instability. Additionally at this Reynolds number the flow is no longer 

two dimensional, hence the two dimensional model used is no longer appropriate. 
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At Reynolds numbers 600 and less, the velocity u and pressure converged to the 

required criteria. However when Reynolds numbers are higher than 600, the computation 

can not converge to the specified accuracy. The velocity and pressure fluctuate in a range 

around 1 %. The velocities and pressure are changing significantly. It is not very clear 

what causes the instability. Figure 5.5 also depicts the shape of the primary vortex 

downstream of the step. It is noted that the shapes are similar for different Reynolds 

number. At the inlet where x = 0, the separation line starts at the same vertical location. 

The separation line is defined. here as the non-wall locations with zero axial velocities. As 

Reynolds number increases, the vortex, with a domain bounded by the zero velocity 

contour lines, stretches downstream, similarly as the non-step side vortex. That results in 

less effective passage area for the flow and higher velocity gradient in the core region 

corresponding to the location of the vortex. 

The vector field of velocity is shown in Figure 5.6, with the positive axial velocity 

u directed to the right and the vertical velocity v directed upward. The lines start from 

zero, their length represents the absolute value of the velocity vector and from zero to the 

line end indicates the direction of the flow. At the entrance the velocity profile is 

parabolic for horizontal velocity u and zero vertical velocity. Thus the lines there are 

horizontally parallel. Then due to the existence of the step, the main flow turns to the 

bottom side and negative velocities are found behind in the step. Far downstream the 

main flow recovers from the recirculation and flow becomes horizontally parallel again 

as at the inlet, only here the profiles are flatter due to the channel being wider. In the 

process, the main flow turns from going downward back to going straight to the right, a 

low velocity area forms at the top non-step side. The low velocity area at about x=lO is a 
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recirculation flow zone, which is more clearly demonstrated in Figur~ 5.3 (Re=450). 
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Figure 5.6. Flow field for u-v vector at Re=450. 
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5.2 LAMINAR FLOW WITH POROUS MEDIUM PRESENT 

In the previous section it is verified that the present CFD mode and the codes for 

two-dimensional step flow provide quantitatively reliable results for a certain range of 

Reynolds number. At this section the CFD model is used to study the effects of the filter 

on these step flows. All the geometric and CFD parameters are kept the same as in the 

previous pure fluid computations except a section of air-filter is placed in the flow 

domain. The filter is placed at three different locations with respect to the step and the 

circulation zone; far downstream, close to the reattachment location and deep inside the 

circulation zone. Pressure and velocity distributions will be presented to demonstrate the 

effects of the air-filter's presence on the whole flow field and the circulation properties. 

5.2.1 Parameters of the Darcy's Law 

In the present CFD model filters are considered as homogeneous porous media 

since most filtration theories and models are based on statistically homogeneous filtering 

media. A flat sheet of filtering media is very close to homogeneity. However most filters 

used in industrial applications are pleated from flat sheets. Compared with a flat sheet, a 

pleated filter is more compact in space using and allows for more effective filtration area 

for a given cross section. It is stated in Liu ( 1995) that more filtering area allows more 

particles to be captured in a fixed volume of space and so reduces the pressure drop 

across the filter due to the decrease of the effective filtration velocity. Designs of a 

pleated filter seek minimum pressure drop at given geometry and filter medium, which 

implies in general a pleated filter causes less pressure drop and captures more particles 

than a flat sheet of filter for the same filtration area and velocity. 
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In the present experiment (results will be presented later in Chapter VI}, a pleated 

filter ( a production model: Purolator Products, A 13192) was used and rearranged for the 

current geometry. For the micro-scale flow a pleated filter is very different from a 

homogeneous one. However for the macro-scale the effect of the filter is to cause more 

pressure drop and the pressure drop is largely proportional to the bulk upwind velocity. It 

should be noted that in the pure fluid, viscous resistance is largely proportional to the 

velocity gradients. For a CFD model it is important to choose the right parameters for the 

porous medium to produce the right pressure drop in the flow. A pleated filter produces 

less pressure drop than a single sheet of the media of which it is made with the same 

cross section. This is because the effective upwind surf ace for the pleated filter is much 

larger than for the flat sheet; which has an effective velocity equal to the velocity in the 

channel. For instance the area of the filter sheet, from which the pleated filter is 

fabricated, is about 15 times as much as the cross section area. Then the effective velocity 

for the pleated filter is about one fifteenth of the mean velocity of the channel in which 

the filter is placed. In the extended Darcy's law there is a second order term of velocity, 

the pressure drop could decrease more than 15 times when velocity is large. Due to the 

complexity of the pleated filter, most theoretical and numerical researches consider the 

pleated filters as homogeneous media, as in the present CFD model. Tebbutt(1995) 

computed the flow field inside a pleated filter, however the results are not yet ready for 

applications. 

Tebbutt (1995) found the two constants in the extended Darcy's equation by 

setting up a pipe flow and measuring the average velocity and the pressure drop over a 
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single sheet of the filter media, using the media from Purolator A 13192 filter. In 

Tebbutt's experiment the extended Darcy's equation was: 

where 

t = media thickness 

M' =µtu+ bpt u2 
K. 2 

U = average velocity on the cross section 

P=pressure 

K = media permeability 

b = inertial factor. 

It should be noted that the inertial factor here is different from the factor B in equation in 

section 2.4.2. However the basic relation between pressure and the velocity is the same, 

so we have b = B/K. Tebbutt measured the pressure drop over the velocity range of O to 

15 mis and used the least squares method to derive the two constants. The maximum 

pressure drop at velocity of 15 mis is about 1 meter of water, which is about 10,000 Pa. 

These two constants are independent of the thickness and Tebbutt ( 1995) verified that by 

applying the procedure to two layers of filter sheets, which yielded the same results. The 

values from Tebbutt (1995) are 

K = 7.8e-1 lm 2 andb = 6.8e+4 m-1 • 

The thickness of the filter sheet used in Tebbutt' s experiment was one millimeter, 

which is very small for the present CFD model to incorporate into the grids of the flow 

domain. Present CPD configurations of the flow domain are based on the experimental 

setup of Armaly (1983), in which the length scale to normalize the equations is 5.05 mm, 

the half height of the channel h. In the present computation the grid size in the x-
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direction, which is the direction to measure the thickness of the filter, is .3h. Since the 

flow would undergo significant changes at the interfaces between the filter and the pure 

fluid, multiple grids are needed to simulate the fluid flow inside the filter. For laminar 

flows the porous medium occupies 10 grids in the x direction, which is 3h and equal to 

about 15 mm if the experimental parameters of Annaly et al. are used. If the same filter 

media in Tebbutt' s experiment is used, it will need 15 layers of the filter sheets and the 

pressure drop will be practically too big. In a real engineering application, it is more 

likely that a pleated filter is used. Therefore we can assume that a pleated filter is used, 

which is made of the same media used in Tebbutt's experiments and is 15 times as thick 

as a single sheet. This would be very close to geometrical parameters of the real Purolator 

A 13192 filter. A pleated filter. will cause less pressure drop, however it is very difficult to 

estimate the pressure drop of a pleated filter based on the properties of the single sheet. It 

is the pressure drop in the CFD that is the most important variable that should be matched 

with the experimental results. Therefore modifications were made to the two constants to 

keep the pressure drop the same for a filter medium that is 15 time as thick as in 

Tebbutt's experiment. That is 

Ke= Kxl5andbe =b/15 

In the computation the two constants were normalized by the length scale as in the 

experimentof Armaly et al. and converted to be compatible with the equations in section 

2.4.2. 

5.2.2 Porous Medium Present Far Downstream: 

For this case, the filter is placed at 20.55h downstream of the step, which is the 

location of the left side (upstream) of the filter, with h the half height of the channel. The 
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filter is 3h thick. In the Reynolds number range that we are interested in here, the non

step side vortex reaches about· 19h at the most and the reattachment length is less than 

14h. Therefore the 20.55h is a proper position to be considered far downstream and the 

filter does not directly disturb the vortices in the flows. The right side, downstream, of the 

filter is at 23.55h, which leaves adequate room for the flow downstream to recover to the 

outlet of 30h. From the computed flow fields that will be shown later, it can be seen that 

the flow is smooth and parallel at the outlet, which indicates that the fully developed 

outlet condition applies. Additionally due to the resistance of the filters, the downstream 

conditions have less impact on the flow upstream of the filter. The thickness of the filter 

is 3h, which is about 15mm if the parameters of Armaly et al. (1983) are used. The 

reasons to choose 3h are that the actual thickness would be close to a real air-filter's 

thickness for a regular experimental setup and also there is enough room for the flow to 

evolve inside the porous medium. 

First of all we will see how the filter affects the size and location of the vortices 

upstream of the filter. The definitions are the same as in previous sections. Xl is the 

reattachment length; X4 and X5 are the upstream and downstream edges of the secondary 

vortex respectively. The reattachment length and the location of the non-step side vortex 

are shown in Figure 5.7. The presence of the filter has little effect on the reattachment 

length for the whole Reynolds number range and has no effect on the non-step side 

vortex up to Reynolds number 600. 
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Figure 5.7. Comparison of flows with and without the filter, the upstream edge of the 
filter is at 20.55h. (a) Reattachment length. (b) Locations of the secondary vortex. 
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The pressure upstream of the filter certainly increases due to the resistance of the 

filter, which changes the velocity field in its vicinity. However Figure5.7indicates that 

the velocity field away from the filter is not affected. This is like a case in which the 

pressure field is increased uniformly far upstream of the filter. From the basic equations 

we know that if the pressure gradients stay th~ same, the velocity field in that area will 

not be altered by the uniform variation of the pressure field. At Re = 700 and 800, the 

downstream edges of the non-step side vortices are stretched further, very significant 

changes compared with the flow without the filter, as shown in Figure 5.7(b). Any 

pressure field changes may affect the flow in its_ upstream vicinity. Nevertheless the 

computation does not converge very well at these two Reynolds numbers; further 

research is needed. 

From Figure 5. 7, we may conclude that when the filter is placed far downstream, 

the filter does not affect the flow recirculation upstream. This can be confirmed by 

looking at the flow field of Re=600, shown in Figure 5.8. The velocity field is 

significantly altered at the vicinity of the filter, however the velocity field is still the same 

as the non-filter flow field (shown in Figure 5.5) behind the step up to Sh upstream of the 

filter. 

It is also noted that the flow is considerably straightened by the presence of the 

filter at Reynolds number 600, not only downstream of the filter, but also at its vicinity 

upstream. The same effect is also found in Reynolds numbers of 800. The viscous effects 

are proportional to first order of velocity and the inertial force is proportional to the 

square of the velocity, which means inertial effect is less important at low Reynolds 

numbers. Inside the filter, there is an extra viscous term that is proportional to the 
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velocity, not like the conventional viscous terms, which are proportional to the 

derivatives of velocity. This indicates that the filter can suppress the velocity fluctuations 

due to the resistance that is proportional to the velocity. Since there is no outside driving 

pressure gradient in the vertical direction, the vertical velocity can be reduced 

considerably, which implies smooth and stable flow because the contours tend to be 

straight. 
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Figure 5.8. Contour of velocity u with the filter's leading edge at 20.55h, Re=600. 

By the u-v vector field with the filter at 20.55h, shown in Figure 5.9, it is more 

clearly demonstrated how the filter affects the velocity profiles around the filter. If we 

compare Figure 5.9 with Figure 5.5, the u-contolir of the flow without filter at the same 

. Reynolds number 450, it can be seen the velocity distributions are altered significantly by 

the introduction of the filter. Upstream of the filter and downstream of the recirculation 

zone, the flow is horizontally parallel at first, the velocity profile~ tend to be parabolic . 

. The velocity in the center is much higher than the velocity close to the wall and the 

velocity changes gradually from the zero at the wall to its maximum at the center. When 
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it is approaching the filter, the vertical velocity v becomes considerably larger. At the 

upper half of the channel the velocity v is positive (upward) while at the lower half v is 

negative (downward), which indicates the fluid flows to the tw.o sides symmetrically. The 

flow is redistributed toward uniform flow because of the resistance of the filter. Once 

inside the filter, velocity is horizontally parallel again, which indicates no visible vertical 

movements. The flow is almost uniform in most of the channel. At the wall region inside 

the filter, the velocity gradient is very large due to the enhanced viscous effect of the 

filter. Downstream of the filter the velocity profiles have a defect in the center at first, 

and then the flow gradually evolves to fully developed channel flow. This will be 

discussed later. 
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Figure 5.9. The u-v vector field of flow with the filter's leading edge at 20.55h, Re=450. 

The value of the permeability, 8 x 1 o-s, used in the present computation is the 

value derived from the experimental data of Tebbutt (1995). To look at how the 

permeability value influences the flow field, three different values were chosen for the 
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filter at x=20.55h and the flow fields are shown in Figure 5 .10. These are the u velocity 

contour fields at the same Reynolds number with the permeability varied from 8 x 10-5 to 

8 x 10-3 • The smaller the permeability; the higher the resistance of the filter; First of all it 

can be seen from the u-contours that the resistance of the filter has little effect on the flow 

far upstream. This agrees with the observation of the reattachment length and the 

locations of the non-step side vortex when the filter is far downstream. However the flow 

· inside the filter and downstream are different due to the existence of the filter and the 

values of the permeability. Immediately upstream of the filter the u-contour becomes 

flatter as the permeability decreases, which indicates the flow decelerates more in the 

center. Downstream of the filter the velocity profiles appear to have defects in the center, 

consistent with Figure 5.9. It certainly takes longer for the flow with higher resistance to 

recover at the outlet to the parabolic profiles. The choice of the permeability has some 

influence on the flow field in the immediate vicinity of the filter; nonetheless it does not 

have much effect on the flow patterns and the flow field far upstream of the filter. 
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5.2.3 Filter Deep inside the Non-Filter Flow Separation Zone 

When the filter is far downstream of the step, the results presented in the previous 

section show that it does not have very much impact on the flow upstream. However 

when the filter is placed inside the circulation zone, the flow field is altered significantly. 

As shown in Figure 5.11, (a) is the contour field of the velocity u and (b) is the contour 

field of the pressure. The Reynolds number is 450. The filter is placed between 5.85 to 

8.85 half channel heights from the step. Downstream of the filter, velocity distributions 

become broader and the flow becomes parallel, compared with the flow field depicted in 

Figure 5.9, where the filter is further downstream and the Reynolds number is the same. 

This agrees with the results in the previous section that show that the filter makes the 

flow smoother and the velocity profiles broader. Since the filter is close to the step and 

there is no reversing flow downstream of the filter, the flow clearly has more room to 

recover, which can explain why the flow is smoother at the outlet. It is blank insjde the 

filter of Figure 5.11 (from 7 to 9h), the same as in Figure 5.10, which indicates that the 

velocity profiles are uniform in most part of the channel inside the filter. 

At Re=450, the reattachment length is about 9.5h and the secondary vortex is 

located around 10h when the filter is not present. When the filter is placed at 5.85h the 

two circulation flows at both sides of the channel are pushed upstream of the filter. From 

the previous section we already know that the filter forces the flow to redistribute with 

the velocity profiles becoming broader in the vertical direction upstream of the filter. 

That implies the large velocity in the center decreases and the small velocity close to the 

wall increases. When the flow accelerates it is less likely to separate from the wall, so the 

· circulation zone stops upstream of the filter where the flow is accelerating. 
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(b) Pressure contour over the filter, filter at 5.85-8.85h, Re=450. 

Figure 5.11. Flow field with filter close to the step at 5.85h, Re=450. 

When the filter is placed far downstream, it does not have much impact on the 

flow upstream. The difference is that the velocity profiles far downstream are flatter thatn 

the profiles behind the step, where the primary vortex exists. With the existence of the 

vortex behind the step, nearly one quarter of the channel width is occupied by reversing 

flow; velocity varies rapidly cross the channel. The non-filter flow is strongly separated 

at the location of the filter. Therefore the flow redistribution when the filter is placed 

close to the step causes much more change in the velocity distributions than the case with 
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the filter placed far downstream. 

It should be noted that when the filter is at 5.85h, the secondary vortex at the non

step side does not disappear, although it is moved upstream and its shape has changed 

considerably. It may be more adequate to say the conventional secondary vortex is 

eliminated by the filter and a new vortex is produced at the non-step side upstream of the 

filter. It is understood that the conventional vortex disappears due to the flow 

accelerations. The formation of the new vortex may be caused by the fact that the filter 

forces the contour line curve farther away from the wall upstream of the filter at the upper 

boundary. Comparing Figures 5.8 and.5.9, it can be seen clearly that the contour lines 

upstream of the filter incline to the lower boundary, much more in Figure 5 .11 where the 

new secondary vortex is formed than the same location in Figure 5.10. Because the 

reversing area at the step side around x=5h is reduced dramatically, the direction of the 

main flow is much more inclined to the lower boundary. 

The pressure contour lines in Figure 5.11 demonstrate clearly that the pressure is 

higher in the center than in the wall region upstream of the filter, which implies vertical 

fluid flow. The pressure gradient in the x direction is large and negative at the wall region 

upstream of the filter, which indicates flow accelerations at the areas. 

It is more clear to look at the pressure distributions upstream and inside the filter, 

as in Figure 5.12, where Y/h = 0 is the upper non-step side wall. At x=5.55h, which is 

one grid upstream of the filter, the pressure is almost uniform. That indicates that the 

pressure gradient across the channel, in the vertical direction, is very small. However at 

the interface between the pure flow and the filter, x=5.85h, the pressure is much higher in 

the center and smaller near the wall. There is a big pressure gradient in the vertical 
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direction to produce velocity in that direction. The pressure distributions inside the filter 

are nearly symmetric with respect to the center·line, with the gradient at the step side a bit 

steeper. This indicates that the redistribution of the flow is stronger for the step side than 

the non-step side. 
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Figure 5 .12. Pressure distribution at the upstream side of the filter. Re=450, filter's 
leading edge at 5.85h 

The pressure gradient in the stream-wise direction can be estimated by the 

difference between the pressure at two adjacent grids. We can see that the gradient in the 

center is positive and close to the wall the pressure gradient is large and negative by 

simply compare the two profiles at x=5.55h and 5.85h, which are the pressure profiles 

upstream and at the filter surface respectively. The pressure distributions explain two 

phenomena clearly. One explanation is that fluids are flowing from the center to the 

sides, most significantly at the upstream surface of the filter since the pressure difference 
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between the center and the wall is the largest at the location. Since the velocity in the 

center is higher, this makes the velocity profiles flatter. Another explanation is that the 

pressure gradient near the wall is large and negative just upstream of the filter. This is 

favorable to reattachment and prevents the flow from separating at the wall. 

Inside the filter, the pressure distribution curves are similar; however they get 

flatter and flatter downstream. Eventually the pressure is uniformly distributed at the 

downstream part of the filter as shown in Figure 5.11 (b ). In the process the flow becomes 

parallel and nearly uniform across most of the channel. It should be noted that inside the 

filter the governing equations are different from those of the pure fluids. Inside the filter 

the resistance, mainly caused by viscous effects following Darcy's law, is largely 

proportional to velocity, with the viscous terms for the pure fluids much smaller. 

Therefore the pressure distribution tends to be similar to the velocity distribution and 

follows the changes in the velocity. In the pure fluids the resistance is mainly the viscous 

terms at low Reynolds number, which is proportional to the velocity gradients. Therefore 

the velocity distribution in the vertical direction tends to be parabolic since the flow 

maintains a constant shear in the vertical direction, that is close to uniform pressure 

distribution in the direction, as shown by x=5.55h of Figure 10. At the upstream side of 

the porous media, the velocity profiles are close to parabolic, however the relation 

between the velocity and the pressure changes instantly at the interface. To maintain a 

parabolic velocity profile requires a similar parabolic pressure profile in the vertical 

direction as the change of the governing equations, as shown by the pressure distribution 

at the interface x=5.85h in Figure 10. This explains the dramatic changes in pressure 

distributions at the interface between pure fluids and the filter. The velocity profiles over 
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the upstream side ofthe filter are shown in Figure 5.13. Comparing Figure 5.13 and 

Figure 5 .12, it may be- observed that velocity. cannot change as fast as the pressure does. 

The flow is considered incompressible because the velocity is much less than the speed of 

sound. The pressure therefore can change very fast, nearly in no time. However the 

velocity of the fluid cannot change instantly, since it takes time for momentum transfer. 

The velocity distribution maintains its shape and changes gradually. The pressure profiles 

change because the velocity profiles do not change when the relationship between the 

two changes. The reverse process happens when the fluids leave the filter. At the 

downstream part of the filter, the pressure and the velocity are both nearly uniform cross 

most of the channel, as shown at x=8.55h in Figure 5.14 (velocity profile one grid 

upstream of the right side interface) and Figure 5 .11 (b) (pressure). Fluid flow follows the 

Darcy's law at the downstream interface; a nearly uniform velocity profile corresponds to 

a nearly uniform pressure profile in most parts of the channel except the wall region. 

They match well because of the development through the filter. In the channel flow 

downstream of the filter, pure fluids tend to have parabolic velocity and uniform pressure 

distributions. Then the pressure profile does not need to change since it is already nearly 

uniform while the velocity profiles change gradually back to parabolic. Because in pure 

fluids the viscous effects are dependent on the velocity shear, the velocity distribution 

changes the most where the velocity gradients are the largest. It is obvious that the 

velocity gradients are much larger near the wall, therefore the velocity changes the most 

at the wall region. It should be noted that the velocity profiles change much faster 

upstream of the filter than downstream of the filter in pure fluids. In Figure 5.13, the 

change covers a distance in x of 1.2h and in Figure 5.14, it covers a distance of 3.6h, even 
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though the changes in Figure 5.14 are much smaller. This is because the filter produces 

large pressure changes upstream, which forces flow to change quickly. 

Figure 5 .13 shows the velocity distributions entering the filter. The interface of 

the filter and the pure fluid is at x=5.85h, where the velocity profile is nearly parabolic 

except at the wall region. At x=5.55h, one grid upstream of the filter, there is a small area 

of negative velocity near the Y 1h = 2 upper wall, which is the non-step side. We can see 

the vortex at the non-step side in Figure 5.11 (a) at the corner just upstream of the filter, 

though very small. However at the step side wall the reversing velocity area is smaller, 

barely existing at the location. At x=5.85h, which is the interface, the profile is flatter 

except near the wall. At the step side the velocity is positive very close to the wall, 

however the velocity is negative at a very small portion away from the wall around 

Y =.15h. This is very interesting since the flow field at the step side would be totally 

inside the separation zone of the non-filter flow. The filter's presence pushes the 

reattachment of the step side vortex upstream; it stops around the upstream interface. It is 

clearly shown in Figure 5.13 that the flow is accelerating in the region close to the wall, 

and that the acceleration is very strong inside the filter. This explains why the flow 

cannot separate once inside the filter. In contrast, at the non-step side the flow becomes 

separated upstream of the filter at the location where the non-filter flow is not separated. 
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Figure 5.13. Velocity distributions entering the filter, filter's leading edge at 5.85h 
Re=450. 
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Figure 5.14. Velocity distributions after leaving the filter, filter's leading edge at 5.85h, 
Re=450. 
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Figure 5.14 depicts the opposite process as flow leaves the filter at the 

downstream side of the filter. The downstream interface between pure fluid flow and the 

filter is at x=8.85h. The x=8.55h point is inside the filter, one grid upstream of the 

interface. The velocity profile is nearly uniform in most of the cross section. Very close 

to the wall the velocity gradient is very steep. This occurs because inside the filter the 

viscous resistance is mainly dependent on the velocity and the resistance produced by the 

Newtonian shear stress is much smaller. This may have two effects on the flow. Firstly 

the resistance that is proportional to velocity tends to make the flow uniform since the 

higher the velocity, the higher the resistance. Secondly the velocity gradient at the wall 

can be higher since the pure shear needed for the steep change of velocity produces a 

relatively small amount of resistance compared with the resistance from the filter. Once 

outside the filter, the profiles tend to be more and more parabolic. 

Moreover, compare the two velocity profiles at the location upstream of the 

interface (x =5.55h) in Figure 5.16. We found that the presence of the filter causes the 

maximum point of the velocity profile to move significantly from the non-step side in the 

direction of the centerline of the channel. This shift implies that the velocity increases in 

the step side where the flow is negative (inside the separation zone of the non-filter flow) 

and the velocity decreases at the non-step side where flow becomes separated due to the 

presence of the filter. This is still the same principle that the flow distribution becomes 

flatter when the filter is present; low velocities increase and high velocities decrease 

while the maximum velocity decreases. Compare the two profiles with the filter in Figure 

5.15; one is one grid upstream (x=5.55h) of the interface and the other is two grids 

upstream (x=4.95h). We can see what is happening at the corner as the flow approaches 
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the filter. Roughly, the non-step side half of the flow is decelerating and the step side half 

of the flow is accelerating. This clearly explains why the flow at the step side is 

reattaching and at the other side is separating. At the Reynolds number 450, the non-filter 

flow is very close to separation at x=5.5h of the non-step side. With the addition of the 

filter, the flow becomes separated. 

- X=5.55h, w/ filter 
--o- X=5.55h, w/o filter 
........,._ X=4.95h, w/ filter 
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Figure 5.15. Velocity distributions upstream of the filter with and without the filter, 
filter's leading edge at 5.85h, Re=450 

If the filter is placed even closer to the step at x=2.85h, deeper inside the 

recirculation region of the non-filter flow, similar results can be seen in Figure 5.16 to 

those when the filter is placed at x=5.85h. Figure 5.16(a) demonstrates the flow fields 

with the filter at x=2.85 to 5.85h for two Reynolds numbers, it indicates that the 

Reynolds number does not have much effect on the flow field for these conditions. 

Because the recirculation region would go much farther downstream than the location of 

the filter if there were no filter present, the development of the primary vortex at the step 
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side is no longer very much controlled by the Reynolds number. The dominant factor is 

the interaction between the filter and the separated flow. Figure 5.16(b) demonstrates 

clearly that the velocity profiles at the upstream interface of the filter are basically 

similar. There are some outstanding differences at the regions near the two walls. At the 

non-step side wall, the area of reversing velocity at Re = 450 is much larger than at Re = 

250, although both are small. At the lower step side wall, the flow of Re=450 is attached 

at the wall while the velocity is negative at a small area away from the wall. The front 

point (the downstream end) of the primary vortex is not at the wall and is beyond the 

reattachment location at the wall in Figure 5.16(a). This is also found in Figure 5.1 l(b) 

when the filter is placed at 5.85h at Re=450. The reason may be that the flow acceleration 

is not very strong around the point of Y =.25h while the acceleration is much bigger at 

Y=O.lh, as shown in Figure 5.15 by the two profiles with the filter. The velocity profiles 

in Figure 5. l 6(b) do not show that at Re=250 the nose of the primary vortex moves away 

from the wall, because the nose goes further downstream than the flow of Re=450, which 

can be found in Figure 5.16(a). 

When the filter is placed so close to the step, there is very little room for the 

separating flow behind the step to develop. The flow becomes unstable, even at a very 

low Reynolds number 250. The contour lines are not as smooth as they are when the filter 

is farther downstream. In all the u-contour plots, the labels on the lines are the velocity 

values the lines represent. The values are the non-dimensional velocity, which is 

normalized by the maximum velocity in the inlet, for instance .4 means the velocity on 

the line is .4 U max • The contour line of .2 at Re=250 has large wiggles at about x=2.2h, 

which is an indicator of instability in the region. For the flow at Re=450, the contour 
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lines around the filter interfaces have small fluctuations, which is another indicator that 

the computed flow is not very stable at the current conditions. 

When the filter is placed inside the recirculation region of the non-filter flow, the 

reattachment point is pushed upstream of the filter due to the flow acceleration there. The 

reversing area there is dramatically reduced compared with the case without the filter. 

The flow at the non-step side is likely separated upstream of the filter due to the 

deceleration at the region. The flow inside and downstream of the filter is smoother 

because of the filter. It appears that the separating flow does not penetrate into or pass 

through the filter. 

Further study is needed to see if the wiggles found in the flow with the filter very 

close to the step, are due to the fluctuations of the flow or numerical instability. 
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(b) Velocity distribution at x=2.55h, .3h upstream of the filter 

Figure 5.16. Flow fields of different Reynolds numbers, filter's leading edge at 2.85h. 
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5.2.4 The Effect of Reynolds Number 

For pure fluid flow at low Reynolds numbers, the reattachment length is 

dependent upon the Reynolds number. We already know that if the filter is placed far 

downstream, it does not have a significant influence on the reattachment length of the 

step flow. When the filter is placed close to the step, the flow reattaches just upstream of 

the filter. What will happen for different Reynolds numbers if the filter is placed at a 

fixed location? Figure 5.17 shows the reattachment length over a Reynolds number range 

of 100 to 800 with the filter placed at 9.45h. 
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Figure 5 .17. Reattachment length vs. Reynolds number with filter's leading edge at 
9.64S. 

The location of 9.45h (his the half width of the channel) is 9.64S (Sis the step 

height) for the current configuration and about the reattachment length of the flow at 

Re=450. The computed reattachment length for non-filter flow varies between 3.5 to 
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12.5S for the Reynolds number range of 100 to 800. The 9.64S can provide different 

cases with the filter located far downstream of the reattachment point, deep inside the 

separation region and around the reattachment point as the Reynolds number increases 

from 100 to 800. Comparing the reattachment lengths of the flow with and without the 

filter as in Figure 5 .17, the filter does not have a significant impact on the reattachment 

length at Reynolds numbers 300 and lower. This is the case of the filter downstream of 

the reattachment point. Additionally, there is no secondary vortex at the non-step side 

wall at such low Reynolds numbers. This agrees well with the results from previous 

sections. At Reynolds number 500 and above, the reattachment length becomes constant. 

The filter is at 9.64S; the separating flow stops at 9.32S. This is the case with the filter is 

placed inside the separation zone. The filter forces the flow to reattach upstream of it. 

However at Reynolds number 388, the reattachment length becomes larger due to the 

filter. The location of the filter is close to and outside of the separation zone. From 

Figures 5 .16 or 5 .2 we can see that without the filter the secondary vortex is at about 8. 7S 

to 9.7S, which implies that the filter is inside the separation zone at the non-step side. 

Therefore the flow at the upper non-step side accelerates and the flow at the step side 

decelerates, so that the separation zone at the step side is enlarged. This is a case with the 

filter placed at the location where the non-filter flow is not separated at one side of the 

channel and separated at the other side. At previous sections, the results were mostly for 

one Reynolds number of 450. The conclusions from the previous sections can be 

confirmed here for different Reynolds numbers with the location of the filter fixed. 

Our study has emphasized the effect of the filter on the primary vortex behind the 

step. It is also important to study how the secondary vortex would behave when the filter 
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is positioned at the non-filter flow vortex location. The locations and sizes of the 

secondary vortex are shown in Figure 5.18 with Reynolds number from 400 to 800. X4 is 

the upstream edge and X5 is the downstream edge of the reversing flow region at the 

non-step side. 

25 

--e-- X4 w/o filter 
-o- XS w/o filter 

20 -T- X4 w/ filter 

~ 
-'v- XS w/ filter 

X .... 15 0 
CJ) -'<t 
X 

10 

5'--~--J'--~--'~~----'~~--'-~~--'-~~--' 

300 400 500 600 700 800 900 

Re 

Figure 5.18. Locations of the secondary vortex vs. Reynolds number without and with 
filter. filter's leading edge is at 9.64S. 

As for the case shown in Figure 5._17. the filter is placed at 9.64S (9.45h). which is 

inside the location of non-step side vortex of the non-filter flow. For Re=800, the filter is 

even upstream of the whole vortex of the non-filter flow. At Reynolds numbers lower 

than 350, there is no secondary vortex at the non-step side. so the Reynolds numbers here 

are 388 and above. At Reynolds number 388, the filter is not inside the primary vortex at 

the step side. At higher Reynolds numbers. we already know that the flow reattaches 

upstream of the filter. For the non-filter flow. XS increases significantly as the Reynolds 

number increases, which indicates the downstream edge of the vortex extends to as far as 

20 step heights. When the filter is placed at 9.64S, the separation flow does not go 
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beyond the filter; XS is nearly a constant around 9.4S. While the downstream edge of the 

vortex is fixed upstream of the filter, the upstream edge of the vortex is pushed upstream, 

as shown by X4 in Figure 5.18. For the non-filter flow, the vortex moves downstream as 

the Reynolds number increases, that is both X4 and X5 increase as the Reynolds number 

increases. However when the filter is placed at 9.64S, theX4 values decreases slightly as 

the Reynolds number increases. This indicates that as Reynolds number increases the size 

of the vortex increases; the same trend as in the non-filter flow. Because the downstream 

edge of the vortex is fixed at the upstream of the filter, the vortex can grow only by 

moving upstream. 

There is something new here. At Reynolds number 500 and above, the non-filter 

flow is separated at both sides of the channel at 9.64S and the flow becomes reattached 

when the filter is placed there. This is a case that is not covered in previous sections. It is 

well understood that the presence of the filter forces the flow to redistribute, the flow in 

the center decelerates and the flow at the sides accelerates. When the flow is separated at 

both sides, the acceleration will be very strong and can cause the separated flow to 

reattach as is shown in Figures 5.15 and 5.16. 
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5.3SUMMARY 

The following conclusions may be drawn from the computations of flows with 

Reynolds numbers 800 and less. 

The difference method and the codes work properly for the two-dimensional 

backward facing step flows with and without the filter present. The computation predicts 

correctly and accurately the reattachment length and the location of the secondary vortex 

at low Reynolds numbers compared with existing experimental results of pure fluid 

flows. 

When the filter is placed at a location where the non-filter flow is not separated, 

the introduction of the filter does not affect the properties of the upstream separated flow 

very much. The filter forces the flow immediately upstream of it to redistribute, the 

velocity in the center decreases and the velocity near the walls increases. 

Separating flow does not appear to penetrate into the filter. If the filter is placed at 

the location where the non-filter flow is separated at one side and not separated at the 

other side, the separated flow reattaches and the flow at the other side separates because 

of the presence of the filter. The reattachment of the separated flow is a result of the 

acceleration at the side of the channel and the separation at the other side is caused by the 

deceleration required to maintain the constant flow rate. 

When the filter is placed very close to the step, where a large part of the cross 

section would be reversing flow at the step side for the non-filter flow, the separated flow 

stops upstream of the filter. The secondary vortex is pushed upstream toward the inlet, its 

downstream edge ends upstream of the filter while its upstream edge moves upstream as 

the Reynolds number increases. 
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CHAPTER VI 

EXPERIMENTAL RESULTS OF STEP FLOW WITH FILTER 

The interaction between the separated flow and the filter is very interesting and 

there has been little study of the issue in the past. We have some results from by the CFD 

model in the previous chapter, but we will have more confidence in them if they can be 

verified by experiment. A wind tunnel with a transparent test section that incorporates a 

two-dimensional backward facing single step; as shown in Figure 2.3 was designed and 

constructed to conduct such experiments. The aspect ratio is 1 :2, so the step height is the 

same as the half width of the channelh, which is 25 mm. The filter was placed at two 

locations relative to the step. The velocity profiles upstream of the filter will be presented 

and the effect of the filter on the flow field is studied by comparing the profiles with the 

filter and the profiles without the filter. The separation region is significantly altered 

when the filter is placed close to the step, in the region that separation occupies in the 

non-filter case. More interesting phenomena are found when the filter is placed further 

downstream, where it is close to the reattachment locations of the non-filter flow. 

The coordinate system for the step is the same as in the previous chapters, as 

shown in Figures 1.2 and 3.1. The z-direction is the direction that is perpendicular to the 

step plane (x-y plane), w~ich is referred as the span-wise direction. 
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6.1 INLET FLOW 

The flow two-dimensionality is examined by measuring the velocity profiles at 

the inlet centerline in the span-wise direction (normal to the step plane) in the range of 

more than 10 times the step height. As shown in Figure 6.l(a) for Reynolds number 2000, 

the deviation of the mean velocity in the z direction from the average velocity of all 

points measured along the z-axis (in the span-wise direction) is within ±.5%. The RMS 

(root mean square) velocity distribution is not scattered very much, as shown in Figure 

6.l(b). The values are about 0.8% along the z-axis, which further indicates that the flow 

is two-dimensional. 

The results in Figure 6.1 are for the lowest Reynolds number of the four Reynolds 

numbers studied. Measurements demonstrate that at higher Reynolds number the velocity 

distribution in the z-direction is also uniform and the maximum deviation from the mean 

is less than 0.5%. This is quite adequate for the present study. At the highest Reynolds 

number, 10000, the fluctuations (RMS over the mean velocity) are larger than at 

Re=2000. At the upper two thirds of the channel they are less than 1 %, at the other part of 

the channel the RMS is less than 1.6%. 

At lower Reynolds number (1,500 and less) the inlet flow is not two-dimensional 

to acceptable accuracy. This is most likely caused by the introduction of the seeding for 

LDA measurement, since the airflow carrying the seeding particles is not introduced into 

the flow uniformly in the span-wise direction, as shown in Figure 3.3. The velocity at the 

entrance of the channel is very small, about one tenth of the average velocity at the inlet 

of the step. If the Reynolds number is 1500, the average velocity at the inlet is about 0.8 

mis. The velocity at the entrance of the channel is about 0.08 mis. 
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Velocity Distribution in Z-Direction, Re=2000 
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Figure 6.1. Two dimensionality of the inlet flow, x=O, y=.5h. 
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For such a slow flow, small disturbances may alter the velocity distribution at the 

channel entrance and the variations is not smoothed since there is little mixing in the 

developing section at such small velocities. This will result in either corrupt inlet velocity 

profiles in the vertical direction or non-uniformity in the spanwise direction. It is a 

remaining problem how to introduce particles and maintain the two-dimensional flow at 

the wind tunnel entrance at low Reynoldsnumbers. 

The inlet velocity profiles in the vertical direction (across the section) are shown 

in Figure 6.2 for all the four Reynolds numbers. The profiles are normalized by their 

maximum velocities for easy comparison. At the Reynolds number 2,000 the inlet profile 

is very close to parabolic, the profile of fully developed laminar channel flows. It is just a 

bit flatter than the dotted line, which is derived from the equation: 1-3.S(Y I h- .5)2 • This 

indicates the length of the development section is marginally proper for the Reynolds 

number to achieve fully developed flow at the entrance. It also implies that the length is 

proper for higher Reynolds number since it requires less length for higher Reynolds 

number flow to fully develop due to the stronger shear and mixing. As the Reynolds 

number increases the profile is getting flatter and flatter in the center. Consider that the 

velocity at the wall (Y /h = 0 or 1) is zero, the velocity gradient at the wall region 

increases significantly as the Reynolds number increases. It should be noted that the inlet 

flow is not the same as the flow downstream of the step, since the step is a very big 

disturbance to the flow downstream. In the experiments of Armaly et al. (1983) the flow 

downstream of the step becomes fully turbulent at Reynolds number 6,600 and 

transitional at Reynolds number 600. That does not imply the flow at the inlet is fully 

turbulent or transitional at the Reynolds numbers. 
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From Figures 6.1 and 6.2 we can conclude that the inlet flow is two-dimensional 

and symmetric in the vertical y-direction for the present Reynolds number range. It 

completely satisfies the design criteria described in chapter 3. 
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Figure 6.2. Inlet velocity profiles at different Reynolds numbers. 

6.2 FLOW FIELDS WITH FILTER PRESENT 

It is expected that the filter has little impact on the flow field upstream when it is 

placed far downstream. The CFD results in the previous chapter, performed at low 

Reynolds numbers, have shown that. Similar results can be found in the computations of 

Liu ( 1995) in a channel flow. He stated that the velocity distributions upstream of the 

filter are not altered by increasing the pressure drop of the filter in a very large range. 

Therefore the case with the filter far downstream of the step is not studied here. In the 

101 



present study the filter is first placed in the field at 6.75h behind the step, where it is close 

to the reattachment locations of the non-filter flows. Since in the range of the Reynolds 

numbers here the reattachment length varies with the Reynolds number, 6.75h provides 

cases for which the reattachment length of the non-filter flow is larger or shorter than the 

distance of the filter from the step. We do not have the case that the filter is placed 

exactly at the reattachment location because it is too delicate to adjust the Reynolds 

number to match the reattachment location with the filter since the flow is transitional; its 

dependence on Reynolds number is not monotonic. To study the stronger interactions 

between the reversing flow and the filter, the filter was then moved closer to the step at 

4.25h. In the present Reynolds number range, the reattachment lengths of the non-filter 

flow are far larger than that. 

At Re=2,000 to 10,000, the flow behind the step is in the transitional and then 

turbulent regimes, according to Armaly et al. (1983). In this range the flow undergoes 

many changes, which provides a chance to study different flow patterns although the 

filter is only placed at one of the two places. At each Reynolds number, the flow has 

some distinguishable properties. The results will therefore be presented by Reynolds 

number. The instantaneous reattachment points and the separation lines at those Reynolds 

number range are not still. The results presented later in this chapter are all obtained from 

mean velocity fields. The mean velocity is measured over a time period that is more than 

100 times the characteristic time scale of the flow, defined by the step height divided by 

the maximum inlet velocity. The reattachment points and the separation lines are 

therefore the mean locations, which are steady. The mean flow fields are also 

representative of the overall effects of the filter. 
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6.2.1 Measured Flow Field of Step Flow at Re=2000. 

In the presentexperiments, the reattachment point was not measured. Instead the 

separation lines were measured in the flow field. These lines, where stream-wise mean 

velocity is zero, are shown for the different cases in Figure 6.3. Y=O is the step side wall, 

Y=lh is the location of the step edge and Y=2h is the upper, non-step side wall.Xis the 

distance from the step. The separation starts at the step edge, where X=O and Y=lh. The 

locations of zero velocity are found by interpolation between two adjacent points of 

opposite signs in the mean velocity profiles, assuming linear velocity distribution 

between the two points. Velocity profiles were measured at the vicinity of the separation 

line, not throughout the channel. The increment between two measured points is .05h, 

which insures the location is determined accurately. 

There are two reasons we measure the separation lines instead of reattachment 

locations. One is that it is very difficult to detect the location of the reattachment. The 

velocity in the wall region is very small and the LDA signals are not good there because 

of the strong reflection from the wall. In the experiments of Armaly et al. (1983), an 

integration was used to project the reattachment point, which is theoretically defined as 

the location where the velocity gradient is zero at the wall. The direct approach to 

measure the velocity gradient at the wall by LDA is to find the velocity value at a point as 

close to the wall as possible. Knowing the velocity is zero at the wall, the gradient can be 

obtained assuming a linear velocity distribution between the measured point and the wall. 

There will be large errors if we cannot measure the velocity extremely close to the wall 

accurately. When a filter is placed in the flow field, it is extremely difficult to get reliable 

LDA measurements at the comer of the wall and the filter. Furthermore, the shape of the 
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entire vortex gives more information about the interaction between the filter and the 

recirculating flow. 

Figure 6.3 demonstrates the effects of the presence of the filter on the shape of the 

step side (the primary) vortex. These separation lines do not tell the exact size of the 

vortex, however provide good indications of its size. Under the lines is the area of the 

mean reversing flow. When there is no filter placed in the field, the separation line is 

beyond seven atY=0.2h. The reattachment will certainly happen downstream of 7.5h 

since the separation line has not dropped sharply, as it should at the vicinity of the 

reattachment location, where the vertical velocity gradient is close to zero. Because at 

·· X=8h of the test section there are flanges that block LDA laser beams, there are no 

measurements downstream of x=7.5h. 

Separatioh lines, Re=2,000 
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Figure 6.3. Separation line of the primary vortex at Re=2000. 

7 8 

When the filter is placed at X::;:6.75h, the separation line is higher from the step to 

X=6.5h, which indicates that the vortex is bigger in the region close to the step. 
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Downstream of X=6h, the line drops sharply, implying that it is close to the nose of the 

vortex at x=6.5h. Since the filter is at X=6.75h, the closest point that can be measured is 

at 6.5h. We can only predict from the shapes of the two separation lines that the reversing 

flow most likely stops at the filter. The two lines are close, the difference is within the 

error bar for the measurement. However collectively all the points except the first two at 

the left side indicate that with the filter the reversing area is smaller. It will make a 

stronger case when the filter is placed at 4.25h. It is clearly demonstrated that the 

reversing flow stops at the filter. The size of the vortex is considerably reduced both in 

the vertical and the horizontal directions. At x=4h, the closest measured point to the filter, 

the separation is at . lh away from the wall. This indicates that the reversing flow is in a 

very small region immediately upstream of the filter if there is any. 

The three separation lines in Figure 6.3 strongly suggest that the separating flow 

does not go beyond the filter. When the filter is at 6.75h, the flow appears to reattach 

around 6.5h. When the filter is placed closer to the step at 4.25h, the separation stops 

around 4h. This agrees with the CPD results in the previous chapter, even though the 

Reynolds number is 2000 for the experiment and less than 800 for the computations. 

To study more about the effects of the filter on the flow field, velocity profiles are 

measured at .Sh upstream of the filter. Compared with the velocity profiles that are 

measured at the same location without the filter present, as shown in Figure 6.4, the 

effects of the filter are not very significant at this condition. There are hardly any effects 

on the RMS (root mean square) velocity,. which represents the velocity fluctuations. 

In the experiments the two Reynolds numbers for the flows with and without filter 

are not exactly the same, since the introduction of the filter requires adjustment in the 
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controlling valves of the blower controller. In the cases presented here that difference is 

controlled within 1 % of the value of the Reynolds number: This implies that there is a 

very small difference between the maximum inlet velocities, which is used to calculate 

the Reynolds numbers. To assure the difference will have a minimum effect on the 

comparison, all the profiles are normalized by the maximum inlet velocity. Since the test 

channel is wider than the inlet channel, the maximum velocities in the profiles are all less 

than one. 

Re=2000, filter at 6. 75h 
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Figure 6.4. Velocity distributions at x=6.25h without filter and with filter at 6.75h, 
Re=2000. 

In the velocity distributions of Figure 6.4, the profile with the filter at 6.75h shifts 

a bit, compared with the profile without the filter, to the upper non-step side, Y=2h. The 

velocity increases approximately at the one third upper side (non-step side) and the 

velocity decreases at the lower side, that is the step side of the channel. This is in line 

with the results of the separation line, which indicated that the primary vortex is getting 
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thicker in the vertical direction. It agrees well qualitatively with the CFD results of 

. Chapter 5 that the separation zone increases when the velocity decreases. 

When the filter is placed closer to the step, its effect on the flow field is much 

larger; as already shown in the separation lines of Figure 6.3. Figure 6.5 depicts the 

velocity distributions .Sh upstream of the filter for the flow with the filter present at 

x=4.25h and without the filter present. The same as the case when the filter is placed at 

6.75h, the fluctuation (RMS velocity) is nearly the same with and without the filter 

present, although this time the velocity profiles and the separation zone are greatly altered 

by the filter. The velocity profile with the filter is nearly symmetric with respect to the 

centerline. Surprisingly there appears little effect of the step, which is supposed to make 

the flow domain unsymmetrical. When the filter is not placed in the field, at x=3.75h the 

profile shows that about one third of the flow at the step-side is reversing flow (negative 

streamwise velocity). The maximum velocity is at about three-quarters of the channel 

width away form the bottom (step side) wall. The profile appears symmetric in the upper 

half (non-step side) of the channel with respect to the maximum velocity. Because of the 

presence of the filter, the velocity decreases a great deal at the upper side and increases at 

about the same amount at the step side. Additionally the maximum velocity of the profile 

with the filter is much smaller than that of the profile without the filter. The velocity at 

the non-step side of the channel, where the non-filter flow velocity is larger, decreases 

while the velocity at the other side increases. This implies that the filter tries to even the 

flow across the channel as found by the CFD models in the previous chapter in laminar 

flows. Because of the dramatic increase of velocity at .the step side, the flow becomes 

more favorable to reattachment and the reversing flow area reduces from about .Sh to 
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.25h. On the other side where the velocity decreases considerably, the flow becomes 

separated because of the deceleration due to the filter. We can assume that the farther 

upstream of the filter, the less the effects of the filter on the velocity profiles. The 

velocity profiles farther upstream with the filter present should be like something 

between the profiles at 3.75h with and without the filter. The current profiles without the 

filter can therefore to some extent suggest the profiles upstream with the filter. Thus we 

can analyze the profile changes in the streamwise direction for flow with the filter by 

comparing the profiles with and without the filter at one location. 

Re=2000, filter at 4.25h . . 
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Figure 6.5. Velocity profiles at x=3.75h without and with the filter at 4.25h, Re=2000. 

Inside the reversing flow area, the maximum reversing velocity is greater with the 

filter than without the filter, as shown by Figure 6.5. The velocity gradients are larger 

with the filter and the RMS velocity is a bit larger due to the increase of the velocity 

gradient au . When the velocity gradient is larger, the turbulence energy production term 
ay 
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(u'v' Bu) will be larger. Then the flow at that location will tend to have larger RMS 
. ay 

velocity. The velocity gradient increase is the result of the shift of the maximum velocity 

to this side of the channel, which makes the velocity gradient larger in the whole half 

channel and the momentum transfer stronger. 

From the analysis above, we can come to some conclusions for this Reynolds 

number. Introducing the filter into the flow field alters greatly the shape and size of the 

primary vortex. At 4.25h, close to the step, the filter makes the velocity profiles broader, 

significantly increasing the velocity at the step side and decreasing the velocity at the 

other side of the channel. In the process the primary vortex is reduced dramatically in size 

and at the non-step-side the flow becomes separated. There is a small change in the RMS 

velocity distributions, however it is not very significant. When the filter is placed at 

6.75h, the primary vortex becomes wider (larger in vertical direction) and shorter 

(smaller horizontally). There is some change, though not as dramatic, in the velocity 

distribution .5h upstream of the filter because of the filter. The velocity increases at the 

non-step side of the channel where the velocity is in average much larger than the 

velocity at the other side. The velocity at the other .side decreases. This is different from 

the case with the filter at 4.25h. 

6.2.2 Measured Flow Field of Step Flow at Re=3750 

At Reynolds number 3750, the flow without the filter is very different from the 

flow of Re=2000 at the location of x=6.25h. Although the filter is still placed at the same 

location its effect on the flow is very different, as shown in Figure 6.6. In all the figures 

in this section, Y=O is the step-side wall. At this Reynolds number the flow without the 
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filter is not separated at x=6.25h on the step side, however it is separated on the non-step 

side as the velocity profile indicates. As the filter is placed at 6.75h, the velocity profile at 

x=6.25h is greatly altered, unlike the cases of Re=2000. The profiles are nearly the mirror 

images of each other. 

Re=3750, tilter at 6 .. 75h 
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Figure 6.6. Velocity profiles at x=6.25h without and with the filter at 6.75h, Re=3750. 

At the step side half, where there is no reversing flow for the non-filter case, the 

velocity decreases and the flow separates. On the other side of the channel velocity 

increases a great deal and the flow becomes reattached from reversing flow because of 

the filter. The RMS velocity is about the same at the step side and it is reduced a bit at the 

non-step side because the filter removes the reversing flow there. 

Although this appears very different, it is still working in the same principles as at 

lower Reynolds numbers. However, in this case the separation is at the non-step side of 

the channel. When the filter is introduced into the field, it accelerates the flow at the 
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lower velocity side because it decelerates the flow at the higher velocity side. At the non

step side, we can see from the profile of the non-filter flow that the-reversing flow 

penetrates into the flow field about .4h from the wall. This implies that the location of the 

filter is inside the separation area of the non-filter flow. It is similar to the situation at the 

step side in the case of Re=2000 with the filter placed at 4.25h, when the flow 

acceleration reduced the reversing area significantly. The difference here is that the 

reversing flow is not as strong as behind the step. Therefore the flow acceleration 

removes the reversing flow entirely. 

At the current condition, the reversing flow at the step side is reattached at about 

x=6.0h when the filter is not present, as shown by the separation line in Figure 6.7. When 

the filter is placed at 6.75h behind the reattachment point, the flow is decelerating at the 

step side, which promotes separation, so the separating flow extends further downstream 

of 6.25h. It is clearly demonstrated in Figure 6.7 that the separation zone is much longer 

and wider when the filter is placed at x=6.75h compared to the flow without the filter. 

This is a special case with the filter placed at the location about .Sh downstream of the 

reattachment point when the filter is not present. The results indicate that the filter 

enlarges the primary vortex. However since it happens that the other side of the channel 

flow is separated, this may affect the balance of acceleration and deceleration caused by 

the filter. It is not clear yet whether these two events are connected or independent of 

each other. At the step side the pressure increase due to the filter may enlarge the 

reversing area upstream, which implies flow deceleration there. The deceleration at the 

step side may induce the flow acceleration at the other side of the channel, which 

eliminates the reversing flow. On the other hand, the flow redistribution caused by the 
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filter implies deceleration in the center of the channel and acceleration at the two sides 

near the wall. However the acceleration at the upper wall may be stronger than at the · 

other side because of the reversing flow at the upper wall. This may change the balance 

of continuity in the entire cross section and force the flow at the other side to decelerate 

rather than accelerate. Since it could be explained either way, the problem needs more 

study. 
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Figure 6.7. The separation lines of flows with and without filter, Re=3750. 

When the filter is placed at x=4.25h, its effect on the separation line is nearly the 

same as at Reynolds number 2000. As shown in Figure 6.7, the reversing flow area is 

considerably reduced and the reattachment location is at about the same location as the 

filter. The velocity and its RMS distributions at .5h upstream of the filter are shown in 

Figure 6.8. The velocity profile of the non-filter flow is similar to that of Re=2000, but 

the reversing flow area is much smaller at this Reynolds number. Although the profile 
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without the filter does not have negative values at the non-step side, the velocity at 

. Y=l.9h, the one atthe top end, is nearly zero. Itindicates that the flow is likely separated 

between this point and the wall at 2.0h. 

Re=3750, filter at 4.25h 
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Figure 6.8. Velocity profiles at x=3.75 without and with the filter at 4.25h, Re=3750. 

The velocity profile with the filter is nearly symmetric with respect to the 

centerline. There are reversing flows of substantial sizes at the walls of both sides. The 

fluctuating velocity (RMS) profiles are nearly the same with and without the filter 

6.2.3 Measured Flow Field of Step Flow at Re=6550 and Re=lOOOO 

At the Reynolds number 6600 and above the flow behind the step should be fully 

developed turbulent as stated inArmaly et al. (1983).The present experiment results 

show that at Re=6550 and 10,000, the properties measured here do not change much with 

Reynolds number. This agrees with Armaly et al. (1983). Therefore primarily the results 
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of 6550 will be analyzed, since similar results can be found for Re=l0,000. Figures 

showing the results at Re=l0,000 will be presented briefly at the end of this chapter. 

When there is no filter in the flow field, the reattachment lengths for the two 

Reynolds numbers are about 6 step heights. This is different from Armaly et al. (1983), 

who found that the reattachment length for fully developed turbulent flow is about 8 step 

heights. The aspect ratio here is 2 and in Armaly's experiments it was 1.94. There are 

many factors that can affect the reattachment length. The inlet velocity profiles and the 

magnitudes and distributions of the fluctuating velocity definitely have influences on the 

separation development behind the step. The present velocity and RMS velocity profiles 

at the entrance are not likely to be the same with Armaly et al. Additionally the RMS 

velocity may be larger than Armaly et al. Those data are not found in the paper of Armaly 

et al., so that further analysis cannot be conducted. However it is not critical here since 

we are interested in the interaction of the filter and the separated flow, not the 

reattachment length. The effects of the presence of the filter on the separating flow are 

studied by placing the filter relative to the reattachment locations, which are determined 

by measured velocity profiles. The flows with and without the filter are the results of the 

same inlet conditions, the comparisons of the two flows give the difference caused only 

by the presence of the filter. The relationship between the reattachment length and the 

Reynolds number should not have any influence on the mechanism of the interaction 

between the separating flow and the filter, as long as the locations of the reattachment are 

the real locations for the flow. 

Since the reattachment length is about 6h, the filter is outside the separation 

region when it is placed at 6.75h. This is similar to the case of Re=3750 when the 
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reattachment length is also about 6h. However there is one big difference; no separation 

is found at the non-step side of the channel at these-two Reynolds numbers of 6550 and 

10000. According to Armaly et al. (1983), the flow is turbulent at the Reynolds number, 

and the non-step side vortex does not form. 

Unlike the flow at Re=3750, the filter has little impact here on the flow field .5h 

upstream when it is placed at 6.75h. As in Figure 6.9(a), the velocity and its RMS profiles 

are practically the same with and without the filter in the field. However, when the filter 

is paced at 4.25h, the same major effects are obtained as for lower Reynolds numbers. 

The reversing flow area is greatly reduced and it appears to stop at the filter. The velocity 

profiles at .Sh upstream give the same results as the other Reynolds numbers. The results 

are shown in Figure 6.9(b). From the separation lines of Figure 6.10 we can note that the 

presence of the filter enlarges the reversing flow area a bit in the vertical Y-direction. 

However around the reattachment point at 6h, the two lines with the filter at 6.75h and 

without the filter nearly merge as one. That indicates that the filter has some small effects 

on the flow field upstream, but has no impact on the reattachment of the separated flow if 

it is placed outside the circulation zone. However at Re=3750, the filter enlarges the 

primary vortex when it is placed outside the recirculation zone. At that Reynolds number, 

the non-filter flow at the non-step side is separated at the location of the filter other than 

attached at the higher Reynolds numbers. Thus at Re=3750, the enlargement of the 

reversing area at the step side is a result of the elimination of the separating flow at the 

non-step side wall due to the introduction of the filter. 

115 



(a) Filter at 6.75h 

--------- 2.0 

..c 
3::: 1.0 

0. 0 .___.,___,___.,___,___.,___,..___, 

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 0.0 

U/Umax 

- w/filter 
--o- w/o filter 

(b) Filter at 4.25h 

1.5 

..c 
3::: 1.0 

0.5 

.................................... 1.0 

0.1 0.2 

Urms/Umax 

.................... 0.5 

0.0 
0.3 

0.5 

0 .0 .___..___.,____.,___.,___,_ __ ,___, .__ __ ,..__ __ ,__ __ .., 0.0 

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 

U/Umax Urms/Umax 

Figure 6.9. Velocity profiles .Sh upstream of the filter with and without the filter, 
Re=6550. (a) Filter at 6.75h. (b) Filter at 4.25h. 
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Figure 6.10. The separation lines of flows with and without the filter, Re=6550. 

6.2.4 The Dependence of the Separation Areas on Reynolds Number 

It is well understood that the recirculating flow depends on the Reynolds number 

in the laminar and transitional regimes. The fully developed turbulent flow is expected to 

have the same reattachment -lengths independent of the Reynolds number, as stated by 

Armaly et al. (1983). However the reversing areas may vary because of the stronger 

momentum transfer at higher Reynolds numbers. 

Figure 6.11 depicts the separation lines of the primary vortex at the step side for 

different Reynolds numbers when the filter is placed at 6.75h. The reversing flow area is 

defined as the area under the separation lines, where the velocity is negative. It shows 

clearly the trend that the reversing flow area decreases as the Reynolds number increases, 

although the filter at 6.75h confines the reattachment location at the filter or upstream. 

When the filter is placed at 4.25h, as shown in Figure 6.12, the Reynolds number does 
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not affect very much the main properties of the flow even at lower Reynolds number. The 

interaction between the filter and the step side primary vortex dominates the flow 

patterns. 

In Figure 6.12 we can see that the separation lines are nearly the same for the 

three Reynolds numbers. At all four Reynolds numbers the separation lines join at x=4h, 

which may imply the same reattachment locations for the different Reynolds numbers. 

However at the highest Reynolds number, 10,000, the separation line is closer to the side 

wall, indicating a smaller reversing flow area. This is likely because the stronger shear at 

Re=l0,000 leads to more momentum transfer and results in a flatter velocity profile in the 

center and higher velocity gradient in the wall region. The tendency can also be found in 

Figure 6.5 and 6.8 at Reynolds numbers of 2000 and 3750. 
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Figure 6.11. The dependence of the separation line on Reynolds number, filter at 6. 75h. 
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.Figure 6.12. The dependence of the separation line on Reynolds number, filter at 4.25h. 

For the non-filter flow, the separation lines have similar trends. As the Reynolds 

number increases, the reversing area decreases and the reattachment length becomes 

shorter, as shown in Figure 6.13. One exception is found at Re=3750 as a result of the 

existence of the non-step side separation at 6.25h in the non-filter case. One should note 

that the exception does not occur when the filter is placed at 6.75h and there is no vortex 

at the non-step side. This further proves that the exception is caused by the existence of 

the non-step side vortex. The advantage of using the separation line to analyze the effects 

of the presence of the filter is that it provides an overall flow pattern of the separating 

flow. However since the velocity measurement is point by point, this is not the real 

separation line, which is moving all the time. The separation lines presented in this paper 

are determined by the mean velocity field. Thus we lose the information of the 

instantaneous separation lines, which is very important for dynamic analysis. However 

the mean velocity is stable and accurate, which is very important for the comparisons 
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between the flows with and without the filter. As described in chapter 3, the accuracy of 

the mean velocity measurement in this study is 1 %. Although we cannot apply the 1 % 

accuracy directly to the separation line measurements, it certainly gives us much 

confidence in the results. Another factor may affect the determination of the separation 

line is the accuracy of the location control. We are using a traversing system controlled 

by stepping motors, of which the minimum increment is 12.5 µm. To avoid any errors 

caused by the backlash of the traversing system, the movement of the probe is always in 

one direction for each experiment. The step height is 250mm, the typical increment of 

measuring points in the profiles is .05h = 12.5 mm. Therefore we can assume that the 

measuring location control is sufficiently accurate. Additionally since the separation line 

is at the point of zero mean velocity LDA velocity biasing effects may be considered to 

be of little importance. 
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Figure 6.13. The dependence of the separation line on Reynolds number without the 
filter. 
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· 6.3 SUMMARY 

Qualitatively the experiments in this chapter gave the same results as do the 

computational studies presented in chapter V. Thefilterremoves separation flows at the 

place it occupies and forces the flow to redistribute; the velocity decreases at the side of 

the channel where velocity is higher and the velocity at the other side increases 

according! y. 

If the filter is placed downstream of the separation zones at both sides of the 

channel, it does not have much impact on the flow upstream. 

If the filter is placed at a location where the .non-filter flow is separated at one side 

of the channel and not separated at the other side, the separated flow reattaches due to 

flow acceleration and the flow at the other side separates due to flow deceleration. 

When the filter is placed deep into the separation zone of the non-filter flow, the 

flow reattaches upstream of the filter. The reversing flow area is reduced dramatically 

and nearly independent of the Reynolds number over Reynolds number range of this 

study. In most cases, the area of the reversing flow decreases as Reynolds number 

increases. 
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. Figure 6.14. Results of Re= 10000. ( a) The separation lines with and without the filter. 
(b) Velocity profiles .Sh upstream of the filter without and with the filter at 4.25h. 
( c) Velocity profiles .Sh upstream of the filter without and with the filter at 6. 75h. 
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CHAPTER VII 

LARGE EDDY SIMULATION OF TWO DIMENSIONAL TURBULENT STEP 

FLOW 

Flows in engineering applications are mostly turbulent flows. Simulation of 

laminar flow can provide some physical understandings about the fluid flow, however 

simulation of turbulent flows at high Reynolds numbers is the ultimate goal of computer 

simulation. In Chapters 5 and 6, laminar step flows at very low Reynolds numbers were 

studied with the air-filter present in the flow domain. One of the problems we 

encountered with the laminar flow simulation was the numerical stability. At Reynolds 

number 650 and up, the computed flow clid not converge. The flow is three-dimensional 

at the Reynolds number range of 600-6600, as reported by Armaly et al. (1985). 

Therefore a two dimensional model is not appropriate for that Reynolds number range. 

For a flow with Reynolds number higher than 6600, the mean flow is two-dimensional as 

measured by Armaly et al. As a preliminary study, a two-dimensional Large Eddy 

Simulation was performed for turbulent flow at Reynolds number 10000. Smagorinsky's 

eddy viscosity model was used for a two-dimensional mean flow. At the very close wall 

region, a wall model was used to the first points away from the top and bottom walls. 

Since the fluctuating velocity of turbulent flows is always three-dimensional, the present 

model is not a complete simulation. However the present study will give us some 
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knowledge about large eddy simulation models and a starting point for a better three

dimensional simulation. 

The mesh system was the same as for the laminar flow simulation. The flow 

domain is the same as the experimental setup described in Chapter 6, with the step height 

the half channel width. The outlet was placed at 30 step heights downstream of the step. 

lOlxlOlgrid points were used. We already showed that this number of grid points is 

enough to solve the vortex behind the step for laminar flow. Therefore they are fine 

enough for LES too, since the vortex behind the step in turbulent flow is of about the 

same size as in the laminar flow. Silveira et aL(l 993) and Kamiadakis et al. (1993) used 

less grid points on the step plane with their LES models. Their three dimensional 

computations yielded good results. 

7.1 INLET FLOW CONDITIONS AND WALL MODELS 

As we have already seen in Chapter 6, the velocity at the inlet is dependent upon 

the Reynolds number. At very low Reynolds number, the flow is laminar and the channel 

flow at the inlet profile is mostly parabolic. At higher Reynolds number, the profiles can 

be approximated by the seventh power law or the log law. However since we had the 

measured inlet velocity profiles, a regression curve was used as the inlet mean velocity 

profile, as shown in Figure 7 .1. As mentioned in section 2.3 of chapter 2, a computer 

generated random fluctuating velocity is superimposed to the mean velocity. The 

magnitude is adjustable and uniform cross the inlet. The magnitude of the fluctuating 

velocity is 1 % of the maximum velocity at the inlet in this chapter, which is close to the 

RMS velocity measured at the entrance of the step flow. 
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Figure 7.1. The fitted inlet curve for Re=lOOOO. 

Preliminary computation with Smagorinsky's model (described in section 2.2.2) 

yielded very large eddy viscosity values near the wall. This is a common problem for the 

model since it is derived from homogeneous turbulent flows. The velocity gradient is 

very large near the wall, therefore very fine grid points are needed to solve correctly the 

velocity fields there. Coarse grids would give very large velocity at the point adjacent to 

the wall. If the non-slip condition is applied, this may yield excessive velocity gradients 

and give very large eddy viscosity with Smagorinsky's model. As mentioned in chapter 

2, a wall model is used for the first point away from the wall. The non-slip conditions 

would require a large number of grid points near the wall. Since the emphasis here is on 

the entire flow domain, not on the flow characteristics at the near wall region, the log law 
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method will be used as in Silverira et al. (1993 ). The total shear stress is assumed to be 

constant and equal to the wall shear across the interval between the wall and the first grid 

point. A logarithmic velocity profile will be used for the mean velocity as in the case of a 

turbulent boundary layer. The mean velocity will be calculated when the computation 

runs in time step by step and the wall shear stress can be obtained by the mean velocity 

profile, referred to as the log law: 

• I Y1 u • • r::-;-: 
U=u [-log(--)+5], u =vrwf P, K=.4. 

K V 

where y 1 is the distance between the first point and the wall and 1: w is the wall shear 

stress. If normalizing the above equation with the step height and the maximum inlet 

velocity, we will have the following non-dimensional log law formula: 

ii= u *[_!_ 1og(y1u *Re)+ 5] 
K 

In the equation above, only the u * is unknown. It is numerically solved at each time step 

corresponding to the mean velocity. After the wall-friction velocity u * is known, the local 

turbulent eddy viscosity can be found in the non-dimensional form as: 

The values of eddy viscosity at the wall region were about 2 with the model, reduced 

from 40 without the model. 

7.2 TURBULENT STEP FLOW WITHOUT THE FILTER, RE=10000 

The exact location of the reattachment for the non-filter flow is needed for 

considering where to put the filter to study the filter's effects. The turbulent flow at 
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Re= 10000 is first computed without the filter. The experimental results of Armaly et al. 

( 1985) and Eaton & Johnston, ( 1980, cited from Silveira et al. 1993) indicate that the 

reattachment location is independent of the Reynolds number in the turbulent regime. 

The reattachment is at about 8 step heights behind the step. The secondary vortex at the 

non~step side of the wall does not form in a turbulent flow. The experimental results 

reported in chapter 6 showed that the reattachment happens at about 6 to 7 step heights. 

However the present two dimensional simulation predicts that the reattachment happens 

at 6 step heights, as shown in Figure 7.2. We can see that the separation lines in Figure 

7 .2 are very similar in shape, although the measured separation is much further 

downstream. This means that the reversing flow area predicted by the present 

computation is much smaller that the measured one. 

W/0 filter, Re=10000 

1 

- Measured 
-0- Computed instantaneous 

0 Computed mean 

..c 
>= 

0 '--~~--'~~~~~~~~~~~...._~~~...._~~ ........ ~~~-' 
0 1 2 3 4 5 6 7 

X/h 

Figure 7.2. Computed separation line compared with the measured, Re=lOOOO. 

The square points in Figure 7 .2 are the zero velocity points from the mean 

velocity profiles. The line with the round circle is the separation line that was obtained by 
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the instantaneous velocity field. The difference between the mean and the instantaneous 

line is very small. The possible explanations for the small reversing flow area could be 

that the Large Eddy Simulation model is excessively dissipative, especially in the near 

wall region. Le at al. (1997) stated that the reattachment location moves in the span-wise 

direction due to its three dimensional structures. The current two dimensional model can 

not simulate three dimensional turbulence structures. However from the separation line 

we can see that the simulation is reasonably close to the measured line. This gives us 

confidence that a three dimensional simulation with a better LES model should be able to 

predict well the separation characteristics of the step flow. 

The velocity profiles at x=3.75 in Figure 7.3 indicate that the LES model is 

working fairly well at the center region of the channel. It does not work well at the near 

wall region. A wall model was used to damp Smagorinsky's eddy viscosity at the wall 

region. It appears not to be working well. Additionally the computed RMS velocity is 

very small, less than .5% compared with the measured 10% or large at the same location 

of the channel. Further study is needed to understand the reason for this poor simulation. 

Since the predicted separation line is reasonably close to the measured one, we can 

perform a preliminary study of the separation flow with the filter downstream of the step. 
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· Figure 7.3. Comparison of the computed and the measured velocity profiles. 

7.3 TURBULENT STEP FLOW WITH FILTER AT 4.35, RE=l0000 

In Chapter 6, the filter was placed at two locations, one at 4.25S and another at 

6.75S. Those arrangements provided a variety of situations to study. The LES simulation 

shows the reattachment points at about 6S. In this case the location of 6.75S is no longer 

necessary. The case of 4.25S will be studied by the LES simulation. For the convenience 

of the computation, the filter is placed at 4.35S to 7 .95S, compared with the experimental 

setup of 4.25S to 8.00S. The parameters for the Darcy's law are the same as in Chapter 5. 

The experimental setup is now the step flow shown in Figure 3.1, with the step height of 

25 mm. The non-dimensional parameters used in the computation are adjusted 

accordingly. Figure 7.4 shows the separation line at the Reynolds number of 10000 with 

the filter at 4.35. The separation line is close to the measured line with the filter at 4.25h. 

Although the simulation of the non-filter case did not yield very good results compared 

with the experiments, the computation results with the filter are very encouraging. This 
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strongly suggests that when the filter is placed close to the step, the interaction between 

the separated flow behind the step and the filter is dominant. 

Separation lines with the filter 
1.0 .--~~~~~~~~~--~~~~~~~~~~~~--, 

0.8 

0.6 
..c 
>= 0.4 

--a- Measured 
0.0 - --e- Computed -· 

0 1 2 3 4 5 

X/h 

Figure 7.4. The computed separation line compared with the measured at Re=lOOOO. 

The velocity profiles at .Sh upstream of the filter are shown in Figure 7.5. We can 

seein the velocity at the upper side of the channel, where the flow is not separated, that 

the introduction of the filter caused the flow to decelerate. The flow at the other side of 

the channel is accelerated due to the placement of the filter. This reduces the reversing 

flow at the step side (bottom side). In this case the flow is reattached. The effects of the 

filter work in the same way as we reported before for laminar flow. However the details 

are quite different if we compare the computed profile with the measured profile at 

Figure 7 .5. The shape of the computed profile with the filter is similar to the measured. 

At the wall region, especially at the step side where the non-filter flow is separated, the 

simulated velocity profile is very different from the measured one. At both sides of the 

channel the measured flow with the filter is separated, while the simulated flow does not 

separate at either side. This may again indicate that the LES model used in this paper 
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does not work very well at the wall region, especially where the flow is separated, for 

two-dimensional simulation. Although the simulation does not give us results that are 

close to the measured flow field, it demonstrated that the effects of the filter on the 

separating flow behind the step are so strong that the features observed in the previous 

chapters also appear in the computations. 

1.5 

--e- Measured w/ filter 
.c >= 1.0 -6- Computed w/o filter 

-- Computed w/ filter 

0.5 

0.0 '---.l---l!l,c'.-'---.l--...L-.--''----' 

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 

U/Umax 

Figure 7 ,5. Computed and measured velocity profiles .Sh upstream of the filter at 
Re=lOOOO. 
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CHAPTER VIII 

CONCLUSIONS 

Velocity field measurement by LDA in a real automotive air-filter-housing model 

. demonstrated that the flow is highly non-uniform and fluctuates violently. About 40% of 

the filter upwind surface is inside separated flow areas, where the mean velocity is very 

small or negative. The velocity distribution is not good for efficient filtration. This 

experiment indicates that the interaction between the separated flow and the filter is an 

important issue for a better understanding of the flow inside the filter housing. However 

there is little research on the issue up to this author's knowledge. The flow inside the real 

housing is aerodynamically similar to a backward facing step flow with a filter present. A 

step flow is a good prototype flow for fundamental research and there are many known 

results with which to compare. It is simple for us to study extensively experimentally and 

numerically, while the flow is sophisticated enough to provide flow characteristics 

similar to practical engineering applications. Therefore a two dimensional backward 

facing step flow was employed as a model to study the important features of the flow 

inside the real housing. 

8.1 COMPUTATION OF LAMINAR FLOW WITH AND WITHOUT FILTER 

The two-dimensional step flow was studied extensively using CFD at low 

Reynolds numbers (up to 800). The finite difference method and the codes work properly 

for the flow with and without a filter present. The computation predicts correctly and 
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accurately the reattachment length and the location of the secondary vortex at low 

Reynolds numbers compared with existing experimental results of.flows without the 

filter. 

When the filter is placed at a location where the non-filter flow is not separated 

and smooth, the introduction of the filter does not affect the flow properties behind the 

step very much. Close to the filter, it forces the flow upstream to redistribute; the velocity 

in the center decreases and the velocity at the two sides increases. This is the case when 

the filter is placed far downstream of the step. 

Separating flow does not appear to penetrate into the filter, no matter how close to 

the step the filter is placed. If the filter is placed at the location where the non-filter flow 

is separated at one side and not separated at the other side, the separated flow reattaches 

and the flow at the other side separates because of the presence of the filter. The 

reattachment of the separated flow is a result of the acceleration at that side of the 

channel and the separation at the other side is caused by the deceleration required to 

maintain the constant flow rate. These events can be observed when the filter is placed at 

the location of the secondary vortex at the upper non-step side or at the location inside the 

primary vortex at lower Reynolds numbers. 

When the filter is placed very close· to the step, where a large part of the cross 

section is reversing flow at the step side for the non-filter case, the separating flow 

appears to end upstream of the filter. The secondary vortex is pushed upstream toward 

the inlet, its downstream edge ends upstream of the filter. It is the same as the separating 

flow at the step side, the secondary separating flow does not penetrate into the filter or 

passes the filter. 
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8.2 LDA MEASUREMENTS OF STEP FLOW WITH AND WITHOUT FILTER · 

Two-dimensional backward facing step flow was studied by LDA measurements 

at four Reynolds numbers from 2,000 to 10,000. The flow behind the step was in the 

transitional and turbulent regimes. A filter was placed at two locations, very close to the 

step and close to the reattachment positions of the non-filter flows. Velocity distributions 

were measured by LDA 0.5 step height upstream of the filter. 

Qualitatively the experiments gave the same results as obtained by two

dimensional computations at lower Reynolds numbers. The filter removes separation 

flows at the place it occupies and forces the flow to redistribute; the velocity decreases at 

the higher average velocity side of the channel and the velocity at the other side increases 

to keep the flow rate constant in the cross section. 

As found in the computations of lower Reynolds number flows, if the filter is 

placed at a location where there is no reversing flow at both sides of the channel, it does 

not have much impact on the flow upstream. 

If the filter is placed at a location where the non-filter flow is separated at one side 

of the channel and not separated at the other side, the separated flow reattaches due to 

acceleration and the flow at the other side separates due to flow deceleration. The same 

was observed in the computations, although the Reynolds numbers are different. 

. When the filter is placed deep into the separation zone of the non-filter flow, the 

flow reattaches upstream of the filter, the reversing flow area is dramatically reduced and 

nearly independent of the Reynolds number at the current Reynolds number range. In 

most cases, the reversing area of the flow decreases as Reynolds number increases. 
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8.3 THE LARGE EDDY SIMULATION AT RE=l0000 

The large eddy simulationat higher Reynolds number (Re=lOOOO) does not agree 

very well with the measurements. However it showed the same effects of the filter on the 

separating flow downstream of the step. The results showed that the flow field was not 

well simulated at the near wall region. A better LES model or three-dimensional 

. simulation may be needed improve the results. 

The same effects of the filter on the separating flow downstream of the step were 

observed by the laminar numerical simulation, the LDA measurements and the Large 

Eddy Simulation. 

The velocity the profiles of turbulent flow in Chapter 7 are much flatter in the 

center than the profiles of laminar flow in Chapter 5. This is an indication that the 

turbulence simulation is partly working. Without the LES model the computation is 

unstable at Reynolds number of 800. With the LES model, we were able to compute the 

flow at Re=lOOOO. Those are encouraging results for future studies. 
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APPENDICES 

A. LES FILTER PROCESS: 

For an arbitrary function f, the filter operation can be expressed as: 

f =]+ f' 
3 

](xi,x2 ,x3 ) = JoIJ G;(X;,x;)J(x;,x;,x;)dx;dx;dx; 
i=I 

where G; is the filter function in the i-direction and the integral is extended over the 

whole flow field. This is a weighted averaging process. Because turbulence length scale 

varies considerably in the direction normal to the walls, xi, one should use a filter with a 

variable width. Moin and Kim (1982) used a sectionally continuous 'top hat' filter 

function in their 3-D channel flow LES computation. In Moin and Kim, xi,j is the 

location of the j-th computational grid point in the i-direction normal to a wall of the 

channel; the filter function G i is defined for the control volumes surrounding the point as 

follows: 

G.(x.,x'.) = { I I · I 

(~+ (X;) + K (x; )r1 

0 

for X; -K (x;) < x; < X; + ~+ (x;) 

for x; < X; - K (x;) x; > X; + ~+ (x;) 

~+ (X.) = .!.c X. · I - X- ·) = ~~ ·} I 2 I,]+ I,} I,} 

where 1 
1 1 

for -( X. · + X- · I) < X. < -( X. · I + X. ·) 2 1,J l,J- I 2 1,J+ I,} 

~-(x.) = -(x .. -x .. 1) =K. 
I 2 I,} 1,J- 1,J. 

The functions ~+ and~- are sectionally constant functions of xi, therefore in the 

open area surrounding each computational grid point 
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x. -K < x. < x. +A+,. 
I I I 

dA+ /dx, =dK /dx. =0 
, I I 

This property of A+ and K is· very important because it provides the 

commutativity of the filter function and partial-differential operators in this 

computational area, particularly at the grid points. That is: 

of a] --=--

When a uniform mesh is used for the direction, it is simply: 

0 

By Simpson numerical integration: 

~ h;/ I h;/ 
10r X; - i 2 < X; < X;+ i 2 
~ , h;/ , h;/ 
1or X; < X; - i2 X; > X; + i2 

f(xk;) = 1 + [A~J(xki -Kk,-)+5(Kk·,- +A+k,-)J(xk,-)+A+k,.f(xk,· +A+k,.)] 
· 6( A- . + A . ) · · · · · · · · · k,, k,, 

For 2-D 

]Cx1,;,X2.) = f(x1,;,X2,j) = 6(K. ~A+.) [A~.jf(xl,i -A~.i'x2,j)+5(A~ .. i +A;)J(X1,;,X2) 
l,1 l,1 

+ A+1 .f(x1 . + A+1 . ,x2 . )] ., ., ., ,) 

From 2-D to 3-D, the same procedure applies. 

B. NON-UNIFORM COMPUTATIONAL GRID: 

Three factors influence the choice of the computational grid. First, the mesh size 

should be small enough to resolve the important scales in the flow. Secondly the 

computational domain should be large enough that the applied boundary conditions do 

not influence the statistics of the solution in an undesirable way. Thirdly, the availability 

of computer resources restricts the size of calculation that can be done. 
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At near wall region, the velocity gradient in the direction normal to the wall is 

very large and the dominant flow structures are small in space. Very fine grids are needed 

in the wall region to simulate the flow structures there. However in the region far away 

from the wall, flow is smooth and the turbulent structures are mostly very large. 

Relatively coarse grids can be used in the con~ region. If non-uniform grids are used, 

more grids in the wall region and less grids in the core region, it can save significantly 

computer memories and'CPU time. 

In the direction normal to the wall usually non-uniform grids are employed. Moin 

and Kim (1982) used the following grid system in the direction normal to the wall: 

1 
yj =-tanh((jartanh(a)) 

2 
Sj =-1+2(j-l)/(N2 -1) j = 1, 2, 3, ... , N 2 

N 2 is the total number of grid points in that direction. a is the adjustable parameter of 

the transformation (O<a<l); a large value of a distributes more points near the walls. 

Moin and Kim stated there were sufficient points to resolve the viscous sublayer 

(y + < 5) if N 2 =63 and a=.98346 were employed, a total 516,096 grid points were used 

for a channel flow of Re=13,800. 

In the present computation, uniform grids are used in the two directions. The non-

uniform algorithm may be useful for future improvements. 

C. FINITE DIFFERENCE SCHEME 

To discretize the equations (2.9) by the procedure mentioned in section 2.4 yields: 
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H~ = _ _!_ u;u j is the convective terms 
axj 

(C.2) 

(C.3) 

<I> is a scalar to be determined associated with pressure, o/ox represents discrete finite 

difference operators, and G and D represent discrete gradient and divergence 

(C.l) 

respectively. The second-order-explicit Adams-Bashforth scheme is used for convective 

terms, and the second-order-implicit Crank-Nicholson for the viscous and the SGS terms. 

All the spatial derivatives are approximated with second-order central differences on a 

staggered grid as shown in Appendix G. The overall accuracy of this splitting method is 

second order, (Moin and Kim 1982). The pressure can be found as follows: 

+l at~ 2 at~ A +l A +I Un =Un+-' M+O(M ), - 1 =F-VP andu~ =u~ +(Fn +Fn )~t 
I I a a I I I I I 

un+l =un +(Fn -VP)~t=un+I _pn+lM-VP~t 
J I l l 1 

v2,r+1 =(V•ut')l~t 

~t V 
P = ¢ +-[V • (1 +i )V]</J 

2Re v 

So we know that <I> is a second order approximation of pressure and can be treated as 

pressure. 

Moin and Kim (1985) used a special procedure to save considerably the 

computation needed to solve the equation. (C.l) can be rewritten as 
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(C.4) 

Then (C.4) can be approximated as follows: 

(I-A1)(I-A2 )(1-A3 )(ut1 -un = ~ (3Ht-Hr1)+2(A1 +A2 +A3 )ut (C.5) 

(C.5)-(C.4) = (A1A2 + A2A3 + A3A1 -A1A2A3 )(u;+1-u;) = O(L\t3 ) 

Equation (C.5) is an O(L\t 3 ) approximation to (C.4). It requires inversion of tridiagonal 

matrices rather than inversion of a long sparse matrix, as in the case of equation (C.4). 

This results in significant reduction in computing cost and memory. 

For cells not adjacent to the boundaries, the ~ equation takes the form of the 

Poisson discrete equation: 

(~ ~ 8 2 ),,i.n+l(• , k)=-1 D(~n+l)=Q(' , k) 
2 + 2 + 2 'f' l, ], u l, ], 

@1 @2 @3 /J.t 

i = 2,3, ... ,N1 -1, j = 2,3, ... ,N2 -1, k = 2,3, ... ,N3 -1 

For cells adjacent to the boundaries, for example j=l: 

i = 2,3, ... , NI -1, k = 2,3, ... ,N3 -1 

where the gradient of~ is approximated by G(rp) = -(un+I -an+I )L\t. 

Boundary conditions for the intermediate velocity field in time splitting method 

are generally a source of ambiguity. At each complete time step, only the boundary 

conditions for the veiocity field are given. Those for the intermediate velocity field are 

unknown. If the boundary conditions for the intermediate velocity field are not chosen to 

146 



be consistent with the governing equations, significant numerical errors may occur to the 

solution as noted by Kim and Moin (1985). They derived the appropriate boundary 

conditions for the intermediate velocity field as follows: 

U~+I = Un+I + /).t 0<r + Q(/).t)2 
I I ex. 

I 

which is a second order approximation in time and is used in this paper. 

D. OVER-RELAXATION ITERATION TO SOLVE POISSON EQUATION 

In the two-step time split method, pressure is solved by the Poisson equation. For 

2-D staggered grid: 

Tn+I =Tn +lw•R 
p p 4 p 

RP= TN +Ts +TE +Tw -4TP 

where w is the relaxation coefficient, over-relaxation means that 1 <w<2. 

p and q are the number of mesh intervals in two directions. By the procedure, the formula 

for three dimensions also can be obtained. 
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E. DIFFERENCE EQUATIONS OF 2-D LES FOR STEP FLOWS 

PART I: Solve. u~+! i = 1 2 
I ' ., 

As noted in Chapter 2, the intermediate velocity can be solved without knowing 

pressure. The pressure will be solved in part 2 when the intermediate velocity is known. 

E.l. The Basic Equations: 

In all the notations later, ndenotes the current time when all the variables are 

known; n+l denotes the next time step and n-1 the previous time step. To make the non-

linear Navier-Stokes equations linear, the inertial terms are ~pproximated by their values 

at the current time and the previous time steps. This procedure practically disassociates 

the two velocity components u and v, which enable us to solve the two components 

separately at one time step. The subscripts here follow the Einstein rules. 

E.2. Detonations: 

For the convenience of typing and implementing into program code, the following 

detonations will be used. Subscript 1 stands for the direction of u and 2 stands for 

direction of v. From now on i denotes the grid point in horizontal x direction andj 

denotes the points in vertical y direction. 

1 "n+I Ut = U1 , utO = u;, Q n-1 ut m= u1 , 
2 n+I Ut = U1 , YU=yu1 

l "n+l Vt = U2 , vtO = u;, Q n-1 vt m=u2 , vt2 = u;+1 , YV=yu2 , 
VT 

vst = 1+-
V 
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E.3. Staggered Grid 

The two dimensional staggered mesh is shown in Fig. E. l. The momentum 

equations are evaluated at velocity nodes and the continuity equation is enforced for each 

cell. One important advantage of using staggered mesh is that pressure boundary 

conditions are not required. 

Velocity is not evaluated at the center of the staggered grid cell. However its 

values there can be computed by linear interpolation, which is still second-order accurate 

as the difference scheme requires (Deardorff, 1970). The sub grid eddy viscosity is 

evaluated at the center of the cell, as the pressure terms. 

ui,j + ui,j+I 
U .. I= 

l,)+2 2 

vi,j + V;+1,j 
V. I. -

1+2,l 2 

u;,j + ui,j-I 
U .. I= 

l,J-2 2 

vi.j + V;-1,j 
V. I.= 

1-2,l 2 

E.4. Difference Equations at Right Side 

Since the two velocity-components u and v are not evaluated at the same grid 

locations, the forms of difference are not exactly the same for u and v, although their 

basic equations are the same. Some terms are computed by averaging as in section E.3. 

The relations of the grid points and the evaluations at the nodes are shown in Figure E.1. 

To ensure second-order accuracy, sometime four points are used for first order 

derivatives. 
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i) i) 
HUO = Ht = --(ut0)2 ~-(utO*vtO) 

- X y 

· (utO. 1 . + utO . . )2 .:.... (utO . . + utO. 1 . ) 2 (vtO. 1 . + vtO . . ) * (utO . . 1 + utO . . ) 
1- ,) l,) l,) I+ ,) . 1- ,) l,J l,J- I,) = +------------

4Ax 4Ay 

(vtO;-i,j+I + vtOi,j+I) * (utO;,i + utOi,i+I) 

4Ay 

i) i) 
HUOM = H;-1 = --(ut0m) 2 --(utOm*vtOm) 

X y 

(utOmi-1,i + ut0ni;) 2 -(utOm;,i + ut0m;+i) 2 (vtOm;-i,i + vtOm;,i) * (utOm;,j-l + utOm;) 
= 4Ax + 4~ 

(vtOmi-1,j+t + vtOmi,i+I) * (utOm;,i + utOmi,i+I) 

4Ay. 

n i) i) 2 
HVO= H 2 = --(utO*vtO)--(vtO) 

X y 

(utO . . 1 + utO . . ) * (vtO. 1 . + vtO . . ) - (utO. 1 . 1 + ut0.+1 . )(vtO . . + vtO. 1 . ) 
l,J- l,) 1- ,) l,J I+ ,J- I ,) I,) I+,) =----------------------'---~ 

4Ax 

(vtOi,j-l + vtO;,i )2 - (vtO;,i + vtOi,i+I )2 

+ . 
4Ay 

i) i) 
HVOM = H;-1 = --(ut0m*vt0m)--(vt0m) 2 

X y 

· n At O V7 O n At O O n At OvSt attO . ?utO 
AIU= A1(u1 ) =---((l+-)-)u1 =---(vst-)u1 =--(---+vst--) 

2Re x v x 2Re x x 2Re at & & 2 

At (vst;,i - vsti-l,i utO;+I,i - utOi-1.j vst;,i + vst;-J,i utO;+J,i - 2 * utO;,i + utOi-l.i 
=-- +--'---..C....------'-------'-'----'-

2Re Ax 2Ax 2 Ax2 

. At . 
= 2 [vst .. utO. 1 . +vst. 1 .utO. 1 . -(vst .. +vst. 1 .)utO . . ] 2 Re Ax '·1 I+ •1 ,- •1 ,- •1 '·1 ,- ,1 ,.; 

n At o Vy o n At o o n - At iNst iNtO ?vtO 
AlV = A1(U2) = 2Re ~((l+--;)~)U2 = 2Re X (vst~)U2 = 2Re (~a+vst~) 

= ~( vst;+i,j + vst;+t,j-i - vsti-1,i -vst;-i,j-i vtO;+i,i -vtOi-1.j 

2Re· ·· 4Ax 2Ax 

vsti,i-I + vst;,i vtO;+i,i - 2 * vtO;,i + vtOi-1.i 
+--------------

2 Ax 2 
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· l:!.t o VT o l:!.t o o n l:!.t i»st cittO ?utO 
A2U == A (un) =--((1+-)-)u; =--{vst-)u1 =-(--+vst-2-) 

2 1 2Re y v y · 2Re y y · 2Re 01 01 01 
= ~( vst;-i,j+I + vsti,j+I -vst;~i.j-l -vst;;j-I utOi,j+I - utOi.j-I 

2~ 4~ 2~ 

vst;-i,j + vst;,j utOi,j+I - 2 * utOi,j + utOi.j-l 
+ . 2 11/ 

l:!.t O VT O At O O n At i»st l»tO o2vt0 
A2V = A? (un) = -.--((1 +-)-)u; = --(vst-)u2 = --(---+ vst-2-) 

- 2 2 Re y v y 2 Re y y 2 Re 01 0' 0' 

=-At (vst;,j -vst;,j-l vtO;,j+I -vtOi.j-l vst .. 1 +vst .. vtO;j+I -2*vt0.j +vtO .. 1 --'-------'----"------ + l,J- I,} , I, I.J-

2 Re l:!.y 21:!.y 2 l:!.y2 

l:!.t = 2 [vst .. vtO .. 1 +vst .. 1vt0 .. 1 -(vst .. 1 +vst .. )vtO . . ] 2 Re l:!.y ,,1 ,.1+ ,.1- ,.1- ,,1- ,,1 ,,1 

. Then we have the right side terms of the equations. 

At 
YU .. = -(3* HUO-HUOM) +2 *(AIU+ A2U) 

I,] 2 

YV;,j = ~ (3 * HVO- HVOM) + 2 * (AIV + A2V) 

The difference equations are as follows. 

(1- A1 )(1- A2 )(utI- utO) = YU;,j• i = 3,nx,j= 2,ny- I 

(1- A1)(1- A2 )(vtI-vtO) = YV;,j, i = 2,nx-l,j = 3,ny- I 

The values of eddy viscosity are needed at i=2, nx and j=2, ny-1. 

E.5. Solving utl 

(E4.l) 

(E4.2) 

The difference equations can be solved by two steps; first to solve UTY then to 

solve utl. This can reduce the computation tremendously. However it needs extra 

boundary conditions for UTY, a function of second derivative of utl with respect toy. 

Fortunately the boundary conditions for UTY can be. derived from the boundary 

conditions of ut 1 at the current arrangement: no more conditions are needed. It would be 

more difficult if UTX, a function of utl derivative with respect to x, is solved first. 
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(1- A1 )UTY = YU;,j, (1- A2 )(utl- utO) = UIT;,j 

[A][B][u] =YU, u=ut1-ut0 

D.t i} i} 
(1--· -· -(vst-)UTY= YU .. 

2Re dr a I,} 

t:..t i} i} 
(1--- A, (vst A)(utl- Uto) = UTf; 1. 2Revy vy · 

E.5.1 Matrices: A and B: 

t:..t vsti-l,j+I + vsti,j+I - vst;_1,j-I - vsti,j-l ui,j+I - ui,j-l 
ui,j - 2Re ( 4/:..y . 2/:..y 

vst . . + vst. 1 . u . . 1 - 2 * u . . + u . . 1 + I,) ,- ,] I,]+ 1,) 1,J- ) = UTY. . 
2 t:..y2 I,) 

The above algebraic equation set can be expressed by matrices: 

Aa .. u . . 1 + Ab .. u . . + Ac .. u . . 1 = UTY . 
l,J l,J- l,j l,j I,] l,j+ I,] 

11t 1 

(ES.I) 

Aa .. =-----2 [vst. 1 ·+i +vst .. 1 -vst. 1 . 1 -vst .. 1 -4(vst .. +vst. 1 .)] 1,1 2 Re Sl1y 1- .1 1,1+ 1- ,1- 1,1- 1,1 1- ,1 

11t 1 (E5.2) 
Ab . . = 1 + ----2 * ( vst . . + vst. 1 . ) ,.1 2Re !1y 1,1 ,- .1 

11t 1 
Ac .. = -----2 [vst. 1·. 1 +vst .. 1 -vst. 1 . 1 -vst .. 1 +4(vst .. +vst. 1 .)] ,.1 2Re 8/1y ,- ,1+ 1,1+ ,- .1- 1,1- 1,1 ,- .1 

i = 3, nx, j = 3, ny - 2 

At the wall the eddy viscosity is the molecular viscosity, that is vst = 1. At the inlet the 

flow is known, no subgrid model is needed, vst is also one. Therefore the coefficients are 

different at boundaries 

!1t 1 
Aa;,2 = 2 Re S/1y2 [ vst;-i,z + vst;,2 + vst;_1,3 + vst;,3 - 4- 4( vst;,z + vsti-1.z )] 

!1t 1 * ) Ab. 2 =1+----2 (vst; 2 +vsti-1 2 
'· 2Re !1y · · . 

!1t 1 
Ac. 2 =-----2 [vst._12 +vst. 2 +vst._13 +vst; 3 -4+4(vst; 1· +vst;_11.)] 

I, 2Re 8/1y I • ,. I • • • • 
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!it 1 
Aai,n_v-1 = 2Re s·tiy2 [4-vst;-1,n.v-1 -vsti,ny-1 ~vst;-1,ny-2 -vsti,n.v-2 -4(vsti,ny-1 +vsti-l,ny-1)] 

ill 1 
Ab; nv-1 = 1 + 2 D --2 * ( vst; nv-1 + vsti-1 nv-1) . . 1'..e !iy . . , . 

ill 1 
Acinv-1 =-2R SA 2 [4-vsti-lnv-l -vstinv-1 -vsti-ln,·-1-vstinv-l +4(vst,.ny-l +vsti-lny-1)] . . e /J.y . . . . . . . , . . , 

Thus we have the tri-diagonal matrix for the coefficients. 

Abk.2 Ack.2 uk,2 UTYk,2 

Aak,3 Abk.3 Ack,3 uk,3 UTYk,3 

Aak,4 Abk,4 Ack4 uk.4 UTYk,4 

For i=k: * * * * - * 
Aa k . Ab k . Ack . ,} ,} ,J uk,j UTYk,j 

* * * * * 
UTYkm 

i = 3, ..... nx 

The equations for UTY are similar: 

UTY . _ ~ vst;,i - vsti-I,i UTY;+I,i - UTf;_1,i 
'· 1 2Re ( Ax 2& 

+ vst;,i + vst;-i,i UTY;+1,i - 2 * UTY;,i + UTY;-1,i) = YU . . 
2 &2 . · I,} 

Ba . .UTY 1 . + Bb .. UTY . + Be .. UTY 1 . = YU . . 
I,} I- ,} I,} I,} I,} I+,} I,} 

ill 1 
Ba;,i = - 2 Re &2 vst;-1,i 

!it 1 
Bb .. = 1+----. -2 *(vst .. +vst. 1 .) i = 2,nx andj = 1,ny 

1•1 2Re Ax 1•1 ,- •1 

tit 1 
Bc;,i = - 2 Re &2 vst;,i 

Matrix B is similar to matrix A; just the elements are Ba, Bb and Be instead. UTY can be 

solved first and then utl. 

E.5.2 Boundary Conditions for UTY: 
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The grid cells and their numbers are shown in Figure E.2. At boundaries the 

intermediate velocity (Kim & Moin, 1985) is 

An+) . n+I + At. orp n u -u u-
i - i a. ,. 

(E5.3) 
orp n orpn 

~ utl = ut2 + flt at and vtl = vt2 + flt 0' 

For the velocity of left boundary at n+ 1, the lower half of the flow domain is the solid 

wall and the upper half is the inlet. At the wall the non-slip condition applies and at the 

inlet known velocity profiles are given. At the outlet two different boundary conditions 

can apply: the velocity" gradient in stream.wise direction is zero or the continuity 

condition. Here the zero gradient condition will be used, which implies fully developed 

flow at the outlet. 

011t2 011tO 
-=-=0 a a (E5.4) 

At outlet, from the Navier-Stokes equation and (E5.4) we have: 

Ut2nx+I = Ut2nx-1 • utOnx+t = utO nx-t , u = ut l - utO 

a ip a or/J at 
-(-)nx,j = 0, then -(-)nx,j = 0, - = 0 a a a a lZrnx,j 

unx+l,j = unx-1,j' for all j 

Then 

iJUTY t3 at 
-- =-[(1-A )u] .·= (1-A )- = 0 ix . a 2 nx,J 2 a . nx,J nx,J 

Note that the operator A2 is the derivative with respect toy. 

At the inlet the eddy viscosity is one, since everything at inlet is known. 

154 



utl 2,j = utlbin = uinlet + M:, ut22,j = uinlet. 

. l A <Pi,j - <Aj 0 
u~ .1. = um et + ot . - ut 2 1--· . /;lX, ' 

/).t U2,j+1 - 2u2,j + U2,j-1 
then UTY2 1- = u2 1- - 2 

· · 2Re !).y 

YU 3,j = YU 3,j - Ba3,jUTY2.j 

The boundary condition at left lower half is non-slip. Similar to the above, just 

ut2 = 0 

E.5.3. Boundary Conditions for the Intermediate Velocity u 

At top and bottom where y=O or y=2h, the boundaries are a solid wall as shown in 

Figure E.2. That is: 

Then: 

o</J 
ut2 = vt2 = 0, utlb = M ox , 

o</J 
utl;bi =2/!i,.t- -utl;bi u=utl-utO: 

' iJx i,bl ' 

o</J utOi,I - ut0;,2 
ui.bl = lit- - 2 

iJx i,bl 

U;,1 = 2ui,bl - U;,2 

lit <pi,! + </J;,2 - </J;-1,1 - </J;-1,2 

!ix 

Similarly: 

A </J;,ny-1 + <A.ny - </Ji-1,ny-l - </J;-1,11y utOi,ny-1 + utOi,ny 
u. = ut - -------

1,bny /ix 2 

ui,ny = 2ui,bny - ui,ny-1 

Hence: 

Abi,2 = Ab;,2 - Aa;,2 , UTYi,2 = YU;,2 - Aa;,2 * 2u;,bi 

(E5.5) 

utO;,i - ut0;,2 

2 

Abi,,ny-1 = Ab;,ny-1 - Ac;,ny-1 • UTYi,ny-1 = YU;,ny-1 - Ac;,ny-1 * 2u;,bny 
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It is now ready to solve utl=u+utO at inbound, that is for i =2, nx+J, j=l,ny. The 

values of utl at i =l will be discussed later. 

E.6. Solving vtl 

The same procedure to solve utl can be applied to vtl. The difference is that 

VTX, a function of second derivative of vtl with respect to x, is solved first. The reason 

is that it is easy to derive boundary conditions for VTX. 

(l-A2 )V1X = YV;,i, (1- A1 )(vtl-vtO) = VYX;,i 

[A][ B ][ v] = YV v = vt 1 - vtO 

At t3 t3 
(l---(vst-)VTX = YV .. 

2Re 01 01 '·1 

At t3 t3 
(1----(vst-)(vtl-Vto) = VTX .. 

2Rem: m: I,} 

From (E6.1): 

At vst;+i,i + vst;+J,i-l - vstH,i - vsti-1,i-l V;+i,i - V;-J,i 

v;,i - 2 Re ( 4Ax 2Ax 

vst; i + vst; i-l V;+i i - 2 * V; i +vi-Ii 
+ ' 2 ' ' Ax 20 ' ) = VTY;,j 

Aa;,ivi-l,i + Ab;,ivi,i + Ac;,ivi+l,i = VTX;,i 

At 1 

(E6.l) 

Aa;,i = 2 Re SAx 2 [vst;+J,i +vst;+J,j-l -vsti-1,i -vsti-1.j-l -4(vsti,i-l +vst;,)] 

At 1 
Ab .. = l+----2 (vst .. +vst .. 1) 

'·1 2 Re Ax 1•1 . 1•1-

At 1 
Ac;,i = - 2 Re SAx2 [vst;+i,i +vst;+J,i-l -vst;-J,i -vst;-I,i-l +4(vsti,i-l +vst;,)] 

i = 3,n.x-1 andj = 3,ny- l 

At the inlet and the wall, the eddy viscosity is one, therefore: 
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f..t 1 
Aa2,j = 2 Re Sfu: 2 [ vst2,j + vst2,j-t + vst3,j + vst3,j-t - 4 - 4( vst2,j-t + vst2)] 

f..t 1 
Ab2.j = 1 + 2 Re fu: 2 (vst2 ,j + vst2,j-t) 

M 1 
Ac2.j = - 2 Re Sfu: 2 [vst2,J +vst2,J-t +vst3,J +vst3,J-t -4+4(vst2 ,J-t +vst2)] 

OvSt 
At the outlet, the zero gradient condition applies, that is & = 0: vstnx,J = vstnx-t,J. 

Ba;,JVTX.i,J-t + Bh;,JVTX.i,J + Bc;,JVTX.i,J+t = YV;,J 

f..t 1 
Ba . . = -----2 vst . . 1 

'· 1 2Re f..y '·1-

M 1 
Bb . . = l+----2 * (vst . . + vst . . 1) 

,.1 2 Re f..y ,,1 ,.1-
i = 2,nx andj = 3,ny- I 

M 1 
Be . . = -----2 vst . . 

1•1 2 Re f..y '· 1 

E. 6.1 Boundary Conditions for VTX: 

Same as for u, at top and bottom it is a solid wall, and the non-slip condition 

applies for vat n+ 1. For the intermediate velocity at boundaries, from (E5. l): 

8¢ 8¢ 
vtlb = vt2 + f..t- = M-lb 

0' 0' 

Then at the lower boundary: 

A <A.z - <A.I 0 
V. 2 = D.t - Vt ; 2 , 

I, f..y ' 
vtO. 2 = 0 

I, 

f..t V;+1,2 - 2v;,2 + V;-1,2 
VTX..2 = v., - 2 '· ,._ 2 Re f..x 

YU;, 3 = YU;_ 3 - Ba;.3 VTXi,z 

At the upper boundary: 
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_ A 'Pi.ny - 'Pi,ny-1 Q 
V i,n_r - tJ.t - Vt i ni· , 

fj.y ' -
vtO; ni· = 0 

' -

/j.t vi+l,ny - 2vi,ny + 1,';-1,ny 
V1Xi,ny = vi,ny - 2Re Ax2 

YUi.ny-1 = YUi.ny-1 - Bci,ny-1 VTXi,ny 

E.6.2 Boundary Conditions for v 

At the boundary, the lower half is solid wall and the upper half is the inlet. At 

right boundary, it is outlet, velocity derivatives are zero. 

At outlet, same as for u: 

vt2nx,j = vt2nx-l,j and vtOnx,i = vtOnx-I,i 

vtlnx,j = vtlnx-1,j: V nx,j = V nx-1,j 

Then 

Abnx-1.j = Abnx-1,i + Acnx-1,i 

At inlet: 

vt21 . = 2vinlet .-vt2 2 . ,) J ,) 

o</J 
vtl1 . = vt2 1 . + /j.t-

.1 . ,) 0' = -vtl 2 + 2vinlet i + M iJ<p + M o</J 
0' l,j 0' 2,j 1,j 

v1 . = vtl1 . -vt01. = 2v .. -v2 . 
,J ,J ,J m,J ,J 

'P1 · - </J1 · 1 + </)2 . - <p2 . 1 vt02 . + vt01 . 
v . . = vinlet. + /j.t ·1 .;- •1 .;- - --·1---·'-1 

m,J 1 2/j.y 2 

V1X 2 . = VYX 2 . -2Aa2 .v . . and Ab2 . = Ab2 . - Aa2 . 
,J ,J ,J m,J ,J ,J ,J 

The boundary condition at left lower half is non-slip. 

vinlet .· = 0 
J 
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Then it is ready to solve vtl for i=l, nx; j=2, ny after applying boundary conditions. At 

j=l andj=ny+J, vtTcan be obtained specially, as will be discussed in E.7. 

E. 7. Intermediate Velocity Outside of the Bounds 

Since staggered grids are used, outside the boundaries there are some points that 

are difficult to calculate; such as v;,i, vi,m+i and u 1.j, un+l,j in Figure E.2. The velocity 

values at those points are needed in the computation of pressure terms in Part 2 of 

appendix E. A special difference quotient was used to compute those values at the points 

(Stummel et al., 1980). 

The above quotients use grid points at one direction for derivatives. So after the velocity 

values at inner points and boundaries are known, the values at outside points can be 

obtained by the equation (2.16) with the above quotients. The intermediate velocity 

( ut1 ) needs to be solved by this method because continuity does not apply to the 

velocity. Continuity can be used to solve the corrected velocity very easily. 

PART 11:To Solve the Pressure Term~ 

It is the Poisson equation for the pressure term. We already known that ~ is the 

second order approximate of pressure. 

f}2 r/J 1 rot1 ii rjJ cf rjJ 1 atn+I an+I 
---=---=>--2 +--2 =-(--+--) 
& /k j /).t &i a 01 lit & 01 

For staggered grid: 
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OUtl Ufli+l,j - Ufli,j Ollfl Vfli,j+I -Vtli,j 
~lp-ij = Ill ' ~lp-ij = !).y 

1 utl;+J,j - utli.j vtli,j+I - vtli,j . 
Qi,j = /),,/ Ill + !).y ) 

For inner grids, i=2, n, j=2, m 

Let PSI= <p, then 

PSI;+i.j -2PSl;,j + PSf;_1.j + PSl;,j+i -2PSl;,j + PSii.j-i 
/u2 /u2 

Q .. =0 
I,) 

PSI;:1.j + PSI;~1.j PSI;\1 + PSI;\1 
Rt= 2 + 2 Ill !).y 

. 1 1 k 

2(-2 +-2)PSI;1· Ill !).y . 

k+I k 1 1 1 PSI .. =PSI .. +-w(Rt-Q . . )/(-2 +-2 ) 
1,) I,) 2 I,) Ill !).y 

PSI . . = PSI.k:1, when PSI.k:1 - PSI.k. < 10-6 
I,) I,) I,) I,) 

where w is the relaxation coefficient. 

At boundary special treatments are needed as in Kim and Moin (1985): 

j=l: 
PSii+l,1 - 2PSii,I + PS(-1,1 + 1 PS(,2 - PSI;,) = - /).t -

/u2 !).y !).y Q;,1 !).y (vt2;,i vtl;,1) 

j=ny: 

PSii+l,ny - 2PSii,ny + PSii-1,ny. 
/u2 

i=nx: 

PSinx,j+I -2PSinx,j +PSinx,j-l 
!).y2 

1 PSii,ny - PSl;,ny-1 /).t 
!).y /).y · = Qi,ny - !).y (vt2i,ny+I - Vfli,ny+I) 

With PSI known, new ut2 and vt2 can be calculated at inner grids as: 
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n+I An+I A oJ>SJ u. = u. - IJ.t--
1 I &. 

I 

2 1 A PSI;,j - PS/i-1,j .d 2 . 1 A PSI;,j - PSI;,j-1 
ut .. = ut .. - 1J.t , an vt .. = vt .. -IJ.t----'---~ 

I,} I,} 6x I,} I,} !J.y 

·-·--Ui ,j+1- ......... _ ... _ .......... ···········Pi ,J=1-··--.. --.... -.. -Ut+· · ,j+:f---........ -.. 

i ' 

Vi-1 /' ,j+ 1 Vi,j .l Vi+1/2,j+1 Vi+~.i+1 
_Ui,j~1/2 Ui+' ,j+1/2 

I 

--- ---l'-i--1,j-\lSH--1,j---lli;j----¥i,f-k-i;j---c-ll ±1.~i+t,jfVS+i+t,j--

~:::11J I _ ~i· !2_.i_ I 
i Ul,t- I ,J 1/C. 

vl,j Vi+; 1,j 

I 

u· · 1 I u· 1 · 1 .... -....... ..111· ............ -···--.. -... .Pt ,H·····-VS-T-i ,tt·-· .. ··-... -..... _ 1 if. _JJ:- __ .... . 

Figure E.1. Staggered grids for the inner points. 
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Vi,m+1 Vn•1,m+1 Vn,m+1 
~ 

·········ut;m······ ....... Pj,m ·· ······t11.t;m······· 
VHm 

........................... +.un m·····*n;m 

Vn-\ m V~ m 

l···········f·········+·········i··········l······························· 

·····I···· .................................................. . ........ iJi-;in·;r-· ···Pi,-m-l U i+ 1 ,m· 1 ··· ··········· P11-1J,.-u1 ,m-1\ ......... Un+1,m·1 

-

vj,i w,j 
' 

Vi,Jt1 

-------,++"4W 
V!,i 

·································UA·1;J ........... Lun l··l'~;r·· Un+1,j 

Vn-11]+1 vJ,1+1 V1J+1 V~,j+1 

U1 ,j .. ··P·1,l·U ~·,i·~2;l 

V~·1,J ~n,J 

! 
-t-

.. ) .. U2 2 ..... , -········ -·············-··········-···· ········· .. .. ... . ..... .lJl,2'···· .... ··+····· ... Ui+1-;2 ·············· ················· ................................. . 

~~ ~2 

U1,1 ······P:1;;-1-U- ·;1-····l'c2';·1· 

V1,1 V2,1 

··· · ······························· ·······-···Ui,1-·· ·······Pj;l····· Ul+-1-;·1··· ·········································································Ult'1;1 

_J_ 
Vl,1 

Figure E.2. Staggered grids at the boundaries. 
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F. DIFFERENCE AT THE INTERFACES OF MEDIUM AND FLUIDS 

F.1. Interface: 

At the interface, continuity applies to the velocity and shear stress as follows. 

at. atd 
P + 2µ _____..!!!!.._ = P + 2µ _..!!!!..._ uair = umed' air at med at 

a,air a,med 
Vair =Vmed• µa=µ~ 

The difference grids with respect to the variables are shown in Figure F. l. 

Air 

Va-1 Va 

I 
I I 
1 Ua-1 1 

--I--- ---Pe-
l I 
I I· 
I I 

Porous 
Medium 

V'a V'm Vm V +1 
I 
I 
1 Um+1 1 

Y.m-p--- ---+---
1 m I 
I I 
I I 

L 
Figure F.1. Grid system at the interface of the filter. 

(F.l) 

The subscript m indicates medium and a indicates air. The finite difference 

approximation for the continuity conditions are as follows: 

then 
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(F.2) 
Vam -Va _ Vm -Vam 

The accuracy of the difference is first order. Then the relationships between the 

velocities at two sides are established as: 

n+I 
vam = 

/).x 
__ m V n+I +V n+I 
/).x a m 

/).x 
l+-m

/).x 

_ /).xm n+I + (l + /).xm ) n+l _ n+I = Q 
/).x Ua-1 /).x Uam Um+I 

The equations are normalized with the same scales as for the equations for pure 

fluids. However to keep it simple, the original symbols will be used here after 

normalization. 

V n+I = 
am 

/).xm V n+I + V n+I 
/).x a m 

/).x 
l+--m 

/).x 

(F.3) 

/).x /).x 
_ _ m_u n+I + (1 +-m-)u n+I _ u n+I = O (F.4) 

/).x a-I /).x am m+I 

For UTY, defined as in appendix E. 

/).x /).x 
_ _ m_UTY_ n+I + (1 +-m-)UTY_ n+I _ UTY_ n+I = Q 

/).x a-I /).x am m+I 

F .2. Equations for the Porous Medium 

- B 
B=-, 

L 

- K 
K=-2• 

L 

UL p 
Re=- p =-

v m pU2 

where U and L are the velocity and length scales to normalize the equations for both pure 
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fluids and porous medium. Then the non-dimensionalized equations for porous medium 

are: 

V•u =0 m 

(F.5) 

The time-split method will be applied to the equations above as follows: 

Let 
n+I - Un+I 

umi mi = ,1, V mn+I and we know V • Un~) = 0 !it 'I'm 't' m, • (F.6) 

Then: ,I, V2mn+I =(V•u ~+1)/Mand p =(1+ /!it V 2 )m=m 
'I'm .,., m, m 2</Jm Re .,., .,., 

Then the same CFD procedure for the pure fluid can be used to solve the flow 

inside the porous medium. 

F.3. Handling the Intermediate Velocities at the Interface and Boundaries: 

n+I "n+l u. -u. 
Substitute (F.3) and (F.4) into m, . m, = <Pm Vpn+I 

!it 

Let 

/).xm qJ + <Pm qJ 
q> = _llx __ 0'_va __ 0'_~_m and 

Oj am 1 + _llx_m_ 
llx 

then the intermediate velocity v at the interface is: 

/lxm " n+I " n+I 
~Va +Vm 

" n+I l.lA 
Varn = /).x 

1+-m
/lx 
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It is different for velocity u since it goes through the interface: 

cpl = _2 __ P_m_-_P_a and an+t=u"+1+ cpl· L1t. 
~ A L1 = = ~ ' 

C/A am LJX 1 + _x_m C/A am 
(F.8) 

Llx 

Substituting equation (H.8) into (F.4) will yield the equation for u;+1 at interface. Since a 

time-split method is used for the pure fluids, the current pressure is not yet known. Its 

value at the previous time step is used. After u;+1 is known for the whole domain, u:1 

can be obtained by equation (F.8) with the current known pressure. 

At top or bottom solid walls, for v, the boundary conditions for the medium are 

non-slip, as for the homogeneous fluid. 

F.4. VTX at the Interface: 

UTY is easy to handle since its difference does not cross the interface, however 

VTX needs special consideration because it needs velocity values at both sides of the 

interface. 

VIX .. =[l-~~(vst~)](v~~1 -v~.) 
'·1 2Re ox ox '·1 '·1 

At the interface, the flow is considered as laminar, therefore eddy viscosity will be one. 

Here the formula is only for the upstream interface. The subscript al indicates the air side 

left of the interface. 
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Then the same formula will be yielded as for the pure fluids. 

Aat,ivat-1,i + Ba1,jva1,i + C1.jva1+1.j = VTXat,i 

bb aa 
A . = -reydx(- - -) 

al,J 2 8 

bb 3 + l!:.xiix aa 1- /).xiix 

Bal,i = 1 + reydx(- /).x_ / + l!:.x_ / ) 
2 1+ //).x 8 1+ //).x 

bb aa 2 
ca/,j = -reydx(- + -. ) A..~ 

2 8 1 + LU.m 
/).x 

aa :::: 4 - ( vst al,j + vst al,j-1 + vst a/-1,j + vst a/-1,j-l) 

bb = vsta/,j + vsta/,j-1 
/).t 

reydx = 2 
2Re!:u 

Similarly at right side of the interface, it is.the medium: 

OVI _ (vmr +vmr+l)-2vam =-1-( _ 1-/).xiix 2/).xiix 
- V mr+l l!:.x_ / Vmr - l!:.x_ / Vmr-1) 

& mr,j 21).xm 21).xm 1 + //).x 1 + //).x 

2 /).xm 

_ (vmr+l -vmr)-2(vmr -vam) __ 1_[ -(3- 2 ) l!:.x 
- /).x 2 - /).x 2 V mr+l /).x V mr + /).x V mr-1 ] 

mr,j m m 1+-m- 1+-m-
/).x /).x 

where mr indicates the medium side right of the interface. 

Amr,j V mr-1,j + Bmr,j V mr,j + cmr,j V mr+l,j = VTX mr,j 

2/).xiix 

Amr,i = -reydx l!:.x~ 
. 1+ m 

/).x 

Bm~.j = 1 + reydx(3- /).x;,{ ) 
1+ m /).x 

2 

cmr,j = -reydx 
l'!,.t 

reydx = . 2 
2Rel:u 

At the downstream interface, the difference is just exchanging the coefficients 

between m + 1 and m - 1 for the medium side. The same procedure applies when fluid is 
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at right side of the interface. Since inside the porous medium flow is laminar, therefore 

the eddy viscosity is the molecular viscosity. 

F.5. Pressure Gradient at the Interface: 

Since at the interface the relation between intermediate velocity and the pressure 

term are not the same as at inside points, the finite difference in x-direction need to be 

treated specially. 

cpl cpl cpl Pm1-1 - Pml-2 

02 P = &. am - &. a = _&.----'=am"---__ Ax __ ' where cpl is from Eq {F.8) 
0 2X /).x Ax ac_ am 

At the right side of the interface we can obtain the formula similarly. 
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G. Focus POINTS FOR FOUR BEAM LDATHROUGH A TILTED WALL 

For the two horizontal beams, because the LDV optical axis was perpendicular to 

the horizontal lines on both sides of the wall, the effect of the tilted wall was only the 

effective thickness: 81=6/Sin(a), as shown in Figure 3.4. The a is the angle between the 

vertical lines on the wall and the LDV optical axis, as in Fig. 3.5. Since thetwo sides of 

the wall were parallel, as stated in Durst et al; (1976), the out-coming beams were parallel 

· to the incident beams for both horizontal and vertical arranges. 

Figure G.l. Two horizontally arranged beams with a vertically tilted wall. 

The formula to calculate the focus point changes is as follows: 

~~ . 
Sin(OI) = nair,plex"AB =o IX tan(01 ) .. BC =o xtan(B), ... o I =o/ Szn(O) 

CD= BC = AC-AB =o I x[l tan(OI )] 
tan(O) tan(OJ tan(O) 

M'M = CD = o (1- Cos(O) ) 
Sin(a) ~n2 -Sin2(0) 

The two vertical beams went through different paths, as shown in Figure G.l; 

therefore besides the MoM, shift on axis, there was a MoM', shift off axis. 
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Sin(B2 ) B . fl (}. .(}. fl fl , = nair,plex , .... I = - - ( + a), .... 2 = - - (a -B), ... a + (} ~ -
Sm(B20 ) 2 2 2 

BC= AC-AB= 8x[tan(B2 )-tan(B20 )], ........ CC'= BCxSin(ll -02 ) 
2 

1 Cos(a - B) ] x $in(a -B) 
CD=CC'/Sin(B) ..... MM2=ox[ . ----====== 

tan(a-B) ~n 2 -Cos 2 (a-B) Sin(B) 

Figure G.2. Two vertically arranged beams with a vertically.tilted wall 

With the same procedure; MM 1 was also obtained. 

1 _ Cos(a+B) ]x Sin(a+B) 
MMl=ox[---

tan(a+B) ~n 2 -,Cos 2(a+B) Sin(B) 

1 1 · 
Hence MMo = -(MMl + MM2)-MMl = -(MM2-MM1) 

2 2 
1 

M3Mo = -(MMl + MM2) x tan(B) 2 . 
The point Min both Figures G.1 and G.2 is the location where the four LDA 

beams would cross if there were not a wall. M is therefore at the same location regardless 

of the wall and we can use it as the reference point for two Figures. In Figure G. l the two 

horizontal beams meet at m', which is the location the horizontal velocity u is measured. 

In Figure 3.6, the two vertical beams meet at point M3, where is the vertical velocity vis 

measured. Because of the tilted wall the two points are not at the same location. The 
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distance between the two points is referred as the shift distance, which is Ls in Figure 

-G.3. 

M M' Mo 
- - - -......-_-_- - - - - - - - - - -1- - - -

M3 

Figure G3. The relation between thetwo points of measuring u and v. 

·The formula above can be used to compute the shift distance. via the wall tilt angle 

a., the half angle between two beams 8 and the thickness of the wall. However in the 

present study, the angles are given, the only variable left here is the wall thickness. From 

the formulas above, we cart see that the shift distance is proportional to the wall 

thickness. The present e is about 4.5 degrees and a. is about 35 degrees. Refraction index 

n for the transparent wall is 1.5. Then we have the horizontal distance between two 

focused points is MoM'=MoM-M'M=0.1526 and the vertical distance is M3Mo=0.4496. 

The wall that was used is 2.5mm (0.1 inch) thick, which indicates the two focused points 

were 1.2 mm apart. For a filter with upwind surface of 114 mm by 170 mm the difference 

in measuring points is reasonably tolerable. The error is not critical since u and v are 

analyzed separately. 
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